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Abstract

Due to the non-linear but highly interpretable representations, decision tree (DT) models
have significantly attracted a lot of attention of researchers. However, it is difficult to un-
derstand and interpret DT models in ultrahigh dimensions and DT models usually suffer
from the curse of dimensionality and achieve degenerated performance when there are many
noisy features. To address these issues, this paper first presents a novel data-dependent
generalization error bound for the perceptron decision tree (PDT), which provides the the-
oretical justification to learn a sparse linear hyperplane in each decision node and to prune
the tree. Following our analysis, we introduce the notion of budget-aware classifier (BAC)
with a budget constraint on the weight coefficients, and propose a supervised budgeted
tree (SBT) algorithm to achieve non-linear prediction performance. To avoid generating
an unstable and complicated decision tree and improve the generalization of the SBT, we
present a pruning strategy by learning classifiers to minimize cross-validation errors on
each BAC. To deal with ultrahigh label dimensions, based on three important phenomena
of real-world data sets from a variety of application domains, we develop a sparse coding
tree framework for multi-label annotation problems and provide the theoretical analysis.
Extensive empirical studies verify that 1) SBT is easy to understand and interpret in ultra-
high dimensions and is more resilient to noisy features. 2) Compared with state-of-the-art
algorithms, our proposed sparse coding tree framework is more efficient, yet accurate in
ultrahigh label and feature dimensions.
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1. Introduction

Decision tree (DT) (Moret, 1982; Safavian and Landgrebe, 1991) has been identified as one of
the top 10 data mining and machine learning algorithms (Wu et al., 2008). Due to the non-
linear, but highly interpretable representations (Murthy et al., 1994), DT has played a vital
role in various data mining and machine learning applications, ranging from Agriculture
(McQueen et al., 1995), Astronomy (Salzberg et al., 1995), Medicine (Czajkowski et al.,
2014) and Molecular Biology (Shimozono et al., 1994) to Financial analysis (Mezrich, 1994).
Many early works focus on the DT, in which each node uses the value of a single
feature (attribute) (Breiman et al., 1984; Quinlan, 1993) for decision. Since the decision
of these methods at each node is equivalent to an axis-parallel hyperplane in the feature
space, they are called axis-parallel DT, which suffer from the curse of dimensionality. To
improve the performance of axis-parallel DT, researchers developed perceptron decision tree
(PDT) (Bennett et al., 2000; Liu and Tsang, 2016) in which the test at each decision node
uses the linear combinations of features. Clearly, PDT is the general form of axis-parallel
DT. This paper first studies two emerging challenges for decision trees — ultrahigh feature
dimensionality and ultrahigh label dimensionality. Then, we develop budget-aware classifier
(BAC) and supervised budgeted tree to address ultrahigh feature dimensionality. Under the
BAC framework, we further propose a sparse coding tree to address the second challenge.

1.1 Challenges of Ultrahigh Feature Dimensionality

Recently, the emerging trends of ultrahigh feature dimensionality have been analyzed in
Mitchell et al. (2004), Fan et al. (2009) and Zhai et al. (2014). For example, the Web
continues to generate quintillion bytes of data daily (Zikopoulos et al., 2012; Zhai et al.,
2014), leading to three key challenges for PDT classification on the webspam data set with
16,609,143 features (which is collected from Wang et al. (2012)) :

1. It is difficult to understand and interpret PDT on this data set. How to make PDT
interpretable in ultrahigh dimensions poses a critical challenge;

2. Many features in high dimensional space are usually non-informative or noisy. Those
noisy features will decrease the generalization performance of PDT and derogate from
their promising results for dealing with non-linear separable data, especially when
there are many noisy features;

3. It is desired to identify a small set of features that is able to represent the original
feature space in this ultrahigh dimensional data set.

To overcome these challenges, it is imperative to develop a sparse PDT with respect to
input features and its corresponding theory.

1.2 Challenges of Ultrahigh Label Dimensionality

Annotation, which aims to tag objects with some labels to enhance the semantic under-
standing of the objects, has arisen in various applications. For example, in image annotation
(Boutell et al., 2004; Guillaumin et al., 2009), one needs to predict some relevant keywords,
such as beach, sky and tree, to describe a natural scene image. When annotating documents
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(Schapire and Singer, 2000; Paralic and Bednar, 2003), one may need to classify them into
different groups according to their annotations, such as News, Finance and Education. In
video annotation (Song et al., 2005; Tang et al., 2008), some labels, such as Government,
Policy and FElection are needed to describe the subject of the video. In these real-world
applications, the object needs to be annotated with multiple labels. Thus, it can be for-
mulated as a multi-label annotation problem (Tsoumakas et al., 2010; Chen and Lin, 2012;
Deng et al., 2014; Zhang and Zhou, 2014; Liu and Tsang, 2015b; Koyejo et al., 2015; Yen
et al., 2016), which aims to annotate multiple labels for each input instance.

One central challenging issue for practical multi-label annotation is scalability in ultra-
high label and feature dimensions. Suppose one needs to annotate the presence or absence
of g labels for each testing instance with m features, early approaches, such as Tsoumakas
et al. (2010) and Read et al. (2011), scaling the number of annotations to be linear with
the number of labels, take O(q x m) time for annotation. We cannot get the results of
these exhaustive approaches on the large-scale data sets within one week, such as amazon
data set with 2,812,281 labels and 337,067 features, which is collected from McAuley et al.
(2015a,b).

Recently, many works (Tsoumakas et al., 2008; Agrawal et al., 2013; Prabhu and Varma,
2014) have put more effort in exploring tree-based algorithms to minimize the number of
annotations for multi-label annotations with ultrahigh label dimensions. Among them,
FastXML (Prabhu and Varma, 2014) is the most recently advanced technique, which has
shown state-of-the-art rapid annotations. However, there is no generalized performance
guarantee for FastXML and our extensive empirical study verifies that FastXML generally
underperforms in terms of annotation performance. Moreover, some literature (Tsoumakas
et al., 2008; Madjarov et al., 2012) has shown Homer (Tsoumakas et al., 2008) achieves good
annotation performance. Unfortunately, Homer requires at least O(qg?) time for training.
Thus, we cannot get the results of Homer even on medium-sized data sets within one week.
The question is: can we design some efficient, yet accurate multi-label annotation algorithms
in ultrahigh label and feature dimensions?

1.3 Our Contributions and Organization

To address these challenges, we first revisit the PDT model. Specifically, we first present a
novel generalization error bound for the PDT, which takes into account the distribution of
the data, and provides the theoretical justification to learn a sparse hyperplane classifier in
each decision node and prune the tree. From the analysis of our bound, the training error
loss, the margin, the capacity of the kernel matrix defined on the training data, and the
complexity of the tree are the dominant factors that affect the generalization performance
of PDTs. In particular, our bound indicates that decreasing training error loss and the
capacity of the kernel matrix, and enlarging the margin can yield better generalization
performance. Suppose linear kernel is used, decreasing the capacity of the kernel matrix
can be done via feature selection. Thereafter, we introduce the notion of budget-aware
classifier (BAC) to perform feature selection and optimize training error loss and margin
simultaneously, and then develop a supervised budgeted tree (SBT) to achieve non-linear
prediction performance. To obtain a stable DT structure, instead of conducting ensemble,
we propose an objective to learn classifiers and to identify a universal feature subset that
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Figure 1: Top: Frequency of each label on the corelsk and Eur-Lex(ed) data sets. mid-
dle: Frequency of each label powerset on the corel5k and Eur-Lex(ed) data sets.
bottom: Frequency of samples with the specific number of labels on the corelbk
and Eur-Lex(ed) data sets.

minimizes the cross validation errors on each BAC. After that, we further diminish the
generalization error by pruning the tree.

Based on BAC, we can design the tree-based algorithm to handle ultrahigh feature
dimensions. How can one deal with ultrahigh label dimensions? To answer this question,
we first use Figure 1 to demonstrate three important phenomena of real-world multi-label
annotation data sets from various application domains!. We use corel5k and Eur-Lex(ed)
data sets as examples. The details of these data sets are shown in Table 7.

Observations of Label Distribution: The labels of instances usually follow the
distribution of Power Law (Barabési et al., 2000) which is shown in (Bhatia et al., 2015), as
shown at the top of Figure 1, where many labels have very low label frequency. The bottom
of Figure 1 shows the sparsity of labels in each instance, which means that the average
number of labels in the data set is small. The middle of Figure 1 shows that very few label
powersets have high frequency. Note that similar observations can also be found in image
annotation tasks (Mao et al., 2013).

In real-world problems, although the number of labels would be very large, the first
observation indicates that only a few labels appear very frequently; many others are rare.
Based on this property, we design a tree-based algorithm to reduce the overall annotations
as follows. Frequent labels should be predicted first in the decision tree, so there will
be fewer annotations involved to predict the frequent labels, and more annotations for
rare labels. To achieve this, we develop a novel annotation tree (AT) algorithm, which is
analogous to the Shannon-Fano coding (Shannon, 1948) strategy, to deal with multi-label
annotation problems. Moreover, the second observation shows that each instance typically

1. http://mulan.sourceforge.net
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has few labels, which enables early stopping of our tree model. Thus, fewer annotations
will be made along shorter paths in our tree model for most testing instances. Based on
the property of the last observation, we also develop the powerset tree (PT) algorithm to
deal with the transformed multi-class annotation task.

This paper is organized as follows. Section 2 reviews related work. Section 3 introduces
a novel data-dependent generalization error bound for PDT. Based on our analysis, Sec-
tion 4 develops the budget-aware classifier (BAC) to handle ultrahigh feature dimensions.
Section 5 proposes the supervised budgeted tree (SBT) to construct a powerful non-linear
classifier by arranging BAC in a tree-structure. Furthermore, based on BAC, Section 6
introduces the sparse coding tree framework for multi-label annotation with ultrahigh label
and feature dimensions and provides generalization error bound for our proposed powerset
tree (PT) and annotation tree (AT). Section 7 and Section 8 present the implementation
issues and evaluate the performance of our proposed methods in ultrahigh dimensions, re-
spectively. Lastly, Section 9 concludes the work.

2. Related Work

In this section, we introduce some backgrounds about the perceptron decision tree, multi-
label annotation, multiple kernel learning, Huffman coding and Shannon-Fano coding.

2.1 Perceptron Decision Tree

OC1 (Murthy et al., 1994) is a popular PDT, which belongs to a randomized algorithm that
performs a randomized hill-climbing search to learn the classifiers and builds the tree in a
top-down approach. Murthy et al. (1994) show the competitive results of OC1 compared
with C4.5 (Quinlan, 1993) (which is the famous axis-parallel DT) and other baselines. The
authors in (Bennett et al., 2000) first provide the margin bound for the perceptron decision
tree (PDT), then update the weights of OC1 with the maximum margin for each node.
However, the results of Bennett et al. (2000) show that the performance of modified-OC1
with the maximum margin for each node is similar with OC1. The main reason may be the
data dependency of the bound comes from the margin only.

The combination of bagging and building ensembles of trees (Breiman, 2001) is a pop-
ular strategy to control the generalization error of decision trees. Moreover, due to PDT’s
performance is sensitive to the tree structure, which is determined by the distribution of
features, ensembles offer an effective technique for obtaining increased accuracy by combin-
ing the predictions of many different trees, such as random forest feature selection (RFFS)
(Hastie et al., 2001) and Gradient boosted feature selection (GBFS) (Xu et al., 2014). GBFS
is an advanced gradient boosted DT (Friedman, 2000), which employs gradient boosting to
do feature selection in DT. GBFS, which belongs to axis-parallel DT, shows its state-of-
the-art feature selection performance compared with [i-regularized logistic regression (Lee
et al., 2006), RFFS, and some other promising baselines. Cost-Sensitive Tree of Classifiers
(CSTC) (Xu et al., 2013) is another state-of-the-art approach for feature selection in DT,
which follows the PDT. Both are based on the [j-regularized model (Zhu et al., 2003).
Unfortunately, these /1-regularized methods suffer from three major limitations:
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1. Because the scale variation of weight parameters, it is non-trivial for these methods
to control the number of features to be selected meanwhile to regulate the decision
function;

2. Since l1-norm regularization shrinks the regressors, the feature selection bias inevitably
exists in the /1-norm methods (Zhang and Huang, 2008; Zhang, 2010a,b);

3. l1-norm regularized methods are inefficient or infeasible for handling the data sets with
ultrahigh dimensions. Moreover, the theoretical and empirical analysis in Zhang and
Huang (2008), Zhang (2010a), Zhang (2010b), and Tan et al. (2014) have shown that
l1-regularized methods achieve suboptimal performance in feature selection, compared
with the sparse model with an explicit budget constraint on the weights.

Region-specific and locally linear models (Jose et al., 2013; Oiwa and Fujimaki, 2014) are
an advanced technique for dealing with the non-linear problem. Local deep kernel learning
(LDKL) (Jose et al., 2013) formulates the problem from a local kernel learning perspec-
tive where they learn tree-structured primal feature embedding and has shown its superior
performance in (Jose et al., 2013). Partition-wise linear models (Oiwa and Fujimaki, 2014)
assign linear models to partitions and represent region-specific linear models by linear com-
binations of partition-specific models. They first formalize the problem as [y penalizing
problem and then apply a convex relaxation with a combination of /1 penalties. The model
is similar with GBFS and CSTC, which is different in penalizing terms. In this paper, we
select GBFS and CSTC as the representatives of these kinds of methods for comparison.

2.2 Multi-Label Annotation

Much effort has been focused on annotation tasks, such as image annotation (Boutell et al.,
2004) and video annotation (Song et al., 2005). Usually, annotation tasks can be formulated
as a multi-label annotation problem (Tsoumakas et al., 2010; Chen and Lin, 2012; Deng
et al., 2014; Zhang and Zhou, 2014; Koyejo et al., 2015; Liu and Tsang, 2015a; Gong
et al., 2017). According to the annotation complexity, we divide these methods into several
categories:

The first category includes some popular methods, such as Binary Relevance (BR)
(Tsoumakas et al., 2010) and Classifier Chain (CC) (Read et al., 2011), the number of
annotations scale linearly with the length of label vector. All these methods cannot handle
ultrahigh label dimensions.

The second category includes the encoding-decoding strategy. For example, (Zhang
and Schneider, 2011, 2012) first use different projection methods to transform the original
label space into another space, and recover the original multiple labels using an expensive
decoding process, which involves solving a quadratic programming (QP) problem on a space
with a combinatorial nature.

The third category includes Label Powerset (LP) (Tsoumakas et al., 2010) and its variant
(Tsoumakas and Vlahavas, 2007). LP reduces a multi-label annotation problem into a
multi-class annotation problem by treating each distinct label set as one of the classes for
a transformed multi-class learning task. One can then train a single multi-class classifier
(Tsoumakas et al., 2010) or many binary classifiers (for example one-vs-all or one-vs-one)
for the transformed multi-class annotation problem. The number of transformed classes
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is upper bounded by min(n,2%) where n means the size of training data set and ¢ means
the number of labels. For large values of n and ¢, it imposes an extremely high training
complexity.

The last category is tree-based algorithms, which have annotation costs that are loga-
rithmic in the number of labels. FastXML (Prabhu and Varma, 2014) is one of the most
advanced tree-based algorithms. However, there is no generalized performance guarantee
for FastXML and our extensive empirical study verifies that FastXML generally underper-
forms in terms of annotation performance. Homer (Tsoumakas et al., 2008) is developed
to use a divide-and-conquer-strategy to divide original problem into k sub-problems. Some
literature (Tsoumakas et al., 2008; Madjarov et al., 2012) has shown Homer achieves good
annotation performance. However, Homer requires at least O(g?) time for training. Thus,
we cannot get the results of Homer even on medium-sized data sets within one week.

2.3 Multiple Kernel Learning

By combining multiple sets of features, multiple kernel learning (MKL) (Lanckriet et al.,
2004b; Rakotomamonjy et al., 2008) has become a powerful learning paradigm to enhance
the interpretability of the decision function and improve performances of single kernel meth-
ods. MKL has been successfully applied in many tasks, such as object recognition (Bucak
et al., 2014), signal processing (Subrahmanya and Shin, 2010), and genomic data fusion
(Lanckriet et al., 2004a).

Many efficient MKL algorithms (Lanckriet et al., 2004b; Bach et al., 2004; Sonnenburg
et al., 2006; Rakotomamonjy et al., 2008; Liu et al., 2015) are developed. SimpleMKL
(Rakotomamonjy et al., 2008) is one of the most popular MKL solvers. SimpleMKL uses
a sub-gradient method to solve the non-smooth optimization problem. However, it is ex-
pensive to calculate the sub-gradient for large-scale problems. Tan et al. (2014) develop an
up-to-date MKL solver, which modifies accelerated proximal gradient method to solve the
primal form of MKL and shows promising results. This paper will adapt this method to
solve our subproblems.

2.4 Huffman Coding and Shannon-Fano Coding

Huffman coding (Huffman, 1952) is one of the most widespread bottom-up encoding al-
gorithm for data compression. Huffman coding uses a specific method for choosing the
representation for each symbol, resulting in a prefix code, that is, the bit string represent-
ing some particular symbol is never a prefix of the bit string representing any other symbol.
Given a set of symbols and their weights (usually proportional to probabilities), Huffman
coding aims to find a set of prefix codewords with minimum expected codeword length.
Based on the frequency of occurrence of each symbol, the principle of Huffman coding is to
use a lower number of bits to encode the symbol that occurs more frequently. The detailed
procedure of Huffman coding can be referred to Huffman (1952). This work first uses the
idea of Huffman coding to deal with the label powerset annotation problems.
Shannon-Fano coding (Shannon, 1948) is a top-down encoding technique for constructing
a prefix code based on a set of symbols and their weights. Shannon-Fano coding arranges
the symbols in order from biggest weight to smallest weight, and then divides them into
two sets whose total weights are roughly comparable. Then, we encode symbols in the first
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Table 1: Important notations used in this paper.
Notation \ description

number of instances

dimensionality of the input space

dimensionality of the output space

the input space over R™

the output space (Y = {—1,1} for binary classification, while

Y C{1,2,---,q} for multi-label classification)

T; xz; € R™ is a real vector representing the :-th input or instance

Yi y; € {—1,1} is used to represent the i-th label for binary classification
Vi y; € {0,1}7 is used to represent the i-th label set for

multi-label classification, where y,;(j) = 1 if and only if j € )

X instance matrix, where X = [x1, -+, x,)’

Y binary label matrix, where Y = [y1,- -+, yn]

0 o0=o1, - ,0m]) €[0,1]™ represents a feature selection vector,

and /¢ denotes the elementwise square root operator

budget constraint on the weight coefficients

domain of dual variable v, where A= {a|} " ja; >1,0<a; <C,i=1,---,n}
domain of g, where £ = {0 € [0,1]™| 37" 0; < B}

LR I3

IR oy

set as zero and symbols in the second set as one. As long as any sets with more than
one member remain, the same process is repeated on these sets. The detailed procedure of
Shannon-Fano coding can be referred to Shannon (1948). Analogous to the Shannon-Fano
coding strategy, this work first proposes a novel annotation tree algorithm to deal with
multi-label annotation problems.

3. Data-Dependent Generalization Error Bound for PDT

Inspired by Bartlett and Mendelson (2002) and Shawe-Taylor and Cristianini (2004), this
section provides the generalization error bound for the PDT, which takes into account the
distribution of the data. We begin with some basic definitions. We denote the transpose
of vector/matrix by the superscript ’. Let ® represent the elementwise product sign. || - ||
denotes the ls norm. If S is a set, |S| denotes its cardinality. Let R represent real number,
X be the input space over R™ and Y = {—1,1} be the output space. Suppose sign(-)
represents sign function; ¢r(-) denotes the trace of matrix argument; In(-) represents the
natural logarithm and O(:) returns 1 if its argument is greater than 0, and zero otherwise.
E, denotes the empirical risk over n training samples (z1,y1), -, (Tn,yn). Let F be a
class of functions mapping from X to R. We follow the definitions in Koltchinskii (2001),
Bartlett and Mendelson (2002) and Mendelson (2002), and use R, (F) and G, (F’) to denote
the Rademacher and Gaussian complexity of F', respectively. The important notations in
this paper are summarized in Table 1.

Definition 1 (Generalized Decision Trees (GDT), Bennett et al. (2000) ) Given X =

R™ and a set of Boolean functions Fapr = {fapr : X — {0,1}}, the class of Generalized
Decision Trees over Fgpr is the set of functions that can be implemented using a binary
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tree where each internal node is labeled with an element of Fgpr, and each leaf is labeled
with either 1 or 0.

Definition 2 (Perceptron Decision Tree (PDT), Bennett et al. (2000)) Given X =
R™, and assume g is a linear real function over X and w € R™, a Perceptron Decision Tree
(PDT) is a GDT over

Fppr = {hw : hw(2) = (9w (7)), gu(®) = w'z + b}
Next, we introduce two important Theorems.

Theorem 3 (Bartlett and Mendelson (2002)) Let D be a probability distribution on
X x Y and let F be a set of real valued functions defined on X, with sup{|§(z)| : § € F'}
finite for all x € X. Suppose that ¢ : R — [0, 1] satisfies ¢(a) > O(—«) and is Lipschitz
with constant L, then with probability at least 1 — & with respect to n training samples

(x1,y1),* , (Tn,yn) drawn independently according to D, every function in F satisfies
. . In(2/6
Pp(y # sign(§(z))) < En(¢(yS(x))) + 2LR,(F) + (Qn/ )

Theorem 4 (Shawe-Taylor and Cristianini (2004)) Fiz margin v and let F be the
class of functions mapping from X x Y to R given by f(x,y) = —yg(x) (x € X,y € Y),
where g is a linear function in a feature space induced by a kernel k(-,-) with Fuclidean
norm at most 1. Then, with probability at least 1 — & with respect to n training samples
(x1,91), ", (Tn,yn) drawn independently according to D, we have

: 1 ¢ 4 In(2/5
Poly # sign(a(e)) < =36+ MmHm

where K is a kernel matriz defined on the training data with k(-,-) and & = max(0,vy —
yig(@i)).

We provide the data-dependent generalization error bound for PDT as follows:

Theorem 5 Let T be a PDT, where the Fuclidean norm of the linear functions in T is
at most 1. Suppose that the depth of T is no more than d, and it contains no more than
M leaves. Let (x1,y1), -, (Tn,yn) be n training samples, which is generated independently
according to a probability distribution D. Then, we can bound the generalization error with
probability greater than 1 — § to be less than

d;

ZZDHEMMQG"(T)JF ((3d +1)v/nM + 1)
1 =1

In(6/9)
2n

where ¢ is a universal small constant, d;(d; < d) is the depth of leaf [, Dﬁ = #’Yl 2?1:1 521-7]4 +

ﬁ tr(K;), n; denotes the number of samples (z},44), - -, (:Cf”,y,l”) reaching leaf |, K is

the kernel matriz for {z},--- ,xlnl}, fll.J = max (0, At — yijgé(xé.)), where yfj represents the
correct output for input mé in decision node 1 and ’yﬁ denotes the corresponding margin.
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Proof For a tree of depth d, the indicator function of a leaf is a conjunction of no more
than d decision functions. More specifically, if the decision tree consists of decision nodes
chosen from a class T' of Boolean functions, the indicator function of leaf | (which takes
value 1 at a point = if = reaches [ and 0 otherwise) is a conjunction of d; functions from
T, where d; is the depth of leaf I. We can represent the function computed by the tree as

follows:
d
=> o1 )\ hu(x)
1 i=1

where the sum is over all leaves I, 0; € {£1} is the label of leaf I, h;; € T, and the
conjunction is understood to map to {0,1}. Let F be this class of functions. Choose
a family {¢r : L € N} of cost functions such that each ¢ dominates the step function
©(—yf(z)) and has a Lipschitz constant L. For each L, Theorem 3 implies that with
probability at least 1 — d1:

In(2/5,)

Py # [(2)) < En(@r(yf (2))) + 2LRa(F) + 1/ =

Define ¢ () to be 1if o <0, 1 — La if 0 < a < 1/L, and 0 otherwise. Let P,(l) denotes

the proportion of all the samples in S which reach leaf [ and are correctly classified. Assume
(=t ), (xfw yf%) reach leaf | with |S;| = n;. Then we have

E (¢L(yf( )

_ Z Ly )GSL
Z Ly )ESZ

l

o(-

$l ~
>+Za@mm

(- ZP max(0,1-L)

If no sample reaches leaf I, the sum term of leaf [ in the Eq.(1) is zero. Here we consider
1 <mn; <n. As L € N, the second term in Eq.(1) is zero. Following Theorem 5 in (Bartlett
and Mendelson, 2002), with probability at least 1 — 2, we get:

et ytyes, Oy f(2h) <Z(a;l,yl)esl@(*ylf($l))

n ny

< Pl # fGaty + )y [0

(2)

The probability of z! misclassified is equal to the probability of at least one decision node
from the root to a leaf [ making the errors. Suppose {g}, - - - ,gfil} are the linear functions
with the Euclidean norm at most 1 and associated with each decision node from the root
to a leaf I. The corresponding margins are {7}, - ,'yﬁll}. For input 2! € {x!,--- 2! }, the

correct output of each decision node from the root to a leaf [ is denoted by {yl, e ,ydl},

) ”l
where yé € {yfvl, e ,yll-m}. By the union bound and Theorem 4, with probability at least

10
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1 — 63, we get the following:

P(y' # f(a'))

d

=P(J ! # sign(g(="))))

=1

d
<> Pyt # sign(gi(z")))

=1

d;
<;( me tT(Kl)>+3dl “L%‘Sﬁ*)

! st
(3)

Let 01 = 09 = 03 = /3 and L = M. The results of Eq.(1), Eq.(2) and Eq.(3) imply that
with probability at least 1 — §:

In(6/0)

Py # f(z <ZZD’ 5MR() + ((3d+1)y/nM +1)

where D} = ﬁ%l >k {é’j + ﬁ«/tr(Kl). Let ¢ is a constant. Theorem 12, Theorem 16 and

Lemma 4 in (Bartlett and Mendelson, 2002) imply that R, (F) < cdG,(T), which implies
the result. u

4. Budget-Aware Classifier

Theorem 5 reveals important factors to reduce the generalization error bound for the PDT
model: the first is to decrease the training error loss and the capacity of the kernel matrix
for each node, and the second is to enlarge the margin for each node. We first enforce
an upper bound budget B for the capacity of the kernel matrix, that is tr(K;) < B.
Suppose there are n samples (z1,91), -, (Tn,Yn), i € R™ (x; = [@i1, -, Tim]). Let
X = [z1,,2,) and Y = [y1, - ,yn|’. Since we use linear kernel here, decreasing the
capacity of the kernel matrix can be transformed to a budget constraint on the weight
coefficients, which leads to a feature selection problem for the linear decision function.
Mathematically, let K denote the kernel matrix on the re-scaled instance: #; = x; ® V0,
where ¢ = [o1, -+, 0m) € [0,1]™ represents a feature selection vector and /o denotes
the elementwise square root operator. The capacity constraint on the kernel matrix is
tr(f() < 9B, then tr(f() =300 (2 Ox;) < NTmag E’]n:l 0;, where 4, be the maximum
element in [x1 ®x1, -+ , 2, ©xy]. Let B /N e, = B, where B is a budget constraint on the
weight coefficients. Thus tr(K) < 9B can be transformed to > it10j < B,o€0,1]™. Then
we learn a sparse linear decision function on each node by minimizing the training error
loss and maximizing the margin at the same time. Based on Theorem 5, we hereinafter
introduce the notion of budget-aware classifier (BAC).

11
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Definition 6 (Budget-Aware Classifier (BAC)) Assume there are n samples (z1,y1), -,
(Tn,yn) drawn independently according to a probability distribution D, where x; € R™ and
yi € {£1}. 0= [o1, - ,0m) € [0,1]™ represents a feature selection vector. Let K denote
the kernel matriz on the re-scaled instance: &; = x; © /0 and the capacity constraint on
the kernel matriz can be transformed as Z;nzl 0j < B with a budget B. A budget-aware
classifier contains a linear decision function g,(z) = w'(z; ® /o +b), ||w||?> = 1, where the
parameters are obtained by solving the following problem :

n
min —y+C Z &
=1

SRR (4)
4
st. yw (zi©o+b)>v—§,6>0i=1,---,n
|w|* =1,v>0

where & = {0 € [0,1]™| 3712, 0j < B} and B is a budget constraint on the weight coeffi-
cients.

4.1 Learning the BAC

For the sake of clarity, we consider the function without an offset, although the model can be
extended to the function with the offset. For problem (4) with respect to w, &, y, the corre-
sponding Lagrangian function is: L(w,&,y, o, X\, ¥, v) = —y+C > " &—> 0y ai(yw' (2,0
V0) =7 +&) + A(lw||* = 1) = 37 wi& — vy, with a;, ¢, v > 0. Differentiating with respect
to the primal variables and substituting the relations obtained into the primal, we obtain
the following dual objective function: L(a, A, 0) = —ﬁH Yoy ayi(x © \/E)H2 — X. Opti-
mizing A gives A* = §|| >1" 1 aqyi(w; ©/0)]], resulting in L(o, 0) = —|| 2o eyl © /o) ||-
Optimizing the squared lo-norm objective and lo-norm objective yields the same solution.
To simplify the optimization, we use the squared lo-norm as the objective. Thus, problem
(4) can be equivalently reformulated as the following problem:

. IS 2
mlnmax—fH Z%‘?/i(ﬂfi ® \/E)H (5)
=1

ocf acA 2

where A={a|> " 10; >1,0< o <C,i=1,--- ,n}.

Let G(a, Q) = %H Z?:l aly@(l'l@\/é)
(Sion, 1958), we have the following theorem:

2
‘ . According to the minimax saddle-point theorem

Theorem 7 According to the minimaz saddle-point theorem in (Sion, 1958), the following
equality holds:

min max —G(a, 9) = max min —G(«,

0€E ae.zl( ( Q) aE.Z\( 0€E ( Q)
Proof Recall that both A and £ are convex compact set. It can be easily verified that the
objective function is concave with respect to a. As shown in Section 4.1.1, the objective

function is linear with respect to g, and also is convex in ¢. Therefore, the conditions in
minimax saddle-point theorem in (Sion, 1958) are satisfied here. |

12
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Algorithm 1 Cutting Plane Algorithm for Solving Problem (7)
Input: Data set {x;,y;}7 . Initialize o.
1: t =0, C = 0.
2: repeat
3: t=t+ 1.
4 Worst-case analysis: Finding the most violated g; based on «a;_1 and set C; = C;_1 U
{0+}. The details can be referred to Section 4.1.1.
5:  Master-problem optimization: Solving problem (8) over C; and obtaining the optimal
solution «;. The details can be referred to Section 4.1.2.
6: until e-optimal

Based on Theorem 7, instead of directly solving problem (5), we address the following
problem instead:
. Glo,
min maxG(a: o ©)
where we drop the negative sign of problem (6) for the clarity of our optimization procedure.
By introducing variable 6 € R, problem (6) can be further formulated as a semi-infinite
programming (SIP) (Pee and Royset, 2011) problem:
in 6 st. 6>G Voe &
Ja? 1 02 G0 Ve ™
Problem (7) involves infinite number of constraints. Inspired by the cutting plane algorithm
(Kelley, 1960), which iteratively refines a feasible constraint set and then solves a sequence of
approximating linear programs, we propose Algorithm 1 to solve problem (7). Specifically,
given a1, the worst-case analysis is to infer the most-violated o, and add it into the active
constraint set C;. Then, we update a; by solving the following problem:
in 0 st. 0>G(a,0n),Vo, €C
S SR (v, 0n),Von € Gt (8)

The following convergence theorem indicates that Algorithm 1 gradually approaches to
the optimal solution:

Theorem 8 Algorithm 1 stops after a finite number of steps with the globally optimal so-
lution of Problem (7).

The proof can be adapted from Tan et al. (2014). Algorithm 1 involves two major steps:
worst-case analysis and master-problem optimization, which will be discussed in the
following subsections:

4.1.1 WORST-CASE ANALYSIS

The worst-case analysis is to solve the following maximization problem:

1 n 2 m
m3X§H z;aiyi(xi ® \/E)H s.t.z;gj < B,o€[0,1] )
1= j=

13
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2
Note that H Yoy azyl(%@\/@)H = Z;n:l (30 ciyizij)?0j. Let 2= (300 auyim;)® € R™.
Then, problem (9) can be transformed to max, % Z;ﬂ:l =j0; subjected to ZTZl 0j < B,o¢€
[0, 1]™, which is a simple linear programming (LP) problem. We obtain the optimal solution
for this LP problem by first sorting Z;’s and then setting the first B numbers corresponding
to p; to one and the rests to zero. This procedure takes O(mlogB) time complexity, which
is very efficient.

4.1.2 MASTER-PROBLEM OPTIMIZATION

Note that any g5, € C; indexes a set of features. For simplicity, we define Xj, = [x1 4, ,zp 5] €
R™* B where x; , denotes the i-th instance with the features indexed by g,. By introducing
dual variable pup, > 0 for each constraint defined by gy, the Lagrangian function of problem
(8) can be written as: L(0,a,n) = 0+, cc, in(G(a, 0n) — 0). By setting its deriva-
tive with respect to 6 to zero, we have ) up = 1. By applying the minimax saddle-point
theorem, problem (8) with the negative sign can be transformed to the following problem:

. , 1 , ,
max min— Q% #rG(a o) = minmax—5 (@ © Y) (@ZE; XnXp)(@®Y) (10
h t h t

where M = {u| > pp =1, up, > 0}
Problem (10) is a multiple kernel learning (MKL) problem (Lanckriet et al., 2004b;
Rakotomamonjy et al., 2008; Li et al., 2013), where the kernel matrix Zghect ,uhXhX;L is a

convex combination of |C;| base kernel matrices X hX,/l. The resultant MKL problem can be
solved efficiently by the modified accelerating proximal gradient (APG) method developed
in (Tan et al., 2014), which takes O(n<B) time complexity, where ¢ is the number of the
worst-case analyses. Thus, the time complexity of Algorithm 1 is O(n¢B+mlogB), which is
computationally efficient for large-scale and very high dimensional problems. Next sections
will present what can we do with BAC.

5. Supervised Budgeted Tree

Due to the non-linear but highly interpretable representations, PDT has played a vital
role in various data mining and machine learning applications. Unfortunately, PDT suffers
from three limitations on ultrahigh dimensions which are described in introduction. To
break the bottlenecks of PDT on ultrahigh dimensions, we first perform supervised learning
based on our theoretical results and BAC, and construct a powerful non-linear classifier
by arranging BAC in a tree-structure. In this section, we first present an algorithm for
supervised budgeted tree (SBT), and propose pruning strategy to improve the generalization
of SBT.

5.1 Algorithm for SBT

We build a SBT in a top-down approach. Starting from the root, we train the BAC on
each node and use it to split the training data into two child nodes. This process continues
until the remaining data at the node cannot be further split by the induced classifier. The
details are stated in Algorithm 2.

14
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Algorithm 2 Supervised Budgeted Tree (SBT)
Input: Training data (x1,y1), -, (Tn, Yn), where z; € R™ and y; € {+1}.
Output: A supervised budgeted tree

1: while BAC contains more than one class do
2:  train the BAC on this node.

3:  split the training data of this node into left child if these instances are predicted to
be positive by the BAC and call Algorithm 2 with split data as the input.

4:  split the rest of training data of this node into right child and call Algorithm 2 with
the remaining data as the input.

5: end while

6: Return the complete supervised budgeted tree.

5.2 SBT Pruning

Theorem 5 reveals that the generalized bound also depends on the depth and leaves of
the tree, which appear in the second and third terms of the bound. Inspired by this, we
can reduce the depth and leaves of the tree by pruning the tree to further diminish the
generalization error. We follow the pruning strategy in (Xu et al., 2013) to conduct pruning
for SBT. To this end, we present to use the cross validation (CV) for each node to estimate
the generalization error. If the sum of CV errors of child nodes is bigger than that of the
parent node, we remove these child nodes.

It is obvious that any slight changes in the data distribution result in generating different
feature subsets for many feature selection methods, such as (Xu et al., 2013, 2014). To
identify a stable and unique feature subset across different folds of CV, we introduce the
universal feature selection vector o“™, which is selected by the following formulation:

1
wv “Qunl

min ZBAC(U)U,QUM,SU> (11)

where SV represents the v — th fold of training data, w" is the corresponding weight vector,
and BAC(w?, 0"™,SV) denotes problem (4). To solve problem (11), we first conduct the
worst-case analysis using the sum of objectives of each data fold. Then, we get the universal
feature selection vector o“™ and based on this, we adapt the efficient Master-problem solvers
in (Tan et al., 2014) to get the w" for each data fold separately. We repeat these procedures
until convergence. This framework is called embedded cross validation. By using this
method, we can find an intrinsic set of features.

For prediction, we aggregate the outputs from classifiers, which is generated from each
data fold, by means of voting.

6. Sparse Coding Tree

In this section, based on BAC, we present sparse coding tree framework for multi-label
annotation problem and the transformed multi-class (label powerset) annotation tasks.

15
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Algorithm 3 Powerset Tree (PT) for Label Powerset Annotation

Input: Given w transformed classes S, corresponding frequencies P, and Ts,(i = 1, - - , w).
Output: Powerset Tree.

1: Initialize a priority queue Q = () with the ascending order of the frequency.

2: Create a leaf node for each transformed class s; and insert it to Q.
3: while |@Q] > 1 do
4
5

remove the two nodes s; and s; of the lowest frequency from Q.
create a new internal node s, with s; and s; as children and its frequency equals to
the sum of the two nodes’ frequency.

6:  set the instance T§, as positive sample and T}, as negative sample, then construct a
BAC for the node s;.

7:  insert the new node s; to Q.

8: end while

9: The remaining node is the root node and the tree is complete.

6.1 Label Powerset Annotation

Our goal is to minimize the number of classifiers for binary decisions to enable rapid label
powerset annotation for a number of testing instances. Recall that, to minimize the ex-
pected codeword length of information, Huffman coding uses shorter codewords to encode
more frequent symbols and longer codewords to encode less frequent symbols. The idea of
Huffman coding can be easily adapted to deal with the label powerset annotation problems.

Given a random n multi-labeled training sample, we first transform multi-label annota-
tion to multi-class annotation by treating each unique set of labels as one of the classes for
transformed multi-class learning task and record the frequency of each transformed class.
Let w be the number of transformed classes. A powerset tree is built based on the w
classes and their corresponding frequencies. Leaf nodes of this powerset tree are the set of
transformed classes, denoted by S = {s1, -+, sz}, and the corresponding frequencies are
represented by P = {p(s1), -+ ,p(s=)}. Ts,(i = 1,--- ,w) denotes the training instances
associated with each transformed class. In each decision node, we construct a BAC and
then build a powerset tree dealing with the label powerset case in a bottom-up manner.
The details of the algorithm are presented in Algorithm 3.

More frequent classes are close to the root and less frequent classes are close to the
leaf node layer. Thus, the annotation for most testing instances only require a few binary
decisions along some shorter paths in our algorithm.

6.2 Multi-label Annotation

For multi-label annotation problems, the hypothesis space is exponential and we cannot
observe some combinations of labels in the training data. Thus Huffman coding cannot be
used to tackle the multi-label annotation problem. To reduce the number of annotations,
we develop a novel annotation tree algorithm, which is analogous to the Shannon-Fano
coding strategy. We first construct a BAC to predict the frequent label that have more
examples. Then, we can leverage the annotations of such classifier to divide the remaining
labels into two sets whose cardinality are roughly comparable. As long as any sets with

16



MAKING DECISION TREES FEASIBLE IN ULTRAHIGH FEATURE AND LABEL DIMENSIONS

Figure 2: Schematic illustration of PT. We use a simple example to demonstrate our pow-
erset tree. Assume one needs to annotate the presence or absence of four labels
(a,b,c,e) for 8 input instances. Suppose (1,1,0,0), (1,0,1,0), (0,0,0,1) and
(0,0,1,0) appear 3, 1, 3 and 1 times, respectively. Following Algorithm 3, we
build the tree structure as shown in Figure 2.

more than one member remain, the same process is repeated on these sets. Our algorithm
makes annotations for the ordered labels which accord to the arrangement with the label
frequency ranging from high to low. The second observation shows that each instance has
very few labels, based on our algorithm, so only a few annotations will be made for most
testing instances. We start with some definitions associated with the specific nodes in a
tree.

Let g represent the node in a tree, assume the label set associated with the node g is
Gy = {1,2,--- ,q}, given a set of training instances T, = {z;}}_, and the corresponding
labels L, = {y,;}7 ;.

Definition 9 ( Zero Label Set) refers to the situation where all the training instances at
the node g do not belong to this label set. It defined as: Zerogy = {j| where all the training
instances at the node g do not belong to label j }.

Definition 10 ( One Label Set) refers to the situation where all the training instances at
the node g belong to this label set. It defined as: Oney, = {j| where all the training instances
at the node g belong to label j }.

To accelerate the learning process, these zero and one label sets will be thrown away. Thus
we define the working label set for node g: W, = G4, — Zero, — Oney. Now, we introduce
the learning process for the tree in three cases.

1. Root node: Assume g is the root node. We select label [, € W, with the highest
frequency among W, and build a BAC for ;. g¢’s left and right child are denoted as
g1 and gg, respectively. The training instances of node g will be partitioned into left
child g if the values of label [, of these instances is 1, otherwise the instances will be
partitioned into right child gg. The label set associated with node g; and gy will be
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a=1,b=1, a=1,b=0, a=0,b=0, a=0,b=0,
c=0,e=0. c¢=1,e=0. c=0,e=1. c¢=1,e=0.

Figure 3: Schematic illustration of AT. We use the same example, which is aforementioned
in Figure 2, to illustrate our annotation tree. Following Algorithm 4, we build a
BAC for label a in the root node. For internal nodes, we build two BAC for label
b and e in the left and right child nodes of the root, respectively. The working
set in leaf nodes is empty, so we do not train any classifiers for the leaf nodes.

reduced as W,\l;. The training instance sets for g; and go are denoted by T}, and

Ty,-

2. Internal node: The training procedure for internal (child) nodes are the same with
that for the root node but uses a subset of training instances. The training instances
are split recursively into two smaller subsets until our algorithm moves down to the
leaf nodes.

3. Leaf node: If the working set of the node is empty, then it is a leaf node and stop
training for the leaf nodes.

We predict the multi-label output for a new testing instance from the root to leaves and
assign the labels of the leaf node to this testing instance. The schematic illustration of our
tree is shown in Figure 3 and the details of algorithm is presented as follows:

6.3 Testing Time Complexity Analysis and Generalization Error Bound

In this section, we study the testing time complexity and generalization error bound for
both label powerset and multi-label annotations. We denote logarithms to base 2 by log.
Let T and T represent PT and AT, respectively.

6.3.1 TESTING TIME COMPLEXITY ANALYSIS

As the annotation efficiency critically depends on the number of annotation times, we first
study the average number of annotations for the both cases.

We first introduce the noiseless coding theorem in (Roman, 1992). Let C = {c1,- -+ ,¢n}
be the symbol set of size n. p(c;) is the probability that symbol ¢; occurs. After encoding
of symbols in C, I(¢;) denotes the length of code ¢; and the average codeword length is
defined as AveLen(ci, -+ ,¢n) = > iy p(ei)l(ci). The entropy of {p(c1), -+ ,p(cn)} is de-
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Algorithm 4 Annotation Tree (AT) for Multi-label Annotation
Input: Given node g and its corresponding Gy, Ty and L.
Output: Annotation Tree
1: Compute Zeroy, Oney and W
2: while W, # 0 do
3:  select label [, € W, with the highest frequency
build a BAC for [,
set the label set of left and right child as Wy\l,
split the training instances of node g into left child g, if the values of label [, of these
instances are 1 and call Algorithm 4 with input (Wy\lg, Ty, )
7:  split the rest of training instances of node g into right child gg and call Algorithm 4
with input (Wy\lg, Ty, )
8: end while
9: The tree is complete

fined as H(p(c1),- -+ ,p(cn)) = >y p(ci) log(1/p(e;)). We get the following noiseless coding
theorem:

Theorem 11 ( The Noiseless Coding Theorem) Given {p(c1), - ,p(¢cn)}, we have

H(p(cl)a e 7p(cn)) < AUBLSTL(Cl, U ’Cn) < H(p(cl)7 e ,p(Cn)) +1

Label powerset annotation: We define H(Py,) = Y .7, p(si)log(1/p(si)). 1(s;) de-
notes the number of annotations for class s; and the average number of annotations is defined
as mean(S) = >, p(s;)l(s;). Following Theorem 11, we obtain the bound of the average
number of annotations for the label powerset annotation problem using Algorithm 3.

Theorem 12 Assume we transform a random n multi-labeled sample to a multi-class sam-
ple which has w classes. We obtain the bound of the average number of annotations for the
transformed multi-class annotation problem based on T:

H(Py) < mean(S) < H(Pp)+1

Multi-label annotation: Assume there are ® leaf nodes in a AT. These leaf nodes
denoted by S" = {s},---,sp}. Assume the frequency p) of each unique label set can
be associated with leaf node s;. We define H(F)) = Z?;lp(s;)log(l/p(s;)). Similar to
label powerset annotation problem, we use mean(S’) to represent the average number of
annotations of Algorithm 4. We obtain the bound of mean(S’) for multi-label annotation.

Theorem 13 Given a random n multi-labeled sample which has ® unique label set. We
obtain the bound of the average number of annotations for multi-label annotation problem
based on T:

H(P) <mean(S") < H(P) + 1
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Table 2: Testing time complexity comparison between the main methods used in this paper.
T, W, ., : # clusters, the average # instances in each cluster, # learners and the
dimension of the embedding space used in SLEEC. k,, denotes the average number
of non-zero weights of PD-Sparse.

Method Worst Testing Time Average Testing Time

BR O(mq) O(mgq)

LP O(mdv)

Homer - O(m log;.(q))
FastXML - O(Tmlog(q))

SLEEC - O@T+ 2DV +mD)
PD-Sparse - O(kwq)

PT O(sBlog(¥)) O(sBH(P,))

AT O(sBg) O(BH(R))

Proof Assume there are n multi-labeled samples which have ® unique label set. We build
a hierarchical tree based on n sample according to Algorithm 4. Each node is associated
with one label, so the labels associated with nodes in each path of the tree are one of the
unique label set, so there are ® number of paths and leaf nodes. The frequency of each
unique label set can be associated with each leaf node. After this transformation, we apply
Theorem 12 to obtain the above bounds. |

Therefore, in the label powerset and multi-label annotation algorithms, we can expect
that the number of annotations for each instance are around H(Fy;,) and H(P;), which are
much fewer than min(n,29) and ¢, respectively.

Algorithm 4 and Algorithm 3 are denoted as AT and PT, respectively. We provide
the testing time complexity analysis for each testing instance. The number of annotations
for BR are equal to the number of labels. Each time Homer divides the problem into k
sub-problems. Following (Tsoumakas et al., 2008), it takes O(mlog,(q)) on testing time.
According to (Prabhu and Varma, 2014), the average cost of prediction for FastXML is
O(Tmlog(q)), where T is the number of trees in the FastXML ensemble. In the worst case,
LP requires min(n,27) times of annotations respectively. The number of annotations for
PT and AT are log(min(n,2%)) and ¢, respectively. As shown in our theoretical analysis,
on average, the number of annotations can be further reduced to H(F);,) and H(F;). The
testing time complexity for the main methods used in this paper is presented in Table 2
where ¢ = min(n,27). From Table 2, we can see that the average testing time cost of our
proposed PT and AT is lower than other methods.

6.3.2 GENERALIZATION ERROR BOUND

Label powerset annotation: This subsection aims to bound the generalization error
for a specific transformed class k£ in terms of the nodes in which instances in class k are
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used to train the classifiers. We define the probability of error for transformed class k as
€x(T) = P{x : x € R™, x in class k and x is misclassified by T or x is misclassified as class
k by T}. We first state some important definition, lemma and theorem.

We begin with the definition of the fat shattering dimension.

Definition 14 (Kearns and Schapire (1990)) Let H be a set of real valued functions.
We say that a set of points P is y-shattered by H relative to r = (rp)pey if there are real
numbers ), indexed by p € P such that for all binary vectors b indexed by P, there is a
function fi, € H satisfying

fup) = {er+'y ifby=1

<r,—7 otherwise

The fat shattering dimension fat(y) of the set H is a function from the positive real numbers
to the integers which maps a value v to the size of the largest v-shattered set, if this is finite,
or infinity otherwise.

Then, we provide the following lemma and theorem:

Lemma 15 Given a specified T model with K decision nodes with margins y*,72,--- ,v%
at the decision nodes satisfying k; = fat(+'/8), where fat is continuous from the right. If T
has correctly classified n multi-labeled examples s generated independently according to the
unknown (but fized) distribution D and s is a set of another n multi-labeled examples, then
we can bound the following probability to be less than 6: P{ss: 3T, it correctly classifies s,
fraction of 3 misclassified > e(n, K,8)} < 8, where €(n, K, ) = +(Qlog(8n) + log %) and
Q= Zfil k; log(%).

The proof can be adapted from Shawe-Taylor and Cristianini (1997).

Theorem 16 (Bartlett and Shawe-Taylor (1998)) Let H be restricted to points in a
ball of M dimensions of radius R about the origin, then

2
faty () Smin{{;,M—Fl} (12)

Based on Lemma 15 and Theorem 16, we derive the following theorem:

Theorem 17 Assume we transform a random n multi-labeled sample to multi-class sample
which has w classes. Suppose transformed class k can be correctly classified by a T, where
the internal nodes are K decision nodes with margins v at node i. In addition, suppose
the number of nodes in which instances in class k are used to train the classifiers is N(k).
Then with probability greater than 1 — 6,

130R?

(T) < 2 (D) Tog(den) os(4n) + N(k) log(2n) + log )

where Dy, = > ci_nodes ﬁ (k-nodes are the set of nodes in which instances in class k

are used to train the classifiers) and R is the radius of a ball containing the distributions
support.

21



L1u AND TSANG

The proof can be adapted from Platt et al. (1999).

We discuss the implications of Theorem 17. Theorem 17 reveals one important factors
to reduce generalization error bound for a specific transformed class k: it is to control the
complexity of the model by reducing the average number of decision nodes. We build a T
for the transformed multi-class classification problem. So, we obtain shorter path for higher
frequency classes than that for less frequent classes. Based on Theorem 12, we can see that
the average number of annotations of Algorithm 3 is around H(P,,). Thus, PT is able to
reduce the generalization error.

Multi-label annotation: This subsection analyzes the generalization error bound of
multi-label annotation problem using Algorithm 4. Let Pathy_,.4es be the set of decision
nodes along k-th path in T. Assume €, (T) is the probability that any of node in Pathy_nodes
makes mistake. We provide the following generalization error bound for e (T):

Theorem 18 Given random n multi-labeled sample, suppose there is no mistake made by
any node in Pathy_podes of T, where the internal nodes are K decision nodes with margins
~* at node i. Denote N(k) = |Pathi_noedes|, that is the number of decision nodes along k-th

path in T. Then with probability greater than 1 — 6,

130R? 2
ex(T) < S0 (D}, log(4en) log(4n) + N(k) log(2n) + log 5)
where D} = Eiepathkfnodes ﬁ and R is the radius of a ball containing the distributions

support.

The proof can be adapted from Bennett et al. (2000).

We discuss the implications of Theorem 18. Theorem 18 reveals one important factors
to reduce generalization error bound for some decision nodes along a specific path in T: it
is to control the complexity of the model by reducing the average number of decision nodes.
Based on Theorem 13, we can see that the average number of annotations of Algorithm 4
is around H (P;). Thus, our proposed AT is able to tighten the generalization error bound.

7. Practical Issues

Accessing features in sparse format is very expensive for high dimensional data sets. This
paper proposes two efficient auxiliary data structures to reduce the computation cost of
indexing and accessing features. We first propose a modified direct indexing method for
small and medium-sized data sets.

Let € be the selected feature set of the tree and Q)| represent the natural number set
which contains |¢| numbers from 0 to |¢| — 1. Then, we build an injection table: T : € = Q|
to compress the whole selected feature set to a continuous index set. To support direct
indexing for every instance, we maintain an array with size |¢|. For each feature that
belongs to ¢, we use Z to find out the index number, and store the feature value at that
index in the array.

To handle very high dimensional data sets, in which the data is usually stored in sparse
format, we maintain a hash table to store the feature ID as the key and the feature value
for each instance. The method takes O(1) time to access the features.
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Table 3: Data sets used for SBT
Data Set # Features # Training # Testing

colon 2,000 32 30
pcmac 3,289 1,555 388
gisette 5,000 6,000 1,000
epsilon 2,000 21,767 14,511
rcv 47,236 12,146 8,096
news20 1,355,191 15,997 3,999
webspam 16,609,143 28,000 7,000

8. Experiment

In this section, we conduct some experiments to evaluate the performance of our proposed
methods.

8.1 Evaluation on SBT

In this subsection, we conduct comprehensive experiments to evaluate the proposed method
on both synthetic and high dimensional real-world data sets. Most data sets are collected
from LIBSVM website?. pcmac data set is from (Xu et al., 2014). The training/testing
partition is either predefined or the data is randomly split into 80% training and 20%
testing. The statistics of these data sets are described in Table 3.

We compare SBT with a number of baseline methods: standard SVM (I-SVM)?, CART-
LC (Breiman et al., 1984), OC1 (Murthy et al., 1994), LDKL (Jose et al., 2013), GBFS
(Xu et al., 2014), CSTC (Xu et al., 2013) and FGM (Tan et al., 2014). We use the linear
classification /regression package LIBLINEAR (Fan et al., 2008) with L2-regularized square
hinge loss (primal) to implement standard SVM. LDKL uses composite non-linear kernels,
and achieves significantly better classification accuracies as compared to localized multiple
kernel learning (Gonen and Alpaydin, 2008) (which is competitive with RBF-SVM) and
other state-of-the-art non-linear methods. Therefore, we do not compare with other non-
linear SVMs. The codes of other baseline methods are provided by their authors.

We use 5-fold cross validation to prune SBT. Following the parameter settings in (Tan
et al., 2014), B is chosen in a range of {2, 5, 10, 20, 50, 100, 150, 200, 250, 400} for rcv, news20
and webspam data sets, and {0.01m,0.02m, - - ,0.09m} for other data sets. C is selected
using 5-fold cross validation over the range {0.001,0.01,0.1,5,10} for the first three data
sets and we fix C' = 5 for other data sets. Following the settings in (Oiwa and Fujimaki,
2014), the tree-depth is fixed to 3 in LDKL.

8.1.1 EXPERIMENTS ON SYNTHETIC DATA

We compare the performance of different methods on the XOR synthetic data with different
numbers of noisy features, which is non-linearly separable. Following the strategy in (Tan
et al., 2014), we generate the synthetic data as follows: At first, we generate 10,000 training

2. https://www.csie.ntu.edu.tw/~cjlin/libsvimtools/datasets/
3. https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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Figure 4: Testing error rates (in %) on the XOR synthetic data with different # noisy
features.

instances, 2,000 testing instances and 200 features. The first two dimensions are informa-
tive features, which are independently sampled from Gaussian distribution N'(0,1). The
remaining dimension are noisy features, which are independently sampled from Uniform dis-
tribution (0, 1). The output y is decided by these two informative features. For instance,
if the first two features have the same sign, then y is 1 and -1 otherwise. Then, we grad-
ually increase the noisy features to the data set and test whether the considered methods
can successfully identify the former two informative features and have stable and accurate
classification performance. B is chosen in a range of {1,3,5,10} using cross validation for
SBT. Figure 4 (left panel) shows two informative features.

Figure 4 (right panel) shows that: 1) Io-SVM cannot work on the XOR data set. 2)
FGM has shown impressive results in (Tan et al., 2014), but it cannot work on the XOR
data set as well. 3) When the number of noisy features equals 200, CART-LC and OC]1 are
a bit better than lo-SVM; GBFS and CSTC are much better than other baselines. However,
CART-LC, OC1, GBFS and CSTC are sensitive to the number of noisy features. 4) LDKL
and SBT are most successful, while our model generates more stable and accurate results.

8.1.2 PRUNING PERFORMANCE

To evaluate the pruning performance, this subsection compares the classification perfor-
mance of our method with pruning and without pruning on epsilon and rcv data sets.
The results are shown in Table 4. From this table, we can see that our proposed prun-
ing strategy significantly improves the generalization performance, which corroborates our
theoretical findings.
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Table 4: Testing error rates (in %) for our method with pruning and without pruning. The
best results are in bold.

Data set SBT without pruning SBT with pruning

epsilon 17.23 12.45
rev 6.19 3.85

Table 5: Testing error rates (in %) for different methods. Numbers in parentheses indicate
the depth of tree. The best results are in bold.

Data set [,-SVM CART-LC 0ocC1 LDKL SBT

colon 20.00 40.91(2) 33.33(2) 16.67  13.33(1)
pemac 7.47 16.22(2) 9.68(6)  7.99 7.22(2)
gisette 2.30 48.17(5) 18.83(6) 2.80 2.20(2)
epsilon  13.24 49.40(2) 47.66(4) 1536  12.45(8)
rev 4.05 17.13(6) 48.68(3)  3.90 3.85(5)

8.1.3 CLASSIFICATION PERFORMANCE

To verify the effectiveness of conducting feature selection in the decision tree, we evaluate the
classification performance of SBT on real-world data sets compared with lo-SVM, CART-
LC, OC1 and LDKL. The results are shown in Table 5.

The results of Table 5 show that: 1) CART-LC and OC1 generally underperform on all
data sets. The results support the argument of this paper: DT models usually suffer from
the curse of dimensionality and achieve degenerated performance on high dimensional data
sets, which boosts our approach. 2) SBT gets a lower error rate than lo-SVM and LDKL.
It is important to generate different hyperplanes with maximum-margin based on different
sets of features. Thus, the results verify the effectiveness of conducting feature selection
in the DT. 3) SBT has the best performance compared with baselines, while generating a
small tree.

8.1.4 FEATURE SELECTION PERFORMANCE

We evaluate the feature selection performance of SBT on pcmac, gisette, epsilon and rcv
data sets compared with sparse classifier models, such as GBFS, CSTC and FGM. CSTC
runs out of memory on rcv. The results of Figure 5 show that: 1) FGM and SBT clearly
outperform GBFS and CSTC in terms of feature selection performance, which verifies that
the sparse models with an explicit budget constraint on the weights are more effective than
[1-SVM based approaches. 2) SBT outperforms FGM. Thus, it is imperative to use the
tree-structure to conduct feature selection.
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Table 6: Training time (in second) for GBFS and our method on rcv data set. The faster
results are in bold.

# Selected features GBFS SBT

100 874.2s 5.9s

500 5214.8s 12.0s

900 8523.3s  41.9s

pcrmac yisette
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Figure 5: Testing error rates (in %) vs. # selected features for different methods on pcmac,
gisette, epsilon and rcv data sets.

We next use rcv data set for training time comparison. The results are shown in Table 6.
Since CART-LC, OC1 and CSTC are very slow on this data set, we do not report their
training time here. From Table 6, we can see that, the training of our method is much faster
than that of GBFS, and it is also much faster than LDKL, which takes 8019.3 seconds(s).

8.1.5 RESULTS ON VERY HIGH DIMENSIONAL DATA SETS

We evaluate our method on news20 and webspam data sets with millions of dimensions. As
CART-LC, OC1, LDKL, GBFS and CSTC are very slow on these data sets, we compare
our method with lo-SVM and FGM only on these data sets. The results are reported in

26



MAKING DECISION TREES FEASIBLE IN ULTRAHIGH FEATURE AND LABEL DIMENSIONS

news20 webspam
24 : 1 ‘ : ,
12- SV : : 12-SWh
: FGEM ] A0 FGM
C| —— BT :

Testing error rate(in %)

Testing ermror rate(in

i ; ; i 4 i ‘ ; ;
0 200 400 600 800 1000 0 200 400 600 goo 1000
# Selected features # Selected features

Figure 6: Testing error rates (in %) vs. # selected features for lo-SVM, FGM and our
method on news20 and webspam data sets. I5-SVM uses all features.

Figure 6. From Figure 6, we can see that SBT consistently outperforms FGM and l5-SVM
on very high dimensional data sets.

The representation of SBT (B = 2) on webspam data set with 16,609,143 features is
shown in Figure 7. In each decision node of Figure 7, we can see that our BAC can identify
more informative and compact features. Thus, our SBT is easy to understand and interpret
in ultrahigh dimensions.

8.2 Evaluation on PT and AT

In this subsection, we evaluate the performance of our proposed algorithms for multi-label
annotation on a variety of real-world data sets from different application domains, which are
collected from website?®>. The data sets fall into two categories. The first category contains
five small and medium-sized data sets. The second category contains three large-scale data
sets with very high label and feature dimensions. The details of data sets are shown in
Table 7.

We compare our algorithms with several state-of-the-art multi-label annotation methods:
1) Flat methods: BR and LP; 2) Tree-based methods: Homer and FastXML; 3) Embedding-
based method: Sparse local embedding for extreme classification (SLEEC) (Bhatia et al.,
2015) is one of the most advanced embedding based method. 4) Sparse model: PD-Sparse
(Yen et al., 2016) is a very recently proposed multiclass and multi-label approach which
uses L1 regularization. The codes are provided by the respective authors. According to
(Tsoumakas et al., 2008), k is chosen in a range of {2,3,---,8} using cross validation for
Homer. Following (Prabhu and Varma, 2014), 7 is fixed to 50 for FastXML. We use the
linear classification/regression package LIBLINEAR (Fan et al., 2008) with L2-regularized
square hinge loss (primal) to train the classifier for both BR and LP. We use the default
parameter in LIBLINEAR. According to the original setting in (Bhatia et al., 2015), we set

4. http://mulan.sourceforge.net
5. http://manikvarma.org/#Julianl5a
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Figure 7: Representation of SBT on webspam data set.

Table 7: Data sets used for PT and AT
Data Set # Labels # Features # Instances Domain

mediamill 101 120 43,907 video

cal500 174 68 502 music

corel5k 374 499 5,000 image
Eur-Lex (dc) 412 5,000 19,348 text

Eur-Lex (ed) 3,993 5,000 19,348 text

wiki 30,938 101,938 20,762 web

delicious 205,443 782,585 26,701 web

amazon 2,812,281 337,067 10,482 advertisement

the number of the clusters as |n/6000], the number of learners as 15 and the dimension
of the embedding space as 50 for small and medium-sized data sets, and 100 for very high
dimensional data sets. We set B according to parameter settings in Section 8.1.

To measure the annotation performance of our methods and baseline methods fairly,
this paper considers the standard F1 evaluation measurement (Du et al., 2017), which
computes the F1 score for all the labels of each testing sample and takes the average over
these samples. We use the publicly available split of the training and testing sets for very
high dimensional data sets and perform 10-fold cross-validations on small and medium-sized
data sets and report the mean and standard error of the F1 measure.

8.2.1 RESULTS ON SMALL AND MEDIUM-SIZED DATA SETS

This subsection studies the performance of various methods on mediamill, cal500, corel5k,
Eur-Lex (dc) and Eur-Lex (ed) data sets. In our experiment, we cannot get the results of LP
and Homer on Eur-Lex (ed) data set within one week. The F1 results of various methods on
small and medium-sized data sets are listed in Table 8. From this table, we observe that: 1)
Tree-based methods, such as Homer and Fast XML, generally underperforms on all data sets.

28



MAKING DECISION TREES FEASIBLE IN ULTRAHIGH FEATURE AND LABEL DIMENSIONS

Table 8: F1 Results of various methods on small and medium-sized data sets (mean =+
standard deviation). The best results are in bold. Numbers in square brackets

indicate the rank. ”-” indicates that we cannot get the results of baselines within
one week.

Data Set BR LP Homer Fast XML SLEEC PD-Sparse PT AT
mediamill ~ 0.414:£0.00[3] 0.39440.01[8] 0.4110.00[4] 0.40840.00[7] 0.411-0.00[4] 0.409:0.00[6] 0.42240.01[2] 0.462+0.00[1]
cal500 0.31740.02[6] 0.3454+0.02[2] 0.3214+0.01[5] 0.259+0.01[8] 0.310+0.03[7] 0.322+0.01[4] 0.324+0.02(3] 0.362+0.01[1]
corel5k 0.10040.02[6] 0.13840.01[2] 0.11340.01[4] 0.056+£0.01[8] 0.084+0.01[7] 0.110+0.02[5] 0.123£0.01(3] 0.14140.01[1]
EUR-Lex(dc) 0.713+£0.01[5] 0.659+0.01[6] 0.625+0.01[7] 0.516+0.01[8] 0.716-£0.01[3] 0.71840.01[2] 0.715-£0.01[4] 0.727+0.01[1]
EUR-Lex(ed) 0.268+0.01[5] - - 0.25440.01[6] 0.281-£0.01[3] 0.302+40.01[2] 0.27440.01[4] 0.341+0.01[1]

Ave. Rank 5.0 4.5 5.0 7.4 4.8 3.8 3.2 1.0

Table 9: F1 results of various methods on very high dimensional data sets. The best results
are in bold.

Data Set FastXML SLEEC PD-Sparse PT AT

wiki 0.1272 0.1364 0.1395 0.1422 0.1657
delicious  0.0077 0.0095 0.0086 0.0111 0.0157
amazon 0.0023 0.0148 0.0151 0.0166 0.0348

2) SLEEC, which is one of the most advanced embedding method, generally underperforms
on small data sets, while it obtains competitive results on medium-sized data sets, such as
Eur-Lex (dc) and Eur-Lex (ed). 3) PT and AT are two most successful methods, which
significantly outperform tree-based algorithms, such as Homer and FastXML. The results
verify our theoretical analysis.

Figure 8 shows the testing time of various methods spent on all testing instances per
data set. From Figure 8.(a), we observe that: 1) SLEEC is slower than other baselines on
all data sets. 2) Tree-based method, such as FastXML, is faster than BR, LP and SLEEC
on medium-sized data sets. 3) PT and AT are faster than other baselines on all small and
medium-sized data sets. For example, PT obtains around sixty times speedup over BR
and LP, and about ten times speedup over FastXML on medium-sized data sets, such as
Eur-Lex (dc). The results verify our testing time complexity analysis.

We next use Eur-Lex (ed) data set for training time comparison. BR, FastXML, SLEEC
and PD-Sparse take 37652.1s, 269.9s, 5230.8s and 451.3s, respectively, while PT and AT
take 839.8s and 1088.6s, respectively. Because BR and SLEEC require an expensive training
process for each label and time-consuming embedding procedure, respectively, our proposed
tree-based algorithms are able to achieve faster training than BR and SLEEC.

8.2.2 RESULTS ON VERY HIGH DIMENSIONAL DATA SETS

In this subsection, we evaluate the performance of various methods on three very high
dimensional data sets: wiki, delicious and amazon. In our experiment, we cannot get the
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data sets. The best results are in bold.

Data Set FastXML SLEEC PT AT

wiki 0.5487 0.6067 0.6211 0.6284
delicious 0.4442 0.4631 0.4695 0.4711
amazon 0.4906 0.5077 0.5143 0.5296
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Figure 8: Testing time of various methods on all data sets (EUR-Lex is abbreviated to
EUR).

results of BR, LP and Homer on these data sets within one week. The F1 results of various
methods on three very high dimensional data sets are listed in Table 9. From Table 9 and
Figure 8.(b), we can see that: 1) SLEEC outperforms FastXML, while FastXML is faster
than SLEEC. 2) PD-Sparse is faster and more accurate than SLEEC and FastXML, which
is consistent with the empirical studies in (Yen et al., 2016). 3) PT and AT are several
times faster than FastXML, SLEEC and PD-Sparse. Moreover, PT and AT are much more
accurate than FastXML, SLEEC and PD-Sparse on the data sets with millions of labels
and features. Finally, we conclude that our proposed PT and AT are effective and efficient
in ultrahigh label and feature dimensions.

Using Precision@5 and Recall@5, Table 10 shows the F1@5 results of FastXML, SLEEC,
PT and AT on wiki, delicious and amazon data sets. From this table, we can see that our
methods also outperform FastXML and SLEEC in terms of F1@Q5 measurement.

9. Conclusion

In this paper, we first develop a novel data-dependent generalization error bound for the
PDT, where the data dependency of the bound comes from the training error loss, the
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margin, the capacity of the kernel matrix defined on the training data, and the complexity
of the tree. It provides the theoretical justification to learn a sparse linear hyperplane in
each decision node and to prune the SBT. Our analysis reveals a new insight for the design
of decision tree algorithms. Based on BAC and three important phenomena of real-world
data sets from a variety of application domains, we develop the sparse coding tree frame-
work for multi-label annotation with ultrahigh label and feature dimensions and provide
generalized performance guarantee for our proposed PT and AT. Compared with state-of-
the-art baselines, the results on the synthetic data set show that SBT is more resilient to
noisy features, and empirical studies on real-world data sets demonstrate that SBT is eas-
ier to understand and interpret in ultrahigh dimensions and can identify more informative
features than state-of-the-art feature selection methods. Moreover, our proposed PT and
AT algorithms are able to annotate as well as possible, without performing unnecessary
annotations in ultrahigh label and feature dimensions.
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