
Journal of Machine Learning Research 18 (2018) 1-5 Submitted 10/17; Revised 4/18; Published 4/18

SGDLibrary: A MATLAB library for stochastic optimization
algorithms

Hiroyuki Kasai kasai@is.uec.ac.jp

Graduate School of Informatics and Engineering

The University of Electro-Communications

Tokyo, 182-8585, Japan

Editor: Geoff Holmes

Abstract

We consider the problem of finding the minimizer of a function f : Rd → R of the finite-sum
form min f(w) = 1/n

∑n
i fi(w). This problem has been studied intensively in recent years

in the field of machine learning (ML). One promising approach for large-scale data is to use
a stochastic optimization algorithm to solve the problem. SGDLibrary is a readable, flexible
and extensible pure-MATLAB library of a collection of stochastic optimization algorithms.
The purpose of the library is to provide researchers and implementers a comprehensive
evaluation environment for the use of these algorithms on various ML problems.

Keywords: Stochastic optimization, stochastic gradient, finite-sum minimization prob-
lem, large-scale optimization problem

1. Introduction

This work aims to facilitate research on stochastic optimization for large-scale data. We
particularly address a regularized finite-sum minimization problem defined as

min
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w) =
1

n

n∑
i=1

L(w, xi, yi) + λR(w), (1)

where w ∈ Rd represents the model parameter and n denotes the number of samples (xi, yi).
L(w, xi, yi) is the loss function and R(w) is the regularizer with the regularization parameter
λ ≥ 0. Widely diverse machine learning (ML) models fall into this problem. Considering
L(w, xi, yi) = (wTxi − yi)

2, xi ∈ Rd, yi ∈ R and R(w) = ‖w‖22, this results in an `2-
norm regularized linear regression problem (a.k.a. ridge regression) for n training samples
(x1, y1), · · · , (xn, yn). In the case of binary classification with the desired class label yi ∈
{+1,−1} and R(w) = ‖w‖1, an `1-norm regularized logistic regression (LR) problem is
obtained as fi(w) = log(1 + exp(−yiwTxi)) + λ‖w‖1, which encourages the sparsity of the
solution of w. Other problems covered are matrix completion, support vector machines
(SVM), and sparse principal components analysis, to name but a few.

Full gradient descent (a.k.a. steepest descent) with a step-size η is the most straight-
forward approach for (1), which updates as wk+1 ← wk − η∇f(wk) at the k-th iteration.
However, this is expensive when n is extremely large. In fact, one needs a sum of n calcu-
lations of the inner product wTxi in the regression problems above, leading to O(nd) cost
overall per iteration. For this issue, a popular and effective alternative is stochastic gradient

c©2018 Hiroyuki Kasai.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/17-632.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/17-632.html

H.Kasai

descent (SGD), which updates as wk+1 ← wk − η∇fi(wk) for the i-th sample uniformly at
random (Robbins and Monro, 1951; Bottou, 1998). SGD assumes an unbiased estimator
of the full gradient as Ei[∇fi(wk)] = ∇f(wk). As the update rule represents, the calcu-
lation cost is independent of n, resulting in O(d) per iteration. Furthermore, mini-batch
SGD (Bottou, 1998) calculates 1/|Sk|

∑
i∈Sk ∇fi(wk), where Sk is the set of samples of size

|Sk|. SGD needs a diminishing step-size algorithm to guarantee convergence, which causes
a severe slow convergence rate (Bottou, 1998). To accelerate this rate, we have two active
research directions in ML; Variance reduction (VR) techniques (Johnson and Zhang, 2013;
Roux et al., 2012; Shalev-Shwartz and Zhang, 2013; Defazio et al., 2014; Nguyen et al., 2017)
that explicitly or implicitly exploit a full gradient estimation to reduce the variance of the
noisy stochastic gradient, leading to superior convergence properties. Another promising
direction is to modify deterministic second-order algorithms into stochastic settings, and
solve the potential problem of first-order algorithms for ill-conditioned problems. A direct
extension of quasi-Newton (QN) is known as online BFGS (Schraudolph et al., 2007). Its
variants include a regularized version (RES) (Mokhtari and Ribeiro, 2014), a limited mem-
ory version (oLBFGS) (Schraudolph et al., 2007; Mokhtari and Ribeiro, 2015), a stochastic
QN (SQN) (Byrd et al., 2016), an incremental QN (Mokhtari et al., 2017), and a non-convex
version. Lastly, hybrid algorithms of the SQN with VR are proposed (Moritz et al., 2016;
Kolte et al., 2015). Others include (Duchi et al., 2011; Bordes et al., 2009).

The performance of stochastic optimization algorithms is strongly influenced not only
by the distribution of data but also by the step-size algorithm (Bottou, 1998). Therefore,
we often encounter results that are completely different from those in papers in every exper-
iment. Consequently, an evaluation framework to test and compare the algorithms at hand
is crucially important for fair and comprehensive experiments. One existing tool is Light-
ning (Blondel and Pedregosa, 2016), which is a Python library for large-scale ML problems.
However, its supported algorithms are limited, and the solvers and the problems such as
classifiers are mutually connected. Moreover, the implementations utilize Cython, which
is a C-extension for Python, for efficiency. Subsequently, they decrease users’ readability
of code, and also make users’ evaluations and extensions more complicated. SGDLibrary
is a readable, flexible and extensible pure-MATLAB library of a collection of stochastic
optimization algorithms. The library is also operable on GNU Octave. The purpose of the
library is to provide researchers and implementers a collection of state-of-the-art stochas-
tic optimization algorithms that solve a variety of large-scale optimization problems such
as linear/non-linear regression problems and classification problems. This also allows re-
searchers and implementers to easily extend or add solvers and problems for further evalu-
ation. To the best of my knowledge, no report in the literature and no library describe a
comprehensive experimental environment specialized for stochastic optimization algorithms.
The code is available at https://github.com/hiroyuki-kasai/SGDLibrary.

2. Software architecture

The software architecture of SGDLibrary follows a typical module-based architecture, which
separates problem descriptor and optimization solver. To use the library, the user selects
one problem descriptor of interest and no less than one optimization solvers to be compared.

2

https://github.com/hiroyuki-kasai/SGDLibrary

SGDLibrary: A MATLAB library for stochastic optimization algorithms

Problem descriptor: The problem descriptor, denoted as problem, specifies the problem
of interest with respect to w, noted as w in the library. This is implemented by MATLAB
classdef. The user does nothing other than calling a problem definition function, for
instance, logistic_regression() for the `2-norm regularized LR problem. Each problem
definition includes the functions necessary for solvers; (i) (full) cost function f(w), (ii)
mini-batch stochastic derivative v=1/|S|∇fi∈S(w) for the set of samples S. (iii) stochastic
Hessian (Bordes et al., 2009), and (iv) stochastic Hessian-vector product for a vector v.
The built-in problems include, for example, `2-norm regularized multidimensional linear
regression, `2-norm regularized linear SVM, `2-norm regularized LR, `2-norm regularized
softmax classification (multinomial LR), `1-norm multidimensional linear regression, and
`1-norm LR. The problem descriptor provides additional specific functions. For example,
the LR problem includes the prediction and the classification accuracy calculation functions.

Optimization solver: The optimization solver implements the main routine of the stochas-
tic optimization algorithm. Once a solver function is called with one selected problem de-
scriptor problem as the first argument, it solves the optimization problem by calling some
corresponding functions via problem such as the cost function and the stochastic gradient
calculation function. Examples of the supported optimization solvers in the library are listed
in categorized groups as; (i) SGD methods: Vanila SGD (Robbins and Monro, 1951), SGD
with classical momentum, SGD with classical momentum with Nesterov’s accelerated gra-
dient (Sutskever et al., 2013), AdaGrad (Duchi et al., 2011), RMSProp, AdaDelta, Adam,
and AdaMax, (ii) Variance reduction (VR) methods: SVRG (Johnson and Zhang,
2013), SAG (Roux et al., 2012), SAGA (Defazio et al., 2014), and SARAH (Nguyen et al.,
2017), (iii) Second-order methods: SQN (Bordes et al., 2009), oBFGS-Inf (Schraudolph
et al., 2007; Mokhtari and Ribeiro, 2015), oBFGS-Lim (oLBFGS) (Schraudolph et al., 2007;
Mokhtari and Ribeiro, 2015), Reg-oBFGS-Inf (RES) (Mokhtari and Ribeiro, 2014), and
Damp-oBFGS-Inf, (iv) Second-order methods with VR: SVRG-LBFGS (Kolte et al.,
2015), SS-SVRG (Kolte et al., 2015), and SVRG-SQN (Moritz et al., 2016), and (v) Else:
BB-SGD and SVRG-BB. The solver function also receives optional parameters as the second
argument, which forms a struct, designated as options in the library. It contains elements
such as the maximum number of epochs, the batch size, and the step-size algorithm with
an initial step-size. Finally, the solver function returns to the caller the final solution w and
rich statistical information, such as a record of the cost function values, the optimality gap,
the processing time, and the number of gradient calculations.

Others: SGDLibrary accommodates a user-defined step-size algorithm. This accommoda-
tion is achieved by setting as options.stepsizefun=@my_stepsize_alg, which is delivered
to solvers. Additionally, when the regularizer R(w) in the minimization problem (1) is a
non-smooth regularizer such as the `1-norm regularizer ‖w‖1, the solver calls the prox-
imal operator as problem.prox(w,stepsize), which is the wrapper function defined in
each problem. The `1-norm regularized LR problem, for example, calls the soft-threshold
function as w = prox(w,stepsize)=soft_thresh(w,stepsize*lambda), where stepsize

is the step-size η and lambda is the regularization parameter λ > 0 in (1).

3

H.Kasai

3. Tour of the SGDLibrary

We embark on a tour of SGDLibrary exemplifying the `2-norm regularized LR problem.
The LR model generates n pairs of (xi, yi) for an unknown model parameter w, where xi
is an input d-dimensional vector and yi ∈ {−1, 1} is the binary class label, as P (yi|xi, w) =
1/(1 + exp(−yiwTxi)). The problem seeks w that fits the regularized LR model to the
generated data (xi, yi). This problem is cast as a minimization problem as min f(w) :=
1/n

∑n
i=1 log[1 + exp(−yiwTxi)] + λ/2‖w‖2. The code for this problem is in Listing 1.

1 % generate synthetic 300 samples of dimension 3 for logistic regression

2 d = logistic_regression_data_generator (300 ,3);

3 % define logistic regression problem

4 problem = logistic_regression(d.x_train ,d.y_train ,d.x_test ,d.y_test);

5

6 options.w_init = d.w_init; % set initial value

7 options.step_init = 0.01; % set initial stepsize

8 options.verbose = 1; % set verbose mode

9 [w_sgd , info_sgd] = sgd(problem , options); % perform SGD solver

10 [w_svrg , info_svrg] = svrg(problem , options); % perform SVRG solver

11 [w_svrg , info_svrg] = sqn(problem , options); % perform SQN solver

12 % display cost vs. number of gradient evaluations

13 display_graph(’grad_calc_count ’,’cost’,{’SGD’,’SVRG’},...

14 {w_sgd ,w_svrg},{info_sgd ,info_svrg });

Listing 1: Demonstration code for logistic regression problem.

First, we generate train/test datasets d using logistic_regression_data_generator(),
where the input feature vector is with n = 300 and d = 3. yi ∈ {−1, 1} is its class label. The
LR problem is defined by calling logistic_regression(), which internally contains the
functions for cost value, the gradient and the Hessian. This is stored in problem. Then, we
execute solvers, i.e., SGD and SVRG, by calling solver functions, i.e., sgd() and svrg() with
problem and options after setting some options into the options struct. They return the
final solutions of {w_sgd,w_svrg} and the statistical information {info_sgd,info_svrg}.
Finally, display_graph() visualizes the behavior of the cost function values in terms of the
number of gradient evaluations. It is noteworthy that each algorithm requires a different
number of evaluations of samples in each epoch. Therefore, it is common to use this value
to evaluate the algorithms instead of the number of iterations. Illustrative results addition-
ally including SQN and SVRG-LBFGS are presented in Figure 1, which are generated by
display_graph(), and display_classification_result() specialized for classification
problems. Thus, SGDLibrary provides rich visualization tools as well.

(a) Cost function value (b) Optimality gap (c) Classification result

Figure 1: Results of `2-norm regularized logistic regression problem.
4

SGDLibrary: A MATLAB library for stochastic optimization algorithms

References

M. Blondel and F. Pedregosa. Lightning: large-scale linear classification, regression and
ranking in Python, 2016. URL https://doi.org/10.5281/zenodo.200504.

A. Bordes, L. Bottou, and P. Callinari. SGD-QN: Careful quasi-Newton stochastic gradient
descent. JMLR, 10:1737–1754, 2009.

L. Bottou. Online algorithm and stochastic approximations. In David Saad, editor, On-Line
Learning in Neural Networks. Cambridge University Press, 1998.

R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-Newton method
for large-scale optimization. SIAM J. Optim., 26(2), 2016.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method
with support for non-strongly convex composite objectives. In NIPS, 2014.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12:2121–2159, 2011.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NIPS, 2013.

R. Kolte, M. Erdogdu, and A. Ozgur. Accelerating SVRG via second-order information,.
In OPT2015, 2015.

A. Mokhtari and A. Ribeiro. RES: Regularized stochastic BFGS algorithm. IEEE Trans.
on Signal Process., 62(23):6089–6104, 2014.

A. Mokhtari and A. Ribeiro. Global convergence of online limited memory BFGS. JMLR,
16:3151–3181, 2015.

A. Mokhtari, M. Eizen, and A. Ribeiro. An incremental quasi-Newton method with a local
superlinear convergence rate. In ICASSP, 2017.

P. Moritz, R. Nishihara, and M. I. Jordan. A linearly-convergent stochastic L-BFGS algo-
rithm. In AISTATS, 2016.

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A novel method for machine
learning problems using stochastic recursive gradient. In ICML, 2017.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statistics, 22
(3):400–407, 1951.

N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In NIPS, 2012.

N. N. Schraudolph, J. Yu, and S. Gunter. A stochastic quasi-Newton method for online
convex optimization. In AISTATS, 2007.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. JMLR, 14:567–599, 2013.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In ICML, 2013.

5

https://doi.org/10.5281/zenodo.200504

	Introduction
	Software architecture
	Tour of the SGDLibrary

