
Journal of Machine Learning Research 16 (2015) 547-551 Submitted 7/13; Published 3/15

Introducing CURRENNT: The Munich Open-Source
CUDA RecurREnt Neural Network Toolkit

Felix Weninger weninger@tum.de

Johannes Bergmann privat@johannes-bergmann.de

Björn Schuller∗ schuller@tum.de

Machine Learning & Signal Processing, Technische Universität München, 80290 Munich, Germany

Editor: Mikio Braun

Abstract

In this article, we introduce CURRENNT, an open-source parallel implementation of deep
recurrent neural networks (RNNs) supporting graphics processing units (GPUs) through
NVIDIA’s Computed Unified Device Architecture (CUDA). CURRENNT supports uni- and
bidirectional RNNs with Long Short-Term Memory (LSTM) memory cells which overcome
the vanishing gradient problem. To our knowledge, CURRENNT is the first publicly
available parallel implementation of deep LSTM-RNNs. Benchmarks are given on a noisy
speech recognition task from the 2013 2nd CHiME Speech Separation and Recognition
Challenge, where LSTM-RNNs have been shown to deliver best performance. In the result,
double digit speedups in bidirectional LSTM training are achieved with respect to a reference
single-threaded CPU implementation. CURRENNT is available under the GNU General
Public License from http://sourceforge.net/p/currennt.

Keywords: parallel computing, deep neural networks, recurrent neural networks, Long
Short-Term Memory

1. Introduction

Recurrent neural networks (RNNs) are known as powerful sequence learners. In particular,
the Long Short-Term Memory (LSTM) architecture has been proven to provide excellent
modeling of language (Sundermeyer et al., 2012), music (Eck and Schmidhuber, 2002), speech
(Graves et al., 2013), and facial expressions (Wöllmer et al., 2012). LSTM units overcome the
vanishing gradient problem of traditional RNNs by the introduction of a memory cell which
can be controlled by input, output and reset operations (Gers et al., 2000). In particular,
recent research demonstrates that deep LSTM-RNNs exhibit superior performance in speech
recognition in comparison to state-of-the-art deep feed forward networks (Graves et al.,
2013). However, in contrast to the widespread usage of the latter (Hinton et al., 2012),
RNNs are still not adopted by the research community at large. One of the major barriers
is the lack of high-performance implementations for training RNNs; at the same time, such
implementations are non-trivial due to the limited parallelism caused by time dependencies.
To the best of our knowledge, there is no publicly available software dedicated to parallel
LSTM-RNN training. Thus, we introduce our CUda RecurREnt Neural Network Toolkit
(CURRENNT) which exploits a mini-batch learning scheme performing parallel weight

∗. B. Schuller is also with the Department of Computing, Imperial College London, UK.

c©2015 Felix Weninger, Johannes Bergmann and Björn Schuller.



Weninger, Bergmann and Schuller

Multiclass-
ClassificationLayer

Binary-
ClassificationLayer

Sse-
PostOutputLayer

FeedForwardLayerLstmLayer

SoftmaxLayer

PostOutputLayerTrainableLayerInputLayer

Layer

NeuralNetwork Optimizer

SteepestDecent-
Optimizer

DataSet

DataSetFraction

1

1
N

1
K

1 1 M

Figure 1: CURRENNT’s C++ classes for deep feedforward and LSTM-RNN modeling.

updates from multiple sequences. CURRENNT implements learning from big data sets that
do not fit into memory by means of a random access data format. GPUs are supported
through NVIDIA’s Computed Unified Device Architecture (CUDA). The RNN structure
implemented in CURRENNT is based on LSTM units and in addition, feedforward network
training is supported. Besides simple regression, CURRENNT also includes logistic and
softmax output layers for training of binary and multi-way classification.

To briefly refer some related studies and freely available implementations: A ‘reference’
CPU implementation of LSTM-RNNs as used by Graves (2008) is available as open-source
C++ code (Graves, 2013). A Python library for many machine learning algorithms including
LSTM-RNN has been introduced by Schaul et al. (2010); however, it does not directly
support parallel processing. Multi-core training of (standard) RNNs has been investigated
by Cernanský (2009), but the source code is not available. Pascanu et al. have recently
released a Python implementation (‘GroundHog’) of various RNN types described in their
study (Pascanu et al., 2014), exploiting GPU-accelerated training through Theano; yet, it
does not provide LSTM-RNNs, and at the moment there is no user-friendly interface.

2. Design

CURRENNT provides a C++ class library for deep LSTM-RNN modeling (cf. Figure 1) and
a command line application for network training and evaluation. The network architecture
can be specified by the user in JavaScript Object Notation (JSON), and trained parameters
are saved in the same format, allowing, e.g., for deep learning with pre-training. For efficiency
reasons, features for training and evaluation are given in binary format, adhering to the
NetCDF standard, but network outputs can also be saved in CSV format to facilitate
post-processing. All C++ code is designed to be platform independent and has been tested
on Windows and various Linux distributions. The required CUDA compute capability is 1.3
(2008), allowing usage on virtually all of the consumer grade NVIDIA GPUs deployed in
today’s desktop PCs. The behavior of the gradient descent training algorithm is controlled
by various switches of the command line application, allowing, e.g., for on-line or batch
learning and fine-tuning of the training algorithm such as adding Gaussian noise to the input
activations and randomly shuffling training data in on-line learning to improve generalization
(Graves et al., 2013). The interested reader is referred to the documentation for more details.

548



CURRENNT: Open-Source CUDA RecurREnt Neural Network Toolkit

3. Implementation

Deep LSTM-RNNs with N layers are implemented as follows. An input sequence xt is
mapped to the output sequence yt, t = 1, . . . , T through the iteration (forward pass):

h
(0)
t := xt,

h
(n)
t := L(n)t

(
h
(n−1)
t ,h

(n)
t−1

)
,

yt := S
(
W(N),(N+1)h

(N)
t + b(N+1)

)
.

In the above and the ongoing, W denotes weight matrices and b stands for bias vectors

(with superscripts denoting layer indices). h
(n)
t denotes the hidden feature representation

of time frame t in the level n units, n = 1, . . . , N . The 0-th layer is the input layer and
the N + 1-th layer the output layer. S is the (vector valued) output layer function, e.g.,

a softmax function for multi-way classification (cf. Figure 1). L(n)t denotes the composite
LSTM activation function which is used instead of the common simple sigmoid-shaped
functions. The crucial point is to augment each unit with a state variable ct, resulting in an
automaton-like structure. The hidden layer activations correspond to the state variables

(‘memory cells’) scaled by the activations of the ‘output gates’ o
(n)
t ,

h
(n)
t = o

(n)
t ⊗ tanh(c

(n)
t ),

c
(n)
t = f

(n)
t ⊗ c

(n)
t−1 + i

(n)
t ⊗ tanh

(
W(n−1),(n)h

(n−1)
t + W(n),(n)h

(n)
t−1 + b(n)

c

)
, (1)

where ⊗ denotes element-wise multiplication and tanh is also applied element-wise. Thus,

the state is scaled by a ‘forget’ gate (Gers et al., 2000) with dynamic activation f
(n)
t instead

of a recurrent connection with static weight. i
(n)
t is the activation of the input gate that

regulates the ‘influx’ from the feedforward and recurrent connections. The activations of the

input, output and forget gates are calculated in a similar fashion as c
(n)
t (Graves et al., 2013).

From the dependencies between layers (n− 1 n) and time steps (t− 1 t) in the above,
it is obvious that parallel computation of feedforward activations cannot be performed across
layers; further, parallel computation of recurrent activations is not possible across time steps.
Thus, to increase the degree of parallelization, we consider data fractions (cf. Figure 1) of
size P out of S sequences in parallel, each having exactly T time steps (creating ‘dummy’
time steps for shorter sequences which are neglected in the error calculation). For instance,
we consider a state matrix C(n) for the n-th layer,

C(n) = [c
(n)
1,p · · · c

(n)
1,p+P−1 · · · c

(n)
T,p · · · c

(n)
T,p+P−1], (2)

where c
(n)
t,p is the state for sequence p in layer n at time t. To realize the update equation

(1) we can now compute the feedforward part for all time steps and P sequences in parallel
simply by pre-multiplication with W(n−1),(n). For the recurrent part, we can update C(n)

from ‘left to right’ using W(n),(n). Input, output and forget gate activations are calculated
in an analogous fashion. In this process, the matrix structure (2) ensures memory locality of
the data corresponding to one time step (matrices are stored in column-major order). For
bidirectional layers the above matrix structure is replicated at each layer; in the ‘backward’

549



Weninger, Bergmann and Schuller

RNNLIB (Graves, 2013) CURRENNT
Parallel sequences (P ) 1 1 10 50 200

Validation set error (10 ep.) 0.138 0.138 0.135 0.137 0.144
Validation set error (50 ep.) 0.120 0.119 0.116 0.118 0.119
Training time / epoch [s] 7 420 3 805 580 392 334
Speedup (1.0) 2.0 12.8 18.9 22.2

Table 1: Performance (error / speedup) on CHiME 2013 noisy speech recognition task.

part, the recurrent parts are updated from ‘right to left’, and activations are collected in a
single vector before passing them to the subsequent layer (Graves et al., 2013).

During network training, the backward pass for the hidden layers is realized similarly, by
splitting the matrix of weight changes into a part propagated to the preceding layer and a
recurrent part propagated to the previous time step, resulting in a parallel implementation
of the backpropagation through time (BPTT) algorithm. The weight changes are applied
for all sequences (batch learning) or for each data fraction. Thus, if 1 < P < S we perform
mini-batch learning. In this case, only P sequences have to be kept in memory at once,
allowing for learning from large data sets.

4. Benchmark

We conclude with a benchmark on a word recognition task with convolutive non-stationary
noise from the 2013 2nd CHiME Challenge’s track 1 (Vincent et al., 2013), where bidirectional
LSTM decoding has been shown to deliver best performance (Geiger et al., 2013). We
consider frame-wise word error rate as well as computation speedup in training with respect
to the open source C++ reference implementation by Graves (2013) running in a single
CPU thread on an Intel Core2Quad PC with 4 GB of RAM. The GPU is an NVIDIA
GTX 560 with 2 GB of RAM. We compare results for different values of P while fixing the
other training parameters. The corresponding NetCDF, network configuration, and training
parameter files are distributed with CURRENNT. Results (Figure 1) show that the error
rate after 50 epochs is not heavily influenced by the batch size for parallel processing, while
speedups of up to 22.2 can be achieved.

5. Conclusions

CURRENNT, our GPU implementation of deep LSTM-RNN for labeling sequential data,
has been shown to deliver double digit training speedups at equal accuracy in a noisy speech
recognition task. Future work will be concentrated on discriminative training objectives and
cost functions for transcription tasks (Graves, 2008).

Acknowledgments

This research has been supported by DFG grant SCHU 2502/4-1. The authors would like to
thank Alex Graves for helpful discussions.

550



CURRENNT: Open-Source CUDA RecurREnt Neural Network Toolkit

References

M. Cernanský. Training recurrent neural network using multistream extended Kalman filter
on multicore processor and CUDA enabled graphic processor unit. In Proc. of ICANN,
volume 1, pages 381–390, 2009.

D. Eck and J. Schmidhuber. Learning the long-term structure of the blues. In Proc. of
ICANN, pages 284–289, 2002.

J. T. Geiger, F. Weninger, A. Hurmalainen, J. F. Gemmeke, M. Wöllmer, B. Schuller,
G. Rigoll, and T. Virtanen. The TUM+TUT+KUL approach to the CHiME Challenge
2013: Multi-stream ASR exploiting BLSTM networks and sparse NMF. In Proc. 2nd
CHiME Workshop, pages 25–30, Vancouver, Canada, 2013.

F. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with
LSTM. Neural Computation, 12(10):2451–2471, 2000.

A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks. PhD thesis,
Technische Universität München, 2008.

A. Graves. RNNLIB: A recurrent neural network library for sequence learning problems.
http://sourceforge.net/projects/rnnl/, 2013.

A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In Proc. of ICASSP, pages 6645–6649, Vancouver, Canada, 2013.

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling
in speech recognition. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. How to construct deep recurrent neural
networks. In Proc. of ICLR, 2014.

T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, and J. Schmid-
huber. PyBrain. Journal of Machine Learning Research, 11:743–746, 2010.

M. Sundermeyer, R. Schlüter, and H. Ney. LSTM neural networks for language modeling.
In Proc. of INTERSPEECH, Portland, OR, USA, 2012.

E. Vincent, J. Barker, S. Watanabe, J. Le Roux, F. Nesta, and M. Matassoni. The second
‘CHiME’ speech separation and recognition challenge: Datasets, tasks and baselines. In
Proc. of ICASSP, pages 126–130, Vancouver, Canada, 2013.

M. Wöllmer, M. Kaiser, F. Eyben, F. Weninger, B. Schuller, and G. Rigoll. Fully automatic
audiovisual emotion recognition – voice, words, and the face. In T. Fingscheidt and
W. Kellermann, editors, Proceedings of Speech Communication; 10. ITG Symposium,
pages 1–4, Braunschweig, Germany, 2012.

551

http://sourceforge.net/projects/rnnl/

	Introduction
	Design
	Implementation
	Benchmark
	Conclusions

