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Abstract

Learning risk scores to predict dichotomous or continuous outcomes using machine learning
approaches has been studied extensively. However, how to learn risk scores for time-to-event
outcomes subject to right censoring has received little attention until recently. Existing
approaches rely on inverse probability weighting or rank-based regression, which may be
inefficient. In this paper, we develop a new support vector hazards machine (SVHM)
approach to predict censored outcomes. Our method is based on predicting the counting
process associated with the time-to-event outcomes among subjects at risk via a series of
support vector machines. Introducing counting processes to represent time-to-event data
leads to a connection between support vector machines in supervised learning and hazards
regression in standard survival analysis. To account for different at risk populations at
observed event times, a time-varying offset is used in estimating risk scores. The resulting
optimization is a convex quadratic programming problem that can easily incorporate non-
linearity using kernel trick. We demonstrate an interesting link from the profiled empirical
risk function of SVHM to the Cox partial likelihood. We then formally show that SVHM
is optimal in discriminating covariate-specific hazard function from population average
hazard function, and establish the consistency and learning rate of the predicted risk using
the estimated risk scores. Simulation studies show improved prediction accuracy of the
event times using SVHM compared to existing machine learning methods and standard
conventional approaches. Finally, we analyze two real world biomedical study data where
we use clinical markers and neuroimaging biomarkers to predict age-at-onset of a disease,
and demonstrate superiority of SVHM in distinguishing high risk versus low risk subjects.
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1. Introduction

Time-to-event outcome is of interest in many scientific studies in which right censoring oc-
curs when subjects’ event times are longer than the duration of studies or subjects drop out
of the study prematurely. One important goal in these studies is to use baseline covariates
collected on a newly recruited subject to construct an effective risk score to predict likeli-
hood an event of interest. For example, in one of our motivating studies analyzed in Section
4.2 (PREDICT-HD, Paulsen et al. 2008a), the research aim is to combine neuroimaging
biomarkers with clinical markers measured at the baseline to provide risk stratification for
time-to-onset of Huntington’s disease (HD) to facilitate early diagnosis, where subjects who
did not experience HD during the study had censored HD onset time. This critical goal
of identifying prognostic markers predictive of disease onset is shared by research commu-
nities on other neurological disorders such as Alzheimer’s disease and Parkinson’s disease,
and recognized as one of the primary aims in research initiatives such as Alzheimer’s Dis-
ease Neuroimaging Initiative (Mueller et al., 2005) and Parkinson’s Progression Markers
Initiative (Marek et al., 2011).

Learning risk scores for binary or continuous outcomes are examined extensively in sta-
tistical learning literature (Hastie et al., 2009). However, learning risk scores for occurrence
of an event subject to censoring is much less explored. Existing work on survival analysis
focuses on estimating population-level quantities such as survival function or association
parameters through hazard function. For example, the most popular model for the time-
to-event analysis is the Cox proportional hazards model (Cox, 1972), which assumes the
hazard ratio between two subjects with different covariate values stays as a constant as time
progresses. A Cox partial likelihood function is maximized for estimation. When the pro-
portional hazards assumption is violated, several alternative models have been proposed in
statistics literature, including the proportional odds model (Bennett, 1983), the accelerated
failure time model (Buckley and James, 1979), the linear transformation models (Dabrowska
and Doksum, 1988; Cheng et al., 1995; Chen et al., 2002), and more recently general transfor-
mation models (Zeng and Lin, 2006, 2007). The above models are all likelihood-based which
impose certain parametric or semiparametric relationship between the underlying hazard
function and the covariates. In addition, they are designed to estimate the population-level
parameters for the association between covariates and the time-to-event outcomes (and thus
uses likelihood as the optimization function), but do not directly focus on individual risk
scores for predicting an event time.

For non-censored outcomes, supervised learning plays an important role for risk predic-
tion. In many applications, a large number of input variables with known output values are
used to learn an unknown functional relationship between the inputs and outputs through
a suitable algorithm, and the learned functional is used to predict the output value for fu-
ture subjects from their input variables (Steinwart and Christmann, 2008). Many learning
approaches have been developed for standard classification and regression problems, such
as kernel smoothing, support vector machines (SVM), projection pursuit regression, neural
network, and decision trees (Hastie et al., 2009). In particular, support vector machine is
among one of the most popular and successful learning methods in practice (Mogueraza and
Munoz, 2006; Orru et al., 2012). From the training data, support vector machine finds a hy-
perplane that separates the data into two classes as accurately as possible and has a simple
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geometric interpretation. In addition, the algorithm can be written as a strictly convex op-
timization problem, which leads to a unique global optimum and incorporates non-linearity
in an automatic manner using various kernel machines. By reformulating the algorithm
into a minimization of regularized empirical risk, Steinwart (2002) established the univer-
sal consistency and learning rate on some functional space. Support vector machines have
also been applied to continuous outcomes through regression (Smola and Schölkopf, 2004),
multicategory discrete outcomes (Lee et al., 2004), and structured classification problems
(Wang et al., 2011).

For time-to-event outcomes, right censoring makes developing supervised learning tech-
niques challenging due to missing event times for censored subjects and a lack of standard
prediction loss function. Ripley and Ripley (2001) and Ripley et al. (2004) discussed models
for survival analysis based on neural network. Bou-Hamad et al. (2011) reviewed survival
tree approaches in the recent work as non-parametric alternatives to semiparametric mod-
els. Compared to survival trees, effectively extending the support vector–based methods
to censored data is still an on-going research. Shivaswamy et al. (2007) and Khan and
Zubek (2008) proposed asymmetric modifications to the ε-insensitive loss function of sup-
port vector regression (SVR) to handle censoring. Specifically, they penalized the censored
and non-censored subjects using different loss functions to extract incomplete information
due to censoring. Van Belle et al. (2010) proposed a least-squares support vector machine,
where they adopted the concept of concordance index and added rank constraints to handle
censored data. In their method, the empirical risk of miss-ranking two data points with
respect to their event times was minimized. Furthermore, Van Belle et al. (2011) conducted
numerical experiments to compare some recent machine learning methods for censored data
and proposed a modified procedure to adjust for censoring based on both rank and regres-
sion constraints. Their results indicate that including two types of constraints performs
the best regarding the prediction accuracy. None of the above methods has theoretical
justification and the relationship between their objective loss functions to be minimized
and the goal of predicting survival time remains unclear. The rank-based methods only use
feasible pairs of observations whose ranks are comparable so that it may result in potential
selection bias when constructing prediction rules, especially when the censoring mecha-
nism is not completely at random (e.g., censoring time depends/correlates with a subject’s
covariates). Recently, Goldberg and Kosorok (2013) used inverse-probability-of-censoring
weighting to adapt standard support vector methods for complete data to censored data.
However, inverse weighting is known to be inefficient (Robins et al., 1995) due to the fact
that it discards useful information for some subjects known to survive longer than observed
times, and in addition, this method may exhibit severe bias when the censoring distribution
is misspecified. Additionally, the weights used in the inverse weighting can be large in some
situations, and computation of Goldberg and Kosorok (2013) becomes numerically unstable
and even infeasible.

In this work, we propose a new support vector hazards machine (SVHM) framework
to learn risk scores for survival outcomes using the concept of counting process. We aim
to maximally separate event and no-event subjects among all subjects at risk, and allow
censoring times to depend on covariates without modeling the censoring distribution. One
major challenge in predicting censored event times is the difficulty of defining a sensible loss
function for prediction. Because of the equivalence of an event time to its counting process,
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if a prediction rule can adequately predict the event time, the same rule should also predict
the counting process at any given time that a subject is still at risk. We propose a flexible
nonparametric decision function with an additive structure for the counting process, which
gives the desirable risk scores but also includes a time-varying offset to account for different
at-risk population as time progresses. Empirically, we transform the prediction of an event
time to predicting a sequence of binary outcomes for which algorithm such as support vector
machine (SVM) is standard and commonly used. This transformation allows for the success-
ful statistical learning tools designed for classification and prediction of binary outcomes to
be used for censored outcomes without modeling the censoring distribution. The developed
algorithm formulation is similar to the standard support vector machines and can be solved
conveniently using any convex quadratic programming packages. In addition, theoretical
analysis shows that the optimal rule obtained from SVHM is equivalent to maximizing
the difference between the instantaneous subject-specific hazards and population-average
hazard, which intuitively links SVHM to the commonly used hazards regression models in
traditional survival analysis. The profile loss shares similarity with Cox partial likelihood.
Under some regularity conditions, we show the universal consistency of SVHM and derive
corresponding finite sample bounds on the deviation from the optimal risk. Numeric simu-
lations and applications to real world studies show superior performance in distinguishing
high risk versus low risk subjects.

2. Learning Risk Scores with SVHM

In this section, we first introduce the population loss function that SVHM aims to optimize
with infinite sample and its corresponding Bayes risk. Next, we lay out the algorithm to
empirically learn the risk scores and assess the empirical risk.

2.1 Review of Survival Analysis and Introduction of Counting Process
Framework for SVHM

We begin by briefly introducing basic concepts and notation of classical survival analysis
(c.f. Fleming and Harrington, 1991). Survival analysis focuses on using covariates to predict
time to event outcomes. The events of interest can be death, diagnosis of a disease, onset
of cancer metastasis, or failure of a machine component. An event time of interest (i.e.,
age at onset of a disease) is usually denoted by T , and a vector of baseline covariates (e.g.,
genomic risk factors) is denoted by X. The main goals of survival analysis are to understand
association between X and T or predicting T from X. A fundamental problem of survival
analysis is to deal with incomplete observation of T due to that the event may not occur in
some of the subjects due to study termination or subjects dropping out of the study. For
example, in a study on predicting time to cancer metastasis, some subjects may not develop
metastasis by the end of study period, and thus their T is not observed. These subjects are
termed as being censored and their time to study termination is termed as censoring time,
usually denoted by C. For each subject in the study, we observe either their event time T
or censoring time C, whichever is smaller. This observation is usually denoted by Ti ∧ Ci,
where the operator (a ∧ b) denotes taking minimum of a and b. A usual assumption in
survival analysis is that the censoring time C is independent of T given covariates X. From
a random sample of n subjects, the observed data consist of {Ti ∧Ci,∆i = I(Ti ≤ Ci),Xi}
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for i = 1, . . . , n, where I(·) is an indicator function and I(Ti ≤ Ci) is thus the event
indicator. The central quantity of interest in a survival analysis is occurrence of an event
over time. Such occurrences are equivalent to point processes described by counting the
number of events as they occur by certain time point, termed as counting processes. That is,
a counting process of the event on subject i counts the number of events that have occurred
up to, and including t, and is denoted as Ni(t) = I[(Ti ∧ Ci) ≤ t]. Corresponding to the
counting process for the events, the at-risk process counts subjects who have not yet had
an event by time t and thus who are still “at risk” of experiencing an event. Such process
is denoted by Yi(t) = I[(Ti ∧ Ci) ≥ t].

The fundamental idea to learn risk scores for T to distinguish high risk versus low risk
subjects is to equivalently learn risk scores for the counting process associated with T at
each time point. Since the latter can be treated as a sequence of binary outcomes (event
vs. no event) over time, it motivates one to reformulate the problem as deriving the risk
score for predicting the jumps of the counting process over a sequence of time points among
subjects still at risk at those times. This amounts to developing a classification rule to
predict whether a subject will experience an event in the next immediate time point given
that the subject has not yet experienced an event. To account for different risk sets as time
progresses (i.e., risk set at time t is the subset of subjects with Yi(t) = 1) , it is necessary to
include a time-varying offset for the nonparametric risk score. Thus, consider the following
general form at time t for a subject with X = x,

f(t,x) = α(t) + g(x), (1)

where both α(·) and g(·) are unknown nonparametric functions, g(x) is the risk score, and
α(t) is the time-varying offset. To understand (1), consider a risk score function at time t
for a subject with X = x: if this subject is still at risk at time t, we predict the subject
to experience the event at the next immediate time point if f(t,x) > 0, and predict as
event-free if f(t,x) ≤ 0. Thus, within a small time interval [t, t + dt), where dt denotes a
positive infinitesimal unit, a natural prediction loss counting rate of risk-misclassification is
given by

Y (t)dN(t)I(f(t,X) < 0) + Y (t)(1− dN(t))I(f(t,X) ≥ 0),

where Y (t) and X are the at risk process and covariates for a subject drawn from the
population, respectively, and dN(t) denotes the number of jumps of the counting process
N(t) in a small time interval [t, t + dt). Equivalently, dN(t) = 1 if T ∈ [t, t + dt) and
dN(t) = 0 otherwise, so it is a binary variable taking value one if an event occurs in the
interval [t, t+dt) for subjects who are still at risk for experiencing an event. Thus, summing
above loss function over subjects counts the number of at-risk subjects miss-classified by
the prediction rule f(t,X). The above prediction loss can be viewed as a natural extension
of the 0-1 loss for binary case to capture the same information for an at-risk subject in a
survival analysis: if the prediction function and the observed counting process at time t
are inconsistent, a loss is incurred. However, at any time t, the probability of dN(t) = 1
is almost zero as compared to the probability of dN(t) = 0, which implies that the above
prediction loss is completely dominated by non-event subjects in the risk set. In order to
balance the contribution from subjects with and without events at any given time, borrowing
from the weighted SVM for unbalanced classes, a sensible prediction loss is the following

5



Wang, Chen and Zeng

weighted loss, where the ratio of weights for two unbalanced classes is proportional to
E[dN(t)]/E[Y (t)]:

Y (t)dN(t)I(f(t,X) ≤ 0) +
E[dN(t)]

E[Y (t)]
Y (t)(1− dN(t))I(f(t,X) ≥ 0). (2)

This weighting scheme can also be understood in the context of nested case-control design.
That is, select one subject from the event class, {i : dNi(t) = 1}, at this interval and another
subject from the non-event class, {i : dNi(t) = 0}, using E[dN(t)]/E[Y (t)] as the sampling
weights for the latter. Consequently, an overall weighted prediction loss for the proposed
SVHM, which is the expectation of (2) and ignores infinitesimal terms, is

R0(f) = E

(∫
Y (t)I [f(t,X) ≤ 0] dN(t)

)
+

∫
E (Y (t)I [f(t,X) ≥ 0])

E(Y (t))
E(dN(t)),

where the expectation is with respect to random variables Y (t) and dN(t). Our goal of
learning a prediction rule for T , or equivalently, N(t), based on the censored data is to
minimize the population loss R0(f).

To define the empirical loss, suppose there are m distinct ordered event times, t1 < t2 <
. . . < tm. We let

δNi(tj) ≡ 2(Ni(tj)−Ni(tj−))− 1

so δNi(tj) takes values 1 or −1 depending on whether the ith subject experiences an event
at tj or not. Learning f(t,x) becomes a sequence of binary classification problems over
tj ’s. Furthermore, at each tj and for subject i at risk at tj , we use the following weight
associated with the risk set size at tj :

wi(tj) = I {δNi(tj) = 1}
{

1− 1∑n
i=1 Yi(tj)

}
+ I {δNi(tj) = −1}

{
1∑n

i=1 Yi(tj)

}
.

Note that the weights wi(tj) are the empirical version of the weights used in (2) with similar
interpretation as the reciprocal of the empirical probability of remaining event free or expe-
riencing an event at the observed event time. Such weights balance the differential size of
event class and non-event class at time tj . Then an optimal decision function that minimizes
the empirical version of R0(f) is to minimize the following weighted total misclassification
error:

R0n(f) = n−1
n∑
i=1

m∑
j=1

wi(tj)Yi(tj)I(δNi(tj)f(tj ,Xi) < 0), (3)

where the term Yi(tj) reflects that only subjects still at risk will contribute towards predic-
tion.

Directly minimizing (3) is difficult due to non-smoothness of the 0-1 loss in the indicator
function. Furthermore, no restriction on the complexity of f leads to potential overfitting.
To handle these issues, we adopt the same idea as SVM for supervised learning to replace
the 0-1 loss in (1) by the hinge loss, and impose regularization to estimate f . Specifically,
we propose to minimize the following regularized SVHM loss:

Rn(f) + λn‖f‖2,
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with Rn(f) ≡ n−1
n∑
i=1

m∑
j=1

wi(tj)Yi(tj)[1− f(tj ,Xi)δNi(tj)]+, (4)

where [1 − x]+ = max(1 − x, 0) is the hinge loss, ‖ · ‖ is a suitable norm or semi-norm for
f to be discussed in the following sections, and λn is the regularization parameter. This
minimization is equivalent to maximizing the margin between subjects in the event and non-
event classes subject to an upper bound on the misclassification rate. Since this learning
method is a weighted version of the standard support vector machines and learning f(t,x)
is essentially learning the hazard rate function, we refer our proposed method as “support
vector hazards machine”.

2.2 Learning Algorithm

Next, we describe the computational algorithm to solve the optimization in (4). We do not
impose any restriction on α(t), and assume g(x) lies in a reproducing kernel Hilbert space
Hn with a kernel function K(x,x′). Commonly used kernels include linear kernel, where
K(x,x′) = 〈x,x′〉; radial basis kernel, where K(x,x′) = exp(−‖x−x′‖2/σ); and lth-degree
polynomial kernel, where K(x,x′) = (1 + 〈x,x′〉)l. Furthermore, let ‖f‖ = ‖g‖Hn which is
the norm in the reproducing kernel Hilbert space Hn. The minimization in (3),

min
α,g

1

n

n∑
i=1

m∑
j=1

wi(tj)Yi(tj)[1− (α(tj) + g(Xi))δNi(tj)]+ + λn‖g‖2Hn
, (5)

is equivalent to

min
α,g

1

2
‖g‖2Hn

+ Cn

n∑
i=1

m∑
j=1

wi(tj)Yi(tj)ζi(tj), (6)

subject to Yi(tj)ζi(tj) ≥ 0, i = 1, · · · , n, j = 1, · · · ,m,
Yi(tj)δNi(tj){α(tj) + g(Xi)} ≥ Yi(tj){1− ζi(tj)}, i = 1, · · · , n, j = 1, · · · ,m,

where the value ζi(tj) is the proportional amount by which the prediction is on the wrong
side of its margin at time tj , and Cn is the cost parameter.

The constrained optimization in (6) is usually solved by turning it into its dual form
(through including Lagrange multipliers of the constraints into the objective function). We
convert the above problem to its dual form by using the corresponding Lagrangian function

Lp =
1

2
‖g‖2Hn

+ Cn

n∑
i=1

m∑
j=1

wi(tj)Yi(tj)ζi(tj)−
n∑
i=1

m∑
j=1

µijYi(tj)ζi(tj)

−
n∑
i=1

m∑
j=1

γij [Yi(tj)δNi(tj){α(tj) + g(Xi)} − Yi(tj){1− ζi(tj)}],

where µij ≥ 0 and γij ≥ 0 are the corresponding Lagrange multipliers. Let {φ1, φ2, ...} be
the orthornomal basis system in Hn and g(X) =

∑∞
k=1 βkφk(X). Then after differentiating
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the Lagrangian function with respect to β’s, α(tj)’s and ζi(tj)’s, we obtain

βk =
n∑
i=1

m∑
j=1

γijYi(tj)δNi(tj)φk(Xi), k = 1, 2, · · · ,

n∑
i=1

γijYi(tj)δNi(tj) = 0,

Cnwi(tj)Yi(tj)− µijYi(tj) = γijYi(tj), i = 1, · · · , n, j = 1, · · · ,m,

as well as the positivity constraints γij , µij , ζi(tj) ≥ 0 for all i and j. By substituting
these back to Lp and noting that

∑∞
k=1 φk(Xi)φk(X) = K(Xi,X) (Theorem 4.2, Steinwart

(2002)), we obtain the dual objective function to be

LD =

n∑
i=1

m∑
j=1

γijYi(tj)−
1

2

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

γijγi′j′Yi(tj)Yi′(tj′)δNi(tj)δNi′(tj′)K(Xi,Xi′),

(7)
and the optimization is carried out by maximizing LD with respective to γij subject to
0 ≤ γij ≤ wi(tj)Cn and

∑n
i=1 γijYi(tj)δNi(tj) = 0 for i = 1, . . . , n and j = 1, . . . ,m.

This optimization can be solved using quadratic programming packages available in many
softwares (for example, MOSEK toolbox in Matlab). The tuning parameter Cn is chosen
by cross-validation searching over a grid of values. Denote γ̂ij as the solutions for γij
obtained from the optimization procedure in (7). Comparing (7) with existing standard
support vector machine algorithms, we see that the objective function sums across all at-
risk subjects and across all time points for which they are at risk. Constraints are placed
on those subjects and time points.

Next, from the equalities between βk’s and γij ’s in the above duality derivation, the

solutions for βk (denoted as β̂k) are given by

β̂k =
n∑
i=1

m∑
j=1

γ̂ijYi(tj)δNi(tj)φk(Xi), k = 1, 2, · · · .

Thus, the solution for g that minimzies (5), which is the risk score for a future subject with
baseline covariates x, is

ĝ(x) =
∞∑
k=1

β̂kφk(x) =
n∑
i=1

m∑
j=1

γ̂ijYi(tj)δNi(tj)
∞∑
k=1

φk(Xi)φk(x)

=
n∑
i=1

m∑
j=1

γ̂ijδNi(tj)K(x,Xi).

It follows that those data points with γ̂ij > 0 form support vectors and determine g(X).
Furthermore, to determine the solution to α(tj) at each tj , denoted by α̂(tj), we solve

the Karush-Kuhn-Tucker (KKT) conditions

γij [Yi(tj)δNi(tj){α(tj) + g(Xi)} − Yi(tj){1− ζi(tj)}] = 0,
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Yi(tj)ζi(tj) ≥ 0,

Yi(tj)δNi(tj){α(tj) + g(Xi)} − Yi(tj){1− ζi(tj)} ≥ 0.

Specifically, if there are some support vectors lying on the edge of the margin which are
characterized by 0 < γ̂ij < wi(tj)Cn, α̂(tj) = 1/δNi(tj) − ĝ(Xi) for these points, and we
take the average of all the solutions for numerical stability. If all the support vectors at tj
are γ̂ij = Cnwi(tj), α̂(tj) is not unique and falls into a range

min
Yi(tj)=1,γ̂ij=Cnwi(tj),

δNi(tj)=1

{1− ĝ(Xi)} ≥ α̂(tj) ≥ max
Yi(tj)=1,γ̂ij=Cnwi(tj),

δNi(tj)=−1

{−1− ĝ(Xi)}.

In this case, we take α̂(tj) = 1− ĝ(Xi) where δNi(tj) = 1 for some i with Yi(tj) = 1.

Since a higher value of the prediction function α̂(t) + ĝ(x) leads to a greater likelihood
of having an event at an earlier time, the magnitude of ĝ(x) induces a natural ordering
of the risks. Lastly, the learned risk scores can be used to predict the event time for any
future subjects using their baseline covariates x. To this end, consider the nearest-neighbor
prediction: for a future subject with X = x, find k (k=1 or 3 in our applications) non-
censored subjects in the training data whose predictive scores are closest to ĝ(x), denoted
as ĝ(Xj). To maintain the monotone relationship between the event times and predictive
scores, sort these scores of non-censored subjects in the training data in descending order
and identify the rank of ĝ(Xj). Next, sort the event times of the derived scores in the
training data in ascending order and find the event times with the same rank as the rank
of ĝ(Xj), denoted as Tj′ . The event time for this subject is predicted as Tj′ (or the average
of Tj′ for k = 3). We provide a detailed description of SVHM algorithm in Appendix A.

2.3 Connection with Existing Support Vector-Based Approaches

Support vector-based approaches in machine learning literature are motivated by the fact
that they are easy to compute and enable estimation under weak or no assumptions on
the distribution. Most of these approaches (Shivaswamy et al., 2007; Van Belle et al., 2010,
2011) adapt the ε-insensitive loss for SVR to account for incomplete observations in time-to-
event data. To improve performance, modified SVR (Van Belle et al., 2011) further places
ranking constraints under the ε-insensitive loss. The formulation of the problem is

min
w,ε,ξ,ξ∗

1

2
wTw + λ1

∑
i

εi + λ2
∑
i

(ξi + ξ∗i ), (8)

subject to wT (ϕ(Xi)− ϕ(Xj(i)) ≥ Yi − Yj(i) − εi, i = 1, · · · , n,
wTϕ(Xi) + b ≥ Yi − ξi, i = 1, · · · , n,

∆i(w
Tϕ(Xi) + b) ≥ −∆iYi − ξ∗i , i = 1, · · · , n,
εi ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, · · · , n,

where Yi = Ti ∧Ci, ϕ(·) is the feature map that does not need to be specified explicitly in a
kernel-based method, and j(i) indicates the subject with the largest event time smaller than
Zi. The first set of constraints above aims at ensuring rank consistency to maximize C-
index for predicting survival outcomes, and the second and third sets of constraints are the
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same as the regression constraints in Shivaswamy et al. (2007) for the modified ε-insensitive
loss for survival outcomes. One potential problem with the above optimization is that the
observations contributing to these three sets of constraints may consist of a selected (non-
censored) sample from the full data; thus, the derived prediction rule will likely favor those
observations which contribute most.

Furthermore, comparing the modified SVR in (8) with SVHM in (6), we see that the
loss function for the former is the ε-insensitivity loss plus the loss resulting from violating
rank consistency, while for the latter it is sum of a sequence of hinge losses. The objective
function and the slack variables (i.e., εi, ξi, ξ

∗
i ) for the modified SVR, however, are time-

invariant, while the slack variables for SVHM (i.e., ζi(tj) in (8)) are time-sensitive. Thus,
we expect better control of the prediction error by SVHM. Note that this advantage stems
from the counting process formulation of SVHM transforming prediction of time-to-event
outcomes (or survival outcomes) as a sequence of binary prediction problems over time.

2.4 Connection with the Cox Partial Likelihood

In classical survival analysis using Cox regression model (Cox, 1972), partial likelihood plays
a central role since it only involves association parameter of interest (i.e., hazard ratios as
regression coefficients) but not the nuisance parameter (i.e., baseline hazard function), and
maximizing the partial likelihood directly estimates the hazard ratios. The partial likelihood
is constructed by multiplying together the conditional probabilities of observing an event for
individual i at time t, given the past and given that an event is observed at that time, over
all observed event times. This conditional probability formulation shares some similarity
with our hazard formulation for SVHM. Since maximizing Cox partial likelihood leads to
regression estimators that enjoy optimal statistical property (i.e., being semiparametric
efficient, Bickel et al. (1998)), it is worth to draw connection between SVHM and partial
likelihood to shed lights on the theoretical properties of SVHM.

To this end, we further explore the optimization in (5) to compare the SVHM objective
function and the Cox partial likelihood. First note that the function α(t) in (5) is analogous
to the baseline hazard function in the Cox model (Cox, 1972), which is treated as a nuisance
parameter and profiled out for inference. Thus, we also profile out α(t) to investigate the
profile risk function for SVHM (e.g., substitute fitted α(t) in the original risk function).
For a fixed g(x), from the derivation similar to Hastie et al. (2009) (p421) and Abe (2010)
(p77), we can show that at each tj , if there are some support vectors lying on the edge of
the margin which are characterized by 0 < γij < wi(tj)Cn, these margin points can be used
to solve for α(tj). This yields

α̂(tj) = 1− g(Xi), δNi(tj) = 1.

Note that Xi is the covariate value for the subject who has an event at tj . However, if γij
is not within (0, wi(tj)Cn, α̂(tj) can be any value satisfying

min
γ̂ij=Cnwi(tj),
δNi(tj)=1

{1− g(Xi)} ≥ α(tj) ≥ max
γ̂ij=Cnwi(tj),
δNi(tj)=−1

{−1− g(Xi)}.

10
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In this case, taking α̂(tj) = 1− g(Xi) where δNi(tj) = 1 satisfies these constraints. Further
note that optimizing (5) is equivalent to minimizing

1

n

n∑
i=1

d∑
j=1

Yi(tj)wi(tj)[1− (α(t) + g(Xi))δNi(tj)]+ + λn‖g‖Hn

=
1

n

n∑
i=1

∫
[1− (α(t) + g(Xi))]+dNi(t) +

1

n

∫ ∑n
i=1 Yi(t)[1 + (α(t) + g(Xi))]+∑n

i=1 Yi(t)
d

{
n∑
i=1

Ni(t)

}

− 1

n

n∑
i=1

∫
1∑n

i=1 Yi(t)
([1− (α(t) + g(Xi))]+ + [1 + (α(t) + g(Xi))]+) dNi(t) + λn‖g‖Hn .

After we plug the expression of α̂(t) =
∑n

i=1(1 − g(Xi))I(δNi(t) = 1) into the above
expression, we obtain

1

n

n∑
i=1

∫
[1− (α̂(t) + g(Xi))]+dNi(t) =

1

n

n∑
i=1

∆i[1− (1− g(Xi) + g(Xi))])+ = 0,

and similarly,

1

n

n∑
i=1

∫
1∑n

i=1 Yi(t)
([1− (α̂(t) + g(Xi))]+ + [1 + (α̂(t) + g(Xi))]+) dNi(t) =

2

n

n∑
i=1

∫
dNi(t)∑n
i=1 Yi(t)

.

Additionally,

1

n

∫ ∑n
i=1 Yi(t)[1 + (α̂(t) + g(Xi))]+∑n

i=1 Yi(t)
d

{
n∑
i=1

Ni(t)

}

=
1

n

n∑
k=1

∆k

∑n
i=1 I(Yi ≥ Yk)[1 + (α̂(Xk) + g(Xj))]+∑n

i=1 I(Yi ≥ Yk)

=
1

n

n∑
k=1

∑n
i=1 I(Yi ≥ Yk)[2− g(Xk) + g(Xi)]+∑n

i=1 I(Yi ≥ Yk)
∆k.

The objective function (5) can be written as PRn(g) + λn‖g‖2Hn
, where

PRn(g) =
1

n

n∑
i=1

∫ ∑n
k=1 Yk(t)[2− g(Xi) + g(Xk)]+∑n

k=1 Yk(t)
dNi(t)−

2

n

n∑
i=1

∫
dNi(t)∑n
k=1 Yk(t)

=
1

n

n∑
i=1

∆i

∑n
k=1 I(Yk ≥ Yi)[2− g(Xi) + g(Xk)]+∑n

k=1 I(Yk ≥ Yi)
− 2

n

n∑
i=1

∆i∑n
k=1 I(Yk ≥ Yi)

= Pn

(
∆

P̃n{I(Ỹ ≥ Y )[2 + g(X̃)− g(X)]+}
P̃n[I(Ỹ ≥ Y )]

)
− 2

n
Pn

{
∆

P̃n[I(Ỹ ≥ Y )]

}
.

Here, Pn denotes the empirical measure from n observations and P̃n is the empirical measure
applied to (Ỹ , X̃, ∆̃), an i.i.d copy of (Y,X,∆). Thus, ĝ(x) minimizes PRn(g) + λn‖g‖2Hn

.
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If we let f̂(x, t) = α̂(t) + ĝ(x) be the function minimizing (5) over g ∈ Hn, then Rn(f̂) =
PRn(ĝ).

In a Cox partial likelihood function, g(X) is estimated by minimizing

Pn

(
∆ log

P̃n{I(Ỹ ≥ Y ) exp{g(X̃)− g(X)}}
P̃n[I(Ỹ ≥ Y )]

)
.

Therefore, it is worthy to point out one interesting observation: both PRn(g) and the Cox
partial likelihood take a similar form which essentially evaluates a loss comparing the risk
scores from the subjects at risk versus the one from the subject who has an event at the
same time. SVHM uses a hinge loss while Cox partial likelihood uses an exponential loss
and a logarithm transformation, which is similar to the contrast between SVM and logistic
regression. The robustness of hinge loss compared to exponential loss suggests SVHM will
be less sensitive to extreme observations. In addition, this connection sheds lights on the
theoretical optimality of SVHM which we prove in the next section.

3. Theoretical Properties

In this section, we study the asymptotic properties of SVHM and the predicted risk. We first
derive the population risk function for the proposed SVHM. Next, we derive the optimal
fully nonparametric decision rule for this risk function and show that it also optimizes the
0-1 loss corresponding to (3). We highlight important differences in the theoretical proof
that distinguish this work from the standard proofs in the statistical learning theories.

3.1 Risk Function and Optimal Risk Classification Rule

To derive the population risk function for SVHM, we first examine the population version
(the expectation) of Rn(f). Recall the definition of Rn(f) is given in (4) as

Rn(f) = n−1
n∑
i=1

m∑
j=1

I{δNi(tj) = 1}(
∑n

l=1 Yl(tj)− 1)∑n
l=1 Yl(tj)

[1− f(tj ,Xi)]+

+n−1
n∑
i=1

m∑
j=1

I{δNi(tj) = 1}∑n
l=1 Yl(tj)

[1 + f(tj ,Xi)]+.

After re-arranging the terms and adopting counting process notation, we can rewrite Rn(f)
as

Rn(f) =
1

n

n∑
i=1

∫
Yi(t)[1− f(t,Xi)]+dNi(t) +

1

n

∫ ∑n
i=1 Yi(t)[1 + f(t,Xi)]+∑n

i=1 Yi(t)
d

{
n∑
i=1

Ni(t)

}

− 1

n

n∑
i=1

∫
1∑n

i=1 Yi(t)
([1− f(t,Xi)]+ + [1 + f(t,Xi)]+) dNi(t).

Note that the last term in Rn(f) is on the order of O(1/n), so it vanishes as n goes to
infinity. By the central limit theorem, we obtain the asymptotic limit of Rn(f), denoted as

12



Support Vector Hazards Machine

R(f), to be

R(f) = E

(∫
Y (t)[1− f(t,X)]+dN(t)

)
+

∫
E (Y (t)[1 + f(t,X)]+)

E(Y (t))
E(dN(t)).

Likewise, similar arguements show that the empirical risk based on the prediction error in
(1), i.e., R0n(f), converges to R0(f).

Let f∗(t,x) denote the limit of the risk function estimated by SVHM (i.e., the optimal
function minimizing R(f)). Since the difference between R(f) and R0(f) is the hinge
loss versus the zero-one loss, one question is whether f∗(t,x) also minimizes R0(f). The
following theorem gives such a result for f∗(t,x).

Theorem 3.1 Let h(t,x) denote the conditional hazard rate function of T = t given X = x
and let h̄(t) = E[dN(t)/dt]/E[Y (t)] = E[h(t,X)|Y (t) = 1] be the average hazard rate at
time t. Then f∗(t,x) = sign(h(t,x) − h̄(t)) minimizes R(f). Furthermore, f∗(t,x) also
minimizes R0(f) and

R0(f
∗) = P (T ≤ C)− 1

2
E

[∫
E(Y (t)|X = x)|h(t,x)− h̄(t)|dt

]
.

In addition, for any f(t,x) ∈ [−1, 1],

R0(f)−R0(f
∗) ≤ R(f)−R(f∗),

where h(t,x) denotes the conditional hazard rate of T = t given X = x and h̄(t) is the
population average hazard at time t,

h̄(t) =
E[dN(t)]/dt

E[Y (t)]
= E[h(t,X)|Y (t) = 1].

The proof of Theorem 3.1 is provided in the Appendix B. Theorem 3.1 resembles the
excess risk in most learning theories (Bartlett et al., 2006); however, the loss function in
our case is some composite expectation, R0(f), which is not covered by Bartlett et al.
(2006). From Theorem 3.1, we see that the optimal rule is essentially to predict whether
an at-risk subject will experience an event by comparing the subject-specific hazard rate
depending on the covariate to the population-average hazard rate obtained from all at-risk
subjects at a given time point. Since the minimizer of R(f) also minimizes R0(f), this
theory justifies the use of hinge-loss in SVHM to minimize the weighted prediction error
in R0(f). The last inequality in Theorem 3.1 proves that a decision function with a small
excess hinge-loss–based risk will lead to a small excess 0-1 loss–based risk.

3.2 Asymptotic Properties

Here, we study the asymptotic properties of SVHM when the decision function takes the
form in (1). Specifically, we examine a stochastic bound for the excess risk when using ĝ,
the estimator from n observations. This bound will be given in terms of the sample size
n, the tuning parameter λn and the bandwidth of the kernel function σn. Denote Hn as

13
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a reproducing kernel Hilbert space from a Gaussian kernel k(x, x′) = exp{−‖x− x′‖2/σn}.
Instead of considering the risk for R(f), we consider

PR(g) = min
α(t)
R(α(t) + g(x))

and refer it as “profile risk”, since α(t) is profiled out from the original risk function. In
other words, PR(g) is the best expected risk for a given score g(x) after accounting for
α(t).

To obtain an explicit expression of PR(g), we first note that

R(α(t) + g(x)) = E

(∫
Y (t)[1− f(t,X)]+dN(t)

)
+

∫
E (Y (t)[1 + f(t,X)]+)

E(Y (t))
E(dN(t))

=

∫
E[Y (t)h(t,X)]

[
E[Y (t)h(t,X)]− E[Y (t)g(X)h(t,X)]

E[Y (t)h(t,X)]
− α(t)

]
+

dt

+

∫
h̄(t)E[Y (t)]

[
E[Y (t)] + E[Y (t)g(X)]

E[Y (t)]
+ α(t)

]
+

dt.

Since α(t) is arbitrary and the integrand in the above expression is a piecewise linear function
of α(t), simple algebra gives that

α(t) = −E[Y (t)] + E[Y (t)g(X)]

E[Y (t)]

minimizes R(f). Therefore, after replacing α(t) by this minimizer in R(α(t) + g(x)), we
obtain

PR(g) = E

[
∆

P̃I(Ỹ ≥ Y )[2− g(X̃) + g(X)]+

P̃I(Ỹ ≥ Y )

]
.

Clearly, PR(g) is the asymptotic limit of PRn(g). The following theorem holds for the risk
PR(ĝ).

Theorem 3.2 Assume that X’s support is compact and E[Y (τ)|X] is bounded from zero
where τ is the study duration. Furthermore, assume λn and σn satisfies λn, σn → 0, and

nλnσ
(2/p−1/2)d
n →∞ for some p ∈ (0, 2). Then it holds

λn‖ĝ‖2Hn
+ PR(ĝ) ≤ inf

g
PR(g) +Op

{
λn + σd/2n +

λ
−1/2
n σ

−(1/p−1/4)d
n√
n

}
.

The proof of Theorem 3.2 mostly follows the machinery for support vector machines.
It mainly uses empirical process theories to control the stochastic error of the empirical
risk functions and the approximation properties of the reproducing kernel Hilbert space
based on the Gaussian kernel function. However, one major difference from the classical
proof is that the empirical loss function we study here is some composite statistics instead
of the summation of n i.i.d terms. This poses additional challenges to control stochastic
variability. The constants in Theorem 3.2 imply that the bandwidth for the Gaussian
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kernel and regularization parameter should converge to zero in certain rates depending on
X’s dimension, but not too fast to ensure stochastic variability is under control. Finally,
we state two useful observations as remarks below.

Remark 1. From Theorem 3.2, if we choose σn = (nλn)−1/[2d(1/p+1/4)], it gives

PR(ĝ)− PR(g∗) = Op
{
λn + (nλn)−q

}
,

where q = 1/(4/p+ 1) and g∗ is the function minimizing PR(g).

Remark 2. Furthermore, if we choose λn = n−q/(q+1), then the optimal rate obtained from
Theorem 3.2 becomes

PR(ĝ)− PR(g∗) = O(n−q/(q+1)).

4. Numeric Examples

In this section, we first present simulation results comparing SVHM to existing machine
learning approaches and semiparametric approaches based on the Cox proportional hazards
regression. Next, we provide applications to two real world empirical studies.

4.1 Simulation Studies

In all scenarios, we generated both event times and censoring times to be dependent on the
covariates. First we simulated five covariates Z = (Z1, . . . , Z5) which are marginally normal
N(0, 0.52) with pairwise correlation corr(Zj , Zk) = ρ|j−k|, and ρ = 0.5. The event times were
generated from the Cox proportional hazards model with true β = (2,−1.6, 1.2,−0.8, 0.4)T

and the exponential distribution with λ = 0.25 was assumed to compute the baseline cu-
mulative hazard function Λ(t) =

∫ t
0 λ0(s)ds, where λ0(s) is the baseline hazard function.

We simulated two types of censoring distributions. In the first type, the censoring times
were generated from an accelerated failure time model following the log-normal distribution,
that is, logC ∼ N(ZTβc + a, 0.52), with true βc = (1, 1, 1, 1, 1)T . In the second type, the
distribution of the censoring times follows the Cox proportional hazards model with true
βc = (1, 1, 1,−2,−2)T and the baseline cumulative hazard function Λc(t) = bt (b > 0). The
parameters a and b were chosen to obtain the desired censoring ratio. We considered the
censoring ratios 40% and 60%. Any event times or censoring times greater than u0 were
truncated at u0, where u0 is the 90th percentile of the event times. Moreover, we explored
some generalizations of the above scenarios to include more covariates in the regression
models and include additional noise variables. Besides these training data sets (with a sam-
ple size of 100 or 200), we use a randomly generated testing data set with 10, 000 subjects
in each scenario with no censoring to evaluate prediction performance of various methods.

For all scenarios, we compared SVHM with the modified support vector regression for
right censored data based on the ranking constraints (modified SVR) (Van Belle et al., 2011)
and the inverse-probability-of-censoring weighting with censoring distribution estimated
using Kaplan-Meier (IPCW-KM) or estimated under a Cox model (IPCW-Cox) (Goldberg
and Kosorok, 2013), whose objective function is defined as

n−1
n∑
i=1

∆i

Ŝ(Yi)
(log Yi − xTφ(Xi))

2
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with Ŝ(t) is the estimated survival probability for the censoring time. We used linear kernel
K(x, x′) = xTx′ in all four methods, and used 5-fold cross-validation to choose the tuning
parameters from the grid of {2−16, 2−15, . . . , 215, 216}. As the model comparison criterion, we
adapted mean squared error to censored data, which sums up the mean squared differences
between the fitted event times and observed event times for uncensored subjects. For
censored subjects, we sum up the squared differences between fitted times and censoring
times if the former is smaller than the latter. Essentially, for these censored subjects, if their
predicted event times were less than the observed censoring times, we imposed a penalty to
measure how much under-estimation there is. The mean squared differences were assumed
to be zero for censored subjects if their predicted values were greater than the observed
censoring times. We divided the total sum of squares by the total number of observations.
We repeated the simulation 500 times, since our results show that 500 repetitions are
sufficient to obtain stable simulation results to draw conclusions on comparing performance
of different methods while still achieving computational efficiency.

Table 1 and 2 give the average Pearson correlations and root mean square errors (RMSE)
{
∑

(T̂ − T )2}1/2 based on the fitted event times and observed event times T on the testing
data set. Larger correlation and smaller root mean squared error indicate better perfor-
mance. The results show that SVHM outperforms the other methods for all the simulation
cases and sample sizes. The advantages are not affected by including 5 or 15 noise variables,
and the improvements become more evident when the censoring rate is 60% or the censoring
distribution follows the accelerated failure time model. The columns of the average correla-
tions show that the modified SVR has similar capability to capture the rank information as
SVHM. However, it gives less accurate prediction of the exact event times as measured by
the higher RMSEs. The IPCW methods have the worst performance, no matter using the
Kaplan-Meier estimator or Cox model to estimate the censoring distribution, even when
the censoring distribution follows the Cox model. The performances of all the methods are
improved as the sample size increases from 100 to 200, and the proposed SVHM has the
largest improvement with respect to the ratios of the average RMSEs. The RMSE of SVHM
is significantly lower than the best competing method in all simulation settings in Table 1
and 2. Correlation between the risk scores and event times for SVHR is not significantly
different from modified SVR, but in the first simulation setting it is significantly higher
than two IPW-based methods except when there are 95 noise variables (Table 1). In the
second simulation setting, difference between SVHR and IPW is smaller, with the former
significantly greater for most cases with n = 200 (Table 2).

In conclusion, Table 1 shows that SVHM performs much better than Cox regression
when the model assumption does not hold, and Table 2 shows that SVHM still maintains
its advantage when the Cox proportional hazards assumption holds. This advantage may
be due to that Cox model aims at maximizing the likelihood while SVHM directly aims at
discriminating individual’s risk and prediction.

We also explored SVHM with a Gaussian kernel for the sample size 100 and the compu-
tation is more intensive. The resulting average correlations and RMSEs are similar to those
for linear kernel. For example, under the setting in Table 1 with 60% censoring rate, no
noise variable and n = 100, using Gaussian kernel yields almost similar correlation of 0.48,
0.10, 0.15, and 0.53 for four competing methods (modified SVR, IPCW-KM, IPCW-Cox,
SVHM), respectively. The corresponding RMSEs are 6.03 6.62, 6.75, and 5.26, respectively
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# of n = 100 n = 200
Censoring Noises Method CORRa RMSEb(SDc) Ratiod CORR RMSE (SD) Ratio

40% 0 Modified SVR 0.59 5.59 (0.60) 1.19 0.62 5.58 (0.58) 1.24
IPCW-KMe 0.40 5.60 (0.52) 1.20 0.45 5.45 (0.41) 1.21
IPCW-Coxf 0.43 5.80 (0.64) 1.24 0.50 5.62 (0.57) 1.25

SVHM 0.61g 4.68 (0.27) 1.00 0.64 4.49 (0.17) 1.00
5 Modified SVR 0.55 5.64 (0.60) 1.15 0.61 5.63 (0.57) 1.22

IPCW-KM 0.32 5.93 (0.47) 1.21 0.42 5.63 (0.44) 1.22
IPCW-Cox 0.33 6.17 (0.54) 1.26 0.44 5.87 (0.57) 1.27

SVHM 0.58 4.90 (0.35) 1.00 0.63 4.62 (0.20) 1.00
15 Modified SVR 0.46 5.73 (0.47) 1.10 0.54 5.55 (0.50) 1.15

IPCW-KM 0.21 6.12 (0.32) 1.18 0.31 5.86 (0.34) 1.22
IPCW-Cox 0.20 6.47 (0.46) 1.24 0.32 6.09 (0.47) 1.26

SVHM 0.48 5.20 (0.36) 1.00 0.57 4.82 (0.23) 1.00
95h Modified SVR 0.21 6.65 (0.89) 1.10 0.30 6.29 (0.47) 1.09

IPCW-KM 0.06 6.33 (0.21) 1.05 0.10 6.28 (0.14) 1.09
IPCW-Cox 0.08 6.59 (0.23) 1.09 0.11 6.61 (0.39) 1.15

SVHM 0.22 6.04 (0.32) 1.00 0.32 5.76 (0.25) 1.00

60% 0 Modified SVR 0.55 6.00 (0.54) 1.16 0.60 6.07 (0.42) 1.24
IPCW-KM 0.15 6.45 (0.41) 1.25 0.18 6.42 (0.37) 1.32
IPCW-Cox 0.21 6.56 (0.47) 1.27 0.26 6.47 (0.48) 1.33

SVHM 0.57 5.18 (0.43) 1.00 0.61 4.88 (0.33) 1.00
5 Modified SVR 0.50 6.06 (0.53) 1.12 0.57 6.07 (0.50) 1.21

IPCW-KM 0.11 6.61 (0.34) 1.22 0.15 6.56 (0.32) 1.31
IPCW-Cox 0.15 6.77 (0.39) 1.25 0.21 6.66 (0.39) 1.33

SVHM 0.51 5.40 (0.48) 1.00 0.58 5.02 (0.33) 1.00
15 Modified SVR 0.39 6.14 (0.45) 1.10 0.49 5.97 (0.45) 1.15

IPCW-KM 0.07 6.56 (0.30) 1.17 0.10 6.54 (0.24) 1.26
IPCW-Cox 0.10 6.82 (0.30) 1.22 0.13 6.70 (0.27) 1.29

SVHM 0.40 5.60 (0.44) 1.00 0.51 5.20 (0.36) 1.00
95 Modified SVR 0.17 6.90 (1.08) 1.11 0.25 7.20 (1.52) 1.21

IPCW-KM 0.01 6.53 (0.26) 1.05 0.03 6.54 (0.20) 1.10
IPCW-Cox 0.02 6.87 (0.20) 1.10 0.04 6.86 (0.21) 1.15

SVHM 0.17 6.22 (0.24) 1.00 0.26 5.94 (0.25) 1.00
a CORR, average value of correlations.
b RMSE, average value of root mean square errors.
c Empirical standard deviation of the RMSE across 500 repetitions
d Ratio, ratio of average root mean square errors between the method used and our method.
e IPCW-KM, IPCW using the Kaplan-Meier estimator for the censoring distribution.
f IPCW-Cox, IPCW using the Cox model for the censoring distribution.
g Entries in boldface highlight the best performance method.
h For the cases of 95 noises, the calculation of inverse weights in the IPCW-Cox method uses only five signal variables

to fit the Cox model for the censoring times.

Table 1: Comparison of four support vector learning methods for right censored data using
a linear kernel, with censoring times following the accelerated failure time (AFT)
model
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# of n = 100 n = 200
Censoring Noises Method CORRa RMSEb(SDc) Ratiod CORR RMSE (SD) Ratio

40% 0 Modified SVR 0.59 5.15 (0.59) 1.11 0.62 5.09 (0.54) 1.12
IPCW-KMe 0.53 5.16 (0.42) 1.11 0.55 5.08 (0.31) 1.12
IPCW-Coxf 0.52 5.31 (0.57) 1.14 0.56 5.09 (0.46) 1.12

SVHM 0.61g 4.66 (0.25) 1.00 0.63 4.53 (0.16) 1.00
5 Modified SVR 0.56 5.28 (0.51) 1.08 0.61 5.09 (0.50) 1.12

IPCW-KM 0.46 5.58 (0.42) 1.14 0.52 5.27 (0.34) 1.13
IPCW-Cox 0.44 5.73 (0.52) 1.17 0.51 5.41 (0.51) 1.16

SVHM 0.58 4.89 (0.29) 1.00 0.62 4.65 (0.18) 1.00
15 Modified SVR 0.47 5.43 (0.40) 1.04 0.55 5.14 (0.38) 1.06

IPCW-KM 0.36 5.79 (0.34) 1.11 0.44 5.49 (0.30) 1.13
IPCW-Cox 0.34 6.00 (0.40) 1.15 0.42 5.70 (0.43) 1.18

SVHM 0.49 5.21 (0.33) 1.00 0.57 4.84 (0.20) 1.00
95h Modified SVR 0.21 6.43 (0.92) 1.04 0.33 6.03 (0.54) 1.04

IPCW-KM 0.17 6.16 (0.21) 1.00 0.24 6.06 (0.18) 1.05
IPCW-Cox 0.16 6.32 (0.23) 1.02 0.22 6.21 (0.22) 1.07

SVHM 0.23 6.18 (0.40) 1.00 0.34 5.78 (0.24) 1.00

60% 0 Modified SVR 0.56 5.43 (0.56) 1.08 0.59 5.43 (0.47) 1.12
IPCW-KM 0.44 5.68 (0.43) 1.13 0.46 5.62 (0.33) 1.16
IPCW-Cox 0.42 5.83 (0.56) 1.16 0.47 5.67 (0.48) 1.17

SVHM 0.57 5.01 (0.37) 1.00 0.60 4.85 (0.25) 1.00
5 Modified SVR 0.50 5.61 (0.48) 1.07 0.57 5.40 (0.46) 1.09

IPCW-KM 0.36 6.02 (0.38) 1.15 0.43 5.79 (0.35) 1.17
IPCW-Cox 0.34 6.25 (0.44) 1.20 0.41 5.96 (0.47) 1.20

SVHM 0.53 5.23 (0.37) 1.00 0.59 4.96 (0.27) 1.00
15 Modified SVR 0.40 5.77 (0.42) 1.05 0.50 5.44 (0.38) 1.06

IPCW-KM 0.27 6.07 (0.31) 1.10 0.35 5.94 (0.26) 1.16
IPCW-Cox 0.25 6.39 (0.40) 1.16 0.32 6.16 (0.33) 1.20

SVHM 0.42 5.51 (0.40) 1.00 0.52 5.13 (0.29) 1.00
95 Modified SVR 0.18 6.47 (0.87) 1.05 0.27 6.31 (0.80) 1.05

IPCW-KM 0.12 6.22 (0.29) 1.01 0.18 6.19 (0.21) 1.03
IPCW-Cox 0.12 6.54 (0.26) 1.07 0.16 6.50 (0.23) 1.08

SVHM 0.20 6.14 (0.38) 1.00 0.28 6.00 (0.35) 1.00
a CORR, average value of correlations.
b RMSE, average value of root mean square errors.
c Empirical standard deviation of the RMSE across 500 repetitions
d Ratio, ratio of average root mean square errors between the method used and our method.
e IPCW-KM, IPCW using the Kaplan-Meier estimator for the censoring distribution.
f IPCW-Cox, IPCW using the Cox model for the censoring distribution.
g Entries in boldface highlight the best performance method.
h For the cases of 95 noises, the calculation of inverse weights in the IPCW-Cox method uses only five signal variables

to fit the Cox model for the censoring times.

Table 2: Comparison of four support vector learning methods for right censored data using
a linear kernel, with censoring times following the Cox proportional hazards model
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for each method. Under the setting in Table 2 with 60% censoring rate, no noise variable and
n = 100, the correlations for the four methods are 0.52, 0.42, 0.40, and 0.55, respectively,
and the RMSEs are 5.52, 5.76, 5.94, and 5.06.

In our next simulation experiment, we compare SVHM with Cox model based analysis
and explore 1-nearest-neighbor (1-NN) prediction and the average of 3-nearest-neighbors (3-
NN) prediction. In the first setting we generate five discrete covariates Z = (Z1, . . . , Z5) with
equal probability of taking each value: Z1 takes values -5, -4, -2, -1 or 0; Z2 takes values -1, 0
or 1; Z3 takes integer values 1 to 10; Z4 has a correlation of 0.5 with Z1 and is also correlated
with a random normal noise variable N(0, 0.5), and Z5 has a correlation of 0.3 with Z1 and
is also correlated with a random uniform noise variable U(0, 0.5). Similar to the previous
simulations, the event times were generated from Cox proportional hazards model with true
β = (2,−1.6, 1.2,−0.8, 0.4)T and the exponential distribution with λ = 0.25 was assumed
for the baseline cumulative hazard function Λ(t). The distribution of the censoring times
followed Cox proportional hazards model with true βc = (1, 1, 1,−2,−2)T and the baseline
hazard rate was a constant. In the second setting, we generated Z1, ..., Z3 independently
from U(0, 1) and Z4 from a binary distribution with P (Z4 = 1) = P (Z4 = −1) = 0.5.
Furthermore, both the event times and censoring times were generated from accelerated
failure time models with both main effects and interactions:

log T = −0.2− 0.5Z1 + 0.5Z2 + 0.3Z3 + 0.5Z4 − 0.1Z1Z4 − 0.6Z2Z4 + 0.1Z3Z4 +N(0, 1),

logC = 0.5− 0.8Z1 + 0.4Z2 + 0.4Z3 + 0.54 − 0.1Z1Z4 − 0.6Z2Z4 + 0.3Z3Z4 +N(0, 1).

The censoring ratio was around 30% in both settings. We experimented two sample sizes,
100 or 200, and two numbers of noise variables, 10 or 30.

The simulation results are summarized in Table 3. The same 1-NN or 3-NN method was
applied to predict event times using the fitted scores derived from SVHM or Cox model.
We can see that 1-NN performs slightly better than 3-NN in terms of a higher correlation
and lower RMSE for both methods. In addition, when the event times were simulated from
the Cox model, SVHM with 1-NN or 3-NN performs similarly to Cox model-based analysis.
This is expected since proportional hazards assumption was satisfied for the Cox model
based method. We also compared using 1-NN and 3-NN for prediction with using median
survival times under a Cox model. We see 1-NN with SVHM or 1-NN with Cox model
leads to superior performance than using median survival time. When the true model for
the event times was accelerated failure time model (AFT), SVHM outperforms Cox model
based analysis in terms of a higher correlation and lower RMSE. In the AFT model case,
using the median survival time from the Cox model for prediction tends to be less accurate
since the model assumption does not hold. Lastly, when the number of noise variables was
95, Cox model analysis did not converge in most simulations and thus the results were not
included. In summary, results in Table 3 show that nearest neighbor based prediction rule
performs better than using median survival time, and SVHM performs better than Cox
model based methods when the model assumption does not hold.

4.2 PREDICT-HD Study

In the first real data analysis, we apply various methods to a study on Huntington’s disease
(HD). HD is a severe dominant genetic disorder for which at risk subjects can be identified
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Cox Model SVHM
Model n Index 1-NN 3-NNa Medianb 1-NN 3-NN

Cox1c 100 CORR 0.871 0.859 0.866 0.863 0.851
RMSE 6.068 6.485 6.487 6.099 6.503

200 CORR 0.896 0.890 0.871 0.885 0.879
RMSE 5.755 6.168 6.226 5.781 6.186

Cox2d 100 CORR 0.841 0.831 0.839 0.854 0.844
RMSE 6.146 6.548 6.546 6.139 6.546

200 CORR 0.887 0.884 0.855 0.883 0.879
RMSE 5.760 6.209 6.273 5.761 6.214

AFT1e 100 CORR 0.210 0.211 0.192 0.224 0.224
RMSE 0.766 0.756 0.950 0.739 0.731

200 CORR 0.275 0.275 0.262 0.277 0.277
RMSE 0.720 0.717 0.879 0.709 0.706

AFT2f 100 CORR 0.129 0.129 0.110 0.174 0.175
RMSE 0.859 0.841 1.050 0.753 0.745

200 CORR 0.197 0.197 0.175 0.221 0.222
RMSE 0.778 0.774 0.999 0.732 0.729

a Using mean of 3 nearest neighbors as predicted event time
b Using median survival time fitted from a Cox model as predicted event time.
c T and C simulated from Cox model with 10 noise variables.
d T and C simulated from Cox model with 30 noise variables.
e T and C simulated from AFT model with 10 noise variables.
f T and C simulated from AFT model with 10 noise variables.

Table 3: Comparison of SVHM with Cox model based methods
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through a genetic testing of C-A-G expansion status at the IT15 gene (MacDonald et al.,
1993). The availability of genetic testing and virtually complete penetrance of gene provides
opportunity for early intervention. Currently a major research interest in HD is to combine
salient clinical markers and biological markers sensitive enough to detect early indicators
of patient disease diagnosis before evident clinical signs of HD emerge, and thus inform
early interventions long before the clinical diagnosis. The hope of such early detection and
intervention is to alter the disease course before substantial damage has occurred. The most
promising markers thus far are brain imaging biomarkers and some cognitive markers which
correlate with future clinical diagnosis (Paulsen, 2011; Paulsen et al., 2014).

We perform analysis using data collected in the PREDICT-HD study (Paulsen et al.
2008b; data available through dbGap: http://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs000222.v3.p2). PREDICT-HD is by far the largest
and most comprehensive study of prodromal HD subjects that collects clinical, cognitive
and structural MRI imaging biomarkers predictive of HD onset. Pre-manifest HD subjects in
the absence of experimental treatment were recruited and followed to monitor HD symptom
progression and assess HD onset. In our analyses, there were 647 subjects and 118 of them
developed HD during the course of study. For each subject, a wide range of measures on
motor, psychiatric, cognitive signs as well as MRI imaging markers were collected at the
baseline visit. The covariates cover important clinical, cognitive, functional, psychiatric
and imaging domains of HD including CAP score (a combination of age and C-A-G repeats
length, Zhang et al. (2011)), symbol digital modality test (SDMT), STROOP color, word
and interference tests, total functional capacity scores, UHDRS total motor scores, various
SCL-90 psychiatric scores, demographic variables such as gender and education in years,
and imaging measures based on regional brain volumes. The structural MRI T1-weighted
imaging analysis of subcortical and cortical segmentations and cortical parcellations were
based on a customized Freesurfer 5.2 pipeline developed at The University of Iowa. The
details of imaging preprocessing and analysis are available in the online Supplementary
Material of Paulsen et al. (2014). The subcortical volumetric measures of interest include
nucleus accumbens, caudate, putamen, hippocampus, and thalamus (Paulsen et al., 2014).

We study the combined prediction capability of 31 baseline markers predicting the age-
at-onset of HD diagnosis during the study period, and evaluate the usefulness of the fitted
prediction score on performing risk stratification. The covariates are normalized to the same
scale to achieve numeric stability and allow for comparing their relative importance. The
predicted values of HD onset ages are obtained via three-fold cross validation, and the cost
tuning parameter is chosen from the grid 2−16, 2−15, . . . , 216. We consider both linear kernel
and Gaussian kernel. For the Gaussian kernel K(x, x′) = exp(−γ‖x− x′‖2), the parameter
γ is fixed to be 0.005. To compare the prediction capability, we compute several quantities
using the predicted values of onset ages and the observed onset ages or censoring ages.
Specifically, we report the concordance index defined as the percentage of correctly ordered
pairs among all feasible pairs (C-index) when including imaging markers. To evaluate the
ability of the fitted scores on performing risk stratification, we separated subjects into two
groups (high risk versus low risk group) based on whether their predicted scores are higher
or lower than given percentiles computed from all subjects’ fitted scores. We then calculate
the Chi-square statistics from the logrank test and the hazard ratios comparing the hazard
rate of developing HD between two groups.

21

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000222.v3.p2
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000222.v3.p2


Wang, Chen and Zeng

5 15 25 35 45 55 65 75
0

1

2

3

4

5

6

7

8

9

10

Percentile as the cut point separating binary groups

H
az

ar
d 

ra
tio

Linear Kernel

Figure 1: Hazard ratios comparing two groups separated using percentiles of predicted
scores as cut points for PREDICT-HD data with linear kernel. Blue curves
obtained from analyses with MRI imaging biomarkers and red curves without
imaging biomarkers. Solid curve: SVHM; Dotted curve: Modified SVR; Dashed
curve: IPCW-KM; Dashed-dotted curve: IPCW-Cox.

The analysis results are given in Table 4. SVHM improves over the other methods with
respect to all the quantities for both linear kernel and Gaussian kernel, and the performances
are similar using different kernels. For example, the logrank Chi-square statistics and hazard
ratios of SVHM are much larger than the competing methods at most quantiles except
at the right tail (e.g., over 65th percentile). A higher value of logrank Chi-square and
a larger hazard ratio indicate greater difference between high risk and low risk subjects
using a given percentile as a cut off value, and thus better discriminant ability of a risk
score distinguishing high/low risk subjects. In addition, the predictions from IPCW cannot
capture the trend of the original disease onset ages. Figure 1 complements the results
in the table by plotting the hazard ratios comparing two groups separated using a series
of percentiles of the predicted scores as cut points, and SVHM consistently has the largest
hazard ratio across all percentiles among all methods. The improvement of SVHM increases
at the higher percentiles, indicating that it is particularly effective in discriminating high
risk subjects. This observation is consistent with our theoretical results which reveal that
SVHM is optimal in separating the individual covariate-specific hazard function, h(t,x)
given x, from the population average hazard function, h̄(t).

Additionally, we show the fitted coefficients from SVHM and other competing methods
in Table 5 and compare with coefficients obtained from a Cox proportional hazards model.
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Modified SVR yields coefficients in the same direction as SVHM, while two IPW methods
give several coefficients in the opposite direction of other methods. SVHM suggests
the top ranking markers with largest standardized effects to be the baseline total motor
score and CAP score, which is consistent with the clinical literature on the importance
of these markers on the diagnosis of HD (Zhang et al., 2011; Paulsen et al., 2014; Chen
et al., 2014). The baseline total motor score as a measure of motor impairment appears
to be more informative than CAP score in terms of predicting future HD diagnosis during
the study. Several neuropsychological markers (Stroop color, Stroop word, SDMT) are
predictive except for Stroop interference score. The coefficients from Cox model however,
suggest that SDMT is not important, which is not consistent with the clinical literature
(Paulsen, 2011; Paulsen et al., 2014). Note that SVHM gives psychiatric markers (SCL 90
depression, GSI, PST and PSDI) low weights which is consistent with clinical observations
that the psychiatric markers are considered as noisy for predicting HD diagnosis due to
reasons such as subjects may seek treatment for their psychiatric symptoms. In contrast,
Cox model yields high weights for these markers which are deemed to be less informative.

In terms of neuroimaging markers, we see that pallidum, putamen, caudate, and thala-
mus show relatively strong predictive ability of HD onset, while accumbens and hippocam-
pus show low predictive ability. Comparing SVHM and Cox model analysis, note that
SVHM provides coefficients with similar magnitude for imaging measures on the life and
right side of the same brain region, but Cox model sometimes produces substantially dif-
ferent results for left and right side. For example, left pallidum area is significant but not
right pallidum area in Cox model. This observation suggests that SVHM may lead to more
interpretable results especially for correlated variables. Another biomarker, cerebral spinal
fluid, appears to be promising for predicting HD onset with a coefficient with moderate
magnitude. To assess the added value of MRI imaging measures in terms of risk stratifica-
tion, in Figure 1 we show the hazard ratio comparing high risk versus low risk group based
on percentile split of the fitted scores obtained with and without imaging biomarkers. For
SVHM with linear kernel, adding imaging measures leads to a larger hazard ratio and a
greater difference between high and low risk groups at all percentiles, which demonstrates
the ability of SVHM to extract information from imaging biomarkers and corroborates
other findings suggesting their added values in predicting HD onset (Paulsen et al., 2014).
When using Gaussian kernel for SVHM, we see further improvement of C-index and logrank
chi-square statistics. Other methods such as modified SVR or IPCW do not show an ad-
vantage from including imaging measures, which may suggest their limitations in handling
correlated biomarkers.

4.3 ARIC Study

As a second real world numeric example, we analyze data from the Atherosclerosis Risk in
Communities Study, a prospective investigation of the aetiology of atherosclerosis and its
clinical sequelae, as well as the variation in cardiovascular risk factors, medical care and
disease by race, gender, location and date (The ARIC investigators, 1989; Lubin et al., 2016).
We assess the prediction capability of some common cardiovascular risk factors for incident
heart failure until 2005. Specifically, these risk factors include age, diabetes status, body
mass index, systolic blood pressure, fasting glucose, serum albumin, serum creatinine, heart
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Variable Modified SVR IPCW-KM IPCW-Cox SVHM Cox modela

(×10−1) (×10−2) (×10−3)
CAP 0.051 0.936 0.202 0.255 0.058
TOTAL MOTOR SCORE 0.280 -1.083 0.529 0.519 0.398*
SDMT -0.096 -0.411 0.076 -0.119 -0.190
STROOP COLOR -0.042 0.412 -0.038 -0.153 -0.160
STROOP WORD -0.227 0.488 0.188 -0.191 -0.217
STROOP INTERFERENCE 0.254 -0.432 -0.239 -0.000 0.328
TOTAL FUNCTIONAL CAPACITY -0.062 0.175 0.142 -0.072 0.007
UHDRS PSYCH 0.168 0.137 -0.280 0.155 0.228
SCL90 DEPRESS -0.285 -0.255 -0.132 -0.064 -0.618*
SCL90 GSI 0.316 -0.184 -0.182 0.007 0.618
SCL90 PST -0.108 -0.265 -0.246 -0.057 -0.268
SCL90 PSDI 0.099 -0.379 -0.249 0.103 0.035
FRSBE TOTAL -0.088 0.108 -0.136 0.112 0.115
Education Years 0.019 -1.057 0.349 -0.016 -0.053
Gender (Male) 0.178 -0.394 -0.202 0.376 0.344*
Right Putamen -0.009 -0.395 -0.376 -0.134 -0.038
Left Putamen -0.590 -0.165 -0.210 -0.116 -0.369
Right Pallidum -0.015 -0.490 -0.151 -0.225 -0.049
Left Pallidum -0.329 0.100 -0.189 -0.261 -0.626*
Right Caudate -0.830 0.655 -0.160 -0.147 -0.943*
Left Caudate 0.397 0.738 -0.265 -0.079 0.306
Right Accumbens 0.282 -0.214 -0.470 0.051 0.220
Left Accumbens -0.256 -0.568 -0.487 -0.057 -0.467*
Right Thalamus 0.099 -0.295 -0.710 0.172 0.260
Left Thalamus 0.258 -0.404 -0.636 0.219 0.138
Right Hippocampus 0.103 -1.152 -0.821 0.010 0.095
Left Hippocampus -0.130 -1.087 -0.847 -0.082 -0.128
Third Ventricle -0.101 1.071 0.841 -0.042 -0.046
Right Lateral Ventricle 0.140 2.794 1.409 -0.119 -0.016
Subcortical Gray Area 0.932 -0.868 -0.691 0.307 1.473*
Cerebral Spinal Fluid -0.268 0.116 0.954 -0.113 -0.104
a The estimates from Cox model with significant p-values (p < 0.05) are marked with *.

Table 5: Normalized coefficients estimated from PREDICT-HD data (including imaging
biomarkers) using Modified SVR, IPCW-KM, IPCW-Cox, SVHM with linear ker-
nel and Cox model
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rate, left ventricular hypertrophy, bundle branch block, prevalent coronary heart disease,
valvular heart disease, high-density lipoprotein, pack-years of smoking, and current and
former smoking status. The analysis sample consists of 624 participants who are African-
American males living in Jackson, Mississippi. Incident heart failure occurred in 133 men
through 2005, with a median follow-up time 16.2 years. Among those participants who did
not develop heart failure, 324 were administratively censored on December 31st, 2005. The
analysis follows the same procedure as in Section 4.2. The results for prediction capability
of different methods are given in Table 6. SVHM provides more accurate prediction than
other methods using the linear kernel or Gaussian kernel. It also has higher logrank test
statistic and hazard ratio comparing high risk versus low risk group using various percentiles
of the predictive scores as cut off points (Figure 2).

In Table 7, we can see that all the risk factors have positive effects on the incident
heart failure except high-density lipoprotein, serum albumin and former smoking status.
Risk factors for incident heart failure with largest standardized effects include HDL, age,
prevalent CHD, and serum albumin level. We also present estimated coefficients from a Cox
proportional hazards model as comparison in Table 7. Most coefficients are comparable in
terms of size. However, note that higher fasting glucose level appears to be protective of
heart rate failure using Cox model, which is the opposite of the expected direction.

5. Concluding Remarks

In this paper, we propose a new statistical framework to learn risk scores for event times
using right-censored data by support vector hazards machine. We propose to view the
prediction of time-to-event outcomes from a counting process point of view to avoid compli-
cations from specifying a censoring distribution. Asymptotically, we justify the associated
universal consistency and learning rate through the structural risk minimization and show a
natural link between the fitted decision function and the true hazard function: the fitted de-
cision rule asymptotically minimizes the integrated difference between the covariate-specific
hazard function and population average hazard function. Our theory shows that SVHM
essentially compares events and non-events among the subjects at risk at each follow-up
time; therefore, SVHM is sensitive to temporal difference between events and non-events
which may not be reflected in either SVR or inverse weighted approaches. We also reveal
a theoretical connection between SVHM and Cox partial likelihood function; the proposed
method uses a hinge loss which should be robust to extreme observations in contrast to
the exponential loss used in Cox partial likelihood. The simulation studies and real data
applications demonstrate satisfactory results in finite samples with improved overall risk
prediction accuracy in the presence of noise variables compared to other methods, espe-
cially when the censoring rate is high and the distribution of censoring times is unknown.
The improved performance of our method is due to introducing counting processes to repre-
sent the time-to-event data, which leads to an intuitive connection of the method with both
support vector machines in standard supervised learning and hazard regression models in
standard survival analysis.

Since SVHM essentially learns hazard functions across subjects conditional on each risk
set, the intercept term, α(t), is a non-informative nuisance parameter and allowed to be
discontinuous over time. This feature is analogous to the estimation in Cox regression
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Figure 2: Hazard Ratios comparing two groups separated using percentiles of predicted
values as cut points for Atherosclerosis Risk in Communities data. Solid curve:
SVHM; Dotted curve: Modified SVR; Dashed curve: IPCW-KM; Dashed-dotted
curve: IPCW-Cox.
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Covariate Normalized β Cox model a

Age (in years) 0.363 0.328 *
Diabetes 0.288 0.221 *
BMI (kg/m2) 0.150 0.136
SBP (mm of Hg) 0.172 0.178
Fasting glucose (mg/dL) 0.173 -0.093
Serum albumin (g/dL) -0.363 -0.273 *
Serum creatinine (mg/dl) 0.007 0.029
Heart rate (beats/minute) 0.124 0.125
Left ventricular hypertrophy 0.250 0.158 *
Bundle branch block 0.341 0.242 *
Prevalent CHD 0.330 0.216 *
Valvular heart disease 0.200 0.169 *
HDL (mg/dl) -0.287 -0.436 *
LDL (mg/dl) 0.016 0.051
Pack years of smoking 0.289 0.230 *
Current smoking status 0.210 0.022
Former smoking status -0.133 -0.232 *

a The estimates from Cox model with significant p-value (p-value < 0.05) are
marked with *.

Table 7: Normalized coefficient estimates using linear kernel for Atherosclerosis Risk in
Communities data
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through maximizing the Cox partial likelihood function, where the baseline hazard function
is estimated to be non-continuous. Furthermore, due to the martingale property of the
counting process, data from each time point can be viewed as independent in the learning
method, despite that they may be from the same individual. Thus, we expect little efficiency
loss even though some weighing scheme can be adopted to weight distinct risk sets differently
over time.

In the current framework, the time-specific risk score f(t,X) being considered includes a
class of additive rules. They can be generalized to be fully nonparametric to learn dynamic
risk profiles using a subject’s time-varying covariates under the current set up. However,
this generalization may lose the similarity of formulation to the standard support vector
machines and cause numerical instability in the optimization algorithm. These challenging
issues will be further investigated in future work. One limitation of the current nonpara-
metric framework not specifying the event distribution is that no straightforward prediction
formulae using distribution exist. We used nearest neighbors to perform prediction and
simulation studies show that using less closer neighbors (3-NN instead of 1-NN) has little
influence on the results. In our simulation studies, we found that a training sample size of
n = 100 or n = 200 both yield stable estimation of correlation and RMSE (not sensitive
to the choice of 1-NN or 3-NN). However, further work is needed to examine alternative
prediction methods. Lastly, this work opens possibilities to use other powerful learning
algorithms for binary and continuous outcomes to handle censored outcomes. For example,
instead of using series of SVM to predict counting process as demonstrated here, other
effective tools such as AdaBoosting and random forest can also be used. Gaussian process
approaches (Barrett and Coolen, 2013) have been recently applied for survival data with
competing risks so it will be interesting to compare SVHM with their approaches in terms
of prediction performance and robustness.
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Appendix A. SVHM Algorithm

In this section, we provide a detailed description of the SVHM algorithm:

Algorithm: SVHM for Censored Outcomes

Input: Training data (Xi, Ti ∧ Ci, Yi(tj), δNi(tj)) for i = 1, · · · , n, j = 1, · · · ,m.
Step 1. Solve the quadratic programming problem:

max
γij

n∑
i=1

m∑
j=1

γijYi(tj)−
1

2

n∑
i=1

n∑
i′=1

m∑
j=1

m∑
j′=1

γijγi′j′Yi(tj)Yi′(tj′)δNi(tj)δNi′(tj′)K(Xi,Xi′)

subject to: 0 ≤ γij ≤ wi(tj)Cn,
n∑
i=1

γijYi(tj)δNi(tj) = 0, i = 1, . . . , n, j = 1, . . . ,m.

Denote the solutions as γ̂ij .
Step 2. Compute the risk scores for non-censored subjects in the training data

as

ĝ(Xs) =

n∑
i=1

m∑
j=1

γ̂ijδNi(tj)K(Xs,Xi).

Step 3. Predicting event time of a future subject with covariates x by k -nearest-
neighbor:

(a) Compute the risk score for this subject as ĝ(x) =∑n
i=1

∑m
j=1 γ̂ijδNi(tj)K(x,Xi).

(b) Find k non-censored subjects in the training data whose risk scores are
closest to ĝ(x) and denote them as ĝ(Xl) for l = 1, · · · , k.
(c) Sort all ĝ(Xs) in descending order and denote the rank of ĝ(Xl) as rl
(d) Sort event times Ts of all non-censored subjects in ascending order. Find
the rl-th event time and denote as Tl for l = 1, · · · , k.
(e) The event time for this subject is predicted as T̂ = 1

k

∑
l Tl.

Output: For a subject with covariates x, predict risk score as ĝ(x), and predict
event time as T̂ .

Appendix B. Proof of Theorems

In this section, we prove Theorem 3.1 and Theorem 3.2.

Proof (Theorem 3.1)
Since f∗(t,x) minimizes R(f), conditional X = x, f∗(t,x) also minimizes

E

(∫
Y (t)[1− f(t,X)]+dN(t)|X = x

)
+

∫
E (Y (t)[1 + f(t,X)]+|X = x)

E(Y (t))
E(dN(t)).

(A.1)
Clearly, the value f∗(t,x) should belong to the interval [−1, 1], because otherwise truncation
of f at −1 or 1 gives a lower value. Assuming −1 ≤ f(t,x) ≤ 1, (A.1) becomes∫

E(Y (t)|X = x){h(t,x) + h̄(t)}dt−
∫
f(t,x)E(Y (t)|X = x){h(t,x)− h̄(t)}dt,
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where recall that h(t,x) is the conditional hazard rate of T = t given X = x and h̄(t) is the
population average hazard at time t,

h̄(t) =
E[dN(t)]/dt

E[Y (t)]
= E[h(t,X)|Y (t) = 1].

Therefore, one optimal decision function minimizing RL(f) is

f∗(t,x) = sign{h(t,x)− h̄(t)}.

On other hand, we note

R0(f) =

∫
I[f(t,x) ≤ 0]E (Y (t)|X = x)h(t,x)dt+

∫
I[f(t,x) ≥ 0]E (Y (t)|X = x) h̄(t)dt.

Thus, any decision function has the same sign as (h(t,x)− h̄(t)) minimizes R0(f) so f∗(t,x)
minimizesR0(f). Finally, under the optimal rule f∗(t,x), the minimal value of the weighted
0-1 risk is given as

R0(f
∗) = E

[∫
E(Y (t)|X = x) min{h(t,x), h̄(t)}dt

]
=

1

2
E

[∫
E(Y (t)|X = x){h(t,x) + h̄(t)− |h(t,x)− h̄(t)|}dt

]
= P (T ≤ C)− 1

2
E

[∫
E(Y (t)|X = x)|h(t,x)− h̄(t)|dt

]
.

To show the last inequality in Theorem 3.1, we note hat for −1 ≤ f(t,x) ≤ 1,

R(f) = E

[∫
E(Y (t)|X = x){h(t,x) + h̄(t)}dt−

∫
f(t,x)E(Y (t)|X = x){h(t,x)− h̄(t)}dt

]
= 2P (T ≤ C)− E

[∫
f(t,x)E(Y (t)|X = x){h(t,x)− h̄(t)}dt

]
,

and

R(f∗) = 2P (T ≤ C)− E
[∫

sign{h(t,x)− ¯λn(t)}E(Y (t)|X = x){h(t,x)− h̄(t)}dt
]
.

Thus,

R(f)−R(f∗) = E

[∫
E(Y (t)|X = x)

{
sign{h(t,x)− h̄(t)} − f(t,x)

}
× {h(t,x)− h̄(t)}dt

]
= E

[∫
E(Y (t)|X = x)

∣∣f(t,x)− sign{h(t,x)− h̄(t)}
∣∣× |h(t,x)− h̄(t)|dt

]
On the other hand, for the risk function based on the 0-1 loss, we have

R0(f)−R0(f
∗)

= E

[∫
E(Y (t)|X = x)

(
I[f(t,x) ≤ 0]h(t,x) + I[f(t,x) ≥ 0]h̄(t)−min{h(t,x), h̄(t)}

)
dt

]
= E

[∫
E(Y (t)|X = x)

∣∣h(t,x)− h̄(t)
∣∣× I ({h(t,x)− h̄(t)}sign{f(t,x)} < 0

)
dt

]
.
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Note that

I
(
{h(t,x)− h̄(t)}sign{f(t,x)} < 0

)
≤
∣∣f(t,x)− sign{h(t,x)− h̄(t)}

∣∣ .
We then obtain R0(f)−R0(f

∗) ≤ R(f)−R(f∗).

Proof (Theorem 3.2)
The proof of Theorem 3.2 follows a similar procedure to the standard support vector

machine theory. However, the main difference is that the proof handles PRn(f) instead of
the simple empirical mean of the hinge-loss in the standard theory. Let gλn be the function
in Hn which minimizes λn‖g‖2Hn

+ PR(g). The proof consists of the following steps.
First, we derive a preliminary bound for some norms of ĝ. Clearly,

λn‖gλn‖2Hn
+ PR(gλn) ≤ PR(0).

This gives ‖gλn‖Hn ≤
√
c/λ for some constant λn so by Lemma 4.23 (Steinwart and Christ-

mann, 2008, p124), we obtain ‖gλn‖∞ ≤
√
c/λn. Furthermore, using the fact

λn‖ĝ‖2Hn
+ PRn(ĝ) ≤ λn‖gλn‖2Hn

+ PRn(gλn),

we conclude ‖ĝ‖Hn ≤
√
c/λn so ‖ĝ‖∞ ≤

√
c/λn, where c may be another different constant

(without confusion, we always use c to denote some constant). Therefore, we can restrict g
in the minimization of (2) to be in

√
c/λnBHn , where BHn be the unit ball in Hn.

Second, we obtain a key inequality for comparing the risks of ĝ and gλn . By the definition
of ĝ, the following fact holds:

λn‖ĝ‖2H + PR(ĝ)− (λn‖gλn‖+ PR(gλn))

≤ λn‖ĝ‖2H + PR(ĝ)− (λn‖gλn‖+ PR(gλn))

−
[
λn‖ĝ‖2H + PRn(ĝ)− (λn‖gλn‖+ PRn(gλn))

]
= PR(ĝ)− PRn(ĝ)− {PR(gλn)− PRn(gλn)} .

From Step 1, we conclude

λn‖ĝ‖2H + PR(ĝ)− (λn‖gλn‖+ PR(gλn)) ≤ 2 sup
‖g‖Hn≤

√
c/λn

|PRn(g)− PR(g)|. (A.2)

We derive a bound for the right-hand side of (A.2). First,

PRn(g)− PR(g) = (Pn −P)fg(Y,X,∆)− 2

n
Pn

{
∆

P̃n[I(Ỹ ≥ Y )]

}
,

where

fg(Y,X,∆) = ∆
P̃n{I(Ỹ ≥ Y )[2 + g(X̃)− g(X)]+}

P̃n[I(Ỹ ≥ Y )]
+P̃

(
∆̃
I(Y ≥ Ỹ )[2 + g(X)− g(X̃)]+

P̃n[I(Ỹ ≥ Y )]

)

−P̃

(
∆̃
I(Y ≥ Ỹ )P∗{I(Y ∗ ≥ Ỹ )[2 + g(X∗)− g(X̃)]+}

P∗n[I(Y ∗ ≥ Ỹ )]P∗[I(Y ∗ ≥ Ỹ )]

)
.
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Therefore,

sup
‖g‖Hn≤

√
c/λn

|PRn(g)− PR(g)| ≤ sup
‖g‖Hn≤

√
c/λn

|(Pn −P)fg|+ c/n.

On the other hand, from Theorem 3.1 in Steinwart and Scovel (2007), we have

logN(ε,
√
c/λnBHn , l∞) ≤ cp,dσ(p/4−1)dn

(
ε√
c/λn

)−p
≤ cp,dσ(p/4−1)dn λ−p/2n ε−p,

where N(ε,F , l∞) is the ε-covering number of F under l∞-norm, d is the dimension of X, p
is any number in (0, 2) and cp,d is a constant only depending on (p, d). Moreover, we note
that by the property of the hinge-loss, fg is the Lipschitz continuous in g and satisfies

|fg1 − fg2 | ≤ c|g1 − g2|.

This implies
logN(ε, {fg/an : g ∈

√
c/λnBHn}, l∞) ≤ cp,dσ(p/4−1)dn ε−p,

where an =
√
c/λnσ

−(1−p/4)d/p
n . Therefore, according to Theorem 2.14.10 in van der Vaart

and Wellner (1996), we obtain

P

√n sup
‖g‖Hn≤

√
c/λn

|(Pn −P)(fg/an)| > x

 ≤ e−cx2
for some constant c only depending on (p, d). Consequently, (A.2) gives

P (λn‖ĝ‖2H + PR(ĝ)− (λn‖gλn‖+ PR(gλn)) > cn−1 + ann
−1/2x) ≤ e−cx2 . (A.3)

Hence, we have proved

λn‖ĝ‖2Hn
+ PR(ĝ) ≤ inf

g∈Hn

{λn‖g‖Hn + PR(g)}+Op

(
λ
−1/2
n σ

−(1/p−1/4)d
n√
n

)
. (A.3)

Let g∗ = argminPR(g). From the expression of PR(g), we note

|PR(g)− PR(g∗)| ≤ c‖g − g∗‖L1(P ).

Thus, if we define

g̃(x) =
2σ
−d/2
n

πd/4

∫
e−‖x−y‖

2/(2σ2
n)g∗(y)dy,

then g̃ ∈ Hn and
‖g − g∗‖Hn ≤ ‖g − g∗‖L2(P ) ≤ cσd/2n .

Therefore,

inf
g∈Hn

{λn‖g‖Hn + PR(g)} ≤ {λn‖g̃‖Hn + PR(g̃)} ≤ PR(g∗) + cσd/2n + cλn,

and the result in Theorem 3.2 holds.
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