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Abstract

In multi-response regression, pursuit of two different types of structures is essential to battle
the curse of dimensionality. In this paper, we seek a sparsest decomposition representation
of a parameter matrix in terms of a sum of sparse and low rank matrices, among many
overcomplete decompositions. On this basis, we propose a constrained method subject
to two nonconvex constraints, respectively for sparseness and low- rank properties. Com-
putationally, obtaining an exact global optimizer is rather challenging. To overcome the
difficulty, we use an alternating directions method solving a low-rank subproblem and a
sparseness subproblem alternatively, where we derive an exact solution to the low-rank
subproblem, as well as an exact solution in a special case and an approximated solution
generally through a surrogate of the L0-constraint and difference convex programming, for
the sparse subproblem. Theoretically, we establish convergence rates of a global minimizer
in the Hellinger-distance, providing an insight into why pursuit of two different types of de-
composed structures is expected to deliver higher estimation accuracy than its counterparts
based on either sparseness alone or low-rank approximation alone. Numerical examples are
given to illustrate these aspects, in addition to an application to facial imagine recognition
and multiple time series analysis.

Keywords: blockwise decent, nonconvex minimization, matrix decomposition, structure
pursuit

1. Introduction

In multivariate analysis, data as well as parameters are usually expressed in terms of a
matrix form, as opposed to a vector representation in univariate analysis. This occurs fre-
quently in multi-class classification (Amit et al., 2007), matrix completion (Cai et al., 2010;
Jain et al., 2010), collaborative filtering (Srebro et al., 2005), computer vision (Wright,
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2009), among others. In situations as such, it essential to identify and employ certain
lower-dimensional structures to battle the curse of dimensionality due to an increase in
dimensionality from multivariate attributes. In this article, we explore rank and sparse-
ness structures through matrix decomposition simultaneously in estimating large matrices
through a novel notation of seeking a sparsest decomposition from a class of overcomplete
decompositions.

Statistically, different structures have dramatically different interpretations. A low rank
property of a matrix describes global information across different tasks, whereas sparseness
concerns local information of specific task. For instance, for face images, the global infor-
mation corresponds to the overall shape of a face, but the local information characterizes
specific facial expression such as laugh and cry. In linear time-invariant (LTI) system, a low
rank property corresponds to a low-order LTI system and a sparseness property captures an
LTI system with a sparse impulse response (Porat, 1997). In a high-dimensional situation,
betting on one type of structure may not be adequate to battle the curse of dimensionality.
In this article, we seek a sparsest decomposition for the purpose of dimension reduction,
from a class of overcomplete decompositions into simpler sparse and low-rank components.
Specifically, a matrix Θ is decomposed as Θ1 + Θ2, for a sparse Θ1 and low-rank Θ2

components, where Θ1and Θ2 are chosen from many such decompositions, with a small-
est effective degrees of freedom, leading to high accuracy of parameter estimation. Our
objective is to reconstruct the parameter matrix by identifying a sparsest decomposition
consisting of simpler components. Such a decomposition can be used to provide a simpler
and more efficient description of a complex system in terms of its simpler components. This
results in more efficient structure representations leading to higher accuracy of parameter
estimation in high-dimensional data analysis.

In this paper, we consider a multi-response linear regression problem in which a random
sample (ai, zi)

n
i=1 is observed with a k-dimensional response vector zi following

zi = aTi Θ + εi, Eεi = 0, Cov(εi) = σ2I; i = 1, . . . , n, (1)

where ai is a p-dimensional design vector, is independent of random error εi, and I is
the identity matrix. Model (1) reduces to the univariate case when k = 1, and becomes
a multivariate autoregressive model when ai = zi−1. Through matrix decomposition, we
decompose a p× k regression parameter matrix Θ into a sum of a sparse matrix Θ1 and a
low rank matrix Θ2 for structure exploration, that is, Θ = Θ1+Θ2. Model (1) is expressible
in a matrix form

Z = AΘ + e; (2)

whereZ = (z1, · · · , zn)T ∈ Rn×k,A = (a1, · · · , an)T is a n×pmatrix, and e = (ε1, · · ·, εn)T ∈
Rn×k are the data, design and error matrices. In (1), we estimate Θ based on n paired
observation vectors (ai, zi)

n
i=1, with prior knowledge that Θ1 is sparse in the number of its

nonzero entries, and rank r(Θ2) is low relative to min(n, k, p). Our goal is to recover the
parameter Θ by identifying Θ1 and Θ2.

In the literature, the simultaneous exploration of rank and sparseness structures through
matrix decomposition has received some attention, yet has not been well-studied. For robust
principal component analysis (RPCA) where A = In×p is the n× p identity matrix with its
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diagonals and off-diagonals being one and zero, Yuan & Yang (2013) and Chandrasekaran
et al. (2011) employed a linear combination of the L1 sparsity regularization and the nuclear-
norm regularization, and Zhou & Tao (2011) used a randomized projections based low
rank approximations and thresholding for sparsity pursuit. Moreover, Wright et al. (2013)
recovers the sparse and low-rank components by minimizing a linear combination of the
L1-norm for sparsity and the nuclear-norm for low rank pursuit, while Waters et al. (2011)
develops a greedy algorithm to pursue the sparse and low rank structures. For multiple
task learning, Chen et al. (2010) studies sparse and low rank structures separately through
convex regularization. In essence, most the existing literature focuses exclusively on a
unique matrix decomposition of Θ with A = In×p or A to be a set of random linear
measurements, and without noise or with small noise that is essentially ignorable. For
instance, Chandrasekaran et al. (2011) provided sufficient conditions for exact recovery of
a convex relaxation method without noise; Wright et al. (2013) proved that recovering a
target matrix is possible from a small set of randomly selected linear measurements when the
number of measurements is sufficiently large. Among these, Agarwal et al. (2012) considered
a general A and derived a theorem that bounds the Frobenius-norm error obtained through
regularized convex relaxation under a ”spikiness” condition that the max-norm of the low
rank component ‖Θ2‖max is less than α√

pk
for some fixed α > 0.

In this paper, we consider a general design matrix A and parameter matrices (Θ1,Θ2),
for regression analysis, where A represents features of observations which is deterministic,
and can be any matrix with n rows and p columns. Of particular interest is reconstruc-
tion of Θ in a high-dimensional situation in which (p, k) may exceed the sample size n.
Computationally, we use an alternating direction method separating low-rank pursuit from
sparsity pursuit alternatively, where an exact solution to the low-rank problem and that to
the sparsity pursuit problem when A = In×p or an approximated solution for a general A
is obtained. In either case, the final solution is shown to be stationary without and with
maximum block improvement (Chen et al., 2012) for A = In×p and a general A. Theo-
retically, we establish error bound for the proposed method in the Hellinger-distance for
reconstruction of Θ, based on which rates of convergence are obtained. Numerically, the
proposed method compares favorably against two strong competitors in simulations.

The paper is organized as follows. Section 2 develops a computational method through
the alternating directions method and a closed-form solution for a rank problem. Section
3 investigates statistical properties of the proposed method, followed by simulation studies
and a real data example in Section 4. Finally, technical proofs are contained in Section 5.

2. Proposed Method

In this section, we explore a structure decomposition of a parameter matrix in the form
Θ = Θ1 +Θ2 under model (1), then develops computational methods in two situations and
discuss their properties.

2.1 Structure Decomposition

Due to non-uniqueness of such a decomposition under model (1), we seek one decomposition,
among many overcomplete decompositions, that minimizes the effective degrees of freedom
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of Θ Efron (2004), defined as

Eff(Θ) = min
{Θ=Θ1+Θ2:‖Θ1‖0≤max(0,p+k−2r(Θ2)−2)}

‖Θ1‖0 + (p+ k − r(Θ2))r(Θ2),

where ‖ · ‖0 is the L0-norm of a matrix, or the number of nonzero entries of the matrix, and
r(·) denotes the rank of a matrix. In other words, we identify a decomposition minimizing
the effective degrees of freedom Eff(Θ), among all candidate decompositions. Lemma 1
below says that the minimal of Eff(Θ) is unique in (‖Θ1‖0, r(Θ2)) under the constraint
that ‖Θ1‖0 ≤ max(0, p+ k − 2r(Θ2)− 2) ≤ 2 max(p, k).

Lemma 1 The minimizer of Eff(Θ) is unique with respect to (‖Θ1‖0, r(Θ2)) if ‖Θ1‖0 ≤
max(0, p+ k − 2r(Θ2)− 2). Moreover,

Eff(Θ) ≤ min((p+ k − r(Θ))r(Θ), ‖Θ‖0)).

Model (1) is identifiable with respect to Θ but may not be so in (Θ1,Θ2) even when A
is of full rank, due to non-uniqueness of a decomposition Θ = Θ1 + Θ2.

2.2 Estimation

To pursue structures of low-rank and sparsity through matrix decomposition simultaneously,
we propose a constrained likelihood method subject to two nonconvex constraints:

min
Θ1,Θ2

‖AΘ1 +AΘ2 −Z‖2F , subject to ‖Θ1‖0 ≤ s1, r(Θ2) ≤ s2, (3)

where ‖ · ‖F is the Frobenius-norm defined as the L2-norm of all entries of a matrix, and
s1 and s2 are integer-valued tuning parameters with 0 ≤ s1 ≤ max(p, k) and 1 ≤ s2 ≤
min(n, k, p) based on the consideration that the rank function and the sparsity measure are
integer-valued.

When A = In×p, (3) is simplified as

min
Θ1,Θ2

‖Z −Θ1 −Θ2‖2F subject to ‖Θ1‖0 ≤ s1, r(Θ2) ≤ s2, (4)

where a special structure may be taken into account to solve this nonconvex minimization.

When A 6= In×p is any matrix of full rank, the two constraints in (3) are either defined
by the L0-function or the rank function, imposing computational challenges. To develop an
efficient algorithm to solve (3), we approximate the ‖Θ1‖0 =

∑
i,j I(|θij | 6= 0) by its com-

putational surrogate—the truncated L1-function
∑

θij∈Θ1

1
τ min(|θij |, τ) Shen et al. (2012)

as τ → 0+. This leads to a computational surrogate of (3):

min
Θ1,Θ2

f(Θ1,Θ2), subject to
1

τ

∑
i,j

min(|θij |, τ) ≤ s1, r(Θ2) ≤ s2, (5)

where f(Θ1,Θ2) = ‖A(Θ1 + Θ2)−Z‖2F and τ is a nonnegative tuning parameter.
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2.3 Method for Nonconvex Minimization

This section will develop computational strategies for (4) and (5) separately, based on block-
wise coordinate decent as well as maximum block improvement (MBI, Chen et al., 2012).
First, we separate the task of sparsity pursuit for Θ1 from that of rank minimization for
Θ2 , where Θ1 and Θ2 correspond to two blocks for decent. Second, we apply MBI to
assure that blockwise coordinate decent yields a stationary solution for nonconvex mini-
mization, which would be otherwise impossible. In addition, for (5), we develop a gradient
project method to permit fast computation of a constrained problem through the means of
unconstrained optimization.

The strategy of blockwise coordinate decent proceeds as follows. For (4) and (5), we
solve it in Θ2 given Θ1 and solve them in Θ1 given Θ2, alternatively. In each step of
alternating blocks, we proceed with the block giving the maximum block improvement.

2.3.1 Nonconvex minimization (4): a special case

For (4), when Θ2 is held fixed, (4) has a global minimizer can be obtained through compo-
nentwise thresholding defined by the L0-function as follows:

Θ̂1(Z,Θ2) =
(
I
{
|zij − θ(2)ij | > λ

}
· (zij − θ(2)ij )

)
p×k

, (6)

where θ
(2)
ij is the ijth entry of Θ2 and λ is any number between the s1th and (s1 + 1)th

largest entries of |Z −Θ2|.
When Θ1 is held fixed, a global minimizer of (4) is

Θ̂2(Z,Θ1) = UDs2V
T , (7)

where U and V are given by singular value decomposition (SVD) of Z−Θ1 = UDV T and
Ds2 is a diagonal matrix retaining the largest s2 singular values of Z −Θ1 and truncating
other singular values at zero.

Our algorithm for computing (4) is summarized.

Step 1.(Initialization) Supply a good initial estimate (Θ̂
(0)
1 , Θ̂

(0)
2 ) in (4). Specify

precision δ > 0.

Step 2.(Iteration) At iteration m, update Θ̂
(m)
2 in (7) with Θ1 = Θ̂

(m−1)
1 . Then

update Θ̂
(m)
1 in (6) with Θ2 = Θ̂

(m)
2 .

Step 3.(Stopping rule) Terminate if |f(Θ̂
(m)
1 , Θ̂

(m)
2 )−f(Θ̂

(m−1)
1 , Θ̂

(m−1)
2 )| ≤ δ, where

f(Θ1,Θ2) = ‖Θ1 + Θ2 −Z‖2F . Let m∗ be the index at termination. The estimate is then

(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 ).

2.3.2 Nonconvex minimization (5): A general case

The problem of solving for Θ2 in (5) given Θ1 reduces to that of constrained rank mini-
mization

min
Θ2

‖AΘ2 − (Z −AΘ1)‖2F subject to r(Θ2) ≤ s2, (8)
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provided that Θ1 satisfies the sparsity constraint in (5). Now write Θ2 ≡ CF , where C
and F are p × r and r × k matrices with r ≤ s2, consisting of a basis of the column space
and that of the row space of Θ2, respectively. Note that {Θ2 : r(Θ2) ≤ s2} = {Θ2 : Θ2 =
CF , r ≤ s2}. Then solving (8) is equivalent to that

min
C,F
‖A(CF )− (Z −AΘ1)‖2F , (9)

An application of an argument of (Xing et al., 2012) yields a global minimizer of (9),
which has an analytic form

Θ̂2(Θ1) = ĈF̂ , Ĉ = V D−1Uw, F̂ = DwV
T
w , (10)

where D is a r(A)× r(A) diagonal singular vector matrix based on SVD of A = UDV T ,
Dw is also a diagonal matrix of s2 leading singular values of W ≡ UT (Z −AΘ1) and Uw,
Vw are matrices consisting of the corresponding right and left singular vectors.

Note that computation involves only the first s2 largest singular values. Therefore, we
employ the randomized truncated SVD method (Halko et al., 2011), for efficient computa-
tion of a large problem. This amounts to a complexity of order O(pk log r), as compared to
O(min(pk2, p2k)) of a conventional SVD method (Golub & Van, 1996).

Solving for Θ1 in (5) given Θ2, on the other hand, becomes the problem of sparsity
pursuit. In particular, we solve, assuming that r(Θ2) ≤ s2,

min
Θ1

‖AΘ1 − (Z −AΘ2)‖2F , subject to
1

τ

∑
θij∈Θ1

min(|θij |, τ) ≤ s1, (11)

which is solved iteratively by a difference of convex (DC) programming, constructing a
convex set containing the original constrained set. The constraint in (5) is defined by
J(Θ1) = S1(Θ1) − S2(Θ1) with S1(Θ1) = 1

τ

∑
|θij | and S2(Θ1) = 1

τ

∑
max(|θij | − τ, 0)

are convex in Θ1. Then a sequence of upper approximations of J(Θ1) is constructed:

At iteration step m by J (m)(Θ1) =
∑

θij∈Θ1

(
|θij |
τ I(|θ̂(m−1)ij | ≤ τ) + I(|θ̂(m−1)ij | > τ)

)
. This

yields a sequence of convex minimization subproblems with convex constraints: At iteration
step m, we solve

minΘ1 ‖AΘ1 − (Z −AΘ2)‖2F , subject to J (m)(Θ1) ≤ s1. (12)

For (12), we develop a gradient projection method. First, we generalize an l1-ball result of
(Liu & Ye, 2009) to (12).

Lemma 2 (Projection) For any set K ⊆ {1, 2, · · · , n},

x∗ = TK,z(v) = argmin
x∈Rn:

∑
i∈K |xi|≤z

1

2
‖x− v‖22,

where TK,z : Rn → Rn is a projection operator defined by

TK,z(v)i = sign(vi) max(|vi| − λ∗, 0)

where λ∗ = 0 if
∑

i∈K |vi| ≤ z or i /∈ K and λ∗ =

∑
i∈K\K0

|vi|−z
|K|−|K0| otherwise, and K0 = {j :∑

i∈K max(|vi| − |vj |, 0)− z > 0}.
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Before solving (12), we simply extend the fast iterative shrinkage-thresholding (FISTA)
algorithm (Beck & Teboulle, 2009) to solving (13).

Lemma 3 For any set K defined in Lemma 2, a global minimizer of

min
x∈Rn:

∑
i∈K |xi|≤z

1

2
‖Ax− b‖22 (13)

can be obtained by FISTA iteratively: At iteration step t:

x(t) = TK,z
(
y(t) − 1

2L
AT (Ay(t) − b)

)
,

ρt+1 =
1 +

√
1 + 4ρ2t
2

,

y(t+1) = x(t) +

(
ρt − 1

ρt+1

)
(x(t) − x(k−1)),

where L is the largest singular value of A.

Next we solve (12) using Lemma 3, which yields an analytic updating formula in a
matrix form.

Then a global minimizer of (12) is computed using an iterative scheme with respect to
t as follows:

v(1) = Θ̂
(m,0)
1 = Θ̂

(m−1)
1 , ρ1 = 1,

Θ̂
(m,t)
1 = TK(m),z(m)

(
v(t) − 1

2λmax(ATA)
AT [Av(t) − (Z −AΘ2)]

)
, (14)

ρt+1 =
1 +

√
1 + 4ρ2t
2

, v(t+1) = Θ̂
(m,t)
1 +

(
ρt − 1

ρt+1

)
(Θ̂

(m,t)
1 − Θ̂

(m,t−1)
1 ),

where K(m) = {(i, j) : |θ̂(m−1)ij | ≤ τ}, z(m) = τ(s1 −
∑

θij∈Θ1
I(|θ̂(m−1)ij | > τ)) and λmax(·)

denotes the largest eigenvalue of a matrix.
The algorithm is summarized as follows.

Algorithm 2:

Step 1.(Initialization) Supply a good initial estimate (Θ̂
(0)
1 , Θ̂

(0)
2 ) in (5). Specify

precision δ > 0.

Step 2.(Iteration) At iteration m, compute candidate Θ̂2 in (10) with Θ1 = Θ̂
(m−1)
1

and candidate θ̂ij ∈ Θ̂1 in (14) with AΘ2 = AΘ̂
(m−1)
2 .

Step 3.(Maximum block improvement) At each iteration m, determine which of the

two candidates (Θ̂1, Θ̂
(m−1)
2 ) and (Θ̂

(m−1)
1 , Θ̂2) for updating according to the amounts of im-

provement. That is, update (Θ̂
(m)
1 , Θ̂

(m)
2 ) = (Θ̂1, Θ̂

(m−1)
2 ) if f(Θ̂1, Θ̂

(m−1)
2 ) ≤ f(Θ̂

(m−1)
1 , Θ̂2);

update (Θ̂
(m)
1 , Θ̂

(m)
2 ) = (Θ̂

(m−1)
1 , Θ̂2) otherwise.

Step 4.(Stopping rule) Terminate if |f(Θ̂
(m)
1 , Θ̂

(m)
2 ) − f(Θ̂

(m−1)
1 , Θ̂

(m−1)
2 )| ≤ δ. De-

note by m∗ the index at termination. The final estimate is

Θ̂1 = Θ̂
(m∗)
1 , Θ̂2 = ĈF̂ ,

where Ĉ and F̂ are defined in (10) with Θ1 = Θ̂1.
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2.4 Computational Properties

This section discusses computational properties of Algorithms 1 and 2. For nonconvex
minimization, our methods may not guarantee a global minimizer for (3). However, the
following lemma says that our solution of Algorithms 1 and 2 yields a stationary point of
the cost function. Note that the scheme of maximum block improvement is essential for the
result of Lemma 5.

Lemma 4 The minimal cost function f(Θ̂
(m)
1 , Θ̂

(m)
2 ) in Algorithm 1 is strictly decreasing

in m before termination. Moreover, the solution is a stationary point of f(Θ1,Θ2) in that

θ
(∗)
ij = argminθij∈Θk;k=1,2 f((Θ∗

1,Θ
∗
2) \ θij), where (Θ1,Θ2) \ θij is the set of parameters of

(Θ1,Θ2) without one component θij in Θ1 or Θ2, and (Θ1,Θ2) satisfy the constraints in
(5).

Lemma 5 If A is of full rank, then Θ̂1 computed from Algorithm 2 satisfies the con-

straints in (12). Moreover, the minimal cost function f(Θ̂
(m)
1 , Θ̂

(m)
2 ) is strictly decreasing

in m before termination. Finally, if the solution (Θ̂1, Θ̂2) satisfies (5) and it is a stationary
point of f(Θ1,Θ2) in that

θ
(∗)
ij = argmin

θij∈Θk;k=1,2
f((Θ∗

1,Θ
∗
2) \ θij),

where (Θ1,Θ2) \ θij is the set of parameters of (Θ1,Θ2) without one component θij in Θ1

or Θ2, and (Θ1,Θ2) satisfy the constraints in (5).

With regard to the computational complexity of Algorithms 1 and 2, the method of
truncated SVD yields an approximated SVD with a complexity of O(pk log r + (p + k)r2)
operations (Halko et al., 2011). Sorting requires a complexity of O(pk log(pk)). For FISTA,
the convergence rate is O(1/t2) (Beck & Teboulle, 2009), where t is the number of iterations.
Overall, the computational complexity of Algorithm 1 is O(pk log(pk) + (p+ k)r2)I2, while
that of Algorithm 2 is O((pk log r + (p + k)r2 + I1/ε

2)I2, where ε denotes the precision
specified in Algorithm 2, and I1 and I2 is the number of DC iteration and blockwise iteration,
respectively. Based on our experience, I1 and I2 are about between 3 and 20.

3. Theory

This section drives a finite-sample probability error bound for reconstruction of the true Θ0

by Θ̂L0 , which is a global minimizer of (3) in that Θ̂L0 = Θ̂L0
1 + Θ̂L0

2 . Note that existence
of a global minimizer is assured by the fact that the cost function (3) is bounded blow by
zero. Moreover, we will provide an insight into simultaneous pursuit of the low rank and
sparsity structures through matrix decomposition by contrasting the proposed method with
(s1, s2) against low rank approximation alone with (s1 = 0, s2) and sparsity pursuit alone
with (s1, s2 = 0).

Let ‖Θ‖∞ = maxi
∑

j |θij | and ‖Θ‖max = maxij |θij | are the L∞-norm and max norm
respectively. Before proceeding, we define a parameter space Λ as {Θ = Θ1+Θ2 : ‖Θ1‖0 ≤
s1, ‖Θ1‖max ≤ l1,Θ2 = CF ,max(‖C‖∞, ‖F T ‖∞) ≤ l2}, where l1, l2 > 0 are constant, C
is a p × s2 matrix, F is a s2 × k matrix, F T is the transport of F and s2 > 0 is an upper
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bound of r(Θ2). Let g(Θ,Z) be the probability density of Z with respect to dominating
measure ν on Λ. Define the Hellinger distance between two densities as

h(Θ,Θ′) =
1

2

(∫
(g1/2(Θ,Z)− g1/2(Θ′,Z))2dν

)1/2

, (15)

which will be used to measure estimation accuracy.

The following technical assumptions are made.

Assumption A: (Norm-relation) For any Θ,Θ′ ∈ Λ and any δ > 0,∫
sup

‖Θ−Θ′‖max≤δ
(g1/2(Θ, y)− g1/2(Θ′, y))2dν(y) ≤M2δ2,

where M might depend on p, k, s1, s2 and l1, l2.

Assumption A specifies a norm relation between the metric ‖ ·‖max over parameters and
the Hellinger distance over the corresponding densities. This can be verified given a specific
form of g.

Theorem 1 gives a probability error bound for Θ̂L0 under probability P under the true
Θ0. Let (s01, s

0
2) be the degree of sparsity and rank, as defined in Eff(Θ0) in Lemma 1.

Theorem 6 Under Assumptions A, for any ε ≥ εn,p,k

P
(
h(Θ̂L0 ,Θ0) ≥ ε

)
≤ 5 exp(−c1nε2),

εn,p,k =
Cp,k√
n

√
log(

√
n

Cp,k
) with

Cp,k = c2

√
log(29Mc4(l32 + l1))

√
(p+ k)s02 + s01 + c2

√
s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
. (16)

If log(r(Θ0)) ≤ ds02 for some d > 0, then it can be simplified:

Cp,k = c3
√

log(M)
√

(p+ k − s02)s02,

where c1 − c3 are positive constants and M is defined in Assumption A. Moreover, as
n, p, k →∞, h2(Θ̂L0 ,Θ0) = Op(ε

2
n,p,k), and Eh2(Θ̂L0 ,Θ0) = O(ε2n,p,k), where Op(·) and E

denote the stochastic order and the expectation under P .

Corollary 1 gives an order of εn,p,k in three extreme situations with M held fixed.

Corollary 1 Suppose M in Assumptions A is a constant independent of (p, k, s1, s2).

(i) When Θ0 is extremely sparse, that is, ‖Θ0‖0 ≤ p + k − 2, Cp,k in (16) is no worse

than O
(√
‖Θ0‖0 log((p+ k − r(Θ0))r(Θ0)/‖Θ0‖0)

)
.

(ii) When Θ0 is a low-rank matrix, Cp,k in (16) is no worse than O
(√

(p+ k − r(Θ0))r(Θ0)
)

.
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(iii) When Θ0 is dense, say ‖Θ0‖0 ≥ cpk for a constant 0 < c ≤ 1, and of full rank, Cp,k

in (16) is O
(

max
(√

(p+ k − s02)s02,
√
s01 log(pk

s01
)
))

.

Then CLp,k = O
(√

(p+ k − r(Θ0))r(Θ0)
)

.

Corollary 2 and Theorem 2 give a similar result under the Hellinger distance and the
Kullback-Leibler distance, respectively, assuming that εi follows a normal distribution.

Corollary 2 If εi in (1) follows N(0, σ2Ik×k), ‖A‖∞ is bounded, then the results in Corol-
lary 1 continue to hold.

Theorem 7 Under the same assumptions in Corollary 2, we have, for any ε ≥ εn,p,k,

P
(
K(Θ0, Θ̂L0) ≥ 4ε2

)
≤ 5 exp(−c1nε2).

where K(·, ·) is Kullback-Leibler distance under normality and εn,p,k and c2 remain to be

the same as in Theorem 1. As n, p, k →∞, K(Θ0, Θ̂L0) = Op(ε
2
n,p,k) and EK(Θ0, Θ̂L0

) =

O(ε2n,p,k).

Theorem 3 gives an error bound for ‖Θ̂L0 −Θ0‖2F under the normal assumption when
A = In×p.

Theorem 8 Assume that A = In×p with n = max(p, k). Under the same assumptions in

Corollary 2 with σ = O( 1√
max(p,k)

), as n, p, k → ∞, ‖Θ̂L0 − Θ0‖2F = Op(C
′
p,k log( 1

C′p,k
)),

where

C ′p,k =
log(max(p, k)) · [(p+ k)s02 + s01] + s01 log

(
e (p+k−r(Θ

0))r(Θ0)
s01

)
max(p2, k2)

4. Numerical Examples

This section examines operating characteristics of the proposed method through simulations,
and demonstrates its effectiveness on applications in image reconstruction and in time series
analysis. In the literature, it is known that the state-of-art methods are the low-rank
approximation method subject to rank restriction as well as its regularized version, which
outperforms the low-rank approximation method with the trace-norm (Xing et al., 2012;
She, 2013; Zhou & Tao, 2011). In Section 4.1, we contrast our proposed method with
pursuing low rank and sparsity structures through matrix decomposition simultaneously,
with the former low rank approximation method subject to rank restriction (low-rank alone),
as well as the method based on sparsity pursuit alone (sparsity alone). Here Algorithm 2 are
used. Most importantly, in Section 4.2, we compare the proposed method using Algorithm 1
with two strong competitors the method of Go Decomposition (GoDec, Zhou & Tao, 2011)
and the method augmented Lagrange multipliers (ALM, Lin et al., 2009) when A = In×p
in (2). In simulations, codes for ALM and GoDec are used at the authors’ website, and the
initial values for Algorithms 1 and 2 are set to be the zero-matrix
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4.1 Simulation I: Operating Characteristics

The simulated example is generated as follows. First, a n × p design matrix A is sampled
with each entry being iid N(0, 1). Second, the true Θ1 is a p× k matrix with all diagonals
one and two more non-zeros (2 and 2) being randomly chosen with equal probability, and
the true Θ2 is generated by multiplying a p× r matrix with a r× k matrix with each entry
following N(1, 1). Moreover, each entry of E is iid N(0, 0.25). Throughout the simulations,
Θ1 and Θ2 are held fixed with different values of (n, p, k).

The proposed method is trained with a training set, and the optimal tuning parameters,
minimizing the prediction mean squares error over an independent tuning set, are obtained
through a bisection search over integer values. Then a method’s performance is examined
over a test set. The training, tuning and testing data sizes are n, 4n and 2n.

For parameter estimation, we employ the mean squares error to evaluate performance

1

4n
‖A(Θ̂−Θ0)‖2F . (17)

For rank recovery, we calculate the absolute difference between an estimated rank r̂ and
the true rank r0, that is |r̂− r0|. For sparsity pursuit, we define the true positive (TP) as a
ratio of the true positive numbers of nonzero estimates over the number of nonzeros in the
true model, and the false positive (FP) as a ratio of the false positive numbers of nonzero
estimates over the number of zeros in the true model. Here “Low rank alone”, “Sparsity
alone” and “Ours” indicate the low rank method subject to rank restriction, the sparsity
pursuit method, and the proposed method

As indicated in Table 1, the proposed method performs favorably against its counterpart—
the low rank approximation method subject to rank restriction and sparsity pursuit alone,
across all situations with different values of n, p and k. Moreover, the proposed method
enables to identify two structures through matrix decomposition simultaneously. In partic-
ular, it recovers the true rank of the matrix with nearly zero |r̂− r0|-values as compared to
relatively large |r̂ − r0|-values, ranging from 6.7 to 29.6, for its low-rank counterpart. At
the same time, the proposed method has high true positives ranging from .92 to 1.00 and
low false positives between 0.00 and 0.01, as compared to true positives ranging 0.04 to .44
and false positives between 0.03 and 0.20 of its counterpart based on sparsity pursuit. This
suggests that pursuit of two types of structures is indeed advantageous than that of either
one structure individually. This is mainly because these two structures are complementary
to each other. As a result, higher parameter estimation accuracy, as measured by the MSE
values, can be realized. In fact, the amount of improvement is large, which ranges from
147% to 1185400%. To see how each method performs as (n, p) increases, we fix k = 5.

As suggested by Table 2, the proposed method yields more stable performance than
its two counterparts whose performance deteriorates rapidly, as the level of difficulty of a
problem escalates when p and k increase.

4.2 Simulation II: Comparison

To compare with ALM (Lin et al., 2009) and GoDec (Zhou & Tao, 2011) for RPCA, consider
the case of A = In×p in (2) and p = k as in these papers. GoDec minimizes

min
Θ1,Θ2

‖Z −Θ1 −Θ2‖2F subject to card(Θ1) ≤ s1, rank(Θ2) ≤ s2, (18)
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p = 20, k = 10
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

50 0.00 1.00 0.01 0.68 6.71 1.68 0.44 0.07 1367.03
(0.00) (0.00) (0.03) (0.15) (0.52) (0.28) (0.29) (0.01) (173.50)

p = 30, k = 20
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

50 0.00 1.00 0.00 1.54 15.69 7.79 0.12 0.14 4650.35
(0.00) (0.00) (0.00) (0.30) (2.41) (1.03) (0.21) (0.02) (511.55)

100 0.00 1.00 0.00 0.51 16.94 2.16 0.13 0.05 4399.38
(0.00) (0.00) (0.00) (0.08) (0.24) (0.18) (0.22) (0.01) (429.41)

p = 20, k = 30
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

50 0.00 1.00 0.00 1.06 16.66 5.06 0.43 0.06 4276.25
(0.00) (0.00) (0.00) (0.17) (0.76) (0.62) (0.28) (0.01) (508.06)

100 0.00 1.00 0.00 0.46 16.99 1.88 0.53 0.06 4087.58
(0.00) (0.00) (0.00) (0.05) (0.10) (0.16) (0.20) (0.01) (406.97)

p = 40, k = 30
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

50 0.00 1.00 0.00 4.08 1.88 19.39 0.09 0.20 12018.68
(0.00) (0.00) (0.00) (1.21) (0.59) (1.57) (0.20) (0.04) (1422.84)

p = 50, k = 20
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

100 0.00 1.00 0.00 0.95 16.86 5.05 0.04 0.03 11262.97
(0.00) (0.00) (0.00) (0.15) (0.35) (0.40) (0.14) (0.01) (1003.69)

p = 200, k = 100
Ours Low-rank alone Sparsity alone

n |r̂ − r0| TP FP MSE |r̂ − r0| MSE

300 3.76 0.92 0.00 8.26 29.56 54.24 – – –
(1.24) (0.23) (0.00) (0.86) (7.84) (0.81) (–) (–) (–)

Table 1: Results of Simulation I. Algorithm 2 is used for computation.

where card(·) denotes the cardinality, and sj ≥ 0 are tuning parameters as in our case.
Similarly, ALM that focuses on the non-noisy situation minimizes

min
Θ1,Θ2

‖Θ2‖∗ + λ
∑

θij∈Θ1

|θij |, subject to Z = Θ1 + Θ2, (19)

where ‖ · ‖∗ is the nuclear-norm of a matrix.

Our simulation example remains the same as before except that the positions of nonzero
elements in Θ2 are randomly sampled with equal probability, in particular, .1p and .3p
nonzeros are randomly chosen without replacement. For tuning, grid search is employed for
GoDec in (18), with 1 ≤ s1 ≤ (p+ k) and 1 ≤ s2 ≤ min(p, k, 50); λ is fixed at 1√

p for (19).
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Ours Low-rank alone Sparsity alone
n p |r̂ − r0| TP FP MSE |r̂ − r0| MSE TP FP MSE

50 20 0.00 1.00 0.002 0.58 2.00 0.84 0.433 0.08 570
(0.00) (0.00) (0.006) (0.14) (0.00) (0.18) (0.30) (0.02) (73)

50 30 0.00 0.57 0.01 1.29 1.97 1.98 0.18 0.08 3772.33
(0.00) (0.17) (0.01) (0.32) (0.17) (0.42) (0.27) (0.01) (542.38)

50 40 0.00 1.00 0.001 3.57 1.67 5.43 0.07 0.05 1998
(0.00) (0.00) (0.003) (1.58) (0.60) (1.73) (0.18) (0.01) (257)

50 50 0.82 0.36 0.01 487.43 0.82 12255 0.05 0.03 3797
(0.84) (0.38) (0.01) (1081.68) (0.81) (79570) (0.15) (0.01) (539)

100 20 0.00 1.00 0.01 0.23 2.00 0.32 0.53 0.08 541
(0.00) (0.00) (0.03) (0.05) (0.00) (0.05) (0.21) (0.02) (58)

100 30 0.00 0.71 0.01 0.36 2.00 0.54 0.19 0.03 1461
(0.00) (0.25) (0.01) (0.05) (0.00) (0.08) (0.21) (0.01) (147)

100 40 0.00 0.98 0.01 0.53 2.00 0.83 0.10 0.03 1929
(0.00) (0.10) (0.02) (0.08) (0.00) (0.11) (0.20) (0.01) (179)

Table 2: Results for Simulation I with fixed k = 5. Algorithm 2 is used for computation.

From Tables 3, it is evidenced that the proposed method outperforms ALM uniformly
in terms of the MSE while being comparable to GoDec, in all the situations with different
values of (p, k, σ). Moreover, it always recovers the true rank of the matrix perfectly with
|r̂− r0| = 0. Although ALM has comparable high TP values, its FP values are high as well
in that they are at least 0.6488. As a result, ALM never captures the true rank.

4.3 AR Face Database 20pt Markup

For face image reconstruction, we use a subset of AR Face Data for this experiment. The
original image is available at http://www-prima.inrialpes.fr/FGnet/data/05-ARFace/
markup_large.png, which is a colored one with size of 186 × 200 × 3. To enable detailed
testing, the image has been labeled with 20 facial features on the face. We convert the
image into black and white and reduce it to size 171× 180. The target image is displayed
in Figure 1.

Figure 1: The converted AR face image with markup points.

Twenty one markup points around eyes, nose, mouth and cheeks, which are used to test
face recognition or verification performance when the exact location of the face and features
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nonzeros p k σ Method |r̂ − r0| TP FP MSE

0.1p

50 30

0.1

Ours 0.0000 0.9940 0.0000 0.2366
(0.0000) (0.0343) (0.0002) (0.0251)

ALM 13.0300 1.000 0.6488 1.5057
(0.6735) (0.0000) (0.0082) (0.0576)

GoDec 0.0000 0.9940 0.0000 0.2363
(0.0000) (0.0342) (0.0001) (0.0245)

1

Ours 0.0000 0.0320 0.0000 2.5308
(0.0000) (0.0839) (0.0001) (0.2418)

ALM 13.3900 0.9280 0.6540 15.0569
(0.6651) (0.1223) (0.0080) (0.5758)

GoDec 0.0000 0.0300 0.0001 2.5537
(0.0000) (0.0823) (0.0003) (0.2523)

200 100

0.1

Ours 0.0000 0.9770 0.0000 0.2345
(0.0000) (0.0337) (0.0000) (0.0169)

ALM 54.3100 1.0000 0.7034 4.9984
(0.7745) (0.0000) (0.0022) (0.0510)

GoDec 0.0000 0.9755 0.0000 0.2330
(0.0000) (0.0344) (0.0000) (0.0160)

1

Ours 0.0000 0.0075 0.0000 2.4469
(0.0000) (0.0206) (0.0000) (0.1387)

ALM 54.2400 0.9456 0.7059 49.9838
(0.7264) (0.0456) (0.0023) (0.5095)

GoDec 0.0000 0.0085 0.0000 2.4476
(0.0000) (0.0236) (0.0000) (0.1395)

0.3p

50 30

0.1

Ours 0.0000 0.9933 0.0002 0.2507
(0.0000) (0.0201) (0.0003) (0.0277)

ALM 13.0000 1.0000 0.6472 1.5057
(0.6195) (0.0000) (0.0079) (0.0576)

GoDec 0.0000 0.9953 0.0001 0.2489
(0.0000) (0.0171) (0.0003) (0.0271)

1

Ours 0.0000 0.0373 0.0000 2.8870
(0.0000) (0.0624) (0.0001) (0.2410)

ALM 13.37 0.9407 0.6531 15.0569
(0.6301) (0.0621) (0.0080) (0.5758)

GoDec 0.0000 0.0327 0.0001 2.8983
(0.0000) (0.0653) (0.0002) (0.2504)

200 100

0.1

Ours 0.0000 0.9867 0.0001 0.2495
(0.0000) (0.0164) (0.0001) (0.0198)

ALM 54.3500 1.0000 0.7030 4.9984
(0.6571) (0.0000) (0.0023) (0.0510)

GoDec 0.0000 0.9882 0.0000 0.2479
(0.0000) (0.0152) (0.0001) (0.0191)

1

Ours 0.0000 0.0080 0.0000 2.8254
(0.0000) (0.0122) (0.0000) (0.1402)

ALM 54.2200 0.9467 0.7054 49.9838
(0.6289) (0.0297) (0.0022) (0.5095)

GoDec 0.0000 0.0075 0.0000 2.8237
(0.0000) (0.0135) (0.0000) (0.1409)

Table 3: Results for Simulation II . Algorithm 1 is used for computation.

60



Simultaneous Pursuit of Sparseness and Rank Structures for Matrix Decomposition

are known. To identify the locations, we extract sparse (Θ1) and low-rank (Θ2) structures
for the face images as described by the matrix decomposition into Θ1 and Θ2. For this
purpose, A in (3) is set to be the identity matrix of size 171× 171. Figures 2 and 3 display
two decomposed structures for the AR face images by the proposed method with different
sparse and rank constraint parameters in (3).

Figure 2: Extracted sparsity (first), low-rank (second) structures as well as the recon-
structed image by the proposed method for AR face images; where the tuning
parameters are set to s1 = 2500, s2 = 5.

Figure 3: Extracted sparsity (first), low-rank (second) structures as well as the recon-
structed image by the proposed method for AR face images; where the tuning
parameters are set to s1 = 2100, s2 = 10.

As indicated in Figures 2 and 3, the sparseness structure describes characteristics/detailed
marks of the face, whereas the low-rank structure displays the rough outlook of the human
face. This confirms our discussion regarding local and global features in the Introduction.
Visually, both the first panels in Figures 2 and 3 preserve at least 60% markup points,
especially the points around nose two sides of face and lip. In other words, the sparsity
structure captures most of markup points. Similarly, the second panels retain the overall
look of the face. Most interestingly, this decomposition tends to remove the glasses from
the human face.
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4.4 Greek Letters Image Reconstruction

Now consider a 26 × 31 black-white image of two Greek letters β and φ, where its noisy
version is obtained by adding noise N(0, 1) after dividing the original matrix values by 100.
The ratio of the maximum value of the image to the noise standard deviation is about 2.5.
The images are displayed in Figure 4.

Figure 4: Original image (left) versus its noisy version (right).

Our goal is reconstruction of the original image from its noise version, with a focus on
restoration of detailed structures of the letters. Towards this end, we apply the proposed
method and contrast with its counterpart based on sparse pursuit alone and low-rank ap-
proximations. Specifically, let A to be the identity matrix of size 31 × 31 and Θ be a
31×26 parameter matrix in (3). For each method, grid search is performed for tuning, with
s1 = (10, 20, 30, 50), 1 ≤ s2 ≤ min(p, k) = 26 and τ = (0.05, 0.1, 0.2). For each method, the
10-fold cross-validation is employed. The reconstructed images are displayed in Figure 5.

Figure 5: Reconstructed images based on sparsity alone (first), low-rank alone (second) and
our method (third). Algorithm 2 is used for computation.

Visually, the first two reconstructed images by the low-rank method and the sparsity
method give the rough shape of two letters, but the letters β and φ not distinguishable with
blurred segments in places, especially the right middle of β and the top of φ. By comparison,
the third reconstructed image by our method enables to reconstruct the complete shape of
these two letters, and yield the best quality of reconstruction.
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4.5 US Macroeconomic Time Series

This subsection examines multiple time series data described in (Stock & Watson, 2012).
The data measures 143 US macroeconomic variables quarterly over a time span from Febru-
ary 1, 1959 to November 1, 2008. These variables are categorized into 13 groups and are
summarized in Table 4.

Group Description Examples of series # series

1 GDP component GDP, consumption, investment 16

2 IP IP, capacity utilization 14

3 Employment Sectoral&total employment and hours 20

4 Unemployment rate Unemployment rate, total and by duration 7

5 Housing Housing starts, total and by region 6

6 Inventories NAPM inventories, new orders 6

7 Prices Price indexes, aggregate&disaggregate,
37

commodity prices

8 Wages Average hourly earning, unit labor cost 6

9 Interest rates Treasuries, corporate, term spreads, public-
13

private spreads

10 Money M1, M2, business loans, consumer credit 7

11 Exchange rates Average&selected trading partners 5

12 Stock prices Various stock price indexes 5

13 Consumer expectations Michigan consumer expectations 1

Table 4: Economic indicators collected for U.S. macroeconomic time series.

For data analysis, we consider time series starting from August 1, 1959 to November
1, 2008 due to incomplete initial observations. Our goal is one-step ahead forecasting, and
contrast the proposed method with low-rank alone and sparsity alone in terms of forecasting
accuracy. Using a multivariate autoregressive model, that is, yt = yTt−1Θ+εi, we place it in
the framework of (1), where yt is a vector that records the values of various macroeconomic
variables at time point t, and εi follows normal distribution. In the presence of multiplicity
and non-stationarity for economics data like this, we consider some transformations. For
instance, log growth rates for quantity variables are differenced, nominal interest rates are
differenced, as well as the logarithms of changes in rates of inflation for price series are
differenced. See (Stock & Watson, 2012) for processing the data set. For this data set,
p = k = 143 in (1) and the design matrix A is specified by the time series, which can
written as A = (yt0 ,yt0+1, . . . ,yt0+d−1)

T .
A one-step ahead K-fold cross validation (CV) criterion is used for tuning the time

series (Arlot & Celisse, 2010). In particular, for design matrix A, at each fold i, we use
observations i to n−K + i− 1 for training and the observation n−K + i for tuning, where
K is a pre-assigned integer and K − 1 indicates the number of folds. Note that the values
of p and k are close to the sample size n for this time series. We therefore choose K ≤ 20
to maintain adequate training samples.

For tuning, the CV is optimized over a set of grids for s1 = (10, 20, 50, 100, 200), 1 ≤
s2 ≤ min(p, k) and τ = (0.02, 0.05, 0.1, 0.2). The results for K = 11 are reported in Table 5.
The results for other K values are omitted due to similarity.

As suggested by Table 5, the proposed method outperforms its counterparts pursuing
sparseness and low-rank alone. The amount of improvement over the low rank method and
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Ours Low-rank alone Sparsity alone

K = 11 301.22 348.02 3111.89

Table 5: Prediction errors of U.S. macroeconomic data for K = 11. Here “Low rank alone”,
“Sparsity alone” and ”Ours” indicate our method for low rank pursuit only, for
sparsity pursuit only and for simultaneous pursuit of low rank and sparsity. Algo-
rithm 2 is used for computation.

the sparsity method is 15% and 933%, respectively. The Q-Q plots in Figure 6 indicate
that the model assumption is adequate although some departure from normality has been
detected. Overall, the proposed method performs reasonably well.
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Appendix

Proof of Lemma 1: Let df(s, r) = s+ (p+ k − r)r. By definition of the effective degrees
of freedom, we obtain that

Eff(Θ) ≤ min(df(0, r(Θ0)), df(‖Θ0‖0, 0)).

To prove uniqueness in terms of (s, r), suppose there exist (s̄, r̄) 6= (s̄′, r̄′) such that
df(s̄, r̄) = df(s̄′, r̄′) = mins,r df(s, r). Without loss of generality, assume r̄ = r̄′ − n0 < r̄′,
where n0 > 0 is a positive integer. If n0 ≤ min(p, k) − r̄ and r̄ < min(p, k), then
s̄+ (p+ k− r̄)r̄ = s̄′+ (p+ k− r̄′)r̄′ implies that s̄ = s̄′+n0(p+ k− 2r̄−n0) ≥ n0(p+ k−
2r̄ − n0) > p+ k − 2r̄ − 1, which contradicts with the assumption that s < p+ k − 2r − 1.
Otherwise, if r̄ = min(p, k), s̄ must be zero. This completes the proof. �

Proof of Lemma 2: Let xi = vi for i /∈ K. Then the problem reduces to the standard l1
ball problem.

argmin∑
i∈K |xi|≤z

1

2

∑
i∈K

(xi − vi)2.

The results follows by the proof of Theorem 1 of (Liu & Ye, 2009). �

Proof of Lemma 3: It suffices to derive the basic step of ISTA in (Amit et al., 2007) for
(13). Consider the following quadratic approximation of problem (13) at a given point y:

min
x∈Rn:

∑
i∈K |xi|≤z

QL(x,y) = ‖Ay − b‖22 + 〈x− y,AT (Ay − b)〉+
L

2
‖x− y‖22, (20)
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Figure 6: Q-Q plots for each-fold in U.S. macroeconomic time series data example, where
points on a straight line indicates non-departure from normality.
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where L is a Lipschitz constant of the function AT (Ax−b) with respect to x. Solving (20)
is equivalent to that of

min
x∈Rn:

∑
i∈K |xi|≤z

‖x−
(
y − 1

L
AT (Ay − b)

)
‖22.

By Lemma 2, the solution is TK,z
(
y − 1

LA
T (Ay − b)

)
. The basic step of ISTA thus can be

written as x(t) = TK,z
(
x(t−1)− 1

LA
T (Ax(t−1)− b)

)
. Then, Lemma 3 follows by taking L to

be λmax(ATA), where λmax(·) denotes the largest singular value. �

Proof of Lemma 4: By (6) and (7), for any integer m ≥ 1,

f(Θ̂
(m)
1 , Θ̂

(m)
2 ) ≥ f(Θ̂

(m)
1 , Θ̂

(m+1)
2 ) ≥ f(Θ̂

(m+1)
1 , Θ̂

(m+1)
2 ).

Meanwhile, it follows from (6) that

f(Θ̂
(m)
1 , Θ̂

(m)
2 ) = ‖Z − Θ̂

(m)
2 ‖

2
F − ‖Θ̂

(m)
1 ‖

2
F

≥ ‖Z − Θ̂
(m+1)
2 − Θ̂

(m)
1 ‖

2
F

≥ ‖Z − Θ̂
(m+1)
2 ‖2F − ‖Θ̂

(m)
1 ‖

2
F .

Therefore ‖Z − Θ̂
(m)
2 ‖2F is lower bounded and decreasing in m. Moreover, by the mono-

tone properties of f(Θ̂
(m)
1 , Θ̂

(m)
2 ), ‖Θ̂(m)

1 ‖2F converges as m → ∞. Then there exists a

subsequence {mk} such that (Θ̂
(mk)
1 , Θ̂

(mk)
2 )→ (Θ̂

(m∗)
1 , Θ̂

(m∗)
2 ).

Let Rij(Θ1,Θ2) ∈ argminθij∈Θ1 or θij∈Θ2
f((Θ1,Θ2) \ θij). Let the cost function for θij

to be fm(θij) = f((Θ̂
(m)
1 , Θ̂

(m)
2 ) \ θij), where other components of (Θ̂

(m)
1 , Θ̂

(m)
2 ) are held

fixed. Then

fmk(Rij(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 )) ≥ fmk(Rij(Θ̂

(mk)
1 , Θ̂

(mk)
2 ))

≥ min
(
f((Θ̂

(mk)
1 , Θ̂

(mk+1)
2 )), f((Θ̂

(mk)
1 , Θ̂

(mk)
2 ))

)
≥ f((Θ̂

(mk+1)
1 , Θ̂

(mk+1)
2 )).

As m → ∞ , by continuity of f(·), f(m∗)(Rij(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 )) ≥ f(Θ̂

(m∗)
1 , Θ̂

(m∗)
2 )) , where

the equality holds by the definition of Rij . Hence, for each θij ∈ Θl; l = 1, 2, θ̂
(m∗)
ij =

Rij(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 ) is the optimal componentwise solution. The results of Lemma 4 then

follow. �

Proof of Lemma 5: First we prove that Θ̂
(m)
1 satisfies

∑
θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m)
ij | ≤ τ) + I(|θ̂(m)

ij | > τ)

)
≤ s1. (21)
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Toward this end, we rewrite the left side of (21) as

∑
θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m−1)ij | ≤ τ) + I(|θ̂(m−1)ij | > τ)

)

+
∑

θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m)
ij | ≤ τ) + I(|θ̂(m)

ij | > τ)−
|θ̂(m)
ij |
τ

I(|θ̂(m−1)ij | ≤ τ)− I(|θ̂(m−1)ij | > τ)

)

=
∑

θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m−1)ij | ≤ τ) + I(|θ̂(m−1)ij | > τ)

)
+ Im, (22)

where Im =
∑

θij∈Θ1

|θ̂(m)
ij |−τ
τ

(
I(|θ̂(m)

ij | ≤ τ)− I(|θ̂(m−1)ij | ≤ τ)
)

. Note that it follows from

the DC construction that

∑
θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m−1)ij | ≤ τ) + I(|θ̂(m−1)ij | > τ)

)
≤ s1.

Thus, to establish (21), we only need to prove Im ≤ 0. Rewrite I as

Im =


0 if min(|θ̂(m)

ij |, |θ̂
(m−1)
ij |) > τ or max(|θ̂(m)

ij |, |θ̂
(m−1)
ij |) ≤ τ ,∑

θij∈Θ1
(
|θ̂(m)
ij |
τ − 1) if |θ̂(m)

ij | ≤ τ and |θ̂(m−1)ij | > τ,

−
∑

θij∈Θ1
(
|θ̂(m)
ij |
τ − 1) if |θ̂(m)

ij | > τ and |θ̂(m−1)ij | ≤ τ ,

implying that Im ≤ 0. Then, (21) follows.

For stationarity, note that it follows from (21) that

f(Θ̂
(m−1)
1 , Θ̂

(m−1)
2 ) ≥ f(Θ̂

(m−1)
1 , Θ̂2) ≥ f(Θ̂

(m)
1 , Θ̂

(m)
2 ),

where Θ̂2 is defined in Step 2 of Algorithm 2.

Suppose that termination index m∗ is infinite. Then we will prove that Θ̂
(m)
1 → Θ̂

(m∗)
1

as m → m∗ = ∞. When m∗ = ∞, Θ̂
(m)
1 must be updated infinitely because Θ̂

(m)
2 is

analytically solved. First consider, at step m, Θ1 is updated whereas Θ2 = Θ̂
(m)
2 . Denote

by Λ(Θ1,Θ2, λ
∗) the dual problem of (12), where λ∗ is the optimal Lagrange multiplier and

Θ2 = Θ̂m
2 . Then

f(Θ̂
(m)
1 , Θ̂

(m)
2 )− f(Θ̂

(m+1)
1 , Θ̂

(m+1)
2 ) = Λ(Θ̂

(m)
1 , Θ̂

(m)
2 , λ∗)− Λ(Θ̂

(m+1)
1 , Θ̂

(m)
2 , λ∗)

− λ∗
∑

θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m)
ij | ≤ τ) + I(|θ̂(m)

ij | > τ)− s1

)

The equality holds because Θ̂
(m+1)
1 is the global minimizer of a convex problem (12), attain-

ing at constraint boundaries, i.e
∑

θij∈Θ1

(
|θ̂(m+1)
ij |
τ I(|θ̂(m)

ij | ≤ τ) + I(|θ̂(m)
ij | > τ)− s1

)
= 0.
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An application of the Taylor expansion to Λ(Θ1, Θ̂
(m)
2 , λ∗) at Θ1 = Θ̂

(m+1)
1 yields that

f(Θ̂
(m)
1 , Θ̂

(m)
2 )− f(Θ̂

(m+1)
1 , Θ̂

(m+1)
2 )

= 〈 ∂Λ

∂Θ1
(Θ̂

(m+1)
1 , Θ̂

(m)
2 , λ∗), Θ̂

(m)
1 − Θ̂

(m+1)
1 〉+

1

2
〈A(Θ̂

(m)
1 − Θ̂

(m+1)
1 ),A(Θ̂

(m)
1 − Θ̂

(m+1)
1 )〉

− λ∗
∑

θij∈Θ1

(
|θ̂(m)
ij |
τ

I(|θ̂(m)
ij | ≤ τ) + I(|θ̂(m)

ij | > τ)− s1

)
,

where 〈·, ·〉 denotes the inner product. The first term in the right side of the equality is

zero, because Θ̂
(m+1)
1 is the global minimizer and the third term is no less than zero by

(21). Thus,

f(Θ̂
(m)
1 , Θ̂

(m)
2 )− f(Θ̂

(m+1)
1 , Θ̂

(m+1)
2 ) ≥ 1

2
〈A(Θ̂

(m)
1 − Θ̂

(m+1)
1 ),A(Θ̂

(m)
1 − Θ̂

(m+1)
1 )〉

≥ λmin(ATA)

2
‖Θ̂(m)

1 − Θ̂
(m+1)
1 ‖2F , (23)

where λmin(·) is the smallest eigenvalue of a matrix. Therefore f(Θ̂
(m)
1 , Θ̂

(m)
2 ) is lower

bounded and decreasing in m, implying f(Θ̂
(m)
1 , Θ̂

(m)
2 ) converges to some limit f∗ as m→

∞. By (23), convergence of Θ̂
(m)
1 → Θ̂

(m∗)
1 is established. Next consider the case in which

Θ2 is only updated finitely, say before step m0, using the same notation with proof of
Lemma 4, then for any m > m0

fm(Rij(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 )) ≥ fm(Rij(Θ̂

(m)
1 , Θ̂

(m)
2 )) = f((Θ̂

(m+1)
1 , Θ̂

(m+1)
2 )).

The second equality holds because the MBI is employed. As m → m∗ , by continuity of

function f , f(m∗)(Rij(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 )) ≥ f(Θ̂

(m∗)
1 , Θ̂

(m∗)
2 )) , where the equality holds by the

definition of Rij . Finally, we consider the case in which Θ2 is updated infinitely. Then there

is a subsequence {mk} such that Θ̂
(mk)
2 → Θ̂

(m∗)
2 . Similarly, fm∗(Rij(Θ̂

(m∗)
1 , Θ̂

(m∗)
2 )) =

f(Θ̂
(m∗)
1 , Θ̂

(m∗)
2 )). Hence, for each θij ∈ Θl, l = 1, 2, θ̂

(m∗)
ij = Rij(Θ̂

(m∗)
1 , Θ̂

(m∗)
2 ) is the

optimal componentwise solution. The results of Lemma 5 then follow. �

Let BS,r = {Θ = ΘS
1 + Θ2 : r(Θ2) = r} ∩ Λ, a sub-parameter space with known sparsity

structure S and rank r. Denote H(·,Λ) and HB(·,Λ) to be the L∞ entropy and bracketing
Hellinger metric entropy for set Λ, respectively. The next two technical lemmas concern the
size of the parameter space.

Lemma 9 Suppose that Assumptions A is met.

HB(t,BS,r) ≤ |S| log(2Ml1/t) + (p+ k)r log(2Ml32/t),

where l1, l2 are constant and M > 1 is defined in Assumption A.

Lemma 10 Suppose that Assumptions A is satisfied. If s1 = s01, s2 = s02, then

HB(t,Λ) ≤2(p+ k)s02 log(2Ml32ε/t) + s01 log((1 + 2Ml1)/t)

+ 2s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
.
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Proof of Lemmas 6 and 7: For Lemma 6, note that Λ = ∪|S|≤s01 ∪r≤s02 BS,r. It suffices
to calculate the entropy for each BS,r.

Let Λ2 = {(Θ1,Θ2) : Θ1,Θ2 satisfy conditions defined in Λ}. For Θ = Θ1 + Θ2 and
(Θ1,Θ2) ∈ Λ2, define Bδ(Θ1,Θ2) = {(Θ′1,Θ′2) ∈ Λ2 : ‖Θ1−Θ′1‖max + ‖Θ2−Θ′2‖max ≤ δ}
to be the neighborhood of (Θ1,Θ2). For any Θ′ = Θ′1 + Θ′2 with (Θ′1,Θ

′
2) ∈ Bδ(Θ1,Θ2),

by Assumption A, ∫
sup

Bδ(Θ1,Θ2)
(g1/2(Θ, y)− g1/2(Θ′, y))2dν(y) ≤M2δ2.

Combined the above with Lemma 2.1 of (Ossiander, 1987), we have

HB(t,BS,r) ≤ H(M−1t,BS,r). (24)

Since ‖Θ1‖max is bounded by l1, by constructing a 2t-net on BS,r through the outer product
of the t-nets on ΘS

1 and Θ2 defined in the parameter space Λ, we can show that

H(M−1t,BS,r) ≤ |S| log(2Ml1/t) +Hr(M
−1t) (25)

where |S| is the number of nonzeros in Θ1 and Hr(M
−1t) is the entropy for Θ2 with rank r.

Let C be a basis of column of Θ2, then there exists an k× r matrix F such that Θ2 = CF .
Hence

‖Θ2 −Θ′2‖max = ‖CF −C ′F ′‖max ≤ ‖C‖∞‖F − F ′‖max + ‖F T ‖∞‖C −C ′‖max.

where ‖Θp×k‖∞ = max1≤i≤p
∑k

i=1 |θij | is the L∞ matrix-norm and ‖Θ‖max = maxθij∈Θ |θij |
is the max norm. Note that ‖C‖∞ and ‖F T ‖∞ are bounded by l2. This yields

Hr(M
−1t) ≤ (p+ k)r log

2l32M

t
.

This, together with (24) and (25), implies Lemma 6.
For Lemma 7, note that

exp(HB(t,Λ)) ≤ exp(H(M−1t,Λ))

=

s02∑
r=0

s01∑
|S|=0

|S|∑
i=0

(
s01
i

)(
(p+ k − r(Θ0))r(Θ0)− s01

|S| − i

)
exp(H(M−1t,BS,r))

≤
(

(p+ k − r(Θ0))r(Θ0)

s01

) s01∑
|S|=0

(
s01
|S|

)
(2Ml1/t)

|S|

 s02∑
r=0

(2Ml32/t)
(p+k)r


≡
(

(p+ k − r(Θ0))r(Θ0)

s01

)
× I × II.

Note that
∑n

k=0

(
n
k

)
akbn−k = (a+b)n. Then I = (1+2Ml1

t )s
0
1 and II ≤ (s02+1)

(
2Ml32ε
t

)(p+k)s02
.

Thus,

HB(t,Λ) ≤ log

(
(p+ k − r(Θ0))r(Θ0)

s01

)
+ log(s02 + 1) + s01 log(1 +

2Ml1
t

) + (p+ k)s02 log(
2Ml32
t

)

≤ 2(p+ k)s02 log(2Ml32/t) + s01 log(
1 + 2Ml1

t
) + 2s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
,
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where e is the natural number and 0 < t < 1. The last inequality follows Theorem 2.6 of

(Stanica & Montgomery, 2001) that
(
b
a

)
≤ bb+1/2
√
2πaa+1/2(b−a)b−a+1/2 ≤ exp((a+ 1/2) log(b/a) +

a) ≤ exp(2a log(b/a) + a) for any integer 0 < a < b. This completes the proof. �

Proof of Theorem 1: We apply a large deviation inequality in Theorem 2 of (Wong &
Shen, 1995). To this end, we verify (1.2) there. By Lemma 7,∫ 21/2ε

ε2/28

(
HB(t/c4,Λ)

)1/2
dt ≤

∫ 21/2ε

ε2/28

√
2(p+ k)s02 log(2Ml32c4/t) + s01 log((1 + 2Ml1)c4/t)dt

+

∫ 21/2ε

ε2/28

√
2s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
dt ≡ I1 + I2,

for some constant c4 > 0, say c4 = 10. Then, for ε small,

I1 ≤
√

2ε
√

2(p+ k)s02 log(29Ml32c4/ε
2) + s01 log((1 + 2Ml1)28c4/ε2)

≤ 2ε
√

(p+ k)s02 + s01

√
log(29Mc4(l32 + l1)) + 2 log

1

ε

≤ 2
√

2ε
√

log(29Mc4(l32 + l1))
√

(p+ k)s02 + s01 ·
√

log
1

ε
.

Similarly,

I2 ≤ 2ε

√
s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
.

Let εn,p,k =
Cp,k√
n

log(
Cp,k√
n

) where

Cp,k = 2
√

2c−15

√
log(29Mc4(l32 + l1))

√
(p+ k)s02 + s01 + 2c−15

√
s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
.

Then, for any ε ≥ εn,p,k and c5 = 512
(2/3)5/12∫ 21/2ε

ε2/28

(
HB(t/c4,Λ)

)1/2
dt ≤ c−15

√
nε2.

By Theorem 2 of (Wong & Shen, 1995), P
(
h(Θ̂L0 ,Θ0) ≥ ε

)
≤ 5 exp(−c1nε2), which yields

Eh2(Θ̂L0 ,Θ0) = O(ε2n,p,k) by using the fact that h(Θ̂L0 ,Θ0) ≤ 1.

Consider a special situation when log(r(Θ0)) ≤ ds02 for some constant d > 0 that is
independent of p, k. Note that s01 < p+ k − s02 and p+ k − r(Θ0) ≤ p+ k − s02. Then

s01 log
(
e

(p+ k − r(Θ0))r(Θ0)

s01

)
≤ (p+ k − s02) log

(
e

(p+ k − r(Θ0))r(Θ0)

p+ k − s02

)
≤ (p+ k − s02) log(er(Θ0)) ≤ 2d(p+ k − s02)s02.
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Thus, I1 + I2 is upper bounded by

2
√

2ε

(√
log(29Mc4(l32 + l1)) +

√
d

)√
(p+ k)s02 + s01 ·

√
log

1

ε
.

Let c3 = 2
√

2c−15

(√
log(29c4(l32 + l1)) +

√
d
)√

(p+ k)s02 + s01. The result then follows.

This completes the proof. �

Proof of Corollary 1: If Θ0 is sparse and ‖Θ0‖0 ≤ p + k − 2, then by the definition of
effective degrees of freedom s0 = s01 + (p+ k − s02)s02 ≤ ‖Θ0‖0. This implies that

Cp,k = O
(√
‖Θ0‖0

)
+O

(√
‖Θ0‖0 log

(
p+ k − r(Θ0))r(Θ0)/‖Θ0‖0

))
= O

(√
‖Θ0‖0 log

(
p+ k − r(Θ0))r(Θ0)/‖Θ0‖0

))
.

The second inequality is because of nondecreasingness of
√
x and

√
x log(a/x) in x for

x ≤ a/e.
If Θ0 is low-rank, we have

Cp,k = O

(√
(p+ k − r(Θ0))r(Θ0) +

√
s01 log

(
(p+ k − r(Θ0))r(Θ0)/s01

))
.

Note that s01 log
(
(p+ k − r(Θ0))r(Θ0)/s01

)
≤ log

(
(p+ k − r(Θ0))r(Θ0)/e

)
. The result

follows.

If Θ0 is dense and of full rank, then (p+ k− r(Θ0))r(Θ0) is of order O(pk). Hence Cp,k

can be written as O
(√

(p+ k − s02)s02 +
√
s01 log(pk

s01
)
)

. This completes the proof. �

Proof of Corollary 2: It suffices to show the Assumption A is met. Let f(µi,y) =
1

(
√
2πσ)k

exp
(
− 1

2σ2 (y − µi)T (y − µi)
)

for i = 1, 2. µ1 = aTΘ and µ2 = aTΘ′. Then

∫
sup

‖Θ−Θ′‖max≤δ
(f1/2(µ1,y)− f1/2(µ2,y))2dy

≤ 2− 2
1

(
√

2πσ)k

∫
inf

‖Θ−Θ′‖max≤δ
exp

(
−
‖y − µ1+µ2

2 ‖22 + ‖µ1 − µ2‖22/2
2σ2

)
dy

≤ 2− 2 inf
‖Θ−Θ′‖max≤δ

exp

(
−‖µ1 − µ2‖22

4σ2

)
≤ (‖a‖1)2‖Θ−Θ′‖2max

4σ2
≤ (‖a‖1)2δ2

4σ2
.

The second inequality follows from the invariance property of the normal distribution. Corollary 2
follows when ‖a‖1 is bounded. This completes the proof. �
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Proof of Theorem 2: After some calculations, we obtain that

h2(Θ,Θ0) = 2

(
1−

n∏
i=1

1

(
√

2πσ)k

∫
exp

[
− 1

4σ2
(‖yi − aTi Θ‖2 + ‖yi − aTi Θ0‖2)

]
dy

)

= 2

(
1−

n∏
i=1

exp
[
− 1

8σ2
‖aTi (Θ−Θ0)‖2

)

= 2

(
1− exp(− 1

8σ2
‖A(Θ−Θ0)‖2F )

)
,

K(Θ0,Θ) =
1

2σ2
‖A(Θ−Θ0)‖2F .

When ε < 1,

P (K(Θ0, Θ̂L0) ≥ 4ε2) = P

(
1

8σ2
‖A(Θ̂L0 −Θ0)‖2F ≥ ε2

)
≤ P

(
1

8σ2
‖A(Θ̂L0 −Θ0)‖2F ≥ − log(1− ε2

2
)

)
= P

(
2

(
1− exp(− 1

8σ2
‖A(Θ̂L0 −Θ0)‖2F )

)
≥ ε2

)
= P

(
h2(Θ̂L0 ,Θ0) ≥ ε2

)
.

For any ε ≥ εn,p,k, it follows from Theorem 1 and Corollary 2 that

EK(Θ0, Θ̂L0) ≤ EK(Θ0, Θ̂L0)I{K(Θ0, Θ̂L0) ≤ 4ε2}+ EK(Θ0, Θ̂L0)I{K(Θ0, Θ̂L0) > 4ε2}

≤ 4ε2 +
(
EK2(Θ0, Θ̂L0)

)1/2(
P (K2(Θ0, Θ̂L0) > 4ε2)

)1/2
.

By the triangle inequality, ‖AΘ0 −AΘ̂L0‖F − ‖ε‖F ≤ ‖AΘ0 + ε −AΘ̂L0‖F . Note that Θ̂L0 is a

global minimizer of (3). Then ‖AΘ0 + ε−AΘ̂L0‖F ≤ ‖ε‖F . Hence

K(Θ0, Θ̂L0) =
1

2σ2
‖A(Θ0 − Θ̂L0)‖2F ≤

2

σ2
‖ε‖2F .

Thus,

EK(Θ0, Θ̂L0) ≤ 4ε2 +
(
E

4

σ4
‖ε‖4F

)1/2
P
(
K2(Θ0, Θ̂L0) > 4ε2

)
≤ 4ε2 + 10 exp(−c1nε2 + log

√
3nk).

The results in Theorem 2 follow by letting ε = εn,p,k and using the fact that log k ≤ C2
p,k. This

completes the proof. �

Proof of Theorem 3: Without loss of generality, assume p ≥ k and n = p. When σ = O(1/
√
p),

by Theorem 2, we have

‖Θ̂L0 −Θ0‖2F = 2σ2K(Θ0, Θ̂L0) = OP (
ε2n,p,k
p

)

= OP

(
C2
p,k

p2
log(

√
p

Cp,k
)

)

= OP

(
C2
p,k

p2
log(

p2

C2
p,k

)

)
, (26)
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where

Cp,k = O

(√
log(p)

√
(p+ k)s02 + s01 +

√
s01 log

(
e

(p+ k − r(Θ0))r(Θ0)

s01

))
. (27)

(27) comes from the proof of Corollary 2 with M in Assumption A being O(
√
p). Thus,

‖Θ̂L0 −Θ0‖2F = OP

(
C ′p,k log(

1

C ′p,k
)

)
with

C ′p,k =
log(p) · [(p+ k)s02 + s01] + s01 log

(
e (p+k−r(Θ

0))r(Θ0)
s01

)
p2

.

This completes the proof. �
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