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Abstract

We present a Distributionally Robust Optimization (DRO) approach to estimate a robusti-
fied regression plane in a linear regression setting, when the observed samples are potentially
contaminated with adversarially corrupted outliers. Our approach mitigates the impact of
outliers by hedging against a family of probability distributions on the observed data, some
of which assign very low probabilities to the outliers. The set of distributions under con-
sideration are close to the empirical distribution in the sense of the Wasserstein metric.
We show that this DRO formulation can be relaxed to a convex optimization problem
which encompasses a class of models. By selecting proper norm spaces for the Wasserstein
metric, we are able to recover several commonly used regularized regression models. We
provide new insights into the regularization term and give guidance on the selection of
the regularization coefficient from the standpoint of a confidence region. We establish two
types of performance guarantees for the solution to our formulation under mild conditions.
One is related to its out-of-sample behavior (prediction bias), and the other concerns the
discrepancy between the estimated and true regression planes (estimation bias). Extensive
numerical results demonstrate the superiority of our approach to a host of regression mod-
els, in terms of the prediction and estimation accuracies. We also consider the application
of our robust learning procedure to outlier detection, and show that our approach achieves
a much higher AUC (Area Under the ROC Curve) than M-estimation (Huber, 1964, 1973).

Keywords: Robust Learning, Distributionally Robust Optimization, Wasserstein Metric,
Regularized Regression, Generalization Guarantees.

1. Introduction

Consider a linear regression model with response y ∈ R, predictor vector x ∈ Rm−1, regres-
sion coefficient β∗ ∈ Rm−1 and error ε ∈ R:

y = x′β∗ + ε.
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Given samples (xi, yi), i = 1, . . . , N , we are interested in estimating β∗. The Ordinary
Least Squares (OLS) minimizes the sum of squared residuals

∑N
i=1(yi − x′iβ)2, and works

well if all the N samples are generated from the underlying true model. However, when
faced with adversarial perturbations in the training data, the OLS estimator will deviate
from the true regression plane to reduce large residuals. Alternatively, one can choose to
minimize the sum of absolute residuals

∑N
i=1 |yi−x′iβ|, as done in Least Absolute Deviation

(LAD), to mitigate the influence of large residuals. Another commonly used approach for
hedging against outliers is M-estimation (Huber, 1964, 1973), which minimizes a symmetric
loss function ρ(·) of the residuals in the form

∑N
i=1 ρ(yi − x′iβ), which downweights the

influence of samples with large absolute residuals. Several choices for ρ(·) include the Huber
function (Huber, 1964, 1973), the Tukey’s Biweight function (Rousseeuw and Leroy, 2005),
the logistic function (Coleman et al., 1980), the Talwar function (Hinich and Talwar, 1975),
and the Fair function (Fair, 1974).

Both LAD and M-estimation are not resistant to large deviations in the predictors. For
contamination present in the predictor space, high breakdown value methods are required.
Examples include the Least Median of Squares (LMS) (Rousseeuw, 1984), which minimizes
the median of the absolute residuals, the Least Trimmed Squares (LTS) (Rousseeuw, 1985),
which minimizes the sum of the q smallest squared residuals, and S-estimation (Rousseeuw
and Yohai, 1984), which has a higher statistical efficiency than LTS with the same break-
down value. A combination of the high breakdown value method and M-estimation is the
MM-estimation (Yohai, 1987). It has a higher statistical efficiency than S-estimation. We
refer the reader to the book of Rousseeuw and Leroy (2005) for a detailed description of
these robust regression methods.

The aforementioned robust estimation procedures focus on modifying the objective func-
tion in a heuristic way with the intent of minimizing the effect of outliers. A more rigorous
line of research explores the underlying stochastic program that leads to the sample-based
estimation procedures. For example, the OLS objective can be viewed as minimizing the
expected squared residual under the uniform empirical distribution over the samples. It
has been well recognized that optimizing under the empirical distribution yields estimators
that are sensitive to perturbations in the data and suffer from overfitting. The reason is
that when the data (x, y) are adversarially corrupted by outliers, the observed samples do
not represent well the true underlying distribution of the data. Yet, the samples are typi-
cally the only information available. Instead of equally weighting all the samples as in the
empirical distribution, we may wish to include more informative distributions that “drive
out” the corrupted samples. One way to realize this is to hedge the expected loss against a
family of distributions that include the true data-generating mechanism with a high confi-
dence; an approach called Distributionally Robust Optimization (DRO). DRO minimizes the
worst-case expected loss over a probabilistic ambiguity set P that is constructed from the
observed samples and characterized by certain known properties of the true data-generating
distribution. For example, Mehrotra and Zhang (2014) study the distributionally robust
least squares problem with P defined through either moment constraints, norm bounds with
moment constraints, or a confidence region over a reference probability measure. Compared
to the single distribution-based stochastic optimization, DRO often results in better out-of-
sample performance due to its distributional robustness.
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The existing literature on DRO can be split into two main branches according to the
way in which P is defined. One is through a moment ambiguity set, which contains all
distributions that satisfy certain moment constraints (see Popescu, 2007; Delage and Ye,
2010; Goh and Sim, 2010; Zymler et al., 2013; Wiesemann et al., 2014). In many cases, it
leads to a tractable DRO problem but has been criticized for yielding overly conservative
solutions (Wang et al., 2016). The other is to define P as a ball of distributions using some
probabilistic distance functions such as the φ-divergences (Bayraksan and Love, 2015), which
include the Kullback-Leibler (KL) divergence (Hu and Hong, 2013; Jiang and Guan, 2015)
as a special case, the Prokhorov metric (Erdoğan and Iyengar, 2006), and the Wasserstein
distance (Esfahani and Kuhn, 2015; Gao and Kleywegt, 2016; Zhao and Guan, 2015; Luo
and Mehrotra, 2017; Blanchet and Murthy, 2016). Deviating from the stochastic setting,
there are also some works focusing on deterministic robustness. El Ghaoui and Lebret (1997)
consider the least squares problem with unknown but bounded, non-random disturbance
and solve it in polynomial time. Xu et al. (2010) study the robust linear regression problem
with norm-bounded feature perturbation and show that it is equivalent to the `1-regularized
regression. See Yang and Xu (2013); Bertsimas and Copenhaver (2017) which also use a
deterministic robustness approach.

In this paper we consider a DRO problem with P containing distributions that are close
to the discrete empirical distribution in the sense of Wasserstein distance. The reason for
choosing the Wasserstein metric is two-fold. On one hand, the Wasserstein ambiguity set
is rich enough to contain both continuous and discrete relevant distributions, while other
metrics such as the KL divergence, exclude all continuous distributions if the nominal dis-
tribution is discrete (Esfahani and Kuhn, 2015; Gao and Kleywegt, 2016). Furthermore,
considering distributions within a KL distance from the empirical, does not allow for prob-
ability mass outside the support of the empirical distribution. On the other hand, measure
concentration results guarantee that the Wasserstein set contains the true data-generating
distribution with high confidence for a sufficiently large sample size (Fournier and Guillin,
2015). Moreover, the Wasserstein metric takes into account the closeness between sup-
port points while other metrics such as the φ-divergence only consider the probabilities of
these points. The image retrieval example in Gao and Kleywegt (2016) suggests that the
probabilistic ambiguity set constructed based on the KL divergence prefers the pathologi-
cal distribution to the true distribution, whereas the Wasserstein distance does not exhibit
such a problem. The reason lies in that φ-divergence does not incorporate a notion of close-
ness between two points, which in the context of image retrieval represents the perceptual
similarity in color.

Our DRO problem minimizes the worst-case absolute residual over a Wasserstein ball
of distributions, and could be relaxed to the following form:

inf
β

1

N

N∑
i=1

|yi − x′iβ|+ ε‖(−β, 1)‖∗, (1)

where ε is the radius of the Wasserstein ball, and ‖ · ‖∗ is the dual norm of the norm
space where the Wasserstein metric is defined on. Formulation (1) incorporates a wide
class of models whose specific form depends on the notion of transportation cost embedded
in the Wasserstein metric (see Section 2). Although the Wasserstein DRO formulation
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simply reduces to regularized regression models, we want to emphasize a few new insights
brought by this methodology. First, the regularization term controls the conservativeness
of the Wasserstein set, or the amount of ambiguity in the data, which differentiates itself
from the heuristically added regularizers in traditional regression models that serve the
purpose of preventing overfitting, error/variance reduction, or sparsity recovery. Second,
the regularization term is determined by the dual norm of the regression coefficient, which
controls the growth rate of the `1-loss function, and the radius of the Wasserstein set. This
connection provides guidance on the selection of the regularization coefficient and may lead
to significant computational savings compared to cross-validation. DRO essentially enables
new and more accurate interpretations of the regularizer, and establishes its dependence on
the growth rate of the loss, the underlying metric space and the reliability of the observed
samples.

The connection between robustness and regularization has been established in several
works. The earliest one may be credited to El Ghaoui and Lebret (1997), who show that
minimizing the worst-case squared residual within a Frobenius norm-based perturbation
set is equivalent to Tikhonov regularization. In more recent works, using properly selected
uncertainty sets, Xu et al. (2010) have shown the equivalence between robust linear regres-
sion with feature perturbations and the Least Absolute Shrinkage and Selection Operator
(LASSO). Yang and Xu (2013) extend this to more general LASSO-like procedures, includ-
ing versions of the grouped LASSO. Bertsimas and Copenhaver (2017) give a comprehensive
characterization of the conditions under which robustification and regularization are equiv-
alent for regression models with deterministic norm-bounded perturbations on the features.
For classification problems, Xu et al. (2009) show the equivalence between the regularized
Support Vector Machines (SVMs) and a robust optimization formulation, by allowing poten-
tially correlated disturbances in the covariates. Shafieezadeh-Abadeh et al. (2015) consider a
robust version of logistic regression under the assumption that the probability distributions
under consideration lie in a Wasserstein ball, and they show that the regularized logistic
regression is a special case of this robust formulation. Recently, Shafieezadeh-Abadeh et al.
(2017); Gao et al. (2017) have provided a unified framework for connecting the Wasserstein
DRO with regularized learning procedures, for various regression and classification models.

Our work is motivated by the problem of identifying patients who receive an abnormally
high radiation exposure in CT exams, given the patient characteristics and exam-related
variables (Chen et al., 2018). This could be casted as an outlier detection problem; specifi-
cally, estimating a robustified regression plane that is immunized against outliers and learns
the underlying true relationship between radiation dose and the relevant predictors. We
focus on robust learning of the parameter in regression models under distributional per-
turbations residing within a Wasserstein ball. While the applicability of the Wasserstein
DRO methodology is not restricted to regression analysis (Sinha et al., 2017; Gao et al.,
2017; Shafieezadeh-Abadeh et al., 2017), or a particular form of the loss function (as long
as it satisfies certain smoothness conditions (Gao et al., 2017)), we focus on the absolute
residual loss in linear regression in light of our motivating application and for the purpose
of enhancing robustness. Our contributions can be summarized as follows:

1. We develop a DRO approach to robustify linear regression using an `1 loss func-
tion and an ambiguity set around the empirical distribution of the training samples
defined based on the Wasserstein metric. The formulation is general enough to in-

4



Wasserstein Based DRO for Robust Learning

clude any norm-induced Wasserstein metric and incorporate additional regularization
constraints on the regression coefficients (e.g., `1-norm constraints). It provides an
intuitive connection between the amount of ambiguity allowed and a regularization
penalty term in the robust formulation, which provides a natural way to adjust the
latter.

2. We establish novel performance guarantees on both the out-of-sample loss (prediction
bias) and the discrepancy between the estimated and the true regression coefficients
(estimation bias). Our guarantees elucidate the role of the regularizer, which is related
to the dual norm of the regression coefficients, in bounding the biases and are in
concert with the theoretical foundation that leads to the regularized problem. The
generalization error bound, in particular, builds a connection between the loss function
and the form of the regularizer via Rademacher complexity, providing a rigorous
explanation for the commonly observed good out-of-sample performance of regularized
regression. On the other hand, the estimation error bound corroborates the validity of
the `1-loss function, which tends to incur a lower estimation bias than other candidates
such as the `2 and `∞ losses. Our results are novel in the robust regression setting
and different from earlier work in the DRO literature, enabling new perspectives and
interpretations of the norm-based regularization, and providing justifications for the
`1-loss-based learning algorithms.

3. We empirically explore three important aspects of the Wasserstein DRO formulation,
including the advantages of the `1-loss function, the selection of a proper norm for the
Wasserstein metric, and the implication of penalizing the extended regression coeffi-
cient (−β, 1), by comparing with a series of regression models on a number of synthetic
datasets. We show the superiority of the Wasserstein DRO approach, presenting a
thorough analysis under four different experimental setups. We also consider the ap-
plication of our methodology to outlier detection and compare with M-estimation in
terms of the ability of identifying outliers (ROC (Receiver Operating Characteristic)
curves). The Wasserstein DRO formulation achieves significantly higher AUC (Area
Under Curve) values.

The rest of the paper is organized as follows. In Section 2, we introduce the Wasserstein
metric and derive the general Wasserstein DRO formulation in a linear regression framework.
Section 3 establishes performance guarantees for both the general formulation and the
special case where the Wasserstein metric is defined on the `1-norm space. Numerical
experimental results are presented in Section 4. We conclude the paper in Section 5.

Notational conventions: We use boldfaced lowercase letters to denote vectors, or-
dinary lowercase letters to denote scalars, boldfaced uppercase letters to denote matri-
ces, and calligraphic capital letters to denote sets. E denotes expectation and P proba-
bility of an event. All vectors are column vectors. For space saving reasons, we write
x = (x1, . . . , xdim(x)) to denote the column vector x, where dim(x) is the dimension of x.
We use prime to denote the transpose of a vector, ‖ · ‖ for the general norm operator, ‖ · ‖2
for the `2 norm, ‖ · ‖1 for the `1 norm, and ‖ · ‖∞ for the infinity norm. P(Z) denotes the
set of probability measures supported on Z. ei denotes the i-th unit vector, e the vector
of ones, 0 a vector of zeros, and I the identity matrix. Given a norm ‖ · ‖ on Rm, the dual
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norm ‖ · ‖∗ is defined as: ‖θ‖∗ , sup‖z‖≤1 θ
′z. For a function h(z), its convex conjugate

h∗(·) is defined as: h∗(θ) , supz∈dom h {θ′z − h(z)}, where dom h denotes the domain of
the function h.

2. Problem Statement and Justification of Our Formulation

Consider a linear regression problem where we are given a predictor/feature vector x ∈
Rm−1, and a response variable y ∈ R. Our goal is to obtain an accurate estimate of the
regression plane that is robust with respect to the adversarial perturbations in the data.
We consider an `1-loss function hβ(x, y) , |y−x′β|, motivated by the observation that the
absolute loss function is more robust to large residuals than the squared loss (see Fig. 1).
Moreover, the estimation error analysis presented in Section 3.2 suggests that the `1-loss
function leads to a smaller estimation bias than others. Our Wasserstein DRO problem
using the `1-loss function is formulated as:

inf
β∈B

sup
Q∈Ω

EQ[|y − x′β|
]
, (2)

where β is the regression coefficient vector that belongs to some set B. B could be Rm−1, or
B = {β : ‖β‖1 ≤ l} if we wish to induce sparsity, with l being some pre-specified number.
Q is the probability distribution of (x, y), belonging to some set Ω which is defined as:

Ω , {Q ∈ P(Z) : Wp(Q, P̂N ) ≤ ε},

where Z is the set of possible values for (x, y); P(Z) is the space of all probability distri-
butions supported on Z; ε is a pre-specified radius of the Wasserstein ball; and Wp(Q, P̂N )

is the order-p Wasserstein distance between Q and P̂N (see definition in (3)), with P̂N the
uniform empirical distribution over samples. The formulation in (2) is robust since it mini-
mizes over the regression coefficients the worst case expected loss, that is, the expected loss
maximized over all probability distributions in the ambiguity set Ω.

Before deriving a tractable reformulation for (2), let us first define the Wasserstein
metric. Let (Z, s) be a metric space where Z is a set and s is a metric on Z. The Wasserstein
metric of order p ≥ 1 defines the distance between two probability distributions Q1 and Q2

in the following way:

Wp(Q1,Q2) ,

(
min

Π∈P(Z×Z)

{∫
Z×Z

(
s((x1, y1), (x2, y2))

)p
Π
(
d(x1, y1), d(x2, y2)

)})1/p

, (3)

where Π is the joint distribution of (x1, y1) and (x2, y2) with marginals Q1 and Q2, respec-
tively. The Wasserstein distance between Q1 and Q2 represents the cost of an optimal mass
transportation plan, where the cost is measured through the metric s. The order p should
be selected in such a way as to ensure that the worst-case expected loss is meaningfully
defined, i.e.,

EQ[hβ(x, y)
]
<∞, ∀Q ∈ Ω. (4)

Notice that the ambiguity set Ω is centered at the empirical distribution P̂N and has radius
ε. It may be desirable to translate (4) into:∣∣∣EQ[hβ(x, y)

]
− EP̂N

[
hβ(x, y)

]∣∣∣ <∞, ∀Q ∈ Ω. (5)
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Figure 1: Comparison between `1 and `2 loss functions.

We want to relate (5) with the Wasserstein distance Wp(Q, P̂N ), which is no larger than ε
for all Q ∈ Ω. The LHS of (5) could be written as:

∣∣∣EQ[hβ(x, y)
]
− EP̂N

[
hβ(x, y)

]∣∣∣
=

∣∣∣∣∫
Z
hβ(x1, y1)Q(d(x1, y1))−

∫
Z
hβ(x2, y2)P̂N (d(x2, y2))

∣∣∣∣
=

∣∣∣∣∫
Z
hβ(x1, y1)

∫
Z

Π0(d(x1, y1), d(x2, y2))−
∫
Z
hβ(x2, y2)

∫
Z

Π0(d(x1, y1), d(x2, y2))

∣∣∣∣
≤
∫
Z×Z

∣∣hβ(x1, y1)− hβ(x2, y2)
∣∣Π0(d(x1, y1), d(x2, y2)),

(6)

where Π0 is the joint distribution of (x1, y1) and (x2, y2) with marginals Q and P̂N , respec-
tively. Comparing (6) with (3), we see that for (5) to hold, the following quantity which
characterizes the growth rate of the loss function needs to be bounded:

GRhβ((x1, y1), (x2, y2)) ,

∣∣hβ(x1, y1)− hβ(x2, y2)
∣∣(

s((x1, y1), (x2, y2))
)p , ∀(x1, y1), (x2, y2) ∈ Z. (7)

A formal definition of the growth rate is due to Gao and Kleywegt (2016), which takes
the limit of (7) as s((x1, y1), (x2, y2)) → ∞, to eliminate its dependence on (x, y). One
important aspect they have pointed out is that when the growth rate of the loss function
is infinite, strong duality for the worst-case problem supQ∈Ω EQ[hβ(x, y)

]
fails to hold,

in which case the DRO problem (2) becomes intractable. Assuming that the metric s is
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induced by some norm ‖ · ‖, the bounded growth rate requirement is expressed as follows:

lim sup
‖(x1,y1)−(x2,y2)‖→∞

|hβ(x1, y1)− hβ(x2, y2)|
‖(x1, y1)− (x2, y2)‖p

≤ lim sup
‖(x1,y1)−(x2,y2)‖→∞

|y1 − x′1β − (y2 − x′2β)|
‖(x1, y1)− (x2, y2)‖p

≤ lim sup
‖(x1,y1)−(x2,y2)‖→∞

‖(x1, y1)− (x2, y2)‖‖(−β, 1)‖∗
‖(x1, y1)− (x2, y2)‖p

<∞,

(8)

where ‖·‖∗ is the dual norm of ‖·‖, and the second inequality is due to the Cauchy-Schwarz
inequality. Notice that by taking p = 1, (8) is equivalently translated into the condition
that ‖(−β, 1)‖∗ <∞, which we will see in Section 3 is an essential requirement to guarantee
a good generalization performance for the Wasserstein DRO estimator. The growth rate
essentially reveals the underlying metric space used by the Wasserstein distance. Taking
p > 1 leads to zero growth rate in the limit of (8), which is not desirable since it removes
the Wasserstein ball structure from our formulation and renders it an optimization problem
over a singleton distribution. This will be made more clear in the following analysis. We
thus choose the order-1 Wasserstein metric with s being induced by some norm ‖ · ‖ to
define our DRO problem.

Next, we will discuss how to convert (2) into a tractable formulation. Suppose we have
N independently and identically distributed realizations of (x, y), denoted by (xi, yi), i =
1, . . . , N . We make the assumption that (x, y) comes from a mixture of two distributions,
with probability q from the outlying distribution Pout and with probability 1− q from the
true distribution P. Recall that P̂N is the discrete uniform distribution over the N samples.
Our goal is to generate estimators that are consistent with the true distribution P. We
claim that when q is small, if the Wasserstein ball radius ε is chosen judiciously, the true
distribution P will be included in the set Ω while the outlying distribution Pout will be
excluded. To see this, consider a simple example where P is a discrete distribution that
assigns equal probability to 10 data points equally spaced between 0.1 and 1, and Pout
assigns probability 0.5 to two data points 1 and 2. We generate 100 samples and plot the
Wasserstein distances from P̂N for both P and Pout. From Fig. 2 we observe that for q
below 0.5, the true distribution P is closer to P̂N whereas the outlying distribution Pout
is further away. If the radius ε is chosen between the red (∗−) and blue (◦−) lines, the
Wasserstein ball that we are hedging against will exclude the outlying distribution and the
resulting estimator will be robust to the adversarial perturbations. Moreover, as q becomes
smaller, the gap between the red and blue lines becomes larger. One implication from this
observation is that as the data becomes purer, the radius of the Wasserstein ball tends to
be smaller, and the confidence in the observed samples is higher. For large q values, the
DRO formulation seems to fail. However, as outliers are defined to be the data points that
do not conform to the majority of data, we can safely claim that Pout is the distribution of
the minority and q is always below 0.5.

We now consider the inner supremum in (2). Esfahani and Kuhn (2015, Theorem 6.3)
show that when the set Z is closed and convex, and the loss function hβ(x, y) is convex in
(x, y),

sup
Q∈Ω

EQ[hβ(x, y)] ≤ κε+
1

N

N∑
i=1

hβ(xi, yi), ∀ε ≥ 0, (9)
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Figure 2: The order-1 Wasserstein distances from the empirical distribution.

where κ(β) = sup{‖θ‖∗ : h∗β(θ) <∞}, with h∗β(·) the convex conjugate function of hβ(x, y).
Through (9), we can relax problem (2) by minimizing the right hand side of (9) instead of
the worst-case expected loss. Moreover, as shown in Esfahani and Kuhn (2015), (9) becomes
an equality when Z = Rm. In Theorem 2.1, we compute the value of κ(β) for the specific
`1 loss function we use. The proof of this Theorem and all results hereafter are included in
Appendix A.

Theorem 2.1 Define κ(β) = sup{‖θ‖∗ : h∗β(θ) <∞}, where ‖ ·‖∗ is the dual norm of ‖ ·‖,
and h∗β(·) is the conjugate function of hβ(·). When the loss function is hβ(x, y) = |y−x′β|,
we have κ(β) = ‖(−β, 1)‖∗.

Due to Theorem 2.1, (2) could be formulated as the following optimization problem:

inf
β∈B

ε‖(−β, 1)‖∗ +
1

N

N∑
i=1

|yi − x′iβ|. (10)

Note that the regularization term of (10) is the product of the growth rate of the loss and the
Wasserstein ball radius. The growth rate is closely related to the way the Wasserstein metric
defines the transportation costs on the data (x, y). As mentioned earlier, a zero growth rate
diminishes the effect of the Wasserstein distributional uncertainty set, and the resulting
formulation would simply be an empirical loss minimization problem. The parameter ε
controls the conservativeness of the formulation, whose selection depends on the sample
size, the dimensionality of the data, and the confidence that the Wasserstein ball contains
the true distribution (see eq. (8) in Esfahani and Kuhn, 2015). Roughly speaking, when
the sample size is large enough, and for a fixed confidence level, ε is inversely proportional
to N1/m.

Formulation (10) incorporates a class of models whose specific form depends on the norm
space we choose, which could be application-dependent and practically useful. For example,
when the Wasserstein metric s is induced by ‖ · ‖2 and the set B is the intersection of a
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polyhedron with convex quadratic inequalities, (10) is a convex quadratic problem which
can be solved to optimality very efficiently. Specifically, it could be converted to:

min
a, b1,...,bN , β

aε+
1

N

N∑
i=1

bi

s.t. ‖β‖22 + 1 ≤ a2,

yi − x′iβ ≤ bi, i = 1, . . . , N,

− (yi − x′iβ) ≤ bi, i = 1, . . . , N,

a, bi ≥ 0, i = 1, . . . , N,

β ∈ B.

(11)

When the Wasserstein metric is defined using ‖ · ‖1 and the set B is a polyhedron, (10) is a
linear programming problem:

min
a, b1,...,bN , β

aε+
1

N

N∑
i=1

bi

s.t. a ≥ β′ei, i = 1, . . . ,m− 1,

a ≥ −β′ei, i = 1, . . . ,m− 1,

yi − x′iβ ≤ bi, i = 1, . . . , N,

− (yi − x′iβ) ≤ bi, i = 1, . . . , N,

a ≥ 1,

bi ≥ 0, i = 1, . . . , N,

β ∈ B.

(12)

More generally, when the coordinates of (x, y) differ from each other substantially, a properly
chosen, positive definite weight matrix M ∈ Rm×m could scale correspondingly different
coordinates of (x, y) by using the M-weighted norm:

‖(x, y)‖M =
√

(x, y)′M(x, y).

It can be shown that (10) in this case becomes:

inf
β∈B

ε
√

(−β, 1)′M−1(−β, 1) +
1

N

N∑
i=1

|yi − x′iβ|. (13)

We note that this Wasserstein DRO framework could be applied to a broad class of
loss functions and the tractable reformulations have been derived in Shafieezadeh-Abadeh
et al. (2017); Gao et al. (2017) for regression and classification models. We adopt the
absolute residual loss in this paper to enhance the robustness of the formulation, which
is the focus of our work and serves the purpose of estimating robust parameters that are
immunized against perturbations/outliers. Notice that (10) coincides with the regularized
LAD models (Pollard, 1991; Wang et al., 2006), except that we are regularizing a variant
of the regression coefficient. We would like to highlight several novel viewpoints that are
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brought by the Wasserstein DRO framework and justify the value and novelty of (10).
First, (10) is obtained as an outcome of a fundamental DRO formulation, which enables
new interpretations of the regularizer from the standpoint of distributional robustness, and
provides rigorous theoretical foundation on why the `2-regularizer prevents overfitting to
the training data. The regularizer could be seen as a control over the amount of ambiguity
in the data and reveals the reliability of the contaminated samples. Second, the geometry of
the Wasserstein ball is embedded in the regularization term, which penalizes the regression
coefficient on the dual Wasserstein space, with the magnitude of penalty being the radius
of the ball. This offers an intuitive interpretation and provides guidance on how to set the
regularization coefficient. Moreover, different from the traditional regularized LAD models
that directly penalize the regression coefficient β, we regularize the vector (−β, 1), where
the 1 takes into account the transportation cost along the y direction. Penalizing only on
β corresponds to an infinite transportation cost along y. Our model is more general in this
sense, and establishes the connection between the metric space on data and the form of the
regularizer.

3. Performance Guarantees

Having obtained a tractable reformulation for the Wasserstein DRO problem, we next es-
tablish guarantees on the predictive power and estimation quality for the solution to (10).
Two types of results will be presented in this section, one of which bounds the prediction
bias of the estimator on new, future data (given in Section 3.1). The other one that bounds
the discrepancy between the estimated and true regression planes (estimation bias), is given
in Section 3.2.

3.1 Out-of-Sample Performance

In this subsection we investigate generalization characteristics of the solution to (10), which
involves measuring the error generated by our estimator on a new random sample (x, y).
We would like to obtain estimates that not only explain the observed samples well, but,
more importantly, possess strong generalization abilities. The derivation is mainly based on
Rademacher complexity (see Bartlett and Mendelson, 2002), which is a measurement of the
complexity of a class of functions. We would like to emphasize the applicability of such a
proof technique to general loss functions, as long as their empirical Rademacher complexity
could be bounded. The bound we derive for the prediction bias depends on both the
sample average loss (the training error) and the dual norm of the regression coefficient (the
regularizer), which corroborates the validity and necessity of our regularized formulation.
Moreover, the generalization result also builds a connection between the loss function and
the form of the regularizer via Rademacher complexity, which enables new insights into the
regularization term and explains the commonly observed good out-of-sample performance
of regularized regression in a rigorous way. We first make several mild assumptions that are
needed for the generalization result.

Assumption A The norm of the uncertainty parameter (x, y) is bounded above almost
surely, i.e., ‖(x, y)‖ ≤ R.

11
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Assumption B The dual norm of (−β, 1) is bounded above within the feasible region,
namely,

sup
β∈B
‖(−β, 1)‖∗ = B̄.

Under these two assumptions, the absolute loss could be bounded via the Cauchy-Schwarz
inequality.

Lemma 3.1 For every feasible β, it follows

|y − x′β| ≤ B̄R, almost surely.

With the above result, the idea is to bound the generalization error using the empirical
Rademacher complexity of the following class of loss functions:

H = {(x, y) 7→ hβ(x, y) : hβ(x, y) = |y − x′β|, β ∈ B}.

We need to show that the empirical Rademacher complexity of H, denoted by RN (H),
is upper bounded. The following result, similar to Lemma 3 in Bertsimas et al. (2015),
provides a bound that is inversely proportional to the square root of the sample size.

Lemma 3.2

RN (H) ≤ 2B̄R√
N
.

Let β̂ be an optimal solution to (10), obtained using the samples (xi, yi), i = 1, . . . , N .
Suppose we draw a new i.i.d. sample (x, y). In Theorem 3.3 we establish bounds on the
error |y − x′β̂|.

Theorem 3.3 Under Assumptions A and B, for any 0 < δ < 1, with probability at least
1− δ with respect to the sampling,

E[|y − x′β̂|] ≤ 1

N

N∑
i=1

|yi − x′iβ̂|+
2B̄R√
N

+ B̄R

√
8 log(2/δ)

N
, (14)

and for any ζ > 2B̄R√
N

+ B̄R

√
8 log(2/δ)

N ,

P
(
|y − x′β̂| ≥ 1

N

N∑
i=1

|yi − x′iβ̂|+ ζ

)
≤

1
N

∑N
i=1 |yi − x′iβ̂|+ 2B̄R√

N
+ B̄R

√
8 log(2/δ)

N

1
N

∑N
i=1 |yi − x′iβ̂|+ ζ

. (15)

There are two probability measures in the statement of Theorem 3.3. One is related to
the new data (x, y), while the other is related to the samples (x1, y1), . . . , (xN , yN ). The
expectation in (14) (and the probability in (15)) is taken w.r.t. the new data (x, y). For a
given set of samples, (14) (and (15)) holds with probability at least 1−δ w.r.t. the measure of
samples. Theorem 3.3 essentially says that given typical samples, the expected loss on new
data using our Wasserstein DRO estimator could be bounded above by the average sample
loss plus extra terms that depend on the supremum of ‖(−β, 1)‖∗ (our regularizer), and
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are proportional to 1/
√
N . This result validates the dual norm-based regularized regression

from the perspective of generalization ability, and could be generalized to any bounded loss
function. It also provides implications on the form of the regularizer. For example, if given
an `2-loss function, the dependency on B̄ for the generalization error bound will be of the
form B̄2, which suggests using ‖(−β, 1)‖2∗ as a regularizer, reducing to a variant of ridge
regression (Hoerl and Kennard, 1970) for ‖ · ‖2 induced Wasserstein metric.

We also note that the upper bounds in (14) and (15) do not depend on the dimension of
(x, y). This dimensionality-free characteristic implies direct applicability of our Wasserstein
approach to high-dimensional settings and is particularly useful in many real applications
where, potentially, hundreds of features may be present. Theorem 3.3 also provides guidance
on the number of samples that are needed to achieve satisfactory out-of-sample performance.

Corollary 3.4 Suppose β̂ is the optimal solution to (10). For a fixed confidence level δ
and some threshold parameter τ ≥ 0, to guarantee that the percentage difference between
the expected absolute loss on new data and the sample average loss is less than τ , that is,

E[|y − x′β̂|]− 1
N

∑N
i=1 |yi − x′iβ̂|

B̄R
≤ τ,

the sample size N must satisfy

N ≥
[

2(1 +
√

2 log(2/δ) )

τ

]2

. (16)

Corollary 3.5 Suppose β̂ is the optimal solution to (10). For a fixed confidence level δ,
some τ ∈ (0, 1) and γ ≥ 0, to guarantee that

P
( |y − x′β̂| − 1

N

∑N
i=1 |yi − x′iβ̂|

B̄R
≥ γ

)
≤ τ,

the sample size N must satisfy

N ≥
[

2(1 +
√

2 log(2/δ) )

τ · γ + τ − 1

]2

, (17)

provided that τ · γ + τ − 1 > 0.

In Corollaries 3.4 and 3.5, the sample size is inversely proportional to both δ and τ ,
which is reasonable since the more confident we want to be, the more samples we need.
Moreover, the smaller τ is, the stricter a requirement we impose on the performance, and
thus more samples are needed.

3.2 Discrepancy between Estimated and True Regression Planes

In addition to the generalization performance, we are also interested in the accuracy of the
estimator. In this section we seek to bound the difference between the estimated and true
regression coefficients, under a certain distributional assumption on (x, y). Throughout the
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section we will use β̂ to denote the estimated regression coefficients, obtained as an optimal
solution to (18), and β∗ for the true (unknown) regression coefficients. The bound we
will derive turns out to be related to the Gaussian width (see definition in the Appendix)
of the unit ball in ‖ · ‖∞, the sub-Gaussian norm of the uncertainty parameter (x, y),
as well as the geometric structure of the true regression coefficients. We note that this
proof technique may be applied to several other loss functions, e.g., `2 and `∞ losses, with
slight modifications. However, we will see that the `1-loss function incurs a relatively low
estimation bias compared to others, further demonstrating the superiority of our absolute
error minimization formulation.

To facilitate the analysis, we will use the following equivalent form of problem (10):

min
β

‖(−β, 1)‖∗

s.t. ‖(−β, 1)′Z‖1 ≤ γN ,
β ∈ B,

(18)

where Z = [(x1, y1), . . . , (xN , yN )] is the matrix with columns (xi, yi), i = 1, . . . , N , and γN
is some exogenous parameter related to ε. One can show that for properly chosen γN , (18)
produces the same solution with (10) (Bertsekas, 1999). (18) is similar to (11) in Chen
and Banerjee (2016), with the difference lying in that we impose a constraint on the error
instead of the gradient, and we consider a more general notion of norm on the coefficient.
On the other hand, due to their similarity, we will follow the line of development in Chen
and Banerjee (2016). Still, our analysis is self-contained and the bound we obtain is in a
different form, which provides meaningful insights into our specific problem. We list below
the assumptions that are needed to bound the estimation error.

Assumption C The `2 norm of (−β, 1) is bounded above within the feasible region, namely,

sup
β∈B
‖(−β, 1)‖2 = B̄2.

Assumption D (Restricted Eigenvalue Condition) For some set A(β∗) = cone{v|
‖(−β∗, 1)+v‖∗ ≤ ‖(−β∗, 1)‖∗}∩Sm and some positive scalar α, where Sm is the unit sphere
in the m-dimensional Euclidean space,

inf
v∈A(β∗)

v′ZZ′v ≥ α,

where Sm denotes the unit sphere in the m-dimensional Euclidean space.

Assumption E The true coefficient β∗ is a feasible solution to (18), i.e.,

‖Z′(−β∗, 1)‖1 ≤ γN , β∗ ∈ B.

Assumption F (x, y) is a centered sub-Gaussian random vector (see definition in the Ap-
pendix), i.e., it has zero mean and satisfies the following condition:

|||(x, y)|||ψ2
= sup

u∈Sm

∣∣∣∣∣∣(x, y)′u
∣∣∣∣∣∣
ψ2
≤ µ.
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Assumption G The covariance matrix of (x, y) has bounded positive eigenvalues. Set
Γ = E[(x, y)(x, y)′]; then,

0 < λmin , λmin(Γ) ≤ λmax(Γ) , λmax <∞.

Notice that both α in Assumption D and γN in Assumption E are related to the random
observation matrix Z. A probabilistic description for these two quantities will be provided
later. We next present a preliminary result, similar to Lemma 2 in Chen and Banerjee
(2016), that bounds the `2-norm of the estimation bias in terms of a quantity that is
related to the geometric structure of the true coefficients. This result gives a rough idea on
the factors that affect the estimation error, and shows the advantages of using the `1-loss
from the perspective of its dual norm. The bound derived in Theorem 3.6 is crude in the
sense that it is a function of several random parameters that are related to the random
observation matrix Z. This randomness will be described in a probabilistic way in the
subsequent analysis.

Theorem 3.6 Suppose the true regression coefficient vector is β∗ and the solution to (18)
is β̂. For the set A(β∗) = cone{v| ‖(−β∗, 1)+v‖∗ ≤ ‖(−β∗, 1)‖∗}∩Sm, under Assumptions
A, D, and E, we have:

‖β̂ − β∗‖2 ≤
2RγN
α

Ψ(β∗), (19)

where Ψ(β∗) = supv∈A(β∗) ‖v‖∗.

Notice that the bound in (19) does not explicitly depend on the sample size N . If we
change to the `2-loss function, problem (18) will become:

min
β

‖(−β, 1)‖∗

s.t. ‖(−β, 1)′Z‖2 ≤ γN ,
β ∈ B.

The proof of Theorem 3.6 still applies with slight modification. We will find out that in the
case of `2-loss, the estimation error bound takes the following form:

‖β̂ − β∗‖2 ≤
2R
√
NγN
α

Ψ(β∗).

Similarly, the `∞-loss, which considers only the maximum absolute loss among the samples,
turns (18) into:

min
β

‖(−β, 1)‖∗

s.t. ‖(−β, 1)′Z‖∞ ≤ γN ,
β ∈ B.

The corresponding bound becomes:

‖β̂ − β∗‖2 ≤
2RNγN

α
Ψ(β∗).
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We see that by using either `2 or `∞-loss, an explicit dependency on N is introduced. As a
result, the estimation error bounds become worse. The reason is that for the `1-loss function,
its dual norm operator only picks out the maximum absolute coordinate and thus avoids the
dependence on the dimension, which in our case is the sample size (see Eq.(28)), whereas
other norms, e.g., `2-norm, sum over all the coordinates and thus introduce a dependence
on N .

As mentioned earlier, (19) provides a random upper bound, revealed in α and γN , that
depends on the randomness in Z. We therefore would like to replace these two parameters by
non-random quantities. The α acts as the minimum eigenvalue of the matrix ZZ′ restricted
to a subspace of Rm, and thus a proper substitute should be related to the minimum
eigenvalue of the covariance matrix of (x, y), i.e., the Γ matrix (cf. Assumption G), given
that (x, y) is zero mean. See Lemmas 3.7, 3.8 and 3.9 for the derivation.

Lemma 3.7 Consider the set AΓ = {w ∈ Sm|Γ−1/2w ∈ cone(A(β∗))}, where A(β∗) is
defined as in Theorem 3.6, and Γ = E[(x, y)(x, y)′]. Under Assumptions F and G, when

the sample size N ≥ C1µ̄
4(w(AΓ))2, where µ̄ = µ

√
1

λmin
, and w(AΓ) is the Gaussian width

of AΓ, with probability at least 1− exp(−C2N/µ̄
4), we have

v′ZZ′v ≥ N

2
v′Γv, ∀ v ∈ A(β∗),

where C1 and C2 are positive constants.

Note that the sample size requirement stated in Lemma 3.7 depends on the Gaussian width
of AΓ, where AΓ relates to A(β∗). The following lemma shows that their Gaussian widths
are also related. This relation is built upon the square root of the eigenvalues of Γ, which
measures the extent to which AΓ expands A(β∗).

Lemma 3.8 (Lemma 4 in Chen and Banerjee (2016)) Let µ0 be the ψ2-norm of a
standard Gaussian random vector g ∈ Rm, and AΓ, A(β∗) be defined as in Lemma 3.7.
Then, under Assumption G,

w(AΓ) ≤ C3µ0

√
λmax

λmin

(
w(A(β∗)) + 3

)
,

for some positive constant C3.

Combining Lemmas 3.7 and 3.8, and expressing the covariance matrix Γ using its eigenval-
ues, we arrive at the following result.

Corollary 3.9 Under Assumptions F and G, and the conditions in Lemmas 3.7 and 3.8,

when N ≥ C̄1µ̄
4µ2

0 · λmax
λmin

(
w(A(β∗)) + 3

)2
, with probability at least 1− exp(−C2N/µ̄

4),

v′ZZ′v ≥ Nλmin

2
, ∀ v ∈ A(β∗),

where C̄1 and C2 are positive constants.
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Next, we derive the smallest possible value of γN such that β∗ is feasible. The derivation
uses the dual norm operator of the `1-loss, resulting in a bound that depends on the Gaussian
width of the unit ball in the dual norm space (‖ · ‖∞). See Lemma 3.10 for details.

Lemma 3.10 Under Assumptions C and F, for any feasible β, with probability at least

1− C4 exp(−C2
5 (w(Bu))2

4ρ2
),

‖(−β, 1)′Z‖1 ≤ CµB̄2w(Bu),

where Bu is the unit ball of norm ‖·‖∞, ρ = supv∈Bu ‖v‖2, and C4, C5, C positive constants.

We note that for other loss functions, e.g., the `2 and `∞ losses, similar results can be
obtained, where Bu is defined to be the unit ‖ · ‖loss

∗ -ball in Rm, with ‖ · ‖loss
∗ being the

dual norm of the loss. Combining Theorem 3.6, Corollary 3.9 and Lemma 3.10, we have
the following main performance guarantee result that bounds the estimation bias of the
solution to (18).

Theorem 3.11 Under Assumptions A, C, D, E, F, G, and the conditions of Theorem 3.6,

Corollary 3.9 and Lemma 3.10, when N ≥ C̄1µ̄
4µ2

0 · λmax
λmin

(
w(A(β∗)) + 3

)2
, with probability

at least 1− exp(−C2N/µ̄
4)− C4 exp(−C2

5 (w(Bu))2/(4ρ2)),

‖β̂ − β∗‖2 ≤
C̄RB̄2µ

Nλmin
w(Bu)Ψ(β∗). (20)

From (20) we see that the bias is decreased as the sample size increases and the uncer-
tainty embedded in (x, y) (revealed in R and µ) is reduced. The estimation error bound
depends on the geometric structure of the true coefficients, defined using the dual norm
space of the Wasserstein metric, the Gaussian width of the unit ‖ · ‖loss

∗ -ball in Rm, and
the minimum eigenvalue of the covariance matrix of (x, y), with a convergence rate 1/N for
the `1-loss we applied. As mentioned earlier, other loss functions may incur a dependence
on N in the numerator of the bound, thus resulting in a slower convergence rate, which
substantiates the benefit of using an `1-loss function.

4. Simulation Experiments on Synthetic Datasets

In this section we will explore the robustness of the Wasserstein formulation in terms of
its Absolute Deviation (AD) loss function and the dual norm regularizer on the extended
regression coefficient (−β, 1). Recall that our Wasserstein formulation is in the following
form:

inf
β∈B

1

N

N∑
i=1

|yi − x′iβ|+ ε‖(−β, 1)‖∗. (21)

We will focus on the following three aspects of this formulation:

1. How to choose a proper norm ‖ · ‖ for the Wasserstein metric?

2. Why do we penalize the extended regression coefficient (−β, 1) rather than β?

3. What is the advantage of the AD loss compared to the Squared Residuals (SR) loss?
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To answer Question 1, we will connect the choice of ‖ · ‖ for the Wasserstein metric
with the characteristics/structures of the data (x, y). Specifically, we will design two sets
of experiments, one with a dense regression coefficient β∗, where all coordinates of x play a
role in determining the value of the response y, and another with a sparse β∗ implying that
only a few predictors are relevant/important in predicting y. Two Wasserstein formulations
will be tested and compared, one induced by the ‖ · ‖2 (Wasserstein `2), which leads to an
`2-regularizer in (21), and the other one induced by the ‖·‖∞ (Wasserstein `∞) and resulting
in an `1-regularizer in (21). Intuitively, and based on the past experience in implementing
the regularization techniques, the Wasserstein `2 should outperform the Wasserstein `∞
in the dense setting, while in the sparse setting, the reverse is true. Researchers have well
identified the sparsity inducing property of the `1-regularizer and provided a nice geometrical
interpretation for it (Friedman et al., 2001). Here, we try to offer a different explanation
from the perspective of the Wasserstein DRO formulation, through projecting the sparsity
of β∗ onto the (x, y) space and establishing a sparse distance metric that only extracts a
subset of coordinates from (x, y) to measure the closeness between samples.

For the second question, we first note that if the Wasserstein metric is induced by the
following metric sc:

sc(x, y) = ‖(x, cy)‖2,

for a positive constant c, then as c → ∞, the resulting Wasserstein DRO formulation
becomes:

inf
β∈B

1

N

N∑
i=1

|yi − x′iβ|+ ε‖β‖2,

which is the `2-regularized LAD. This can be proved by recognizing that sc(x, y) =
‖(x, y)‖M, with M ∈ Rm×m a diagonal matrix whose diagonal elements are (1, . . . , 1, c2),
and then applying (13). Alternatively, if we let

sc(x, y) = ‖(x, cy)‖∞,

it can be shown that as c→∞, the corresponding Wasserstein formulation becomes:

inf
β∈B

1

N

N∑
i=1

|yi − x′iβ|+ ε‖β‖1,

which is the `1-regularized LAD (see proof in the Appendix). It follows that regularizing
over β implies an infinite transportation cost along y. In other words, for two data points
(x1, y1) and (x2, y2), if y1 6= y2, then they are considered to be infinitely far away. By
contrast, our Wasserstein formulation, which regularizes over the extended regression coef-
ficient (−β, 1), stems from a finite cost along y that is equally weighted with x. We will see
the disadvantages of penalizing only β in the analysis of the experimental results.

To answer Question 3, we will compare against several commonly used regression mod-
els that employ the SR loss function, e.g., ridge regression (Hoerl and Kennard, 1970),
LASSO (Tibshirani, 1996), and Elastic Net (EN) (Zou and Hastie, 2005). We will also
compare against M-estimation (Huber, 1964, 1973), which uses a variant of the SR loss and
is equivalent to solving a weighted least squares problem, where the weights are determined
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by the residuals. These models will be compared under two different experimental setups,
one involving adversarial perturbations in both x and y, and the other with perturbations
only in x. The purpose is to investigate the behavior of these approaches when the noise
in y is substantially reduced. As shown by Fig. 1, compared to the SR loss, the AD loss
is less vulnerable to large residuals, and hence, it is advantageous in the scenarios where
large perturbations appear in y. We are interested in studying whether its performance is
consistently good when the corruptions appear mainly in x.

We next describe the data generation process. Each training sample has a probability
q of being drawn from the outlying distribution, and a probability 1 − q of being drawn
from the true (clean) distribution. Given the true regression coefficient β∗, we generate the
training data as follows:

• Generate a uniform random variable on [0, 1]. If it is no larger than 1− q, generate a
clean sample as follows:

1. Draw the predictor x ∈ Rm−1 from the normal distribution Nm−1(0,Σ), where
Σ is the covariance matrix of x, which is just the top left block of the matrix Γ
in Assumption G. Specifically, Γ = E[(x, y)(x, y)′] is equal to

Γ =

(
Σ Σβ∗

(β∗)′Σ (β∗)′Σβ∗ + σ2

)
,

with σ2 being the variance of the noise term. In our implementation, Σ has
diagonal elements equal to 1 (unit variance) and off-diagonal elements equal to
ρ, with ρ the correlation between predictors.

2. Draw the response variable y from N(x′β∗, σ2).

• Otherwise, depending on the experimental setup, generate an outlier that is either:

– Abnormal in both x and y, with outlying distribution:

1. x ∼ Nm−1(0,Σ) +Nm−1(5e, I), or x ∼ Nm−1(0,Σ) +Nm−1(0, 0.25I);

2. y ∼ N(x′β∗, σ2) + 5σ.

– Abnormal only in x:

1. x ∼ Nm−1(0,Σ) +Nm−1(5e, I);

2. y ∼ N(x′β∗, σ2).

• Repeat the above procedure for N times, where N is the size of the training set.

To test the generalization ability of various formulations, we generate a test dataset
containing M samples from the clean distribution. It is worth noting that only clean
samples are included in the test set, since we only care about the prediction accuracy on
clean data points, and our estimator is supposed to be consistent with the clean distribution
and stay away from the outlying one. We are interested in studying the performance of
various methods as the following factors are varied:
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• Signal to Noise Ratio (SNR), defined as:

SNR =
(β∗)′Σβ∗

σ2
,

which is equally spaced between 0.05 and 2 on a log scale.

• The correlation between predictors: ρ, which takes values in (0.1, 0.2, . . . , 0.9).

The performance metrics we use include:

• Mean Squared Error (MSE) on the test dataset, which is defined to be
∑M

i=1(yi −
x′iβ̂)2/M , with β̂ being the estimate of β∗ obtained from the training set, and
(xi, yi), i = 1, . . . ,M, being the observations from the test dataset;

• Relative Risk (RR) of β̂ defined as:

RR(β̂) ,
(β̂ − β∗)′Σ(β̂ − β∗)

(β∗)′Σβ∗
.

• Relative Test Error (RTE) of β̂ defined as:

RTE(β̂) ,
(β̂ − β∗)′Σ(β̂ − β∗) + σ2

σ2
.

• Proportion of Variance Explained (PVE) of β̂ defined as:

PVE(β̂) , 1− (β̂ − β∗)′Σ(β̂ − β∗) + σ2

(β∗)′Σβ∗ + σ2
.

For the metrics that evaluate the accuracy of the estimator, i.e., the RR, RTE and PVE, we
list below two types of scores, one achieved by the best possible estimator β̂ = β∗, called
the perfect score, and the other one achieved by the null estimator β̂ = 0, called the null
score.

• RR: a perfect score is 0 and the null score is 1.

• RTE: a perfect score is 1 and the null score is SNR+1.

• PVE: a perfect score is SNR
SNR+1 , and the null score is 0.

During the training process, all the regularization parameters are tuned on a separate
validation dataset. Specifically, we divide all the N training samples into two sets, dataset 1
and dataset 2 (validation set). For a pre-specified range of values for the penalty parameters,
dataset 1 is used to train the models and derive β̂, and the performance of β̂ is evaluated
on dataset 2. We choose the regularization parameter that yields the minimum Median
Absolute Deviation (MAD) on the validation set. Using MAD as a selection criterion serves
to hedge against the potentially large noise in the validation samples. As to the range
of values for the tuned parameters, we borrow ideas from Hastie et al. (2017), where the
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LASSO was tuned over 50 values ranging from λm = ‖X′y‖∞ to a small fraction of λm on a
log scale, with X ∈ RN×(m−1) the design matrix whose i-th row is x′i, and y = (y1, . . . , yN )
the response vector. In our experiments, this range is properly adjusted for procedures that
use the AD loss. Specifically, for Wasserstein `2 and `∞, `1- and `2-regularized LAD, the
range of values for the regularization parameter is:√

exp

(
lin
(

log(0.005 ∗ ‖X′y‖∞), log(‖X′y‖∞), 50
))

,

where lin(a, b, n) is a function that takes in scalars a, b and n (integer) and outputs a set
of n values equally spaced between a and b; the exp function is applied elementwise to a
vector. The square root operator is in consideration of the AD loss that is the square root
of the SR loss if evaluated on a single sample.

The regularization coefficient ε in formulation (10), which is the radius of the Wasserstein
ball, allows for a more efficient tuning procedure. It has been noted in Esfahani and Kuhn
(2015) that for a large enough sample size, ε is inversely proportional to N1/m. This
proportionality could be used as a guidance on setting ε, where only the proportional factor
needs to be tuned (using cross-validation or a separate validation dataset as described
earlier). In our implementation, given the small size of the simulated datasets, we will still
adopt the validation dataset approach to tune the regularization parameter.

4.1 Dense β∗, outliers in both x and y

In this subsection, we choose a dense regression coefficient β∗, set the intercept β∗0 = 0.3,
and the coefficient for each predictor xi to be β∗i = 0.5, i = 1, . . . , 20. The adversarial
perturbations are present in both x and y. Specifically, the outlying distribution is described
by:

1. x ∼ Nm−1(0,Σ) +Nm−1(5e, I);

2. y ∼ N(x′β∗, σ2) + 5σ.

We generate 10 datasets consisting of N = 100,M = 60 observations. The probability of a
training sample being drawn from the outlying distribution is q = 30%. The mean values
of the performance metrics (averaged over the 10 datasets), as we vary the SNR and the
correlation between predictors, are shown in Figs. 3 and 4. Note that when SNR is varied,
the correlation between predictors is set to 0.8 times a random noise uniformly distributed
on the interval [0.2, 0.4]. When the correlation ρ is varied, the SNR is fixed to 0.5.

It can be seen that as the SNR decreases or the correlation between the predictors
increases, the estimation problem becomes harder, and the performance of all approaches
gets worse. In general the Wasserstein `2 achieves the best performance in terms of all four
metrics. Specifically,

• It is better than the `2-regularized LAD, which assumes an infinite transportation
cost along y.

• It is better than the Wasserstein `∞ and `1-regularized LAD which use the `1-
regularizer.
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• It is better than the approaches that use the SR loss function.

Empirically we have found out that in most cases, the approaches that use the AD loss,
including the `1- and `2-regularized LAD, and the Wasserstein `∞ formulation, drive all the
coordinates of β to zero, due to the relatively small magnitude of the AD loss compared to
the norm of the coefficient, so that the regularizer dominates the solution. The approaches
that use the SR loss, e.g., ridge regression and EN, do not exhibit such a problem, since the
squared residuals weaken the dominance of the regularization term.

Overall the `2-regularizer outperforms the `1-regularizer, since the true regression co-
efficient is dense, which implies that a proper distance metric on the (x, y) space should
take into account all the coordinates. From the perspective of the Wasserstein DRO frame-
work, the `1-regularizer corresponds to an ‖ · ‖∞-based distance metric on the (x, y) space
that only picks out the most influential coordinate to determine the closeness between data
points, which in our case is not reasonable since every coordinate plays a role (reflected in
the dense β∗). In contrast, if β∗ is sparse, using the ‖ · ‖∞ as a distance metric on (x, y) is
more appropriate. A more detailed discussion of this will be presented in Sections 4.3 and
4.4.

4.2 Dense β∗, outliers only in x

In this subsection we will experiment with the same β∗ as in Section 4.1, but with per-
turbations only in x, i.e., for a given x of the outlier, the corresponding y value is drawn
in the same way as the clean samples. Our goal is to investigate the performance of the
Wasserstein formulation when the response y is not subjected to large perturbations. The
motivation for introducing the AD loss in the Wasserstein formulation is to hedge against
large residuals, as illustrated in Fig. 1. We are interested in comparing the AD and SR loss
functions when the residuals have moderate magnitudes.

Interestingly, we have observed that although the `1- and `2-regularized LAD, as well
as the Wasserstein `∞ formulation, exhibit unsatisfactory performance, the Wasserstein `2,
which shares the same loss function with them, is able to achieve a comparable performance
with the best among all – EN and ridge regression (see Figs. 5 and 6). Notably, the `2-
regularized LAD, which is just slightly different from our Wasserstein `2 formulation, shows
a much worse performance. This is because the `2-regularized LAD implicitly assumes
an infinite transportation cost along y, which gives zero tolerance to the variation in the
response. For example, given two data points (x1, y1) and (x2, y2), as long as y1 6= y2, the
distance between them is infinity. Therefore, a reasonable amount of fluctuation, caused by
the intrinsic randomness of y, would be overly exaggerated by the underlying metric used by
the `2-regularized LAD. In contrast, our Wasserstein approach uses a proper notion of norm
to evaluate the distance in the (x, y) space and is able to effectively distinguish abnormally
high variations from moderate, acceptable noise.

It is also worth noting that the formulations with the AD loss, e.g., `2- and `1-regularized
LAD, and the Wasserstein `∞, perform worse than the approaches with the SR loss. One
reasonable explanation is that the AD loss, introduced primarily for hedging against large
perturbations in y, is less useful when the noise in y is moderate, in which case the sensi-
tivity to response noise is needed. Although the AD loss is not a wise choice, penalizing
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(d) Proportion of variance explained.

Figure 3: The impact of SNR on the performance metrics: dense β∗, outliers in both x and
y.
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(d) Proportion of variance explained.

Figure 4: The impact of predictor correlation on the performance metrics: dense β∗, outliers
in both x and y.
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the extended coefficient vector (−β, 1) seems to make up, making the Wasserstein `2 a
competitive method even when the perturbations appear only in x.

4.3 Sparse β∗, outliers in both x and y

In this subsection we will experiment with a sparse β∗. The intercept is set to β∗0 = 3, and
the coefficients for the 20 predictors are set to β∗ = (0.05, 0, 0.006, 0,−0.007, 0, 0.008, 0,
. . . , 0). The adversarial perturbations are present in both x and y. Specifically, the distri-
bution of outliers is characterized by:

1. x ∼ Nm−1(0,Σ) +Nm−1(0, 0.25I);

2. y ∼ N(x′β∗, σ2) + 5σ.

Our goal is to study the impact of the sparsity of β∗ on the choice of the norm space
for the Wasserstein metric. We know that the `1-regularizer works better than the `2-
regularizer for sparse data, which has been validated by our results in Figs. 7 and 8.
We will see that the Wasserstein `∞ formulation significantly outperforms the Wasserstein
`2. An intuitively appealing interpretation for the sparsity inducing property of the `1-
regularizer is made available by the Wasserstein DRO framework, which we explain as
follows. The sparse regression coefficient β∗ implies that only a few predictors are relevant
to the regression model, and thus when measuring the distance in the (x, y) space, we need
a metric that only extracts the subset of relevant predictors. The ‖ · ‖∞, which takes only
the most influential coordinate of its argument, roughly serves this purpose. Compared to
the ‖ · ‖2 which takes into account all the coordinates, most of which are redundant due to
the sparsity assumption, ‖ · ‖∞ results in a better performance, and hence, the Wasserstein
`∞ formulation that stems from the ‖ · ‖∞ distance metric on (x, y) and induces the `1-
regularizer is expected to outperform others.

We note that the `1-regularized LAD achieves similar performance to ours, since re-
placing ‖β‖1 by ‖(−β, 1)‖1 only adds a constant term to the objective function. The
generalization performance (mean MSE) of the AD loss-based formulations is consistently
better than those with the SR loss, since the AD loss is less affected by large perturbations
in y. Also note that choosing a wrong norm for the Wasserstein metric, e.g., the Wasserstein
`2, could lead to an enormous estimation error, whereas with a right norm space, we are
guaranteed to outperform all others. Even when the SNR is very low, our performance is at
least as good as the null estimator (see Fig. 7). Although EN and LASSO achieve similar
performance to ours for moderate SNR values, they have a chance of performing even worse
than the null estimator when there is little signal/information to learn from.

4.4 Sparse β∗, outliers only in x

In this subsection, we will use the same sparse coefficient as in Section 4.3, but the pertur-
bations are present only in x. Specifically, for outliers, their predictors and responses are
drawn from the following distributions:

1. x ∼ Nm−1(0,Σ) +Nm−1(5e, I);

2. y ∼ N(x′β∗, σ2).
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(d) Proportion of variance explained.

Figure 5: The impact of SNR on the performance metrics: dense β∗, outliers only in x.
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(d) Proportion of variance explained.

Figure 6: The impact of predictor correlation on the performance metrics: dense β∗, outliers
only in x.
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(d) Proportion of variance explained.

Figure 7: The impact of SNR on the performance metrics: sparse β∗, outliers in both x
and y.
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(d) Proportion of variance explained.

Figure 8: The impact of predictor correlation on the performance metrics: sparse β∗,
outliers in both x and y.
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Not surprisingly, the Wasserstein `∞ and the `1-regularized LAD achieve the best per-
formance. Notice that in Section 4.3, where perturbations appear in both x and y, the AD
loss-based formulations have smaller generalization and estimation errors than the SR loss-
based formulations. When we reduce the variation in y, the SR loss seems superior to the
AD loss, if we restrict attention to the improperly regularized (`2-regularizer) formulations
(see Fig. 9). For the `1-regularized formulations, our Wasserstein `∞ formulation, as well
as the `1-regularized LAD, is comparable with the EN and LASSO. Moreover, when there
is little information to utilize (low SNR), EN and LASSO are worse than the null estimator,
whereas our performance is at least as good as the null estimator.

We summarize below our main findings from all sets of experiments we have presented:

1. When a proper norm space is selected for the Wasserstein metric, the Wasserstein
DRO formulation outperforms all others in terms of the generalization and estimation
qualities.

2. Penalizing the extended regression coefficient (−β, 1) implicitly assumes a more rea-
sonable distance metric on (x, y) and thus leads to a better performance.

3. The AD loss is remarkably superior to the SR loss when there is large variation in the
response y.

4. The Wasserstein DRO formulation shows a more stable estimation performance than
others when the correlation between predictors is varied.

4.5 An outlier detection example

As an application, we consider an unlabeled two-class classification problem, where our
goal is to identify the abnormal class of data points based on the predictor and response
information using the Wasserstein formulation. We do not know a priori whether the
samples are normal or abnormal, and thus classification models do not apply. The commonly
used regression model for this type of problem is the M-estimation (Huber, 1964, 1973),
against which we will compare in terms of the outlier detection capability.

The data are generated in the same fashion as before. For clean samples, all predictors
x1, . . . , x30 come from a normal distribution with mean 7.5 and standard deviation 4.0. The
response is a linear function of the predictors with β∗0 = 0.3, β∗1 = · · · = β∗30 = 0.5, plus
a Gaussian distributed noise term with zero mean and standard deviation σ. The outliers
concentrate in a cloud that is randomly placed in the interior of the x-space. Specifically,
their predictors are uniformly distributed on (u − 0.125, u + 0.125), where u is a uniform
random variable on (7.5 − 3 × 4, 7.5 + 3 × 4). The response values of the outliers are at a
δR distance off the regression plane.

y = β∗0 + β∗1x1 + · · ·+ β∗30x30 + δR.

We will compare the performance of the Wasserstein `2 formulation (10) with the `1-
regularized LAD and M-estimation with three cost functions – Huber (Huber, 1964, 1973),
Talwar (Hinich and Talwar, 1975), and Fair (Fair, 1974). The performance metrics include
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(d) Proportion of variance explained.

Figure 9: The impact of SNR on the performance metrics: sparse β∗, outliers only in x.
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(d) Proportion of variance explained.

Figure 10: The impact of predictor correlation on the performance metrics: sparse β∗,
outliers only in x.
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the Receiver Operating Characteristic (ROC) curve which plots the true positive rate against
the false positive rate, and the related Area Under Curve (AUC).

Notice that all the regression methods under consideration only generate an estimated
regression coefficient. The identification of outliers is based on the residual and estimated
standard deviation of the noise. Specifically,

Outlier =

{
YES, if |residual| > threshold× σ̂,
NO, otherwise,

where σ̂ is the standard deviation of residuals in the entire training set. ROC curves are
obtained through adjusting the threshold value.

The regularization parameters for Wasserstein DRO and regularized LAD are tuned
using a separate validation set as done in previous sections. We would like to highlight a
salient advantage of our approach reflected in its robustness w.r.t. the choice of ε. In Fig. 11
we plot the out-of-sample AUC as the radius ε (regularization parameter) varies, for the
`2-induced Wasserstein DRO and the `1-regularized LAD. For the Wasserstein DRO curve,
when ε is small, the Wasserstein ball contains the true distribution with low confidence and
thus AUC is low. On the other hand, too large ε makes our solution overly conservative.
Note that the robustness of our approach, indicated by the flatness of the Wasserstein DRO
curve, constitutes another advantage, whereas the performance of LAD dramatically dete-
riorates once the regularizer deviates from the optimum. Moreover, the maximal achievable
AUC for Wasserstein DRO is significantly higher than LAD.
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Figure 11: Out-of-sample AUC v.s. Wasserstein ball radius (regularization coefficient).

In Fig. 12 we show the ROC curves for different approaches, where q represents the
percentage of outliers, and δR the outlying distance along y. We see that the Wasserstein
DRO formulation consistently outperforms all other approaches, with its ROC curve lying
well above others. In general, all approaches have better performance when the percentage
of outliers is lower, and the outlying distance is larger. The approaches that use the AD loss
function (e.g., Wasserstein DRO and regularized LAD) tend to outperform those that adopt
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the SR loss (e.g., M-estimation which uses a variant of the SR loss). The superiority of our
formulation could be attributed to the AD loss function, and the distributional robustness
since we hedge against a family of plausible distributions, including the true distribution
with high confidence. By contrast, M-estimation adopts an Iteratively Reweighted Least
Squares (IRLS) procedure which assigns weights to data points based on the residuals from
previous iterations, and then solves a weighted least squares estimation problem. With such
an approach, there is a chance of exaggerating the influence of outliers while downplaying
the importance of clean observations, especially when the initial residuals are obtained
through Ordinary Least Squares (OLS).
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(c) q = 20%, δR = 4σ
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Wasserstein DRO

Regularized LAD

Huber

Talwar

Fair

(e) q = 20%, δR = 5σ
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Figure 12: ROC curves for outliers in a randomly placed cloud, N = 60, σ = 0.5.

5. Conclusions

We presented a novel `1-loss based robust learning procedure using Distributionally Robust
Optimization (DRO) in a linear regression framework, through which a delicate connection
between the metric space on data and the regularization term has been established. The
Wasserstein metric was utilized to construct the ambiguity set and a tractable reformulation
was derived. It is worth noting that the linear law assumption does not necessarily limit
the applicability of our model. In fact, by appropriately pre-processing the data, one can
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often find a roughly linear relationship between the response and transformed explanatory
variables. Our Wasserstein formulation incorporates a class of models whose specific form
depends on the norm space that the Wasserstein metric is defined on. We provide out-of-
sample generalization guarantees, and bound the estimation bias of the general formulation.
Extensive numerical examples demonstrate the superiority of the Wasserstein formulation
and shed light on the advantages of the `1-loss, the implication of the regularizer, and the
selection of the norm space for the Wasserstein metric. We also presented an outlier detec-
tion example as an application of this robust learning procedure. A remarkable advantage
of our approach rests in its flexibility to adjust the form of the regularizer based on the
characteristics of the data.
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Appendix A. Omitted Definitions and Proofs

This section includes proofs for the theorems and lemmas, in the order they appear in the
paper.

A.1 Proof of Theorem 2.1

Proof We will adopt the notation z , (x, y), β̃ , (−β, 1) for ease of analysis. First rewrite
κ(β) as:

κ(β) = sup
{
‖θ‖∗ : sup

z|z′β̃≥0

{(θ − β̃)′z} <∞, sup
z|z′β̃≤0

{(θ + β̃)′z} <∞
}
.

Consider now the two linear optimization problems A and B:

Problem A:
max (θ − β̃)′z

s.t. z′β̃ ≥ 0.

Problem B:
max (θ + β̃)′z

s.t. z′β̃ ≤ 0.

Form the dual problems using dual variables rA and rB, respectively:

Dual-A:

min 0 · rA
s.t. β̃rA = θ − β̃,

rA ≤ 0,
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Dual-B:

min 0 · rB
s.t. β̃rB = θ + β̃,

rB ≥ 0.

We want to find the set of θ such that the optimal values of problems A and B are finite.
Then, Dual-A and Dual-B need to have non-empty feasible sets, which implies the following
two conditions:

∃ rA ≤ 0, s.t. β̃rA = θ − β̃, (22)

∃ rB ≥ 0, s.t. β̃rB = θ + β̃. (23)

For all i with β̃i ≤ 0, (22) implies θi− β̃i ≥ 0 and (23) implies θi ≤ −β̃i. On the other hand,
for all j with β̃j ≥ 0, (22) and (23) imply −β̃j ≤ θj ≤ β̃j . It is not hard to conclude that:

|θi| ≤ |β̃i|, ∀ i.

It follows,

κ(β) = sup{‖θ‖∗ : |θi| ≤ |β̃i|, ∀i} = ‖β̃‖∗.

A.2 Proof of Lemma 3.2

Proof Suppose that σ1, . . . , σN are i.i.d. uniform random variables on {1,−1}. Then, by
the definition of the Rademacher complexity and Lemma 3.1,

RN (H) = E

[
sup
h∈H

2

N

∣∣∣∣ N∑
i=1

σihβ(xi, yi)

∣∣∣∣
∣∣∣∣∣(x1, y1), . . . , (xN , yN )

]

≤ 2B̄R

N
E

[∣∣∣∣∣
N∑
i=1

σi

∣∣∣∣∣
]

≤ 2B̄R

N
E

[√√√√ N∑
i=1

σ2
i

]

=
2B̄R√
N
.

A.3 Proof of Theorem 3.3

Proof We use Theorem 8 in Bartlett and Mendelson (2002), setting the following corre-
spondences with the notation used there: L(x, y) = φ(x, y) = |y − x′β|. This yields the
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bound (14) on the expected loss. For Eq. (15), we apply Markov’s inequality to obtain:

P
(
|y − x′β̂| ≥ 1

N

N∑
i=1

|yi − x′iβ̂|+ ζ

)
≤ E[|y − x′β̂|]

1
N

∑N
i=1 |yi − x′iβ̂|+ ζ

≤
1
N

∑N
i=1 |yi − x′iβ̂|+ 2B̄R√

N
+ B̄R

√
8 log(2/δ)

N

1
N

∑N
i=1 |yi − x′iβ̂|+ ζ

.

A.4 Proof of Corollary 3.4

Proof The percentage difference requirement can be translated into:

2√
N

+

√
8 log(2/δ)

N
≤ τ,

from which (16) can be easily derived.

A.5 Proof of Corollary 3.5

Proof Based on Theorem 3.3, we just need the following inequality to hold:

1
N

∑N
i=1 |yi − x′iβ̂|+ 2B̄R√

N
+ B̄R

√
8 log(2/δ)

N

1
N

∑N
i=1 |yi − x′iβ̂|+ γB̄R

≤ τ,

which is equivalent to:

γB̄R− 2B̄R√
N
− B̄R

√
8 log(2/δ)

N

1
N

∑N
i=1 |yi − x′iβ̂|+ γB̄R

≥ 1− τ. (24)

We cannot obtain a lower bound for N by directly solving (24) since N appears in a
summation operator. A proper relaxation to (24) is:

γ − 2√
N
−
√

8 log(2/δ)
N

1 + γ
≥ 1− τ, (25)

due to the fact that 1
N

∑N
i=1 |yi − x′iβ̂| ≤ B̄R. By solving (25), we obtain (17).
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A.6 Sub-Gaussian Random Variables and Gaussian Width

Definition 1 (Sub-Gaussian random variable) A random variable z is sub-Gaussian
if the ψ2-norm defined below is finite, i.e.,

|||z|||ψ2
, sup

q≥1

E|z|q
√
q
< +∞.

An equivalent property for sub-Gaussian random variables is that their tail distribution
decays as fast as a Gaussian, namely,

P(|z| ≥ t) ≤ 2 exp{−t2/C2}, ∀t ≥ 0,

for some constant C.
A random vector z ∈ Rm is sub-Gaussian if z′u is sub-Gaussian for any u ∈ Rm. The

ψ2-norm of a vector z is defined as:

|||z|||ψ2
, sup

u∈Sm

∣∣∣∣∣∣z′u∣∣∣∣∣∣
ψ2
,

where Sm denotes the unit sphere in the m-dimensional Euclidean space. For the properties
of sub-Gaussian random variables/vectors, please refer to the book by Vershynin (2017).

Definition 2 (Gaussian width) For any set A ⊆ Rm, its Gaussian width is defined as:

w(A) , E
[
sup
u∈A

u′g
]
, (26)

where g ∼ N (0, I) is an m-dimensional standard Gaussian random vector.

A.7 Proof of Theorem 3.6

In all the following proofs related to Section 3.2, we will adopt the notation z , (x, y), zi ,
(xi, yi), β̃ , (−β, 1), β̃est , (−β̂, 1), β̃true , (−β∗, 1) for ease of exposition.
Proof Since both β̂ and β∗ are feasible (the latter due to Assumption E), we have:

‖Z′β̃est‖1 ≤ γN ,
‖Z′β̃true‖1 ≤ γN ,

from which we derive that ‖Z′(β̃est − β̃true)‖1 ≤ 2γN . Since β̂ is an optimal solution to
(18) and β∗ a feasible solution, it follows that ‖β̃est‖∗ ≤ ‖β̃true‖∗. This implies that ν =
β̃est−β̃true satisfies the condition ‖β̃true+v‖∗ ≤ ‖β̃true‖∗ included in the definition of A(β∗)
and, furthermore, (β̃est − β̃true)/‖β̃est − β̃true‖2 ∈ A(β∗). Together with Assumption D,
this yields

(β̃est − β̃true)
′ZZ′(β̃est − β̃true) ≥ α‖β̃est − β̃true‖22. (27)

On the other hand, from the Cauchy-Schwarz inequality:

(β̃est − β̃true)
′ZZ′(β̃est − β̃true) ≤ ‖Z′(β̃est − β̃true)‖1‖Z′(β̃est − β̃true)‖∞

≤ 2γN max
i
|z′i(β̃est − β̃true)|

≤ 2γN max
i
‖β̃est − β̃true‖∗‖zi‖

≤ 2RγN‖β̃est − β̃true‖∗.

(28)

38



Wasserstein Based DRO for Robust Learning

Combining (27) and (28), we have:

‖β̂ − β∗‖2 = ‖β̃est − β̃true‖2

≤ 2RγN
α

‖β̃est − β̃true‖∗
‖β̃est − β̃true‖2

≤ 2RγN
α

Ψ(β∗),

where the last step follows from the fact that (β̃est − β̃true)/‖β̃est − β̃true‖2 ∈ A(β∗).

A.8 Proof of Lemma 3.7

Proof Define Γ̂ = 1
N

∑N
i=1 ziz

′
i. Consider the set of functions F = {fw(z) = z′Γ−1/2w|w ∈

AΓ}. Then, for any fw ∈ F ,

E[f2
w] = E[w′Γ−1/2zz′Γ−1/2w]

= w′Γ−1/2E[zz′]Γ−1/2w

= w′w

= 1,

where we used Γ = E[zz′] and the fact that w ∈ AΓ.

For any fw ∈ F we have

|||fw|||ψ2
=
∣∣∣∣∣∣∣∣∣z′Γ−1/2w

∣∣∣∣∣∣∣∣∣
ψ2

=
∣∣∣∣∣∣∣∣∣z′Γ−1/2w

∣∣∣∣∣∣∣∣∣
ψ2

‖Γ−1/2w‖2
‖Γ−1/2w‖2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣z′ Γ−1/2w

‖Γ−1/2w‖2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

‖Γ−1/2w‖2

≤ µ
√

w′Γ−1w

≤ µ
√

1

λmin
‖w‖22

= µ

√
1

λmin
= µ̄,

where the first inequality used Assumption F and the second inequality used Assumption G.

Applying Theorem D from Mendelson et al. (2007), for any θ > 0 and when

C̃1µ̄γ2(F , |||·|||ψ2
) ≤ θ

√
N,
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with probability at least 1− exp(−C̃2θ
2N/µ̄4) we have

sup
fw∈F

∣∣∣ 1

N

N∑
i=1

f2
w(zi)− E[f2

w]
∣∣∣ = sup

fw∈F

∣∣∣ 1

N

N∑
i=1

w′Γ−1/2ziz
′
iΓ
−1/2w − 1

∣∣∣
= sup

w∈AΓ

∣∣∣w′Γ−1/2Γ̂Γ−1/2w − 1
∣∣∣

≤ θ, (29)

where C̃1 is some positive constant and γ2(F , |||·|||ψ2
) is defined in Mendelson et al. (2007)

as a measure of the size of the set F with respect to the metric |||·|||ψ2
. Using θ = 1/2, and

properties of γ2(F , |||·|||ψ2
) outlined in Chen and Banerjee (2016), we can set N to satisfy

C̃1µ̄γ2(F , |||·|||ψ2
) ≤ C̃1µ̄

2γ2(AΓ, ‖ · ‖2)

≤ C̃1µ̄
2C0w(AΓ)

≤ 1

2

√
N,

for some positive constant C0, where we used Eq. (44) in Chen and Banerjee (2016). This
implies

N ≥ C1µ̄
4(w(AΓ))2

for some positive constant C1. Thus, for such N and with probability at least 1 −
exp(−C2N/µ̄

4), for some positive constant C2, (29) holds with θ = 1/2. This implies
that for all w ∈ AΓ, ∣∣∣w′Γ−1/2Γ̂Γ−1/2w − 1

∣∣∣ ≤ 1

2

or

w′Γ−1/2Γ̂Γ−1/2w ≥ 1

2
=

1

2
w′Γ−1/2ΓΓ−1/2w.

By the definition of AΓ, for any v ∈ A(β∗),

v′Γ̂v ≥ 1

2
v′Γv.

Noting that Γ̂ = (1/N)ZZ′ yields the desired result.

A.9 Proof of Lemma 3.8

We follow the proof of Lemma 4 in Chen and Banerjee (2016), adapted to our setting. We
include all key steps for completeness.

Proof Recall the definition of the Gaussian width w(AΓ) (cf. (26)):

w(AΓ) = E
[

sup
u∈AΓ

u′g
]
,
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where g ∼ N (0, I). We have:

sup
w∈AΓ

w′g = sup
w∈AΓ

w′Γ−1/2Γ1/2g

= sup
w∈AΓ

‖Γ−1/2w‖2
w′Γ−1/2

‖Γ−1/2w‖2
Γ1/2g

≤
√

1

λmin
sup

v∈cone(A(β∗))∩Bm

v′Γ1/2g,

where Bm is the unit ball in the m-dimensional Euclidean space and the inequality used
Assumption G and the fact that w′Γ−1/2/‖Γ−1/2w‖2 ∈ Bm and w ∈ AΓ.

Define T = cone(A(β∗))∩Bm, and consider the stochastic process {Sv = v′Γ1/2g}v∈T .
For any v1,v2 ∈ T ,

|||Sv1 − Sv2 |||ψ2
=
∣∣∣∣∣∣∣∣∣(v1 − v2)′Γ1/2g

∣∣∣∣∣∣∣∣∣
ψ2

= ‖Γ1/2(v1 − v2)‖2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ (v1 − v2)′Γ1/2g

‖Γ1/2(v1 − v2)‖2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
ψ2

≤ ‖Γ1/2(v1 − v2)‖2 sup
u∈Sm

∣∣∣∣∣∣u′g∣∣∣∣∣∣
ψ2

= µ0‖Γ1/2(v1 − v2)‖2
≤ µ0

√
λmax‖v1 − v2‖2,

where the last step used Assumption G.
Then, by the tail behavior of sub-Gaussian random variables (see Hoeffding bound,

Thm. 2.6.2 in (Vershynin, 2017)), we have:

P(|Sv1 − Sv2 | ≥ δ) ≤ 2 exp

(
− C01δ

2

µ2
0λmax‖v1 − v2‖22

)
,

for some positive constant C01.
To bound the supremum of Sv, we define the metric s(v1,v2) = µ0

√
λmax‖v1 − v2‖2.

Then, by Lemma B in Chen and Banerjee (2016),

E
[

sup
v∈T

v′Γ1/2g

]
≤ C02γ2(T , s)

= C02µ0

√
λmaxγ2(T , ‖ · ‖2)

≤ C3µ0

√
λmaxw(T ),

for positive constants C02, C3, where γ2(T , s) is the γ2-functional we referred to in the proof
of Lemma 3.7. Since T = cone(A(β∗)) ∩ Bm ⊆ conv(A(β∗) ∪ {0}), by Lemma 2 in Maurer
et al. (2014),

w(T ) ≤ w(conv(A(β∗) ∪ {0}))
= w(A(β∗) ∪ {0})

≤ max{w(A(β∗)), w({0})}+ 2
√

ln 4

≤ w(A(β∗)) + 3.
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Thus,

w(AΓ) = E
[

sup
w∈AΓ

w′g

]
≤
√

1

λmin
E
[

sup
v∈T

v′Γ1/2g

]
≤ C3

√
1

λmin
µ0

√
λmaxw(T )

≤ C3µ0

√
λmax

λmin

(
w(A(β∗)) + 3

)
.

A.10 Proof of Corollary 3.9

Proof Combining Lemmas 3.7 and 3.8, and using the fact that for any v ∈ A(β∗),

N

2
v′Γv ≥ Nλmin

2
,

we can derive the desired result.

A.11 Proof of Lemma 3.10

Proof By the definition of dual norm, we know that:

‖β̃′Z‖1 = sup
v∈Bu

β̃
′
Zv = sup

v∈Bu

N∑
i=1

viβ̃
′
zi.

Since viβ̃
′
zi, i = 1, . . . , N are independent centered sub-Gaussian random variables, and∣∣∣∣∣∣∣∣∣viβ̃′zi∣∣∣∣∣∣∣∣∣

ψ2

≤ µ‖viβ̃‖2,

we have that
∑N

i=1 viβ̃
′
zi is also a centered sub-Gaussian random variable with∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

viβ̃
′
zi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

ψ2

≤ C2
03

N∑
i=1

µ2‖viβ̃‖22

= C2
03µ

2‖β̃‖22‖v‖22,

for a positive constant C03.

Consider the stochastic process {Sv = β̃
′
Zv}v∈Bu . As in the proof of Lemma 3.8,

|||Sv1 − Sv2 |||ψ2
≤ C03µ‖β̃‖2‖v1 − v2‖2.
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By the tail behavior of sub-Gaussian random variables (Vershynin, 2017), we know:

P(|Sv1 − Sv2 | ≥ δ) ≤ 2 exp

(
− C04δ

2

µ2‖β̃‖22‖v1 − v2‖22

)
,

for a positive constant C04.
Define the metric s(v1,v2) = µ‖β̃‖2‖v1−v2‖2. Then, by Lemma B in Chen and Banerjee

(2016),

P
(

sup
v1,v2∈Bu

|Sv1 − Sv2 | ≥ C05

(
γ2(Bu, s) + δ · diam(Bu, s)

))
≤ C4 exp(−δ2),

for positive constants C05, C4. Also,

γ2(Bu, s) = µ‖β̃‖2γ2(Bu, ‖ · ‖2) ≤ C5µ‖β̃‖2w(Bu),

diam(Bu, s) = sup
v1,v2∈Bu

s(v1,v2)

= µ‖β̃‖2 sup
v1,v2∈Bu

‖v1 − v2‖2

≤ 2µ‖β̃‖2 sup
v∈Bu

‖v‖2

= 2µ‖β̃‖2ρ,

for positive constants C5. Therefore, noting that supv1,v2∈Bu |Sv1−Sv2 | ≥ 2 supv∈Bu Sv, we
obtain

P
(

sup
v∈Bu

Sv ≥ C05

(C5

2
µ‖β̃‖2w(Bu) + δµ‖β̃‖2ρ

))
≤ P

(
sup

v1,v2∈Bu
|Sv1 − Sv2 | ≥ C05

(
γ2(Bu, s) + δdiam(Bu, s)

))
≤ C4 exp(−δ2).

Set δ = C5w(Bu)
2ρ ; then with probability at least 1− C4 exp(−C2

5 (w(Bu))2

4ρ2
),

sup
v∈Bu

Sv ≤ CµB̄2w(Bu).

The result follows.

A.12 Proof of the Result in Section 4

We will show that if the Wasserstein metric is defined by the following metric sc:

sc(x, y) = ‖(x, cy)‖∞,

then as c→∞, the corresponding Wasserstein DRO formulation becomes:

inf
β∈B

1

N

N∑
i=1

|yi − x′iβ|+ ε‖β‖1,
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which is the `1-regularized LAD.
Proof We first define a new notion of norm on (x, y) where x = (x1, . . . , xm−1):

‖(x, y)‖w,p , ‖(x1w1, . . . , xm−1wm−1, ywm)‖p,

for some m-dimensional weighting vector w = (w1, . . . , wm), and p ≥ 1. Then, sc(x, y) =
‖(x, y)‖w,∞ with w = (1, . . . , 1, c). To obtain the Wasserstein DRO formulation, the key is
to derive the dual norm of ‖ · ‖w,∞. Hölder’s inequality (Rogers, 1888) will be used for the
derivation. We state it below for convenience.

Theorem 1 (Hölder’s inequality) Suppose we have two scalars p, q > 1 and 1/p+1/q =
1. For any two vectors a = (a1, . . . , an) and b = (b1, . . . , bn), the following holds.

n∑
i=1

|aibi| ≤ ‖a‖p‖b‖q.

We will use the notation z , (x, y). Based on the definition of dual norm, we are interested
in solving the following optimization problem for β̃ ∈ Rm:

max
z

z′β̃

s.t. ‖z‖w,∞ ≤ 1.
(30)

The optimal value of problem (30), which is a function of β̃, gives the dual norm evaluated
at β̃. Using Hölder’s inequality, we can write

z′β̃ =
m∑
i=1

(wizi)
( 1

wi
β̃i

)
≤ ‖z‖w,∞‖β̃‖w−1,1 ≤ ‖β̃‖w−1,1,

where w−1 , ( 1
w1
, . . . , 1

wm
). The last inequality is due to the constraint ‖z‖w,∞ ≤ 1. It

follows that the dual norm of ‖ · ‖w,∞ is just ‖ · ‖w−1,1. Back to our problem setting,
using w = (1, . . . , 1, c), and evaluating the dual norm at (−β, 1), we have the following
Wasserstein DRO formulation as c→∞:

lim
c→∞

inf
β∈B

1

N

N∑
i=1

|yi − x′iβ|+ ε‖(−β, 1)‖w−1,1 = inf
β∈B

1

N

N∑
i=1

|yi − x′iβ|+ ε‖β‖1.
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Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems with
uncertain data. SIAM Journal on Matrix Analysis and Applications, 18(4):1035–1064,
1997.
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