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Abstract
In a simulator-defined MDP, the Markovian dynamics and rewards are provided in the form of a
simulator from which samples can be drawn. This paper studies MDP planning algorithms that
attempt to minimize the number of simulator calls before terminating and outputting a policy that
is approximately optimal with high probability. The paper introduces two heuristics for efficient
exploration and an improved confidence interval that enables earlier termination with probabilis-
tic guarantees. We prove that the heuristics and the confidence interval are sound and produce
with high probability an approximately optimal policy in polynomial time. Experiments on two
benchmark problems and two instances of an invasive species management problem show that the
improved confidence intervals and the new search heuristics yield reductions of between 8% and
47% in the number of simulator calls required to reach near-optimal policies.
Keywords: invasive species management, Markov decision processes, MDP planning, Good-
Turing estimate, reinforcement learning

1. Introduction

The motivation for this paper is the area of ecosystem management in which a manager seeks to
maintain the healthy functioning of an ecosystem by taking actions that promote the persistence
and spread of endangered species or actions that fight the spread of invasive species, fires, and
disease. Most ecosystem management problems can be formulated as MDP (Markov Decision Pro-
cess) planning problems with separate planning and execution phases. During the planning phase,
the algorithm can invoke a simulator to obtain samples of the transitions and rewards. Simulators
in these problems typically model the system to high fidelity and, hence, are very expensive to ex-
ecute. Consequently, the time required to solve such MDPs is dominated by the number of calls to
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the simulator. A good MDP planning algorithm minimizes the number of calls to the simulator and
yet terminates with a policy that is approximately optimal with high probability. This is referred to
as being PAC-RL (Fiechter, 1994).

Because of the separation between the exploration phase (where the simulator is invoked and a
policy is computed) and the exploitation phase (where the policy is executed in the actual ecosys-
tem), we refer to these ecosystem management problems as problems of MDP Planning rather
than of Reinforcement Learning. In MDP planning, we do not need to resolve the exploration-
exploitation tradeoff.

Another aspect of these MDP planning problems that distinguishes them from reinforcement
learning is that the planning algorithm must decide when to terminate and output a PAC-optimal
policy. Many reinforcement learning algorithms, such as Sparse Sampling (Kearns et al., 1999),
FSSS (Walsh et al., 2010), MBIE (Strehl and Littman, 2008), and UCRL2 (Jaksch et al., 2010)
never terminate. Instead, their performance is measured in terms of the number of “significantly
non-optimal actions” (known as PAC-MDP, Kakade (2003)) or cumulative regret (Jaksch et al.,
2010).

A final aspect of algorithms for ecosystem management problems is that they must produce an
explicit policy in order to support discussions with stakeholders and managers to convince them to
adopt and execute the policy. Hence, receding horizon search methods, such as Sparse Sampling
and FSSS, are not appropriate because they do not compute an explicit policy.

A naive approach to solving simulator-defined MDP planning problems is to invoke the simu-
lator a sufficiently large number of times in every state-action pair and then apply standard MDP
planning algorithms to compute a PAC-optimal policy. While this is required in the worst case (c.f.,
Azar et al. (2012)), there are two sources of constraint that algorithms can exploit to reduce simu-
lator calls. First, the transition probabilities in the MDP may be sparse so that only a small fraction
of states are directly reachable from any given state. Second, in MDP planning problems, there is a
designated starting state s0, and the goal is to find an optimal policy for acting in that state and in all
states reachable from that state. In the case where the optimality criterion is cumulative discounted
reward, an additional constraint is that the algorithm only need to consider states that are reachable
within a fixed horizon, because rewards far in the future have no significant impact on the value of
the starting state.

It is interesting to note that the earliest PAC-optimal algorithm published in the reinforcement
learning community was in fact an MDP planning algorithm: the method of Fiechter (1994) ad-
dresses exactly the problem of making a polynomial number of calls to the simulator and then
outputting a policy that is approximately correct with high probability. Fiechter’s method works by
exploring a series of trajectories, each of which begins at the start state and continues to a fixed-
depth horizon. By exploring along trajectories, this algorithm ensures that only reachable states are
explored. And by terminating the exploration at a fixed horizon, it exploits discounting.

Our understanding of reinforcement learning has advanced considerably since Fiechter’s work.
This paper can be viewed as applying these advances to develop “modern” MDP planning algo-
rithms. Specifically, we introduce the following five improvements:

1. Instead of exploring along trajectories, we take advantage of the fact that our simulators can
be invoked for any state-action pair in any order. Hence, our algorithms perform fine-grained
exploration where they iteratively select the state-action pair that they believe will be most
informative.
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2. By not exploring along trajectories (rooted at the start state), we could potentially lose the
guarantee that the algorithm only explores states that are reachable from the start state. We
address this by maintaining an estimate of the discounted state occupancy measure. This
measure is non-zero only for states reachable from the start state. We also use the occupancy
measure in our exploration heuristics.

3. We adopt an extension to the termination condition introduced by Even-Dar et al. (2002,
2006), which is the width of a confidence interval over the optimal value of the start state. We
halt when the width of the confidence interval is less than ε , the desired accuracy bound.

4. We replace the Hoeffding-bound confidence intervals employed by Fiechter (and others) with
the multinomial confidence intervals of Weissman, Ordentlich, Seroussi, Verdu, and Wein-
berger (2003) employed in the MBIE algorithm of Strehl and Littman (2008).

5. To take advantage of sparse transition functions, we incorporate an additional confidence
interval for the Good-Turing estimate of the “missing mass” (the total probability of all un-
observed outcomes for a given state-action pair). This confidence interval can be easily com-
bined with the Weissman et al. interval.

This paper is organized as follows. Section 2 introduces our notation. Section 3 describes a
particular ecosystem management problem—control of the invasive plant tamarisk—and its formu-
lation as an MDP. Section 4 reviews previous work on sample-efficient MDP planning and describes
in detail the algorithms against which we will evaluate our new methods. Section 5 presents the
technical contributions of the paper. It introduces our improved confidence intervals, proves their
soundness, and presents experimental evidence that they enable earlier termination than existing
methods. It then describes two new exploration heuristics, proves that they achieve polynomial
sample size, and presents experimental evidence that they are more effective than previous heuris-
tics. Section 6 concludes the paper.

2. Definitions

We employ the standard formulation of an infinite horizon discounted Markov Decision Process
(MDP; Bellman 1957; Puterman 1994) with a designated start state distribution. Let the MDP be
defined by M = 〈S,A,P,R,γ,P0〉, where S is a finite set of (discrete) states of the world; A is a
finite set of possible actions that can be taken in each state; P : S×A×S 7→ [0,1] is the conditional
probability of entering state s′ when action a is executed in state s; R(s,a) is the (deterministic)
reward received after performing action a in state s; γ ∈ (0,1) is the discount factor, and P0 is the
distribution over starting states. It is convenient to define a special starting state s0 and action a0
and define P(s|s0,a0) = P0(s) and R(s0,a0) = 0. We assume that 0 ≤ R(s,a) ≤ Rmax for all s,a.
Generalization of our methods to (bounded) stochastic rewards is straightforward.

A strong simulator (also called a generative model) is a function F : S×A 7→ S×ℜ that given
(s,a) returns (s′,r) where s′ is sampled according to P(s′|s,a) and r = R(s,a).

A (deterministic) policy is a function from states to actions, π : S 7→ A. The value of a pol-
icy π at the starting state is defined as V π(s0) = E[∑∞

t=0 γ tR(st ,π(st))], where the expectation is
taken with respect to the stochastic transitions. The maximum possible V π(s0) is denoted Vmax =
Rmax/(1− γ). An optimal policy π∗ maximizes V π(s0), and the corresponding value is denoted by
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V ∗(s0). The action-value of state s and action a under policy π is defined as Qπ(s,a) = R(s,a)+
γ ∑s′ P(s′|s,a)V π(s′). The optimal action-value is denoted Q∗(s,a).

Define pred(s) to be the set of states s− such that P(s|s−,a) > 0 for at least one action a and
succ(s,a) to be the set of states s′ such that P(s′|s,a)> 0.

Definition 1 Fiechter (1994). A learning algorithm is PAC-RL1 if for any discounted MDP defined
by 〈S,A,P,R,γ,P0〉, ε > 0, 1 > δ > 0, and 0 ≤ γ < 1, the algorithm halts and outputs a policy π

such that
P[|V ∗(s0)−V π(s0)| ≤ ε]≥ 1−δ ,

in time polynomial in |S|, |A|, 1/ε , 1/δ , 1/(1− γ), and Rmax.

As a learning algorithm explores the MDP, it collects the following statistics. Let N(s,a) be
the number of times the simulator has been called with state-action pair (s,a). Let N(s,a,s′) be the
number of times that s′ has been observed as the result. Let R(s,a) be the observed reward.

3. Managing Tamarisk Invasions in River Networks

The tamarisk plant (Tamarix spp.) is a native of the Middle East. It has become an invasive plant
in the dryland rivers and streams of the western US (DiTomaso and Bell, 1996; Stenquist, 1996). It
out-competes native vegetation primarily by producing large numbers of seeds. Given an ongoing
tamarisk invasion, a manager must repeatedly decide how and where to fight the invasion (e.g.,
eradicate tamarisk plants? plant native plants? upstream? downstream?).

A stylized version of the tamarisk management problem can be formulated as an MDP as fol-
lows. The state of the MDP consists of a tree-structured river network in which water flows from the
leaf nodes toward the root (see Figure 1).

Edge (E)

Slot (H)

Figure 1: Tamarisk structure

The network contains E edges. Each edge in turn has H slots at
which a plant can grow. Each slot can be in one of three states:
empty, occupied by a tamarisk plant, or occupied by a native plant.
In this stylized model, because the exact physical layout of the H
slots within each edge is unimportant, the state of the edge can be
represented using only the number of slots that are occupied by
tamarisk plants and the number of slots occupied by native plants.
The number of empty slots can be inferred by subtracting these
counts from H. Hence, each edge can be in one of (H+1)(H+2)/2
states. Consequently, the total number of states in the MDP is
E(H+1)(H+2)/2.

The dynamics are defined as follows. In each time step, each plant (tamarisk or native) dies with
probability 0.2. The remaining plants each produce 100 seeds. The seeds then disperse according to
a spatial process such that downstream spread is much more likely than upstream spread. We employ
the dispersal model of Muneepeerakul et al. (2007, Appendix B) with an upstream parameter of 0.1
and a downstream parameter of 0.5. An important aspect of the dispersal model is that there is a

1. In retrospect, it would have been better if Fiechter had called this PAC-MDP, because he is doing MDP planning.
In turn, PAC-MDP has come to refer to reinforcement learning algorithms with polynomial time or regret bounds,
which would be more appropriately called PAC-RL algorithms. At some point, the field should swap the meaning of
these two terms.
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non-zero probability for a propagule to travel from any edge to any other edge. Each propagule that
arrives at an edge lands in a slot chosen uniformly at random. Hence, after dispersal, each propagule
has landed in one of the slots in the river network. The seeds that arrive at an occupied slot die and
have no effect. The seeds that arrive at an empty slot compete stochastically to determine which one
will occupy the site and grow. In the MDPs studied in this paper, this competition is very simple:
one of the arriving seeds is chosen uniformly at random to occupy the slot.

Many variations of the model are possible. For example, we can allow the tamarisk plants to be
more fecund (i.e., produce more seeds) than the native plants. The seeds can have differential com-
petitive advantage. The plants can have differential mortality, and so on. One variation that we will
employ in one of our experiments is to include “exogenous arrivals” of tamarisk seeds. This mod-
els the process by which new seeds are introduced to the river network from some external source
(e.g., fishermen transporting seeds on their clothes or equipment). Specifically, in the exogenous
arrivals condition, in addition to the seeds that arrive at an edge via dispersal, up to 10 additional
seeds of each species arrive in each edge. These are sampled by taking 10 draws from a Bernoulli
distribution for each species. For tamarisk, the Bernoulli parameter is 0.1; for the native seeds, the
Bernoulli parameter is 0.4.

The dynamics can be represented as a very complex dynamic Bayesian network (DBN). How-
ever, inference in this DBN is intractable, because the induced tree width is immense. One might
hope that methods from the factored MDP literature could be applied, but the competition be-
tween the seeds that arrive at a given slot means that every slot is a parent of every other slot,
so there is no sparseness to be exploited. An additional advantage of taking a simulation ap-
proach is that our methods can be applied to any simulator-defined MDP. We have therefore con-
structed a simulator that draws samples from the DBN. Code for the simulator can be obtained from
http://2013.rl-competition.org/domains/invasive-species.

The actions for the management MDP are defined as follows. At each time step, one action
can be taken in each edge. The available actions are “do nothing”, “eradicate” (attempt to kill all
tamarisk plants in all slots in the edge), and “restore” (attempt to kill all tamarisk plants in all slots
in the edge and then plant native plants in every empty slot). The effects are controlled by two
parameters: the probability that killing a tamarisk plant succeeds (χ = 0.85) and the probability that
planting a native plant in an empty slot succeeds (β = 0.65). Taken together, the probability that
the “restore” action will change a slot from being occupied by a tamarisk plant to being occupied
by a native plant is the product χ ×β = 0.5525. Because these actions can be taken in each edge,
the total number of actions for the MDP is 3E . However, we will often include a budget constraint
that makes it impossible to treat more than one edge per time step.

The reward function assigns costs as follows. There is a cost of 1.0 for each edge that is invaded
(i.e., that has at least one slot occupied by a tamarisk plant) plus a cost of 0.1 for each slot occupied
by a tamarisk plant. The cost of applying an action to an edge is 0.0 for “do nothing”, 0.5 for
“eradicate”, and 0.9 for “restore”.

The optimization objective is to minimize the infinite horizon discounted sum of costs. However,
for notational consistency we will describe our algorithms in terms of maximizing the discounted
sum of rewards throughout the paper.

It is important to note that in real applications, all of the parameters of the cost function and tran-
sition dynamics may be only approximately known, so another motivation for developing sample-
efficient algorithms is to permit experimental analysis of the sensitivity of the optimal policy to the
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values of these parameters. The techniques employed in this paper are closely-related to those used
to compute policies that are robust to these uncertainties (Mannor et al., 2012; Tamar et al., 2014).

Now that we have described our motivating application problem, we turn our attention to devel-
oping efficient MDP planning algorithms. We start by summarizing previous research.

4. Previous Work on Sample-Efficient MDP Planning

Fiechter (1994) first introduced the notion of PAC reinforcement learning in Definition 1 and pre-
sented the PAC-RL algorithm shown in Figure 1. Fiechter’s algorithm defines a measure of un-
certainty d̃π

h (s), which with high probability is an upper bound on the difference |V ∗h (s)−V π
h (s)|

between the value of optimal policy and the value of the “maximum likelihood” policy that would
be computed by value iteration using the current transition probability estimates. The subscript
h indicates the depth of state s from the starting state. Fiechter avoids dealing with loops in the
MDP by computing a separate transition probability estimate for each combination of state, action
and depth (s,a,h) up to h≤ H, where H is the maximum depth (“horizon”) at which estimates are
needed. Hence, the algorithm maintains separate counts Nh(s,a,s′) and Nh(s,a) to record the results
of exploration for each depth h. To apply this algorithm in practice, Fiechter (1997) modifies the
algorithm to drop the dependency of the related statistics on h.

Fiechter’s algorithm explores along a sequence of trajectories. Each trajectory starts at state s0
and depth 0 and follows an exploration policy πe until reaching depth H. The exploration policy
is the optimal policy for an “exploration MDP” whose transition function is Ph(s′|s,a) but whose
reward function for visiting state s at depth h is equal to

Rh(s,a) =
6
ε

Vmax

1−δ

√
2ln4H|S||A|−2lnδ

Nh(s,a)
.

This reward is derived via an argument based on the Hoeffding bound. The transition probabilities
Ph(s′|s,a) are computed from the observed counts.

The quantity dπe
(s) is the value function corresponding to πe. Because the MDP is stratified by

depth, πe and dπe can be computed in a single sweep starting at depth H and working backward to
depth 0. The algorithm alternates between exploring along a single trajectory and recomputing πe

and dπe
. It halts when dπe

0 (s0) ≤ 2/(1− γ). By exploring along πe, the algorithm seeks to visit a
sequence of states whose total uncertainty is maximized in expectation.

A second important inspiration for our work is the Model-Based Action Elimination (MBAE)
algorithm of Even-Dar et al. (2002, 2006). Their algorithm maintains confidence intervals Q(s,a) ∈
[Qlower(s,a),Qupper(s,a)] on the action-values for all state-action pairs in the MDP. These confi-
dence intervals are computed via “extended value iteration” that includes an additional term derived
from the Hoeffding bounds:

Qupper(s,a) = R(s,a)+ γ ∑
s′

P̂(s′|s,a)Vupper(s′)+Vmax

√
lnct2|S||A|− lnδ

|N(s,a)|
(1)

Vupper(s) = max
a

Qupper(s,a) (2)

Qlower(s,a) = R(s,a)+ γ ∑
s′

P̂(s′|s,a)Vlower(s′)−Vmax

√
lnct2|S||A|− lnδ

|N(s,a)|
(3)

Vlower(s) = max
a

Qlower(s,a). (4)
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Algorithm 1: Fiechter(s0,γ,F,ε,δ )
Input: s0: start state; γ: discount rate; F : a simulator
Initialization:

H =
⌈

1
1−γ

(
lnVmax + ln 6

ε

)⌉
// horizon depth

for s,s′ ∈ S,a ∈ A(s),h = 0, . . . ,H−1 do
Nh(s,a) = 0
Nh(s,a,s′) = 0
Rh(s,a,s′) = 0
πe

h(s) = a1

Exploration:
while dπe

0 (s0)> 2/(1− γ) do
reset h = 0 and s = s0
while h < H do

a = πe
h(s)

(r,s′)∼ F(s,a) // draw sample
update Nh(s,a), Nh(s,a,s′), and Rh(s,a,s′)
h = h+1
s = s′

Compute new policy πe (and values dπe
) using the following dynamic program

dmax = (12Vmax)/(ε(1− γ))
Ph(s′|s,a) = Nh(s,a,s′)/Nh(s,a)
dπe

H (s) = 0, ∀s ∈ S
for h = H−1, . . . ,0 do

eπe

h (s,a) = min
{

dmax,
6
ε

Vmax
1−δ

√
2ln4H|S||A|−2lnδ

Nh(s,a)
+ γ ∑s′∈succ(s,a) Ph(s′|s,a)dπe

h+1(s
′)
}

πe
h(s) = argmaxa∈A(s) eπe

h (s,a)
dπe

h (s) = eπe

h (s,πe
h(s))

Compute policy π , and return it.

In these equations, t is a counter of the number of times that the confidence intervals have been
computed and c is an (unspecified) constant. Even-Dar et al. prove that the confidence intervals
are sound. Specifically, they show that with probability at least 1− δ , Qlower(s,a) ≤ Q∗(s,a) ≤
Qupper(s,a) for all s, a, and iterations t.

Their MBAE algorithm does not provide a specific exploration policy. Instead, the primary
contribution of their work is to demonstrate that these confidence intervals can be applied as a
termination rule. Specifically, if for all (s,a), |Qupper(s,a)−Qlower(s,a)| < ε(1−γ)

2 , then the policy
that chooses actions to minimize Qlower(s,a) is ε-optimal with probability at least 1−δ . Note that
the iteration over s′ in these equations only needs to consider the observed transitions, as P̂(s′|s,a) =
0 for all transitions where N(s,a,s′) = 0.

An additional benefit of the confidence intervals is that any action a′ can be eliminated from
consideration in state s if Qupper(s,a′) < Qlower(s,a). Even-Dar et al. demonstrate experimentally
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that this can lead to faster learning than standard Q learning (with either uniform random action
selection or ε-greedy exploration).

The third important source of ideas for our work is the Model-Based Interval Estimation (MBIE)
algorithm of Strehl and Littman (2008). MBIE maintains an upper confidence bound on the action-
value function, but unlike Fiechter and Even-Dar et al., this bound is based on a confidence region
for the multinomial distribution developed by Weissman et al. (2003).

Let P̂(s′|s,a) = N(s,a,s′)/N(s,a) be the maximum likelihood estimate for P(s′|s,a), and let P̂
and P̃ denote P̂(·|s,a) and P̃(·|s,a). Define the confidence set CI as

CI(P̂|N(s,a),δ ) =
{

P̃
∣∣ ‖P̃− P̂‖1 ≤ ω(N(s,a),δ )

}
, (5)

where ‖ · ‖1 is the L1 norm and ω(N(s,a),δ ) =
√

2[ln(2|S|−2)−lnδ ]
N(s,a) . The confidence interval is an

L1 “ball” of radius ω(N(s,a),δ ) around the maximum likelihood estimate for P. Weissman et al.
(2003) prove that with probability 1−δ , P(·|s,a) ∈CI(P̂(·|s,a)|N(s,a),δ ).

Given confidence intervals for all visited (s,a), MBIE computes an upper confidence bound on
Q and V as follows. For any state where N(s,a) = 0, define Qupper(s,a) = Vmax. Then iterate the
following dynamic programming equations to convergence:

Qupper(s,a) = R(s,a)+ max
P̃(s,a)∈CI(P(s,a),δ1)

γ ∑
s′

P̃(s′|s,a)max
a′

Qupper(s′,a′) ∀s,a (6)

At convergence, define Vupper(s) = maxa Qupper(s,a). Strehl and Littman (2008) prove that this
converges.

Strehl and Littman provide Algorithm UPPERP (Algorithm 2) for solving the optimization over
CI(P(s,a),δ1) in (6) efficiently. If the radius of the confidence interval is ω , then we can solve
for P̃ by shifting ∆ω = ω/2 of the probability mass from outcomes s′ for which Vupper(s′) =
maxa′ Qupper(s′,a′) is low (“donor states”) to outcomes for which it is maximum (“recipient states”).
This will result in creating a P̃ distribution that is at L1 distance ω from P̂. The algorithm repeatedly
finds a pair of successor states s and s and shifts probability from one to the other until it has shifted
∆ω . Note that in most cases, s will be a state for which N(s,a,s) = 0—that is, a state we have never
visited. In such cases, Vupper(s) =Vmax.

As with MBAE, UPPERP only requires time proportional to the number of transitions that have
been observed to have non-zero probability.

The MBIE algorithm works as follows. Given the upper bound Qupper, MBIE defines an ex-
ploration policy based on the optimism principle (Buşoniu and Munos, 2012). Specifically, at each
state s, it selects the action a that maximizes Qupper(s,a). It then performs that action in the MDP
simulator to obtain the immediate reward r and the resulting state s′. It then updates its statistics
N(s,a,s′), R(s,a), and N(s,a) and recomputes Qupper.

MBIE never terminates. However, it does compute a constant m such that if N(s,a) > m, then
it does not draw a new sample from the MDP simulator for (s,a). Instead, it samples a next state
according to its transition probability estimate P̂(s′|s,a). Hence, in an ergodic2 or unichain3 MDP, it
will eventually stop drawing new samples, because it will have invoked the simulator on all actions
a in all non-transient states s at least m times.

2. An ergodic MDP is an MDP where every state can be accessed in a finite number of steps from any other state
3. In unichain MDP, every policy in an MDP result in a single ergodic class
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Algorithm 2: UPPERP(s,a,δ ,M0)
Input: s,a
δ : Confidence parameter
M0: missing mass limit
Lines marked by GT: are for the Good-Turing extension
N(s,a) := ∑s′ N(s,a,s′)
P̂(s′|s,a) := N(s,a,s′)/N(s,a) for all s′

P̃(s′|s,a) := P̂(s′|s,a) for all s′

∆ω := ω(N(s,a),δ )/2
GT: N0(s,a) := {s′|N(s,a,s′) = 0}
GT: ∆ω := min

(
ω(N(s,a),δ/2)/2,(1+

√
2)
√

ln(2/δ )
N(s,a)

)
while ∆ω > 0 do

S′ := {s′ : P̂(s′|s,a)< 1} recipient states
GT: if M0 = 0 then S′ := S′ \N0(s,a)

s := argmins′:P̃(s′|s,a)>0Vupper(s′) donor state
s := argmaxs′∈S′,P̃(s′|s,a)<1Vupper(s′) recipient state
ξ := min{1− P̃(s|s,a), P̃(s|s,a),∆ω}
P̃(s|s,a) := P̃(s|s,a)−ξ

P̃(s|s,a) := P̃(s|s,a)+ξ

∆ω := ∆ω−ξ

GT: if s ∈ N0(s,a) then M0 := M0−ξ

return P̃

Because MBIE does not terminate, it cannot be applied directly to MDP planning. However, we
can develop an MDP planning version by using the horizon time H computed by Fiechter’s method
and forcing MBIE to jump back to s0 each time it has traveled H steps away from the start state.
Algorithm 3 provides the pseudo-code for this variant of MBIE, which we call MBIE-reset.

Now that we have described the application goal and previous research, we present the novel
contributions of this paper.

5. Improved Model-Based MDP Planning

We propose a new algorithm, which we call DDV. Algorithm 4 presents the general schema for
the algorithm. For each state-action (s,a) pair that has been explored, DDV maintains upper and
lower confidence limits on Q(s,a) such that Qlower(s,a) ≤ Q∗(s,a) ≤ Qupper(s,a) with high prob-
ability. From these, we compute a confidence interval on the value of the start state s0 according
to Vlower(s0) = maxa Qlower(s0,a) and Vupper(s0) = maxa Qupper(s0,a). Consequently, Vlower(s0) ≤
V ∗(s0) ≤ Vupper(s0) with high probability. The algorithm terminates when the width of this confi-
dence interval, which we denote by ∆V (s0) =Vupper(s0)−Vlower(s0), is less than ε .

The confidence intervals for Qlower and Qupper are based on an extension of the Weissman, et
al. confidence interval of Equation (5), which we will refer to as CIGT (P(s,a),δ1) (which will be
described below). The confidence intervals are computed by iterating the following equations to
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Algorithm 3: MBIE-reset(s0,γ,F,H,ε,δ )
Input: s0:start state, γ: discount rate, F : a simulator, H : horizon,ε,δ : accuracy and

confidence parameters
N(s,a,s′) = 0 for all (s,a,s′)

m = c
[

|S|
ε2(1−γ)4 +

1
ε2(1−γ)4 ln |S||A|

ε(1−γ)δ

]
repeat forever

s = s0
h = 1
while h≤ H do

update Qupper and Vupper by iterating equation 6 to convergence
a = argmaxa Qupper(s)
if N(s,a)< m then

(r,s′)∼ F(s,a) // draw sample
update N(s,a,s′),N(s,a), and R(s,a)

else
s′ ∼ P̂(s′|s,a)
r = R(s,a)

h = h+1

convergence:

Qlower(s,a) = R(s,a)+ min
P̃(s,a)∈CIGT (P(s,a),δ1)

γ ∑
s′

P̃(s′|s,a)max
a′

Qlower(s′,a′) ∀s,a. (7)

Qupper(s,a) = R(s,a)+ max
P̃(s,a)∈CIGT (P(s,a),δ1)

γ ∑
s′

P̃(s′|s,a)max
a′

Qupper(s′,a′) ∀s,a. (8)

The Q values are initialized as follows: Qlower(s,a) = 0 and Qupper(s,a) = Vmax. At convergence,
define Vlower(s) = maxa Qlower(s,a) and Vupper(s) = maxa Qupper(s,a).

Lemma 2 If δ1 = δ/(|S||A|), then with probability 1−δ , Qlower(s,a)≤ Q∗(s,a)≤ Qupper(s,a) for
all (s,a) and Vlower(s)≤V ∗(s)≤Vupper for all s.

Proof Strehl and Littman (2008) prove this for Qupper and Vupper by showing that it is true at the
point of initialization and that Equation (8) is a contraction. Hence, it remains true by induction on
the number of iterations of value iteration. The proof for Qlower and Vlower is analogous.

The exploration heuristic for DDV is based on exploring the state-action pair (s,a) that maxi-
mizes the expected decrease in ∆V (s0). We write this quantity as ∆∆V (s0|s,a), because it is a change
(∆) in the confidence interval width ∆V (s0|s,a). Below, we will describe two different heuristics
that are based on two different approximations to ∆∆V (s0|s,a).

We now present the improved confidence interval, CIGT , and evaluate its effectiveness exper-
imentally. Then we introduce our two search heuristics, analyze them, and present experimental
evidence that they improve over previous heuristics.
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Algorithm 4: DDV (s0,γ,F,ε,δ )
Input: s0:start state
γ: discount rate
F : a simulator
ε,δ : accuracy and confidence parameters
m = c

[
|S|

ε2(1−γ)4 +
1

ε2(1−γ)4 ln |S||A|
ε(1−γ)δ

]
δ ′ = δ/(|S||A|m)
S̃ = {s0} // observed and/or explored states
N(s,a,s′) = 0 for all (s,a,s′)
repeat forever

update Qupper,Qlower,Vupper,Vlower by iterating equations 7 and 8 using δ ′ to compute
the confidence intervals
if Vupper(s0)−Vlower(s0)≤ ε then

// compute a good policy and terminate
πlower(s) = argmaxa Qlower(s,a)
return πlower

forall the explored or observed states s do
forall the actions a do

compute ∆∆V (s0|s,a)

compute (s,a) := argmax(s,a) ∆∆V (s0|s,a)
(r,s′)∼ F(s,a) // draw sample
S̃ := S̃∪{s′} // update the set of discovered states
update N(s,a,s′),N(s,a), and R(s,a)

5.1 Tighter Statistical Analysis for Earlier Stopping

The first contribution of this paper is to improve the confidence intervals employed in equation (6).
In many real-world MDPs, the transition probability distributions are sparse in the sense that there
are only a few states s′ such that P(s′|s,a) > 0. A drawback of the Weissman et al. confidence
interval is that ω(N,δ ) scales as O(

√
|S|/N), so the intervals are very wide for large state spaces.

We would like a tighter confidence interval for sparse distributions.
Our approach is to intersect the Weissman et al. confidence interval with a confidence interval

based on the Good-Turing estimate of the missing mass (Good, 1953).

Definition 3 For a given state-action pair (s,a), let Nk(s,a) = {s′|N(s,a,s′) = k} be the set of all
result states s′ that have been observed exactly k times. We seek to bound the total probability
of those states that have never been observed: M0(s,a) = ∑s′∈N0(s,a) P(s′|s,a). The Good-Turing
estimate of M0(s,a) is

M̂0(s,a) =
|N1(s,a)|
N(s,a)

.

In words, Good and Turing count the number of successor states that have been observed exactly
once and divide by the number of samples. The following lemma follows directly from Kearns and
Saul (1998), McAllester and Schapire (2000), and McAllester and Ortiz (2003).
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Lemma 4 With probability 1−δ ,

M0(s,a)≤ M̂0(s,a)+(1+
√

2)

√
ln(1/δ )

N(s,a)
. (9)

Proof Let S(M0(s,a),x) be the Chernoff “entropy”, defined as

S(M0(s,a),x) = sup
β

xβ − lnZ(M0(s,a),β ),

where Z(M0(s,a),β ) = E[eβM0(s,a)]. McAllester and Ortiz (2003, Theorem 16) prove that

S(M0(s,a),E[M0(s,a)]+ ε)≥ N(s,a)ε2.

From Lemmas 12 and 13 of McAllester and Schapire (2000),

E[M0(s,a)]≤ M̂0(s,a)+

√
2log1/δ

N(s,a)
.

Combining these results yields

S

(
M0(s,a),M̂0(s,a)+

√
2log1/δ

N(s,a)
+ ε

)
≥ N(s,a)ε2. (10)

Chernoff (1952) proves that
P(M0(s,a)≥ x)≤ e−S(M0(s,a),x).

Plugging in (10) gives

P

(
M0(s,a)≥ M̂0(s,a)+

√
2log1/δ

N(s,a)
+ ε

)
≤ e−N(s,a)ε2

. (11)

Setting δ = e−N(s,a)ε2
and solving for ε gives ε =

√
(log1/δ )/N(s,a). Plugging this into (11) and

simplifying gives the result.

Define CIGT (P̂|N(s,a),δ ) to be the set of all distributions P̃ ∈ CI(P̂|N(s,a),δ/2) such that

∑s′∈N0(s,a) P̃(s′|s,a)< M̂0(s,a)+(1+
√

2)
√

ln(2/δ )
N(s,a) . This intersects the Weissman and Good-Turing

intervals. Note that since we are intersecting two confidence intervals, we must compute both (5)
and (9) using δ/2 so that they will simultaneously hold with probability 1−δ .

We can incorporate the bound from (9) into UPPERP by adding the lines prefixed by “GT:”
in Algorithm 2. These limit the amount of probability that can be shifted to unobserved states
according to (9). The modified algorithm still only requires time proportional to the number of
states s′ where N(s,a,s′)> 0.
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5.1.1 EXPERIMENTAL EVALUATION OF THE IMPROVED CONFIDENCE BOUND

To test the effectiveness of this Good-Turing improvement, we ran MBIE-reset and compared its
performance with and without the improved confidence interval.

We experimented with four MDPs. The first is a Combination Lock MDP with 500 states. In
each state i, there are two possible actions. The first action makes a deterministic transition to state
i+ 1 with reward 0 except for state 500, which is a terminal state with a reward of 1. The second
action makes a transition (uniformly) to one of the states 1, . . . , i− 1 with reward 0. The optimal
policy is to choose the first action in every state, even though it doesn’t provide a reward until the
final state.

The remaining three MDPs are different versions of the tamarisk management MDP. The spe-
cific network configurations that we employed in this experiment were the following:

• E = 3,H = 2 with the budget constraint that in each time step we can only choose one edge
in which to perform a non-“do nothing” action. This gives a total of 7 actions.

• E = 3,H = 3 with the same constraints as for E = 3,H = 2.

• E = 7,H = 1 with the budget constraint that in each time step we can only choose one edge
in which to perform a non-“do nothing” action. The only such action is “restore”. This gives
a total of 8 actions.

5.1.2 RESULTS

Figure 2 shows the upper and lower confidence bounds, Vupper(s0) and Vlower(s0), on the value of
the starting state s0 as a function of the number of simulator calls. The confidence bounds for the
Weissman et al. interval are labeled “V(CI)”, whereas the bounds for this interval combined with
the Good-Turing interval are labeled “V(CI-GT)”.

5.1.3 DISCUSSION

The results show that the Good-Turing interval provides a substantial reduction in the number of
required simulator calls. On the combination lock problem, the CI-GT interval after 2× 105 calls
is already better than the CI interval after 106 calls, for a more than five-fold speedup. On the
E = 3,H = 2 tamarisk problem, the speedup is more than a factor of three. On the E = 3,H = 3
version, the speedup is more than five-fold. And on the E = 7,H = 1 problem, the CI interval does
not show any progress toward convergence, whereas the CI-GT interval has begun to make progress.

5.2 Improved Exploration Heuristics for MDP Planning

The second contribution of this paper is to define two new exploration heuristics for MDP planning
and compare them to existing algorithms. As with previous work, we wish to exploit reachability
and discounting to avoid exploring unnecessarily. However, we want to take advantage of the fact
that our simulators are “strong” in the sense that we can explore any desired state-action pair in any
order.

As discussed above, our termination condition is to stop when the width of the confidence
interval ∆V (s0) = Vupper(s0)−Vlower(s0) is less than ε . Our heuristics are based on computing the
state-action pair (s,a) that will lead to the largest (one step) reduction in ∆V (s0). Formally, let
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(b) Tamarisk with E = 3 and H = 2
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(c) Tamarisk with E = 3 and H = 3
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Figure 2: Plots of Vupper(s0) and Vlower(s0) for MBIE-reset on V (s0) with and without incorporating
Good-Turing confidence intervals. Values are the mean of 15 independent trials. Error
bars (which are barely visible) show 95% confidence intervals computed from the 15
trials.

∆∆V (s0|s,a) = E[∆V (s0)−∆V ′(s0)|(s,a)] be the expected change in ∆V (s0) if we draw one more
sample from (s,a). Here the prime in ∆V ′(s0) denotes the value of ∆V (s0) after exploring (s,a).
The expectation is taken with respect to two sources of uncertainty: uncertainty about the reward
R(s,a) and uncertainty about the resulting state s′ ∼ P(s′|s,a).

Suppose we are considering exploring (s,a). We approximate ∆∆V (s0|s,a) in two steps. First,
we consider the reduction in our uncertainty about Q(s,a) if we explore (s,a). Let ∆Q(s,a) =
Qupper(s,a)−Qlower(s,a) and ∆∆Q(s,a) = E[∆Q(s,a)−∆Q′(s,a)|(s,a)]. Second, we consider the
impact that reducing ∆Q(s,a) will have on ∆V (s0).

We compute ∆∆Q(s,a) as follows.
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Case 1: N(s,a) = 0. In this case, our current bounds are Qlower(s,a) = 0 and Qupper(s,a) =Vmax.
After we sample (r,s′)∼ F(s,a), we will observe the actual reward R(s,a) = r and we will observe
one of the possible successor states s′. For purposes of deriving our heuristic, we will assume a
uniform4 prior on R(s,a) so that the expected value of R is R = Rmax/2. We will assume that s′ will
be a “new” state that we have never observed before, and hence Vupper(s′) =Vmax and Vlower(s′) = 0.
This gives us

Q′upper(s,a) = R(s,a)+ γRmax/(1− γ) (12a)

Q′lower(s,a) = R(s,a), (12b)

If a more informed prior is known for R(s,a), then it could be employed to derive a more informed
exploration heuristic.

Case 2: N(s,a) > 0. In this case, we have already observed R(s,a), so it is no longer a random
variable. Hence, the expectation is only over s′. For purposes of deriving our exploration heuristic,
we will assume that s′ will be drawn according to our current maximum likelihood estimate P̂(s′|s,a)
but that N1(s,a) will not change. Consequently, the Good-Turing estimate will not change. Under
this assumption, the expected value of Q will not change, M0(s,a) will not change, so the only
change to Qupper and Qlower will result from replacing ω(N(s,a),δ ) by ω(N(s,a) + 1,δ ) in the
Weissman et al. confidence interval.

Note that DDV may explore a state-action pair (s,a) even if a is not currently the optimal action
in s. That is, even if Qupper(s,a) < Qupper(s,a′) for some a′ 6= a. An alternative rule would be to
only explore (s,a) if it would reduce the expected value of ∆V (s) =Vupper(s)−Vlower(s). However,
if there are two actions a and a′ such that Qupper(s,a) = Qupper(s,a′), then exploring only one of
them will not change ∆V (s). Our heuristic avoids this problem. We have studied another variant in
which we defined Vupper(s) = softmaxa(τ) Qupper(s,a) (the softmax with temperature τ). This gave
slightly better results, but it requires that we tune τ , which is a nuisance.

The second component of our heuristic is to estimate the impact of ∆∆Q(s0|s,a) on ∆∆V (s0|s,a).
To do this, we appeal to the concept of an occupancy measure.

Definition 5 The occupancy measure µπ(s) is the expected discounted number of times that policy
π visits state s,

µ
π(s) = E

[
∞

∑
t=1

γ
tI[st = s]

∣∣∣∣∣ s0,π

]
, (13)

where I[·] is the indicator function and the expectation taken is with respect to the transition distri-
bution.

This can be computed via dynamic programming on the Bellman flow equation (Syed et al., 2008):

µ
π(s) := P0(s)+ γ ∑

s−
µ

π(s−)P(s|s−,π(s−)).

This says that the (discounted) probability of visiting state s is equal to the sum of the probability of
starting in state s (as specified by the starting state distribution P0(s)) and the probability of reaching
s by first visiting state s− and then executing an action that leads to state s.

4. Any symmetric prior centered on Rmax/2 would suffice.
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The intuition behind using an occupancy measure is that if we knew that the optimal policy
would visit s with measure µ∗(s) and if exploring (s,a) would reduce our uncertainty at state
s by approximately ∆∆Q(s0|s,a), then a reasonable estimate of the impact on ∆V (s0) would be
µ∗(s)∆∆Q(s0|s,a). Unfortunately, we don’t know µ∗ because we don’t know the optimal policy.
We consider two other occupancy measures instead: µOUU and µ .

The first measure, µOUU is computed based on the principle of optimism under uncertainty.
Specifically, define πOUU(s) := maxa Qupper(s,a) to be the policy that chooses the action that maxi-
mizes the upper confidence bound on the Q function. This is the policy followed by MBIE and most
other upper-confidence bound methods. This gives us the DDV-OUU heuristic.

Definition 6 The DDV-OUU heuristic explores the state action pair (s,a) that maximizes

µ
OUU(s)∆∆Q(s0|s,a).

The second measure µ is computed based on an upper bound of the occupancy measure over all
possible policies. It gives us the DDV-UPPER heuristic.

Definition 7 The DDV-UPPER heuristic explores the state action pair (s,a) that maximizes

µ(s)∆∆Q(s0|s,a).

The next section defines µ and proves a property that may be of independent interest.

5.2.1 AN UPPER BOUND ON THE OCCUPANCY MEASURE

The purpose of this section is to introduce µ , which is an upper bound on the occupancy measure of
any optimal policy for a restricted set of MDPs M̃ . This section defines this measure and presents a
dynamic programming algorithm to compute it. The attractive aspect of µ is that it can be computed
without knowing the optimal policy. In this sense, it is analogous to the value function, which value
iteration computes in a policy-independent way.

To define µ , we must first define the set M̃ of MDPs. At each point during the execution
of DDV, the states S of the unknown MDP can be partitioned into three sets: (a) the unob-
served states s (i.e., N(s−,a−,s) = 0 for all s−,a−); (b) the observed but unexplored states s (i.e.,
∃(s−,a−)N(s−,a−,s) > 0 but N(s,a) = 0 for all a), and (c) the (partially) explored states s (i.e.,
N(s,a,s′)> 0 for some a). Consider the set M̃ = 〈S̃, Ã, T̃ , R̃,s0〉 of MDPs satisfying the following
properties:

• S̃ consists of all states s that have been either observed or explored,

• Ã = A, the set of actions in the unknown MDP,

• T̃ consists of any transition function T such that for explored states s and all actions a,
T (s,a, ·) ∈ CIGT (P̂(s,a),δ ). For all observed but not explored states s, T (s,a,s) = 1 for
all a, so they enter self-loops.

• R̃: For explored (s,a) pairs, R̃(s,a) = R(s,a). For unexplored (s,a) pairs, R̃(s,a) ∈ [0,Rmax].

• s0 is the artificial start state.
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The set M̃ contains all MDPs consistent with the observations with the following restrictions. First,
the MDPs do not contain any of the unobserved states. Second, the unexplored states contain self-
loops and hence do not transition to any other states.

Define Pupper(s′|s,a) as follows:

Pupper(s′|s,a) = max
P̃(s,a)∈CIGT (P,δ )

P̃(s′|s,a).

Define µ as the solution to the following dynamic program. For all states s,

µ(s) = ∑
s−∈pred(s)

max
a−

γPupper(s|s−,a−)µ(s−). (14)

The intuition is that we allow each predecessor s− of s to choose the action a− that would send the
most probability mass to s and hence give the biggest value of µ(s). These action choices a− are
not required to be consistent for multiple successors of s−. We fix µ(s0) = µ(s0) = 1. (Recall, that
s0 is an artificial start state. It is not reachable from any other state—including itself—so µ(s0) = 1
for all policies.)

Lemma 8 For all MDPs M̃ ∈ M̃ , µ(s)≥ µπ∗(M̃)(s), where π∗(M̃) is any optimal policy of M̃.

Proof By construction, Pupper(s′|s,a) is the maximum over all transition distributions in M̃ of the
probability of (s,a)→ s′. According to (14), the probability flowing to s is the maximum possible
over all policies executed in the predecessor states {s−}. Finally, all probability reaching a state s
must come from its known predecessors pred(s), because all observed but unexplored states only
have self-transitions and hence cannot reach s or any of its predecessors.

In earlier work, Smith and Simmons (2006) employed a less general path-specific bound on µ

as a heuristic for focusing Real-Time Dynamic Programming (a method that assumes a full model
of the MDP is available).

5.2.2 SOUNDNESS OF DDV-OUU AND DDV-UPPER

We now show that DDV, using either of these heuristics, produces an ε-optimal policy with prob-
ability at least 1− δ after making only polynomially-many simulator calls. The steps in this proof
closely follow previous proofs by Strehl and Littman (2008) and Even-Dar et al. (2006).

Theorem 9 (DDV is PAC-RL) There exists a sample size m polynomial in |S|, |A|, 1/ε , 1/δ ,
1/(1−γ),Rmax, such that DDV(s0,F,ε,δ/(m|S||A|)) with either the DDV-OUU or the DDV-UPPER
heuristic terminates after no more than m|S||A| calls on the simulator and returns a policy π such
that |V π(s0)−V ∗(s0)|< ε with probability 1−δ .

Proof First, note that every sample drawn by DDV will shrink the confidence interval for some
Q(s,a). Hence, these intervals will eventually become tight enough to make the termination condi-
tion true. To establish a rough bound on sample complexity, let us suppose that each state must be
sampled enough so that ∆Q(s,a) = Qupper(s,a)−Qlower(s,a)≤ ε .

This will cause termination. Consider state s0 and let aupper = argmaxa Qupper(s0,a) be the
action chosen by the OUU policy. Then the upper bound on s is Vupper(s) = Qupper(s,aupper), and
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the lower bound on S is Vlower(s0) = maxa Qlower(s0,a) ≥ Qlower(s0,aupper). Hence, the difference
Vupper(s0)−Vlower(s0)≤ ε .

How many samples are required to ensure that ∆Q(s,a) ≤ ε for all (s,a)? We can bound
Qupper(s,a)−Qlower(s,a) as follows.

Qupper(s,a)−Qlower(s,a) = R(s,a)+ γ max
P̃∈CI(P̂(s,a),δ ′)

∑
s′

P̃(s′|s,a)Vupper(s′)

−R(s,a)− γ min
P̃∈CI(P̂(s,a),δ ′)

∑
s′

P̃(s′|s,a)Vlower(s′)

Let Pupper be the P̃ chosen in the max and Plower be the P̃ chosen in the min. At termination, we
know that in every state Vupper ≤Vlower + ε . Substituting these and simplifying gives

Qupper(s,a)−Qlower(s,a)≤ γ ∑
s′
[Pupper(s′|s,a)−Plower(s′|s,a)]Vlower(s′)+ γε.

We make two approximations: Pupper(s′|s,a)−Plower(s′|s,a) ≤ |Pupper(s′|s,a)−Plower(s′|s,a)| and
Vlower(s′)≤ Rmax

1−γ
. This yields

Qupper(s,a)−Qlower(s,a)≤ γ
Rmax

1− γ
∑
s′
|Pupper(s′|s,a)−Plower(s′|s,a)|+ γε.

We know that ‖Pupper(·|s,a)−Plower(·|s,a)‖1 ≤ 2ω , because both distributions belong to the L1 ball
of radius ω around the maximum likelihood estimate P̂.

Qupper(s,a)−Qlower(s,a)≤ γ
Rmax

1− γ
2ω + γε.

Setting this less than or equal to ε and solving for ω gives

ω ≤ ε(1− γ)2

2γRmax
.

We know that

ω =

√
2[ln(2|S|−2)− lnδ ′]

N
.

To set δ ′, we must divide δ by the maximum number of confidence intervals computed by the
algorithm. This will be 2|S||A|N, because we compute two intervals (upper and lower) for ever
(s,a). Plugging the value for δ ′ in and simplifying gives the following equation:

N ≥ γ28R2
max[ln(2

|S|−2)− lnδ + ln2|S||A|+ lnN]

ε2(1− γ)4 .

This has no closed form solution. However, as Strehl and Littman note, there exists a constant C
such that if N ≥ 2C lnC then N ≥ C lnN. Hence, the lnN term on the right-hand side will only
require a small increase in N. Hence

N = O
(

γ2R2
max|S|+ ln |S||A|/δ

ε2(1− γ)4

)
.
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In the worst case, we must draw N samples for every state-action pair, so

m = O
(
|S|2|A|γ

2R2
max + ln |S||A|/δ

ε2(1− γ)4

)
,

which is polynomial in all of the relevant parameters.
To prove that the policy output by DDV is within ε of optimal with probability 1−δ , note that

the following relationships hold:

Vupper(s0)≥V ∗(s0)≥V πlower(s0)≥Vlower(s0).

The inequalities Vupper(s0) ≥ V ∗(s0) ≥ Vlower(s0) hold (with probability 1−δ ) by the admissi-
bility of the confidence intervals. The inequality V ∗(s0) ≥ V πlower(s0) holds, because the true value
of any policy is no larger than the value of the optimal policy. The last inequality, V πlower(s0) ≥
Vlower(s0), holds because extended value iteration estimates the value of πlower by backing up the
values Vlower of the successor states. At termination, Vupper(s0)−Vlower(s0) ≤ ε . Hence, V ∗(s0)−
V πlower(s0)≤ ε .

5.3 Experimental Evaluation on Exploration Heuristics

We conducted an experimental study to assess the effectiveness of DDV-OUU and DDV-UPPER
and compare them to the exploration heuristics of MBIE (with reset) and Fiechter’s algorithm.

5.3.1 METHODS

We conducted two experiments. The goal of both experiments was to compare the number of
simulator calls required by each algorithm to achieve a target value ε for the width of the confidence
interval, ∆V (s0), on the value of the optimal policy in the starting state s0. For problems where the
value V ∗(s0) of the optimal policy is known, we define ε = αV ∗(s0) and plot the required sample
size as a function of α . For the tamarisk problems, where V ∗(s0) is not known, we define ε = αRmax

and again plot the required sample size as a function of α . This is a natural way for the user to define
the required accuracy ε .

In the first experiment, we employed four MDPs: the RiverSwim and SixArms benchmarks,
which have been studied by Strehl and Littman (2004, 2008), and two instances of our tamarisk
management MDPs (E = 3, H = 1) and (E = 3, H = 2). Each of the tamarisk MDPs implemented
a budget constraint that permits a non-“do nothing” action in only one edge in each time step. In
the E = 3,H = 2 MDP, we included exogenous arrivals using the parameters described in Section 3
(up to 10 seeds per species per edge; Bernoulli parameters are 0.1 for tamarisk and 0.4 for native
plants). The E = 3,H = 1 tamarisk MDP has 7 actions and 27 states, and the E = 3,H = 2 MDP
has 7 actions and 216 states. The discount factor was set to 0.9 in all four MDPs.

Each algorithm was executed for one million simulator calls. Instead of performing dynamic
programming updates (for extended value iteration and occupancy measure computation) after ev-
ery simulator call, we computed them on the following schedule. For MBIE-reset, we performed
dynamic programming after each complete trajectory. For DDV-OUU and DDV-UPPER, we per-
formed dynamic programming after every 10 simulator calls. Extended value iteration gives us
the confidence limits Vlower(s0) and Vupper(s0) for the starting state from which we also computed
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Figure 3: RiverSwim results: (a) Number of samples required by MBIE-reset, Fiechter, DDV-
UPPER, and DDV-OUU to achieve various target confidence interval widths ∆V (s0). (b)
Speedup of DDV-OUU over the algorithms.

∆V (s0) = Vupper(s0)−Vlower(s0). The experiment was repeated 15 times, and the average value of
∆V (s0) was computed. For each MDP, we defined a range of target values for ∆V (s0) and com-
puted the average number of samples m required by each algorithm to achieve each target value. By
plotting these values, we can see how the sample size increases as we seek smaller target values for
∆V (s0). We also computed the speedup of DDV-OUU over each of the other algorithms, according
to the formula malg/mDDV-OUU, and plotted the result for each MDP.

We also measured the total amount of CPU time required by each algorithm to complete the
one million simulator calls. Because the simulators in these four MDPs are very efficient, the CPU
time primarily measures the cost of the various dynamic programming computations. For Fiechter,
these involve setting up and solving the exploration MDP. For MBIE-reset, the primary cost is
performing extended value iteration to update Vupper and πOUU . For the DDV methods, the cost
involves extended value iteration for both Vupper and Vlower as well as the dynamic program for µ .

In the second experiment, we ran all four algorithms on the RiverSwim and SixArms problems
until either 40 million calls had been made to the simulator or until ∆V (s0)≤ αRmax, where α = 0.1
and Rmax = 10000 (for RiverSwim) and Rmax = 6000 (for SixArms).

5.3.2 RESULTS

Figures 3, 4, 5, and 6 show the results for the first experiment. In each figure, the left plot shows how
the required sample size increases as the target width for ∆V (s0) is made smaller. In each figure,
the right plot shows the corresponding speedup of DDV-OUU over each of the other algorithms.
In all cases, DDV-OUU generally requires the fewest number of samples to reach the target width,
and DDV-UPPER generally requires the most. The poor behavior of DDV-UPPER suggests that the
policy-free occupancy measure µ is too loose to provide a competitive heuristic.
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Figure 4: SixArms results: (a) Number of samples required by MBIE-reset, Fiechter, DDV-UPPER,
and DDV-OUU to achieve various target confidence interval widths ∆V (s0). (b) Speedup
of DDV-OUU over the other algorithms.
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Figure 5: Tamarisk with E = 3 and H = 1 results: (a) Number of samples required by MBIE-
reset, Fiechter, DDV-UPPER, and DDV-OUU to achieve various target confidence inter-
val widths ∆V (s0). (b) Speedup of DDV-OUU over the other algorithms.

The relative performance of MBIE-reset and Fiechter’s algorithm varies dramatically across the
four MDPs. On RiverSwim, Fiechter’s method is almost as good as DDV-OUU: DDV-OUU shows
a speedup of at most 1.23 (23%) over Fiechter. In contrast, MBIE-reset performs much worse. But
on SixArms, it is MBIE-reset that is the closest competitor to DDV-OUU. In fact, MBIE-reset is
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Figure 6: Tamarisk with E = 3 and H = 2 results: (a) Number of samples required by MBIE-
reset, Fiechter, DDV-UPPER, and DDV-OUU to achieve various target confidence inter-
val widths ∆V (s0). (b) Speedup of DDV-OUU over the other algorithms.

MDP Algorithm

DDV-UPPER DDV-OUU MBIE-reset Fiechter
(ms/call) (ms/call) (ms/call) (ms/call)

RiverSwim 9.59 9.92 3.73 3.29
SixArms 15.54 48.97 10.53 4.87

Tamarisk (E=3 and H=1) 11.93 8.13 4.81 4.68
Tamarisk (E=3 and H=2) 187.30 166.79 12.63 18.79

Table 1: RiverSwim clock time per simulator call.

Quantity Algorithm

DDV-UPPER DDV-OUU MBIE-reset Fiechter Optimal

Vupper(s0) 2967.2 2936.6 3001.5 2952.6 2203
Vlower(s0) 1967.2 1936.6 2001.5 1952.6 2203

∆V (s0) 1000 1000 1000 1000

Simulator Calls (×106) 2.31 1.44 4.05 1.76

Table 2: RiverSwim confidence intervals and required sample size to achieve target ∆V (s0) = 1000.
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Quantity Algorithm

DDV-UPPER DDV-OUU MBIE-reset Fiechter Optimal

Vupper(s0) 5576.7 5203.9 5242.4 5672.8 4954
Vlower(s0) 4140.4 4603.9 4642.4 3997.7 4954

∆V (s0) 1436.3 600 600 1675.1

Simulator Calls (×106) 40.0 14.5 19.3 40.0

Table 3: SixArms confidence intervals and required sample size to achieve the target ∆V (s0) = 600.

actually better than DDV-OUU for target values larger than 2.1, but as the target width for ∆V (s0)
is made smaller, DDV-OUU scales much better. On the tamarisk R = 3 H = 1 problem, MBIE-reset
is again almost as good as DDV-OUU. The maximum speedup produced by DDV-OUU is 1.11.
Finally, on the tamarisk R = 3 H = 2 problem, DDV-OUU is definitely superior to MBIE-reset
and achieves speedups in the 1.9 to 2.3 range. Surprisingly, on this problem, Fiechter’s method is
sometimes worse than DDV-UPPER.

The CPU time consumed per simulator call by each algorithm on each problem is reported in
Table 1. Not surprisingly, MBIE-reset and Fiechter have much lower cost than the DDV methods.
All of these methods are designed for problems where the simulator is extremely expensive. For
example, in the work of Houtman et al. (2013) on wildfire management, one call to the simulator
can take several minutes. In such problems, the overhead of complex algorithms such as DDV more
than pays for itself by reducing the number of simulator calls.

Tables 2 and 3 report the results of the second experiment. The results are consistent with
those of the first experiment. DDV-OUU reaches the target ∆V (s0) with the smallest number of
simulator calls on both problems. On RiverSwim, Fiechter’s method is second best, whereas on
SixArms, MBIE-reset is second best. On SixArms, DDV-UPPER and Fiechter did not reach the
target accuracy within the limit of 40 million simulator calls.

5.3.3 DISCUSSION

The experiments show that DDV-OUU is the most effective of the four algorithms and that it
achieves substantial speedups over the other three algorithms (maximum speedups of 2.73 to 7.42
across the four problems).

These results contrast with our previous work (Dietterich, Alkaee Taleghan, and Crowley, 2013)
in which we showed that DDV-UPPER is better than MBIE. The key difference is that in the present
paper, we are comparing against MBIE with reset, whereas in the previous work, we compared
against MBIE without reset. Without resetting, MBIE can spend most of its time in regions of the
MDP that are far from the start state, so it can fail to find a good policy for s0. This behavior also
explains the poor performance of Q-learning reported in Dietterich et al. (2013).

6. Summary and Conclusions

This paper has addressed the problem of MDP planning when the MDP is defined by an expensive
simulator. In this setting, the planning phase is separate from the execution phase, so there is no

3899



TALEGHAN, ET AL.

tradeoff between exploration and exploitation. Instead, the goal is to compute a PAC-optimal policy
while minimizing the number of calls to the simulator. The policy is designed to optimize the
cumulative discounted reward starting in the current real-world state s0. Unlike in most published
RL papers, which typically assume that the MDP is ergodic, the starting state of our ecosystem
management problems is typically a transient state.

The paper makes two contributions. First, it shows how to combine the Good-Turing estimate
with the L1-confidence region of Weissman et al. (2003) to obtain tighter confidence intervals (and
hence, earlier termination) in sparse MDPs. Second, it shows how to use occupancy measures to
create better exploration heuristics. The paper introduced a new policy-independent upper bound
µ on the occupancy measure of the optimal policy and applied this to define the DDV-UPPER
algorithm. The paper also employed an occupancy measure µOUU based on the “optimism under
uncertainty” principle to define the DDV-OUU algorithm.

The µ measure is potentially of independent interest. Like the value function computed during
value iteration, it does not quantify the behavior of any particular policy. This means that it can
be computed without needing to have a specific policy to evaluate. However, the DDV-UPPER
exploration heuristic did not perform very well. We have two possible explanations for this. First,
µ can be a very loose upper bound on the optimal occupancy measure µ∗. Perhaps this leads DDV-
UPPER to place too much weight on unfruitful state-action pairs. Second, it is possible that while
DDV-UPPER is optimizing the one-step gain in ∆∆V (s0) (as it is designed to do), DDV-OUU does a
better job of optimizing gains over the longer term. Further experimentation is needed to determine
which of these explanations is correct.

Our DDV-OUU method gave the best performance in all of our experiments. This is yet another
confirmation of the power of the “Optimism Principle” (Buşoniu and Munos, 2012) in exploration.
Hence, we recommend it for solving simulator-defined MDP planning problems. We are applying it
to solve moderate-sized instances of our tamarisk MDPs. However, additional algorithm innovations
will be required to solve much larger tamarisk instances.

Three promising directions for future research are (a) exploiting tighter confidence interval
methods, such as the Empirical Bernstein Bound (Audibert et al., 2009; Szita and Szepesvári, 2010)
or improvements on the Good-Turing estimate (Orlitsky et al., 2003; Valiant and Valiant, 2013), (b)
explicitly formulating the MDP planning problem in terms of sequential inference (Wald, 1945),
which would remove the independence assumption in the union bound for partitioning δ , and (c)
studying exploration methods based on posterior sampling (Thompson, 1933).
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