Journal of Machine Learning Research 18 (2018) 1-6 Submitted 7/17; Revised 10/17; Published 4/18

HyperTools: a Python Toolbox for Gaining Geometric
Insights into High-Dimensional Data

Andrew C. Heusser! ANDREW.C.HEUSSER@DARTMOUTH.EDU
Kirsten Ziman' KIRSTEN.K.ZIMAN.GR@DARTMOUTH.EDU
Lucy L. W. Owen LUCY.W.OWEN.GR@QDARTMOUTH.EDU
Jeremy R. Manning JEREMY.R.MANNING@DARTMOUTH.EDU

Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
fDenotes equal contribution

Editor: Alexandre Gramfort

Abstract

Dimensionality reduction algorithms have played a foundational role in facilitating
the deep understanding of complex high-dimensional data. One particularly useful appli-
cation of dimensionality reduction techniques is in data visualization. Low-dimensional
visualizations can help practitioners understand where machine learning algorithms might
leverage the geometric properties of a dataset to improve performance. Another challenge
is to generalize insights across datasets [e.g. data from multiple modalities describing the
same system (Haxby et al., 2011), artwork or photographs of similar content in different
styles (Zhu et al., 2017), etc.]. Several recently developed techniques (e.g. Haxby et al.,
2011; Chen et al., 2015) use the procrustean transformation (Schénemann, 1966) to align
the geometries of two or more spaces so that data with different axes may be plotted in
a common space. We propose that each of these techniques (dimensionality reduction,
alignment, and visualization) applied in sequence should be cast as a single conceptual
hyperplot operation for gaining geometric insights into high-dimensional data. Our Python
toolbox enables this operation in a single (highly flexible) function call.

Keywords: visualization, high-dimensional, dimensionality reduction, procrustes, time-
series data

1. Introduction

A major focus of machine learning research is finding patterns in, and making predictions
from, complex data that might be otherwise inscrutable to a human viewer. Paradoxically,
designing effective algorithms for discovering, characterizing, and leveraging structure in
many complex datasets often requires the practitioner to have some initial intuitions about
the structure of the data. One commonly used approach for discovering structure in high-
dimensional data is to use dimensionality reduction algorithms (e.g. Pearson, 1901; Tipping
and Bishop, 1999; Jutten and Herault, 1991; Comon et al., 1991; Torgerson, 1958; van der
Maaten and Hinton, 2008) to visualize high-dimensional data in two or three dimensions,
thereby providing insights into geometric patterns that pervade the data (Uddenberg et al.,
2016). Despite the so-called “curse of dimensionality,” whereby high-dimensional data
can behave differently from low-dimensional data, visualizing data via low-dimensional

(©2018 Andrew C. Heusser, Kirsten Ziman, Lucy L. W. Owen, and Jeremy R. Manning.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/17-434 .html.


https://github.com/ContextLab/hypertools
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/17-434.html

HEUSSER, ZIMAN ET AL.

b. Why doesn't the failing @nytimes

— [
A write the real story on the Clintons
and women? The media is TOTALLY
dishonest!
—— "@justininglv: @realDonaldTrump
“— B great speech today!! It's all about

America and that's why you will
become president!!!l” Thank you.

S
@
5
=

The labor movement pioneered the
 basic work that made America great
If you work hard and do your part “ .
you should be able to get ahead. A Lo D,

Obama on whether Trump could be
trusted with US nuclear weapons:

D "Make your own judgement”
https://t.co/60Ztrflwim
https:/t.co/Nj20PaXF20

pelonisuooal

Figure 1: Data visualization examples. a. Hypercubes of increasing dimensionality
(3, 4 and 5 dimensions). The cubes provide some insights into which aspects
of high-dimensional data are preserved (or distorted) when projected onto 3
dimensions. b. Topic modeling (Blei et al., 2003) of political Twitter data:
2D projections of topic vectors of Hillary Clinton’s (blue) and Donald Trump’s
(red) tweets during their 2016 presidential campaigns (link to data). The ‘V’
shape highlights that Trump and Clinton tweets are largely about fundamentally
different topics. The highlighted examples include (A) a Trump tweet that is
especially “Trump-like,” (B) a Trump tweet that is Clinton-like, (C) a Clinton
tweet that is Trump-like, and (D) a Clinton tweet that is especially Clinton-like. c.
Changing temperatures across the Earth’s surface from 1875—2013 (link to data).
The visualization highlights the cyclical (seasonal) nature of global temperatures
that occurs alongside a gradual increase in global temperatures over time. d.
Brain/movie trajectories during movie viewing (link to data). (Top left) Group-
averaged trajectories of brain activity from the ventral visual cortex, split into two
randomly-selected groups of subjects (group 1: n = 6, group 2: n = 5) watching
Raiders of the Lost Ark (Haxby et al., 2011). (Bottom left) Group-averaged
trajectory of brain activity from ventral visual cortex and trajectory of the movie
frames (pixel intensities over time), hyperaligned to a common space. (Right)
Movie frame reconstructed from the group-averaged brain activity that was aligned
to movie space. The example illustrates geometric commonalities across brains,
and between the movie frames and the brain responses to those frames.

projections can provide a glimpse (though imperfect) into what the dataset “looks like.” By
leveraging different dimensionality reduction algorithms, or by viewing the data through
different projections (or as an animation), one can begin to form intuitions that generalize
beyond the specific imperfections of a given dimensionality reduction tool or projection. We
highlight several examples of how low-dimensional projections may be used to understand
the geometry of high-dimensional data in Figure 1. Complete details may be found here,
and sample IPython notebooks may be found here.

Although dimensionality reduction algorithms provide a useful means of visualizing high-
dimensional data, they cannot (by themselves) solve the problem of identifying geometric
similarities across different types of data. For example, as highlighted in Figure 1d, different
people’s brains might exhibit similar (but not identical) activity patterns while watching a
movie, and those brain patterns might exhibit a similar temporal covariance structure to


https://www.kaggle.com/benhamner/clinton-trump-tweets
http://berkeleyearth.lbl.gov/city-list/
https://github.com/HaxbyLab/raiders_data
https://arxiv.org/abs/1701.08290
https://github.com/ContextLab/hypertools-paper-notebooks

HypPERTOOLS

the movie itself. However, if one were to project brain data and movie data onto a three
dimensional space, although the overall “shapes” of those datasets might be similar, there
would be no inherent reason for the datasets to align. Algorithms inspired by the procrustean
transformation (Schénemann, 1966), including Hyperalignment (Haxby et al., 2011) and the
Shared Response Model (Chen et al., 2015) compute the affine transformations of two or
more datasets that bring the data into a common alignment. This can reveal similarities
(or differences) between the underlying geometries of otherwise incompatible data. Further,
because the transformation is invertible, one can map between any point in that common
space (e.g. a shared movie-brain space) and the original data spaces (e.g. the movie frames;
the lower right panel of Fig. 1d shows a movie frame corresponding to a brain pattern
recorded during one time in the movie, and the upper panel shows the original movie frame
viewed at that moment).

The HyperTools toolbox (current version: 0.4.2) provides a powerful set of Python
functions for projecting high dimensional data onto lower-dimensional spaces, aligning data
of different types, and visualizing the results in publication-quality figures and movies. A
central goal of the toolbox is to cast dimensionality reduction, alignment, and visualization
as a single highly flexible “hyperplot” command:

import hypertools as hyp (1)
hyp.plot(list_of_arrays, reduce=‘TSNE’, align=‘hyper’, ndims=3) (2)

This example function call projects the high-dimensional data onto 3 dimensions using
the t-SNE algorithm, aligns the data matrices in the given list of arrays into a common
space using hyperalignment, and produces a 3D plot analogous to those shown in Figure 1.
These hyperplot visualizations provide an intuitive means of understanding how different
observations relate to each other or how those observations change over time. These insights
can guide algorithm design decisions, or help practitioners to understand which aspects of
the data may be easy (or difficult) to model or measure.

2. Overview of the Toolbox

HyperTools is open-source, installable from GitHub or pip (pip install hypertools),
and is distributed with the MIT License. The toolbox depends on the following open-source
software packages: Matplotlib (Hunter, 2007) for plotting functionality, Seaborn (Waskom
et al., 2016) for plot styling, Scikit-learn (Pedregosa et al., 2011) for data analysis (di-
mensionality reduction, clustering, etc.), and PPCA for inferring missing data (Tipping and
Bishop, 1999). The toolbox also includes a port of the hyperalignment algorithm (Haxby
et al., 2011) from the PyMVPA library, as well as the shared response model from the BrainTAK
toolbox (Capota et al., 2017), as an alternative data alignment technique. At the time of
writing this manuscript, the toolbox incorporates two general classes of algorithms: dimen-
stonality reduction (PCA, incremental PCA, sparse PCA, kernel PCA, probabilistic PCA,
t-SNE, MDS, ICA, factor analysis, truncated SVD, dictionary learning, mini-batch dictionary
learning, isomap, spectral embedding, and local linear embedding) and alignment (hyper-
alignment, shared response model, and procrustean transformation). HyperTools provides
a simple interface to these functions, with support for a variety of convenient data formats
including NumPy arrays (van der Walt et al., 2011), Pandas dataframes (McKinney, 2010), or


https://github.com/ContextLab/hypertools
https://github.com/ContextLab/hypertools
https://github.com/ContextLab/hypertools
http://matplotlib.org/
http://seaborn.pydata.org/
https://github.com/scikit\discretionary {-}{}{}learn/scikit\discretionary {-}{}{}learn
https://github.com/allentran/pca-magic
https://github.com/PyMVPA/PyMVPA
https://github.com/IntelPNI/brainiak
https://github.com/ContextLab/hypertools

HEUSSER, ZIMAN ET AL.

mixed lists of arrays and dataframes. [Each to-be-analyzed (or to-be visualized) dataset must
be formated as a number-of-observations (5) by number-of-features (F') array or dataframe.|
HyperTools also adds a number of custom arguments to facilitate data visualization and
manipulation of high-dimensional data. Nearly all of the HyperTools functions may be
accessed through the plot function (Ex. 2). This design enables complex data analysis and
plotting to be carried out in a single function call. The same function call also returns the
analyzed data (and the transformations applied to it) for potential follow-up analyses. There
are two general types of plots supported by the toolbox: static plots and animated plots.

2.1 Static Plots

By default, the plot function will perform dimensionality reduction (using incremental
PCA), converting the S x F' data matrix (or matrices) into an S x 3 matrix (or matrices),
and then create an interactive 3D line plot that can be explored by using the mouse to rotate
the plot. If there are NaNs present in the dataset, these missing values will be automatically
interpolated using PPCA (Tipping and Bishop, 1999) (preserving the dimensionality of
the original data) prior to reducing the dimensionality of the data using the user-specified
algorithm. The plot function also accepts format strings to specify line styling (following
Matplotlib conventions):

hyp.plot(data) (3)
hyp.plot([datal, data2, data3], .’) (4)

2.2 Animated Trajectory Plots

Animated 3D plots (created using the animate flag) are useful for visualizing high-dimensional
timeseries data:

hyp.plot(data, animate=True). (5)

This function call creates a 3D trajectory animated over the rows of the data matrix. Each
frame of the animation displays a portion of the total data trajectory enclosed in a cube. In
successive frames, the displayed portion of the data trajectory incrementally advances, and
the camera angle rotates around the cube, providing visual access to different aspects of the
data as the animation progresses.

2.3 Align

Two or more datasets may share geometric structure, but reside in different coordinate
systems. The align function accepts a list of arrays as input and returns a hyperaligned
list of arrays in a common geometric space:

hyp.plot([arrayl, array2, array3], align=‘hyper’) (6)
hyperaligned list = hyp.align([arrayl, array2, array3]) (7)
2.4 Reduce

Users can access a variety of dimensionality reduction algorithms by passing the reduce
keyword argument to the plot function. We also provide API access to the reduce


https://github.com/ContextLab/hypertools
https://github.com/ContextLab/hypertools

HypPERTOOLS

function that underlies these transformations. At its core, the reduce function wraps
many of scikit-learn’s dimensionality reduction algorithms, along with the PPCA library.
HyperTools extends the functionality of these tools by providing a streamlined syntax
that accepts data matrices in a larger variety of formats (e.g. NumPy arrays and Pandas
dataframes, or lists of arrays and dataframes, may all be analyzed using the same syntax).
The function may be used as follows:

hyp.plot(data, reduce=‘MDS’) (8)
reduced data = hyp.reduce(data, reduce=‘TSNE’, ndims=5) (9)

3. Concluding Remarks

The HyperTools toolbox is designed to provide geometric insights into high-dimensional
datasets with a single function call. We also provide a convenient syntax to access a variety
of dimensionality reduction and data alignment algorithms. The above overview of the
toolbox highlights its primary features; additional functionality and a detailed description of
the API may be found here.

Acknowledgments

We are grateful to Luke J. Chang and Matthijs van der Meer for useful discussions, and
to J. Swaroop Guntapalli for help implementing our align function. We also thank Ryan
Arredondo, Aly Sivji and Steph Wright for their code contributions during the Mozilla
Global Sprint in June 2017, and we thank Mozilla for organizing the Global Sprint. We
also thank Chase Williams for contributing code. Our work was supported in part by NSF
EPSCoR Award Number 1632738. The content is solely the responsibility of the authors
and does not necessarily represent the official views of our supporting organizations.

References

D M Blei, A Y Ng, and M I Jordan. Latent dirichlet allocation. Journal of Machine Learning
Research, 3:993 — 1022, 2003.

M Capota, J Turek, P-H Chen, X Zhu, J R Manning, N Sundaram, B Keller, Y Wang, and Y S
Shin. Brain imaging analysis kit, 2017. URL https://doi.org/10.5281/zenodo.59780.

P-H Chen, J Chen, Y Yeshurun, U Hasson, J Haxby, and P J Ramadge. A Reduced-
Dimension fMRI Shared Response Model. In C. Cortes and N. D. Lawrence and D. D.
Lee and M. Sugiyama and R. Garnett, editor, Advances in Neural Information Processing
Systems 28, pages 460-468. Curran Associates, Inc., 2015.

P Comon, C Jutten, and J Herault. Blind separation of sources, part II: Problems statement.
Signal Processing, 24(1):11 — 20, 1991.

J V Haxby, J S Guntupalli, A C Connolly, Y O Halchenko, B R Conroy, M I Gobbini,
M Hanke, and P J Ramadge. A common, high-dimensional model of the representational
space in human ventral temporal cortex. Neuron, 72:404—416, 2011.


https://github.com/ContextLab/hypertools
https://github.com/ContextLab/hypertools
http://hypertools.readthedocs.io/en/latest/
https://doi.org/10.5281/zenodo.59780

HEUSSER, ZIMAN ET AL.

J D Hunter. Matplotlib: A 2D graphics environment. Computing In Science € Engineering,
9(3):90-95, 2007.

C Jutten and J Herault. Blind separation of sources, part I: An adaptive algorithm based
on neuromimetic architecture. Signal Processing, 24(1):1-10, 1991.

W McKinney. Data structures for statistical computing in Python. In Proceedings of the
9th Python in Science Conference, pages 51-56, 2010.

K Pearson. On lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2:559-572, 1901.

F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel,
P Prettenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Cournapeau, M Brucher,
M Perrot, and E Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

P Schénemann. A generalized solution of the orthogonal Procrustes problem. Psychometrika,
31:1-10, 1966.

M E Tipping and C M Bishop. Probabilistic principal component analysis. Journal of Royal
Statistical Society, Series B, 61(3):611-622, 1999.

W S Torgerson. Theory and methods of scaling. Wiley, New York, 1958.

S Uddenberg, G Newman, and B Scholl. Perceptual averaging of scientific data: Implications
of ensemble representations for the perception of patterns in graphs. Journal of Vision,
16(12):1081, 2016.

L J P van der Maaten and G E Hinton. Visualizing high-dimensional data using t-SNE.
Journal of Machine Learning Research, 9:2579-2605, 2008.

S van der Walt, S C Colbert, and G Varoquaux. The NumPy array: A structure for efficient
numerical computation. Computing in Science & Engineering, 13:22-30, 2011.

M Waskom, O Botvinnik, D Okane, P Hobson, David, Y Halchenko, S Lukauskas, J B Cole,
J Warmenhoven, J de Ruiter, S Hoyer, J Vanderplas, S Villalba, G Kunter, E Quintero,
M Martin, A Miles, K Meyer, T Augspurger, T Yarkoni, P Bachant, M Williams, C Evans,
C Fitzgerald, Brian, D Wehner, G Hitz, E Ziegler, A Qalieh, and A Lee. Seaborn: v0.7.1,
2016. URL https://doi.org/10.5281/zenodo.54844.

J-Y Zhu, T Park, P Isola, and A A Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. arXiv, 1703.10593, 2017.


https://doi.org/10.5281/zenodo.54844

	Introduction
	Overview of the Toolbox
	Static Plots
	Animated Trajectory Plots
	Align
	Reduce

	Concluding Remarks

