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Instituto de Ingenieŕıa del Conocimiento and Universidad Autónoma de Madrid
Francisco Tomás y Valiente 11, Madrid, Spain

Suvrit Sra∗ suvrit@mit.edu

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology (MIT), Cambridge, MA

Editor: Vishwanathan S V N

Abstract

We study TV regularization, a widely used technique for eliciting structured sparsity. In
particular, we propose efficient algorithms for computing prox-operators for `p-norm TV.
The most important among these is `1-norm TV, for whose prox-operator we present a new
geometric analysis which unveils a hitherto unknown connection to taut-string methods.
This connection turns out to be remarkably useful as it shows how our geometry guided im-
plementation results in efficient weighted and unweighted 1D-TV solvers, surpassing state-
of-the-art methods. Our 1D-TV solvers provide the backbone for building more complex
(two or higher-dimensional) TV solvers within a modular proximal optimization approach.
We review the literature for an array of methods exploiting this strategy, and illustrate the
benefits of our modular design through extensive suite of experiments on (i) image denois-
ing, (ii) image deconvolution, (iii) four variants of fused-lasso, and (iv) video denoising. To
underscore our claims and permit easy reproducibility, we provide all the reviewed and our
new TV solvers in an easy to use multi-threaded C++, Matlab and Python library.

Keywords: proximal optimization, total variation, regularized learning, sparsity, non–
smooth optimization

1. Introduction

Sparsity impacts the entire data analysis pipeline, touching algorithmic, modeling, as well
as practical aspects. Most commonly, sparsity is elicited via `1-norm regularization (Tib-
shirani, 1996; Candès and Tao, 2004). However, numerous applications rely on more refined
“structured” notions of sparsity, e.g., groupwise-sparsity (Meier et al., 2008; Liu and Zhang,
2009; Yuan and Lin, 2006; Bach et al., 2011), hierarchical sparsity (Bach, 2010; Mairal et al.,
2010), gradient sparsity (Rudin et al., 1992; Vogel and Oman, 1996; Tibshirani et al., 2005),
or sparsity over structured ‘atoms’ (Chandrasekaran et al., 2012).

Such regularizers typically arise in optimization problems of the form

minx∈Rn Φ(x) := `(x) + r(x), (1.1)
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where ` : Rn → R is a smooth loss function (often convex), while r : Rn → R ∪ {+∞} is a
lower semicontinuous, convex, and nonsmooth regularizer that induces sparsity.

We focus on instances of (1.1) where r is a weighted anisotropic Total-Variation (TV)
regularizer1, which for a vector x ∈ Rn and fixed weights w ≥ 0 is defined as

r(x)
def
= Tv1

p(w;x)
def
=
(∑n−1

j=1
wj |xj+1 − xj |p

)1/p
p ≥ 1. (1.2)

More generally, if X is an order-m tensor in R
∏m
j=1 nj with entries Xi1,i2,...,im (1 ≤ ij ≤ nj for

1 ≤ j ≤ m); we define the weighted m-dimensional anisotropic TV regularizer as

Tvmp (W;X)
def
=

m∑
k=1

∑
Ik={i1,...,im}\ik

(nk−1∑
j=1

wIk,j |X
[k]
j+1 − X

[k]
j |

pk

)1/pk

, (1.3)

where X
[k]
j ≡ Xi1,...,ik−1,j,ik+1,...,im , wIk,j ≥ 0 are weights, and p ≡ [pk ≥ 1] for 1 ≤ k ≤ m. If

X is a matrix, expression (1.3) reduces to (note, p, q ≥ 1)

Tv2
p,q(W;X) =

n1∑
i=1

(n2−1∑
j=1

w1,j |xi,j+1 − xi,j |p
)1/p

+

n2∑
j=1

(n1−1∑
i=1

w2,i|xi+1,j − xi,j |q
)1/q

, (1.4)

These definitions look formidable; already 2D-TV (1.4) or even the simplest 1D-TV (1.2)
are fairly complex, which further complicates the overall optimization problem (1.1). For-
tunately, this complexity can be “localized” by invoking prox-operators (Moreau, 1962),
which are now widely used across machine learning (Sra et al., 2011; Parikh et al., 2014).

The main idea of using prox-operators while solving (1.1) is as follows. Suppose Φ is a
convex lsc function on a set X ⊂ Rn. The prox-operator of Φ is defined as the map

proxΦ
def
= y 7→ argmin

x∈X

1
2‖x− y‖

2
2 + Φ(x) for y ∈ Rn. (1.5)

A popular method based on prox-operators is the proximal gradient method (also known
as ‘forward backward splitting’), which performs a gradient (forward) step followed by a
proximal (backward) step to iterate

xk+1 = proxηkr(xk − ηk∇`(xk)), k = 0, 1, . . . . (1.6)

Numerous other proximal methods exist—see e.g., (Beck and Teboulle, 2009; Nesterov,
2007; Combettes and Pesquet, 2009; Kim et al., 2010; Schmidt et al., 2011).

To implement the proximal-gradient iteration (1.6) efficiently, we require a subroutine
that computes the prox-operator proxr. An additional concern is whether the overall algo-
rithm requires an exact computation of proxr, or merely a moderately inexact computation.
This concern is justified: rarely does r admit an exact algorithm for computing proxr. For-
tunately, proximal methods easily admit inexactness, e.g., (Schmidt et al., 2011; Salzo and
Villa, 2012; Sra, 2012), which allows approximate prox-operators (as long as the approxi-
mation is sufficiently accurate).

We study both exact and inexact prox-operators in this paper, contingent upon the
`p-norm used and on the data dimensionality m.

1. We use the term “anisotropic” to refer to the specific TV penalties considered in this paper.

2



Modular proximal optimization for multidimensional TV regularization

1.1. Contributions

In particular, we review, analyze, implement, and experiment with a variety of fast algo-
rithms. The ensuing contributions of this paper are summarized below.

• Geometric analysis that leads to a new, efficient version of the classic Taut String
Method (Davies and Kovac, 2001), whose origins can be traced back to (Barlow,
1972) – this version turns out to perform better than most of the recently developed
TV proximity methods.

• A previously unknown connection between (a variation of) this classic algorithm and
Condat’s unweighted TV method (Condat, 2012). This connection provides a geomet-
ric, more intuitive interpretation and helps us define a hybrid taut-string algorithm
that combines the strengths of both methods, while also providing a new efficient
algorithm for weighted `1-norm 1D-TV proximity.

• Efficient prox-operators for general `p-norm (p ≥ 1) 1D-TV. In particular,

– For p = 2, we present a specialized Newton method based on the root-finding
strategy of Moré and Sorensen (1983),

– For the general p ≥ 1 case we describe both “projection-free” and projection
based first-order methods.

• Scalable proximal-splitting algorithms for computing 2D (1.4) and higher-D TV (1.3)
prox-operators. We review an array of methods in the literature that use prox-
splitting, and through extensive experiments show that a splitting strategy based
on alternating reflections is the most effective in practice. Furthermore, this modular
construction of 2D and higher-D TV solvers allows reuse of our fast 1D-TV routines
and exploitation of the massive parallelization inherent in matrix and tensor TV.

• The final most important contribution of our paper is a well-tuned, multi-threaded
open-source C++, Matlab and Python implementation of all the reviewed and devel-
oped methods.2

To complement our algorithms, we illustrate several applications of TV prox-operators to:
(i) image and video denoising; (ii) image deconvolution; and (iii) four variants of fused-lasso.

Note: We have invested great efforts to ensure reproducibility of our results. In particular,
given the vast attention that TV problems have received in the literature, we believe it is
valuable to both users of TV and other researchers to have access to our code, data sets,
and scripts, to independently verify our claims, if desired.3

1.2. Related Work

The literature on TV is too large to permit a comprehensive review here. Instead, we
mention the most directly related work to help place our contributions in perspective.

We focus on anisotropic-TV, in contrast to isotropic-TV (Rudin et al., 1992). Several
proposals for designing an anisotropic variant of TV have been proposed in the literature:

2. See https://github.com/albarji/proxTV
3. This material shall be made available at: http://suvrit.de/work/soft/tv.html
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in this paper we use the definition given in Bioucas-Dias and Figueiredo (2007), which
follows the already presented Equation (1.2). Alternative definitions of anisotropic TV in-
clude instances such as a general TV defined in the continuous domain in terms of Wulff
shapes (Esedoglu and Osher, 2004), or making use of estimates of the directional infor-
mation (Steidl and Teuber , 2009), to name a few. Although the definition used here
is simpler, it arises frequently in image denoising and signal processing, and quite a few
TV-based denoising algorithms exist (Zhu and Chan, 2008, see e.g.).

The anisotropic TV regularizers Tv1D
1 and Tv2D

1,1 arise in image denoising and decon-
volution (Dahl et al., 2010), in the fused-lasso (Tibshirani et al., 2005), in logistic fused-
lasso (Kolar et al., 2010), in change-point detection (Harchaoui and Lévy-Leduc, 2010), in
graph-cut based image segmentation (Chambolle and Darbon, 2009), in submodular op-
timization (Jegelka et al., 2013); see also the related work in (Vert and Bleakley, 2010).
This broad applicability and importance of anisotropic TV is the key motivation towards
developing carefully tuned proximity operators.

There is a rich literature of methods tailored to anisotropic TV, e.g., those developed in
the context of fused-lasso (Friedman et al., 2007; Liu et al., 2010), graph-cuts (Chambolle
and Darbon, 2009), ADMM-style approaches (Combettes and Pesquet, 2009; Wahlberg
et al., 2012), fast methods based on dynamic programming (Johnson, 2013) or KKT con-
ditions analysis (Condat, 2012). However, it seems that anisotropic TV norms other than
`1 have not been studied much in the literature, although recognized as a form of Sobolev
semi-norms (Pontow and Scherzer, 2009).

For 1D-TV and for the particular `1 norm, there exist several direct methods that are
exceptionally fast. We treat this problem in detail in Section 2, and hence refer the reader
to that section for discussion of closely related work on fast solvers. We note here, however,
that in contrast to many of the previous fast solvers, our solvers allow weights, a capability
that can be very important in applications (Jegelka et al., 2013).

Regarding 2D-TV, Goldstein T. (2009) presented a so-called “Split-Bregman” (SB).
It turns out that this method is essentially a variant of the well-known ADMM method.
In contrast to the 2D approach presented here, the SB strategy followed by Goldstein
T. (2009) is to rely on `1-soft thresholding substeps instead of 1D-TV substeps. From
an implementation viewpoint, the SB approach is somewhat simpler, but not necessarily
more accurate. Incidentally, sometimes such direct ADMM approaches turn out to be less
effective than ADMM methods that rely on more complex 1D-TV prox-operators (Ramdas
and Tibshirani, 2014).

It is worth highlighting that it is not just proximal solvers such as FISTA (Beck and
Teboulle, 2009), SpaRSA (Wright et al., 2009), SALSA (Afonso et al., 2010), TwIST
(Bioucas-Dias and Figueiredo, 2007), Trip (Kim et al., 2010), that can benefit from our
fast prox-operators. All other 2D and higher-D TV solvers, e.g., (Yang et al., 2013), as well
as the recent ADMM based trend-filtering solvers of Tibshirani (2014) immediately benefit,
not only in speed but also by gaining the ability to solve weighted problems.

1.3. Summary of the Paper

The remainder of the paper is organized as follows. In Section 2 we consider prox operators
for 1D-TV problems when using the most common `1 norm. The highlight of this section
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is our analysis on taut-string TV solvers, which leads to the development a new hybrid
method and a weighted TV solver (Sections 2.3, 2.4). Thereafter, we discuss variants of
1D-TV (Section 3), including a specialized Tv1D

2 solver, and a more general Tv1D
p method

based on a gradient projection strategy. Subsequently, we describe multi-dimensional TV
problems and study their prox-operators in Section 4, paying special attention to 2D-TV; for
both 2D and multi-D, prox-splitting methods are used. After these theoretical sections, we
describe experiments and applications in Section 5. In particular, extensive experiments for
1D-TV are presented in Section 5.1 and Section 5.2; 2D-TV experiments are in Section 5.3,
while an application of multi-D TV is the subject of Section 5.4. The appendices to the
paper include further technical details and additional information about the experimental
setup.

2. TV-L1: Fast Prox-Operators for Tv1D
1

We begin with the 1D-TV problem (1.2) for an `1 norm choice, for which we review several
carefully tuned algorithms. Using such well–tuned algorithms pays off: we can find fast,
robust, and low-memory (in fact, in place) algorithms, which are not only of independent
value, but also ideal building blocks for scalably solving 2D- and higher-D TV problems.

Computation of the `1-norm TV prox-operator can be compactly written as the problem

min
x∈Rn

1
2‖x− y‖

2
2 + λ‖Dx‖1, (2.1)

where D is the differencing matrix, all zeros except dii = −1 and di,i+1 = 1 (1 ≤ i ≤ n− 1).

To solve (2.1) we will analyze an approach based on the line of “taut-string” methods.
We first introduce these methods for the unweighted TV-L1 problem (2.1), before discussing
the elementwise weighted TV problem (2.6). Most of the previous fastest methods handle
only unweighted-TV. It is often nontrivial to extend them to handle weighted-TV, a problem
that is crucial to several applications, e.g., segmentation (Chambolle and Darbon, 2009) and
certain submodular optimization problems (Jegelka et al., 2013).

A remarkably efficient approach to TV-L1 was presented in (Condat, 2012). We will
show Condat’s fast algorithm can be interpreted as a “linearized” version of the taut-string
approach, a view that paves the way to obtain an equally fast solver for weighted TV-L1.

Before proceeding we note that other than (Condat, 2012), other efficient methods to
address unweighted Tv1D

1 proximity have been proposed. Johnson (2013) shows how solving
Tv1D

p proximity is equivalent to computing the data likelihood of an specific Hidden Markov
Model (HMM), which suggests a dynamic programming approach based on the well-known
Viterbi algorithm for HMMs. The resulting algorithm is very competitive, and guarantees
an overall O(n) performance while requiring approximately 8n storage. Another similarly
performing algorithm was presented by Kolmogorov et al (2015) in the form of a message
passing method. We will also consider these algorithms in our experimental comparison in
§5.1.

Yet another family of methods is based on projected-Netwon (PN) techniques: we also
present in Appendix E a PN approach for its instructive value, and also because it provides
key subroutines for solving TV problems with p > 1. Our derivation may also be helpful
to readers seeking to implement efficient prox-operators for problems that have structure
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similar to TV, for instance `1-trend filtering (Kim et al., 2009; Tibshirani, 2014). Indeed,
the PN approach proves to be foundational for the fast “group fused-lasso” algorithms
of (Wytock et al., 2014).

2.1. The Taut-String Method for Tv1D
1

While taut-string methods seem to be largely unknown in machine learning, they have been
widely applied in statistics—see e.g., (Grasmair, 2007; Davies and Kovac, 2001; Barlow,
1972).

We start by transforming the problem as follows. For TV-L1, elementary manipulations,
e.g., using Proposition A.4, yield the dual (re-written as a minimization problem)

min
u

1
2‖D

Tu‖22 − uTDy, s.t. ‖u‖∞ ≤ λ. (2.2)

Without changing the minimizer, the objective (2.2) can be replaced by ‖DTu− y‖22, which
then unfolds into

(u1 − y1)2 +
∑n−1

i=2
(−ui−1 + ui − yi)2 + (−un−1 − yn)2 .

Introducing the fixed extreme points u0 = un = 0, we can replace the problem (2.2) by

min
u

∑n

i=1
(−ui−1 + ui − yi)2 , s.t. ‖u‖∞ ≤ λ, u0 = un = 0. (2.3)

Now we perform a change of variables by defining the new set of variables s = r−u, where
ri :=

∑i
k=1 yk is the cumulative sum of input signal values. Thus, (2.3) becomes

min
s

∑n

i=1
(−ri−1 + si−1 + ri − si − yi)2 , s.t. ‖s− r‖∞ ≤ λ, r0 − s0 = rn − sn = 0,

which upon simplification becomes

min
s

∑n

i=1
(si−1 − si)2 , s.t. ‖s− r‖∞ ≤ λ, s0 = 0, sn = rn. (2.4)

Now the key trick: problem (2.4) can be shown to share the same optimum as

min
s

n∑
i=1

√
1 + (si−1 − si)2, s.t. ‖s− r‖∞ ≤ λ, s0 = 0, sn = rn. (2.5)

A proof of this relationship may be found in (Steidl et al., 2005); for completeness, and also
because it will help us generalize to the weighted Tv1D

1 variant, we include an alternative
proof in Appendix C.

The name “taut-string” is explained as follows. The objective in (2.5) can be interpreted
as the Euclidean length of a polyline through the points (i, si). Thus, (2.5) seeks the
minimum length polyline (the taut-string) crossing a tube of height λ with center the
cumulative sum r and having the fixed endpoints (s0, sn). An example illustrating this
description is shown in Figure 1.
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Figure 1: Example of the taut string method. The cumulative sum r of the input signal values y
is shown as the dashed line; the black dots mark the points (i, ri). The bottom and top
of the λ-width tube are shown in red. The taut string solution s is shown as a blue line.

Once the taut string is found, the solution for the original TV problem (2.1) can be
recovered by observing that

si − si−1 = ri − ui − (ri−1 − ui−1) = yi − ui + ui−1 = xi,

where we used the primal-dual relation x = y−DTu. Intuitively, the above argument shows
that the solution to the TV-L1 proximity problem is obtained as the discrete gradient of
the taut string, or as the slope of its segments.

It remains to describe how to find the taut string. The most widely used approach seems
to be the one due to Davies and Kovac (2001). This approach starts from the fixed point
s0 = 0, and incrementally computes the greatest convex minorant of the upper bounds on
the λ tube, as well as the smallest concave majorant of the lower bounds on the λ tube.
When both curves intersect, the left-most point where either the majorant or the minorant
touched the tube is used to fix a first segment of the taut string. The procedure is then
resumed at the end of the identified segment, and iterated until all taut string segments have
been obtained. Pseudocode of this method is presented as Algorithm 1, while an example
of this procedure is shown in Figure 2.

It is important to note that since we have a discrete number of points in the tube, the
greatest convex minorant can be expressed as a piecewise linear function with segments of
monotonically increasing slope, while the smallest concave majorant is another piecewise
linear function with segments of monotonically decreasing slope. Another relevant fact is
that each segment in the tube upper/lower bound enters the minorant/majorant exactly
once in the algorithm, and is also removed exactly once. This limits the extent of the inner
loops in the algorithm, and in fact an analysis of the computational complexity of this
behavior leads to an overall O(n) performance (Davies and Kovac, 2001).

In spite of this, Condat (2012) notes that maintaining the minorant and majorant func-
tions in memory is inefficient, and views a taut-string approach as potentially inferior to
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Algorithm 1 Taut string algorithm for TV-L1-proximity

1: Inputs: input signal y of length n, regularizer λ.
2: Initialize i = 0, concmajorant = ∅, convminorant = ∅, ri =

∑i
k=1 yk.

3: while i < n do
4: Add new segment: concmajorant = concmajorant ∪ ((i− 1, ri−1 − λ)→ (i, ri − λ)).
5: while concmajorant is not concave do
6: Merge the last two segments of concmajorant
7: end while
8: Add new segment: convminorant = convminorant ∪ ((i− 1, ri−1 + λ)→ (i, ri + λ)).
9: while convminorant is not convex do

10: Merge the last two segments of convminorant
11: end while
12: if slope(left-most segment in concmajorant) > slope(lest-most segment in convminorant)

then
13: break = left-most point where either the majorant or the minorant touched the tube
14: if break ∈ convminorant then
15: Remove left-most segment of the minorant, add it to the taut-string solution x.
16: Majorant is recalculated as a straight line from break to its last point.
17: end if
18: if break ∈ concmajorant then
19: Remove left-most segment of the majorant, add it to the taut-string solution x.
20: Minorant is recalculated as a straight line from break to its last point.
21: end if
22: end if
23: i+ +
24: end while
25: Add last segment from either the majorant or minorant to the solution x.

his proposed method. To this observation we make two claims: Condat’s method can be
interpreted as a linearized version of the taut-string method (see Section 2.2); and that a
careful implementation of the taut-string method can be highly competitive in practice.

2.1.1. Efficient Implementation of Taut-Strings

We propose now an efficient implementation of the taut-string method. The main idea is
to carefully use double-ended queues (Knuth, 1997) to store the majorant and minorant
information. Therewith, all majorant/minorant operations such as appending a segment or
removing segments from either the beginning or the end of the majorant can be performend
in constant time. Note however that usual double-ended queue implementations use dou-
bly linked lists, dynamic arrays or circular buffers: these approaches require dynamically
reallocating memory chunks at some of the insert or remove operations. But in the taut-
string algorithm, the maximum number of segments of the majorant/minorant is just the
size of the input signal (n), and also the number of segments to be inserted in the queue
throughout the algorithm will be n. Making use of these facts we implement a specialized
queue based on a contiguous array of fixed length n. New segments are added from the
start of the array on, and a couple of pointers are maintained to keep track of the first and
last valid segments in the array, much in the way of a circular buffer. This implementa-
tion, however, does not require of the usual circular logic. Overall, this double-ended queue
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

Figure 2: Example of the evolution of the taut string method. The smallest concave majorant
(blue) and largest convex minorant (green) are updated are every step. At step (1)
the algorithm is initialized. Steps (2) to (4) successfully manage to update majorant
and minorant without producing crossings between them. Note how while the concave
majorant keeps adding segments without issue, the convex minorant must remove and
merge existing segments with new ones to mantain a convex function from the origin to
the new points. At step (5) the end of the tube is reached, but the minorant and majorant
slopes overlap, and so it is necessary to break the segment at the left-most point where
the majorant/minorant touched the tube. Since the left-most touching point is in the
concave majorant it’s leftmost segment is removed and placed in the solution, while the
convex minorant is updated as a straight line from the detected breakpoint to the last
explored point, resulting in (6). The algorithm would then continue adding segments, but
since the majorant/minorant slopes are still crossing, the procedure of fixing segments to
the solution is repeated through steps (6), (7) and (8). Finally at step (9) the slopes are
no longer crossing and the method would continue adding tube segments, but since the
end of the tube has already been reached the algorithm stops.

requires a single memory allocation at the beginning of the algorithm, keeping the rest of
queue operations free from memory management and all but the simplest pointer or index
algebra.

We also store for each segment the following values: x length of the segment, y length
and slope. Slopes might seem as redundant given the other two factors, but given the
number of times the algorithm requires comparing slopes between segments (e.g., to pre-
serve convexity/concavity) it pays off to precompute these values. This fact together with
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other calculation and code optimization details produces our implementation; these can be
reviewed in the code itself at https://github.com/albarji/proxTV.

2.2. Linearized Taut-String Method for Tv1D
1

We now present a variant, linearized version of the taut-string method. Surprisingly, the
resulting algorithm turns out to be equivalent to the fast algorithm of Condat (2012), though
now with a clearer interpretation based on taut-strings.

The key idea is to build linear approximations to the greatest convex minorant and
smallest concave majorant, producing exactly the same results but significantly reducing
the bookkeeping of the method to a handful of simple variables. We therefore replace the
greatest convex minorant and smallest convex majorant by a greatest affine minorant and
smallest affine majorant.

An example of the method is presented in Figure 3. A proof showing that this lineariza-
tion does not change the resultant taut-string is given in Appendix D. In what follows, we
describe the linearized method in depth.

Details. Linearized taut-string requires only the following bookkeeping variables:

1. i0: index of the current segment start

2. δ̄: slope of the majorant

3.
¯
δ: slope of the minorant

4. h̄: height of majorant w.r.t. the λ-tube center

5.
¯
h: height of minorant w.r.t. λ-tube center

6. ī: index of last point where δ̄ was updated—potential majorant break point

7.
¯
i: index of last point where

¯
δ was updated—potential minorant break point.

Figure 4 gives a geometric interpretation of these variables; we use these variables to detect
minorant-majorant intersections, without the need to compute or store them explicitly.

Algorithm 2 presents full pseudocode of the linearized taut-string method. Broadly, the
algorithm proceeds in the same fashion as the classic taut-string method, updating the affine
approximations to the majorant and minorant at each step, and introducing a breakpoint
whenever the slopes of these two functions cross.

More precisely, at each each iteration the method steps one point further through the
tube, updating the minorant/majorant slopes (

¯
δ, δ̄) as well as their heights at the current

point (
¯
h, h̄). To check for minorant/majorant crossings it suffices to compare the slopes

(
¯
δ, δ̄), or equivalently, to check whether the height of the minorant

¯
h falls below the tube

bottom (since the minorant follows the tube ceiling) or the height of the majorant h̄ grows
above the tube ceiling (since the majorant follows the tube bottom). We make use of this
last variant, since updating heights turns out to be slightly cheaper than updating slopes,
and so it is faster to ensure no crossing will take place before performing such updates.

When a crossing is detected, we perform similar steps as in the classic taut-string method
but with one significant difference: the algorithm is completely restarted at the newly
introduced breakpoint. This restart idea is in contrast with the classic method, where we
simply re-use the previously computed information about the minorant and majorant to
update their estimates and continue working with them. In the linearized version we do

10
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11)

Figure 3: Example of the evolution of the linearized taut string method. The smallest affine ma-
jorant of the tube bottom (blue) and greatest affine minorant of the tube ceiling (green)
are updated at every step. At step (1) the algorithm is initialized. Steps (2) to (4) suc-
cessfully manage to update majorant/minorant without crossings. At step (5), however,
the slopes cross, and so it is necessary to break the segment. Since the left-most tube
touching point is the one in the majorant, the majorant is broken down at that point and
its left-hand side is added to the solution, resulting in (6). The method is then restarted
at the break point, with majorant/minorant being updated at step (7), though at step
(8) once again a crossing is detected. Hence, at step (9) a breaking point is introduced
again and the algorithm is restarted once more. Following this, step (10) manages to
update majorant/minorant slopes up to the end of the tube, and so at step (11) the final
segment is built using the (now equal) slopes.

not keep enough information to perform such an operation, so all data about minorant and
majorant is discarded and the algorithm begins anew. Because of this choice the same tube
segment might be reprocessed up to O(n) times in the method, and therefore the overall
worst case performance is O(n2). This fact was already observed in (Condat, 2012).

In what follows we describe the rationale behind the height update formulae.

11
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Figure 4: Illustration of the geometric concepts involved in the linearized taut string method. The
greatest linear minorant (of the tube ceiling) is depicted in green, while the smallest
linear majorant (of the tube bottom) is shown in blue. The δ slopes and h heights are
presented updated up to the index shown as i.

Height variables. To implement the method described above, the height variables h
are not strictly necessary as they can be obtained from the slopes δ. However, explicitly
including them leads to efficient updating rules at each iteration, as we show below.

Suppose we are updating the heights and slopes from their estimates at step i − 1 to
step i. Updating the heights is immediate given the slopes, since

hi = hi−1 + δ − yi.

In other words, since we are following a line with slope δ, the change in height from one step
to the next is given by precisely such a slope. Note, however, that in this algorithm we do
not compute absolute heights but instead relative heights with respect to the λ–tube center.
Therefore we need to account for the change in the tube center between steps i− 1 and i,
which is given by ri − ri−1 = yi. This completes the update, which is shown in Algorithm
2 as lines 4 and 11.

However, it is possible that the new height h runs over or under the tube. This would
mean that we cannot continue using the current slope in the majorant or minorant, and a
recalculation is needed, which again can be done efficiently by using the height information.
Assume without loss of generality that the starting index of the current segment is 0 and
the absolute height of the starting point of the segment is given by α. Then, for adjusting
the minorant slope δ̄i so that it touches the tube ceiling at the current point, we note that

δ̄i =
λ+ ri − α

i
=
λ+ (h̄i − h̄i) + ri − α

i
,

where we have also added and subtracted the current value of h̄i. Observe that this value was
computed using the estimate δi−1 of the slope so far, so we can rewrite it as the projection
of the initial point in the segment following such a slope, that is, as h̄i = iδ̄i− ri+α. Doing

12
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Algorithm 2 Linearized taut string algorithm for TV-L1-proximity

1: Initialize i = ī =
¯
i = h̄ =

¯
h = 0,

¯
δ = y0 + λ, δ̄ = y0 − λ

2: while i < n do
3: Find tube height: λ̃ = λ if i < n− 1, else λ̃ = 0
4: Update majorant height following current slope: h̄ = h̄+ δ̄ − yi.
5: /* Check for ceiling violation: majorant is above tube ceiling */
6: if h̄ > λ̃ then
7: Build valid segment up to last majorant breaking point: xi0+1:̄i = δ̄.
8: Start new segment after break: (i0,

¯
i) = ī,

¯
δ = yi + 2λ, δ̄ = yi,

¯
h = λ, h̄ = −λ, i = ī+ 1

9: continue
10: end if
11: Update minorant height following current slope:

¯
h =

¯
h+

¯
δ − yi.

12: /* Check for bottom violation: minorant is below tube bottom */
13: if

¯
h < −λ̃ then

14: Build valid segment up to last minorant breaking point: xi0+1:
¯
i =

¯
δ.

15: Start new segment after break: (i0, ī) =
¯
i,

¯
δ = yi, δ̄ = −2λ+ yi,

¯
h = λ, h̄ = −λ, i =

¯
i+ 1

16: continue
17: end if
18: /* Check if majorant height is below the floor */
19: if h̄ ≤ −λ̃ then
20: Correct slope: δ̄ = δ̄ + λ̃−h̄

i−i0
21: The majorant now touches the floor: h̄ = −λ̃
22: This is a possible majorant breaking point: ī = i
23: end if
24: /* Check if minorant height is above the ceiling */
25: if

¯
h ≥ λ̃ then

26: Correct slope:
¯
δ =

¯
δ +

−λ̃−
¯
h

i−i0
27: The minorant now touches the ceiling:

¯
h = λ̃

28: This is a possible minorant breaking point:
¯
i = i

29: end if
30: Continue building current segment: i = i+ 1
31: end while
32: Build last valid segment: xi0+1:n = δ̄.

so for one of the added heights h̄i produces

δ̄i =
λ+ (iδ̄i−1 − ri + α)− h̄i + ri − α

i
= δ̄i−1 +

λ− h̄i
i

,

which generates a simple updating rule. A similar derivation holds for the minorant. The
resulting updates are included in the algorithm in lines 20 and 26. After recomputing this
slope we need to adjust the corresponding height back to the tube: since the heights are
relative to the tube center we can just set h̄ = λ,

¯
h = −λ; this is done in lines 21 and 27.

Notice also that the special case of the last point in the tube where the taut-string
must meet sn = rn is handled by line 3, where λ̃ is set to 0 at such a point to enforce this
constraint. Overall, one iteration of the method is very efficient, as mostly just additions
and subtractions are involved with the sole exception of the division required for the slope
updates, which are not performed at every iteration. Moreover, no additional memory is
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Classic Linearized (Condat’s)

Worst-case performance O(n) O(n2)

In–memory No Yes

Other considerations Fast bookkeeping through
double-ended queues

Very fast iteration, cache
friendly

Table 1: Comparison of the main features of reviewed taut-string algorithms.

required beyond the constant number of bookkeeping variables, and in-place updates are
also possible because yi values for already fixed sections of the taut-string are not required
again, so the output x and the input y can both refer to the same memory locations.

The resulting algorithm turns out to be equivalent, almost line by line, to the method
of Condat (2012), even though its theoretical grounds are radically different: while the
approach presented here has a strong geometric basis due to its taut-string relationship,
(Condat, 2012) is based solely on analysis of KKT conditions. Therefore, we have shown
that Condat’s fast TV method is, in fact, a linearized taut-string algorithm.

2.3. Comparison of Taut-String Methods and a Hybrid Strategy

Table 1 summarizes the main features of the classic and linearized taut-string methods
reviewed so far. Although the classic taut-string method has been largely neglected in
the machine learning literature, its guarantee in linear performance makes it an attractive
choice. Furthermore, although we could not find any references on implementation details
of this method, we have empirically seen that a very efficient solver can be produced by
making use of a double-ended queue to bookkeep the majorant/minorant information.

In contrast to this, the linearized taut-string method (equivalent to Condat (2012))
features a much better performance per step in the tube traversal, mainly due to not
requiring additional memory and making use of only a small constant number of variables,
making the method friendly for CPU cache or registers calculation. As a tradeoff of keeping
such scarce information in memory, the method does not guarantee linear performance,
falling to a quadratic theoretical runtime in the worst case. This fact was already observed
in (Condat, 2012), though such worst case was deemed as pathological, claiming a O(n)
performance in all practical situations. We shall review these claims in the experimental
sections in this manuscript.

The key points of Table 1 show that no taut-string variant is clearly superior. While the
classic method provides a safe linear time solution to the problem, the linearized method
is potentially faster but riskier in terms of worst case performance. Following these ob-
servations we propose here a simple hybrid method combining both approaches: run the
linearized algorithm up to a prefixed number of steps nS , S ∈ (1, 2), and if the solution
has not yet been found, we switch to the classic method. We therefore limit the worst-case
scenario to O(nS) +O(n) ' O(nS), because once the classic method kicks, it will ensure an
O(n) performance guarantee.

Implementation of this hybrid method is easy upon realizing the similarities between
algorithms: a switch–check is added to the linearized method every time a segment of the
taut-string has been identified (Algorithm 2, lines 7, 14). If it is confirmed that the method
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has already run for nS steps without reaching the solution, the remaining part of the signal
for which the taut-string has not yet been found is passed on to the classic method, whose
solution is concatenated to the part the linearized method managed to find so far. We also
report the empirical performance of this method in the experimental section.

2.4. Taut-string Methods for Weighted Tv1D
1

Several applications TV require penalizing the discrete gradients individually, which can be
done by solving the weighted TV-L1 problem

minx
1
2‖x− y‖

2
2 +

∑n−1

i=1
wi|xi+1 − xi|, (2.6)

where the weights {wi}n−1
i=1 are all positive. To solve (2.6) using a taut-string approach, we

again begin with its dual (written as a minimization problem)

minu
1
2‖D

Tu‖22 − uTDy s.t. |ui| ≤ wi, 1 ≤ i < n. (2.7)

Then, we repeat the derivation of the unweighted taut-string method but with a few key
modifications. More precisely, we transform (2.7) by introducing u0 = un = 0 to obtain

min
u

∑n

i=1
(yi − ui + ui−1)2 s.t. |ui| ≤ wi, 1 ≤ i < n.

Then, we perform the change of variables s = r − u, where ri :=
∑i

k=1 yk, and consider

min
s

∑n

i=1
(si − si−1)2 s.t. |si − ri| ≤ wi, 1 ≤ i < n s0 = 0, sn = rn.

Finally, applying Theorem C.1 we obtain the equivalent weighted taut-string problem

min
s

∑n

i=1

√
1 + (si − si−1)2 s.t. |si − ri| ≤ wi, 1 ≤ i < n, s0 = 0, sn = rn. (2.8)

Problem (2.8) differs from its unweighted counterpart (2.5) in the constraints |si− ri| ≤
wi (1 ≤ i < n), which allow different weights for each component instead of using the same
value λ. Our geometric intuition also carries over to the weighted problem, albeit with a
slight modification: the tube we are trying to traverse now has varying widths at each step
instead of the previous fixed λ width—Figure 5 illustrates this idea.

As a consequence of the above derivation and intuition, taut-string methods can be
produced to solve the weighted Tv1D

1 problem. The original formulation of the classic taut-
string method in (Davies and Kovac, 2001) defines the limits of the tube through possibly
varying bottom and ceiling values (li, ui) ∀i, and so this method easily extends to solve
the weighted TV problem by assigning li = ri − wi, ui = ri + wi. In our pseudocode in
Algorithm 1 we just need to replace λ by the appropriate wi values.

Similar considerations apply for the linearized version (Algorithm 2), in particular, when
checking ceiling/floor violations as well as when checking slope recomputations and restarts,
we must account for varying tube heights. Algorithm 3 presents the precise modifications
that we must make to Algorithm 2 to handle weights. Regarding the convergence of this
method, the proof of equivalence with the classic taut-string method still holds in the
weighted case (see Appendix D).

The very same analysis as portrayed in Table 1 applies here: both the benefits and
problems of the two taut-string solvers carry on to the weighted variant of the problem.
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i

s
Taut−string solution

Figure 5: Example of the weighted taut string method with w = (1.35, 3.03, 0.73, 0.06, 0.71, 0.20,
0.12, 1.49, 1.41). The cumulative sum r of the input signal values y is shown as the
dashed line, with the black dots marking the points (i, ri). The bottom and ceiling of
the tube are shown in red, which vary in width at each step following the weights wi.
The weighted taut string solution s is shown as a blue line.

Algorithm 3 Modified lines for weighted version of Algorithm 2

3: Find tube height: λ̃ = wi+1 if i < n− 1, else λ̃ = 0
8: Start new segment after break: (i0,

¯
i) = ī,

¯
δ = yi + wi−1 + wi, δ̄ = yi + wi−1 − wi,

¯
h = wi,

h̄ = −wi, i = ī+ 1
15: Start new segment after break: (i0, ī) =

¯
i,

¯
δ = yi + wi−1 − wi, δ̄ = yi + wi−1 + wi,

¯
h = wi,

h̄ = −wi, i =
¯
i+ 1

3. Other One-Dimensional TV Variants

While more infrequent, replacing the `1 norm of the standard TV regularizer by an `p-norm
version can also be useful. In this section we focus first on a specialized solver for p = 2,
before discussing a less efficient but more general solver for any `p with p ≥ 1. We also
briefly cover the p =∞ case.

3.1. TV-L2: Proximity for Tv1D
2

For TV-L2 proximity (p = 2) the dual to the prox-operator for (1.2) reduces to

minu φ(u) := 1
2‖D

Tu‖22 − uTDy, s.t. ‖u‖2 ≤ λ. (3.1)

Problem (3.1) is nothing but a version of the well-known trust-region subproblem (TRS),
for which a variety of numerical approaches are known (Conn et al., 2000).

We derive a specialized algorithm based on the classic Moré-Sorensen Newton (MSN)
method of (Moré and Sorensen, 1983). This method in general can be quite expensive, but
for (3.1) the Hessian is tridiagonal which can be well-exploited (see Appendix E). Curiously,
experiments show that for a limited range of λ values, even ordinary gradient-projection
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(GP) can be competitive. But for overall best performance, a hybrid MSN-GP approach is
preferable.

Towards solving (3.1), consider its KKT conditions:

(DDT + αI)u = Dy,

α(‖u‖2 − λ) = 0, α ≥ 0,
(3.2)

where α is a Lagrange multiplier. There are two possible cases: either ‖u‖2 < λ or ‖u‖2 = λ.
If ‖u‖2 < λ, then the KKT condition α(‖u‖2 − λ) = 0, implies that α = 0 must hold

and u can be obtained immediately by solving the linear system DDTu = Dy. This can
be done in O(n) time owing to the bidiagonal structure of D. Conversely, if the solution to
DDTu = Dy lies in the interior of the ball ‖u‖2 ≤ λ, then it solves (3.2). Therefore, this
case is trivial, and we need to consider only the harder case ‖u‖2 = λ.

For any given α one can obtain the corresponding vector u as uα = (DDT +αI)−1Dy.
Therefore, optimizing for u reduces to the problem of finding the “true” value of α.

An obvious approach is to solve ‖uα‖22 = λ2. Less obvious is the MSN equation

hα := λ−1 − ‖uα‖−1
2 = 0, (3.3)

which has the benefit of being almost linear in the search interval, which results in fast
convergence (Moré and Sorensen, 1983). Thus, the task is to find the root of the function
hα, for which we use Newton’s method, which in this case leads to the iteration

α← α− hα/h′α. (3.4)

Some calculation shows that the derivative h′ can be computed as

1

h′α
=

‖uα‖32
uTα(DDT + αI)−1uα

. (3.5)

The key idea in MSN is to eliminate the matrix inverse in (3.5) by using the Cholesky
decomposition DDT + αI = RT

αRα and defining a vector qα = (RT
α)−1u, so that ‖qα‖22 =

uTα(DDT + αI)−1uα. As a result, the Newton iteration (3.4) becomes

α− hα
h′α

= α− (‖uα‖−1
2 − λ

−1) · ‖uα‖32
uTα(DDT + αI)−1uα

,

= α− ‖uα‖
2
2 − λ−1‖uα‖32
‖qα‖22

,

= α− ‖uα‖
2
2

‖qα‖22

(
1− ‖uα‖2

λ

)
,

and therefore

α ← α− ‖uα‖
2
2

‖qα‖22

(
1− ‖uα‖2

λ

)
. (3.6)

As shown for TV-L1 (Appendix E), the tridiagonal structure of (DDT +αI) allows one
to compute both Rα and qα in linear time, so the overall iteration runs in O(n) time.
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Algorithm 4 MSN based TV-L2 proximity

Initialize: α = 0, uα = 0.
while

∣∣‖uα‖22 − λ∣∣ > ελ or gap(uα) > εgap do
Compute Cholesky decomp. DDT + αI = RT

αRα.
Obtain uα by solving RT

αRαuα = Dy.
Obtain qα by solving RT

αqα = uα.

α = α− ‖uα‖
2
2

‖qα‖22

(
1− ‖uα‖2λ

)
.

end while
return uα

Algorithm 5 GP algorithm for TV-L2 proximity

Initialize u0 ∈ RN , t = 0.
while (¬ converged) do

Gradient update: vt = ut − 1
4∇f(ut).

Projection: ut+1 = max(1− λ/‖vt‖2, 0) · vt.
t← t+ 1.

end while
return ut.

The above ideas are presented as pseudocode in Algorithm 4. As a stopping criterion
two conditions are checked: whether the duality gap is small enough, and whether u is close
enough to the boundary. This latter check is useful because intermediate solutions could be
dual-infeasible, thus making the duality gap an inadequate optimality measure on its own.
In practice we use tolerance values ελ = 10−6 and εgap = 10−5.

Even though Algorithm 4 requires only linear time per iteration, it is fairly sophisticated,
and in fact a much simpler method can be devised. This is illustrated here by a gradient-
projection method with a fixed stepsize α0, whose iteration is

ut+1 = P‖·‖2≤λ(ut − α0∇φ(ut)). (3.7)

The theoretically ideal choice for the stepsize α0 is given by the inverse of the Lipschitz
constant L of the gradient ∇φ(u) (Nesterov, 2007; Beck and Teboulle, 2009). Since φ(u)
is a convex quadratic, L is simply the largest eigenvalue of the Hessian DDT . Owing to
its special structure, the eigenvalues of the Hessian have closed-form expressions, namely

λi = 2−2 cos
(

iπ
n+1

)
(for 1 ≤ i ≤ n). The largest one is λn = 2−2 cos

(
(n−1)π

n

)
, which tends

to 4 as n→∞; thus the choice α0 = 1/4 is a good and cheap approximation. Pseudocode
showing the whole procedure is presented in Algorithm 5. Combining this with the fact that
the projection P‖·‖2≤λ is also trivial to compute, the GP iteration (3.7) turns out to be very
attractive. Indeed, sometimes it can even outperform the more sophisticated MSN method,
though only for a very limited range of λ values. Therefore, in practice we recommend a
hybrid of GP and MSN, as suggested by our experiments (see §5.2.1).
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3.2. TV-Lp: Proximity for Tv1D
p

For TV-Lp proximity (for 1 < p <∞) the dual problem becomes

min
u

φ(u) := 1
2‖D

Tu‖22 − uTDy, s.t. ‖u‖q ≤ λ, (3.8)

where q = 1/(1 − 1/p). Problem (3.8) is not particularly amenable to Newton-type ap-
proaches, as neither PN (Appendix E), nor MSN-type methods (§3.1) can be applied easily.
It is partially amenable to gradient-projection (GP), for which the same update rule as
in (3.7) applies, but unlike the q = 2 case, the projection step here is much more involved.
Thus, to complement GP, we may favor the projection-free Frank-Wolfe (FW) method. As
expected, the overall best performing approach is actually a hybrid of GP and FW. We
summarize both choices below.

3.2.1. Efficient Projection onto the `q-ball

The problem of projecting onto the `q-norm ball is

minw d(w) := 1
2‖w − u‖

2
2, s.t. ‖w‖q ≤ λ. (3.9)

For this problem, it turns out to be more convenient to address its Fenchel dual

minw d∗(w) := 1
2‖w − u‖

2
2 + λ‖w‖p, (3.10)

which is actually nothing but proxλ‖·‖p(u). The optimal solution, say w∗, to (3.9) can be
obtained by solving (3.10), by using the Moreau-decomposition (A.6) which yields

w∗ = u− proxλ‖·‖p(u).

Projection (3.9) is computed many times within GP, so it is crucial to solve it rapidly and
accurately. To this end, we first turn (3.10) into a differentiable problem and then derive a
projected-Newton method following our approach presented in Appendix E.

Assume therefore, without loss of generality that u ≥ 0, so that w ≥ 0 also holds (the
signs can be restored after solving this problem). Thus, instead of (3.10), we solve

minw d∗(w) := 1
2‖w − u‖

2
2 + λ

(∑
i
wpi
)1/p

s.t. w ≥ 0. (3.11)

The gradient of d∗ may be compactly written as

∇d∗(w) = w − u+ λ‖w‖1−pp wp−1, (3.12)

where wp−1 denotes elementwise exponentiation of w. Elementary calculation yields

∂2

∂wi∂wj
d∗(w) = δij

(
1 + λ(p− 1)

(
wi
‖w‖p

)p−2‖w‖−1
p

)
+ λ(1− p)

(
wi
‖w‖p

)p−1( wj
‖w‖p

)p−1‖w‖−1
p

= δij
(
1− cŵp−2

i

)
+ cw̄iw̄j ,

where c := λ(1 − p)‖w‖−1
p , ŵ := w/‖w‖p, w̄ := (w/‖w‖p)p−1, and δij is the Dirac delta.

In matrix notation, this Hessian’s diagonal plus rank-1 structure becomes apparent

H(w) = Diag
(
1− cŵp−2

)
+ cw̄ · w̄T (3.13)
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To develop an efficient Newton method it is imperative to exploit this structure. It is
not hard to see that for a set of non-active variables Ī the reduced Hessian takes the form

HĪ(w) = Diag
(
1− cŵp−2

Ī

)
+ cw̄Īw̄

T
Ī . (3.14)

With the shorthand ∆ = Diag
(
1− cŵp−2

Ī

)
, the matrix-inversion lemma yields

H−1
Ī

(w) =
(
∆ + cw̄Īw̄

T
Ī

)−1
= ∆−1 −

∆−1cw̄Īw̄
T
Ī

∆−1

1 + cw̄T
Ī

∆−1w̄Ī

. (3.15)

Furthermore, since in PN the inverse of the reduced Hessian always operates on the reduced
gradient, we can rearrange the terms in this operation for further efficiency; that is,

HĪ(w)−1∇Īf(w) = v �∇Īf(w)−
(
v � w̄Ī

)(
v � w̄Ī

)T∇Īf(w)

1/c+ w̄Ī

(
v � w̄Ī

) , (3.16)

where v :=
(
1− cŵp−2

Ī

)−1
, and � denotes componentwise product.

The relevant point of the above derivations is that the Newton direction, and thus the
overall PN iteration can be computed in O(n) time, which results in a highly effective solver.

3.2.2. Frank-Wolfe Algorithm for TV-Lp Proximity

The Frank-Wolfe (FW) algorithm (see e.g., Jaggi (2013) for a recent overview), also known
as the conditional gradient method (Bertsekas, 1999) solves differentiable optimization prob-
lems over compact convex sets, and can be quite effective if we have access to a subroutine
to solve linear problems over the constraint set.

The generic FW iteration is illustrated in Algorithm 6. FW offers an attractive strategy
for TV-Lp because both the descent-direction as well as stepsizes can be computed easily.
Specifically, to find the descent direction we need to solve

mins sT
(
DDTu−Dy

)
, s.t. ‖s‖q ≤ λ. (3.17)

This problem can be solved by observing that max‖s‖q≤1 s
Tz is attained by some vector

s proportional to z, of the form |s∗| ∝ |z|p−1. Therefore, s∗ in (3.17) is found by taking
z = DDTu−Dy, computing s = − sgn(z)�|z|p−1 and then rescaling s to meet ‖s‖q = λ.

Algorithm 6 Frank-Wolfe (FW)

Inputs: f , compact convex set D.
Initialize x0 ∈ D, t = 0.
while stopping criteria not met do

Find descent direction: mins s · ∇f(xt) s.t. s ∈ D.
Determine stepsize: minγ f(xt + γ(s− xt)) s.t. γ ∈ [0, 1].
Update: xt+1 = xt + γ(s− xt)
t← t+ 1.

end while
return xt.
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The stepsize can also be computed in closed form owing to the objective function being
quadratic. Note the update in FW takes the form u+ γ(s− u), which can be rewritten as
u+ γd with d = s− u. Using this notation the optimal stepsize is obtained by solving

minγ∈[0,1]
1
2‖D

T (u+ γd)‖22 − (u+ γd)T Dy.

A brief calculation on the above problem yields

γ∗ = min {max {γ̂, 1} , 0} ,

where γ̂ = −(dTDDTu + dTDy)/(dTDDTd) is the unconstrained optimal stepsize. We
note that following (Jaggi, 2013) we also check a “surrogate duality-gap”

g(x) = xT∇f(x)−min
s∈D

sT∇f(x) = (x− s∗)T ∇f(x),

at the end of each iteration. If this gap is smaller than the desired tolerance, the real duality
gap is computed and checked; if it also meets the tolerance, the algorithm stops.

3.3. Prox Operator for TV-L∞

The final case is Tv1D
∞ proximity. We mention this case only for completeness. The dual to

the prox-operator here is

minu
1
2‖D

Tu‖22 − uTDy, s.t. ‖u‖1 ≤ λ. (3.18)

This problem can be again easily solved by invoking GP, where the only non-trivial step
is projection onto the `1-ball. But the latter is an extremely well-studied operation (see
e.g., Condat (2016); Liu and Ye (2009); Kiwiel (2008)), and so O(n) time routines for this
purpose are readily available. By integrating them in our GP framework an efficient prox
solver is obtained.

4. Prox Operators for Multidimensional TV

We now move onto discussing how to use the efficient 1D-TV prox operators derived above
within a prox-splitting framework to handle multidimensional TV (1.3) proximity.

4.1. Proximity Stacking

The basic composite objective (1.1) is a special case of the more general class of models
where one may have several regularizers, so that we now solve

minx f(x) +
∑m

i=1
ri(x), (4.1)

where each ri (for 1 ≤ i ≤ m) is lsc and convex.
Just like the basic problem (1.1), the more complex problem (4.1) can also be tackled

via proximal methods. The key to doing so is to use inexact proximal methods along with
a technique we should call proximity stacking. Inexact proximal methods allow one to
use approximately computed prox operators without impeding overall convergence, while
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Proximal method

+

Proximity combiner

...Proximity

operator

Proximity

operator

Proximity

operator

Gradient

operator

Figure 6: Design schema in proximal optimization for minimizing the function f(x) +
∑m
i=1 ri(x).

Proximal stacking makes the sum of regularizers appear as a single one to the proximal
method, while retaining modularity in the design of each proximity step through the use
of a combiner method. For non-smooth f the same schema applies by just replacing the
f gradient operator by its corresponding proximity operator.

proximity stacking allows one to compute the prox operator for the entire sum r(x) =∑m
i=1 ri(x) by “stacking” the individual ri prox operators. This stacking leads to a highly

modular design; see Figure 6 for a visualization. In other words, proximity stacking involves
computing the prox operator

proxr(y) := argmin
x

1
2‖x− y‖

2
2 +

∑m

i=1
ri(x), (4.2)

by iteratively invoking the individual prox operators proxri and then combining their out-
puts. This mixing is done by means of a combiner method, which guarantees convergence
to the solution of the overall proxr(y).

Different proximal combiners can used for computing proxr (4.2). In what follows we
briefly describe some of the possibilities. The crux of all of them is that their key steps
will be proximity steps over the individual ri terms. Thus, using proximal stacking and
combination, any convex machine learning problem with multiple regularizers can be solved
in a highly modular proximal framework. After this section we exemplify these ideas by
applying them to two- and higher-dimensional TV proximity, which we then use within
proximal solvers for addressing a wide array of applications.

4.1.1. Proximal Dykstra (PD)

The Proximal Dykstra method (Combettes and Pesquet, 2009) solves problems of the form

min
x

1
2‖x− y‖

2
2 + r1(x) + r2(x),

which is a particular case of (4.2) for m = 2. The method follows the procedure detailed in
Algorithm 7, which is guaranteed to converge to the desired solution. Using PD for proximal
stacking for 2D Total-Variation was previously proposed in (Barbero and Sra, 2011).

It has also been shown that the application of this method is equivalent to performing
alternating projections onto certain dual polytopes (Jegelka et al., 2013), a procedure whose
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Algorithm 7 Proximal Dykstra

Inputs: r1, r2, input signal y ∈ Rn.
Initialize x0 = y, p0 = q0 = 0, t = 0.
while stopping criteria not met do

r2 proximity operator: zt = proxr2(xt + pt).
r2 step: pt+1 = xt + pt − zt.
r1 proximity operator: xt+1 = proxr1(zt + qt).
r1 step: qt+1 = zt + qt − xt+1.
t← t+ 1.

end while
Return xt.

Algorithm 8 Parallel-Proximal Dykstra

Inputs: r1, . . . , rm, input signal y ∈ Rn.
Initialize x0 = y, zi0 = 0, for i = 1, . . . ,m; t = 0
while stopping criterion not met do

for i = 1 to m in parallel do
pit = proxri(z

i
t)

end for
xt+1 = 1

m

∑
i p

i
t

for i = 1 to m in parallel do
zit+1 = xt+1 + zit − pit

end for
t← t+ 1

end while
Return xt

effectiveness varies depending on the relative orientation of such polytopes. A more efficient
method based on reflections instead of projections is possible, as we will see below.

More generally, if more than two regularizers are present (i.e., m > 2), then it is more
fitting to use Parallel-Proximal Dykstra (PPD) (Combettes, 2009) (see Alg. 8), a gener-
alization obtained via the “product-space trick” of Pierra (1984). This parallel proximal
method is attractive because it not only combines an arbitrary number of regularizers, but
also allows parallelizing the calls to the individual prox operators. This feature allows us to
develop a highly parallel implementation for multidimensional TV proximity (§4.3).

4.1.2. Alternating Reflections – Douglas-Rachford (DR)

The Douglas-Rachford (DR) method was originally devised for minimizing the sum of two
(nonsmooth) convex functions (Combettes and Pesquet, 2009), in the form:

min
x

f1(x) + f2(x), (4.3)
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such that (ri dom f1) ∩ (ri dom f2) 6= ∅. The method operates by iterating a series of
reflections, and in its simplest form can be written as

zk+1 = 1
2 [Rf1Rf2 + I] zk, (4.4)

where the reflection operator Rφ := 2 proxφ−I. This method is not cleanly applicable to
problem (4.2) because of the squared norm term. Nevertheless in (Jegelka et al., 2013) a
suitable transformation was proposed by making use of arguments from submodular opti-
mization; a minimal background on this topic is given in Appendix A. We summarize the
key ideas from (Jegelka et al., 2013) below.

Assume m = 2 and r1, r2 being Lovász extensions to some submodular functions (Total-
Variation is the Lovász extension of a submodular graph-cut problem, see Bach (2013)).
Defining r̂1(x) = r1(x) − xTy, r̂1 is also a Lovász extension of some submodular function
(see Appendix A). Therefore, we may consider the problem

proxr(y) := argmin
x

1
2‖x‖

2
2 + r̂1(x) + r2(x),

which can be rewritten (using Proposition A.11) as

min
a,b
‖a− b‖2, s.t. a ∈ −Br̂1 , b ∈ Br2 , (4.5)

where Br denotes the base polytope of submodular function corresponding to r (see Ap-
pendix A). The original solution can be recovered through x = a − b. Problem (4.5) is
still not in a form amenable to DR (4.3)—nevertheless, if we apply DR to the indicator
functions of the sets −Br̂1 , Br2 , that is, to the problem

min
x

δ−Br̂1 (x) + δBr2 (x),

it can be shown (Bauschke, 2004) that the sequence (4.4) generated by DR is divergent, but
that after a correction through projection converges to the desired solution of (4.5). Such
solution is given by the pair

b = ΠBr2
(zk), a = Π−Br̂1 (b). (4.6)

Although in this derivation many concepts have been introduced, suprisingly all the oper-
ations in the algorithm can be reduced to performing proximity steps. Note first that the
projections onto a base polytope required to get a solution (4.6) can be written in terms of
proximity operators (Proposition A.12), which in this case implies

ΠBr2
(z) = z − proxr2(z),

Π−Br̂1 (z) = z + proxr̂2(−z) = z + proxr2(−z + y),

where we use the fact that for f(x) = φ(x)+uTx, proxf (x) = proxφ(x−u). The reflection
operations in which the DR iteration is based (4.4) can also be written in terms of proximity
steps, as we are applying DR to the indicator functions δ−Br̂1 , δBr2 , and proximity for an
indicator function equals projection.

This alternating reflections variant of DR is presented in Algorithm 9. Note that in
contrast with the original DR method, this variant does not require tuning any hyperpa-
rameters, thus enhancing its practicality.
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Algorithm 9 Alternating reflections – Douglas Rachford (DR)

Inputs: r1, r2 Lovász extensions of some submodular function, input signal y ∈ Rn.
Initialize z0 ∈ Rn, t = 0.
Define the following operations:

Π−Br̂1 (z)
def
= z + proxr1(−z + y).

ΠBr2
(z)

def
= z − proxr2(z).

R−Br̂1 (z)
def
= 2Π−Br̂1 (z)− z.

RBr2 (z)
def
= 2ΠBr2

(z)− z.
while stopping criteria not met do

zt+1 = 1
2

[
R−Br̂1RBr2 + I

]
zk

t← t+ 1.
end while
b = ΠBr2

(zt), a = Π−Br̂1 (b).
Return x∗ = a− b.

4.1.3. Alternating-Direction Method of Multipliers (ADMM)

Although many times presented as a particular algorithm for solving problems involving
the minimization of a certain objetive f(x) + g(Lx) with L a linear operator (Combettes
and Pesquet, 2009), the Alternating-Direction Method of Multipliers can be thought as a
general splitting strategy for solving the unconstrained minimization of a sum of functions.
This strategy boils down to transforming a problem in the form minx

∑m
i=1 fi(x) into a

saddle-point problem by introducing consensus constraints and incorporating them into the
objective through augmented Lagrange multipliers,

min
x

m∑
i=1

fi(x) = min
x,z1,...,zm

m∑
i=1

fi(zi) s.t. z1 = x, . . . ,zm = x,

≡ min
x,z1,...,zm

max
u1,...,um

m∑
i=1

(
fi(zi) + uTi (zi − x) +

ρ

2
‖zi − x‖2

)
.

The method then proceeds to solve this problem by alternating steps of minimization on x,
minimization on every zi, and a gradient step on every ui.

In (Yang et al., 2013) a proposal using this method was presented to solve m–dimensional
anisotropic TV (1.3). This approach applies equally to the more general proximal stacking
framework under discussion here (4.2), by the transformation

proxr(y) := argmin
x

1
2‖x− y‖

2
2 +

∑m

i=1
ri(x),

≡ min
x,z1,...,zm

max
u1,...,um

1
2‖x− y‖

2
2 +

m∑
i=1

(
fi(zi) + uTi (zi − x) +

ρ

2
‖zi − x‖2

)
.

The steps for obtaining a solution then follow as Algorithm 10. Similar to Parallel Proximal
Dykstra, this approach allows computing the prox-operator of each function ri in parallel.
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Algorithm 10 Alternating Direction Method of Multipliers (ADMM)

Inputs: r1, . . . , rm, input signal y ∈ Rn.
Initialize x0 = zi0 = y for i = 1, . . . ,m; t = 0
while stopping criterion not met do

xt+1 =
y+

∑m
i=1(uit+ρz

i
t)

1+mρ .
for i = 1 to m in parallel do
zit = proxλ

ρ
ri

(−1
ρu

i
t + xt+1)

uit+1 = ut+1 + ρ(zit+1 − xt+1)
end for
t← t+ 1

end while
Return xt

4.1.4. Dual Proximity Methods

Another family of approaches to solve (4.2) is to compute the global proximity operator
using the Fenchel duals proxr∗i . This can be advantageous in settings where the dual prox-
operator is easier to compute than the primal operator; isotropic Total-Variation problems
are an instance of such a setting, and thus investigating this approach for their anisotropic
variants is worthwhile.

Indeed, in the context of image processing a popular splitting approach is given by Cham-
bolle and Pock (2011), which consider a problem in the form

min
x

F (Kx) +G(x),

for K some linear operator, F,G convex lower-semicontinuous functions. Through a strat-
egy similar to ADMM an equivalent saddle point problem can be obtained,

min
x

max
y

(Kx)Ty +G(x)− F ∗(y),

with F ∗ convex conjugate of F . This problem is then solved by alternating maximization
on y and minimization on x through proximity steps, as

yt+1 = proxσF ∗(yt + σKx̄t)

xt+1 = proxτG(xt − τK∗yt+1)

x̄t+1 = xt+1 + θ(xt+1 − xt),

where K∗ is the conjugate transpose of K. σ, τ and θ are algorithm parameters that
should be either selected under some bounds (Chambolle and Pock, 2011, Algorithm 1) or
readjusted every iteration making use of Lipschitz convexity of G (Chambolle and Pock,
2011, Algorithm 2), resulting in an accelerating scheme much in the style of FISTA (Beck
and Teboulle, 2009). The overall procedure can also be shown to be an instance of pre-
conditioned ADMM, where the preconditioning is given by the application of a proximity
step for the maximization of y (instead of the usal dual gradient step of ADMM) and the
auxiliary point x̄. Note also how proximity is computed over the dual F ∗ instead of the
primal proxF .
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Now, this decomposition strategy can be applied for some instances of proximal stack-
ing (4.2) when the ri terms allow the particular composition

m∑
i=1

ri(x) = F


 K1

...
Km

x
 = F (Kx),

which does not hold in general but holds for 2D TV (1.4) when taking the identities

F (x) = ‖x‖1, G(x) = 1
2‖x− y‖

2
2,

K =

[
I ⊗D
D ⊗ I

]
,

with D the differencing matrix as before, ⊗ denotes Kronecker product, and x a vectoriza-
tion of the 2D input. The iterates above can then be applied easily: proximity over G is triv-
ial and proximity over F ∗ is also easy upon realizing that prox‖·‖∗1 = proxδ‖·‖∞≤1

= Π‖·‖∞≤1,
which is solved through thresholding.

A generalization of this approach is presented by Condat (2014), who considers

min
x

f(x) + g(x) +
m∑
i=1

ri(Lix),

a problem that cleanly fits into (4.2) with f(x) = 1
2‖x− y‖

2
2, g(x) = 0, L = I. The

procedure to find a solution is proposed as

x̄t+1 = proxτg∗

(
xt − τ∇f(xt)− τ

m∑
i=1

L∗iu
t
i

)
xn+1 = ρx̄t+1 + (1− ρ)xt

ūt+1
i = proxσh∗i (u

t
i + σLi(2x̄t+1 − xt)) ∀i = 1, . . . ,m ,

ut+1
i = ρūt+1

i + (1− ρ)uti ∀i = 1, . . . ,m ,

for τ, ρ parameters of the algorithm. When applying this procedure to 2D TV (m =
2, r1(x) = proximity over rows, r2(x) = proximity over columns) an algorithm almost
equivalent to Chambolle and Pock (2011) is obtained, the only difference being that here
the gradient of f is used, instead of the proxG operation.

Yet another related method is the splitting approach of Kolmogorov et al (2015), which
for m = 2 performs the following splitting:

min
x

1
2‖x− y‖

2
2 + r1(x) + r2(x),

≡min
x,x′

‖x− y‖22 + r1(x) + r2(x′) s.t. x = x′,

≡min
x,x′

max
z

‖x− y‖22 + r1(x) + r2(x′) + zT (x− x′),

≡min
x

max
z

‖x− y‖22 + r1(x)− r∗2(z) + xTz.
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where we have made use of the Fenchel dual r∗2(z) = maxx′ z
Tx′ − r2(x′). This problem

can be solved through a primal-dual minimization:

zt+1 = proxσtr∗2

(
zt + σt(xt + θt(xt − xt−1))

)
,

xt+1 = proxτ t(‖·−y‖22+r1)

(
xt − τ tzt+1

)
.

The primal proximity operator over the squared norm term plus r1 can be rewritten in
terms of proxr1 as

prox
τ(r1+

1
2‖·−y‖

2
2)

(w) = argmin
x

r1(x) +
1 + τ−1

2
‖x− (1 + τ−1)−1(y + τ−1w)‖22,

= prox(1+τ−1)−1r1

(
(1 + τ−1)−1(y + τ−1w)

)
.

Regarding the dual step, in the previously presented methods the decompositions allowed
to disentangle the effect of a linear operator Li from each ri. The present decomposi-
tion, however, does not take into account this possibility, thus increasing the complexity of
computing r∗2. To address this difficulty the Moreau decomposition (A.3) is helpful, as

proxσr∗2 (w) = w − σ
(

argmin
x

r2(x) +
σ

2
‖x− σ−1w‖22

)
,

= w − σ proxσ−1r2(σ−1w),

thus solving the dual proximity operator in terms of the primal proxr2 . Regarding the algo-
rithm parameters θ, τ and σ, they can be adjusted at every iteration for greater performance
making use of Lipschitz convexity (Chambolle and Pock, 2014).

Lastly, and again for m = 2, both r1 and r2 can be exploited in their dual forms as
shown in Chambolle and Pock (2015) through the splitting

min
x

1
2‖x− y‖

2
2 + r1(x) + r2(x),

≡ min
x,x1,x2

1
2‖x− y‖

2
2 + r1(x1) + r2(x2) s.t. x = x1,x = x2

≡ min
x,x1,x2

max
z1,z2

1
2‖x− y‖

2
2 + r1(x1) + zT1 (x− x1) + r2(x2) + zT2 (x− x2).

Minimizing this Lagrangian over x,x1,x2 and making use of Fenchel duals we arrive at

max
z1,z2

−1
2‖z1 + z2‖22 − r∗1(u1)− r2(u∗2) + (u1 + u2)Ty,

which can be solved through an accelerated alternating minimization as

tk+1 =
1 +

√
1 + 4t2k

2
,

x̄k+1 = xk2 +
tk − 1

tk+1
(xk2 − xk−1

2 ),

xk+1
1 = proxr∗1 (y − x̄k2),

xk+1
2 = proxr∗2 (y − xk+1

1 ),

where once again we can resort to the Moreau decomposition to compute the dual proximity
operators.
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4.2. Two-Dimensional TV

Recall that for a matrix X ∈ Rn1×n2 , the anisotropic 2D-TV regularizer takes the form

Tv2
p,q(X) :=

∑n1

i=1

(∑n2−1

j=1
|xi,j+1− xi,j |p

)1/p
+
∑n2

j=1

(∑n1−1

i=1
|xi+1,j − xi,j |q

)1/q
. (4.7)

This regularizer applies a Tv1D
p regularization over each row ofX, and a Tv1D

q regularization
over each column. Introducing differencing matrices Dn and Dm for the row and column
dimensions, the regularizer (4.7) can be rewritten as

Tv2D
p,q(X) =

∑n

i=1
‖Dnxi,:‖p +

∑m

j=1
‖Dmx:,j‖q, (4.8)

where xi,: denotes the i-th row of X, and x:,j its j-th column. The corresponding Tv2D
p,q-

proximity problem is

minX
1
2‖X − Y ‖

2
F + λTv2D

p,q(X), (4.9)

where we use the Frobenius norm ‖X‖F =
√∑

ij x
2
i,j = ‖vec(X)‖2, where vec(X) is the

vectorization of X. Using (4.8), problem (4.9) becomes

minX
1
2‖X − Y ‖

2
F + λ

(∑
i
‖Dnxi,:‖p

)
+ λ

(∑
j
‖Dmx:,j‖q

)
, (4.10)

where the parentheses make explicit that Tv2D
p,q is a combination of two regularizers: one

acting over the rows and the other over the columns. Formulation (4.10) fits the model
solvable by the strategies presented above, though with an important difference: each of
the two regularizers that make up Tv2D

p,q is itself composed of a sum of several (n or m)
1D-TV regularizers. Moreover, each of the 1D row (column) regularizers operates on a
different row (columns), and can thus be solved independently.

4.3. Higher-Dimensional TV

Going even beyond Tv2D
p,q is the general multidimensional TV (1.3), which we recall below.

Let X be an order-m tensor in R
∏m
j=1 nj , whose components are indexed as Xi1,i2,...,im

(1 ≤ ij ≤ nj for 1 ≤ j ≤ m); we define TV for X as

Tvmp (X)
def
=

m∑
k=1

∑
{i1,...,im}\ik

(nk−1∑
j=1

|Xi1,...,ik−1,j+1,ik+1,...,im − Xi1,...,ik−1,j,ik+1,...,im |
pk
)1/pk

,

(4.11)
where p = [p1, . . . , pm] is a vector of scalars pk ≥ 1. This corresponds to applying a 1D-TV
to each of the 1D fibers of X along each of the dimensions.

Introducing the multi-index i(k) = (i1, . . . , ik−1, ik+1, . . . , im), which iterates over every
1-dimensional fiber of X along the k-th dimension, the regularizer (4.11) can be written
more compactly as

Tvmp (X) =
∑m

k=1

∑
i(k)
‖Dnkxi(k)‖pk , (4.12)
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where xi(k) denotes a row of X along the k-th dimension, and Dnk is a differencing matrix
of appropriate size for the 1D-fibers along dimension k (of size nk). The corresponding
m-dimensional-TV proximity problem is

minX
1
2‖X− Y‖2F + λTvmp (X), (4.13)

where λ > 0 is a penalty parameter, and the Frobenius norm for a tensor just denotes the
ordinary sum-of-squares norm over the vectorization of such tensor.

Problem (4.13) looks very challenging, but it enjoys decomposability as suggested by
(4.12) and made more explicit by writing it as a sum of Tv1D terms

minX
1
2‖X− Y‖2F +

∑m

k=1

∑
i(k)

Tv1D
pk

(
xi(k)

)
. (4.14)

The proximity task (4.14) can be regarded as the sum of m proximity terms, each of which
further decomposes into a number of inner Tv1D terms. These inner terms are trivial to
address since, as in the 2D-TV case, each of the Tv1D terms operates on different entries
of X. Regarding the m major terms, we can handle them by applying any of the combiner
strategies presented above for m > 2, which ultimately yield the prox operator for Tvmp by

just repeatedly calling Tv1D prox operators. Most importantly, both proximal stacking and
the natural decomposition of the problem provide a vast potential for parallel multithreaded
computing, which is valuable when dealing with such complex and high-dimensional data.

5. Experiments and Applications

We will now demostrate the effectiveness of the various solvers covered in a wide array
of experiments, as well as showing many of their practical applications. We will start
by focusing on the Tv1D

1 methods, moving then to other 1D-TV variants, and then to
multidimensional TV.

All the solvers implemented for this paper were coded in C++ for efficiency. Our publicy
available library proxTV includes all these implementations, plus bindings for easy usage
in Matlab or Python: https://github.com/albarji/proxTV. Matrix operations have been
implented by exploiting the LAPACK (Fortran) library (Anderson et al., 1999).

5.1. Tv1D
1 Experiments and Applications

Since the most important components of the presented modular framework are the efficient
Tv1D

1 prox operators, let us begin by highlighting their empirical performance. We will do
so both on synthetic and natural images data.

5.1.1. Running Time Results for Synthetic Data

We test the solvers under two scenarios of synthetic signals:
I) Increasing input size ranging from n = 101 to n = 107. A penalty λ ∈ [0, 50] is

chosen at random for each run, and the data vector y with uniformly random entries
yi ∈ [−2λ, 2λ] (proportionally scaled to λ).

II) Varying penalty parameter λ ranging from 10−3 (negligible regularization) to 103 (the
TV term dominates); here n is set to 1000 and yi is randomly generated in the range
[−2, 2] (uniformly).
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Figure 7: Running times (in secs) for proposed and state of the art solvers for Tv1D
1 -

proximity with increasing a) input sizes, b) penalties. Both axes are on a log-scale.

We benchmark the performance of the following methods, including both our proposals
and state of the art methods found in the literature:

• Our proposed Projected Newton method (Appendix E).

• Our efficient implementation of the classic taut string method.

• Another implementation of the classic taut string method by Condat (2012).

• An implementation of the linearized taut string method.

• Our proposed hybrid taut string approach.

• The FLSA function (C implementation) of the SLEP library of Liu et al. (2009) for
Tv1D

1 -proximity (Liu et al., 2010).

• The state-of-the-art method of Condat (2012), which we have seen to be equivalent
to a linearized taut-string method.

• The dynamic programming method of Johnson (2013), which guarantees linear run-
ning time.

• The message passing method of Kolmogorov et al (2015), which allows generalization
for computing a Total Variation regularizer on a tree.

Another implementation of the classic taut string method, found in the literature, has
been added to the benchmark to test whether the implementation we have proposed is on
par with the state of the art. We would like to note the surprising lack of widely available
implementations of this method: the only working and efficient code we could find was part
of the same paper where Condat’s method was proposed.

For Projected Newton and SLEP a duality gap of 10−5 is used as the stopping criterion.
For the hybrid taut-string method the switch parameter is set as S = 1.05. The rest of
algorithms do not have parameters.
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Timing results are presented in Figure 7 for both experimental scenarios. The following
interesting facts are drawn from these results

• Direct methods (Taut string methods, Condat, Johnson, Kolmogorov) prove to be
much faster than iterative methods (Projected Newton, SLEP).

• Although Condat’s (and hence linearized taut string) method, has a theoretical worst-
case performance of O(n2), the practical performance seems to follow an O(n) behav-
ior, at least for these synthetic signals.

• Even if Johnson and Kolmogorov methods have a guaranteed running time of O(n),
they turn out to be slower than the linearized taut string and Condat’s methods.
This is in line with our previous observations of the cache-friendly properties of in-
memory methods; in contrast Johnson’s method requires an extra ∼ 8n memory
storage. Kolmogorov’s method has less memory requirements but nevetheless shows
similar behavior.

• The same performance observation applies to the classic taut string method. It is
also noticeable that our implementation of this method turns out to be faster than
previously available implementations (Condat’s Taut-string), even becoming slightly
faster than the state of the art Johnson and Kolmogorov methods. This result is
surprising, and shows that the full potential of the classic taut-string method has
been largely unexploited by the research community, or at least that proper efficient
implementations of this method have not been made readily available so far.

5.1.2. Worst Case Scenario

The point about comparing O(n) and O(n2) algorithms deserves more attention. As an
illustrative experiment we have generated a signal following the worst case description in
Condat (2012), and tested again the methods above on it, for increasing signal lengths.
Figure 8 plots the results. Condat’s method and consequently the linearized taut string
method shows much worse performance than the rest of the direct methods. It is also
remarkable how the hybrid method manages to avoid quadratic runtimes in this case.

5.1.3. Running Times on Natural Images

In the light of the previous results the following question arises: in practical settings, are
the problems to be solved closer to the worst or the average runtime scenario? This fact
will determine whether the guaranteed linear time or the more risky quadratic methods
are more apt for practical use. To test this we devise the following experiment: we take a
large benchmark of natural images and run each solver over all the rows and columns of all
the images in the set, counting total running times, for different regularization values. The
benchmark is made from images obtained from the data sets detailed in Table 2. We run
this benchmark for the methods showing better performance in the experiments above: our
implementation of the classic taut-string method, Condat’s method (≡ linearized taut-string
method), our proposed Hybrid taut-string method, Johnson’s method and Kolmogorov
et al’s method.
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Figure 8: Running times (in secs) for proposed and state of the art solvers for Tv1D
1 -

proximity in the worst-case scenario for Condat’s method, for increasing input
sizes. Both axes are on a log-scale.

Data set Images Average image size

INRIA holidays (Jegou et al, 2008) 812 1817 × 2233 × 3 px
LSVRC 2010 val set (Russakovsky et al, 2015) 50000 391 × 450 × 3 px

Table 2: Detail of image data sets used for large-scale Tv1D
1 experiments.

Figure 9 shows runtime results for different penalty values over the whole INRIA holidays
data set (Jegou et al, 2008), while Figure 10 shows similar results for the whole Large Scale
Visual Recognition Challenge 2010 validation data set (Russakovsky et al, 2015). The
following facts of interest can be observed:

• Condat’s method (linearized taut-string) shows top performance for low penalty val-
ues, but bad scaling when moving to higher penalties. This can be explained using
the geometric intuition developed above: for large penalty values the width of the
tube is very large, and thus the taut-string will be composed of very long segments.
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This is troublesome for a linearized taut-string method, as each backtrack will require
recomputing a large number of steps. On the contrary for smaller penalties the tube
will be narrow, and the taut-string composed of many small segments, thus resulting
in very cheap backtracking costs.

• The performance of Classic taut-string, Johnson and Kolmogorov becomes slightly
worse for large penalties, but suffers significantly less than the linearized taut-string.
Surprisingly, the best performing approach tends to be the classic taut-string method.

• The proposed hybrid strategy closely follows the performance of Condat’s method for
the low penalty regime, while adapting to a behaviour akin to Kolmogorov for large
penalties, thus resulting in very good performances over the whole regularization
spectrum.

Figure 9: Running times (in secs) for the top performing proposed and state of the art
solvers for Tv1D

1 -proximity over the whole INRIA Holidays data set, for increasing
penalties.
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Figure 10: Running times (in secs) for the top performing proposed and state of the art
solvers for Tv1D

1 -proximity over the whole Large Scale Visual Recognition Chal-
lenge 2010 validation data set, for increasing penalties.

5.1.4. Running Time Results for Weighted TV-L1

An advantage of the solvers proposed in this paper is their flexibility to easily deal with
the more difficult, weighted version of the TV-L1 proximity problem. To illustrate this,
Figure 11 shows the running times of the Projected Newton and (linearized) Taut String
methods when solving both the standard and weighted TV-L1 prox operators.

Since for this set of experiments a whole vector of weights w is needed, we have adjusted
the experimental scenarios as follows:

I) n is generated as in the general setting, penalties w ∈ [0, 100] are chosen at random
for each run, and the data vector y with uniformly random entries yi ∈ [−2λ, 2λ],
with λ the mean of w, using also this λ choice for the uniform (unweighted) case.

II) λ and n are generated as in the general setting, and the weights vector w is drawn
randomly from the uniform distribution wi ∈ [0.5λ, 1.5λ].

As can be readily observed, performance for both versions of the problem is almost
identical, even if the weighted problem is conceptually harder. Conversely, adapting the
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Figure 11: Running times (in secs) for Projected Newton and Taut String solvers for
weighted and uniform Tv1D

1 -proximity with increasing a) input sizes, b) penal-
ties. Both axes are on a log-scale.

other reviewed algorithms to address this problem while keeping up with performance is
not a straightforward task.

We would also like to point out that in the paper Kumar et al (2015) a practical applica-
tion of this method for energy minimization in computer vision is presented, where exactly
the code behind this paper has been put to use.

5.2. Experiments for other 1D-TV Variants

In this section we present experiments for other choices of the `p norm in Tv1D
p , namely

p = 2, p =∞ and any general p ≥ 1.

5.2.1. Running Time Results for TV-L2

Next we show results for Tv1D
2 proximity. To our knowledge, this version of TV has not

been explicitly treated before, so there do not exist highly-tuned solvers for it. Thus, we
show running time results only for the MSN and GP methods. We use a duality gap of
10−5 as the stopping criterion; we also add an extra boundary check for MSN with tolerance
10−6 to avoid early stopping due to potentially infeasible intermediate iterates. Figure 12
shows results for the two experimental scenarios under test.

The results indicate that the performance of MSN and GP differs noticeably in the two
experimental scenarios. While the results for the first scenario (Figure 12(a)) might suggest
that GP converges faster than MSN for large inputs, it actually does so depending on the
size of λ relative to ‖y‖2. Indeed, the second scenario (Figure 12(b)) shows that although
for small values of λ, GP runs faster than MSN, as λ increases, GP’s performance worsens
dramatically, so much that for moderately large λ, it is unable to find an acceptable solution
even after 10,000 iterations (an upper limit imposed in our implementation). Conversely,
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Figure 12: Running times (in secs) for MSN, GP and a hybrid MSN+GP approach for
Tv1D

2 -proximity with increasing a) input sizes, b) penalties. Both axes are on a
log-scale.

MSN finds a solution satisfying the stopping criterion under every situation, thus showing
a more robust behavior.

These results suggest that it is preferable to employ a hybrid approach that combines the
strengths of MSN and GP. Such a hybrid approach is guided using the following (empirically
determined) rule of thumb: if λ < ‖y‖2 use GP, otherwise use MSN. Further, as a safeguard,
if GP is invoked but fails to find a solution within 50 iterations, the hybrid should switch to
MSN. This combination guarantees rapid convergence in practice. Results for this hybrid
approach are also included in the plots in Figure 12, and show how it successfully mimics
the behavior of the better algorithm amongst MSN and GP.

5.2.2. Running Time Results for TV-Lp

Now we show results for Tv1D
p proximity. Again, to our knowledge efficient solvers for this

version of TV are not available; still proposals for solving the `q-ball projection problem do
exist. For these experiments we decided to use a method based on a zero finding approach
readily available as the epp function in SLEP library (Liu et al., 2009). Consequently,
we present here a comparison between this reference projection subroutine and our PN–
based projection when embedded in our proposed Gradient Projection solver of §3.2. The
alternative proposal given by the Frank–Wolfe algorithm of §3.2.2 is also present in the
comparison. We use a duality gap of 10−5 as stopping criterion both for GP and FW.
Figure 13 shows results for the two experimental scenarios under test, for p values of 1.5,
1.9 and 3.

A number of interesting conclusions can be drawn from the results. First, our Projected
Newton `q-ball subroutine is far more efficient than epp when in the context of the GP
solver. Two factors seem to be the cause of this: in the first place our Projected Newton
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Figure 13: Running times (in secs) for GP with PN projection, GP with SLEP’s epp projec-
tion, FW and a hybrid GP+FW algorithm, for Tv1D

p -proximity with increasing
input sizes and three different choices of p. Both axes are on a log-scale.

approach proves to be faster than the zero finding method used by epp. Secondly, in order
for the GP solver to find a solution within the desired duality gap, the projection subroutine
must provide very accurate results (about 10−12 in terms of duality gap). Given its Newton
nature, our `q-ball subroutine scales better in term of running times as a factor of the
desired accuracy, which explains he observed differences in performance.

It is also of relevance noting that Frank–Wolfe is significantly faster than Projected
Newton. This should discourage the use of Projected Newton, but we find it to be extremely
useful in the range of λ penalties where λ is large, but not enough to render the problem
trivial (w = 0 solution). In this range the two variants of PN and also FW are unable to
find a solution within the desired duality gap (10−5), getting stuck at suboptimal solutions.
We solve this issue by means of a hybrid GP+FW algorithm, in which updates from both
methods are interleaved at a ratio of 10 FW updates per 1 GP update, as FW updates
are faster. As both algorithms guarantee improvement in each iteration but follow different
procedures for doing so, they complement each other nicely, resulting in a superior method
attaining the objective duality gap and performing faster than GP.

5.2.3. Running Time Results for TV-L∞

For completeness we also include results for our Tv1D
∞ solver based on GP + a standard `1-

projection subroutine. Figure 15 presents running times for the two experimental scenarios
under test. Since `1-projection is an easier problem than the general `q-projection the
resultant algorithm converges faster to the solution than the general GP Tv1D

p prox solver,
as expected.

5.2.4. Application: Proximal Optimization for Fused-Lasso

We now present a key application that benefits from our TV prox operators: Fused-Lasso
(FL) (Tibshirani et al., 2005), a model that takes the form

min
x

1
2‖Ax− y‖

2
2 + λ1‖x‖1 + λ2Tv1D

1 (x). (5.1)
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Figure 14: Attained duality gaps (a-c) and running times (d-f, in secs) for GP with PN
projection, GP with SLEP’s epp projection, FW and a hybrid GP+FW algo-
rithm, for Tv1D

p -proximity with increasing penalties and three different choices
of p. Both axes are on a log-scale.

The `1-norm in (5.1) forces many xi to be zero, while Tv1D
1 favors nonzero components to

appear in blocks of equal values xi−1 = xi = xi+1 = . . .. The FL model has been successfully
applied in several bioinformatics applications (Tibshirani and Wang, 2008; Rapaport and
Vert, 2008; Friedman et al., 2007), as it encodes prior knowledge about consecutive elements
in microarrays becoming active at once.

Following the ideas presented in Sec. 4, since the FL model uses two regularizers, we
can use Proximal Dykstra as the combiner to handle the prox operator. To illustrate the
benefits of this framework in terms of reusability, we apply it to several variants of FL.

• Fused-Lasso (FL): Least-squares loss +`1 + Tv1D
1 as in (5.1)

• `p-Variable Fusion (VF): Least-squares loss +`1 + Tv1D
p . Though Variable Fusion

was already studied by Land and Friedman (1997), their approach proposed an `pp-like
regularizer in the sense that r(x) =

∑n−1
i=1 |xi+1 − xi|p is used instead of the TV reg-

ularizer Tv1D
p (x) =

(∑n−1
i=1 |xi+1 − xi|p

)1/p
. Using Tvp leads to a more conservative

penalty that does not oversmooth the estimates. This FL variant seems to be new.
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Figure 15: Running times (in secs) for GP for Tv1D
∞ -proximity with increasing a) input

sizes, b) penalties. Both axes are on a log-scale.
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Figure 16: Fused-Lasso models addressed by proximal splitting.

• Logistic-fused lasso (LFL): Logistic-loss +`1 +Tv1D
1 , where the loss takes the form

`(x, c) =
∑

i log
(

1 + e−yi(a
T
i x+c)

)
, and can be used in a FL formulation to obtain

models more appropriate for classification on a data set {(ai, yi)} (Kolar et al., 2010).

• Logistic + `p-fusion (LVF): Logistic loss +`1 + Tv1D
p .

To solve these variants of FL, all that remains is to compute the gradients of the loss
functions, but this task is trivial. Each of these four models can be then solved easily by
invoking any proximal splitting method by appropriately plugging in gradient and prox
operators. Incidentally, the SLEP library (Liu et al., 2010) includes an implementation
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of FISTA (Beck and Teboulle, 2009) carefully tuned for Fused Lasso, which we base our
experiments on. Figure 16 shows a schematic of the algorithmic modules for solving each
FL model.

Remark: A further algorithmic improvement can be obtained by realizing that for
r(x) = λ1‖x‖1 + λ2Tv1D

1 (x) the prox operator proxr ≡ proxλ1‖·‖1 ◦ proxλ2Tv1D
1 (·). Such

a decomposition does not usually hold, but it can be shown to hold for this particular
case (Yu, 2013; Rinaldo, 2009; Tibshirani et al., 2005). Therefore, for FL and LFL we can
compute the proximal operator for the combined regularizer r directly, thus removing the
need for a combiner algorithm. This is also shown in Figure 16.

5.2.5. Fused-Lasso Experiments: Simulation

The standard FL model has been well-studied in the literature, so a number of practical
algorithms addressing it have already been proposed. The aforementioned Fused-Lasso
algorithm in the SLEP library can be regarded as the state of the art, making extensive
use of an efficient proximity subroutine (FLSA). Our experiments on Tv1D

1 -proximity (§5.1)
have already shown superiority of our prox solvers over FLSA; what remains to be checked
is whether this benefit has a significant impact on the overall FL solver. To do so, we
compare running times with synthetic data.

We generate random matricesA ∈ Rn×m with i.i.d. entries drawn from a zero mean, unit
variance gaussian. We set the penalties to λ1 = λ2 = 10. We select the vector of responses
y using the formula y = sgn(Axt + v), where xt, and v are random vectors whose entries
have variances 1 and 0.01, respectively. The numerical results are summarized in Figure
17, which compares out of the box SLEP (version 4.0) (Liu et al., 2009) against the very
same algorithm employing our fast taut–string Tv1D

1 solver instead of the default FLSA
subroutine of SLEP. Comparison is done by showing the relative distance to the problem’s
optimum versus time. The optimal values in each setting were estimated by running both
algorithms for a very large number of iterations.

The plots show a clear trend: when the input matrices feature a very large column
dimension the use of our taut-string Tv1D

1 solver turns into speedups in optimization times,
which however become negligible for matrices with a more balanced rows/columns ratio.
This result is reasonable, as the vector x under optimization has size equal to the number of
columns of the data matrix A. If A has a large number of columns the cost of solving Tv1D

1

is significant, and thus any improvement in this step has a noticeable impact on the overall
algorithm. Conversely, when the number of rows in A is large the cost of computing the
gradient of the loss function (∇1

2‖Ax− y‖
2
2 = AT (Ax− y)) dominates, getting limited

benefits from such improvements in prox computations. Therefore, it is for data with a
very large number of features where our proposed method can provide a useful speedup.

5.2.6. Fused-Lasso Experiments: Microarray Classification

Now we report results of applying the four FL models on a series of problems from bioinfor-
matics. We test the FL models on binary classification tasks for the following real microarray
data sets: ArrayCGH (Stransky et al., 2006), Leukemias (Golub et al., 1999), Colon (U.
Alon et al., 1999), Ovarian (Rogers et al., 2005) and Rat (Hua et al., 2009). Each data set
was split into three equal parts (ensuring similar proportion of classes in every split) for
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Figure 17: Relative distance to optimum vs time of the Fused Lasso optimizers under com-
parison, for the different layouts of synthetic matrices.

Data set FL VF-`2 LFL LVF-`2

ArrayCGH 73.6% 73.6% 84.2% 73.6%
Leukemias 92.0% 88.0% 92.0% 88.0%
Colon 77.2% 77.2% 77.2% 77.2%
Ovarian 88.8% 83.3% 83.3% 83.3%
Rat 68.8% 65.5% 72.1% 72.1%

Table 3: Classification accuracies for the presented Fused–Lasso models on microarray data.
For the Variable Fusion models an `2 version of TV was employed.

training, validation and test. The penalty parameters were found by exhaustive grid search
in the range λ1, λ2 ∈ [10−4, 102] to maximize classification accuracy on the validation splits.

Table 3 shows test accuracies. In general, as expected the logistic-loss based FL models
yield better classification accuracies than those based on least-squares, as such loss function
tends to be more appropriate for classification problems. However the Ovarian data set
proves to be an exception, showing better performance under a squared loss. Regarding
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the TV-regularizer, the classic Tv1D
1 -penalty seems to perform better in general, with the

Tv1D
2 -penalty showing competitive results in some settings.

5.3. 2D-TV: Experiments and Applications

We address now several practical applications that benefit from two-dimensional TV regu-
larization; our results show again how the presented Tv2D

p,q prox operators fits in seamlessly
into our modular framework to produce efficient proximal splitting solvers.

5.3.1. Image Denoising through Anisotropic Filtering

Our first example is related to the classic problem of image denoising, but with the twist
that we deal with noise of an anisotropic character. More specifically, suppose that the true
image µ ∈ Rn×m is contaminated by additive noise N , so that only µ0 = µ+N is observed.
The denoising problem estimates µ given just the noisy version µ0. This problem is highly
ill-posed and as such not approachable unless additional assumptions on the noise (or on
the underlying image) are made.

Isotropic and anisotropic models: an extremely common choice is to simply as-
sume the noise to be gaussian, or some other zero-mean distribution. Under these condi-
tions, a classic method to perform such denoising task is the Rudin-Osher-Fatemi (ROF)
model (Rudin et al., 1992), which finds an approximationX to the original image by solving

min
X

‖X − µ0‖2F + λ

n∑
i=2

m∑
j=2

‖∂xi,j‖2, (5.2)

where ∂xi,j is the discrete gradient

∂xi,j =

[
xi,j − xi−1,j

xi,j − xi,j−1

]
.

That is, it is the vector of differences of Xi,j and its neighbors along both axes.

The objective of the first term in the ROF model is to penalize any deviation of X
from the observed image µ0, while the second term can be readily recognized as a mixed
(2, 1)-norm over the discrete gradient of X. This regularizer models caters to some prior
knowledge: in natural images sharp discontinuities in intensity between neighboring points
only appear in borders of objects, while the rest of the pixels usually show smooth variations
in intensity. It makes sense, therefore, to penalize large values of the gradient, as sharp
changes have a higher probability of having being produced by noise. Conversely, as the
mean of the noise is zero, it is also sensible to maintain the denoised image X close to the
observed µ0. Merging these two goals produces the ROF model (5.2).

A closer look at the ROF regularizer reveals that it follows the spirit of the reviewed 2D-
TV regularizer which also penalizes sharp variations between neighboring pixels. Indeed,
all such regularizers are broadly categorized as TV regularizers within the image processing
community. It is clear, though, that the ROF regularizer (5.2) does not coincide with the
Tv2D

p,q regularizer used in this paper. Some authors (Bioucas-Dias and Figueiredo, 2007)
differentiate between these regularizers by naming the ROF approach as isotropic TV
and the Tv2D

p,q-style approach as anisotropic TV. This naming comes from the fact that
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isotropic TV penalizes each component of the discrete gradient ∂xi,j following an `2 norm,
whereas the anisotropic Tv2D

p,q-norm and in particular Tv2D
1,1-norm, penalize rows and columns

independently.

While image filtering using isotropic TV is generally preferred for natural images de-
noising (Bioucas-Dias et al., 2006), in some settings anisotropic filtering can produce better
results, and in fact has been favored by some authors in the past (Choksi et al., 2010; Li and
Santosa, 1996). This is specially true on those images that present a “blocky” structure,
and thus are better suited to the structure modeled by the Tv2D

p,q-norm. Therefore, efficient
methods to perform anisotropic filtering are also important.

Anisotropic denoising experiments: denoising using the anisotropic Tv2D
p,q-norm

reduces to solving

min
X

‖X − µ0‖2F + λTv2D
p,q(X). (5.3)

But (5.3) is nothing but the Tv2D
p,q-proximity problem, and hence can be directly solved by

applying the 2D-TV prox operators described above. We solve (5.3) below for the choice
p = q = 1 (which is common in practice), for the following selection of algorithms:

• Proximal Dykstra (§ 4.1.1)

• The Douglas-Rachford variant based on alternating projections (§ 4.1.2)

• The Split Bregman method of Goldstein T. (2009), which follows an ADMM–like
approach to split the `1 norm apart from the discrete gradient operator, thus not
requiring the use of a 1D-TV prox operator.

• Chambolle-Pock’s method applied to 2D TV (§ 4.1.4).

• Condat’s general splitting method (§ 4.1.4).

• Kolmogorov et al primal-dual method (§ 4.1.4).

• Yang’s method (ADMM) (§ 4.1.3)

• The maximum flow approach by Goldfarb and Yin (2009), which shows the relation-
ship between the 2D-TV proximity minimization and the maximum flow problem over
a grid, and thus applies an efficient maximum flow method to solve a discrete-valued
version of 2D-TV.

In Proximal Dykstra, Douglas-Rachford and ADMM we use the linearized taut–string strat-
egy presented before as solver for the base proximity operators. All algorithm parameters
were set as recommended in their corresponding papers or public implementations, except
for Proximal Dykstra and Douglas-Rachford, which are parameter free. For Chambolle-
Pock we tried both the scheme with fixed algorithm parameters (Chambolle and Pock,
2011, Algorithm 1) and the scheme with acceleration (Chambolle and Pock, 2011, Algo-
rithm 2); however the accelerated version did not converge to the desired solution within
enough accuracy (relative difference of 10−5), therefore only the results for the fixed ver-
sion are reported. For Kolmogorov we follow the recommendations in Chambolle and Pock
(2014), taking into account the Lipschitz constants of the optimized functions and select-
ing the parameter updating strategy that produced faster performance in the experiments:
θt+1 = 1√

1+τ t
, τ t+1 = θt+1τ t, σt+1 = σt

θt+1 , θ
0 = 1, τ0 = 1

2 , σ
0 = 1.
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Image Gaussian Speckle Poisson Salt & Pepper

randomQR 0.2 0.3 ∅ ∅
shape 0.05 ∅ ∅ ∅
trollface ∅ 1 ∅ ∅
diagram ∅ ∅ X ∅
text ∅ ∅ ∅ 0.1
comic 0.05 ∅ X ∅
contour ∅ ∅ X 0.4
phantom ∅ 2 X ∅

Table 4: Types of noise and parameters for each test image. A ∅ indicates that such noise was
not applied for the image. Gaussian and Speckle correspond to gaussian additive and
multiplicative (respectively) noises with zero mean and the indicated variance. Salt &
Pepper noise turns into black or white the indicated fraction of image pixels. Poisson
regenerates each pixel by drawing a random value from a Poisson distribution with mean
equal to the original pixel value, thus producing a more realistic noise.

The images used in the experiments are displayed in Appendix F as Figure 25. To test
the filters under a variety of scenarios, different kinds of noise were introduced for each
image. Table 4 gives details on this, while the noisy images are shown in Figure 26. All QR
barcode images used the same kind and parameters of noise. Noise was introduced using
Matlab’s imnoise function.

Values for the regularization parameter λ were found by maximizing the quality of the
reconstruction, measured using Improved Signal-to-Noise Ratio (ISNR) (Afonso et al.,
2010). ISNR is defined as

ISNR(X, µ, µ0) = 10 log10

‖µ0 −X‖2F
‖X − µ‖2F

,

where µ is the original image, µ0 its noisy variant, and X the reconstruction.
To compare the algorithms we run all of them for each image and measured its ISNR

and relative distance to the optimal objective value of the current solution at each iteration
through their execution. The only exception to this procedure is the method of Goldfarb
and Yin, which is non–iterative and thus always returns an exact solution, and so we just
measure the time required to finish. The optimal objective value was estimated by running
all methods for a very large number of iterations and taking the minimum value of them
all. This produced the plots shown in Figures 18–19. From them the following observations
are of relevance:

• Condat’s method and Chambolle-Pock’s method are reduced to essentially the same
algorithm when applied to the particular case of anisotropic 2D TV denoising. Fur-
thermore, they seem to perform slowly when compared to other methods.

• ADMM (Yang’s method) exhibits slow performance at the beginning, but when run
for sufficient time is able to achieve a good approximation to the optimum.
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Figure 18: Relative distance to optimum vs time of the denoising 2D-TV algorithms under
comparison, for the different images considered in the experiments.
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Figure 19: Increased Signal to Noise Ratio (ISNR) vs time of the denoising 2D-TV algo-
rithms under comparison, for the different images considered in the experiments.
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• The Split Bregman method, in spite of being an ADMM–like method much like Con-
dat’s or Chambolle-Pock, performs significantly better than those. We attribute this
to the very efficient implementation provided by its authors, and to the fact that
a fast approximate method is employed to compute the required matrix inversions
throughout the method.

• The method by Goldfarb and Yin is slower than other approaches and seems to provide
suboptimal solutions. We attribute this to the fact that this method solves a discrete
(integer–rounded) approximation to the problem. We acknowledge that other methods
exploiting the Total Variation - Minimum-cut relationship have been proposed with
varying speed results, e.g. (Duan and Tai, 2012), however the suboptimality issues
still apply.

• The method by Kolmogorov et al, when properly accelerated by a suitable choice of
adaptive stepsizes, seems to be the best choice for finding very accurate solutions,
though it is very closely followed by ADMM.

• The parameter free methods PD and DR are the fastest to achieve a mid-quality
solution, with Douglas-Rachford performing better than Proximal Dykstra.

Considering these facts, the method of choice among the ones considered depends on
the desired accuracy. We argue, however, that for the purpose of image processing a mid-
quality solution is sufficient. The ISNR plots of Figure 19 certainly seem to support this, as
the perceived quality of the reconstruction, roughly approximated by the ISNR, saturates
rapidly and no significant improvements are obtained through further optimization. Given
this, the proposed methods seem to be the best suited for the considered task.

For quick reference, Table 5 presents a summary of key points of the compared methods,
along with some recommendations about when to put them to use.

5.3.2. Parallelization Experiments

In addition to the previous experiments and to illustrate the parallelization potential of the
presented anisotropic filtering method, Figure 20 plots running times for the PD algorithm
as the number of processor core ranges from 1 through 16. We see that for the smaller
images, the gains due to more processors essentially flatten out by 8 cores, where synchro-
nization and memory contention offsets potential computational gains (first row). For the
larger images, there is steadier speedup as the number of cores increase (in each plot there
seems to be a “bump” at 14 processors; we attribute this to a quirk of the multicore machine
that we used). From all the plots, however, the message is clear: our TV prox operators
exploit parallelization well, and show substantial speedups as more processor cores become
available.

We should also note in passing that the Split Bregman method, which in the previous
experiments showed a reasonable performance, turns out to be much harder to parallelize.
This fact was already observed by Jie Wang et al. (2014) in the context of isotropic TV.
Therefore when several processor cores are available the proposed modular strategy seems
to be even more suitable to the task.
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Method Key points

Douglas Rachford + Fast convergence to medium-quality
+ Embarrassingly parallel
− Slow for higher accuracies
⇒ Ideal for standard denoising tasks

Proximal Dykstra + Attainable accuracies similar to DR
− But slower than DR
⇒ Use DR instead

Split Bregman + Eventually performs similarly to DR
− Slow convergence at first iterations
⇒ Use DR instead

Chambolle–Pock − Slow
⇒ Use other method instead

Condat + Solves objectives involving a sum of smooth/non–smooth func-
tions with linear operators

− Reduces to Chambolle–Pock when solving basic image denoising
⇒ Use only when dealing with more complex functionals

ADMM (Yang) + More accurate
− Slightly slower than Kolmogorov
− Bad behavior for mid-quality solutions
⇒ Use Kolmogorov instead

Kolmogorov + More accurate
− Slower than DR for low accuracies
⇒ Useful when extremely accurate solutions are required

Goldfarb-Yin + Solves the discrete version of the problem
− Slow
− Poor accuracy for the continuous version
⇒ Apply only when solving the discrete problem

Table 5: Summary of key points of the compared Tv2D
1,1 proximity (denoising) methods.

5.3.3. Anisotropic Image Deconvolution

Taking a step forward we now confront the problem of image deconvolution (or image
deblurring). This setting is more complex since the task of image recovery is made harder
by the presence of a convolution kernel K that distorts the image as

µ0 = K ∗ µ+N ,
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Figure 20: Multicore speedups on different images

where N is noise as before and ∗ denotes convolution. To recover the original image µ from
the observed µ0, it is common to solve the following deconvolution problem

min
X

1
2‖K ∗X − µ‖

2
F + λr(X). (5.4)

As before, the regularizer r(X) can be isotropic or anisotropic TV, among others. Here we
focus again on the anisotropic TV case to show how the presented solvers can also be used
for this image task.

Problem (5.4) also fits the proximal splitting framework, and so we employ the popular
FISTA (Beck and Teboulle, 2009) method for image processing. The gradient of the loss
can be dealt efficiently by exploiting K being a convolution operator, which through the
well–known convolution theorem is equivalent to a dot product in the frequencies space,
and so the computation is done by means of fast Fourier transforms and products. Several
other solvers that explicitly deal with convolution operators are also available (Afonso et al.,
2010; Bioucas-Dias and Figueiredo, 2007). A notable solver specific for the isotropic case
is given by the work of Krishnan and Fergus (2009), that handles even nonconvex isotropic
TV-norms (0 < p < 1). But this approach does not extend to the anisotropic case, so we
focus on general proximal splitting.

We use the same test images as for our denoising experiments (Figure 25), with identical
noise patterns (Table 4) for the QR images, and gaussian noise with variance 0.05 for the
rest. In addition, we convolve each image with a different type of kernel to assess the
behavior for a variety of convolutions; Table 6 shows the kernels applied. We constructed
these kernels using Matlab’s fspecial function; the convolved images are shown in Figure 28.

The values for the regularizer λ were determined by maximizing the reconstruction
quality measured in ISNR. Since deconvolution is much more expensive than denoising,
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Image Convolution Parameters

randomQR Motion Length 5, Angle 35o

shape Average Size 3 × 3
trollface Disk Radius 5
diagram Motion Length 5, Angle 0o

text Average Size 1 × 10
comic Gaussian Size 15, Deviation 2
contour Disk Radius 5
phantom Motion Length 100, Angle 240o

Table 6: Convolution kernels used for each test image. Average substitutes each pixel with the
average of its surrounding n ×m neighbors. Disk performs the same operation within a
disk-shaped neighborhood of the shown radius. Gaussian uses a n× n neighborhood and
assigns different weights to each neighbor following the value of a gaussian distribution
of the indicated deviation centered at the current pixel. Motion emulates the distortions
produced when taking a picture in motion, defining a neighborhood following a vector of
the indicated length and angle.

instead of performing an exhaustive search for the best λ, we used a Focused Grid Search
strategy (Barbero et al., 2008, 2009) to find the best performing values.

Any denoising subroutine can be plugged into the aforementioned deconvolution meth-
ods, however for comparison purposes we run our experiments with the best proposed
method, Douglas Rachford (Alternating Reflections), and the best competing method among
those reviewed from the literature, Kolmogorov et al. A key parameter in deconvolution
performance is for how long should these methods be run at each FISTA iteration. To
select this, we first run FISTA with 100 iterations of Douglas Rachford per step, for a large
number of FISTA steps, and take the final objective value as an estimate of the optimum.
Then we find the minimum number of Douglas Rachford and Kolmogorov iterations for
which FISTA can achieve a relative distance to such optimum below 10−3. The reason for
doing this is that for larger distances the attained ISNR values are still far from conver-
gence. This turned to be 5 iterations for Douglas Rachford an 10 for Kolmogorov. We then
run FISTA for such configurations of the inner solvers, and others with a larger number of
inner iterations, for comparison purposes.

Figures 21-22 show the evolution of objective values and ISNR for all the tested config-
urations. In general, Douglas Rachford seems to be slightly better at finding more accurate
solutions, and also faster at converging to the final ISNR value. We explain this by the
fact that the major advantage of Douglas Rachford is its aforementioned ability to find
medium–quality solutions in a very small number of iterations: this is why with a small
number of inner DR iterates we can converge to good ISRN levels.

For reference we also provide the resultant deconvoluted images as Figure 29.
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Figure 21: Relative distance to optimum vs time of the deconvolution 2D-TV algorithms
under comparison, for the different images considered in the experiments.
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Figure 22: Increased Signal to Noise Ratio (ISNR) vs time of the deconvolution 2D-TV
algorithms under comparison, for the different images considered in the experi-
ments.
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5.3.4. 2D Fused-Lasso Signal Approximator

The Fused–Lasso Signal Approximator (FLSA) (Friedman et al., 2007) can be regarded
as a particular case of Fused-Lasso where the input matrix A is the identity matrix I, i.e.,

minx
1
2‖x− y‖

2
2 + λ1‖x‖1 + λ2Tv1D

1 (x).

This problem can be solved immediately using the methods presented in §5.2.4. A
slightly less trivial problem is the one posed by the 2D variant of FLSA:

minX
1
2‖X − Y ‖

2
F + λ1‖vec(X)‖1 + λ2Tv2D

1,1(X). (5.5)

Friedman et al. (2007) used this model for denoising images where a large number of pixels
are known to be completely black (intensity 0), which aligns well with the structure imposed
by the `1 regularizer.

Akin to the 1D-case, 2D-FLSA (5.5) can also be solved by decomposing its computation
into two prox operators (Friedman et al., 2007); formally,

proxλ1‖·‖1+λ2Tv2D
1,1(·)(Y ) = proxλ1‖·‖1

(
proxλ2Tv2D

1,1(·)(Y )
)
.

Thus, to solve (5.5) we merely invoke one of the presented Tv2D
1,1 prox operators and then

apply soft-thresholding to the results. Since soft-thresholding is done in closed form, the
performance of a 2D-FLSA solver depends only on its ability to compute Tv2D

1,1-proximity
efficiently. We can then safely claim that the results summarized in table 5 apply equiv-
alently to 2D-FLSA, and so the proposed Douglas Rachford method performs best when
reconstruction ISNR is the primary concern.

5.4. Application of Higher-Dimensional TV

We now apply the presented multidimensional TV regularizer to anisotropic filtering for
video denoising. The extension to videos from images is natural. Say a video contains f
frames of size n×m pixels; this video can be viewed as a 3D-tensor X ∈ Rn×m×f , on which
a 3D-TV based filter can be effected by

minX
1
2‖X− U0‖2F + λTv3D

p1,p2,p3(X), (5.6)

where U0 is the observed noisy video, and Tv3D
p1,p2,p3 = Tv3

p with p = [p1, p2, p3]. Application
of the filter (5.6) is nothing but computation of the prox operator, which can be done using
the Parallel-Proximal Dykstra (PPD) algorithm presented in Sec. 4.

We apply this idea to the video sequences detailed in Table 7. All of the sequences
are made of grayscale pixels. Figure 30 in the Appendix shows some of the frames of the
salesman sequence. We noise every frame of these sequences by applying gaussian noise
with zero mean and variance 0.01, using Matlab’s imnoise function. Then we solve problem
5.6 for each sequence, adjusting the regularization value so as to maximize ISNR of the
reconstructed signal. We test the following algorithms, which have been previously applied
in the literature for solving 3D-TV, with the only exception Parallel Proximal Dykstra:

• Parallel Proximal Dykstra (§ 4.1.1).
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Sequence Frame resolution Number of frames Total number of pixels

salesman 288 × 352 50 5 million
coastguard 176 × 144 300 7.6 million
bicycle 720 × 576 30 12.4 million

Table 7: Size details of video sequences used in the video denoising experiments.
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Figure 23: Relative distance to optimum vs time of the denoising 3D-TV algorithms under
comparison, for the different video sequences considered in the experiments.

• Yang’s method, which is based on ADMM (§ 4.1.1)

• The maximum flow approach by Goldfarb and Yin (2009), which features an imple-
mentation for 3D grids, thus solving a discrete-valued version of 3D-TV.

For both PPD and ADMM we again make use of linearized taut-string 1D TV solver. We
must also point out that other image denoising methods seem amenable for extension into
the multidimensional setting, such as Condat’s and Chambolle-Pock methods. However
in the light of our image denoising results we do not deem them as good choices for this
problem. A more reasonable choice might be to extend Split-Bregman to multiple dimen-
sions, but such an extension has not been implemented or proposed as far as we know. We
would also like to note that we have considered extending the Douglas Rachford method to
a multidimensional setting, however such task is complex and thus we decided to focus on
Parallel Proximal Dykstra.

Similarly to our previous image denoising experiments, we ran the algorithms under
comparison for each video sequence and measured its ISNR and relative distance to the
optimal objective value of the current solution at each iteration through their execution.
Again the exception is the Goldfarb-Yin method, which is non–iterative and so we only
report the time required for its termination. The optimal objective value was estimated by
running all methods for a very large number of iterations and taking the minimum value
of them all. This produced the plots shown in Figures 23–24. From them the following
observations are of relevance:
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Figure 24: Increased Signal to Noise Ratio (ISNR) vs time of the denoising 3D-TV algo-
rithms under comparison, for the different video sequences considered in the
experiments.

• Following the pattern observed in the image denoising experiments, ADMM (Yang’s
method) is best suited for finding very accurate solutions.

• The method by Goldfarb and Yin again provides suboptimal solutions, due to the
discrete approximation it uses.

• Parallel Proximal Dykstra is the fastest to achieve a mid-quality solution.

• Intermediate solutions prior to convergence of the PPD run result in better ISNR
values for the coastguard and bicycle data sets. This hints that the denoising model
used in this experiment may not be optimal for these kind of signals; indeed, more
advanced denoising models abound in the signal processing literature. Hence we do not
claim novel results in terms of ISNR quality, but just in solving this classic denoising
model more efficiently.

The ISNR plots in Figure 24 also show how both Parallel Proximal Dykstra and ADMM
(Yang’s method) converge to equivalent solutions in practice. Therefore, for the purpose of
video denoising PPD seems to be the best choice, unless for some reason a high degree of
accuracy is required, for which ADMM should be preferred.
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Appendix A. Mathematical Background

We begin by recalling a few basic ideas from convex analysis; we recommend the recent
book (Bauschke and Combettes, 2011) for more details.

Let X ⊂ Rn be any set. A function r : X → R ∪ {−∞,+∞} is called lower semicontin-
uous if for every x ∈ X and a sequence (xk) that converges to x, it holds that

xk → x =⇒ r(x) ≤ lim infk r(xk). (A.1)

The set of proper lsc convex functions on X is denoted by Γ0(X ) (such functions are also
called closed convex functions). The indicator function of a set C is defined as

δC : X → [0,∞] : x 7→

{
0, if x ∈ C;

∞, if x 6∈ C,
(A.2)

which is lsc if and only if C is closed.
The convex conjugate of r is given by r∗(z) := supx∈dom r 〈x, z〉−r(x), and a particularly

important example is the Fenchel conjugate of a norm ‖·‖

if r = ‖·‖, then r∗ = δ‖·‖∗≤1, (A.3)

where the norm ‖·‖∗ is dual to ‖·‖. Let r and h be proper convex functions. The infimal
convolution of r with h is the convex function given by (r�h)(x) := infy∈X

(
r(y)+h(x−y)).

For our purposes, the most important special case is infimal convolution of a convex function
with the squared euclidean norm, which yields the Moreau envelope (Moreau, 1962).

Proposition A.1 Let r ∈ Γ0(X ) and let γ > 0. The Moreau envelope of r indexed by γ is

Eγr (·) := r � ( 1
2γ ‖·‖

2
2). (A.4)

The Moreau envelope (A.4) is convex, real-valued, and continuous.

Proof See e.g. (Bauschke and Combettes, 2011, Prop. 12.15).

Using the Moreau envelope (A.4), we now formally introduce prox operators.

Definition A.2 (Prox operator) Let r ∈ Γ0(X ), and let y ∈ X . Then proxr y is the
unique point in X that satisfies E1

r (y) = minx∈X (r(x) + 1
2‖x− y‖

2
2), i.e.,

proxr(y) := argmin
x∈X

r(x) + 1
2‖x− y‖

2
2, (A.5)

and the nonlinear map proxr : X → X is called the prox operator of r.

Sometimes the Fenchel conjugate r∗ is easier to use than r; similarly, sometimes the
operator proxr∗ is easier to compute than proxr. The result below shows the connection.

Proposition A.3 (Moreau decomposition) Let r ∈ Γ0(X ), γ > 0, and y ∈ X . Then,

y = proxγr y + γ proxr∗/γ(γ−1y). (A.6)
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Proof A brief exercise; see e.g., (Bauschke and Combettes, 2011, Thm. 14.3).

This decomposition provides the necessary tools to exploit useful primal–dual relations. For
the sake of clarity we also present an additional result regarding a particular primal-dual
relation that plays a key role in our algorithms.

Proposition A.4 Let f ∈ Γ0(X ) and r ∈ Γ0(Z). The problems below form a primal-dual
pair.

inf
x∈X

f(x) + r(Bx) s.t. Bx ∈ Z (A.7)

inf
u∈Z

f∗(−BTu) + r∗(u). (A.8)

Proof Introduce an extra variable z = Bx, dual function is

g(u) = inf
x∈X

f(x) + uTBx+ inf
z∈Z

r(z)− uTz,

which upon rewriting using Fenchel conjugates yields (A.8).

Notions on submodular optimization are also required to introduce some of the decom-
position techniques for 2D-TV in this paper. For a more thorough read on this topic we
recommend the monograph Bach (2013).

Definition A.5 (Submodular function) A set-function F : 2V → R, for 2V the power
set of some set V , is submodular if and only if it fulfills the diminishing returns property,
that is, for A ⊆ B ⊆ V and k ∈ V , k /∈ B we have

F (A ∪ {k})− F (A) ≥ F (B ∪ {k})− F (B).

Intuitively, a set-function is submodular if adding a new element to the set results in less
value as the set grows in size.

Definition A.6 (Modular function) A set-function F : 2V → R, for 2V the power set
of some set V , F (∅) = 0 is modular (and also submodular) if and only if there exists s ∈ Rp
such that F (A) =

∑
k∈A sk.

That is, a function is modular if it always assigns the same value for each element added
to the set, regardless of the other elements in the set. A common shorthand for modular
functions is s(A) =

∑
k∈A sk.

Submodular functions can be thought as convex functions in the realm of discrete opti-
mization, in the sense that they feature useful properties that allow for efficient optimization.
Similarly, modular functions are connected to linear functions. To make such connections
explicit we require of the following geometric concepts.

Definition A.7 (Base polytope) The base polytope BF of a submodular function F is
the polyhedron given by

BF = {y ∈ Rn : y(A) ≤ F (A) ∀A ⊆ V, y(V ) = F (V )} .
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That is, the base polytope is a polyhedron defined through linear inequality constraints
on the values of F for every one of the n elements of the powerset 2V , and an equality
constraint for the complete set. This results in a combinatorial number of contraints, but
fortunately this polytope will not be used directly.

Definition A.8 (Support function) The support function hA for some non-empty closed
convex set A ∈ Rn is given by

hA(x) = sup
{
xTa : x ∈ A

}
.

The support function is useful when connected with the following definition.

Definition A.9 (Lovász extension) Suppose a set-function F such that F (∅) = 0. Its
Lovász extension f : Rp → R is defined through the following mechanism. Take w ∈ Rp
input to f , and order its components in decreasing order wj1 ≥ . . . ≥ wjp, then

f(w) =

p∑
k=1

[F ({j1, . . . , jk})− F ({j1, . . . , jk−1})].

Other equivalent definitions are possible: see Bach (2013) for details. The following result
links all the definitions so far.

Proposition A.10 For F submodular function such that F (∅) = 0 we have

• Its Lovász extension f is a convex function.

• The support function of its base polytope is equal to its Lovász extension, that is,
hBF (x) = f(x).

• The problem minS⊆V F (S) is dual to minx f(x) + 1
2‖x‖

2
2, with S∗ = {k|x∗k ≥ 0}.

For proofs on these points we refer to Bach (2013). The takeaway from them is that any
minimization on a submodular function can be cast into a convex optimization problem.
Furthermore, for those convex minimization problems whose objective turns out to be the
Lovász extension of some other function, we can trace the steps the other way round,
obtaining the minimization of a submodular function.

Consider now a composite problem minS⊆V
∑

j Fj(S). The following results hold

Proposition A.11 The problem minS⊆V
∑

j Fj(S) is equivalent to minx
∑

j fj(x)+ 1
2‖x‖

2
2,

with S∗ = {k|x∗k ≥ 0}. Furthermore it is also equivalent to minyj∈BFj ∀j
1
2‖
∑

j yj‖22, with

x∗ = −
∑

j y
∗
j .

Proof The first equivalence is a direct result of the properties of Lovász extensions (Bach,
2013), in particular that for F,G set-functions with Lovász extensions f, g, the Lovász
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extension of F +G is f + g. For the second equivalence we have:

min
x

∑
j

fj(x) + 1
2‖x‖

2
2 = min

x

∑
j

hBFj + 1
2‖x‖

2
2,

= min
x

∑
j

max
yj∈BFj

yTj x+ 1
2‖x‖

2
2,

= max
yj∈BFj ∀j

min
x

∑
j

yTj x+ 1
2‖x‖

2
2

 ,

= min
yj∈BFj ∀j

1
2‖
∑
j

yj‖22,

and the dual relationship x∗ = −
∑

j y
∗
j comes from solving the inner minx problem for x.

Therefore any decomposable submodular minimization, or sum of Lovász extensions plus
`2 term, can be casted into a geometric problem in terms of the base polytopes. For two
functions the resultant problem is of special interest if rewritten as

min
y1∈BF1
y2∈BF2

1
2‖y1 + y2‖22 = min

y1∈BF1
−y2∈−BF2

1
2‖y1 − (−y2)‖22 = min

a∈BF1
b∈−BF2

1
2‖a− b‖

2
2

with a = y1, b = −y2, as this results in the classic geometric problem of finding the closest
points between two convex sets. Many algorithms have been proposed to tackle problems
in this form, most of them making use of alternating projection operations onto the two
sets. Thus, a legitimate concern is how easy it is to compute such projections for BF1 and
−BF2 .

Proposition A.12 Given a submodular function F and its base polytope BF , the projec-
tions ΠBF (z) and Π−BF (z) of a point z onto BF or its negated counterpart can be computed
as

ΠBF (z) = z − proxf (z),

Π−BF (z) = z + proxf (−z),

with prox proximity operator of a function, f the Lovász extension of F .

Proof We start with the proximity of f and work our way to a relationship with the
projection operator,

proxf (z) ≡ min
x
f(x) + 1

2‖x− z‖
2
2,

= max
y∈BF

min
x
yTx+ 1

2‖x− z‖
2
2,

= max
y∈BF

yT (z − y) + 1
2‖(z − y)− z‖22,

= min
y∈BF

1
2‖y‖

2
2 − yTz,

≡ min
y∈BF

1
2‖y − z‖

2
2 = ΠBF (z),
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where solving the inner minimization problem for x gives the primal–dual relationship
x∗ = z − y∗. Using this we can obtain the solution for the projection problem from the
proximity problem, as ΠBF (z) = z − proxf (z). Projection onto the negated base polytope
follows from the basic geometric argument Π−BF (z) = −ΠBF (−z).

Appendix B. proxTV Toolbox

All the Total–Variation proximity solvers in this paper have been implemented as the
proxTV toolbox for C++, Matlab and Python, available at https://github.com/albarji/
proxTV. The toolbox has been designed to be used out of the box in a user friendly way;
for instance, the top–level Matlab function TV solves Total–Variation proximity for a given
signal under a variety of settings. For instance

>> TV(X, lambda )

solves Tv1 proximity for a signal X of any dimension and a regularization value lambda.
The weighted version of this problem is also seamlessly tackled by just providing a vector
of weights of the appropriate length as the lambda parameter.

If a third parameter p is provided as

>> TV(X, lambda , p)

the general Tvp proximity problem is addressed, whereupon an adequate solver is chosen
by the library.

More advanced uses of the library are possible, allowing to specify which norm p and
regularizer lambda values to use for each dimension of the signal, and even applying combi-
nations of several different Tvp regularizers along the same dimension. Please refer to the
documentation within the toolbox for further information.

Appendix C. Proof on the Equality of Taut-String Problems

Theorem C.1 (Equality of taut-string problems) Given the problems

min
s

n∑
i=1

(si − si−1)2 , s.t. |si − ri| ≤ wi ∀i = 1, . . . , n− 1 , s0 = 0, sn = rn, (C.1)

and

min
ŝ

n∑
i=1

√
1 + (ŝi − ŝi−1)2, s.t. |ŝi − ri| ≤ wi ∀i = 1, . . . , n− 1 , ŝ0 = 0, ŝn = rn, (C.2)

for a non-zero vector w, both problems share the same minimum s∗ = ŝ∗.

Proof
The Lagrangian of problem C.1 takes the form

L(s,α,β) =
n∑
i=1

(si − si−1)2 +

n−1∑
i=1

αi(si − ri −wi) +

n−1∑
i=1

βi(−wi − si + ri),
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and its Karush-Kuhn-Tucker optimality conditions are given by

(si+1 − si)− (si − si−1) = αi − βi, (C.3)

|si − ri| ≤ wi, (C.4)

αi,βi ≥ 0, (C.5)

αi(si − ri −wi) = 0, (C.6)

βi(−wi − si + ri) = 0, (C.7)

∀i = 1, . . . , n − 1, and where the first equation comes from the fact that ∂L(s,α,β)
∂s = 0 at

the minimum.
As the only difference between problems C.1 and C.2 is in the form of the objective, the

KKT conditions for problem C.2 take the same form, but for the first one,

(ŝi+1 − ŝi)√
1 + (ŝi+1 − ŝi)2

− (ŝi − ŝi−1)√
1 + (ŝi − ŝi−1)2

= α̂i − β̂i, (C.8)

|ŝi − ri| ≤ wi, (C.9)

α̂i, β̂i ≥ 0, (C.10)

α̂i(ŝi − ri −wi) = 0, (C.11)

β̂i(−wi − ŝi + ri) = 0, (C.12)

∀i = 1, . . . , n− 1, and where we use hat notation for the dual coefficients to tell them apart
from those of problem C.1.

Suppose s∗ minimizer to problem C.1, hence fulfilling the conditions C.3-C.7. In par-
ticular this means that it is feasible to assign values to the dual coefficients α,β in such
a way that the conditions above are met. If we set ŝ = s∗ in the conditions C.8-C.12 the
following observations are of relevance

• Condition C.9 becomes the same as condition C.4, and so it is immediately met.

• The operator f(x) = x√
1+x2

is contractive and monotonous.

• The couple (αi,βi) cannot be both non–zero at the same time, since αi > 0 enforces
si = ri +wi and βi > 0 enforces si = ri −wi, and wi is non–zero.

• Hence and becauseαi,βi ≥ 0 and condition C.3 holds, when (si+1−si)−(si−si−1) > 0
then αi > 0, βi = 0, and when (si+1 − si)− (si − si−1) < 0 then αi = 0, βi > 0.

• f(si+1 − si) − f(si − si−1) has the same sign as (si+1 − si) − (si − si−1), since f is
monotonous and as such preserves ordering.

• Since f is contractive, condition C.8 can be met by setting (α̂i, β̂i) = (kαi, kβi) for
some 0 ≤ k < 1. Note that this works because (αi,βi) cannot be both zero at the
same time.

• Condition C.10 is met for those choices of α̂i, β̂i, as C.5 was met for αi,βi and
0 ≤ k < 1.
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• Conditions C.11 and C.12 are also met for those choices of α̂i, β̂i, as α̂i(si−ri−wi) =
kαi(si − ri −wi) = 0 and β̂i(−wi − si + ri) = kβi(−wi − si + ri) = 0.

Therefore, all of the optimality conditions C.8-C.12 for problem C.2 are met for s∗ solution
of problem C.1, and so a minimum of problem C.1 is also a minimum for problem C.2.

The proof can be repeated the other way round by setting s = ŝ∗ optimal for problem
C.2, defining the operator f−1(x) = x√

1−x2 , and observing that this operator is monotonous

and expansive, so we can establish (αi,βi) = (kα̂i, kβ̂i) for some k ≥ 1 and the optimality
conditions C.3-C.7 for problem C.1 are met following a similar reasoning to the one presented
above. Thus, a minimum for problem C.2 is also a minimum for problem C.1, which joined
with the previous result completes the proof.

Appendix D. Proof on the Equivalence of Linearized Taut-String Method

Proposition D.1 Using affine approximations to the greatest convex minorant and the
smallest concave majorant does not change the solution of the taut-string method.

Proof Let us note ∩(f) as the smallest concave majorant of some function f taking integer
values, ∪(f) as the greatest concave minorant, ā(f) as the smallest affine majorant and

¯
a(f)

as the greatest affine minorant. By definition we have

¯
a(f(i)) ≤ ∪(f(i)) ≤ f(i) ≤ ∩(f(i)) ≤ ā(f(i)) ∀i ∈ Z

Consider now the nature of the taut-string problem, where a vertically symmetric tube
of radius λi at each section is modelled by following the majorant of the tube bottom (f−λ)
and the minorant of the tube ceiling (f + λ). We work the inequalities above as:

f(i)− λi ≤ ∩(f(i)− λi) ≤ ā(f(i)− λi)

¯
a(f(i) + λi) ≤ ∪(f(i) + λi) ≤ f(i) + λi

We will show that an overlap of smallest concave majorant / greatest convex minorant
takes place iff the same overlap happens when using the affine approximations. We formally
define overlap as the setting where for a point i we have ∪(fi + λi) ≤ ∩(fi − λi).

One side of the implication is easy: if ∪(f(i) + λi) ≤ ∩(f(i)− λ) for some i, then using
the relations above we have

¯
a(f(i) + λi) ≤ ∪(f(i) + λi) ≤ ∩(f(i) − λi) ≤ ā(f(i) − λi),

and so the affine approximation detects any overlap taking place in the concave/convex
counterpart.

The opposite requires the key observation that in the taut-string method both majorant
and minorant functions are clamped to the same point of origin: f(0) = 0 at the start of
the method, or the point where the last segment was fixed after each restart. Let us assume
f(0) = 0 without loss of generality. Suppose now that an overlap is detected by the affine
approximation. Because of this affine nature the majorant/minorant slopes are constant,
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i.e.

δ̄1 = δ̄2 = . . . = δ̄n = δ̄,
¯
δ1 =

¯
δ2 = . . . =

¯
δn =

¯
δ.

However, if we consider the convex/concave approximations these slopes can increase/de-
crease as the segment progresses, that is:

δ∪1 ≤ δ∪2 ≤ . . . ≤ δ∪n , δ∩1 ≥ δ∩2 ≥ . . . ≥ δ∩n .

Consider now the majorant/minorant values, expressed through the slopes and taking into
account the observation above about the starting point.

∩(f(i)− λi) =
i∑

j=1

δ∩j , ∪(f(i) + λi) =
i∑

j=1

δ∪j , ā(f(i)− λi) = iδ̄,
¯
a(f(i) + λi) = i

¯
δ.

Since an overlap has been detected in the affine approximation, we have that for some point
i

i
¯
δ =

¯
a(f(i) + λi) ≤ ā(f(i)− λi) = iδ̄,

so
¯
δ ≤ δ̄. Consider now the values of the affine minorant/majorant at the point immediately

after the origin,

¯
a(f1 − λ1) =

¯
δ, ā(f1 + λ1) = δ̄.

We will show now that the convex/convex counterpart must take exactly the same values
at these points. To do so we take into account the following fact: there must exist points x
and y, x, y ≤ i, where

¯
a(fx + λx) = fx + λx = ∪(fx + λx), ā(fy − λy) = fy − λy = ∩(fy − λy),

that is to say, the affine minorant/majorant must touch the tube ceiling/bottom at some
point, otherwise we could obtain a greater minorant / smaller majorant by reducing this
distance. The equalities to the convex minorant / concave majorant are then obtained by
exploiting the inequalities at the beginning of the proof.

By the already presented inequalities ∪(f1 + λ1) ≥
¯
a(f1 + λ1), but let us suppose for a

moment ∪(f1 + λ1) >
¯
a(f1 + λ1). This would imply δ∪1 >

¯
δ. We then would have that at

the touching point x

fx + λx =
¯
a(fx + λx) = x

¯
δ < xδ∪1 ≤ ∪(f1 + λ1),

as the slopes in a convex minorant must be monotonically increasing. However, such
function would not be a valid convex minorant, as it would grow over f + λ. Therefore
∪(f1 + λ1) =

¯
a(f1 + λ1) must hold. Using a symmetric argument, ∩(f1 − λ1) = ā(f1 − λ1)

can also be shown to hold. Joining this with the previous facts we have that

∪(f1 + λ1) =
¯
a(f1 + λ1) =

¯
δ ≤ δ̄ = ā(f1 − λ1) = ∩(f1 − λ1),

and therefore the overlap detected by the affine approximation is detected through its
convex/concave version as well through ∪(f1 + λ1) ≤ ∩(f1 − λ1).
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Appendix E. Projected-Newton for Weighted Tv1D
1

In this appendix we present details of a projected-Newton (PN) approach to solving the
weighted-TV problem (2.6). Although taut-string approaches are empirically superior to
this PN approach, the details of this derivation prove to be useful when developing sub-
routines for handling `p-norm TV prox-operators, but perhaps their greatest use lies in
presenting a general method that could be applied to other problems that have structures
similar to TV, e.g., group total-variation (Alaız et al., 2013; Wytock et al., 2014) and
`1-trend filtering (Kim et al., 2009; Tibshirani, 2014).

The weighted-TV dual problem (2.7) is a bound-constrained QP, so it could be solved
using a variety of methods such as TRON (Lin and Moré, 1999), L-BFGS-B (Byrd et al.,
1994), or projected-Newton (PN) (Bertsekas, 1982). Obviously, these methods will be
inefficient if invoked off-the-shelf; exploitation of problem structure is a must for solving (2.7)
efficiently. PN lends itself well to such structure exploitation; we describe the details below.

PN runs iteratively in three key steps: first it identifies a special subset of active variables
and uses these to compute a reduced Hessian. Then, it uses this Hessian to scale the gradient
and move in the direction opposite to it, damping with a stepsize, if needed. Finally, the
next iterate is obtained by projecting onto the constraints, and the cycle repeats. PN can be
regarded as an extension of the gradient-projection method (GP, Bertsekas (1999)), where
the components of the gradient that make the updating direction infeasible are removed; in
PN both the gradient and the Hessian are reduced to guarantee this feasibility.

At each iteration PN selects the active variables

I := {i | (ui = −wi and [∇φ(u)]i > ε) or (ui = wi and [∇φ(u)]i < −ε)} , (E.1)

where ε ≥ 0 is small scalar. This corresponds to the set of variables at a bound, and for
which the gradient points inside the feasible region; that is, for these variables to further
improve the objective function we would have to step out of bounds. It is thus clear
that these variables are of no use for this iteration, so we define the complementary set
Ī := {1 . . . n} \I of indices not in I, which are the variables we are interested in updating.
From the Hessian H = ∇2φ(u) we extract the reduced Hessian HĪ by selecting rows and
columns indexed by Ī, and in a similar way the reduce gradient [∇φ(u)]Ī . Using these we
perform a Newton–like “reduced” update in the form

uĪ ← P (uĪ − αH−1
Ī

[∇φ(u)]Ī), (E.2)

where α is a stepsize, and P denotes projection onto the constraints, which for box–
constraints reduces to simple element–wise projection. Note that only the variables in the
set Ī are updated in this iterate, leaving the rest unchanged. While such update requires
computing the inverse of the reduced Hessian HĪ , which in the general case can amount to
computational costs in the O(n3) order, we will see now how exploiting the structure of the
problem allows us to perform all the steps above efficiently.
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First, observe that for (2.7) the Hessian is

H = DDT =


2 −1
−1 2 −1

−1 2
. . .

. . .
. . . −1
−1 2

 ∈ R(n−1)×(n−1).

Next, observe that whatever the active set I, the corresponding reduced Hessian HĪ

remains symmetric tridiagonal. This observation is crucial because then we can quickly
compute the updating direction dĪ = H−1

Ī
[∇φ(u)]Ī , which can be done by solving the

linear system HĪdĪ = [∇φ(ut)]Ī as follows:

1. Compute the Cholesky decomposition HĪ = RTR.

2. Solve the linear system RTv = [∇φ(u)]Ī to obtain v.

3. Solve the linear system RdĪ = v to obtain dĪ .

Because the reduced Hessian is also tridiagonal, its Cholesky decomposition can be
computed in linear time to yield a bidiagonal matrix R, which in turn allows to solve the
subsequent linear systems also in linear time. Extremely efficient routines to perform all
these tasks are available in the LAPACK libraries (Anderson et al., 1999).

The next crucial ingredient is efficient selection of the stepsize α. The original PN
algorithm Bertsekas (1982) recommends Armijo-search along projection arc. However, for
our problem this search is inordinately expensive. So we resort to a backtracking strategy
using quadratic interpolation (Nocedal and Wright, 2000), which works admirably well.
This strategy is as follows: start with an initial stepsize α0 = 1. If the current stepsize αk
does not provide sufficient decrease in φ, build a quadratic model using φ(u), φ(u− αkd),
and ∂αkφ(u). Then, the stepsize αk+1 is set to the value that minimizes this quadratic
model. In the event that at some point of the procedure the new αk+1 is larger than or too
similar to αk, its value is halved. In this fashion, quadratic approximations of φ are iterated
until a good enough α is found. The goodness of a stepsize is measured using the following
Armijo-like sufficient descent rule

φ(u)− φ(P [u− αkd]) ≥ σ · αk · (∇φ(u) · d) ,

where a tolerance σ = 0.05 works well practice.
Note that the gradient ∇φ(u) might be misleading in the condition above if u has

components at the boundary and d points outside this boundary (because then, due to
the subsequent projection no real improvement would be obtained by stepping outside the
feasible region). To address this concern, we modify the computation of the gradient ∇φ(u),
zeroing our the entries that relate to direction components pointing outside the feasible set.

The whole stepsize selection procedure is shown in Algorithm 11. The costliest operation
in this procedure is the evaluation of φ, which, nevertheless can be done in linear time.
Furthermore, in practice a few iterations more than suffice to obtain a good stepsize.

Overall, a full PN iteration as described above runs at O(n) cost. Thus, by exploiting
the structure of the problem, we manage to reduce the O(n3) cost per iteration of a general
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Algorithm 11 Stepsize selection for Projected Newton

Initialize: α0 = 1, k = 0, d, tolerance parameter σ
while φ(u)− φ(P [u− αkd]) < σ · αk · (∇φ(u) · d) do

Minimize quadratic model: αk+1 =
α2
k∂αkφ(u)

2(φ(u)−φ(u−αk)+αk∂αkφ(u)) .

if αk+1 > αk or αk+1 ' αk, then αk+1 = 1
2αk.

k ← k + 1
end while
return αk

Algorithm 12 PN algorithm for TV-L1-proximity

Let W = Diag(wi); solve DDTWu∗ = Dy.
if ‖W−1u∗‖∞ ≤ 1, return u∗.
u0 = P [u∗], t = 0.
while gap(u) > ε do

Identify set of active constraints I; let Ī = {1 . . . n} \ I.
Construct reduced Hessian HĪ .
Solve HĪdĪ = [∇φ(ut)]Ī .
Compute stepsize α using backtracking + interpolation (Alg. 11).
Update ut+1

Ī
= P [ut

Ī
− αdĪ ].

t← t+ 1.
end while
return ut.

PN algorithm to a linear-cost method. The pseudocode of the resulting method is shown
as Algorithm 12. Note that in the special case when the weights W := Diag(wi) are so
large that the unconstrained optimum coincides with the constrained one, we can obtain u∗

directly via solving DDTWu∗ = Dy (which can also be done at O(n) cost). The duality
gap of the current solution is used as a stopping criterion, where we use a tolerance of
ε = 10−5 in practice.

Appendix F. Testing Images and Videos, and Experimental Results

The images used in the experiments are displayed in what follows, along with their noisy/de-
noised and convoluted/deconvoluted versions for each algorithm tested. QR barcode images
were generated by encoding random text using Google chart API4. Images shape and phan-
tom 5 are publicly available and frequently used in image processing. trollface and comic
6 are also publicly available. gaudi, used in the multicore experiments, is a high resolution
3197 × 3361 photograph of Gaudi’s Casa Batlló7. The rest of the images were originally
created by the authors.

4. http://code.google.com/intl/en-EN/apis/chart/

5. Extracted from http://en.wikipedia.org/wiki/File:Shepp_logan.png

6. Author: Francisco Molina. http://www.afrikislife.net/english/

7. Extracted from http://www.flickr.com/photos/jeffschwartz/202423023/
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For the video experiments, the salesman, coastguard and bicycle sequences were used,
which are publicly available at BM3D (2013). As an example, frames from the first video
are displayed in what follows, along with their noisy/denoised versions.
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randomQR-0 (100× 100) randomQR-1 (175× 175) randomQR-2 (300× 300)

randomQR-3 (375× 375) randomQR-4 (500× 500) shape (128× 128)

trollface (388× 388) diagram (259× 259) text (665× 665)

comic (402× 402) contour (1000× 1000) phantom (1713× 1713)

Figure 25: Test images used in the experiments together with their sizes in pixels. Images
displayed have been scaled down to fit in page.



randomQR-0 (100× 100) randomQR-1 (175× 175) randomQR-2 (300× 300)

randomQR-3 (375× 375) randomQR-4 (500× 500) shape (128× 128)

trollface (388× 388) diagram (259× 259) text (665× 665)

comic (402× 402) contour (1000× 1000) phantom (1713× 1713)

Figure 26: Noisy versions of images used in the experiments.



randomQR-0 (100× 100) randomQR-1 (175× 175) randomQR-2 (300× 300)

randomQR-3 (375× 375) randomQR-4 (500× 500) shape (128× 128)

trollface (388× 388) diagram (259× 259) text (665× 665)

comic (402× 402) contour (1000× 1000) phantom (1713× 1713)

Figure 27: Denoising results for the test images.



randomQR-0 (100× 100) randomQR-1 (175× 175) randomQR-2 (300× 300)

randomQR-3 (375× 375) randomQR-4 (500× 500) shape (128× 128)

trollface (388× 388) diagram (259× 259) text (665× 665)

comic (402× 402) contour (1000× 1000) phantom (1713× 1713)

Figure 28: Noisy and convoluted versions of images used in the experiments.



randomQR-0 (100× 100) randomQR-1 (175× 175) randomQR-2 (300× 300)

randomQR-3 (375× 375) randomQR-4 (500× 500) shape (128× 128)

trollface (388× 388) diagram (259× 259) text (665× 665)

comic (402× 402) contour (1000× 1000) phantom (1713× 1713)

Figure 29: Deconvolution results for the test images.
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Figure 30: A selection of frames from the salesman video sequence.
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Figure 31: Noisy frames from the salesman video sequence.
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Figure 32: Denoised frames from the salesman video sequence.
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