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Abstract
This paper introduces the first strategy for stochastic bandits with unit variance Gaussian noise that
is simultaneously minimax optimal up to constant factors, asymptotically optimal, and never worse
than the classical upper confidence bound strategy up to universal constant factors. Preliminary
empirical evidence is also promising. Besides this, a conjecture on the optimal form of the regret is
shown to be false and a finite-time lower bound on the regret of any strategy is presented that very
nearly matches the finite-time upper bound of the newly proposed strategy.
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1. Introduction

Let k > 1 be the number of bandits (or arms) and µ ∈ Rk be the unknown vector of mean
payoffs so that µi ∈ R is the expected payoff when playing the ith bandit (or arm). In each
round t ∈ [n] = {1, 2, . . . , n} the player chooses an arm At ∈ [k] based on past observations and
(optionally) an independent source of randomness. After making her choice, the player observes a
payoff Xt = µAt + ηt where η1, η2, . . . , ηn is a sequence of independent standard Gaussian random
variables. It is standard to minimise the expected pseudo-regret (from now on, just the regret). Let
∆i(µ) = maxj µj − µi be the suboptimality gap for the ith arm. The regret over n rounds is

Rn(µ) = E

[
n∑
t=1

∆At(µ)

]
.

Because the regret depends on the unknown payoff vector, no strategy can hope to make the regret
small for all µ simultaneously. There are a number of performance metrics in the literature, two of
which are described below along with a new one. To spoil the surprise, the strategy introduced in the
present article is simultaneously optimal with respect to all of them.

Worst-case optimality The worst-case regret of a strategy is the value of the regret it suffers when
faced with the worst possible µ.

RWC
n = sup

µ∈Rk:∆(µ)∈[0,1]k
Rn(µ) .

The restriction to bounded suboptimality gaps is necessary to allow an algorithm to choose each arm at
least once without suffering arbitrarily large regret. Generally problems with small suboptimality gaps
are the most interesting. Provided that n ≥ k it is known that all algorithms sufferRWC

n = Ω(
√
kn)

(Auer et al., 1995).

c©2018 Tor Lattimore.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v19/17-513.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v19/17-513.html


LATTIMORE

Asymptotic optimality The worst-case regret obscures interesting structure in the problem that
becomes relevant in practice. This motivates the study of a problem-dependent metric, which demands
that strategies have smaller regret on ‘easier’ bandit instances. A strategy is called asymptotically
optimal if

lim
n→∞

Rn(µ)

log(n)
=

∑
i:∆i(µ)>0

2

∆i(µ)
for all µ ∈ Rd .

The name is justified by the existence of policies satisfying the definition and lower bounds by Lai
and Robbins (1985) and Burnetas and Katehakis (1996) showing that consistent policies (those with
sub-polynomial regret on all µ) cannot do better.

The sub-UCB criteria While asymptotic analysis is quite insightful, the ultimate quantity of interest
is the finite-time regret. To make a stab at quantifying this I say an algorithm is sub-UCB if there
exist universal constants C1, C2 > 0 such that for all k, n and µ it holds that

Rn(µ) ≤ C1

k∑
i=1

∆i(µ) + C2

∑
i:∆i(µ)>0

log(n)

∆i(µ)
. (1)

Of course UCB (Auer et al., 2002) satisfies Eq. (1), along with many other policies as shown in
Table 2 in Appendix E, which outlines the long history of algorithms for stochastic finite-armed
bandits. The study of this new metric can be justified in several ways. First, it provides a forgiving
finite-time analogue of asymptotic optimality. Lai and Robbins (1985) derived asymptotic optimality
by making a restriction on policies (the consistent ones). Consistency is an asymptotic notion, so it is
not surprising that the resulting lower bound is also asymptotic. The sub-UCB notion is suggested by
making a finite-time restriction on the worst case regret. Precisely, for any strategy the finite-time
instance-dependent regret can be bounded in terms of the worst case regret by

Rn(µ) ≥ sup
ε∈(0,1]

∑
i:∆i(µ)>0

max

0,
2 log

(
n
RWC

n

)
+ 2 log

(
ε∆i(µ)

8

)
(1 + ε)∆i(µ)

 (2)

for all µ with maxi ∆i(µ) ≤ 1/2 (Lattimore and Szepesvári, 2018). This means that if you demand a
reasonable worst case bound, then the instance-dependent regret cannot be much better than sub-UCB.
Note that the first sum in Eq. (1) is unavoidable for policies that always choose each arm at least
once, which is also necessary for any algorithm to have reasonable worst case regret. The finite-time
world is not as clean as the asymptotic and it is not easy to decide how tight Eq. (2) might be, which
justifies the additional constant-factor allowance in Eq. (1) and the removal of the (typically negative)
second logarithm term. The second justification for using Eq. (1) as a yardstick is that it is forgiving
and yet recent policies that are minimax optimal up to constant factors do not satisfy it. One of the
core contributions of this article is to correct these deficiencies. Note that Eq. (2) depends quite
weakly on the worst case regret and is meaningful as long asRWC

n = O(np) for p not too close to 1.
None of these criteria are perfect by themselves. Asymptotic optimality is achievable by

policies with outrageous burn-in time and/or large minimax regret, minimax optimal policies may be
unreasonably conservative on easy problems and sub-UCB policies may be far from asymptotically
optimal.

2



REFINING THE CONFIDENCE LEVEL FOR BANDIT STRATEGIES

Contributions The main contribution is a new strategy called ADA-UCB (‘adaptive UCB’) and
analysis showing it is asymptotically optimal, minimax optimal and sub-UCB. No other algorithm is
simultaneously minimax optimal and sub-UCB (see Table 2). Results are specialised to the Gaussian
case with unit variance, but upper bounds can be generalised to subgaussian noise with known
subgaussian constant at the price of increased constants (without losing asymptotic optimality) and
longer proofs. The latter justifies the specialisation because it allows for an elegant concentration
analysis via an embedding of Gaussian random walks into Brownian motion. Also included:

(a) Finite-time lower bounds showing the new strategy is close to optimal.

(b) A conjecture by Bubeck and Cesa-Bianchi (2012) is proven false.

(c) A generic analysis for a large class of strategies simplifying the analysis for existing strategies.

Beyond the concrete results, the approach used for deriving ADA-UCB by examining lower bounds
will likely generalise to other noise models, and indeed, other sequential optimisation problems
with an exploration/exploitation flavour. The contents of this article combines the best parts of two
technical reports with improved results, intuition and analysis (Lattimore, 2015a, 2016b).

Notation For natural number n let [n] = {1, 2, . . . , n}. Binary minimums and maximums are
abbreviated by ∧ and ∨ respectively. The complement of event A is Ac. Except where otherwise
stated, it is assumed without loss of generality that µ1 ≥ µ2 ≥ . . . ≥ µk. None of the proposed
strategies depend on the labelling of the arms, so if this is not the case the indices can simply be
re-ordered. The dependence of the suboptimality gap on the mean vector will usually be omitted
when the context is clear: ∆i = ∆i(µ) = maxj µj − µi. Occasionally it is convenient to define
µk+1 = −∞ and ∆k+1 = ∞. Let Ti(t) =

∑t
s=1 1{As=i} be the number of times arm i has

been chosen after round t and µ̂i(t) =
∑t

s=1 1{As=i}Xs/Ti(t) be the corresponding empirical
estimate of its return. Let µ̂i,s be the empirical estimate of the mean of arm i after s samples
from that arm so that µ̂i,Ti(t) = µ̂i(t). Define σ-algebra Ft = σ(ξ,X1, . . . , Xt) to contain the
information available to the strategy after round t, where ξ is an independent source of randomness
that allows for randomness in the strategy. This means that formally a strategy is a sequence of
random variables (At)t such that At is Ft−1-measurable. It is assumed throughout that n ≥ k.
Finally, let log(x) = log((x + e) log1/2(x + e)). A table of notation is available in Table 3 in the
appendix.

2. The strategy

The ADA-UCB strategy chooses each arm once in arbitrary order for the first k rounds and
subsequently At = arg maxi∈[k] γi(t) where the index of arm i in round t is:

γi(t) = µ̂i(t− 1) +

√
2

Ti(t− 1)
log

(
n

Hi(t− 1)

)
,

with Hi(t) = Ti(t)Ki(t) and Ki(t) =

k∑
j=1

min

{
1,

√
Tj(t)

Ti(t)

}
.

At first sight the new index seems overly complicated. After the statement of the main regret
guarantee I show how the strategy is derived in a principled fashion from lower bounds obtained

3



LATTIMORE

from information theoretic limits of the problem. Similar approaches have been used before, for
example, by Agrawal et al. (1989) for reinforcement learning, and by Garivier and Kaufmann (2016)
for pure exploration in bandits. One interesting consequence of this approach is that ADA-UCB is
not a true index strategy in the sense that γi(t) depends on random variables associated with other
arms. An intriguing open question is whether or not there exists an index strategy for which all three
performance criteria are met. A minor observation is that it is not clear whether or not a true index
strategy should be allowed to depend on t or just on n− t and the samples from the given arm.

majority t
Lai (1987) n/Ti
Honda and Takemura (2010) t/Ti
Audibert and Bubeck (2009) n/(kTi)
Degenne and Perchet (2016) t/(kTi)
Lattimore (2015a) n/t

Table 1: Confidence levels

Relation to other algorithms The index is the same
as that used by Katehakis and Robbins (1995) except
that log(t) has been replaced by log(n/Hi(t − 1)).
The change from log(·) to log(·) is quite minor.
Such inflations of the logarithmic term are typical
for algorithms with finite-time guarantees. The main
difference between ADA-UCB and previous work is the
term inside the logarithm, often called the confidence
level. The most common choice is the current round t, which is used by various versions of UCB,
KL-UCB and BAYES-UCB (Katehakis and Robbins, 1995; Burnetas and Katehakis, 1996; Agrawal,
1995; Auer et al., 2002; Kaufmann et al., 2012; Cappé et al., 2013). Already in the early work by Lai
(1987) there appeared an unnamed variant of UCB for which the confidence level was n/Ti(t− 1).
Due to its similarity to KL-UCB (Cappé et al., 2013) this algorithm will be called KL-UCB* from now
on. A variety of other choices have been used as shown in Table 1.

Computation A naive implementation of ADA-UCB requires a computation time that is quadratic in
the number of arms in each round. Fortunately an incremental implementation leads to an algorithm
with linear computation time by noting that:

(a) If Ti(t− 1) ≤ TAt(t− 1), then γi(t+ 1) = γi(t).

(b) For arms i with Ti(t−1) > TAt(t−1) the value of Ki(t−1) may be computed incrementally
by Ki(t) = Ki(t− 1)−

√
(TAt(t)− 1)/Ti(t) +

√
TAt(t)/Ti(t).

(c) The index of At can be computed trivially in order k time.

The algorithm follows by maintaining a list of arms sorted by Ti(t) and applying the above
observations to incrementally update the indices. If all details are addressed carefully, then the
computation required in round t is O(

∑k
i=1 1 {Ti(t− 1) ≥ TAt(t− 1)}), which in the worst case is

O(k), but can be much smaller when a single arm is played significantly more often than any other.

Regret bound The theorem statement has a more complicated form than previous regret bounds
for finite-armed bandits, mainly because it correctly deals with the case where there are many
near-optimal arms that cannot be statistically identified within the time horizon. Define ki and λi by

ki =

k∑
j=1

min

{
1,

∆i

∆j

}
and λi = 1 +

1

∆2
i

log

(
n∆2

i

ki

)
.

The main theorem is below, which gives the best known finite-time guarantee for any strategy, as
well as all three optimality criteria defined in the introduction.
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Theorem 1 Assume that µ1 ≥ µ2 ≥ · · · ≥ µk. Then there exists a universal constant C > 0 such
that the regret of ADA-UCB is bounded by

Rn(µ) ≤ C min
i∈[k]

(
n∆̄i +

∑
m>i

∆mλm

)
, where ∆̄i =

1

i

i∑
m=1

∆m . (3)

Furthermore:

(a) ADA-UCB is minimax optimal up to constant factors: RWC
n ≤ C ′

√
kn .

(b) ADA-UCB is sub-UCB:Rn(µ) ≤ C
∑

m:∆m>0

(
∆m +

log(n)

∆m

)
.

(c) ADA-UCB is asymptotically optimal: lim
n→∞

Rn(µ)

log(n)
=
∑
i:∆i>0

2

∆i
.

Remark 2 The assumption on the order of the arms is purely for cosmetic purposes. The algorithm
does not need this ordering and treats all arms symmetrically.

Intuition for bound and strategy Let µ ∈ [0, 1]k and i be a suboptimal arm so that ∆i = ∆i(µ) >
0. Set µ′ ∈ [0, 2]k equal to µ except for µ′i = µi + 2∆i, which means that arm i has the largest mean
for the bandit determined by µ′. Provided that n is sufficiently large, a sub-UCB strategy should play
arm i logarithmically often if the mean payoff vector is µ, and linearly often for µ′. Let E and E′ and
P and P′ denote the measures on the outcomes A1, X1, . . . , An, Xn when the strategy interacts with
the bandits determined by µ and µ′ respectively. Let δ ∈ (0, 1] be such that

E[Ti(n)] =
2 log(1/δ)

(2∆i)2
. (4)

Since µ and µ′ are only different in the ith coordinate, the problem of minimising the regret is
essentially equivalent to a hypothesis test on the mean of the ith arm, which satisfies |µ′i−µi| = 2∆i.
Using this idea, a standard information-theoretic argument (see the section on lower bounds for formal
details) shows that P′(Ti(n) ≤ n/2) & δ. Abbreviate ∆′i = ∆i(µ

′). Since ∆′j = µ′i − µ′j ≥ ∆i for
all j 6= i it holds that

Rn(µ′) ≥ n∆i

2
P′(Ti(n) ≤ n/2) & n∆iδ/2 . (5)

Assuming the strategy is sub-UCB, then there exists a (hopefully small) constant C > 0 such that

Rn(µ′) ≤ C
∑

j:∆′j>0

(
∆′j +

log(n)

∆′j

)
≈ C

∑
j:∆′j>0

log(n)

∆′j
, (6)

where the approximation follows because ∆′j ∈ [0, 2] has been assumed. By Eqs. (5) and (6):

δ .
2C log(n)

n∆i

∑
j:∆′j>0

1

∆′j
=

2C log(n)

n∆2
i

∑
j 6=i

∆i

∆j + ∆i
≤ 2Cki log(n)

n∆2
i

.
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The regret guarantee given in Theorem 1 is now justified up to constant factors and an extraneous
additive log log(·) term by substituting the above display into Eq. (4) and writing the regret as
Rn(µ) =

∑k
i=1 ∆iE[Ti(n)]. The idea behind ADA-UCB is to use the approximation ∆−2

i ≈ Ti(t−1).
The approximation is poor when t is small, but becomes reasonable at the critical time when
arm i should no longer be played. Specifically, if Ti(t − 1) ≈ ∆−2

i , then we should expect
Tj(t− 1) ≈ min{Ti(t− 1),∆−2

j } ≈ min{∆−2
i ,∆−2

j }. Then

n

Hi(t− 1)
=

n∑k
j=1 min

{
Ti(t− 1),

√
Ti(t− 1)Tj(t− 1)

} ≈ n∑k
j=1 min

{
1

∆2
i
, 1

∆i∆j

} =
n∆2

i

ki
.

The implication is that the index dynamically tunes its confidence level using the pull counts to
loosely estimate the gaps. The ideas in this section are made formal in the proof of Theorem 1 or the
lower bound (§5).

3. Asymptotic analysis

The primary purpose of this section is to prove part (c) of Theorem 1. Along the way, a finite-
time regret bound for a whole class of strategies is derived, including slightly modified versions
of KL-UCB* (Lai, 1987) and the MOSS (Minimax Optimal in the Stochastic Setting, Audibert and
Bubeck 2009). The analysis leads to an optimal worst-case analysis of MOSS and KL-UCB*, but
not ADA-UCB. The following theorem holds for the class of index strategies that choose At = t for
1 ≤ t ≤ k and subsequently maximise

γi(t) = µ̂i(t− 1) +

√
2

Ti(t− 1)
log

(
n

Ji(t− 1)Ti(t− 1)

)
, (7)

where Ji(t − 1) is Ft−1-measurable and Ji(t − 1) ∈ [a, b] almost surely for constants 0 < a ≤ b.
Except for minor differences in the leading constant and the logarithmic term, this index is the same
as MOSS if Ji(t− 1) = k, KL-UCB* if Ji(t− 1) = 1 and ADA-UCB if Ji(t− 1) = Ki(t− 1).

Theorem 3 For any ε ∈ (0, 1/2) and 1 ≤ ` ≤ k, the regret of the strategy in Eq. (7) is at most

Rn(µ) ≤ n∆` +
2c1b

ε2∆`+1
+
∑
i>`

2∆i +
1

∆i

1 +
1

ε2
+

2 log
(
n∆2

i
a

)
(1− 2ε)2

 .

Furthermore:

(a) limn→∞Rn(µ)/ log(n) =
∑

i:∆i>0
2

∆i
.

(b) If b ≤ k, thenRWC
n ≤ C

√
nk
(
1 + log

(
k
a

))
where C > 0 is a universal constant.

Before the proof a little more notation is required. For each i and ∆ > 0 let ζi(∆) be a random
variable given by

ζi(∆) = 1 + max {s : µ̂i,s > µi + ∆} . (8)
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REFINING THE CONFIDENCE LEVEL FOR BANDIT STRATEGIES

Clearly, ζi(∆) is surely monotone non-increasing in ∆ and may be upper bounded in expectation
using Lemma 13 in the appendix.
Proof [of Theorem 3] Let ∆ ∈ R be the smallest value such that

µ̂1,s +

√
2

s
log
( n
bs

)
≤ µ1 −∆ for all 1 ≤ s ≤ n ,

which is chosen so that γ1(t) ≥ µ1 −∆ for all t. By part (a) of Lemma 12 with α = n/b and d = 1
and λ1 =∞ we have for any x > 0 that

P (∆ ≥ x) ≤ c1bhλ(1/x2)

n
=

c1b

nx2
. (9)

Define random variable

Λi = 1 + max

{
1

∆2
i

, ζi(ε∆i),
2

(1− 2ε)2∆2
i

log

(
n∆2

i

a

)}
.

The definitions of the policy, Λi and ∆ ensure that if ∆i > ∆/ε, then Ti(n) ≤ Λi and by Lemma 13,

E[Λi] ≤ 2 +
1

∆2
i

1 +
1

ε2
+

2 log
(
n∆2

i
a

)
(1− 2ε)2

 . (10)

Hence the regret of the strategy maximising the index in Eq. (7) is

Rn(µ) = E

[
k∑
i=1

∆iTi(n)

]

= E

[∑̀
i=1

∆iTi(n)

]
+ E

[
k∑

i=`+1

1

{
∆i ≤

∆

ε

}
∆iTi(n)

]
+ E

[
k∑

i=`+1

1

{
∆i >

∆

ε

}
∆iTi(n)

]

≤ n∆` + E
[
n∆

ε
1 {∆ ≥ ε∆`+1}

]
+
∑
i>`

∆iE [Λi] . (11)

The last expectation in Eq. (11) is bounded using Eq. (10),

∑
i>`

∆iE [Λi] ≤
∑
i>`

2∆i +
1

∆i

1 +
1

ε2
+

2 log
(
n∆2

i
a

)
(1− 2ε)2

 . (12)

Given an arbitrary random variable X and constant b ∈ R it holds that

E[X] ≤ bP (X ≥ b) +

∫ ∞
b

P (X ≥ x) dx .

The first expectation in Eq. (11) is bounded by combining the above display with Eq. (9),

n

ε
E [∆1 {∆ ≥ ε∆`+1}] ≤ n∆`+1P (∆ ≥ ε∆`+1) +

n

ε

∫ ∞
ε∆`+1

P (∆ ≥ x) dx

≤ c1b

ε2∆`+1
+
c1b

ε

∫ ∞
ε∆`+1

dx

x2
=

2c1b

ε2∆`+1
,
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LATTIMORE

which together with Eq. (12) and Eq. (11) completes the proof of the first part. The asymptotic result
follows by choosing ` = max{i : ∆i = 0} and ε = log−1/4(n). The equality follows by the lower
bound of Lai and Robbins (1985). The worst-case bound follows by choosing ε = 1/4 and tuning
the cut-off `.

The failure of MOSS Notice that if Ji(t−1) = k, then a = b = k and except for a smaller inflated
logarithm the resulting policy is the same as the variant proposed by Ménard and Garivier (2017).
The troublesome term in the regret is the second term, which when ` = 1 is approximately k/∆2. By
contrast, for more conservative strategies this term is approximately 1/∆2, which is negligible. An
especially challenging regime is when ∆2 = 1/k and ∆i = 1 for i > 2. Suppose now that n = k3

and k is large, then the regret of UCB on this problem should be

Rn = O (k log(k)) .

For MOSS, however, the regret on this problem is Ω(
√
nk) = Ω(k2), which for large k is arbitrarily

worse than UCB. A vague explanation of the poor performance is that although there are k arms,
all but two of them are so suboptimal that effectively it is a two-armed bandit. And yet MOSS is
heavily tuned for the k-armed case and suffers as a consequence. A more precise argument is that
distinguishing the first and second arms requires T2(t) ≈ T1(t) ≈ 1/∆2

2 = k2. But after playing
these arms roughly k2 times each the confidence level is n/(kTi(t)) ≈ 1 and the likelihood of
misidentification is large enough that the regret is Ω(n∆2) = Ω(k2) = Ω(

√
nk). Note that for

ADA-UCB we would expect Ki(t) ≈ 2 and the confidence level is approximately n/k2 = k, which is
exactly as large as necessary.

Remark 4 An empirical study in this problem was given in a previous technical report (Lattimore,
2015a). In practice the failure does not become extreme until k is very large (approximately 1000).

4. Finite-time analysis

In this section the remainder of Theorem 1 is proven. The argument is quite long, but never terribly
complicated. The main novel challenge is to deal with the dependence of the index of one arm on the
number of plays of other arms. The usual program for analysing strategies based on upper confidence
bounds has two parts:

(a) Show that with high probability the index of the optimal arm is never much smaller than its
mean.

(b) Show that the index of each suboptimal arm drops below the mean of the optimal arm after not
too many plays with high probability.

The proof starts with (b), the main component of which is showing for suboptimal arms i that Hi(t)
grows at a reasonable rate. As discussed, this means showing that other arms are played sufficiently
often. The following definitions spell out which arms will be played reasonably often. For each arm i

8



REFINING THE CONFIDENCE LEVEL FOR BANDIT STRATEGIES

define a deterministic set of arms Vi ⊂ [k] and random subset Wi ⊆ Vi by

Vi = {j ∈ [k] : j is even or j ≥ i} . (13)

Wi = {i} ∪

{
j ∈ Vi : min

1≤s≤∆−2
i

µ̂j,s +

√
2

s
log

(
n∆i

ki
√
s

)
−
√

2

s
≥ µj

}
. (14)

The set Wi is a subset of Vi that includes arm i and those arms for which the empirical mean is
always nearly as large as the true mean. We’ll soon see that arms j ∈Wi will be played sufficiently
often to ensure that Hi(t) grows at the right rate. The exclusion of odd arms with j < i from Vi is
for technical reasons. In order to show that arm i is not played too often we need to show that its
index drops sufficiently fast and that the index of some other arm is sufficiently large. The separation
of the arms allows us to exploit the independence between the arms. Those arms not in Vi will be
used to show that some index is large enough. Define

δi = c2

√
ki
n∆2

i

and ` = max {i : δi > 1/4} . (15)

It is shown in Lemma 21 in the appendix that there exists a universal constant C > 0 such that `
satisfies

n∆̄` +
∑
m>`

λm∆m ≤ C min
i∈[k]

(
n∆̄i +

∑
m>i

∆mλm

)
, (16)

and so the rest of the proof is devoted to bounding the regret of ADA-UCB in terms of the left-hand-side
of Eq. (16). Define Fi to be the event that the ‘mass’ of Wi is sufficiently large.

Fi = 1

 ∑
m∈Wi

min {1,∆i/∆m} ≥ ki/8

 . (17)

Recall that ki =
∑k

m=1 min {1,∆i/∆m}. So Fi holds if the sum over the restricted setWi is at most
a factor of 8 smaller. The point is that if j ∈ Vi, then Lemma 12 implies P (j /∈Wi) ≤ δi ≤ 1/4.
Later this will be combined with Hoeffding’s bound to show that Fi occurs with high probability.
And now the lemmas begin. First up is to show that arms j ∈ Wi are played sufficiently often
relative to arm i. This will then be used to show that Hi(t) grows at the right rate, which leads to the
conclusion of the proof of part (b) in the outline in Lemma 7.

Lemma 5 If At = i and Hi(t− 1) ≤ ki/∆2
i and Ti(t− 1) ≥ ζi(∆i) ∨ 1/∆2

i , then for all j ∈Wi,

Tj(t− 1) ≥ min

 1

2∆2
j

,
Ti(t− 1)

4 log
(

n
Hi(t−1)

)
 .

Proof If i = j or Tj(t− 1) ≥ Ti(t− 1) or Tj(t− 1) ≥ 1/(2∆2
j ), then we are done, so assume from

now on that none of these are true.

ki
∆2
i

≥ Hi(t− 1) =
√
Tj(t− 1)

k∑
m=1

min

{
Ti(t− 1)√
Tj(t− 1)

,

√
Ti(t− 1)Tm(t− 1)

Tj(t− 1)

}

≥
√
Tj(t− 1)

∆i

k∑
m=1

min

{
1,

√
Tm(t− 1)

Tj(t− 1)

}
=
√
Tj(t− 1)

Kj(t− 1)

∆i
, (18)

9
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where the first inequality is assumed in the lemma statement and the second because Ti(t− 1) ≥
Tj(t− 1) ∨ (1/∆2

i ). Therefore if j ∈Wi, then

µ1 +

√
2

Ti(t− 1)
log

(
n

Hi(t− 1)

)
≥ µ̂i(t− 1) +

√
2

Ti(t− 1)
log

(
n

Hi(t− 1)

)

= γi(t) ≥ γj(t) = µ̂j(t− 1) +

√
2

Tj(t− 1)
log

(
n

Tj(t− 1)Kj(t− 1)

)

≥ µ̂j(t− 1) +

√√√√ 2

Tj(t− 1)
log

(
n∆i

ki
√
Tj(t− 1)

)

≥ µj +

√
2

Tj(t− 1)
≥ µ1 +

√
1

2Tj(t− 1)
(19)

where the first inequality follows from the assumption that Ti(t− 1) ≥ ζi(∆i), which ensures that
µ1 = µi + ∆i ≥ µ̂i(t− 1). The second follows from Eq. (18). The inequalities in Eq. (19) from the
definition of j ∈Wi and the assumption that Tj(t− 1) ≥ 1/(2∆2

j ). Therefore

Tj(t− 1) ≥ Ti(t− 1)

4 log
(

n
Hi(t−1)

) . �

The next lemma uses the previous result to show that if Wi is large enough (Fi holds), then
Hi(t− 1) is reasonably large at the critical point when Ti(t− 1) ≈ 1/∆2

i .

Lemma 6 If Fi holds and Ti(t− 1) ≥ ζi(∆i) ∨ 128/∆2
i and At = i, then

log

(
n

Hi(t− 1)

)
≤ 2 log

(
n∆2

i

ki

)
.

Proof If Hi(t− 1) > ki/∆
2
i , then there is nothing more to do. Otherwise, by Lemma 5

Hi(t− 1) =

k∑
m=1

min
{
Ti(t− 1),

√
Ti(t− 1)Tm(t− 1)

}
≥
∑
m∈Wi

min
{
Ti(t− 1),

√
Ti(t− 1)Tm(t− 1)

}

≥
∑
m∈Wi

min

Ti(t− 1),
Ti(t− 1)

2 log
1
2

(
n

Hi(t−1)

) ,√Ti(t− 1)/2

∆m

 (20)

≥
8
∑

m∈Wi
min

{
1

∆2
i
, 1

∆i∆m

}
log

1
2

(
n

Hi(t−1)

) ≥ ki

∆2
i log

1
2

(
n

Hi(t−1)

) , (21)

where Eq. (20) follows from Lemma 5. The first inequality in Eq. (21) follows because log(x) ≥ 1
and the assumption Ti(t− 1) ≥ 128/∆2

i , and the second because Fi holds. The result follows via

10
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re-arrangement and some algebraic trickery with the log(·) function using Part (v) of Lemma 20 in
the appendix.

For each arm i define random variable Λi that will be shown to be a high probability bound on
Ti(n) and approximately equal to λi in expectation.

Λi = 1 + max

{
128

∆2
i

, ζi(∆i/3),
36

∆2
i

log

(
n∆2

i

ki

)
,

181{F c
i }

∆2
i

log
(
n∆2

i

)}
,

where ζi(·) is defined in Eq. (8). The next lemma is a simple consequence of the previous two and
shows that if Ti(t− 1) + 1 ≥ Λi, then either arm i is not played or its index is smaller than the mean
of the optimal arm by a margin of at least ∆i/3.

Lemma 7 If Ti(t− 1) + 1 ≥ Λi, then either At 6= i or γi(t) ≤ µ1 −∆i/3.

Proof If Fi does not occur, then Hi(t− 1) ≥ Ti(t− 1) ≥ 1/∆2
i and so

γi(t) = µ̂i(t− 1) +

√√√√2 log
(

n
Hi(t−1)

)
Ti(t− 1)

≤ µi +
∆i

3
+

√
2 log

(
n∆2

i

)
Ti(t− 1)

≤ µ1 −
∆i

3
,

where the first inequality follows because Ti(t − 1) + 1 ≥ Λi ≥ 1 + ζi(∆i/3) and the second
because Hi(t− 1) = Ti(t− 1)Ki(t− 1) ≥ Ti(t− 1) ≥ 1/∆2

i and the definition of Λi and because
µi + ∆i/3 = µ1 − 2∆i/3. Next suppose that Fi occurs, then either At 6= i and the result is true, or
At = i and so by Lemma 6

γi(t) = µ̂i(t− 1) +

√√√√2 log
(

n
Hi(t−1)

)
Ti(t− 1)

≤ µi +
∆i

3
+

√√√√4 log
(
n∆2

i
ki

)
Ti(t− 1)

≤ µ1 −
∆i

3
. �

This essentially completes the first part of the proof by showing that if Ti(t− 1) + 1 ≥ Λi, then
arm i is either not played or its index is not too large. The next step is to show that with reasonable
probability there is some near-optimal arm for which the index is big enough to prevent arm i from
being played. The value of Λi has been carefully chosen to bound the number of times arm i can be
played provided the index of some other arm is always larger than µ1 −∆i/3. But more than this,
Λi does not depend on the rewards for odd-index arms j < i so is measurable with respect to the
σ-algebra σ(µ̂j,s : j ∈ Vi, 1 ≤ s ≤ n). Define random variable I ∈ [k] to be the arm with the largest
mean such that there exists an odd j < I + 1 with ∆j ≤ ∆I+1/6 and

min
1≤s≤n

µ̂j,s +

√√√√2

s
log

(
n

sI +
∑

m>I min
{
s,
√
sΛm

}) > µj −
∆I+1

6
. (22)

The definition of I implies that arms i > I will not be played once their index drops far enough
below the mean of the optimal arm. We should hope that I is small with reasonably high probability,
with the best case being I = 1, which occurs when the optimal arm is always optimistic. Notice that
I is well-defined because of the convention that ∆k+1 =∞. Let E1 be the event that I ≤ `, where `
is given in Eq. (15).

11
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Lemma 8 The regret of ADA-UCB is bounded by

Rn(µ) ≤ E

[∑
i>`

∆iΛi

]
+ nE

[
1{Ec

1}∆I

]
+ E

[
1{E1}

∑̀
i=1

∆iTi(n)

]
.

Proof The first task is to show that Ti(n) < Λi for all i > I , which follows by induction over rounds
k + 1 ≤ t ≤ n. Starting with the base case, note that when t = k + 1 we have Ti(t− 1) = 1 < Λi
for all i. Now suppose for t ≥ k + 1 that Ti(t− 1) < Λi for all i > I . By the definition of I there
must exist an odd j with ∆j ≤ ∆I+1/6 that satisfies Eq. (22). For this arm we have

Hj(t− 1) =
k∑

m=1

min

{
Tj(t− 1),

√
Tj(t− 1)Tm(t− 1)

}
< Tj(t− 1)I +

∑
m>I

min

{
Tj(t− 1),

√
Tj(t− 1)Λm

}
.

Therefore

γj(t) = µ̂j(t− 1) +

√
2

Tj(t− 1)
log

(
n

Hj(t− 1)

)
> µj −∆I+1/6 ≥ µ1 −∆I+1/3 .

It follows that if i > I and Ti(t− 1) + 1 ≥ Λi, then Lemma 7 implies At 6= i. Therefore Ti(t) < Λi
for all i > I , which completes the induction. Finally, since

∑k
i=1 Ti(n) = n and using the definition

of E1 as the event that I ≤ `, the regret may be bounded by

Rn(µ) = E

[
k∑
i=1

∆iTi(n)

]
≤ E

[∑
i>`

∆iΛi

]
+ nE[1{Ec

1}∆I ] + E

[
1{E1}

∑̀
i=1

∆iTi(n)

]
. �

The last step in the proof of Theorem 1 is to bound each of the expectations in Lemma 8.

Lemma 9 There exists a universal C > 0 such that:

(i) E

[∑
i>`

∆iΛi

]
≤ C

∑
i>`

∆iλi (ii) E[1{Ec
1}∆I ] ≤ C

(
n∆̄` +

∑
i>`

∆iλi

)

(iii) E

[
1{E1}

∑̀
i=1

∆iTi(n)

]
≤ C

(
n∆̄` +

∑
i>`

∆iλi

)
.

The proof of part (i) follows shortly. The proof of part (ii) is deferred to Appendix B. Very briefly,
it follows somewhat directly from part (a) of Lemma 12 (notice the similarity between the lemma
and Eq. (22) that defines ∆I ). Part (iii) would be trivial if one assumed that E[Ti(n)] is monotone
non-increasing in i. This seems likely, but despite significant effort I was only able to show that this
is approximately true using a complicated proof (details are in Appendix C).
Proof [of Lemma 9 (i)] The proof follows by bounding E[Λi] for each arm i > `. Naively bounding
the max in the definition of Λi by a sum shows that

E[Λi] ≤ 1 +
128

∆2
i

+
36

∆2
i

log

(
n∆2

i

ki

)
+ E

[
ζi

(
∆i

3

)]
+

18P (F ci )

∆2
i

log
(
n∆2

i

)
. (23)

12
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The first three terms are non-random. The second last term is bounded using Lemma 13 by
E[ζi(∆i/3)] ≤ 1 + 18/∆2

i . For the last term we need to upper bound P (F ci ), where Fi is the
event defined in Eq. (17). In order to do this we need to show that Wi is reasonably large with high
probability. Let χj = 1 {j /∈Wi}, which for j ∈ Vi satisfies E[χj ] ≤ δi ≤ 1/4. Then

P (F ci ) = P

∑
j∈Wi

min

{
1,

∆i

∆j

}
<
ki
8

 ≤ P

∑
j∈Vi

(χj − E[χj ]) min

{
1,

∆i

∆j

}
>
ki
4


≤ exp

− k2
i

8
∑

j∈Vi min
{

1, ∆i
∆j

}2

 ≤ exp

(
−ki

8

)
,

where the first inequality follows from the facts that E[χj ] ≤ 1/4 and
∑

j∈Vi min{1,∆i/∆j} ≥ ki/2
and the second inequality follows from Hoeffding’s bound and the fact that χj are independent for
j ∈ Vi. Therefore

P (F ci ) log
(
n∆2

i

)
≤ log

(
n∆2

i

)
exp (−ki/8) ≤ 4 log

(
n∆2

i

ki

)
,

which holds because ki ≥ 2 is guaranteed for all suboptimal arms i. The proof is completed by
substituting the above display into Eq. (23) and using the definition of λi = 1 + 1

∆2
i

log
(
n∆2

i
ki

)
.

Proof [of Theorem 1] The finite-time bound Eq. (3) follows by substituting the bounds given in
Lemma 9 into Lemma 8 and Eq. (16). Minimax and sub-UCB results are derived as corollaries of
the finite-time bound Eq. (3) via Parts (iii) and (iv) of Lemma 21 in the appendix. The asymptotic
analysis has been given already in §3.

5. A lower bound

I now formalise the intuitive argument for the regret guarantee given in §2. The results show that in a
certain sense the upper bound in Theorem 1 is very close to optimal. The following lower bound
holds for all strategies, but does not give a lower bound for all µ simultaneously. Related results
have been proven by a variety of authors (Kulkarni and Lugosi, 2000; Bubeck et al., 2013; Salomon
et al., 2013; Lattimore, 2015b), with the most related by Garivier et al. (2016b). The most significant
difference between that work and the present article is that the lower-order terms are more carefully
considered here, and besides this, the assumptions, and so also results, are different.

Theorem 10 Fix a strategy and let µ ∈ Rk be such that n∆2
i ≥ 2ki log(n) and ∆i ≤ 1 for all i

with ∆i > 0. Then one of the following holds:

(a) Rn(µ) ≥ 1

2

∑
i:∆i>0

1

∆i
log

(
n∆2

i

2ki log(n)

)
.

(b) There exists a µ′ ∈ Rk and i with ∆i > 0 such thatRn(µ′) ≥ 1

4

∑
i:∆′i>0

1

∆′i
log(n) ,

where µ′i = µi + 2∆i and µ′j = µj for j 6= i and ∆′i = ∆i(µ
′).

13
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Proof Suppose that (a) does not hold, then there exists a suboptimal arm i such that

E[Ti(n)] ≤ 1

2∆2
i

log

(
n∆2

i

2ki log(n)

)
. (24)

Let µ′ be as defined in the second part of the lemma and write P′ and E′ for expectation when rewards
are sampled from µ′. Then by Lemmas 18 and 19 in Appendix D we have

P (Ti(n) ≥ n/2) + P′(Ti(n) < n/2) ≥ ki log(n)

n∆2
i

, 2δ .

By Markov’s inequality and Eq. (24) and the fact that ki ≥ 2,

P (Ti(n) ≥ n/2) ≤ 2E[Ti(n)]

n
≤ 1

n∆2
i

log

(
n∆2

i

2ki log(n)

)
≤ ki log(n)

2n∆2
i

= δ .

Therefore P′(Ti(n) < n/2) ≥ δ, which implies that

Rn(µ′) ≥ δn∆i

2
=

1

4

k∑
j=1

min

{
1

∆i
,

1

∆j

}
log(n) ≥ 1

4

∑
j:∆′j>0

1

∆′j
log(n) . �

A conjecture is false It was conjectured by Bubeck and Cesa-Bianchi (2012) that the optimal
regret might have approximately the following form.

Rn(µ) ≤ C
∑
i:∆i>0

(
∆i +

1

∆i
log
( n
H

))
for all µ and n and k , (25)

where C > 0 is a universal constant andH =
∑

i:∆i>0 ∆−2
i is a quantity that appears in the best-arm

identification literature (Bubeck et al., 2009; Audibert and Bubeck, 2010; Jamieson et al., 2014).

Theorem 11 There does not exist a strategy for which Eq. (25) holds.

Proof Let k ≥ 2 and µ1 = 0 and µ2 = −1/k and µi = −1 for i > 2, which implies that
H = k2 + k − 2 ≥ n. For the rest of the proof we view the horizon n = k2 to be a function of k.
Suppose that Rn(µ) = o(k log k), which must be true for any strategy witnessing Eq. (25). Then
mini>2 E [Ti(n)] = o(log k). Let i = arg mini>2 E [Ti(n)] and define µ′ to be equal to µ except
for the ith coordinate, which has µ′i = 1. Let A be the event that Ti(n) ≥ n/2 and let P and P′ be
measures on the space of outcomes induced by the interaction between the fixed strategy and the
bandits determined by µ and µ′ respectively. Then for all ε > 0,

Rn(µ) +Rn(µ′) ≥ n

2

(
P (A) + P′(Ac)

)
≥ n

4
exp

(
−KL(P,P′)

)
=
k2

4
exp (−2E [Ti(n)]) = ω(k2−ε) ,

By the assumption on Rn(µ) and for suitably small ε we have Rn(µ′) = ω(k2−ε). But as the
number of arms k → ∞ (and so also the horizon), this cannot be true for any policy satisfying
Eq. (25), or even Eq. (1). Therefore the conjecture is not true.
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6. Empirical evaluation

ADA-UCB is compared to UCB (Katehakis and Robbins, 1995), MOSS (Ménard and Garivier, 2017),
THOMPSON SAMPLING (Agrawal and Goyal, 2012) and IMED (Honda and Takemura, 2015),1 where
the reference indicates the source of the algorithm. All algorithms choose each arm once and
subsequently:

AIMED
t = arg min

i∈[k]

Ti(t− 1)

2
(µ̂i(t− 1)−max

j∈[k]
µ̂j(t− 1))2 + log(Ti(t− 1)) .

AUCB
t = arg max

i∈[k]
µ̂i(t− 1) +

√
2 log(t)

Ti(t− 1)
.

AMOSS
t = arg max

i∈[k]
µ̂i(t− 1) +

√
2

Ti(t− 1)
log+

(
n

kTi(t− 1)
log2

+

(
1 +

n

kTi(t− 1)

))
.

ATS
t = arg max

i∈[k]
θi(t) with θi(t) ∼ N (µ̂i(t− 1), 1/Ti(t− 1)) .

The logarithmic term used by Ménard and Garivier (2017) in their version of MOSS is larger than
log(·) and this negatively affects its performance. If the variant proposed in Section 3 is used instead,
then it becomes comparable to ADA-UCB on the experiments described below, but still fails on the
computationally expensive experiment given in the previous technical report (Lattimore, 2015a). For
all other algorithms I have chosen the variant for which (a) guarantees exist and (b) the empirical
performance is best. In all plots N indicates the number of independent samples per data point and
confidence bands are calculated at a 95% level. The first three plots in Figure 1 show the regret in the
worst case regime where all suboptimal arms have the same suboptimality gap. Unsurprisingly the
relative advantage of policies with well-tuned confidence levels increases with the number of arms. At
its worst, UCB suffers about three times the regret of ADA-UCB. Coincidentally,

√
log(104) ≈ 3.03.

Figure 2 shows the regret as a function of the horizon n on a fixed bandit with k = 20 arms (see
caption of figure for means). The regret of ADA-UCB is again a little better than the alternatives.

7. Discussion

Anytime strategies The ADA-UCB strategy depends on the horizon n, which may sometimes be
unknown. The natural idea is to replace n by t, which indeed leads to a reasonable strategy that
enjoys the same guarantees as ADA-UCB provided the log(·) function is replaced by something
fractionally larger. The analysis, however, is significantly longer and is not included. Interested
readers may refer to the technical report (Lattimore, 2016b) for the core ideas, but more work is
required to find a clean proof.

Multiple optimal arms The finite-time bound in Theorem 1 is the first that demonstrates an
improvement when there are multiple (near-)optimal arms. The gain in terms of the expected regret is
not very large because ki (which grows as optimal arms are added) appears only in the denominator
of the logarithm. There is, however, a more significant advantage when there are many optimal
arms, which (up to a point) is an exponential decrease in the variance of most strategies. This can be

1. IMED is usually defined for bandits where the rewards have (semi-)bounded support, but Junya Honda kindly provided
unpublished details of the adaptation to the Gaussian case.
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Figure 1: The regret of various algorithms as a function of ∆ when µ = (∆, 0, . . . , 0) and the
number of arms is 2, 10 and 100 respectively. The y-axis shows the regret averaged over
N independent samples for each data point.
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Figure 2: The regret of various algorithms as a function of the horizon for the Gaussian bandit with
k = 20 arms and payoff vector µ = (0, -0.03, -0.03, -0.07, -0.07, -0.07, -0.15, -0.15, -0.15,
-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -1, -1). ADA-UCB is again outperforming
the competitors. Note that IMED and THOMPSON SAMPLING are so similar they cannot be
distinguished in the plot.

extracted from the analysis by observing that the high variance is caused by the possibility that an
optimal arm is not sufficiently optimistic, but the probability of this occurring drops exponentially as
the number of optimal arms increases.

Alternative noise models and other extensions The most obvious open question is how to
generalise the results to a broader class of noise models and setups. I am quite hopeful that this
is possible for noise from exponential families, though the analysis will necessarily become more
complicated because the divergences become more cumbersome to work with than the squared
distance that is the divergence in the Gaussian case. An alternative direction is to consider the
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situation where the variance is also unknown, which has seen surprisingly little attention, but is now
understood reasonably well (Honda and Takemura, 2014; Cowan et al., 2015). At the very least, the
concentration analysis using Brownian motion could be applied, but I expect an adaptive confidence
level will also yield theoretical and practical improvements. Another potential application of the
ideas presented here would be to try and port them into other bandit strategies that depend on a
confidence level such as BAYES-UCB (Kaufmann, 2016), or even linear bandits (Dani et al., 2008;
Abbasi-Yadkori et al., 2011; Lattimore and Szepesvari, 2017).
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Appendix A. Boundary crossing for Gaussian random walks

Let Z1, Z2, . . . be an infinite sequence of independent standard Gaussian random variables and
Sn =

∑n
t=1 Zt. The proof of Theorem 1 relies on a precise understanding of the behaviour of the

random walk (Sn)n. More specifically, what is the hitting probability that Sn ever crosses above a
carefully chosen concave boundary. The following lemma is an easy consequence of the elegant
analysis of boundary crossing probabilities for Brownian motion by Lerche (1986).

Lemma 12 Let d ∈ {1, 2, . . .} and ∆ > 0, α > 0, λ ∈ [0,∞]d and hλ(t) =
∑d

i=1 min{t,
√
tλi},

then there exist constants c1 = 4 and c2 = 12 such that

(a) P

(
exists t ≥ 0 : St ≥

√
2t log

(
α

hλ(t)

)
+ t∆

)
≤ c1hλ(1/∆2)

α
.

(b) P
(

exists t ≤ 1

∆2
: St ≥

√
2t log

( α

t1/2

)
−
√

2t

)
≤ c2√

α∆
.

The second lemma is a bound on the expected number of samples required before the empirical
mean after t samples is close to its true value. The result is relatively standard in the literature, except
that here the proofs are simplified by using the properties of Brownian motion.

Lemma 13 If ∆ > 0 and ζ = 1 + max
{
t : St

t ≥ ∆
}

, then E[ζ] ≤ 1 + 2
∆2 .

20



REFINING THE CONFIDENCE LEVEL FOR BANDIT STRATEGIES

Subgaussian case A common relaxation of the Gaussian noise assumption is to assume the noise
is 1-subgaussian, which means the reward Xt is chosen so that E[exp(c(Xt − µAt)) | Ft−1] ≤
exp(c2/2) almost surely for all c ∈ R. Brownian motion cannot be used to analyse this situation, but
Lemma 12 can still be proven for martingale subgaussian noise using the peeling trick on a carefully
optimised grid (as used by Garivier (2013) and others). Besides a messier proof, the price is that the
log function must be increased slightly (but not so much that Theorem 1 needs to change). Lemma 13
is also easily adapted to the subgaussian setting. The only other lemma that needs modification is
Lemma 15 in the appendix, which has the same flavour as Lemma 12 and is adaptable via a peeling
trick.

The tangent approximation The connection to Brownian motion is made by noting the discrete
time random walk St can be embedded in Brownian motion, which means that if Bt is a standard
Brownian motion, then for any function f : R → R we have P (exists n ≥ 0 : Sn ≥ f(n)) ≤
P (exists n ≥ 0 : Bn ≥ f(n)). The main tool of the analysis is called the tangent approximation,
which was developed in a beautiful book by Lerche (1986) and is summarised in the following
lemma.

Lemma 14 (§3 of Lerche (1986)) Let f : R → R be a concave function with f(x) ≥ 0 for all
x ≥ 0 and Λ(t) = f(t)− tf ′(t) be the intersection of the tangent to f at t with the y-axis, where if
f is non-differentiable, then f ′ denotes any ‘super-derivative’ (gradient such that the tangent does
not intersect the curve). Then

P (exists t ≥ 0 : Bt ≥ f(t)) ≤
∫ ∞

0

Λ(t)√
2πt3

exp

(
−f(t)2

2t

)
dt .

Proof [of Lemma 12] Let Bt be a standard Brownian motion. Each part of the lemma will follow
by analysing the probability that the Brownian motion hits the relevant boundary. For the first part
let f(t) =

√
2t log(α/hλ(t)), which by simple calculus is monotone non-decreasing. Therefore the

intersection of the tangent to f(t) + t∆ at t with the y-axis is Λ(t) = f(t)− tf ′(t) ≤ f(t). By the
tangent approximation:

P (∃t ≥ 0 : Bt ≥ f(t)) ≤
∫ ∞

0

f(t)√
2πt3

exp

(
−(f(t) + t∆)2

2t

)
dt ≤

∫ ∞
0

3hλ(t)

2α
√
πt

exp

(
− t∆

2

2

)
dt ,

where the first inequality follows from Lemma 14 and the second from (iv) of Lemma 20 and since
for positive x, y ≥ 0 it holds that (x+ y)2 ≥ x2 + y2.∫ ∞

0

hλ(t)

t
exp

(
− t∆

2

2

)
dt =

d∑
i=1

∫ ∞
0

min
{

1,
√
λi/t

}
exp

(
− t∆

2

2

)
dt

=

d∑
i=1

2− 2 exp
(
−λi∆

2

2

)
∆2

+

√
2πλi
∆

erfc

(
∆

√
λi
2

)
≤

d∑
i=1

min

{
2 +
√
π

∆2
, (1 +

√
2π)

√
λi

∆

}
≤ (2 +

√
π)hλ(1/∆2) ,

where first inequality follows from the fact that 1 − e−x ≤ x and erfc(x) ≤ min {1, 1/(2x)}.
The result is completed by naively bounding the constants. For the second part, let f(t) =
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√
2t log(α/t1/2) −

√
2t, which is concave and monotone non-decreasing so that Λ(t) = f(t) −

tf ′(t) ≤ f(t). By Lemma 14,

P
(
∃t ≤ 1

∆2
: Bt ≥

√
2t log

( α

s1/2

)
−
√

2t

)
≤
∫ 1

∆2

0

f(t)√
2πt3

exp

(
−f(t)2

2t

)
dt

≤
∫ 1

∆2

0

√
log(α/t1/2)

πt2
exp

(
−1− log

( α

t1/2

)
+ 2

√
log
( α

t1/2

))
dt

≤
∫ 1

∆2

0

5dt
√
πα1/2t3/4

≤ 12√
α∆

,

where the second last inequality follows from part (vi) of Lemma 20.

Proof [of Lemma 13] The time inversion formula and reflection principle will imply the result (Hida,
1980, for example). Let Bs be a standard Brownian motion. Then for t > 0 we have

P (exists s ≥ t : Bs/s ≥ ∆) = P (exists s ≤ 1/t : Bs ≥ ∆) = 2P
(
B1/t ≥ ∆

)
≤ exp

(
− t∆

2

2

)
,

where the first equality follows from the time inversion formula and the second from the reflection
principle. The inequality is a standard Gaussian tail bound (Boucheron et al., 2013, Chap. 2). There-
fore E[ζ] ≤ 1 +

∫∞
0 exp(−t∆2/2)dt = 1 + 2

∆2 , where the additive constant is due to the embedding
of the discrete random walk in the continuous Brownian motion.

Appendix B. Proof of Lemma 9 (ii)

Some of the steps in this proof are simplified by using C > 0 for a universal positive constant that
occasionally has a different value from one equation to the next. When these changes occur they are
indicated by the ×

≤ symbol. Let i ∈ [k] and j /∈ Vi be such that ∆j ≤ ∆i/6. By part (a) of Lemma 12,

P
(

min
1≤t≤n

γj(t) ≤ µj −
∆i

6

∣∣∣Λi, . . . ,Λk) ≤ 36c1

n

 i− 1

∆2
i

+
∑
m≥i

√
Λm
∆i

 .

It is important to note here that Lemma 12 could only be applied to control the conditional probability
above because the random variables Λi, . . . ,Λk are independent of µ̂j,s for all 1 ≤ s ≤ n. Let

Ψi = min

1,
36c1

n

 i− 1

∆2
i

+
∑
m≥i

√
Λm
∆i

 .

Let mi =
∑

j /∈Vi 1 {∆j ≤ ∆i/6} be the number of arms that might satisfy Eq. (22) in the definition
of I . Then by the previous display and the definition of I , P (I ≥ i|Λi, . . . ,Λk) ≤ Ψmi

i . It would
be tempting to try and bound the expectation of ∆I by taking a union bound over all arms, but this
is not tight when many arms have nearly the same mean. Let I ⊂ [k] be empty if i1 = `+ 1 > k.
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Otherwise I = {i1, i2, . . . , ib} where and ij+1 = min
{
i : ∆i > 6∆ij

}
and b is as large as possible

so that ib ≤ k.

E[∆I ] ≤ 6
∑
i∈I

P (I ≥ i) ∆i = 6
∑
i∈I

E
[
P
(
I ≥ i

∣∣∣Λi, . . . ,Λk)∆i

]
≤ 6

∑
i∈I

E [Ψmi
i ∆i] = 6E

[∑
i∈I

Ψmi
i ∆i

]
×
≤ CE

[
max
i∈I

Ψmi
i ∆i

]
.

Only the last step above is non-trivial. It follows by choosing a as the smallest value such that
Ψia < 1/2 (or a = b if such a choice does not exist). Then the contribution of Ψmi

i ∆i is decreasing
exponentially in both directions away from ia by the definition of I and the fact thatmia+2 ≥ mia +1.

Case 1 (Ψi ≥ 1/2) By the definition of ` and the fact that i > ` we have δi ≤ 1/4 and so by
Eq. (15), ki ≤ n∆2

i /(16c2
2) ≤ n∆2

i (144c1). Therefore

1

2
≤ 36c1

n

 i− 1

∆2
i

+
∑
m≥i

√
Λm
∆i

 ≤ 36c1

n

 ki
∆2
i

+
∑
m≥i

√
Λm
∆i

 ≤ 1

4
+

36c1

n

∑
m≥i

√
Λm
∆i

.

Rearranging and using the fact that Ψi ≤ 1 and
√

Λm ≤ ∆mΛm shows that

Ψmi
i ∆i ≤ ∆i ≤

C

n

∑
m≥i

√
Λm ≤

C

n

∑
m>`

∆mΛm .

Case 2 (Ψi < 1/2) By the definition of Ψi and the assumption that Ψi < 1/2 and i > `,

Ψmi
i ∆i ≤

36c121−mi

n

 i− 1

∆i
+
∑
m≥i

√
Λm

 ×
≤ C`21−m`+1

n∆`+1
+
C

n

∑
m>`

∆mΛm .

The second term is already in the right form. For the first,

`21−m`+1

n∆`+1

×
≤ C

n∆`+1
+

`

n∆`+1
1 {m`+1 < `/4}

×
≤ C

n

∑
m>`

∆mΛm + C∆`+11 {m`+1 < `/4}
×
≤ C

(
∆̄` +

1

n

∑
m>`

∆mΛm

)
,

where the last inequality follows since if m`+1 < `/4, then many arms i ≤ ` must have means nearly
as small as `+ 1. The result is completed by part (i) of the lemma.

Appendix C. Proof of Lemma 9 (iii)

The proof relies on another concentration result.

Lemma 15 There exists an ε > 0 such that for any arm j

P

exists s ≤ 8n

`
: µ̂j,s +

√
2

s
log

(√
n

2`s

)
≤ µj + 2

√
ε

s

 ≤ 1

2
.
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Proof The result follows by rescaling the time horizon and noting that if Bs is a Brownian motion,
then for sufficiently small ε (for example, 1/200).

P

(
exists s ≤ 8 : Bs ≥

√
2s log

(
1√
2s

)
− 2
√
εs

)
≤ 1

2
.

The above bound does not depend on any variables and can be verified numerically (either by
simulating Brownian motion or numerically solving the heat equation that characterises the density
of the paths of Brownian motion). An analytical proof is also possible, but requires a modest increase
in the definition log(·) if the tangent approximation is to yield a sufficiently tight bound.

We need a little more notation. First up is another set of ‘usually optimistic’ arms, U ⊂ [k]
defined by

U =

j : ∆j ≤ 4∆̄` and µ̂j,s +

√
2

s
log

√
n

2`s
≥ µj + 2

√
ε

s
for all s ≤ 8n

`

 .

Let ∆ =
√
ε`/(8n) with ε > 0 as given in Lemma 15. Finally we need two more events E2 and E3

given by

E2 =

{
√
n`+

∑
m>`

√
Λm ≤

√
2n`

}
and E3 =

{
|U | ≥ `

8

}
. (26)

Lemma 16 If E1, E2, E3 and ∆i > 4∆̄`, then Ti(n) ≤
⌈
ζi(∆) +

24n

ε`

⌉
.

Proof Proceeding by contradiction. Suppose the claim is not true, then there exists a round t−1 < n
such that At = i and

Ti(t− 1) =

⌈
ζi(∆) +

24n

ε`

⌉
. (27)

By the definition of j ∈ U ,

Hj(t− 1) ≤
k∑

m=1

√
Tj(t− 1)Tm(t− 1) ≤

√
Tj(t− 1)

(
√
`n+

∑
m>`

√
Λm

)
≤
√

2Tj(t− 1)`n ,

(28)

where the first inequality follows from the definition of Hj(t− 1), the second by splitting the sum
and because E1 holds (so that Tm(n) ≤ Λm for m > `) and Cauchy-Schwarz, the third follows
because E2 holds. Therefore arms j ∈ U with Tj(t− 1) ≤ 8n/` satisfy

γj(t) = µ̂j(t− 1) +

√√√√2 log
(

n
Hj(t−1)

)
Tj(t− 1)

≥ µj + 2

√
ε

Tj(t− 1)
. (29)
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Furthermore, since Ti(t− 1) ≥ ζi(∆) and At = i it holds that γi(t) ≥ γj(t) and so using Eq. (29)
and the same argument as in Lemma 5 leads to

µi + ∆ +

√√√√2 log
(

n
Hi(t−1)

)
Ti(t− 1)

≥ µ̂i(t− 1) +

√√√√2 log
(

n
Hi(t−1)

)
Ti(t− 1)

≥ µ̂j(t− 1) +

√√√√2 log
(

n
Hj(t−1)

)
Tj(t− 1)

≥ µ̂j(t− 1) +

√√√√√2 log

(√
n

2`Tj(t−1)

)
Tj(t− 1)

≥ µj + 2

√
ε

Tj(t− 1)
≥ µi + ∆ +

√
ε

Tj(t− 1)
.

And by rearranging
2

Ti(t− 1)
log

(
n

Hi(t− 1)

)
≥ ε

Tj(t− 1)
. Therefore for all j ∈ U we have

Tj(t− 1) ≥ min

8n

`
,

εTi(t− 1)

log
(

n
Hi(t−1)

)
 . (30)

Since Ti(t− 1) ≥ 8n/(ε`), the definition of Hi(t− 1) implies that

Hi(t− 1) =

k∑
j=1

min

{
Ti(t− 1),

√
Ti(t− 1)Tj(t− 1)

}
≥
∑
j∈U

min {Ti(t− 1), Tj(t− 1)} ≥ 8|U |n

` log
(

n
Hi(t−1)

) ≥ n

log
(

n
Hi(t−1)

) .
Then since E3 holds, by Lemma 20(vii) we have log(n/Hi(t − 1)) ≤ 3. Therefore if
Ti(t − 1) ≥ 24n/(ε`), then another application of Eq. (30) shows that Tj(t − 1) ≥ 8n/` and
so n > t − 1 =

∑k
j=1 Tj(t − 1) ≥

∑
j∈U Tj(t − 1) ≥ 8n|U |/` ≥ n, which is a contradiction.

Therefore there does not exist a round t−1 where Eq. (27) holds andAt = i and the lemma follows.

Lemma 17 P (Ec3) ≤ 3/`.

Proof By Markov’s inequality, m =
∑

j≤` 1
{

∆j ≤ 4∆̄`

}
≥ 3`

4 . Let χ1, . . . , χm be a sequence of
independent Bernoulli events given by χj = 1 {j /∈ U}. Then by Lemma 15, P (χj = 1) ≤ 1/2 and
so Chebyshev’s inequality implies that

P (Ec3) = P
(
|U | < `

8

)
= P

 m∑
j=1

(1− χj) <
`

8

 = P

 m∑
j=1

χj > m− `

8


≤ P

 m∑
j=1

(χj − E[χj ]) ≥
m

2
− `

8

 ≤ m/4(
m
2 −

`
8

)2 ≤ 3

`
. �
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At last all the tools are available to prove part (iii) of Lemma 9.
Proof [of Lemma 9 (iii)] The regret due to arms i ≤ ` is decomposed

E

1{E1}
∑
i≤`

∆iTi(n)

 ≤ E
[
1{Ec

2}n∆`

]
+ E

1{E1,E2}
∑
i≤`

∆iTi(n)

 . (31)

The first term is bounded easily using the definition of E2, Lemma 21(i) and Lemma 9(i).

E
[
1{Ec

2}n∆`

]
≤ C

∑
m>`

E
[√

Λm

]
≤ C

∑
m>`

∆mλm .

The second term in Eq. (31) is bounded using Lemmas 16 and 17. By noting that the contribution to
the regret of arms i with ∆i ≤ 4∆̄` is at most 4n∆̄` it follows that

E

1{E1,E2}
∑
i≤`

∆iTi(n)

 ≤ 4n∆̄` + n∆`P (Ec3)

+ E

1{E1,E2,E3}
∑

i≤`:∆i>4∆̄`

∆i

(
ζi(∆) +

⌈
24n

ε`

⌉) .
The proof is completed since Lemma 17 implies that n∆`P (Ec3) ≤ 3n∆`/` ≤ 3n∆̄` and Lemma 13
implies that

E

1{E1,E2,E3}
∑

i≤`:∆i>4∆̄`

∆i

(
ζi(∆) +

⌈
24n

ε`

⌉) ≤ E

∑
i≤`

∆i

(
ζi(∆) +

⌈
24n

ε`

⌉)
≤
∑
i≤`

∆i

(
2 +

40n

ε`

)
≤ Cn∆̄` . �

Appendix D. Technical results

Here some lemmas that are either known or follow from uninteresting calculations. The first two are
used for the lower bounds have have been seen before.

Lemma 18 (See Lemma 2.6 in Tsybakov 2008) Let P and P′ be measures on the same probability
space and assume P′ is absolutely continuous with respect to P. Then for any event A,
P (A) + P′(Ac) ≥ exp(−KL(P,P′))/2, where KL(P,P′) is the relative entropy between P and P′.

The next lemma has also been seen before. For example in the articles by Auer et al. (1995) or
Gerchinovitz and Lattimore (2016) where the formalities are described in great detail.

Lemma 19 Fix a strategy. Let 1 ≤ i ≤ k and µ ∈ Rk and µ′ ∈ Rk be such that µj = µ′j for all
j 6= i and µi − µ′i = ∆. Then let P be the measure on A1, X1, A2, X2, . . . , An, Xn induced by the
interaction of the strategy with rewards sampled using mean vector µ and P′ be the same but with
rewards sampled with means from µ′. Then KL(P,P′) = E[Ti(n)]∆2/2, where the expectation is
taken with respect to P.
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Recall that log(x) = log((e+x) log
1
2 (e+x)). Here are a few simple facts that make manipulating

this unusual function a little easier.

Lemma 20 The following hold:

(i) log is concave and monotone increasing on [0,∞).

(ii) log(0) ≥ 1.

(iii) limx→∞ log(x)/ log(x) = 1.

(iv) (log(x))1/2 exp(− log(x)) ≤ 3/(2x).

(v) If x log
1
2 (b/x) ≥ a, then log(b/x) ≤ 2 log(b/a) for all a, b > 0.

(vi)
√

log(x) exp(−1− log(x) + 2
√

log(x)) ≤ 5
√

1/x.

(vii) If log(x) ≥ x, then log(x) ≤ 2.

Proof (i) is proven by checking derivatives:

d

dx
log(x) =

1

2
√

log(e+x)
+
√

log(e+ x)

(e+ x)
√

log(e+ x)

d2

dx2
log(x) = −1 + log(e+ x) + 2 log2(e+ x)

2(e+ x)2 log2(e+ x)
.

The former is clearly positive and the latter negative, which shows that log is monotone increasing
and concave. Parts (ii) and (iii) are trivial. For (iv),

log
1
2 (x) exp(− log(x)) = log

1
2 (x) exp(− log((e+ x) log

1
2 (e+ x)))

=
log

1
2 (x)

(e+ x) log
1
2 (e+ x)

=
1

e+ x

√
log(e+ x) + log log

1
2 (e+ x)

log(e+ x)
≤ 1

e+ x

√
1 +

1

2e
≤ 3

2x
.

For (v),

log

(
b

x

)
≤ log

(
b log

1
2 (b/x)

a

)
≤ log

(
b

a
log

1
2

(
b

a
log

1
2

(
b

a
log

1
2

(
b

a
· · · = z ,

where the final equality serves as the definition of z. If z ≤ 2, then log(b/x) ≤ z ≤ 2 ≤ 2 log(b/a).
Suppose now that z ≥ 2. Let u, v ≥ 0, then log(uv) ≤ log(u) + log(v) and if u ≥ 2, then
u2 − log(u) ≥ u2/2. Therefore z2/2 ≤ z2 − log(z) ≤ log(zb/a)− log(z) ≤ log(b/a). Therefore
log(b/x) ≤ z2 ≤ 2 log(b/a) as required. For (vi), using a similar reasoning as (iv),

√
x log(x) exp

(
−1− log(x) + 2 log

1
2 (x)

)
=

log
1
2 (x)
√
x exp

(
2 log

1
2 (x)

)
e(e+ x) log

1
2 (e+ x)

≤

√
log(x)

log(e+ x)
(x+ e)−

1
2 exp

(
2 log

1
2 (x)

)
.
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Simple calculus shows that log(x)/ log(e+x) ≤ (1/2+e)/e. Let g(x) = (x+e)−
1
2 exp(2 log

1
2 (x)).

Then maxx≥0 g(x) ≤ 10.34 ≤ 11 by numerical calculation, which is valid by the following argu-
ment: First, the function g is twice differentiable, satisfies g(0) > 0, g′(0) > 0 and limx→∞ g(x) = 0.
By taking the first derivative it is easy to see that g has a unique maximum in x∗ ∈ (0,∞) with
g(x∗) > 0. Therefore g is monotone increasing for x < x∗ and monotone decreasing afterwards
for x > x∗. This means the maximiser may be found by a binary search with arbitrary precision.
Therefore

√
x log(x) exp(−1− log(x) + 2 log

1
2 (x)) ≤ 11

e

√
(1/2 + e)/e ≤ 5. For (vii), if x ≥ 0,

then d
dx log(x) ≤ 3/(2e) ≤ 1. Therefore log(x) − x is monotone non-increasing and the result

follows by checking that log(2) ≤ 2.

The second technical lemma provides some useful results relating to the optimisation problem
appearing in Eq. (3) and the definition of ` in Eq. (15).

Lemma 21 There exists a universal constant C > 0 such that:

(i) ∆` ≤ C
√
`

n
or n∆` ≤ C

∑
m>`

1

∆m
.

(ii) n∆̄` +
∑
m>`

∆mλm ≤ C min
i∈[k]

(
n∆̄i +

∑
m>i

∆mλm

)
.

(iii) min
i∈[k]

(
n∆̄i +

∑
m>i

∆iλi

)
≤ C
√
kn+

k∑
m=1

∆m.

(iv) min
i∈[k]

(
n∆̄i +

∑
m>i

∆iλi

)
≤ C

∑
m:∆m>0

(
∆m +

log(n)

∆m

)
.

Proof For part (i), by the definition of ` we have

∆` < 4c2

√
k`
n

= 4c2

√
`

n
+

∆`

n

∑
i>`

1

∆i
≤ 4c2

√√√√max

{
`

n
,

∆`

n

∑
i>`

1

∆i

}
.

The result follows by simplifying each of the two cases in the maximum. For part (ii), let
i = arg minj n∆̄j +

∑
m>j ∆mλm.

Case 1 (` > i) Using the fact that for m ≤ ` we have ∆m ≤ 16c2
2km/∆m leads to

n∆̄` +
∑
m>`

∆mλm ≤ n∆̄i +
n

`

∑̀
m=i+1

∆m +
∑
m>`

∆mλm

≤ n∆̄i +
16c2

2n

`

∑̀
m=i+1

km
∆m

+
∑
m>`

∆mλm ≤ (1 + 32c2
2)

(
n∆̄i +

∑
m>i

∆mλm

)
.
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Case 2 (` < i) Using the fact that log(x)/x ≤ 3/2 for x ≥ 1 leads to

i∑
m=`+1

∆mλm =
i∑

m=`+1

n∆m

km
· km
n∆2

m

log

(
n∆2

m

km

)
+

i∑
m=`+1

∆m

≤ 3n

2

i∑
m=1

∆m

km
+
n

i

i∑
m=`+1

∆m ≤ 7n∆̄i ,

where the first inequality is true since i/n ≤ 1 and by the definition of `, if m ≥ `, then
n∆2

m/km ≥ 16c2
2 ≥ 1. The second inequality follows by letting k(x) =

∑k
m=1 min{1, x/∆m}

and noting that x/k(x) is monotone increasing and by Markov’s inequality k(2∆̄i) ≥ i/2. Then
for ∆m ≤ 2∆̄i it holds that ∆m/km ≤ 2∆̄i/k(2∆̄i) ≤ 4∆̄i/i while for ∆m > 2∆̄i we have
∆m/km ≤ 2∆m/i. Therefore

n∆̄` +
∑
m>`

∆mλm ≤ n∆̄i +
i∑

m=`+1

∆mλm +
∑
m>i

∆mλm ≤ 8

(
n∆̄i +

∑
m>i

∆mλm

)

The last two parts are straightforward. For (iii), let j = max{m : ∆m ≤ 3
√
k/n}, which means

that for m > j it holds that log(n∆2
m/m) ≤ 2 log(n∆2

m/m). Then

min
i∈[k]

(
n∆̄i +

∑
m>i

∆mλm

)
−

k∑
m=1

∆m ≤ n∆̄j +
∑
m>j

∆m(λm − 1)

≤ 3
√
kn+

∑
m>j

1

∆m
log

(
n∆2

m

km

)
≤ 3
√
kn+

∑
m>j

2

∆m
log

(
n∆2

m

m

)

≤ 3
√
kn+

2

3

√
n

k

∫ k

1
log

(
9k

x

)
dx = 3

√
kn+

2

3

√
nk (1 + log(9)) ≤ 6

√
kn .

Rearranging completes the proof of (iii). For part (iv), first note that

λm = 1 +
1

∆2
m

log

(
n∆2

m

km

)
≤ 1 +

log(n)

∆2
m

+
log(∆2

m)

∆2
m

≤ 5

2
+

3/2 + log(e+ n)

∆2
m

.

The result follows by choosing i = max{i : ∆i = 0}.

Appendix E. History

Table 2 outlines the long history of finite-armed stochastic bandits. It indicates which algorithms
are asymptotically optimal and/or sub-UCB and the ratio (up to constant factors) by which they are
minimax suboptimal. Empty cells represent results unknown at the time. Most papers do not provide
minimax bounds, but they can be derived easily from finite-time bounds using the argument given by
Bubeck and Cesa-Bianchi (2012), which I have done where possible. In some cases the finite-time
bound cannot be used to derive the minimax bound and these results are marked as conjectures.
Algorithms were omitted from the list if (a) I could not straightforwardly adapt their analysis to the
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Gaussian noise model and/or frequentist regret (Honda and Takemura, 2011; Russo and Van Roy,
2014; Gutin and Farias, 2016), or (b) the algorithm depends on µ-dependent tuning such as SOFT-
MIX (Cesa-Bianchi and Fischer, 1998), ε-GREEDY (Auer et al., 2002), EXPLORE-THEN-COMMIT

(Garivier et al., 2016a) and BOLTZMANN EXPLORATION (Cesa-Bianchi et al., 2017). Also omitted
are algorithms designed for adversarial bandits, few of which are suitable for unbounded rewards
and none are competitive with UCB for stochastic problems, but a nice survey of these algorithms is
by Bubeck and Cesa-Bianchi (2012). The vast majority of the Bayesian literature is also omitted
since it deals with discounted rewards. See the recent book by Gittins et al. (2011) for an overview
of Bayesian algorithms.

Remark 22 It must be emphasised that many of the algorithms in the table were designed for settings
more general than Gaussian and the core contribution was actually this generality.
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Date Algorithm Sub-UCB Asy. opt. Minimax ratio Anytime

1960 ‘explore-then-commit’
Vogel (1960)

1∗ no

1985 ‘forcing’
Lai and Robbins (1985)

yes yes

1987 KL-UCB*
Lai (1987)

yes no

1995
UCB
Katehakis and Robbins (1995), Agrawal
(1995)

yes yes

2002 UCB†
Auer et al. (2002)

yes no
√

log(n) yes

2002 UCB2†
Auer et al. (2002)

yes yes
√

log(n) yes

2007 UCB-V
Audibert et al. (2007) yes no

√
log(n) yes

2009 MOSS†
Audibert and Bubeck (2009)

no no 1 no

2010 IMPROVED UCB†
Auer and Ortner (2010)

yes no
√

log(k) yes

2010 DMED†
Honda and Takemura (2010)

yes
√

log(n) [ yes

2010 DMED+†
Honda and Takemura (2010)

yes
√

log(k) [ yes

2011 KL-UCB
Cappé et al. (2013) yes yes

√
log(n) yes

2011 KL-UCB+‡
Cappé et al. (2013)

yes yes
√

log(k) yes

2012 BAYES-UCB†
Kaufmann et al. (2012)

yes yes
√

log(n) yes

2012 THOMPSON SAMPLING\

Agrawal and Goyal (2012)
yes yes

√
log(k) yes

2015 IMED†
Honda and Takemura (2015)

yes yes
√

log(k) [ yes

2016 BAYES-UCB+
Kaufmann (2016) yes yes

√
log(k) [ yes

2016 FH-GITTINS
Lattimore (2016a) yes

√
log(n) no

2016 MOSS-ANYTIME
Degenne and Perchet (2016) no no 1 yes

2017 KL-UCB++
Ménard and Garivier (2017) no yes 1 no

2018 KL-UCB* yes yes
√

log(k) no

2018 ADA-UCB yes yes 1 no
∗Results given for two-armed Bernoulli bandits only.
†Results given for bounded and/or Bernoulli rewards, but algorithm/proof is easily adapted.
‡No known reference. Can be shown using tools of this paper combined with those by Kaufmann (2016);
Lattimore (2016b).
\Results are given for bounded rewards, but the same technique works for Gaussian rewards. See also the article
by Korda et al. (2013).
[A conjectured result.

Table 2: History of bandit algorithms
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log(·) log(x) = log((e+ x) log
1
2 (e+ x))

k number of arms
n time horizon
At action chosen in round t
µ k-dimensional vector of mean payoffs
∆i(µ) suboptimality gap, ∆i = maxj µj − µi
ki

∑k
j=1 min

{
1, ∆i

∆j

}
λi 1 + 1

∆i
log
(
n∆2

i
ki

)
ηt noise in round t
Xt reward in the tth round, Xt = µAt + ηt
Ti(t) number of plays of arm i after t rounds

Ki(t)
∑k

m=1 min
{

1,
√

Tm(t−1)
Ti(t−1)

}
Hi(t) Ti(t)Ki(t)
Λi see display before Lemma 7
µ̂i(t) empirical mean of arm i after t rounds
µ̂i,s empirical mean of arm i after s plays
∆̄i

∑i
m=1 ∆m/i

Vi, Wi sets of arms defined in Eq. (14)
δi see Eq. (15)
` see Eq. (15)
Fi Event that enough arms are optimistic, see Eq. (17)
ζi(∆) 1 + maxs {s : µ̂i,s > µi + ∆}
c1, c2 constants c1 = 4 and c2 = 12

Table 3: Table of notation
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