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Abstract

We study a decomposition-based scalable approach to kernel ridge regression, and show
that it achieves minimax optimal convergence rates under relatively mild conditions. The
method is simple to describe: it randomly partitions a dataset of size N into m subsets
of equal size, computes an independent kernel ridge regression estimator for each subset
using a careful choice of the regularization parameter, then averages the local solutions
into a global predictor. This partitioning leads to a substantial reduction in computation
time versus the standard approach of performing kernel ridge regression on all N samples.
Our two main theorems establish that despite the computational speed-up, statistical op-
timality is retained: as long as m is not too large, the partition-based estimator achieves
the statistical minimax rate over all estimators using the set of N samples. As concrete
examples, our theory guarantees that the number of subsets m may grow nearly linearly
for finite-rank or Gaussian kernels and polynomially in N for Sobolev spaces, which in turn
allows for substantial reductions in computational cost. We conclude with experiments on
both simulated data and a music-prediction task that complement our theoretical results,
exhibiting the computational and statistical benefits of our approach.

Keywords: kernel ridge regression, divide and conquer, computation complexity

1. Introduction

In non-parametric regression, the statistician receives N samples of the form {(xi, yi)}Ni=1,
where each xi ∈ X is a covariate and yi ∈ R is a real-valued response, and the samples are
drawn i.i.d. from some unknown joint distribution P over X × R. The goal is to estimate
a function f̂ : X → R that can be used to predict future responses based on observing
only the covariates. Frequently, the quality of an estimate f̂ is measured in terms of the
mean-squared prediction error E[(f̂(X) − Y )2], in which case the conditional expectation
f∗(x) = E[Y | X = x] is optimal. The problem of non-parametric regression is a classi-
cal one, and a researchers have studied a wide range of estimators (see, for example, the
books of Gyorfi et al. (2002), Wasserman (2006), or van de Geer (2000)). One class of
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methods, known as regularized M -estimators (van de Geer, 2000), are based on minimizing
the combination of a data-dependent loss function with a regularization term. The focus
of this paper is a popular M -estimator that combines the least-squares loss with a squared
Hilbert norm penalty for regularization. When working in a reproducing kernel Hilbert
space (RKHS), the resulting method is known as kernel ridge regression, and is widely
used in practice (Hastie et al., 2001; Shawe-Taylor and Cristianini, 2004). Past work has
established bounds on the estimation error for RKHS-based methods (Koltchinskii, 2006;
Mendelson, 2002a; van de Geer, 2000; Zhang, 2005), which have been refined and extended
in more recent work (e.g., Steinwart et al., 2009).

Although the statistical aspects of kernel ridge regression (KRR) are well-understood,
the computation of the KRR estimate can be challenging for large datasets. In a standard
implementation (Saunders et al., 1998), the kernel matrix must be inverted, which requires
O(N3) time and O(N2) memory. Such scalings are prohibitive when the sample size N
is large. As a consequence, approximations have been designed to avoid the expense of
finding an exact minimizer. One family of approaches is based on low-rank approximation
of the kernel matrix; examples include kernel PCA (Schölkopf et al., 1998), the incomplete
Cholesky decomposition (Fine and Scheinberg, 2002), or Nyström sampling (Williams and
Seeger, 2001). These methods reduce the time complexity to O(dN2) or O(d2N), where
d � N is the preserved rank. The associated prediction error has only been studied very
recently. Concurrent work by Bach (2013) establishes conditions on the maintained rank
that still guarantee optimal convergence rates; see the discussion in Section 7 for more
detail. A second line of research has considered early-stopping of iterative optimization
algorithms for KRR, including gradient descent (Yao et al., 2007; Raskutti et al., 2011) and
conjugate gradient methods (Blanchard and Krämer, 2010), where early-stopping provides
regularization against over-fitting and improves run-time. If the algorithm stops after t
iterations, the aggregate time complexity is O(tN2).

In this work, we study a different decomposition-based approach. The algorithm is ap-
pealing in its simplicity: we partition the dataset of size N randomly into m equal sized
subsets, and we compute the kernel ridge regression estimate f̂i for each of the i = 1, . . . ,m
subsets independently, with a careful choice of the regularization parameter. The estimates
are then averaged via f̄ = (1/m)

∑m
i=1 f̂i. Our main theoretical result gives conditions

under which the average f̄ achieves the minimax rate of convergence over the underlying
Hilbert space. Even using naive implementations of KRR, this decomposition gives time
and memory complexity scaling as O(N3/m2) and O(N2/m2), respectively. Moreover, our
approach dovetails naturally with parallel and distributed computation: we are guaranteed
superlinear speedup with m parallel processors (though we must still communicate the func-
tion estimates from each processor). Divide-and-conquer approaches have been studied by
several authors, including McDonald et al. (2010) for perceptron-based algorithms, Kleiner
et al. (2012) in distributed versions of the bootstrap, and Zhang et al. (2013) for parametric
smooth convex optimization problems. This paper demonstrates the potential benefits of
divide-and-conquer approaches for nonparametric and infinite-dimensional regression prob-
lems.

One difficulty in solving each of the sub-problems independently is how to choose the
regularization parameter. Due to the infinite-dimensional nature of non-parametric prob-
lems, the choice of regularization parameter must be made with care (e.g., Hastie et al.,
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2001). An interesting consequence of our theoretical analysis is in demonstrating that, even
though each partitioned sub-problem is based only on the fraction N/m of samples, it is
nonetheless essential to regularize the partitioned sub-problems as though they had all N
samples. Consequently, from a local point of view, each sub-problem is under-regularized.
This “under-regularization” allows the bias of each local estimate to be very small, but it
causes a detrimental blow-up in the variance. However, as we prove, the m-fold averaging
underlying the method reduces variance enough that the resulting estimator f̄ still attains
optimal convergence rate.

The remainder of this paper is organized as follows. We begin in Section 2 by providing
background on the kernel ridge regression estimate and discussing the assumptions that
underlie our analysis. In Section 3, we present our main theorems on the mean-squared
error between the averaged estimate f̄ and the optimal regression function f∗. We provide
both a result when the regression function f∗ belongs to the Hilbert space H associated
with the kernel, as well as a more general oracle inequality that holds for a general f∗. We
then provide several corollaries that exhibit concrete consequences of the results, including
convergence rates of r/N for kernels with finite rank r, and convergence rates of N−2ν/(2ν+1)

for estimation of functionals in a Sobolev space with ν-degrees of smoothness. As we discuss,
both of these estimation rates are minimax-optimal and hence unimprovable. We devote
Sections 4 and 5 to the proofs of our results, deferring more technical aspects of the analysis
to appendices. Lastly, we present simulation results in Section 6.1 to further explore our
theoretical results, while Section 6.2 contains experiments with a reasonably large music
prediction experiment.

2. Background and Problem Formulation

We begin with the background and notation required for a precise statement of our problem.

2.1 Reproducing Kernels

The method of kernel ridge regression is based on the idea of a reproducing kernel Hilbert
space. We provide only a very brief coverage of the basics here, referring the reader to
one of the many books on the topic (Wahba, 1990; Shawe-Taylor and Cristianini, 2004;
Berlinet and Thomas-Agnan, 2004; Gu, 2002) for further details. Any symmetric and
positive semidefinite kernel function K : X × X → R defines a reproducing kernel Hilbert
space (RKHS for short). For a given distribution P on X , the Hilbert space is strictly
contained in L2(P). For each x ∈ X , the function z 7→ K(z, x) is contained with the Hilbert
space H; moreover, the Hilbert space is endowed with an inner product 〈·, ·〉H such that
K(·, x) acts as the representer of evaluation, meaning

〈f,K(x, ·)〉H = f(x) for f ∈ H. (1)

We let ‖g‖H :=
√
〈g, g〉H denote the norm in H, and similarly ‖g‖2 := (

∫
X g(x)2dP(x))1/2

denotes the norm in L2(P). Under suitable regularity conditions, Mercer’s theorem guar-
antees that the kernel has an eigen-expansion of the form

K(x, x′) =

∞∑
j=1

µjφj(x)φj(x
′),
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where µ1 ≥ µ2 ≥ · · · ≥ 0 are a non-negative sequence of eigenvalues, and {φj}∞j=1 is an

orthonormal basis for L2(P).
From the reproducing relation (1), we have 〈φj , φj〉H = 1/µj for any j and 〈φj , φj′〉H = 0

for any j 6= j′. For any f ∈ H, by defining the basis coefficients θj = 〈f, φj〉L2(P) for

j = 1, 2, . . ., we can expand the function in terms of these coefficients as f =
∑∞

j=1 θjφj ,
and simple calculations show that

‖f‖22 =

∫
X
f2(x)dP(x) =

∞∑
j=1

θ2
j , and ‖f‖2H = 〈f, f〉H =

∞∑
j=1

θ2
j

µj
.

Consequently, we see that the RKHS can be viewed as an elliptical subset of the sequence
space `2(N) as defined by the non-negative eigenvalues {µj}∞j=1.

2.2 Kernel Ridge Regression

Suppose that we are given a data set {(xi, yi)}Ni=1 consisting of N i.i.d. samples drawn
from an unknown distribution P over X × R, and our goal is to estimate the function
that minimizes the mean-squared error E[(f(X) − Y )2], where the expectation is taken
jointly over (X,Y ) pairs. It is well-known that the optimal function is the conditional mean
f∗(x) : = E[Y | X = x]. In order to estimate the unknown function f∗, we consider an
M -estimator that is based on minimizing a combination of the least-squares loss defined
over the dataset with a weighted penalty based on the squared Hilbert norm,

f̂ := argmin
f∈H

{
1

N

N∑
i=1

(f(xi)− yi)2 + λ ‖f‖2H
}
, (2)

where λ > 0 is a regularization parameter. When H is a reproducing kernel Hilbert space,
then the estimator (2) is known as the kernel ridge regression estimate, or KRR for short.
It is a natural generalization of the ordinary ridge regression estimate (Hoerl and Kennard,
1970) to the non-parametric setting.

By the representer theorem for reproducing kernel Hilbert spaces (Wahba, 1990), any
solution to the KRR program (2) must belong to the linear span of the kernel functions
{K(·, xi), i = 1, . . . , N}. This fact allows the computation of the KRR estimate to be
reduced to an N -dimensional quadratic program, involving the N2 entries of the kernel
matrix {K(xi, xj), i, j = 1, . . . , n}. On the statistical side, a line of past work (van de Geer,
2000; Zhang, 2005; Caponnetto and De Vito, 2007; Steinwart et al., 2009; Hsu et al., 2012)
has provided bounds on the estimation error of f̂ as a function of N and λ.

3. Main Results and Their Consequences

We now turn to the description of our algorithm, followed by the statements of our main
results, namely Theorems 1 and 2. Each theorem provides an upper bound on the mean-
squared prediction error for any trace class kernel. The second theorem is of “oracle type,”
meaning that it applies even when the true regression function f∗ does not belong to the
Hilbert space H, and hence involves a combination of approximation and estimation error
terms. The first theorem requires that f∗ ∈ H, and provides somewhat sharper bounds on
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the estimation error in this case. Both of these theorems apply to any trace class kernel,
but as we illustrate, they provide concrete results when applied to specific classes of kernels.
Indeed, as a corollary, we establish that our distributed KRR algorithm achieves minimax-
optimal rates for three different kernel classes, namely finite-rank, Gaussian, and Sobolev.

3.1 Algorithm and Assumptions

The divide-and-conquer algorithm Fast-KRR is easy to describe. Rather than solving the
kernel ridge regression problem (2) on all N samples, the Fast-KRR method executes the
following three steps:

1. Divide the set of samples {(x1, y1), . . . , (xN , yN )} evenly and uniformly at random
into the m disjoint subsets S1, . . . , Sm ⊂ X ×R, such that every subset contains N/m
samples.

2. For each i = 1, 2, . . . ,m, compute the local KRR estimate

f̂i := argmin
f∈H

{
1

|Si|
∑

(x,y)∈Si

(f(x)− y)2 + λ ‖f‖2H
}
. (3)

3. Average together the local estimates and output f̄ = 1
m

∑m
i=1 f̂i.

This description actually provides a family of estimators, one for each choice of the regular-
ization parameter λ > 0. Our main result applies to any choice of λ, while our corollaries
for specific kernel classes optimize λ as a function of the kernel.

We now describe our main assumptions. Our first assumption, for which we have two
variants, deals with the tail behavior of the basis functions {φj}∞j=1.

Assumption A For some k ≥ 2, there is a constant ρ < ∞ such that E[φj(X)2k] ≤ ρ2k

for all j ∈ N.

In certain cases, we show that sharper error guarantees can be obtained by enforcing a
stronger condition of uniform boundedness.

Assumption A′ There is a constant ρ <∞ such that supx∈X |φj(x)| ≤ ρ for all j ∈ N.

Assumption A′ holds, for example, when the input x is drawn from a closed interval and
the kernel is translation invariant, i.e. K(x, x′) = ψ(x−x′) for some even function ψ. Given
input space X and kernel K, the assumption is verifiable without the data.

Recalling that f∗(x) : = E[Y | X = x], our second assumption involves the deviations
of the zero-mean noise variables Y − f∗(x). In the simplest case, when f∗ ∈ H, we require
only a bounded variance condition:

Assumption B The function f∗ ∈ H, and for x ∈ X , we have E[(Y − f∗(x))2 | x] ≤ σ2.

When the function f∗ 6∈ H, we require a slightly stronger variant of this assumption. For
each λ ≥ 0, define

f∗λ = argmin
f∈H

{
E
[
(f(X)− Y )2

]
+ λ ‖f‖2H

}
. (4)

3303



Zhang, Duchi and Wainwright

Note that f∗ = f∗0 corresponds to the usual regression function. As f∗ ∈ L2(P), for each
λ ≥ 0, the associated mean-squared error σ2

λ(x) := E[(Y − f∗λ(x))2 | x] is finite for almost
every x. In this more general setting, the following assumption replaces Assumption B:

Assumption B′ For any λ ≥ 0, there exists a constant τλ <∞ such that τ4
λ = E[σ4

λ(X)].

3.2 Statement of Main Results

With these assumptions in place, we are now ready for the statements of our main results.
All of our results give bounds on the mean-squared estimation error E[‖f̄ −f∗‖22] associated
with the averaged estimate f̄ based on an assigning n = N/m samples to each ofmmachines.
Both theorem statements involve the following three kernel-related quantities:

tr(K) :=
∞∑
j=1

µj , γ(λ) :=
∞∑
j=1

1

1 + λ/µj
, and βd =

∞∑
j=d+1

µj . (5)

The first quantity is the kernel trace, which serves a crude estimate of the “size” of the kernel
operator, and assumed to be finite. The second quantity γ(λ), familiar from previous work
on kernel regression (Zhang, 2005), is the effective dimensionality of the kernel K with
respect to L2(P). Finally, the quantity βd is parameterized by a positive integer d that we
may choose in applying the bounds, and it describes the tail decay of the eigenvalues of K.
For d = 0, note that β0 = trK. Finally, both theorems involve a quantity that depends on
the number of moments k in Assumption A:

b(n, d, k) := max

{√
max{k, log(d)}, max{k, log(d)}

n1/2−1/k

}
. (6)

Here the integer d ∈ N is a free parameter that may be optimized to obtain the sharpest
possible upper bound. (The algorithm’s execution is independent of d.)

Theorem 1 With f∗ ∈ H and under Assumptions A and B, the mean-squared error of the
averaged estimate f̄ is upper bounded as

E
[∥∥f̄ − f∗∥∥2

2

]
≤
(

8 +
12

m

)
λ ‖f∗‖2H +

12σ2γ(λ)

N
+ inf
d∈N

{
T1(d) + T2(d) + T3(d)

}
, (7)

where

T1(d) =
8ρ4 ‖f∗‖2H tr(K)βd

λ
, T2(d) =

4 ‖f∗‖2H + 2σ2/λ

m

(
µd+1 +

12ρ4 tr(K)βd
λ

)
, and

T3(d) =

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k
µ0 ‖f∗‖2H

(
1 +

2σ2

mλ
+

4 ‖f∗‖2H
m

)
,

and C denotes a universal (numerical) constant.

Theorem 1 is a general result that applies to any trace-class kernel. Although the
statement appears somewhat complicated at first sight, it yields concrete and interpretable
guarantees on the error when specialized to particular kernels, as we illustrate in Section 3.3.
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Before doing so, let us make a few heuristic arguments in order to provide intuition.
In typical settings, the term T3(d) goes to zero quickly: if the number of moments k
is suitably large and number of partitions m is small—say enough to guarantee that
(b(n, d, k)γ(λ)/

√
n)k = O(1/N)—it will be of lower order. As for the remaining terms,

at a high level, we show that an appropriate choice of the free parameter d leaves the first
two terms in the upper bound (7) dominant. Note that the terms µd+1 and βd are decreas-
ing in d while the term b(n, d, k) increases with d. However, the increasing term b(n, d, k)
grows only logarithmically in d, which allows us to choose a fairly large value without a
significant penalty. As we show in our corollaries, for many kernels of interest, as long as
the number of machines m is not “too large,” this tradeoff is such that T1(d) and T2(d)
are also of lower order compared to the two first terms in the bound (7). In such settings,
Theorem 1 guarantees an upper bound of the form

E
[∥∥f̄ − f∗∥∥2

2

]
= O(1) ·

[
λ ‖f∗‖2H︸ ︷︷ ︸

Squared bias

+
σ2γ(λ)

N︸ ︷︷ ︸
Variance

]
. (8)

This inequality reveals the usual bias-variance trade-off in non-parametric regression; choos-
ing a smaller value of λ > 0 reduces the first squared bias term, but increases the second
variance term. Consequently, the setting of λ that minimizes the sum of these two terms is
defined by the relationship

λ ‖f∗‖2H ' σ2γ(λ)

N
. (9)

This type of fixed point equation is familiar from work on oracle inequalities and local com-
plexity measures in empirical process theory (Bartlett et al., 2005; Koltchinskii, 2006; van de
Geer, 2000; Zhang, 2005), and when λ is chosen so that the fixed point equation (9) holds
this (typically) yields minimax optimal convergence rates (Bartlett et al., 2005; Koltchin-
skii, 2006; Zhang, 2005; Caponnetto and De Vito, 2007). In Section 3.3, we provide detailed
examples in which the choice λ∗ specified by equation (9), followed by application of The-
orem 1, yields minimax-optimal prediction error (for the Fast-KRR algorithm) for many
kernel classes.

We now turn to an error bound that applies without requiring that f∗ ∈ H. In order to
do so, we introduce an auxiliary variable λ̄ ∈ [0, λ] for use in our analysis (the algorithm’s
execution does not depend on λ̄, and in our ensuing bounds we may choose any λ̄ ∈ [0, λ]
to give the sharpest possible results). Let the radius R =

∥∥f∗
λ̄

∥∥
H, where the population

(regularized) regression function f∗
λ̄

was previously defined (4). The theorem requires a few
additional conditions to those in Theorem 1, involving the quantities tr(K), γ(λ) and βd
defined in Eq. (5), as well as the error moment τλ̄ from Assumption B′. We assume that
the triplet (m, d, k) of positive integers satisfy the conditions

βd ≤
λ

(R2 + τ2
λ̄
/λ)N

, µd+1 ≤
1

(R2 + τ2
λ̄
/λ)N

,

m ≤ min

{ √
N

ρ2γ(λ) log(d)
,

N1− 2
k

(R2 + τ2
λ̄
/λ)2/k(b(n, d, k)ρ2γ(λ))2

}
.

(10)
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We then have the following result:

Theorem 2 Under condition (10), Assumption A with k ≥ 4, and Assumption B′, for any
λ̄ ∈ [0, λ] and q > 0 we have

E
[∥∥f̄ − f∗∥∥2

2

]
≤
(

1 +
1

q

)
inf

‖f‖H≤R
‖f − f∗‖22 + (1 + q) EN,m(λ, λ̄, R, ρ) (11)

where the residual term is given by

EN,m(λ, λ̄, R, ρ) : =

((
4 +

C

m

)
(λ− λ̄)R2 +

Cγ(λ)ρ2τ2
λ̄

N
+
C

N

)
, (12)

and C denotes a universal (numerical) constant.

Remarks: Theorem 2 is an oracle inequality, as it upper bounds the mean-squared error in
terms of the error inf

‖f‖H≤R
‖f − f∗‖22, which may only be obtained by an oracle knowing the

sampling distribution P, along with the residual error term (12).
In some situations, it may be difficult to verify Assumption B′. In such scenarios,

an alternative condition suffices. For instance, if there exists a constant κ < ∞ such
that E[Y 4] ≤ κ4, then under condition (10), the bound (11) holds with τ2

λ̄
replaced by√

8 tr(K)2R4ρ4 + 8κ4—that is, with the alternative residual error

ẼN,m(λ, λ̄, R, ρ) : =

((
2 +

C

m

)
(λ− λ̄)R2 +

Cγ(λ)ρ2
√

8 tr(K)2R4ρ4 + 8κ4

N
+
C

N

)
. (13)

In essence, if the response variable Y has sufficiently many moments, the prediction mean-
square error τ2

λ̄
in the statement of Theorem 2 can be replaced by constants related to the

size of
∥∥f∗

λ̄

∥∥
H. See Section 5.2 for a proof of inequality (13).

In comparison with Theorem 1, Theorem 2 provides somewhat looser bounds. It is,
however, instructive to consider a few special cases. For the first, we may assume that
f∗ ∈ H, in which case ‖f∗‖H < ∞. In this setting, the choice λ̄ = 0 (essentially) recovers
Theorem 1, since there is no approximation error. Taking q → 0, we are thus left with the
bound

E‖f̄ − f∗‖22] . λ ‖f∗‖2H +
γ(λ)ρ2τ2

0

N
, (14)

where . denotes an inequality up to constants. By inspection, this bound is roughly
equivalent to Theorem 1; see in particular the decomposition (8). On the other hand, when
the condition f∗ ∈ H fails to hold, we can take λ̄ = λ, and then choose q to balance between
the familiar approximation and estimation errors: we have

E[‖f̄ − f∗‖22] .

(
1 +

1

q

)
inf

‖f‖H≤R
‖f − f∗‖22︸ ︷︷ ︸

approximation

+ (1 + q)

(
γ(λ)ρ2τ2

λ

N

)
︸ ︷︷ ︸
estimation

. (15)

Relative to Theorem 1, the condition (10) required to apply Theorem 2 involves con-
straints on the number m of subsampled data sets that are more restrictive. In particular,

3306



Divide and Conquer Kernel Ridge Regression

when ignoring constants and logarithm terms, the quantity m may grow at rate
√
N/γ2(λ).

By contrast, Theorem 1 allows m to grow as quickly as N/γ2(λ) (recall the remarks on
T3(d) following Theorem 1 or look ahead to condition (28)). Thus—at least in our current
analysis—generalizing to the case that f∗ 6∈ H prevents us from dividing the data into finer
subsets.

3.3 Some Consequences

We now turn to deriving some explicit consequences of our main theorems for specific classes
of reproducing kernel Hilbert spaces. In each case, our derivation follows the broad outline
given the the remarks following Theorem 1: we first choose the regularization parameter λ
to balance the bias and variance terms, and then show, by comparison to known minimax
lower bounds, that the resulting upper bound is optimal. Finally, we derive an upper bound
on the number of subsampled data sets m for which the minimax optimal convergence rate
can still be achieved. Throughout this section, we assume that f∗ ∈ H.

3.3.1 Finite-rank Kernels

Our first corollary applies to problems for which the kernel has finite rank r, meaning
that its eigenvalues satisfy µj = 0 for all j > r. Examples of such finite rank kernels
include the linear kernel K(x, x′) = 〈x, x′〉Rd , which has rank at most r = d; and the kernel
K(x, x) = (1+xx′)m generating polynomials of degree m, which has rank at most r = m+1.

Corollary 3 For a kernel with rank r, consider the output of the Fast-KRR algorithm with
λ = r/N . Suppose that Assumption B and Assumptions A (or A′) hold, and that the number
of processors m satisfy the bound

m ≤ c N
k−4
k−2

r2 k−1
k−2 ρ

4k
k−2 log

k
k−2 r

(Assumption A) or m ≤ c N

r2ρ4 logN
(Assumption A′),

where c is a universal (numerical) constant. For suitably large N , the mean-squared error
is bounded as

E
[∥∥f̄ − f∗∥∥2

2

]
= O(1)

σ2r

N
. (16)

For finite-rank kernels, the rate (16) is known to be minimax-optimal, meaning that
there is a universal constant c′ > 0 such that

inf
f̃

sup
‖f∗‖H≤1

E[‖f̃ − f∗‖22] ≥ c′ r
N
, (17)

where the infimum ranges over all estimators f̃ based on observing all N samples (and with
no constraints on memory and/or computation). This lower bound follows from Theorem
2(a) of Raskutti et al. (2012) with s = d = 1.
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3.3.2 Polynomially Decaying Eigenvalues

Our next corollary applies to kernel operators with eigenvalues that obey a bound of the
form

µj ≤ C j−2ν for all j = 1, 2, . . ., (18)

where C is a universal constant, and ν > 1/2 parameterizes the decay rate. We note
that equation (5) assumes a finite kernel trace tr(K) :=

∑∞
j=1 µj . Since tr(K) appears in

Theorem 1, it is natural to use
∑∞

j=1Cj
−2ν as an upper bound on tr(K). This upper bound

is finite if and only if ν > 1/2.
Kernels with polynomial decaying eigenvalues include those that underlie for the Sobolev

spaces with different orders of smoothness (e.g. Birman and Solomjak, 1967; Gu, 2002). As
a concrete example, the first-order Sobolev kernel K(x, x′) = 1 + min{x, x′} generates an
RKHS of Lipschitz functions with smoothness ν = 1. Other higher-order Sobolev kernels
also exhibit polynomial eigendecay with larger values of the parameter ν.

Corollary 4 For any kernel with ν-polynomial eigendecay (18), consider the output of the

Fast-KRR algorithm with λ = (1/N)
2ν

2ν+1 . Suppose that Assumption B and Assumption A
(or A′) hold, and that the number of processors satisfy the bound

m ≤ c

(
N

2(k−4)ν−k
(2ν+1)

ρ4k logkN

) 1
k−2

(Assumption A) or m ≤ c N
2ν−1
2ν+1

ρ4 logN
(Assumption A′),

where c is a constant only depending on ν. Then the mean-squared error is bounded as

E
[∥∥f̄ − f∗∥∥2

2

]
= O

((σ2

N

) 2ν
2ν+1

)
. (19)

The upper bound (19) is unimprovable up to constant factors, as shown by known
minimax bounds on estimation error in Sobolev spaces (Stone, 1982; Tsybakov, 2009); see
also Theorem 2(b) of Raskutti et al. (2012).

3.3.3 Exponentially Decaying Eigenvalues

Our final corollary applies to kernel operators with eigenvalues that obey a bound of the
form

µj ≤ c1 exp(−c2j
2) for all j = 1, 2, . . ., (20)

for strictly positive constants (c1, c2). Such classes include the RKHS generated by the
Gaussian kernel K(x, x′) = exp(−‖x− x′‖22).

Corollary 5 For a kernel with sub-Gaussian eigendecay (20), consider the output of the
Fast-KRR algorithm with λ = 1/N . Suppose that Assumption B and Assumption A (or A′)
hold, and that the number of processors satisfy the bound

m ≤ c N
k−4
k−2

ρ
4k
k−2 log

2k−1
k−2 N

(Assumption A) or m ≤ c N

ρ4 log2N
(Assumption A′),
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where c is a constant only depending on c2. Then the mean-squared error is bounded as

E
[∥∥f̄ − f∗∥∥2

2

]
= O

(
σ2

√
logN

N

)
. (21)

The upper bound (21) is minimax optimal; see, for example, Theorem 1 and Example 2 of
the recent paper by Yang et al. (2015).

3.3.4 Summary

Each corollary gives a critical threshold for the number m of data partitions: as long as m is
below this threshold, the decomposition-based Fast-KRR algorithm gives the optimal rate
of convergence. It is interesting to note that the number of splits may be quite large: each
grows asymptotically with N whenever the basis functions have more than four moments
(viz. Assumption A). Moreover, the Fast-KRR method can attain these optimal conver-
gence rates while using substantially less computation than standard kernel ridge regression
methods, as it requires solving problems only of size N/m.

3.4 The Choice of Regularization Parameter

In practice, the local sample size on each machine may be different and the optimal choice
for the regularization λ may not be known a priori, so that an adaptive choice of the regu-
larization parameter λ is desirable (e.g. Tsybakov, 2009, Chapters 3.5–3.7). We recommend
using cross-validation to choose the regularization parameter, and we now sketch a heuristic
argument that an adaptive algorithm using cross-validation may achieve optimal rates of
convergence. (We leave fuller analysis to future work.)

Let λn be the (oracle) optimal regularization parameter given knowledge of the sampling
distribution P and eigen-structure of the kernel K. We assume (cf. Corollary 4) that there
is a constant ν > 0 such that λn � n−ν as n→∞. Let ni be the local sample size for each
machine i and N the global sample size; we assume that ni �

√
N (clearly, N ≥ ni). First,

use local cross-validation to choose regularization parameters λ̂ni and λ̂n2
i /N

corresponding

to samples of size ni and n2
i /N , respectively. Heuristically, if cross validation is successful,

we expect to have λ̂ni ' n−νi and λ̂n2
i /N
' Nνn−2ν

i , yielding that λ̂2
ni/λ̂n2

i /N
' N−ν . With

this intuition, we then compute local estimates

f̂i := argmin
f∈H

1

ni

∑
(x,y)∈Si

(f(x)− y)2 + λ̂(i) ‖f‖2H where λ̂(i) :=
λ̂2
ni

λ̂n2
i /N

(22)

and global average estimate f̄ =
∑m

i=1
ni
N f̂i as usual. Notably, we have λ̂(i) ' λN in this

heuristic setting. Using formula (22) and the average f̄ , we have

E
[ ∥∥f̄ − f∗∥∥2

2

]
= E

[∥∥∥∥ m∑
i=1

ni
N

(
f̂i − E[f̂i]

)∥∥∥∥2

2

]
+

∥∥∥∥∥
m∑
i=1

ni
N

(
E[f̂i]− f∗

)∥∥∥∥∥
2

2

≤
m∑
i=1

n2
i

N2
E
[∥∥f̂i − E[f̂i]

∥∥2

2

]
+ max
i∈[m]

{∥∥E[f̂i]− f∗
∥∥2

2

}
. (23)
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Using Lemmas 6 and 7 from the proof of Theorem 1 to come and assuming that λ̂n is con-
centrated tightly enough around λn, we obtain ‖E[f̂i]− f∗‖22 = O(λN ‖f∗‖2H) by Lemma 6

and that E[‖f̂i − E[f̂i]‖22] = O(γ(λN )
ni

) by Lemma 7. Substituting these bounds into inequal-
ity (23) and noting that

∑
i ni = N , we may upper bound the overall estimation error

as

E
[ ∥∥f̄ − f∗∥∥2

2

]
≤ O(1) ·

(
λN ‖f∗‖2H +

γ(λN )

N

)
.

While the derivation of this upper bound was non-rigorous, we believe that it is roughly
accurate, and in comparison with the previous upper bound (8), it provides optimal rates
of convergence.

4. Proofs of Theorem 1 and Related Results

We now turn to the proofs of Theorem 1 and Corollaries 3 through 5. This section con-
tains only a high-level view of proof of Theorem 1; we defer more technical aspects to the
appendices.

4.1 Proof of Theorem 1

Using the definition of the averaged estimate f̄ = 1
m

∑m
i=1 f̂i, a bit of algebra yields

E[
∥∥f̄ − f∗∥∥2

2
] = E[

∥∥(f̄ − E[f̄ ]) + (E[f̄ ]− f∗)
∥∥2

2
]

= E[
∥∥f̄ − E[f̄ ]

∥∥2

2
] +
∥∥E[f̄ ]− f∗

∥∥2

2
+ 2E[〈f̄ − E[f̄ ],E[f̄ ]− f∗〉L2(P)]

= E
[∥∥∥∥ 1

m

m∑
i=1

(f̂i − E[f̂i])

∥∥∥∥2

2

]
+
∥∥E[f̄ ]− f∗

∥∥2

2
,

where we used the fact that E[f̂i] = E[f̄ ] for each i ∈ [m]. Using this unbiasedness once
more, we bound the variance of the terms f̂i − E[f̄ ] to see that

E
[∥∥f̄ − f∗∥∥2

2

]
=

1

m
E
[
‖f̂1 − E[f̂1]‖22

]
+ ‖E[f̂1]− f∗‖22

≤ 1

m
E
[
‖f̂1 − f∗‖22

]
+ ‖E[f̂1]− f∗‖22, (24)

where we have used the fact that E[f̂i] minimizes E[‖f̂i − f‖22] over f ∈ H.

The error bound (24) suggests our strategy: we upper bound E[‖f̂1−f∗‖22] and ‖E[f̂1]−
f∗‖22 respectively. Based on equation (3), the estimate f̂1 is obtained from a standard
kernel ridge regression with sample size n = N/m and ridge parameter λ. Accordingly, the
following two auxiliary results provide bounds on these two terms, where the reader should
recall the definitions of b(n, d, k) and βd from equation (5). In each lemma, C represents a
universal (numerical) constant.

Lemma 6 (Bias bound) Under Assumptions A and B, for each d = 1, 2, . . ., we have

‖E[f̂ ]− f∗‖22 ≤ 8λ ‖f∗‖2H +
8ρ4 ‖f∗‖2H tr(K)βd

λ
+

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k
µ0 ‖f∗‖2H . (25)
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Lemma 7 (Variance bound) Under Assumptions A and B, for each d = 1, 2, . . ., we
have

E[‖f̂ − f∗‖22] ≤ 12λ ‖f∗‖2H +
12σ2γ(λ)

n

+

(
2σ2

λ
+ 4 ‖f∗‖2H

)(
µd+1 +

12ρ4 tr(K)βd
λ

+

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k
‖f∗‖22

)
. (26)

The proofs of these lemmas, contained in Appendices A and B respectively, constitute one
main technical contribution of this paper. Given these two lemmas, the remainder of the
theorem proof is straightforward. Combining the inequality (24) with Lemmas 6 and 7
yields the claim of Theorem 1.

Remarks: The proofs of Lemmas 6 and 7 are somewhat complex, but to the best of our
knowledge, existing literature does not yield significantly simpler proofs. We now discuss
this claim to better situate our technical contributions. Define the regularized population
minimizer f∗λ := argminf∈H{E[(f(X)−Y )2] +λ ‖f‖2H}. Expanding the decomposition (24)
of the L2(P)-risk into bias and variance terms, we obtain the further bound

E
[ ∥∥f̄ − f∗∥∥2

2

]
≤ ‖E[f̂1]− f∗‖22 +

1

m
E
[
‖f̂1 − f∗‖22

]
= ‖E[f̂1]− f∗‖22︸ ︷︷ ︸

:=T1

+
1

m

(
‖f∗λ − f∗‖22︸ ︷︷ ︸

:=T2

+E
[
‖f̂1 − f∗‖22

]
− ‖f∗λ − f∗‖

2
2︸ ︷︷ ︸

:=T3

)
= T1 +

1

m
(T2 + T3).

In this decomposition, T1 and T2 are bias and approximation error terms induced by the
regularization parameter λ, while T3 is an excess risk (variance) term incurred by minimizing
the empirical loss.

This upper bound illustrates three trade-offs in our subsampled and averaged kernel
regression procedure:

• The trade-off between T2 and T3: when the regularization parameter λ grows, the
bias term T2 increases while the variance term T3 converges to zero.

• The trade-off between T1 and T3: when the regularization parameter λ grows, the
bias term T1 increases while the variance term T3 converges to zero.

• The trade-off between T1 and the computation time: when the number of machines
m grows, the bias term T1 increases (as the local sample size n = N/m shrinks), while
the computation time N3/m2 decreases.

Theoretical results in the KRR literature focus on the trade-off between T2 and T3, but in
the current context, we also need an upper bound on the bias term T1, which is not relevant
for classical (centralized) analyses.

With this setting in mind, Lemma 6 tightly upper bounds the bias T1 as a function of
λ and n. An essential part of the proof is to characterize the properties of E[f̂1], which is
the expectation of a nonparametric empirical loss minimizer. We are not aware of existing
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literature on this problem, and the proof of Lemma 6 introduces novel techniques for this
purpose.

On the other hand, Lemma 7 upper bounds E[‖f̂1 − f∗‖22] as a function of λ and n.
Past work has focused on bounding a quantity of this form, but for technical reasons, most
work (e.g. van de Geer, 2000; Mendelson, 2002b; Bartlett et al., 2002; Zhang, 2005) focuses
on analyzing the constrained form

f̂i := argmin
‖f‖H≤C

1

|Si|
∑

(x,y)∈Si

(f(x)− y)2, (27)

of kernel ridge regression. While this problem traces out the same set of solutions as that
of the regularized kernel ridge regression estimator (3), it is non-trivial to determine a
matched setting of λ for a given C. Zhang (2003) provides one of the few analyses of the
regularized ridge regression estimator (3) (or (2)), providing an upper bound of the form

E[‖f̂ − f∗‖22] = O(λ + 1/λ
n ), which is at best O( 1√

n
). In contrast, Lemma 7 gives upper

bound O(λ+ γ(λ)
n ); the effective dimension γ(λ) is often much smaller than 1/λ, yielding a

stronger convergence guarantee.

4.2 Proof of Corollary 3

We first present a general inequality bounding the size of m for which optimal convergence
rates are possible. We assume that d is chosen large enough such that we have log(d) ≥ k
and d ≥ N . In the rest of the proof, our assignment to d will satisfy these inequalities. In
this case, inspection of Theorem 1 shows that if m is small enough that(√

log d

N/m
ρ2γ(λ)

)k
1

mλ
≤ γ(λ)

N
,

then the term T3(d) provides a convergence rate given by γ(λ)/N . Thus, solving the ex-
pression above for m, we find

m log d

N
ρ4γ(λ)2 =

λ2/km2/kγ(λ)2/k

N2/k
or m

k−2
k =

λ
2
kN

k−2
k

γ(λ)2 k−1
k ρ4 log d

.

Taking (k − 2)/k-th roots of both sides, we obtain that if

m ≤ λ
2

k−2N

γ(λ)2 k−1
k−2 ρ

4k
k−2 log

k
k−2 d

, (28)

then the term T3(d) of the bound (7) is O(γ(λ)/N).
Now we apply the bound (28) in the case in the corollary. Let us take d = max{r,N}.

Notice that βd = βr = µr+1 = 0. We find that γ(λ) ≤ r since each of its terms is bounded
by 1, and we take λ = r/N . Evaluating the expression (28) with this value, we arrive at

m ≤ N
k−4
k−2

r2 k−1
k−2 ρ

4k
k−2 log

k
k−2 d

.
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If we have sufficiently many moments that k ≥ logN , and N ≥ r (for example, if the basis
functions φj have a uniform bound ρ, then k can be chosen arbitrarily large), then we may

take k = logN , which implies that N
k−4
k−2 = Ω(N), r2 k−1

k−2 = O(r2) and ρ
4k
k−2 = O(ρ4) ; and

we replace log d with logN . Then so long as

m ≤ c N

r2ρ4 logN

for some constant c > 0, we obtain an identical result.

4.3 Proof of Corollary 4

We follow the program outlined in our remarks following Theorem 1. We must first choose

λ on the order of γ(λ)/N . To that end, we note that setting λ = N−
2ν

2ν+1 gives

γ(λ) =

∞∑
j=1

1

1 + j2νN−
2ν

2ν+1

≤ N
1

2ν+1 +
∑

j>N
1

2ν+1

1

1 + j2νN−
2ν

2ν+1

≤ N
1

2ν+1 +N
2ν

2ν+1

∫
N

1
2ν+1

1

u2ν
du = N

1
2ν+1 +

1

2ν − 1
N

1
2ν+1 .

Dividing by N , we find that λ ≈ γ(λ)/N , as desired. Now we choose the truncation
parameter d. By choosing d = N t for some t ∈ R+, then we find that µd+1 . N−2νt and
an integration yields βd . N−(2ν−1)t. Setting t = 3/(2ν − 1) guarantees that µd+1 . N−3

and βd . N−3; the corresponding terms in the bound (7) are thus negligible. Moreover, we
have for any finite k that log d & k.

Applying the general bound (28) on m, we arrive at the inequality

m ≤ c N
− 4ν

(2ν+1)(k−2)N

N
2(k−1)

(2ν+1)(k−2) ρ
4k
k−2 log

k
k−2 N

= c
N

2(k−4)ν−k
(2ν+1)(k−2)

ρ
4k
k−2 log

k
k−2 N

.

Whenever this holds, we have convergence rate λ = N−
2ν

2ν+1 . Now, let Assumption A′ hold.
Then taking k = logN , the above bound becomes (to a multiplicative constant factor)

N
2ν−1
2ν+1 /ρ4 logN as claimed.

4.4 Proof of Corollary 5

First, we set λ = 1/N . Considering the sum γ(λ) =
∑∞

j=1 µj/(µj + λ), we see that for

j ≤
√

(logN)/c2, the elements of the sum are bounded by 1. For j >
√

(logN)/c2, we
make the approximation∑

j≥
√

(logN)/c2

µj
µj + λ

≤ 1

λ

∑
j≥
√

(logN)/c2

µj . N

∫ ∞
√

(logN)/c2

exp(−c2t
2)dt = O(1).

Thus we find that γ(λ) + 1 ≤ c
√

logN for some constant c. By choosing d = N2, we
have that the tail sum and (d + 1)-th eigenvalue both satisfy µd+1 ≤ βd . c−1

2 N−4. As a
consequence, all the terms involving βd or µd+1 in the bound (7) are negligible.
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Recalling our inequality (28), we thus find that (under Assumption A), as long as the
number of partitions m satisfies

m ≤ c N
k−4
k−2

ρ
4k
k−2 log

2k−1
k−2 N

,

the convergence rate of f̄ to f∗ is given by γ(λ)/N '
√

logN/N . Under the boundedness
assumption A′, as we did in the proof of Corollary 3, we take k = logN in Theorem 1. By
inspection, this yields the second statement of the corollary.

5. Proof of Theorem 2 and Related Results

In this section, we provide the proofs of Theorem 2, as well as the bound (13) based on the
alternative form of the residual error. As in the previous section, we present a high-level
proof, deferring more technical arguments to the appendices.

5.1 Proof of Theorem 2

We begin by stating and proving two auxiliary claims:

E
[
(Y − f(X))2

]
= E

[
(Y − f∗(X))2

]
+ ‖f − f∗‖22 for any f ∈ L2(P), and (29a)

f∗λ̄ = argmin
‖f‖H≤R

‖f − f∗‖22 . (29b)

Let us begin by proving equality (29a). By adding and subtracting terms, we have

E
[
(Y − f∗(X))2

]
= E

[
(Y − f∗(X))2

]
+ ‖f − f∗‖22 + 2E[(f(X)− f∗(X))E[Y − f∗(X) | X]]

(i)
= E

[
(Y − f∗(X))2

]
+ ‖f − f∗‖22 ,

where equality (i) follows since the random variable Y − f∗(X) is mean-zero given X = x.
For the second equality (29b), consider any function f in the RKHS that satisfies the

bound ‖f‖H ≤ R. The definition of the minimizer f∗
λ̄

guarantees that

E
[
(f∗λ̄(X)− Y )2

]
+ λ̄R2 ≤ E[(f(X)− Y )2] + λ̄ ‖f‖2H ≤ E[(f(X)− Y )2] + λ̄R2.

This result combined with equation (29a) establishes the equality (29b).

We now turn to the proof of the theorem. Applying Hölder’s inequality yields that∥∥f̄ − f∗∥∥2

2
≤
(

1 +
1

q

)∥∥f∗λ̄ − f∗∥∥2

2
+ (1 + q)

∥∥f̄ − f∗λ̄∥∥2

2

=

(
1 +

1

q

)
inf

‖f‖H≤R
‖f − f∗‖22 + (1 + q)

∥∥f̄ − f∗λ̄∥∥2

2
for all q > 0, (30)

where the second step follows from equality (29b). It thus suffices to upper bound
∥∥f̄ − f∗

λ̄

∥∥2

2
,

and following the deduction of inequality (24), we immediately obtain the decomposition
formula

E
[∥∥f̄ − f∗λ̄∥∥2

2

]
≤ 1

m
E[‖f̂1 − f∗λ̄‖

2
2] + ‖E[f̂1]− f∗λ̄‖

2
2, (31)
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where f̂1 denotes the empirical minimizer for one of the subsampled datasets (i.e. the
standard KRR solution on a sample of size n = N/m with regularization λ). This suggests
our strategy, which parallels our proof of Theorem 1: we upper bound E[‖f̂1 − f∗λ̄‖

2
2] and

‖E[f̂1]− f∗
λ̄
‖22, respectively. In the rest of the proof, we let f̂ = f̂1 denote this solution.

Let the estimation error for a subsample be given by ∆ = f̂ − f∗
λ̄
. Under Assump-

tions A and B′, we have the following two lemmas bounding expression (31), which parallel
Lemmas 6 and 7 in the case when f∗ ∈ H. In each lemma, C denotes a universal constant.

Lemma 8 For all d = 1, 2, . . ., we have

E
[
‖∆‖22

]
≤ 16(λ̄− λ)2R2

λ
+

8γ(λ)ρ2τ2
λ̄

n

+
√

32R4 + 8τ4
λ̄
/λ2

(
µd+1 +

16ρ4 tr(K)βd
λ

+

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k)
. (32)

Denoting the right hand side of inequality (32) by D2, we have

Lemma 9 For all d = 1, 2, . . ., we have

‖E[∆]‖22 ≤
4(λ̄− λ)2R2

λ
+
C log2(d)(ρ2γ(λ))2

n
D2

+
√

32R4 + 8τ4
λ̄
/λ2

(
µd+1 +

4ρ4 tr(K)βd
λ

)
. (33)

See Appendices C and D for the proofs of these two lemmas.

Given these two lemmas, we can now complete the proof of the theorem. If the condi-
tions (10) hold, we have

βd ≤
λ

(R2 + τ2
λ̄
/λ)N

, µd+1 ≤
1

(R2 + τ2
λ̄
/λ)N

,

log2(d)(ρ2γ(λ))2

n
≤ 1

m
and

(
b(n, d, k)

ρ2γ(λ)√
n

)k
≤ 1

(R2 + τ2
λ̄
/λ)N

,

so there is a universal constant C ′ satisfying

√
32R4 + 8τ4

λ̄
/λ2

(
µd+1 +

16ρ4 tr(K)βd
λ

+

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k)
≤ C ′

N
.

Consequently, Lemma 8 yields the upper bound

E[‖∆‖22] ≤ 8(λ̄− λ)2R2

λ
+

8γ(λ)ρ2τ2
λ̄

n
+
C ′

N
.
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Since log2(d)(ρ2γ(λ))2/n ≤ 1/m by assumption, we obtain

E
[
‖f̄ − f∗λ̄‖

2
2

]
≤ C(λ̄− λ)2R2

λm
+
Cγ(λ)ρ2τ2

λ̄

N
+

C

Nm

+
4(λ̄− λ)2R2

λ
+
C(λ̄− λ)2R2

λm
+
Cγ(λ)ρ2τ2

λ̄

N
+

C

Nm
+
C

N
,

where C is a universal constant (whose value is allowed to change from line to line). Sum-
ming these bounds and using the condition that λ ≥ λ̄, we conclude that

E
[
‖f̄ − f∗λ̄‖

2
2

]
≤
(

4 +
C

m

)
(λ− λ̄)R2 +

Cγ(λ)ρ2τ2
λ̄

N
+
C

N
.

Combining this error bound with inequality (30) completes the proof.

5.2 Proof of Bound (13)

Using Theorem 2, it suffices to show that

τ4
λ̄ ≤ 8 tr(K)2‖f∗λ̄‖

4
Hρ

4 + 8κ4. (34)

By the tower property of expectations and Jensen’s inequality, we have

τ4
λ̄ = E[(E[(f∗λ̄(x)− Y )2 | X = x])2] ≤ E[(f∗λ̄(X)− Y )4] ≤ 8E[(f∗λ̄(X))4] + 8E[Y 4].

Since we have assumed that E[Y 4] ≤ κ4, the only remaining step is to upper bound
E[(f∗

λ̄
(X))4]. Let f∗

λ̄
have expansion (θ1, θ2, . . .) in the basis {φj}. For any x ∈ X , Hölder’s

inequality applied with the conjugates 4/3 and 4 implies the upper bound

f∗λ̄(x) =
∞∑
j=1

(µ
1/4
j θ

1/2
j )

θ
1/2
j φj(x)

µ
1/4
j

≤

 ∞∑
j=1

µ
1/3
j θ

2/3
j

3/4 ∞∑
j=1

θ2
j

µj
φ4
j (x)

1/4

. (35)

Again applying Hölder’s inequality—this time with conjugates 3/2 and 3—to upper bound
the first term in the product in inequality (35), we obtain

∞∑
j=1

µ
1/3
j θ

2/3
j =

∞∑
j=1

µ
2/3
j

(
θ2
j

µj

)1/3

≤
( ∞∑
j=1

µj

)2/3
( ∞∑
j=1

θ2
j

µj

)1/3

= tr(K)2/3‖f∗λ̄‖
2/3
H . (36)

Combining inequalities (35) and (36), we find that

E[(f∗λ̄(X))4] ≤ tr(K)2‖f∗λ̄‖
2
H

∞∑
j=1

θ2
j

µj
E[φ4

j (X)] ≤ tr(K)2‖f∗λ̄‖
4
Hρ

4,

where we have used Assumption A. This completes the proof of inequality (34).

6. Experimental Results

In this section, we report the results of experiments on both simulated and real-world data
designed to test the sharpness of our theoretical predictions.
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(a) With under-regularization (b) Without under-regularization

Figure 1: The squared L2(P)-norm between between the averaged estimate f̄ and the op-
timal solution f∗. (a) These plots correspond to the output of the Fast-KRR
algorithm: each sub-problem is under-regularized by using λ ' N−2/3. (b)
Analogous plots when each sub-problem is not under-regularized—that is, with
λ = n−2/3 = (N/m)−2/3 chosen as if there were only a single dataset of size n.

6.1 Simulation Studies

We begin by exploring the empirical performance of our subsample-and-average methods
for a non-parametric regression problem on simulated datasets. For all experiments in
this section, we simulate data from the regression model y = f∗(x) + ε for x ∈ [0, 1],
where f∗(x) := min(x, 1 − x) is 1-Lipschitz, the noise variables ε ∼ N(0, σ2) are normally
distributed with variance σ2 = 1/5, and the samples xi ∼ Uni[0, 1]. The Sobolev space
of Lipschitz functions on [0, 1] has reproducing kernel K(x, x′) = 1 + min{x, x′} and norm
‖f‖2H = f2(0) +

∫ 1
0 (f ′(z))2dz. By construction, the function f∗(x) = min(x, 1− x) satisfies

‖f∗‖H = 1. The kernel ridge regression estimator f̂ takes the form

f̂ =
N∑
i=1

αiK(xi, ·), where α = (K + λNI)−1 y, (37)

and K is the N × N Gram matrix and I is the N × N identity matrix. Since the first-
order Sobolev kernel has eigenvalues (Gu, 2002) that scale as µj ' (1/j)2, the minimax
convergence rate in terms of squared L2(P)-error is N−2/3 (see e.g. Tsybakov (2009); Stone
(1982); Caponnetto and De Vito (2007)).

By Corollary 4 with ν = 1, this optimal rate of convergence can be achieved by Fast-KRR
with regularization parameter λ ≈ N−2/3 as long as the number of partitions m satisfies
m . N1/3. In each of our experiments, we begin with a dataset of size N = mn, which we
partition uniformly at random into m disjoint subsets. We compute the local estimator f̂i
for each of the m subsets using n samples via (37), where the Gram matrix is constructed
using the ith batch of samples (and n replaces N). We then compute f̄ = (1/m)

∑m
i=1 f̂i.
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Figure 2: The mean-square error curves for fixed sample size but varied number of parti-
tions. We are interested in the threshold of partitioning number m under which
the optimal rate of convergence is achieved.

Our experiments compare the error of f̄ as a function of sample size N , the number of
partitions m, and the regularization λ.

In Figure 6.1(a), we plot the error ‖f̄ − f∗‖22 versus the total number of samplesN , where
N ∈ {28, 29, . . . , 213}, using four different data partitionsm ∈ {1, 4, 16, 64}. We execute each
simulation 20 times to obtain standard errors for the plot. The black circled curve (m = 1)
gives the baseline KRR error; if the number of partitions m ≤ 16, Fast-KRR has accuracy
comparable to the baseline algorithm. Even with m = 64, Fast-KRR’s performance closely
matches the full estimator for larger sample sizes (N ≥ 211). In the right plot Figure 6.1(b),
we perform an identical experiment, but we over-regularize by choosing λ = n−2/3 rather
than λ = N−2/3 in each of the m sub-problems, combining the local estimates by averaging
as usual. In contrast to Figure 6.1(a), there is an obvious gap between the performance of
the algorithms when m = 1 and m > 1, as our theory predicts.

It is also interesting to understand the number of partitions m into which a dataset
of size N may be divided while maintaining good statistical performance. According to
Corollary 4 with ν = 1, for the first-order Sobolev kernel, performance degradation should
be limited as long as m . N1/3. In order to test this prediction, Figure 2 plots the mean-
square error ‖f̄ − f∗‖22 versus the ratio log(m)/ log(N). Our theory predicts that even as the
number of partitions m may grow polynomially in N , the error should grow only above some
constant value of log(m)/ log(N). As Figure 2 shows, the point that ‖f̄ − f∗‖2 begins to
increase appears to be around log(m) ≈ 0.45 log(N) for reasonably large N . This empirical
performance is somewhat better than the (1/3) thresholded predicted by Corollary 4, but it
does confirm that the number of partitions m can scale polynomially with N while retaining
minimax optimality.
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N m = 1 m = 16 m = 64 m = 256 m = 1024

212 Error 1.26 · 10−4 1.33 · 10−4 1.38 · 10−4

N/A N/A
Time 1.12 (0.03) 0.03 (0.01) 0.02 (0.00)

213 Error 6.40 · 10−5 6.29 · 10−5 6.72 · 10−5

N/A N/A
Time 5.47 (0.22) 0.12 (0.03) 0.04 (0.00)

214 Error 3.95 · 10−5 4.06 · 10−5 4.03 · 10−5 3.89 · 10−5

N/A
Time 30.16 (0.87) 0.59 (0.11) 0.11 (0.00) 0.06 (0.00)

215 Error
Fail

2.90 · 10−5 2.84 · 10−5 2.78 · 10−5

N/A
Time 2.65 (0.04) 0.43 (0.02) 0.15 (0.01)

216 Error
Fail

1.75 · 10−5 1.73 · 10−5 1.71 · 10−5 1.67 · 10−5

Time 16.65 (0.30) 2.21 (0.06) 0.41 (0.01) 0.23 (0.01)

217 Error
Fail

1.19 · 10−5 1.21 · 10−5 1.25 · 10−5 1.24 · 10−5

Time 90.80 (3.71) 10.87 (0.19) 1.88 (0.08) 0.60 (0.02)

Table 1: Timing experiment giving ‖f̄ − f∗‖22 as a function of number of partitions m and
data size N , providing mean run-time (measured in second) for each number m of
partitions and data size N .

Our final experiment gives evidence for the improved time complexity partitioning pro-
vides. Here we compare the amount of time required to solve the KRR problem using the
naive matrix inversion (37) for different partition sizes m and provide the resulting squared
errors ‖f̄ − f∗‖22. Although there are more sophisticated solution strategies, we believe this
is a reasonable proxy to exhibit Fast-KRR’s potential. In Table 1, we present the results
of this simulation, which we performed in Matlab using a Windows machine with 16GB
of memory and a single-threaded 3.4Ghz processor. In each entry of the table, we give
the mean error of Fast-KRR and the mean amount of time it took to run (with standard
deviation over 10 simulations in parentheses; the error rate standard deviations are an order
of magnitude smaller than the errors, so we do not report them). The entries “Fail” corre-
spond to out-of-memory failures because of the large matrix inversion, while entries “N/A”
indicate that ‖f̄ − f∗‖2 was significantly larger than the optimal value (rendering time im-
provements meaningless). The table shows that without sacrificing accuracy, decomposition
via Fast-KRR can yield substantial computational improvements.

6.2 Real Data Experiments

We now turn to the results of experiments studying the performance of Fast-KRR on the
task of predicting the year in which a song was released based on audio features associated
with the song. We use the Million Song Dataset (Bertin-Mahieux et al., 2011), which
consists of 463,715 training examples and a second set of 51,630 testing examples. Each
example is a song (track) released between 1922 and 2011, and the song is represented as
a vector of timbre information computed about the song. Each sample consists of the pair
(xi, yi) ∈ Rd × R, where xi ∈ Rd is a d = 90-dimensional vector and yi ∈ [1922, 2011] is the
year in which the song was released. (For further details, see Bertin-Mahieux et al. (2011)).
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Figure 3: Results on year prediction on held-out test songs for Fast-KRR, Nyström sam-
pling, and random feature approximation. Error bars indicate standard deviations
over ten experiments.

Our experiments with this dataset use the Gaussian radial basis kernel

K(x, x′) = exp

(
−
‖x− x′‖22

2σ2

)
. (38)

We normalize the feature vectors x so that the timbre signals have standard deviation 1,
and select the bandwidth parameter σ = 6 via cross-validation. For regularization, we set
λ = N−1; since the Gaussian kernel has exponentially decaying eigenvalues (for typical
distributions on X), Corollary 5 shows that this regularization achieves the optimal rate of
convergence for the Hilbert space.

In Figure 3, we compare the time-accuracy curve of Fast-KRR with two approximation-
based methods, plotting the mean-squared error between the predicted release year and
the actual year on test songs. The first baseline is Nyström subsampling (Williams and
Seeger, 2001), where the kernel matrix is approximated by a low-rank matrix of rank r ∈
{1, . . . , 6} × 103. The second baseline approach is an approximate form of kernel ridge
regression using random features (Rahimi and Recht, 2007). The algorithm approximates
the Gaussian kernel (38) by the inner product of two random feature vectors of dimensions
D ∈ {2, 3, 5, 7, 8.5, 10} × 103, and then solves the resulting linear regression problem. For
the Fast-KRR algorithm, we use seven partitions m ∈ {32, 38, 48, 64, 96, 128, 256} to test
the algorithm. Each algorithm is executed 10 times to obtain standard deviations (plotted
as error-bars in Figure 3).

As we see in Figure 3, for a fixed time budget, Fast-KRR enjoys the best performance,
though the margin between Fast-KRR and Nyström sampling is not substantial. In spite of
this close performance between Nyström sampling and the divide-and-conquer Fast-KRR
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Figure 4: Comparison of the performance of Fast-KRR to a standard KRR estimator using
a fraction 1/m of the data.

algorithm, it is worth noting that with parallel computation, it is trivial to accelerate
Fast-KRR m times; parallelizing approximation-based methods appears to be a non-trivial
task. Moreover, as our results in Section 3 indicate, Fast-KRR is minimax optimal in
many regimes. At the same time the conference version of this paper was submitted, Bach
(2013) published the first results we know of establishing convergence results in `2-error for
Nyström sampling; see the discussion for more detail. We note in passing that standard
linear regression with the original 90 features, while quite fast with runtime on the order of
1 second (ignoring data loading), has mean-squared-error 90.44, which is significantly worse
than the kernel-based methods.

Our final experiment provides a sanity check: is the final averaging step in Fast-KRR
even necessary? To this end, we compare Fast-KRR with standard KRR using a fraction
1/m of the data. For the latter approach, we employ the standard regularization λ ≈
(N/m)−1. As Figure 4 shows, Fast-KRR achieves much lower error rates than KRR using
only a fraction of the data. Moreover, averaging stabilizes the estimators: the standard
deviations of the performance of Fast-KRR are negligible compared to those for standard
KRR.

7. Discussion

In this paper, we present results establishing that our decomposition-based algorithm for
kernel ridge regression achieves minimax optimal convergence rates whenever the number
of splits m of the data is not too large. The error guarantees of our method depend on the
effective dimensionality γ(λ) =

∑∞
j=1 µj/(µj + λ) of the kernel. For any number of splits
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m . N/γ(λ)2, our method achieves estimation error decreasing as

E
[
‖f̄ − f∗‖22

]
. λ ‖f∗‖2H +

σ2γ(λ)

N
.

(In particular, recall the bound (8) following Theorem 1). Notably, this convergence rate is
minimax optimal, and we achieve substantial computational benefits from the subsampling
schemes, in that computational cost scales (nearly) linearly in N .

It is also interesting to consider the number of kernel evaluations required to imple-
ment our method. Our estimator requires m sub-matrices of the full kernel (Gram) matrix,
each of size N/m ×N/m. Since the method may use m � N/γ2(λ) machines, in the best
case, it requires at most Nγ2(λ) kernel evaluations. By contrast, Bach (2013) shows that
Nyström-based subsampling can be used to form an estimator within a constant factor of
optimal as long as the number of N -dimensional subsampled columns of the kernel matrix
scales roughly as the marginal dimension γ̃(λ) = N

∥∥diag(K(K + λNI)−1)
∥∥
∞. Conse-

quently, using roughly Nγ̃(λ) kernel evaluations, Nyström subsampling can achieve optimal
convergence rates. These two scalings–namely, Nγ2(λ) versus Nγ̃(λ)—are currently not
comparable: in some situations, such as when the data is not compactly supported, γ̃(λ)
can scale linearly with N , while in others it appears to scale roughly as the true effective
dimensionality γ(λ). A natural question arising from these lines of work is to understand
the true optimal scaling for these different estimators: is one fundamentally better than the
other? Are there natural computational tradeoffs that can be leveraged at large scale? As
datasets grow substantially larger and more complex, these questions should become even
more important, and we hope to continue to study them.
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Appendix A. Proof of Lemma 6

This appendix is devoted to the bias bound stated in Lemma 6. Let X = {xi}ni=1 be short-

hand for the design matrix, and define the error vector ∆ = f̂ − f∗. By Jensen’s inequal-
ity, we have ‖E[∆]‖2 ≤ E[‖E[∆ | X]‖2], so it suffices to provide a bound on ‖E[∆ | X]‖2.
Throughout this proof and the remainder of the paper, we represent the kernel evaluator by
the function ξx, where ξx := K(x, ·) and f(x) = 〈ξx, f〉 for any f ∈ H. Using this notation,
the estimate f̂ minimizes the empirical objective

1

n

n∑
i=1

(
〈ξxi , f〉H − yi

)2
+ λ ‖f‖2H . (39)
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f̂ Empirical KRR minimizer based on n samples
f∗ Optimal function generating data, where yi = f∗(xi) + εi
∆ Error f̂ − f∗
ξx RKHS evaluator ξx := K(x, ·), so 〈f, ξx〉 = 〈ξx, f〉 = f(x)

Σ̂ Operator mapping H → H defined as the outer product Σ̂ := 1
n

∑n
i=1 ξxi⊗ξxi ,

so that Σ̂f = 1
n

∑n
i=1 〈ξxi , f〉 ξxi

φj jth orthonormal basis vector for L2(P)
δj Basis coefficients of ∆ or E[∆ | X] (depending on context), i.e. ∆ =

∑∞
j=1 δjφj

θj Basis coefficients of f∗, i.e. f∗ =
∑∞

j=1 θjφj
d Integer-valued truncation point
M Diagonal matrix with M = diag(µ1, . . . , µd)

Q Diagonal matrix with Q = (Id×d + λM−1)
1
2

Φ n× d matrix with coordinates Φij = φj(xi)

v↓ Truncation of vector v. For v =
∑

j νjφj ∈ H, defined as v↓ =
∑d

j=1 νjφj ; for

v ∈ `2(N) defined as v↓ = (v1, . . . , vd)
v↑ Untruncated part of vector v, defined as v↑ = (vd+1, vd+1, . . .)
βd The tail sum

∑
j>d µj

γ(λ) The sum
∑∞

j=1 1/(1 + λ/µj)

b(n, d, k) The maximum max{
√

max{k, log(d)},max{k, log(d)}/n1/2−1/k}

Table 2: Notation used in proofs

This objective is Fréchet differentiable, and as a consequence, the necessary and sufficient
conditions for optimality (Luenberger, 1969) of f̂ are that

1

n

n∑
i=1

ξxi(〈ξxi , f̂ − f∗〉H − εi) + λf̂ =
1

n

n∑
i=1

ξxi(〈ξxi , f̂〉H − yi) + λf̂ = 0, (40)

where the last equation uses the fact that yi = 〈ξxi , f∗〉H + εi. Taking conditional expecta-
tions over the noise variables {εi}ni=1 with the design X = {xi}ni=1 fixed, we find that

1

n

n∑
i=1

ξxi 〈ξxi ,E[∆ | X]〉+ λE[f̂ | X] = 0.

Define the sample covariance operator Σ̂ := 1
n

∑n
i=1 ξxi ⊗ ξxi . Adding and subtracting λf∗

from the above equation yields

(Σ̂ + λI)E[∆ | X] = −λf∗. (41)

Consequently, we see we have ‖E[∆ | X]‖H ≤ ‖f∗‖H, since Σ̂ � 0.
We now use a truncation argument to reduce the problem to a finite dimensional prob-

lem. To do so, we let δ ∈ `2(N) denote the coefficients of E[∆ | X] when expanded in the
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basis {φj}∞j=1:

E[∆ | X] =
∞∑
j=1

δjφj , with δj = 〈E[∆ | X], φj〉L2(P). (42)

For a fixed d ∈ N, define the vectors δ↓ := (δ1, . . . , δd) and δ↑ := (δd+1, δd+2, . . .) (we
suppress dependence on d for convenience). By the orthonormality of the collection {φj},
we have

‖E[∆ | X]‖22 = ‖δ‖22 = ‖δ↓‖22 + ‖δ↑‖22. (43)

We control each of the elements of the sum (43) in turn.

Control of the term ‖δ↑‖22: By definition, we have

‖δ↑‖22 =
µd+1

µd+1

∞∑
j=d+1

δ2
j ≤ µd+1

∞∑
j=d+1

δ2
j

µj

(i)

≤ µd+1 ‖E[∆ | X]‖2H (ii)≤ µd+1 ‖f∗‖2H , (44)

where inequality (i) follows since ‖E[∆ | X]‖2H =
∑∞

j=1

δ2j
µj

; and inequality (ii) follows from

the bound ‖E[∆ | X]‖H ≤ ‖f∗‖H, which is a consequence of equality (41).

Control of the term ‖δ↓‖22: Let (θ1, θ2, . . .) be the coefficients of f∗ in the basis {φj}. In
addition, define the matrices Φ ∈ Rn×d by

Φij = φj(xi) for i ∈ {1, . . . , n}, and j ∈ {1, . . . , d}

and M = diag(µ1, . . . , µd) � 0 ∈ Rd×d. Lastly, define the tail error vector v ∈ Rn by

vi : =
∑
j>d

δjφj(xi) = E[∆↑(xi) | X].

Let l ∈ N be arbitrary. Computing the (Hilbert) inner product of the terms in equation (41)
with φl, we obtain

−λ θl
µl

= 〈φl,−λf∗〉 =
〈
φl, (Σ̂ + λ)E[∆ | X]

〉
=

1

n

n∑
i=1

〈φl, ξxi〉 〈ξxi ,E[∆ | X]〉+ λ 〈φl,E[∆ | X]〉 =
1

n

n∑
i=1

φl(xi)E[∆(xi) | X] + λ
δl
µl
.

We can rewrite the final sum above using the fact that ∆ = ∆↓ + ∆↑, which implies

1

n

n∑
i=1

φl(xi)E[∆(xi) | X] =
1

n

n∑
i=1

φl(xi)

( d∑
j=1

φj(xi)δj +
∑
j>d

φj(xi)δj

)
Applying this equality for l = 1, 2, . . . , d yields(

1

n
ΦTΦ + λM−1

)
δ↓ = −λM−1θ↓ − 1

n
ΦT v. (45)
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We now show how the expression (45) gives us the desired bound in the lemma. By
defining the shorthand matrix Q = (I + λM−1)1/2, we have

1

n
ΦTΦ + λM−1 = I + λM−1 +

1

n
ΦTΦ− I = Q

(
I +Q−1

(
1

n
ΦTΦ− I

)
Q−1

)
Q.

As a consequence, we can rewrite expression (45) to(
I +Q−1

(
1

n
ΦTΦ− I

)
Q−1

)
Qδ↓ = −λQ−1M−1θ↓ − 1

n
Q−1ΦT v. (46)

We now present a lemma bounding the terms in equality (46) to control δ↓.

Lemma 10 The following bounds hold:∥∥∥λQ−1M−1θ↓
∥∥∥2

2
≤ λ ‖f∗‖2H , and (47a)

E

[∥∥∥∥ 1

n
Q−1ΦT v

∥∥∥∥2

2

]
≤
ρ4 ‖f∗‖2H tr(K)βd

λ
. (47b)

Define the event E :=
{∣∣∣∣∣∣Q−1

(
1
nΦTΦ− I

)
Q−1

∣∣∣∣∣∣ ≤ 1/2
}

. Under Assumption A with mo-
ment bound E[φj(X)2k] ≤ ρ2k, there exists a universal constant C such that

P(Ec) ≤
(

max

{√
k ∨ log(d),

k ∨ log(d)

n1/2−1/k

}
Cρ2γ(λ)√

n

)k
. (48)

We defer the proof of this lemma to Appendix A.1.
Based on this lemma, we can now complete the proof. Whenever the event E holds, we

know that I +Q−1((1/n)ΦTΦ− I)Q−1 � (1/2)I. In particular, we have

‖Qδ↓‖22 ≤ 4
∥∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦT v

∥∥∥2

2

on E , by Eq. (46). Since ‖Qδ↓‖22 ≥ ‖δ↓‖22, the above inequality implies that

‖δ↓‖22 ≤ 4
∥∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦT v

∥∥∥2

2

Since E is X-measurable, we thus obtain

E
[
‖δ↓‖22

]
= E

[
1(E) ‖δ↓‖22

]
+ E

[
1(Ec) ‖δ↓‖22

]
≤ 4E

[
1(E)

∥∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦT v
∥∥∥2

2

]
+ E

[
1(Ec) ‖δ↓‖22

]
.

Applying the bounds (47a) and (47b), along with the elementary inequality (a + b)2 ≤
2a2 + 2b2, we have

E
[
‖δ↓‖22

]
≤ 8λ ‖f∗‖2H +

8ρ4 ‖f∗‖2H tr(K)βd
λ

+ E
[
1(Ec) ‖δ↓‖22

]
. (49)
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Now we use the fact that by the gradient optimality condition (41),

‖E[∆ | X]‖22 ≤ µ0 ‖E[∆ | X]‖2H ≤ µ0 ‖f∗‖2H

Recalling the shorthand (6) for b(n, d, k), we apply the bound (48) to see

E
[
1(Ec) ‖δ↓‖22

]
≤ P(Ec)µ0 ‖f∗‖2H ≤

(
Cb(n, d, k)ρ2γ(λ)√

n

)k
µ0 ‖f∗‖2H

Combining this with the inequality (49), we obtain the desired statement of Lemma 6.

A.1 Proof of Lemma 10

Proof of bound (47a): Beginning with the proof of the bound (47a), we have∥∥∥Q−1M−1θ↓
∥∥∥2

2
= (θ↓)T (M2 + λM)−1θ↓

≤ (θ↓)T (λM)−1θ↓ =
1

λ
(θ↓)TM−1θ↓ ≤ 1

λ
‖f∗‖2H .

Multiplying both sides by λ2 gives the result.

Proof of bound (47b): Next we turn to the proof of the bound (47b). We begin by re-writing
Q−1ΦT v as the product of two components:

1

n
Q−1ΦT v = (M + λI)−1/2

(
1

n
M1/2ΦT v

)
. (50)

The first matrix is a diagonal matrix whose operator norm is bounded:∣∣∣∣∣∣∣∣∣(M + λI)−1/2
∣∣∣∣∣∣∣∣∣ = max

j∈[d]

1√
µj + λ

≤ 1√
λ
. (51)

For the second factor in the product (50), the analysis is a little more complicated. Let
Φ` = (φl(x1), . . . , φl(xn)) be the `th column of Φ. In this case,

∥∥∥M1/2ΦT v
∥∥∥2

2
=

d∑
`=1

µ`(Φ
T
` v)2 ≤

d∑
`=1

µ` ‖Φ`‖22 ‖v‖
2
2 , (52)

using the Cauchy-Schwarz inequality. Taking expectations with respect to the design {xi}ni=1

and applying Hölder’s inequality yields

E[‖Φ`‖22 ‖v‖
2
2] ≤

√
E[‖Φ`‖42]

√
E[‖v‖42].

We bound each of the terms in this product in turn. For the first, we have

E[‖Φ`‖42] = E
[( n∑

i=1

φ2
` (Xi)

)2]
= E

[ n∑
i,j=1

φ2
` (Xi)φ

2
` (Xj)

]
≤ n2E[φ4

` (X1)] ≤ n2ρ4
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since the Xi are i.i.d., E[φ2
` (X1)] ≤

√
E[φ4

` (X1)], and E[φ4
` (X1)] ≤ ρ4 by assumption. Turn-

ing to the term involving v, we have

v2
i =

(∑
j>d

δjφj(xi)

)2

≤
(∑
j>d

δ2
j

µj

)(∑
j>d

µjφ
2
j (xi)

)
by Cauchy-Schwarz. As a consequence, we find

E[‖v‖42] = E
[(
n

1

n

n∑
i=1

v2
i

)2]
≤ n2 1

n

n∑
i=1

E[v4
i ] ≤ n

n∑
i=1

E
[(∑

j>d

δ2
j

µj

)2(∑
j>d

µjφ
2
j (Xi)

)2]

≤ n2E
[
‖E[∆ | X]‖4H

(∑
j>d

µjφ
2
j (X1)

)2]
,

since the Xi are i.i.d. Using the fact that ‖E[∆ | X]‖H ≤ ‖f∗‖H, we expand the second
square to find

1

n2
E[‖v‖42] ≤ ‖f∗‖4H

∑
j,k>d

E
[
µjµkφ

2
j (X1)φ2

k(X1)
]
≤ ‖f∗‖4H ρ

4
∑
j,k>d

µjµk = ‖f∗‖4H ρ
4

(∑
j>d

µj

)2

.

Combining our bounds on ‖Φ`‖2 and ‖v‖2 with our initial bound (52), we obtain the in-
equality

E
[∥∥∥M1/2ΦT v

∥∥∥2

2

]
≤

d∑
l=1

µ`
√
n2ρ4

√√√√n2 ‖f∗‖4H ρ4

(∑
j>d

µj

)2

= n2ρ4 ‖f∗‖2H
(∑
j>d

µj

) d∑
l=1

µ`.

Dividing by n2, recalling the definition of βd =
∑

j>d µj , and noting that tr(K) ≥
∑d

l=1 µ`
shows that

E

[∥∥∥∥ 1

n
M1/2ΦT v

∥∥∥∥2

2

]
≤ ρ4 ‖f∗‖2H βd tr(K).

Combining this inequality with our expansion (50) and the bound (51) yields the claim (47b).

Proof of bound (48): We consider the expectation of the norm of Q−1( 1
nΦTΦ− I)Q−1.

For each i ∈ [n], πi := (φ1(xi), . . . , φd(xi))
T ∈ Rd, then πTi is the i-th row of the matrix

Φ ∈ Rn×d. Then we know that

Q−1

(
1

n
ΦTΦ− I

)
Q−1 =

1

n

n∑
i=1

Q−1(πiπ
T
i − I)Q−1.

Define the sequence of matrices

Ai := Q−1(πiπ
T
i − I)Q−1

Then the matrices Ai = ATi ∈ Rd×d. Note that E[Ai] = 0 and let εi be i.i.d. {−1, 1}-valued
Rademacher random variables. Applying a standard symmetrization argument (Ledoux
and Talagrand, 1991), we find that for any k ≥ 1, we have

E

[∣∣∣∣∣∣∣∣∣∣∣∣Q−1

(
1

n
ΦTΦ− I

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣k
]

= E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

Ai

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
k
 ≤ 2kE

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

εiAi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
k
 . (53)
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Lemma 11 The quantity E
[∣∣∣∣∣∣ 1

n

∑n
i=1 εiAi

∣∣∣∣∣∣k]1/k
is upper bounded by

√
e(k ∨ 2 log(d))

ρ2
∑d

j=1
1

1+λ/µj√
n

+
4e(k ∨ 2 log(d))

n1−1/k

( d∑
j=1

ρ2

1 + λ/µj

)
. (54)

We take this lemma as given for the moment, returning to prove it shortly. Recall the
definition of the constant γ(λ) =

∑∞
j=1 1/(1 + λ/µj) ≥

∑d
j=1 1/(1 + λ/µj). Then using our

symmetrization inequality (53), we have

E
[ ∣∣∣∣∣∣∣∣∣∣∣∣Q−1

(
1

n
ΦTΦ− I

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣k ]
≤ 2k

(√
e(k ∨ log(d))

ρ2γ(λ)√
n

+
4e(k ∨ 2 log(d))

n1−1/k
ρ2γ(λ)

)k
≤ max

{√
k ∨ log(d),

k ∨ log(d)

n1/2−1/k

}k (Cρ2γ(λ)√
n

)k
, (55)

where C is a numerical constant. By definition of the event E , we see by Markov’s inequality
that for any k ∈ R, k ≥ 1,

P(Ec) ≤
E
[∣∣∣∣∣∣Q−1

(
1
nΦTΦ− I

)∣∣∣∣∣∣k]
2−k

≤ max

{√
k ∨ log(d),

k ∨ log(d)

n1/2−1/k

}k (2Cρ2γ(λ))√
n

)k
.

This completes the proof of the bound (48).

It remains to prove Lemma 11, for which we make use of the following result, due
to Chen et al. (2012, Theorem A.1(2)).

Lemma 12 Let Xi ∈ Rd×d be independent symmetrically distributed Hermitian matrices.
Then

E
[∣∣∣∣∣∣∣∣∣∣∣∣ n∑

i=1

Xi

∣∣∣∣∣∣∣∣∣∣∣∣k]1/k

≤
√
e(k ∨ 2 log d)

∣∣∣∣∣∣∣∣∣∣∣∣ n∑
i=1

E[X2
i ]

∣∣∣∣∣∣∣∣∣∣∣∣1/2 + 2e(k ∨ 2 log d)

(
E[max

i
|||Xi|||k]

)1/k

.

(56)

The proof of Lemma 11 is based on applying this inequality with Xi = εiAi/n, and then
bounding the two terms on the right-hand side of inequality (56).

We begin with the first term. Note that for any symmetric matrix Z, we have the matrix
inequalities 0 � E[(Z − E[Z])2] = E[Z2]− E[Z]2 � E[Z2], so

E[A2
i ] = E[Q−1(πiπ

T
i − I)Q−2(πiπ

T
i − I)Q−1] � E[Q−1πiπ

T
i Q
−2πiπ

T
i Q
−1].

Instead of computing these moments directly, we provide bounds on their norms. Since
πiπ

T
i is rank one and Q is diagonal, we have

∣∣∣∣∣∣Q−1πiπ
T
i Q
−1
∣∣∣∣∣∣ = πTi (I + λM−1)−1πi =

d∑
j=1

φj(xi)
2

1 + λ/µj
.
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We also note that, for any k ∈ R, k ≥ 1, convexity implies that

( d∑
j=1

φj(xi)
2

1 + λ/µj

)k
=

∑d
l=1 1/(1 + λ/µ`)∑d
l=1 1/(1 + λ/µ`)

d∑
j=1

φj(xi)
2

1 + λ/µj

k

≤
( d∑
l=1

1

1 + λ/µ`

)k 1∑d
l=1 1/(1 + λ/µ`)

d∑
j=1

φj(xi)
2k

1 + λ/µj
,

so if E[φj(Xi)
2k] ≤ ρ2k, we obtain

E
[( d∑

j=1

φj(xi)
2

1 + λ/µj

)k]
≤
( d∑
j=1

1

1 + λ/µj

)k
ρ2k. (57)

The sub-multiplicativity of matrix norms implies
∣∣∣∣∣∣(Q−1πiπ

T
i Q
−1)2

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Q−1πiπ
T
i Q
−1
∣∣∣∣∣∣2,

and consequently we have

E
[∣∣∣∣∣∣(Q−1πiπ

T
i Q
−1)2

∣∣∣∣∣∣] ≤ E
[(
πTi (I + λM−1)−1πi

)2] ≤ ρ4

( d∑
j=1

1

1 + λ/µj

)2

,

where the final step follows from inequality (57). Combined with first term on the right-
hand side of Lemma 12, we have thus obtained the first term on the right-hand side of
expression (54).

We now turn to the second term in expression (54). For real k ≥ 1, we have

E[max
i
|||εiAi/n|||k] =

1

nk
E[max

i
|||Ai|||k] ≤

1

nk

n∑
i=1

E[|||Ai|||k]

Since norms are sub-additive, we find that

|||Ai|||k ≤ 2k−1

( d∑
j=1

φj(xi)
2

1 + λ/µj

)k
+2k−1

∣∣∣∣∣∣Q−2
∣∣∣∣∣∣k = 2k−1

( d∑
j=1

φj(xi)
2

1 + λ/µj

)k
+2k−1

(
1

1 + λ/µ1

)k
.

Since ρ ≥ 1 (recall that the φj are an orthonormal basis), we apply inequality (57), to find
that

E[max
i
|||εiAi/n|||k] ≤

1

nk−1

[
2k−1

( d∑
j=1

1

1 + λ/µj

)k
ρ2k + 2k−1

(
1

1 + λ/µ1

)k
ρ2k

]
.

Taking kth roots yields the second term in the expression (54).

Appendix B. Proof of Lemma 7

This proof follows an outline similar to Lemma 6. We begin with a simple bound on ‖∆‖H:
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Lemma 13 Under Assumption B, we have E[‖∆‖2H | X] ≤ 2σ2/λ+ 4 ‖f∗‖2H.

Proof We have

λ E[ ‖f̂‖2H | {xi}ni=1] ≤ E

[
1

n

n∑
i=1

(f̂(xi)− f∗(xi)− εi)2 + λ‖f̂‖2H | {xi}ni=1

]
(i)

≤ 1

n

n∑
i=1

E[ε2
i | xi] + λ ‖f∗‖2H

(ii)

≤ σ2 + λ ‖f∗‖2H ,

where inequality (i) follows since f̂ minimizes the objective function (2); and inequality (ii)
uses the fact that E[ε2

i | xi] ≤ σ2. Applying the triangle inequality to ‖∆‖H along with the
elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we find that

E[‖∆‖2H | {xi}
n
i=1] ≤ 2 ‖f∗‖2H + 2E[‖f̂‖2H | {xi}ni=1] ≤ 2σ2

λ
+ 4 ‖f∗‖2H ,

which completes the proof.

With Lemma 13 in place, we now proceed to the proof of the theorem proper. Recall
from Lemma 6 the optimality condition

1

n

n∑
i=1

ξxi(〈ξxi , f̂ − f∗〉 − εi) + λf̂ = 0. (58)

Now, let δ ∈ `2(N) be the expansion of the error ∆ in the basis {φj}, so that ∆ =
∑∞

j=1 δjφj ,
and (again, as in Lemma 6), we choose d ∈ N and truncate ∆ via

∆↓ :=

d∑
j=1

δjφj and ∆↑ := ∆−∆↓ =
∑
j>d

δjφj .

Let δ↓ ∈ Rd and δ↑ denote the corresponding vectors for the above. As a consequence of
the orthonormality of the basis functions, we have

E[‖∆‖22] = E[‖∆↓‖22] + E[‖∆↑‖22] = E[‖δ↓‖22] + E[‖δ↑‖22]. (59)

We bound each of the terms (59) in turn.
By Lemma 13, the second term is upper bounded as

E[‖∆↑‖22] =
∑
j>d

E[δ2
j ] ≤

∑
j>d

µd+1

µj
E[δ2

j ] = µd+1E[‖∆↑‖2H] ≤ µd+1

(
2σ2

λ
+ 4 ‖f∗‖2H

)
. (60)

The remainder of the proof is devoted the bounding the term E[‖∆↓‖22] in the decompo-
sition (59). By taking the Hilbert inner product of φk with the optimality condition (58),
we find as in our derivation of the matrix equation (45) that for each k ∈ {1, . . . , d}

1

n

n∑
i=1

d∑
j=1

φk(xi)φj(xi)δj +
1

n

n∑
i=1

φk(xi)(∆
↑(xi)− εi) + λ

δk
µk

= 0.
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Given the expansion f∗ =
∑∞

j=1 θjφj , define the tail error vector v ∈ Rn by vi =
∑

j>d δjφj(xi),

and recall the definition of the eigenvalue matrix M = diag(µ1, . . . , µd) ∈ Rd×d. Given the
matrix Φ defined by its coordinates Φij = φj(xi), we have(

1

n
ΦTΦ + λM−1

)
δ↓ = −λM−1θ↓ − 1

n
ΦT v +

1

n
ΦT ε. (61)

As in the proof of Lemma 6, we find that(
I +Q−1

(
1

n
ΦTΦ− I

)
Q−1

)
Qδ↓ = −λQ−1M−1θ↓ − 1

n
Q−1ΦT v +

1

n
Q−1ΦT ε, (62)

where we recall that Q = (I + λM−1)1/2.
We now recall the bounds (47a) and (48) from Lemma 10, as well as the previously

defined event E := {
∣∣∣∣∣∣Q−1

(
1
nΦTΦ− I

)
Q−1

∣∣∣∣∣∣ ≤ 1/2}. When E occurs, the expression (62)
implies the inequality

‖∆↓‖22 ≤ ‖Qδ↓‖22 ≤ 4
∥∥∥−λQ−1M−1θ↓ − (1/n)Q−1ΦT v + (1/n)Q−1ΦT ε

∥∥∥2

2
.

When E fails to hold, Lemma 13 may still be applied since E is measurable with respect to
{xi}ni=1. Doing so yields

E[‖∆↓‖22] = E[1(E) ‖∆↓‖22] + E[1(Ec) ‖∆↓‖22]

≤ 4E
[∥∥∥−λQ−1M−1θ↓ − (1/n)Q−1ΦT v + (1/n)Q−1ΦT ε

∥∥∥2

2

]
+ E

[
1(Ec)E[‖∆↓‖22 | {xi}ni=1]

]
≤ 4E

[∥∥∥∥λQ−1M−1θ↓ +
1

n
Q−1ΦT v − 1

n
Q−1ΦT ε

∥∥∥∥2

2

]
+ P(Ec)

(
2σ2

λ
+ 4 ‖f∗‖2H

)
. (63)

Since the bound (48) still holds, it remains to provide a bound on the first term in the
expression (63).

As in the proof of Lemma 6, we have ‖λQ−1M−1θ↓‖22 ≤ λ ‖f∗‖2H via the bound (47a).
Turning to the second term inside the norm, we claim that, under the conditions of Lemma 7,
the following bound holds:

E
[∥∥(1/n)Q−1ΦT v

∥∥2

2

]
≤
ρ4 tr(K)βd(2σ

2/λ+ 4 ‖f∗‖2H)

λ
. (64)

This claim is an analogue of our earlier bound (47b), and we prove it shortly. Lastly, we
bound the norm of Q−1ΦT ε/n. Noting that the diagonal entries of Q−1 are 1/

√
1 + λ/µj ,

we have

E
[∥∥Q−1ΦT ε

∥∥2

2

]
=

d∑
j=1

n∑
i=1

1

1 + λ/µj
E[φ2

j (Xi)ε
2
i ]

Since E[φ2
j (Xi)ε

2
i ] = E[φ2

j (Xi)E[ε2
i | Xi]] ≤ σ2 by assumption, we have the inequality

E
[∥∥(1/n)Q−1ΦT ε

∥∥2

2

]
≤ σ2

n

d∑
j=1

1

1 + λ/µj
.
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The last sum is bounded by (σ2/n)γ(λ). Applying the inequality (a+b+c)2 ≤ 3a2+3b2+3c2

to inequality (63), we obtain

E
[
‖∆↓‖22

]
≤ 12λ ‖f∗‖2H +

12σ2γ(λ)

n
+

(
2σ2

λ
+ 4 ‖f∗‖2H

)(
12ρ4 tr(K)βd

λ
+ P(Ec)

)
.

Applying the bound (48) to control P(Ec) and bounding E[‖∆↑‖22] using inequality (60)
completes the proof of the lemma.

It remains to prove bound (64). Recalling the inequality (51), we see that∥∥(1/n)Q−1ΦT v
∥∥2

2
≤
∣∣∣∣∣∣∣∣∣Q−1M−1/2

∣∣∣∣∣∣∣∣∣2 ∥∥∥(1/n)M1/2ΦT v
∥∥∥2

2
≤ 1

λ

∥∥∥(1/n)M1/2ΦT v
∥∥∥2

2
. (65)

Let Φ` denote the `th column of the matrix Φ. Taking expectations yields

E
[∥∥∥M1/2ΦT v

∥∥∥2

2

]
=

d∑
l=1

µ`E[〈Φ`, v〉2] ≤
d∑
l=1

µ`E
[
‖Φ`‖22 ‖v‖

2
2

]
=

d∑
l=1

µ`E
[
‖Φ`‖22 E

[
‖v‖22 | X

]]
.

Now consider the inner expectation. Applying the Cauchy-Schwarz inequality as in the
proof of the bound (47b), we have

‖v‖22 =
n∑
i=1

v2
i ≤

n∑
i=1

(∑
j>d

δ2
j

µj

)(∑
j>d

µjφ
2
j (Xi)

)
.

Notably, the second term is X-measurable, and the first is bounded by ‖∆↑‖2H ≤ ‖∆‖
2
H.

We thus obtain

E
[∥∥∥M1/2ΦT v

∥∥∥2

2

]
≤

n∑
i=1

d∑
l=1

µ`E
[
‖Φ`‖22

(∑
j>d

µjφ
2
j (Xi)

)
E[‖∆‖2H | X]

]
. (66)

Lemma 13 provides the bound 2σ2/λ+ 4 ‖f∗‖2H on the final (inner) expectation.
The remainder of the argument proceeds precisely as in the bound (47b). We have

E[‖Φ`‖22 φj(Xi)
2] ≤ nρ4

by the moment assumptions on φj , and thus

E
[∥∥∥M1/2ΦT v

∥∥∥2

2

]
≤

d∑
l=1

∑
j>d

µ`µjn
2ρ4

(
2σ2

λ
+ 4 ‖f∗‖2H

)
≤ n2ρ4βd tr(K)

(
2σ2

λ
+ 4 ‖f∗‖2H

)
.

Dividing by λn2 completes the proof.
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Appendix C. Proof of Lemma 8

As before, we let {xi}ni=1 := {x1, . . . , xn} denote the collection of design points. We begin
with some useful bounds on

∥∥f∗
λ̄

∥∥
H and ‖∆‖H.

Lemma 14 Under Assumptions A and B′, we have

E
[
(E[‖∆‖2H | {xi}

n
i=1])2

]
≤ B4

λ,λ̄ and E[‖∆‖2H] ≤ B2
λ,λ̄, (67)

where
Bλ,λ̄ := 4

√
32‖f∗

λ̄
‖4H + 8τ4

λ̄
/λ2. (68)

See Section C.1 for the proof of this claim.
This proof follows an outline similar to that of Lemma 7. As usual, we let δ ∈ `2(N) be

the expansion of the error ∆ in the basis {φj}, so that ∆ =
∑∞

j=1 δjφj , and we choose d ∈ N
and define the truncated vectors ∆↓ :=

∑d
j=1 δjφj and ∆↑ := ∆ − ∆↓ =

∑
j>d δjφj . As

usual, we have the decomposition E[‖∆‖22] = E[‖δ↓‖22] +E[‖δ↑‖22]. Recall the definition (68)

of the constant Bλ,λ̄ = 4

√
32‖f∗

λ̄
‖4H + 8τ4

λ̄
/λ2. As in our deduction of inequalities (60),

Lemma 14 implies that E[‖∆↑‖22] ≤ µd+1E[‖∆↑‖2H] ≤ µd+1B
2
λ,λ̄

.

The remainder of the proof is devoted to bounding E[‖δ↓‖22]. We use identical notation
to that in our proof of Lemma 7, which we recap for reference (see also Table 2). We define
the tail error vector v ∈ Rn by vi =

∑
j>d δjφj(xi), i ∈ [n], and recall the definitions of the

eigenvalue matrix M = diag(µ1, . . . , µd) ∈ Rd×d and basis matrix Φ with Φij = φj(xi). We
use Q = (I + λM−1)1/2 for shorthand, and we let E be the event that∣∣∣∣∣∣Q−1((1/n)ΦTΦ− I)Q−1

∣∣∣∣∣∣ ≤ 1/2.

Writing f∗
λ̄

=
∑∞

j=1 θjφj , we define the alternate noise vector ε′i = Yi − f∗λ̄(xi). Using this
notation, mirroring the proof of Lemma 7 yields

E[‖∆↓‖22] ≤ E[‖Qδ↓‖22] ≤ 4E

[∥∥∥∥λQ−1M−1θ↓ +
1

n
Q−1ΦT v − 1

n
Q−1ΦT ε′

∥∥∥∥2

2

]
+ P(Ec)B2

λ,λ̄,

(69)

which is an analogue of equation (63). The bound bound (48) controls the probability
P(Ec), so it remains to control the first term in the expression (69). We first rewrite the
expression within the norm as

(λ− λ̄)Q−1M−1θ↓ +
1

n
Q−1ΦT v −

(
1

n
Q−1ΦT ε′ − λ̄Q−1M−1θ↓

)
The following lemma provides bounds on the first two terms:

Lemma 15 The following bounds hold:∥∥∥(λ̄− λ)Q−1M−1θ↓
∥∥∥2

2
≤

(λ̄− λ)2
∥∥f∗

λ̄

∥∥2

H
λ

, (70a)

E

[∥∥∥∥ 1

n
Q−1ΦT v

∥∥∥∥2

2

]
≤
ρ4B2

λ,λ̄
tr(K)βd

λ
, (70b)
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For the third term, we make the following claim.

Lemma 16 Under Assumptions A and B′, we have

E

[∥∥∥∥ 1

n
Q−1ΦT ε′ − λ̄Q−1M−1θ↓

∥∥∥∥2

2

]
≤
γ(λ)ρ2τ2

λ̄

n
. (71)

Deferring the proof of the two lemmas to Sections C.2 and C.3, we apply the inequality
(a+ b+ c)2 ≤ 4a2 + 4b2 + 2c2 to inequality (69), and we have

E[‖∆↓‖22]− P(Ec)B2
λ,λ̄ ≤ E[‖Qδ↓‖22]− P(Ec)B2

λ,λ̄

≤ 16E
[∥∥∥(λ− λ̄)Q−1M−1θ↓

∥∥∥2

2

]
+

16

n2
E
[∥∥Q−1ΦT v

∥∥2

2

]
+

8

n2
E
[∥∥∥Q−1ΦT ε′ − λ̄Q−1M−1θ↓

∥∥∥2

2

]
≤

16(λ̄− λ)2
∥∥f∗

λ̄

∥∥2

H
λ

+
16ρ4B2

λ,λ̄
tr(K)βd

λ
+

8γ(λ)ρ2τ2
λ̄

n
, (72)

where we have applied the bounds (70a) and (70b) from Lemma 17 and the bound (71)

from Lemma 16. Applying the bound (48) to control P(Ec) and recalling that E[
∥∥∆↑

∥∥2

2
] ≤

µd+1B
2
λ,λ̄

completes the proof.

C.1 Proof of Lemma 14

Recall that f̂ minimizes the empirical objective. Consequently,

λE[‖f̂‖2H | {xi}ni=1] ≤ E

[
1

n

n∑
i=1

(f̂(xi)− Yi)2 + λ‖f̂‖2H | {xi}ni=1

]

≤ 1

n

n∑
i=1

E[(f∗λ̄(xi)− Yi)2 | xi] + λ‖f∗λ̄‖
2
H =

1

n

n∑
i=1

σ2
λ̄(xi) + λ‖f∗λ̄‖

2
H

The triangle inequality immediately gives us the upper bound

E[‖∆‖2H | {xi}ni=1] ≤ 2‖f∗λ̄‖
2
H + E[2‖f̂‖2H | {xi}ni=1] ≤ 2

λn

n∑
i=1

σ2
λ̄(xi) + 4‖f∗λ̄‖

2
H.

Since (a+ b)2 ≤ 2a2 + 2b2, convexity yields

E[(E[‖∆‖2H | {xi}
n
i=1])2] ≤ E

( 2

λn

n∑
i=1

σ2
λ̄(Xi) + 4‖f∗λ̄‖

2
H

)2


≤ 8

λ2n

n∑
i=1

E[σ4
λ̄(Xi)] + 32‖f∗λ̄‖

4
H = 32‖f∗λ̄‖

4
H +

8τ4
λ̄

λ2
.

This completes the proof of the first of the inequalities (67). The second of the inequali-
ties (67) follows from the first by Jensen’s inequality.
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C.2 Proof of Lemma 15

Our previous bound (47a) immediately implies inequality (70a). To prove the second upper
bound, we follow the proof of the bound (64). From inequalities (65) and (66), we obtain
that ∥∥(1/n)Q−1ΦT v

∥∥2

2
≤ 1

λn2

n∑
i=1

d∑
l=1

∑
j>d

µ`µjE
[
‖Φ`‖22 φ

2
j (Xi)E[‖∆‖2H | {Xi}ni=1]

]
. (73)

Applying Hölder’s inequality yields

E
[
‖Φ`‖22 φ

2
j (Xi)E[‖∆‖2H | {Xi}ni=1]

]
≤
√

E[‖Φ`‖42 φ4
j (Xi)]

√
E[(E[‖∆‖2H | {Xi}ni=1])2].

Note that Lemma 14 provides the bound B4
λ,λ̄

on the final expectation. By definition of Φ`,

we find that

E[‖Φ`‖42 φ
4
j (xi)] = E

( n∑
k=1

φ2
` (xk)

)2

φ4
j (xi)

 ≤ n2E
[

1

2

(
φ8
` (x1) + φ8

j (x1)
)]
≤ n2ρ8,

where we have used Assumption A with moment 2k ≥ 8, or equivalently k ≥ 4. Thus

E
[
‖Φ`‖22 φ

2
j (Xi)E[‖∆‖2H | {Xi}ni=1]

]
≤ nρ4B2

λ,λ̄. (74)

Combining inequalities (73) and (74) yields the bound (70b).

C.3 Proof of Lemma 16

Using the fact that Q and M are diagonal, we have

E

[∥∥∥∥ 1

n
Q−1ΦT ε′ − λ̄Q−1M−1θ↓

∥∥∥∥2

2

]
=

d∑
j=1

Q−2
jj E

( 1

n

n∑
i=1

φj(Xi)ε
′
i −

λ̄θj
µj

)2
 . (75)

Fréchet differentiability and the fact that f∗
λ̄

is the global minimizer of the regularized
regression problem imply that

E[ξXiε
′
i] + λ̄f∗λ̄ = E

[
ξX
(〈
ξX , f

∗
λ̄

〉
− y
)]

+ λ̄f∗λ̄ = 0.

Taking the (Hilbert) inner product of the preceding display with the basis function φj , we
get

E
[
φj(Xi)ε

′
i −

λ̄θj
µj

]
= 0. (76)

Combining the equalities (75) and (76) and using the i.i.d. nature of {xi}ni=1 leads to

E

[∥∥∥∥ 1

n
Q−1ΦT ε′ − λ̄Q−1M−1θ↓

∥∥∥∥2

2

]
=

d∑
j=1

Q−2
jj var

(
1

n

n∑
i=1

φj(Xi)ε
′
i −

λ̄θj
µj

)

=
1

n

d∑
j=1

Q−2
jj var

(
φj(X1)ε′1

)
. (77)
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Using the elementary inequality var(Z) ≤ E[Z2] for any random variable Z, we have
from Hölder’s inequality that

var(φj(X1)ε′1) ≤ E[φj(X1)2(ε′1)2] ≤
√
E[φj(X1)4]E[σ4

λ̄
(X1)] ≤

√
ρ4
√
τ4
λ̄
,

where we used Assumption B′ to upper bound the fourth moment E[σ4
λ̄
(X1)]. Using the

fact that Q−1
jj ≤ 1, we obtain the following upper bound on the quantity (77):

1

n

d∑
j=1

Q−2
jj var(φj(X1)ε′1) =

1

n

d∑
j=1

var(φj(X1)ε′1)

1 + λ/µj
≤
γ(λ)ρ2τ2

λ̄

n
,

which establishes the claim.

Appendix D. Proof of Lemma 9

At a high-level, the proof is similar to that of Lemma 6, but we take care since the errors
f∗
λ̄
(x)−y are not conditionally mean-zero (or of conditionally bounded variance). Recalling

our notation of ξx as the RKHS evaluator for x, we have by assumption that f̂ minimizes the
empirical objective (39). As in our derivation of equality (40), the Fréchet differentiability
of this objective implies the first-order optimality condition

1

n

n∑
i=1

ξxi 〈ξxi ,∆〉+
1

n

n∑
i=1

(ξxi
〈
ξxi , f

∗
λ̄

〉
− yi) + λ∆ + λf∗λ̄ = 0, (78)

where ∆ := f̂−f∗
λ̄
. In addition, the optimality of f∗

λ̄
implies that E[ξxi(〈ξxi , f∗λ̄〉 − yi)] + λ̄f∗

λ̄
= 0.

Using this in equality (78), we take expectations with respect to {xi, yi} to obtain

E
[

1

n

n∑
i=1

ξXi 〈ξXi ,∆〉+ λ∆

]
+ (λ− λ̄)f∗λ̄ = 0.

Recalling the definition of the sample covariance operator Σ̂ := 1
n

∑n
i=1 ξxi ⊗ ξxi , we arrive

at
E[(Σ̂ + λI)∆] = (λ̄− λ)f∗λ̄ , (79)

which is the analogue of our earlier equality (41).
We now proceed via a truncation argument similar to that used in our proofs of Lem-

mas 6 and 7. Let δ ∈ `2(N) be the expansion of the error ∆ in the basis {φj}, so that
∆ =

∑∞
j=1 δjφj . For a fixed (arbitrary) d ∈ N, define

∆↓ :=
d∑
j=1

δjφj and ∆↑ := ∆−∆↓ =
∑
j>d

δjφj ,

and note that ‖E[∆]‖22 = ‖E[∆↓]‖22 +‖E[∆↑]‖22. By Lemma 14, the second term is controlled
by

‖E[∆↑]‖22 ≤ E[‖∆↑‖22] =
∑
j>d

E[δ2
j ] ≤

∑
j>d

µd+1

µj
E[δ2

j ] = µd+1E[‖∆↑‖2H] ≤ µd+1B
2
λ,λ̄. (80)
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The remainder of the proof is devoted to bounding ‖E[∆↓]‖22. Let f∗
λ̄

have the expansion
(θ1, θ2, . . .) in the basis {φj}. Recall (as in Lemmas 6 and 7) the definition of the matrix
Φ ∈ Rn×d by its coordinates Φij = φj(xi), the diagonal matrix M = diag(µ1, . . . , µd) �
0 ∈ Rd×d, and the tail error vector v ∈ Rn by vi =

∑
j>d δjφj(xi) = ∆↑(xi). Proceeding

precisely as in the derivations of equalities (45) and (61), we have the following equality:

E
[(

1

n
ΦTΦ + λM−1

)
δ↓
]

= (λ̄− λ)M−1θ↓ − E
[

1

n
ΦT v

]
. (81)

Recalling the definition of the shorthand matrix Q = (I + λM−1)1/2, with some algebra we
have

Q−1

(
1

n
ΦTΦ + λM−1

)
= Q+Q−1

(
1

n
ΦTΦ− I

)
,

so we can expand expression (81) as

E
[
Qδ↓ +Q−1

(
1

n
ΦΦT − I

)
δ↓
]

= E
[
Q−1

(
1

n
ΦTΦ + λM−1

)
δ↓
]

= (λ̄− λ)Q−1M−1θ↓ − E
[

1

n
Q−1ΦT v

]
,

or, rewriting,

E[Qδ↓] = (λ̄− λ)Q−1M−1θ↓ − E
[

1

n
Q−1ΦT v

]
− E

[
Q−1

(
1

n
ΦTΦ− I

)
δ↓
]
. (82)

Lemma 15 provides bounds on the first two terms on the right-hand-side of equation (82).
The following lemma provides upper bounds on the third term:

Lemma 17 There exists a universal constant C such that∥∥∥∥E [Q−1

(
1

n
ΦTΦ− I

)
δ↓
]∥∥∥∥2

2

≤ C(ρ2γ(λ) log d)2

n
E
[
‖Qδ↓‖22

]
, (83)

We defer the proof to Section D.1.

Applying Lemma 15 and Lemma 17 to equality (82) and using the standard inequality
(a+ b+ c)2 ≤ 4a2 + 4b2 + 2c2, we obtain the upper bound

∥∥∥E[∆↓]
∥∥∥2

2
≤

4(λ̄− λ)2
∥∥f∗

λ̄

∥∥2

H
λ

+
4ρ4B2

λ,λ̄
tr(K)βd

λ
+
C(ρ2γ(λ) log d)2

n
E
[
‖Qδ↓‖22

]
for a universal constant C. Note that inequality (72) provides a sufficiently tight bound on
the term E

[
‖Qδ↓‖22

]
. Combined with inequality (80), this completes the proof of Lemma 9.
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D.1 Proof of Lemma 17

By using Jensen’s inequality and then applying Cauchy-Schwarz, we find∥∥∥∥E [Q−1

(
1

n
ΦTΦ− I

)
δ↓
]∥∥∥∥2

2

≤
(
E
[∥∥∥∥Q−1

(
1

n
ΦTΦ− I

)
δ↓
∥∥∥∥

2

])2

≤ E

[∣∣∣∣∣∣∣∣∣∣∣∣Q−1

(
1

n
ΦTΦ− I

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣2
]
E
[
‖Qδ↓‖22

]
.

The first component of the final product can be controlled by the matrix moment bound
established in the proof of inequality (48). In particular, applying (55) with k = 2 yields a
universal constant C such that

E

[∣∣∣∣∣∣∣∣∣∣∣∣Q−1

(
1

n
ΦTΦ− I

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣2
]
≤ C(ρ2γ(λ) log d)2

n
,

which establishes the claim (83).
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