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Marina Meilă mmp@stat.washington.edu
Department of Statistics
University of Washington
Seattle, WA 98195-4322, USA

Jacob VanderPlas jakevdp@uw.edu
e-Science Institute
University of Washington
Seattle, WA 98195-4322, USA

Zhongyue Zhang zhangz6@cs.washington.edu

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98195-4322, USA

Editor: Alexandre Gramfort

Abstract

Manifold Learning (ML) is a class of algorithms seeking a low-dimensional non-linear rep-
resentation of high-dimensional data. Thus, ML algorithms are most applicable to high-
dimensional data and require large sample sizes to accurately estimate the manifold. De-
spite this, most existing manifold learning implementations are not particularly scalable.
Here we present a Python package that implements a variety of manifold learning algo-
rithms in a modular and scalable fashion, using fast approximate neighbors searches and
fast sparse eigendecompositions. The package incorporates theoretical advances in mani-
fold learning, such as the unbiased Laplacian estimator introduced by Coifman and Lafon
(2006) and the estimation of the embedding distortion by the Riemannian metric method
introduced by Perrault-Joncas and Meila (2013). In benchmarks, even on a single-core
desktop computer, our code embeds millions of data points in minutes, and takes just 200
minutes to embed the main sample of galaxy spectra from the Sloan Digital Sky Survey—
consisting of 0.6 million samples in 3750-dimensions—a task which has not previously been
possible.

Keywords: manifold learning, dimension reduction, Riemannian metric, graph embed-
ding, scalable methods, python

1. Motivation

We propose megaman, a new Python package for scalable manifold learning. This package is
designed for performance, while inheriting the functionality of scikit-learn’s well-designed
API (Buitinck et al., 2013).
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2. Downloading and installation

megaman is publicly available at: https://github.com/mmp2/megaman. megaman’s required
dependencies are numpy, scipy, and scikit-learn, but for optimal performance FLANN,
cython, pyamg and the C compiler gcc are also required. For unit tests and integration
megaman depends on nose. The most recent megaman release can be installed along with its
dependencies using the cross-platform conda 1 package manager:

$ conda install megaman --channel=conda -forge

Alternatively, megaman can be installed from source by downloading the source repository
and running:

$ python setup.py install

With nosetests installed, unit tests can be run with:

$ make test

3. Logical structure and classes overview

embeddings The manifold learning algorithms are implemented in their own classes in-
heriting from a base class. Included are SpectralEmbedding, which implements Laplacian
Eigenmaps (Belkin and Niyogi, 2002) and Diffusion Maps (Nadler et al., 2006), LTSA (Zhang
and Zha, 2004), LocallyLinearEmbedding (Roweis and Saul, 2000), and Isomap (Bernstein
et al., 2000). Geometric operations common to many or all embedding algorithms (such
as computing distances, Laplacians) are implemented by the Geometry class. A Geometry

object is passed or created inside every embedding class. In particular, RiemannianMetric
produces the estimated Riemannian metric via the method of Perrault-Joncas and Meila
(2013). eigendecomposition (module) provides a unified (function) interface to the differ-
ent eigendecomposition methods provided in scipy.

For background of manifold learning, as well as megaman’s design philosophy, please see
McQueen et al. (2016).

4. Quick start

from megaman.geometry import Geometry

from megaman.embedding import SpectralEmbedding

from sklearn.datasets import make_swiss_roll

X = make_swiss_roll( 10000 ) # generate input data

radius = 1.1 # kernel bandwidth and for graph construction

# a Geometry object encapsulates generic geometric operations

geom = Geometry(

adjacency_kwds = {’radius ’:3* radius}, # neighborhood radius

adjacency_method = ’cyflann ’, # fast approximate neighbors

1. Conda can be downloaded at http://conda.pydata.org/miniconda.html.
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affinity_method = ’gaussian ’, # Gaussian kernel

affinity_kwds = {’radius ’: radius}, # kernel bandwidth

laplacian_method = ’geometric ’) # unbiased Laplacian

SE = SpectralEmbedding( # embedding algorithm & params

n_components= 2, # embed into 2 dimensions

eigen_solver=’amg ’,

geom=geom) # pass the geometric information

Y = SE.fit_transform(X) # perform embedding

The last two instructions are identical to their analogous instructions in scikit-learn. Full
documentation is available from the megaman website at: http://mmp2.github.io/megaman/

5. Benchmarks

The one other popular comparable implementation of manifold learning algorithms is the
scikit-learn package. To make the comparison as fair as possible, we choose the
SpectralEmbedding method for the comparison, with radius-based neighborhoods and the
Locally-Optimized Block-Preconditioned Conjugate Gradient (lobpcg) eigensolver. Note, too,
that with the default settings, scikit-learn would perform slower than in our experiments.

We display total embedding time (including time to compute the graph G, the Lapla-
cian matrix and the embedding 2) for megaman versus scikit-learn, as the number of
samples N varies or the data dimension D varies (Figure 1). All benchmark computations
were performed on a single desktop computer running Linux with 24.68GB RAM and a
Quad-Core 3.07GHz Intel Xeon CPU. We use a relatively weak machine to demonstrate
that our package can be reasonably used without high performance hardware. The experi-
ments show that megaman scales considerably better than scikit-learn, even in the most
favorable conditions for the latter; the memory footprint of megaman is smaller, even when
scikit-learn uses sparse matrices internally. The advantages grow as the data size grows,
whether it is w.r.t D or to N .

We also report run times on two real world data sets. The first is the word2vec data set
3 which contains feature vectors in 300 dimensions for about 3 million words and phrases,
extracted from Google News. The vector representation was obtained via a multilayer neu-
ral network by Mikolov et al. (2013). The second data set contains galaxy spectra from the
Sloan Digital Sky Survey 4 (Abazajian et al., 2009), preprocessed as described in Telford
et al. (2016).

Run time [min]
Dataset Size N Dimensions D Distances Embedding R. metric Total
Galaxies 0.7M 3750 190.5 8.9 0.1 199.5
Word2Vec 3M 300 107.9 44.8 0.6 153.3

2. For megaman we also compute the Riemannian metric estimate at each point; this time is negligible
compared to the total time to obtain the embedding.

3. The word2vec data used were from GoogleNews-vectors-negative300.bin.gz which can be downloaded
from https://code.google.com/archive/p/word2vec/.

4. The Sloan Digital Sky Survey data can be downloaded from www.sdss.org.
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Figure 1: Run time vs. data set size N for fixed D = 100 (left) and Run time vs. data set
dimension D for fixed N = 50, 000 (right). The data is from a Swiss Roll (in 3 dimensions)
with additional noise dimensions, embedded into s = 2 dimensions by the SpectralEmbedding

algorithm. By D = 10, 000 and N = 1, 000, 000 scikit-learn was unable to compute an
embedding due to insufficient memory. All megaman run times (including time between distance
and embedding) are faster than scikit-learn.

6. Conclusion

megaman puts in the hands of scientists and methodologists alike tools that enable them to
apply state of the art manifold learning methods to data sets of realistic size. The package
is extensible, modular, with an API familiar to scikit-learn users. Future development
will be mainly in the direction of further scalability (Nystrom extension, parallelization)
and expanding the data analytical tools (distance calculations, estimation of dimension,
estimation of neighborhood radius, directed graph embedding).

We hope that by providing this package, non-linear dimension reduction will be benefit
those who most need it: the practitioners exploring large scientific data sets.
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