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Abstract

Factorization Machines (FM) are currently only used in a narrow range of applications and
are not yet part of the standard machine learning toolbox, despite their great success in
collaborative filtering and click-through rate prediction. However, Factorization Machines
are a general model to deal with sparse and high dimensional features. Our Factorization
Machine implementation (fastFM) provides easy access to many solvers and supports re-
gression, classification and ranking tasks. Such an implementation simplifies the use of
FM for a wide range of applications. Therefore, our implementation has the potential to
improve understanding of the FM model and drive new development.
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1. Introduction

This work aims to facilitate research for matrix factorization based machine learning (ML)
models. Factorization Machines are able to express many different latent factor models and
are widely used for collaborative filtering tasks (Rendle, 2012b). An important advantage
of FM is that the model equation

wo € R, z,w € R?,v; € R¥

P P P
M (z) := wo + Z w;T; + Z Z<Ui’ Vj)TiT; (1)
i=1 i=1 j>i
conforms to the standard notation for vector based ML. FM learn a factorized coefficient
(vs,v;) for each feature pair z;x; (eq. 1). This makes it possible to model very sparse feature
interactions, as for example, encoding a sample as z = {---,0, 1 ,0,---,0, 1 ,0,---}
yields 9™ (z) = wo + w; + w; + v} v; which is equivalent to (biased) matrix factorization
Rij ~ b + bj + bj + ul'v; (Srebro et al., 2004). Please refer to Rendle (2012b) for more
encoding examples. FM have been the top performing model in various machine learning
competitions (Rendle and Schmidt-Thieme, 2009; Rendle, 2012a; Bayer and Rendle, 2013)
with different objectives (e.g. What Do You Know? Challenge!, EMI Music Hackathon?).
fastFM includes solvers for regression, classification and ranking problems (see Table 1) and
addresses the following needs of the research community: (i) easy interfacing for dynamic

1. http://www.kaggle.com/c/WhatDoYouKnow
2. http://www.kaggle.com/c/MusicHackathon
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and interactive languages such as R, Python and Matlab; (ii) a Python interface allowing
interactive work; (iii) a publicly available test suite strongly simplifying modifications or
adding of new features; (iv) code is released under the BSD-license allowing the integration
in (almost) any open source project.

2. Design Overview

The fastFM library has a multi layered software architecture (Figure 1) that separates the
interface code from the performance critical parts (fastFM-core). The core contains the
solvers, is written in C and can be used stand alone. Two user interfaces are available: a
command line interface (CLI) and a Python interface. Cython (Behnel et al., 2011) is used
to create a Python extension from the C library. Both, the Python and C interface, serve
as reference implementation for bindings to additional languages.

2.1 fastFM-core

FM are usually applied to very sparse design matrices, often with

fastFM (Py) a sparsity over 95 %, due to their ability to model interaction
Cython CLI between very high dimensional categorical features. We use the
fastFM-core (C) standard compressed row storage (CRS) matrix format as under-
Figure 1: Library Archi- lying data structure and rely on the CXSparse?® library (Davis,
tecture 2006) for fast sparse matrix / vector operations. This simpli-

fies the code and makes memory sharing between Python and C
straight forward.
fastFM contains a test suite that is run on each commit to the GitHub repository via a
continuous integration server®. Solvers are tested using state of the art techniques, such as
Posterior Quantiles (Cook et al., 2006) for the MCMC sampler and Finite Differences for
the SGD based solvers.

2.2 Solver and Loss Functions

fastFM provides a range of solvers for all supported tasks (Table 1). The MCMC solver
implements the Bayesian Factorization Machine model (Freudenthaler et al., 2011) via Gibbs
sampling. We use the pairwise Bayesian Personalized Ranking (BPR) loss (Rendle et al.,
2009) for ranking. More details on the classification and regression solvers can be found in
Rendle (2012D).

Task Solver Loss

Regression ALS, MCMC, SGD | Square Loss

Classification | ALS, MCMC, SGD | Probit (MAP), Probit, Sigmoid
Ranking SGD BPR (Rendle et al., 2009)

Table 1: Supported solvers and tasks

3. CXSparse is LGPL licensed.
4. https://travis-ci.org/ibayer/fastFM-core
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2.3 Python Interface

The Python interface is compatible with the API of the widely-used scikit-learn library
(Pedregosa et al., 2011) which opens the library to a large user base. The following code
snippet shows how to use MCMC sampling for an FM classifier and how to make predictions
on new data.

fm = mcme.FMClassification(init_std=0.01, rank=8)
y-pred = fm.fit_predict(X_train, y_train, X_test)

fastFM provides additional features such as warm starting a solver from a previous solution
(see MCMC example).

fm = als.FMRegression(init_std=0.01, rank=8, 12_reg=2)
fm fit(X_train, y_train)

3. Experiments

libFM? is the reference implementation for FM and the only one that provides ALS and
MCMC solver. Our experiments show, that the ALS and MCMC solver in fastFM compare
favorable to libFM with respect to runtime (Figure 2) and are indistinguishable in terms of
accuracy. The experiments have been conducted on the MovieLens 10M data set using the
original split with a fixed number of 200 iterations for all experiments. The x-axis indicates
the number of latent factors (rank), and the y-axis the runtime in seconds. The plots show
that the runtime scales linearly with the rank for both implementations. The code snippet
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Figure 2: A runtime comparison between fastFM and 1ibFM is shown. The evaluation is done on
the MovieLens 10M data set.

below shows how simple it is to write Python code that allows model inspection after
every iteration. The induced Python function call overhead occurs only once per iteration
and is therefore neglectable. This feature can be used for Bayesian Model Checking as
demonstrated in Figure 3. The figure shows MCMC summary statistics for the first order
hyper parameter o,,. Please note that the MCMC solver uses Gaussian priors for the model
parameter (Freudenthaler et al., 2011).

5. http://libfm.org
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fm = mecmec.FMRegression(n_iter=0)
# initialize coefficients
fm.fit_predict(X_train, y_train, X _test)

for i in range(number_of_iterations):
y_pred = fm.fit_predict(X_train, y_train, X_test, n_more_iter=1)
# save, or modify (hyper) parameter
print(fm.w_, fm.V_, fm.hyper_param_)

Many other analyses and experiments can be realized with a few lines of Python code
without the need to read or recompile the performance critical C code.
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Figure 3: MCMC chain analysis and convergence diagnostics example for the hyperparameter o,
evaluated on the MovieLens 10M data set.

4. Related Work

Factorization Machines are available in the large scale machine learning libraries GraphLab
(Low et al., 2014) and Bidmach (Canny and Zhao, 2013). The toolkit Svdfeatures by Chen
et al. (2012) provides a general MF model that is similar to a FM. The implementations in
GraphLab, Bidmach and Svdfeatures only support SGD solvers and don’t provide a ranking
loss. It’s not our objective to replace these distributed machine learning frameworks: but to
be provide a FM implementation that is easy to use and easy to extend without sacrificing
performance.
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