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Abstract

We propose a short-term sparse portfolio optimization (SSPO) system based on alternating
direction method of multipliers (ADMM). Although some existing strategies have also
exploited sparsity, they either constrain the quantity of the portfolio change or aim at
the long-term portfolio optimization. Very few of them are dedicated to constructing
sparse portfolios for the short-term portfolio optimization, which will be complemented
by the proposed SSPO. SSPO concentrates wealth on a small proportion of assets that
have good increasing potential according to some empirical financial principles, so as to
maximize the cumulative wealth for the whole investment. We also propose a solving
algorithm based on ADMM to handle the `1-regularization term and the self-financing
constraint simultaneously. As a significant improvement in the proposed ADMM, we have
proven that its augmented Lagrangian has a saddle point, which is the foundation of the
iterative formulae of ADMM but is seldom addressed by other sparsity strategies. Extensive
experiments on 5 benchmark data sets from real-world stock markets show that SSPO
outperforms other state-of-the-art systems in thorough evaluations, withstands reasonable
transaction costs and runs fast. Thus it is suitable for real-world financial environments.

Keywords: short-term portfolio optimization, sparse portfolio, alternating direction
method of multipliers

1. Introduction

Portfolio optimization (PO) via machine learning systems has been catching more and
more attention recently (Li and Hoi, 2012; Huang et al., 2013; Li et al., 2015; Li and Hoi,
2014; He et al., 2015; Yang et al., 2015; Huang et al., 2016; Li et al., 2016; Mahdavi-
Damghani et al., 2017). It aims to invest in a group of financial assets with instructions
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by the machine, based on some financial principles and optimization strategies. Since it
requires a large amount of quantitative calculation, machine learning methods are in high
demand to reduce mistakes and biases made by human in real-world investment.

PO originates from the mean-variance theory (Markowitz, 1952), which seeks to min-
imize the volatility of a portfolio given a certain expected return level. From then on,
various theories based on such a framework are proposed in the language of probability and
statistics (Sharpe, 1964; Fama, 1965; Lintner, 1965; Fama, 1970; Treynor and Black, 1973).
The equally-weighted portfolio is a popular theory that can achieve good performance if
the individual risks of the assets are similar, while the risk parity theory is efficient in di-
versifying the portfolio risk if the individual risks are significantly different (Maillard et al.,
2010). Instead of treating PO as a static problem, the stochastic portfolio theory (Fernholz,
2002) further extends it to a dynamic problem under some strict statistical assumptions.
Besides, some special objectives can be achieved by adding specific prior knowledge into
the dynamic model, like the rank-dependent portfolios. However, all the above methods
are rather theoretical and their conclusions are based on very strict statistical assumptions
that are far from real-world situations. On the other hand, machine learning strategies
do not require such strict assumptions, thus they are more productive and effective in a
well-defined technical sense (Das et al., 2013; Shen et al., 2014; Ho et al., 2015).

The attempt to construct sparse portfolios via machine learning starts in the long-term
PO. In general, a long-term PO changes its portfolio once for a week or a month (or even
a year). It focuses on the choice of assets rather than the timing of trading (buying or
selling). A kind of sparse and stable Markowitz portfolios (SSMP) is proposed by Brodie
et al. (2009). It adds an `1-regularization (Candès and Plan, 2009) term of the portfolio
vector to the traditional Markowitz model, which regulates the amount of short-position
in the portfolio. The regularized symmetric tail average (STA) minimization is proposed
by Still and Kondor (2010), which exploits the Karush-Kuhn-Tucker (KKT) conditions
(Bertsekas, 1999) to make the portfolio sparse. Ho et al. (2015) also construct sparse mean-
variance portfolios with weighted elastic net penalization (Zou and Hastie, 2005). Shen et al.
(2014) propose the doubly regularized portfolio allocation to control the quantity of portfolio
change. Empirical or simulated experiments indicate that they show some advantages in
the long-term PO.

However, few systems construct sparse portfolios for the short-term and online PO,
which changes its portfolio once for a day (or even shorter). Since the short-term PO is
more general than the long-term PO (e.g., one can change the portfolio only on the first day
of each month), the short-term PO considers both of the choice of assets and the timing of
trading. While the objective of long-term PO is to minimize the quadratic risk (Markowitz,
1952; Brodie et al., 2009; Ho et al., 2015; Shen et al., 2014), the objective of short-term
PO is to maximize the increasing factor on each day and ultimately the cumulative wealth
(Cover, 1991; Agarwal et al., 2006; Li et al., 2011; Das et al., 2013; Li et al., 2015; Huang
et al., 2016; Li et al., 2016).

Alternating direction method of multipliers (ADMM) (Boyd et al., 2010) is an effi-
cient and reliable approach for solving `1-regularization problems in many applications
(Yin et al., 2015; Fang et al., 2016). However, it is nontrivial to implement ADMM (and
other approaches) on the short-term sparse PO especially when both the `1-regularization
term and the self-financing constraint are present (Shen et al., 2014), thus there are few
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public solving schemes. Shen et al. (2014) point out that this problem is difficult and turn
to a commercial software for solution. Ho et al. (2015) include the `1-regularization term
but exclude the self-financing constraint. Although Das et al. (2013) successfully set up an
ADMM algorithm, they do not prove that its augmented Lagrangian has a saddle point,
which is the foundation of the iterative formulae of ADMM. In fact, the saddle point proof is
also absent in other applications (Mohsin et al., 2015; Zhan et al., 2016) than PO. Besides,
not all designs of ADMM have saddle points.

To address the above-mentioned problems, we propose a novel Short-term Sparse PO
(SSPO) system based on ADMM. It well fits the machine learning framework for the short-
term PO and is free of the strict assumptions of the stochastic portfolio theory. Its novelty
falls into several aspects.

• Most state-of-the-art short-term PO systems focus only on adopting empirical finan-
cial principles (like the mean reversion) (Li et al., 2012, 2013, 2015; Huang et al.,
2016), but SSPO also exploits the intrinsic sparse structure of portfolio by using
an `1-regularization term and a self-financing constraint simultaneously, which lacks
public solving schemes.

• Most previous sparsity models minimize the square error (Brodie et al., 2009; Still
and Kondor, 2010; Lai et al., 2015; Zhan et al., 2016) or the quadratic risk (Brodie
et al., 2009; Ho et al., 2015), but SSPO maximizes an increasing factor, which is quite
different from the former in formulation.

• Previous sparsity models for short-term PO constrain the quantity of the portfolio
change to form “lazy updates” (Das et al., 2013; Shen et al., 2014), which are defensive
strategies and not really sparse PO systems. But SSPO actively updates the sparse
portfolio according to the changing increasing potential of different assets as time
passes, which is an aggressive strategy.

• We prove that the augmented Lagrangian of SSPO has a saddle point, which is the
foundation of the iterative formulae of ADMM but is seldom addressed by other
sparsity models.

The rest of the paper is organized as follows. Section 2 presents some preliminaries
and related works. Section 3 illustrates the whole SSPO system and its solving algorithm.
Section 4 presents extensive experimental results to evaluate SSPO. Finally, Section 5 draws
conclusions.

2. Preliminaries and Related Works

2.1. Problem Setting of Short-term Portfolio Optimization

We present the framework of short-term PO via machine learning, which is taken as
baseline by many previous researches (Cover, 1991; Agarwal et al., 2006; Li et al., 2015;
Huang et al., 2016; Li et al., 2016). Suppose there are d assets in a financial market,
their prices are collected as a vector pt ∈ Rd+, t = 0, 1, 2, · · · , where Rd+ represents the d-
dimensional nonnegative real space. Note that pt may change as time t goes, forming a
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sequence. We can evaluate the performance of assets by the price relative xt ,
pt

pt−1
, where

the division is performed element-wise.
A portfolio is a vector lying on the d-dimensional simplex bt ∈ ∆d := {b ∈ Rd+ :∑d
i=1 b(i) = 1} with assumptions of non-short-selling and self-financing (without borrowing

money and full re-investment). It represents the proportion of the total wealth invested in
different assets at the beginning of the t-th period.

At the end of the t-th period, the cumulative wealth St evolves by an increasing factor
of b>t xt: St = St−1 · (b>t xt). Suppose the whole investment lasts n periods and the initial
wealth is S0 = 1, then the final cumulative wealth is Sn =

∏n
t=1(b>t xt). The objective of

short-term PO is to maximize Sn by maximizing b>t xt on each period (Cover, 1991; Agarwal
et al., 2006; Li et al., 2011; Das et al., 2013; Li et al., 2015; Huang et al., 2016; Li et al.,
2016):

Ŝn = max
{bt∈∆d}nt=1

n∏
t=1

(b>t xt). (1)

Note that no statistical assumptions regarding the movement of asset prices are required in
the framework.

2.2. Related Works on Short-term Portfolio Optimization

Different systems or strategies suggest different principles of optimizing bt as time passes.
In general, short-term PO systems need to flexibly react to the rapid change of financial
environments, thus they have to exploit some principles of empirical financial studies (Je-
gadeesh, 1990, 1991; Li and Hoi, 2014; Li et al., 2016) and investing behaviors (Kahneman
and Tversky, 1979; Bondt and Thaler, 1985; Jegadeesh and Titman, 1993) to make future
price predictions, rather than follow strict statistical assumptions that may only take effect
in the long run (Das et al., 2013). For example, some state-of-the-art short-term PO sys-
tems adopt the mean reversion principle in finance (Jegadeesh, 1990, 1991; Li et al., 2012,
2013, 2015; Huang et al., 2016), which indicates that the future price of an asset will reverse
to some kind of its historical mean.

2.2.1. Two Trivial Systems

A simple but widely used system is the Uniformly Buy-And-Hold (UBAH) strategy (Li
and Hoi, 2014), which disperses the wealth equally in all the assets at the very beginning

and remains unchanged: ŜUBAHn = 1
d

∑d
i=1

∏n
t=1 x

(i)
t . It is taken by most financial markets

as their market strategies.
On the contrary, the Beststock (BS) strategy (Li and Hoi, 2014) allocates all the wealth

to the best performing asset in the whole investment: ŜBSn = max
b∈∆d

b>(
⊗n

t=1 xt), where
⊗

is the element-wise product operator. It is a hindsight strategy that cannot be implemented
in reality.

2.2.2. Systems Based on Correlation

Anticor (Borodin et al., 2004) is a mean-reversion system, selling previous good perform-
ing assets and buying the anti-correlated bad performing ones. It measures the similarity
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of different assets by the cross-window correlation cori,j = (lx(i)−l̄x(i))>(ly(j)−l̄y(j))
‖lx(i)−l̄x(i)‖‖ly(j)−l̄y(j)‖

and an

anti-correlation Ai = |cori,i| if cori,i < 0; else Ai = 0, where ‖ · ‖ is the Euclidean norm, lx
and ly are logarithmic returns in two successive windows.

CORN (Li et al., 2011) further combines correlation with pattern-matching (Györfi
et al., 2006) and searches for historical correlation-similar patterns

Ct+1(w, ρ) =

{
w < k < t :

cov(Xk−1
k−w,X

t
t−w+1)

std(Xk−1
k−w)std(Xt

t−w+1)
> ρ

}
,

where Xk−1
k−w denotes the price relative vectors in the time window [k − w, k − 1].

Mahdavi-Damghani et al. (2017) consider PO in the context of cointelated pairs, a
typical model for pairs trading. It is designed to signify a hybrid method between the
cointegration and the correlation models. There are two approaches to addressed this
problem: Stochastic Differential Equation and Band-wise Gaussian Mixture, which give
similar results but the latter keeps the methodology simpler and more adaptable to the
regime change.

2.2.3. Systems Based on Average Indices

OLMAR (Li et al., 2015) exploits the popular financial tool of moving average (MA)
to predict future asset prices. It is a defensive and moderate strategy with a neutral risk
appetite, so as to avoid over-estimating or under-estimating:

x̂t+1(w) =
MAt(w)

pt
=

∑w−1
k=0 pt−k
wpt

=
1

w

(
1 +

1

xt
+ · · ·+ 1⊗w−2

k=0 xt−k

)
, (2)

where 1 is a vector with elements of 1, whose dimension can be inferred from the context,
and w is the window size. Its portfolio update scheme is the same as the below-mentioned
RMR strategy (Huang et al., 2016).

RMR also makes moderate price predictions, but substitutes `1-median (Vardi and
Zhang, 2000) for MA, since `1-median is more robust to noise and outliers:

p̂t+1 = argmin
p∈Rd

+

w−1∑
k=0

‖pt−k − p‖, x̂t+1 =
p̂t+1

pt
. (3)

Both RMR and OLMAR use the following optimization model to update portfolio:

bt+1 = argmin
b

1

2
‖b− b̂t‖2 s.t. b>x̂t+1 > ε > 0, (4)

b̂t+1 = argmin
b∈∆d

‖b− bt+1‖2. (5)

(5) is a normalization to the simplex (Duchi et al., 2008). This optimization model does not
impose sparsity constraints on the portfolio, and it tries to approach the current portfolio
b̂t with a prospective growth b>x̂t+1 > ε.
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2.3. Related Works on Sparsity Constraints

Although sparsity models have been proposed for PO, they either aim at the long-term
PO or constrain the quantity of the portfolio change. Very few of them aim to construct
sparse portfolios for the short-term PO.

2.3.1. Systems for Long-term Portfolio Optimization

Sparse and Stable Markowitz Portfolio (SSMP) (Brodie et al., 2009) uses the following
regularization model

bSSMP = argmin
b
‖ε1(n) −Rb‖2 + τ‖b‖1 s.t. b>µ = ε,b>1 = 1, (6)

where ε is a predefined prospective growth rate, 1(n) is an n-dimensional vector of 1, R
is an n × d-dimensional asset return matrix, µ is the expectation of asset returns, ‖ · ‖1
denotes the `1-Norm, and τ is the regularization strength. Rb contains the actual portfolio
returns of n samples, while b>µ is the expectation of the portfolio return. (6) constrains
b>µ to a predefined level ε, and tries to minimize the square error (i.e., the quadratic risk
in the context of quantitative finance) of the actual portfolio returns to their expectation.
Besides, it relaxes the nonnegativity constraint of b and retains the self-financing constraint
b>1 = 1. With `1-regularization, b is forced to be sparse and the short position is limited
(Brodie et al., 2009).

Weighted Elastic Net Penalized Portfolio (WENPP) (Ho et al., 2015) adds an elastic
net penalization (Zou and Hastie, 2005) but removes the self-financing constraint b>1 = 1:

bWENPP = argmin
b

b>Σ̂b− b>µ̂+

d∑
i=1

τi|b(i)|+
d∑
i=1

ιi|b(i)|2, (7)

where Σ̂ and µ̂ are the estimated covariance and expectation of asset returns, respectively.
SSMP and WENPP reflect that the objective of long-term PO is to minimize the

quadratic risk ‖ε1(n)−Rb‖2 or b>Σ̂b, which is quite different from the problem setting (1)

of short-term PO. Besides, Σ̂ and µ̂ have to be estimated in a single static period, which is
not adaptive to the rapid changing financial environments in the short-term PO (Das et al.,
2013).

2.3.2. Systems for Lazy Updates

Online Lazy Update (OLU) (Das et al., 2013) is a sparsity model for the short-term PO.
However, the sparsity is on the change of portfolio, not on the portfolio itself:

b̂t+1 = argmin
b∈∆d

−η log(b>xt) + τ‖b− b̂t‖1 +
1

2
‖b− b̂t‖2. (8)

Hence it is not really a sparse PO. Besides, it assumes that the current price relative xt
will be replicated in the next day, which may lack supports from empirical financial studies.
Moreover, although it has established an ADMM solver, it has not given a saddle point
proof for its augmented Lagrangian, which is the foundation of the iterative formulae of
ADMM. Note that not all ADMM designs have saddle points.
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Doubly Regularized Portfolio (DRP) (Shen et al., 2014) also employs the lazy update
strategy in its model:

b̂t = argmin
b

b>Σ̂tb + τ1‖b‖1 + τ2‖b− b̂t−‖2 s.t. b>1 = 1, (9)

where b̂t− denotes the re-normalized portfolio before the rebalancing at time t, and Σ̂t

denotes the estimated covariance at time t. DRP is also for the long-term PO in both
model setting (minimizing the quadratic risk) and its experimental evaluation (weekly or
monthly data). It updates the covariance Σ̂t based on the newest price information, instead
of using a single static Σ̂ as in (7). The regularization term τ2‖b− b̂t−‖2 is introduced to
control the change of portfolio. DRP does not propose a solver for its model, but turns to
a commercial software toolbox (Shen et al., 2014).

3. Short-term Sparse Portfolio Optimization

To make a summary of Section 2, there are few sparse portfolio methods for the
short-term PO that have reliable public solving schemes, especially when both the `1-
regularization term and the self-financing constraint are present. Besides, most state-of-
the-art short-term PO systems focus only on exploiting empirical financial principles and
pay little attention to constructing sparse, concentrated and effective portfolios.

To fill this gap, we propose a novel Short-term Sparse PO (SSPO) system based on
ADMM. We also prove that its augmented Lagrangian has a saddle point, which is the
foundation of the iterative formulae of ADMM but is seldom addressed by other sparsity
models. SSPO actively rebalances the sparse portfolio according to some empirical financial
principles in order to maximize the cumulative wealth. To establish SSPO, we follow the
3 conventional steps of short-term PO system design (Borodin et al., 2004; Li et al., 2011;
Li and Hoi, 2014; Li et al., 2015; Huang et al., 2016): price information processing, sparse
portfolio model setup, and solving algorithm design.

3.1. Price Information

A sparse portfolio should concentrate on only a few assets that have good increasing po-
tential, which is more adaptive to an aggressive strategy than a defensive one. Hence SSPO
exploits the irrational investing behaviors indicated by some empirical financial studies on
stock price overreactions (Bondt and Thaler, 1985; Kahneman and Tversky, 1979; Shiller,
2003), instead of the mean reversion principle (Jegadeesh, 1991). For example, investors
are usually irrational to keep on buying the assets rising in value, which further pushes up
the asset prices and postpones the reversion (Jegadeesh and Titman, 1993; Shiller, 2000).

To evaluate the increasing potential of an asset, the highest price in a recent time window
with size w is observed:

p
(i)
MAX = max

06k6w−1
p

(i)
t−k, i = 1, 2, · · · , d. (10)

p
(i)
MAX plays an important role in real-world investment and portfolio management, and it

is an indispensable indicator in nearly every stock analysis software. Since most investors
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gain profits by the growth of asset price, they consider p
(i)
MAX as a potential level that the

future price can probably reach.
Next, the relative distance from the current price vector pt to pMAX implies the in-

creasing potential of the assets. Thus we define a generalized logarithmic return as follows:

Rt = 1.1 log

(
pMAX

pt

)
+ 1, (11)

where log
(
pMAX

pt

)
is the logarithmic return (Borodin et al., 2004), Rt is a linear transform

of log
(
pMAX

pt

)
. pMAX

pt
> 1 and the inequality dominates each element. If

p
(i)
MAX

p
(i)
t

= 1, then

R
(i)
t = 1. The coefficient 1.1 is a slight adjustment of the shape of linear transform. We use

Rt as the price information input for the SSPO system.

3.2. Sparse Portfolio Model

We consider the following objective to set up a sparse portfolio model: first, we should
maximize b>Rt, which is the increasing potential of the whole portfolio. Denote ϕt =
−Rt, then we can change the maximization to a minimization. Second, we adopt an `1-
regularization term and a self-financing constraint simultaneously to concentrate the port-
folio on a few assets. It leads to the following model

bt+1 = min
b

b>ϕt + λ‖b‖1, s.t. 1>b = 1, (12)

where λ > 0 controls the regularization strength.
Different from previous compressed sensing models (Brodie et al., 2009; Mohsin et al.,

2015; Zhan et al., 2016) that minimize a square error, model (12) minimizes b>ϕt. It is also
different from (7) and (9) which minimize a quadratic risk for the long-term PO. Besides,
(12) has a self-financing constraint 1>b = 1 which is absent in (7), and (9) is solved by a
commercial software (Shen et al., 2014). Thus there are few existing public algorithms to
solve (12) and we have to design a new algorithm. Last, bt+1 can be projected onto the
simplex to form an eligible portfolio, as instructed by Duchi et al. (2008); Li et al. (2015);
Huang et al. (2016).

Based on the ADMM criterion, we introduce an auxiliary vector g ∈ Rd to approach b,
and turn to minimize λ‖g‖1. We also introduce a dual variable ρ for the constraint 1>b = 1,
and transform the constraint into a penalty function. By this way, the constrained model
(12) is changed to the optimization of an unconstrained augmented Lagrangian

L(b,g, ρ) = b>ϕt +
λ

2γ
‖b− g‖2 + λ‖g‖1 +

η

2
(1>b− 1)2 + ρ(1>b− 1), (13)

where γ > 0 controls the approximation of g to b, and η > 0 controls the penalty strength
when 1>b 6= 1. Generally speaking, if γ → 0, then the penalty λ

2γ ‖b − g‖2 forces g → b.
Further analysis of γ will be given later in the optimization steps.

Not all formulations of ADMM have saddle points. Few methods take the bother to
figure out and prove the existence of saddle points (Das et al., 2013; Mohsin et al., 2015;
Zhan et al., 2016). But we can prove that the augmented Lagrangian (13) has a saddle
point, which makes the iterative formulae (25)∼(27) of ADMM appropriate.
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3.3. Solving Algorithm

3.3.1. The Existence of Saddle Point

Our algorithm originates from the existence of a saddle point (b∗,g∗, ρ∗) for the La-
grangian (13) such that

L(b∗,g∗, ρ) 6 L(b∗,g∗, ρ∗) 6 L(b,g, ρ∗), ∀ b,g, ρ. (14)

We now prove that this saddle point really exists. First, for any given ρ, the following
equation holds:

min
b,g

L(b,g, ρ) = min
b

min
g
L(b,g, ρ). (15)

It can be seen that

min
b,g

L(b,g, ρ) 6 min
g
L(b,g, ρ) 6 L(b,g, ρ). (16)

Taking minb,g in all 3 terms of the above inequalities, we find that they are restricted
to equalities, since the first term equals the last term. Besides, minb,g ming L(b,g, ρ) =
minb ming L(b,g, ρ), thus we deduce equation (15).

Next, we examine the following functions

l(b, ρ) = min
g
L(b,g, ρ) = b>ϕt+λH(b)+

η

2
(1>b−1)2+ρ(1>b−1), (17)

H(b) , min
g

1

2γ
‖b−g‖2+‖g‖1=

d∑
i=1

h(b(i)), (18)

where h(b(i)) is the Huber function (Boyd et al., 2010)

h(b(i)) = min
g(i)

1

2γ
(b(i) − g(i))2 + |g(i)| =

{
|b(i)|2

2γ if |b(i)| 6 γ

|b(i)| − γ
2 if |b(i)| > γ

. (19)

It is a continuous function, which only needs to be verified at |b(i)| = γ and it is obvious.
Moreover, it is decreasing when b(i) 6 0 and increasing when b(i) > 0, indicating that it is
also a strictly convex function.

Suppose we have 2 vectors b 6= c. For any 0 < θ < 1,

H(θb + (1− θ)c) =
d∑
i=1

h(θb(i) + (1− θ)c(i))

<θ

d∑
i=1

h(b(i))+(1−θ)
d∑
i=1

h(c(i)) = θH(b)+(1−θ)H(c).

Hence H(b) is also a strictly convex function.
Looking back to (17), l(b, ρ) is the Lagrangian of the following problem

min
b

b>ϕt+λH(b)+
η

2
(1>b−1)2, s.t. 1>b = 1. (20)
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We have proven that H(b) is strictly convex. It is apparent that b>ϕt and η
2 (1>b−1)2 are

also convex on b. Hence the whole function to be minimized in (20) is strictly convex. By
Slater’s theorem (Boyd and Vandenberghe, 2004), strong duality holds and there exists a
saddle point (b∗, ρ∗) such that

l(b∗, ρ) 6 l(b∗, ρ∗) 6 l(b, ρ∗), ∀ b, ρ. (21)

The last step is to find g∗. From (18) we know that g is determined by b. Specifically,
g∗ is the minimizer of H(b∗) in (18), which is a soft shrinkage (Tibshirani, 1996)

g∗ = sign(b∗)⊗ (abs(b∗)− γ1)+, (22)

where (·)+ denotes the positive part of a vector, which maps all the negative elements to
0 and retains all the nonnegative ones. abs(·), sign(·) are the absolute value function and
the sign function implemented on each element of a vector, respectively. The soft shrinkage
operator shrinks each element of b∗ towards 0 by a step size of γ.

Therefore, from the first inequality of (21) we have

L(b∗,g∗, ρ) = l(b∗, ρ) 6 l(b∗, ρ∗) = L(b∗,g∗, ρ∗). (23)

Furthermore, by (15), (17) and the second inequality of (21) we have

L(b∗,g∗, ρ∗) = l(b∗, ρ∗) = min
b
l(b, ρ∗) = min

b
min
g
L(b,g, ρ∗) = min

b,g
L(b,g, ρ∗). (24)

Combining (23) and (24), we prove that (b∗,g∗, ρ∗) is a saddle point satisfying (14).

3.3.2. The Algorithm Based on ADMM

Based on the saddle point inequalities (14) and the ADMM criterion, the Lagrangian
(13) should be minimized by b,g and maximized by ρ, which can be formulated in 3 iterative
steps

b(o+1) = argmin
b

L(b,g(o), ρ(o)), (25)

g(o+1) = argmin
g

L(b(o+1),g, ρ(o)), (26)

ρ(o+1) = ρ(o) + η(1>b(o+1) − 1). (27)

To solve (25), we can leave out all the constant terms that do not include b in (13),
which leads to

b(o+1) = argmin
b

b>ϕt +
λ

2γ
b>Ib− λ

γ
b>g(o) +

η

2
b>11>b− (η − ρ(o))b

>1

= argmin
b

1

2
b>
(
λ

γ
I + η11>

)
b + b>

[
ϕt −

λ

γ
g(o) − (η − ρ(o))1

]
, (28)

where I is an identity matrix whose dimension can be inferred from the context.
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Proposition 1 There is a unique minimum of (28):

b(o+1) =

(
λ

γ
I + η11>

)−1 [λ
γ

g(o) + (η − ρ(o))1−ϕt
]
. (29)

Proof We analyze the quadratic form
(
λ
γ I + η11>

)
in (28). Apparently λ

γ I is positive

definite. It can be shown that η11> is positive semidefinite:

∀b, ηb>11>b = η(b>1)(1>b) = η(b>1)2 > 0.

Thus the whole quadratic form
(
λ
γ I + η11>

)
is positive definite.

We take the gradient of (28) with respect to b and let it be a zero vector(
λ

γ
I + η11>

)
b +ϕt −

λ

γ
g(o) − (η − ρ(o))1 = 0. (30)

Since
(
λ
γ I + η11>

)
is positive definite, the function of (28) is convex and the solution of

(30) is the unique minimum

b(o+1) =

(
λ

γ
I + η11>

)−1 [λ
γ

g(o) + (η − ρ(o))1−ϕt
]
.

Next, we turn to solve (26), which has already been addressed in Section 3.3.1. By
excluding all the terms unrelated to g in (13), we have a Huber vector function

H(b(o+1)) = min
g

1

2γ
‖b(o+1) − g‖2 + ‖g‖1. (31)

Now we can see that γ balances between the approximation of g to b(o+1) and the sparsity
of g. When γ → 0, g → b(o+1) and the sparse regularization ‖g‖1 will be weaken, vice
versa. The minimizer of (31) is a soft shrinkage:

g(o+1) = sign(b(o+1))⊗ (abs(b(o+1))− γ1)+. (32)

Next, we implement (27) as a dual ascent step for (13), and turn to the next iteration.
We repeat (29)(32)(27) until the equality tolerance |1>b(o)−1| < ε or the maximum iteration
is reached. Last, b(o) should be normalized to be a real portfolio output for the next trading
period (Duchi et al., 2008):

b̂t+1 = argmin
b∈∆d

‖b− ζb(o)‖2, (33)

where ζ > 0 is a scale parameter.

We summarize the whole SSPO as Algorithm 1.
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ALGORITHM 1: Short-term Sparse Portfolio Optimization (SSPO)

Input: Asset prices in the recent time window {pt−k}w−1
k=0 , the current portfolio b̂t,

parameters w, λ, γ, η, ζ. Set the equality tolerance ε = 10−4 and the maximum
iteration= 104.
1. p

(i)
MAX = max06k6w−1 p

(i)
t−k, i = 1, 2, · · · , d.

2. ϕt = −1.1 log
(
pMAX

pt

)
− 1.

3. Initialize: o = 1, b(1) = g(1) = b̂t, ρ(1) = 0.
repeat

4. b(o+1)=
(
λ
γ I+η11>

)−1 [
λ
γg(o)+(η−ρ(o))1−ϕt

]
.

5. g(o+1) = sign(b(o+1))⊗ (abs(b(o+1))− γ1)+.

6. ρ(o+1) = ρ(o) + η(1>b(o+1) − 1).
7. o = o+ 1.

until |1>b(o) − 1| < ε or o > Max Iter

8. Normalize: b̂t+1 = argminb∈∆d
‖b− ζb(o)‖2.

Output: The next portfolio b̂t+1.

3.3.3. Sparsity of the Portfolio

We show that our algorithm really produces sparse portfolios. We compute the cor-
responding portfolio bt+1 by Algorithm 1 without normalization in Step 8 (to verify that
the core procedure of the algorithm produces sparse portfolios) and test its sparsity. For a
portfolio, we consider the weights which are no larger than 10% of the maximum weight as
small weights. Then the sparsity of a portfolio is the proportion of the small weights in all
the non-maximum weights:

spar =
#{small weights}

d− 1
. (34)

We compute the average sparsity of the portfolios of SSPO on each of the 5 experimental
data sets NYSE(O) (Cover, 1991), NYSE(N) (Li et al., 2013), DJIA (Borodin et al., 2004),
SP500 (Borodin et al., 2004) and TSE (Borodin et al., 2004), and show the results in Table 1.
The parameters of SSPO are set in Section 4.1. SSPO achieves high sparsities that are near
to or greater than 90% on all the data sets. It indicates that SSPO can produce sparse
portfolios. Moreover, these sparse portfolios also achieve good investing performance, which
is supported by the experimental results in Section 4.

NYSE(O) NYSE(N) DJIA SP500 TSE
92.91% 89.06% 91.91% 91.36% 94.50%

Table 1: Average sparsity of the portfolios of SSPO on 5 benchmark data sets.

To visualize the sparsity, we randomly choose 6 portfolios (the 2-nd,33-rd,450-th,276-
th,127-th and 98-th investing days) of SSPO on the DJIA data set and show them in Figure
1. We can see that the portfolios are sparse and concentrate on only a few assets. For
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example, in the first figure, the portfolio weight of the 29-th asset is much larger than other
weights. In the second figure, the portfolio weights of the 18-th and the 26-th assets are
much larger than other weights. Portfolios on other investing days are also sparse but we
need not exhaustively show them all.
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Figure 1: Portfolios produced by SSPO on 6 random investing days (2-nd,33-rd,450-th,276-
th,127-th,98-th) of the DJIA data set. The red horizontal line separates small
weights from large weights. The portfolios are sparse and concentrate on only a
few assets. For example, in the first figure, the portfolio weight of the 29-th asset
dominates others. In the second figure, the portfolio weights of the 18-th and the
26-th assets dominate others.

4. Experimental Results

We conduct extensive experiments on 5 benchmark data sets from real-world stock
markets: NYSE(O) (Cover, 1991), NYSE(N) (Li et al., 2013), DJIA (Borodin et al., 2004),
SP500 (Borodin et al., 2004), and TSE (Borodin et al., 2004). They consist of daily price
relatives from New York Stock Exchange, Dow Jones Industrial Average, Standard & Pool
500 and Toronto Stock Exchange, covering a wide range of assets and time spans. Their
information is shown in Table 2. To be consistent across the experiments, all the involved
returns and increasing factors in this section are daily but not annualized.

We also show the box plots of asset price relatives on the 5 benchmark data sets in Figure

2. Note that if Asset i does not change in price at day (period) t, then x
(i)
t =

p
(i)
t

p
(i)
t−1

= 1, which

is the standard level of a price relative. The figure shows that all the benchmark data sets
have a representative asset pool with diverse characteristics of return and volatility. Hence
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Data Set Region Time Days Stocks
NYSE(O) US 3/7/1962 ∼ 31/12/1984 5651 36
NYSE(N) US 1/1/1985 ∼ 30/6/2010 6431 23

DJIA US 14/1/2001 ∼ 14/1/2003 507 30
SP500 US 2/1/1998 ∼ 31/1/2003 1276 25
TSE CA 4/1/1994 ∼ 31/12/1998 1259 88

Table 2: Information of 5 benchmark data sets from real-world stock markets.

they are reliable to test the performance of different PO systems in real-world financial
environments.

For comparison, 7 state-of-the-art short-term PO systems are evaluated: ONS (Agarwal
et al., 2006), CORN, Anticor, PAMR (Li et al., 2012), CWMR (Li et al., 2013), OLMAR
and RMR, as well as 2 trivial ones: Beststock and Market. The parameters for these systems
are set by the defaults in their original papers and previous experiments (Li and Hoi, 2014;
Li et al., 2016, 2015; Huang et al., 2016): ONS: η = 0, β = 1, γ = 1

8 ; CORN: w = 5, P =
1, ρ = 0.1; Anticor: w = 5; PAMR and CWMR: ε = 0.5; OLMAR: w = 5, ε = 10; RMR:
w = 5, ε = 5. The parameters for SSPO are set as: w = 5, λ = 0.5, γ = 0.01, η = 0.005, ζ =
500. Note that the window size w = 5 is the same with all these systems, to be consistent.

Evaluation protocols mainly fall into 8 indicators: 1. Cumulative wealth (CW): the
main score to evaluate investing performance; 2. Mean Excess Return (MER) (Jegadeesh,
1990): the average excess performance of a system compared with the market; 3. α Factor
(Lintner, 1965): MER excluding the market risk; 4. Order statistics: the rank of a system
return in all the asset returns; 5. Sharpe Ratio (Sharpe, 1966): risk-adjusted average return;
6. Information Ratio (Treynor and Black, 1973): risk-adjusted MER; 7. Transaction costs;
8. Running times. Indicators 1∼3 are investing performance measurements, Indicators
4∼6 are risk metrics, and Indicators 7,8 evaluate the applicability to real-world financial
environments. SSPO achieves state-of-the-art results in all these indicators.

4.1. Parameter Setting

We first conduct experiments of the final cumulative wealth (CW) to empirically set
the parameters for SSPO, which is similar to Borodin et al. (2004); Li et al. (2011, 2015);
Huang et al. (2013, 2016). The final CW is the cumulative product of the actual increasing
factors {b̂>t xt}nt=1 with the initial wealth S0 = 1.

First, w = 5 is a common window size in real-world stock trading, especially in short-
term investment. It is also consistent with the compared state-of-the-art methods. Hence
it is adopted for SSPO. Second, we fix w = 5, γ = 0.01, η = 0.005, ζ = 500 and change λ in
0.4 ∼ 0.65. The results in Figure 3 show that λ = 0.5 leads to good performance in general
and thus is set for SSPO. To better show the geometric scaling effect of the daily geometric
increasing factor on the final CW, the power form is used to label the y-axis. The base is
the daily geometric increasing factor while the exponent is the total number of trading days
in the data set.

At each time, we change one parameter and fix other parameters, and the results are
shown in Figure 4, Figure 5, and Figure 6. They indicate that γ = 0.01, η = 0.005, and
ζ = 500 are suitable parameters for SSPO.
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Figure 2: Box plots of asset price relatives on 5 benchmark data sets.
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Figure 3: Final cumulative wealths of SSPO with respect to λ on 5 benchmark data sets
(fix w = 5, γ = 0.01, η = 0.005, ζ = 500). The power form is used to label the
y-axis to better show the geometric scaling effect of the daily geometric increasing
factor on the final cumulative wealth. The base is the daily geometric increasing
factor while the exponent is the total number of trading days in the data set.
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Figure 4: Final cumulative wealths of SSPO with respect to η on 5 benchmark data sets
(fix w = 5, γ = 0.01, λ = 0.5, ζ = 500).

4.2. Cumulative Wealth

We show the final CWs of different PO systems on 5 benchmark data sets in Table 3. The
approximate power form is used to make an intuitive sense of the geometric scaling effect
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Figure 5: Final cumulative wealths of SSPO with respect to γ on 5 benchmark data sets
(fix w = 5, η = 0.005, λ = 0.5, ζ = 500).
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Figure 6: Final cumulative wealths of SSPO with respect to ζ on 5 benchmark data sets
(fix w = 5, η = 0.005, λ = 0.5, γ = 0.01).

of the daily geometric increasing factor on the final CW. The base is the daily geometric
increasing factor while the exponent is the total number of trading days in the data set.
SSPO achieves the best performance on all the data sets against other state-of-the-art
systems. For instance, SSPO achieves a much higher CW (3.68) than OLMAR (2.54) and
RMR (2.67) on DJIA which is difficult to handle (Huang et al., 2016). On NYSE(O),
NYSE(N) and TSE, SSPO achieves CW= 1.06E+18, 1.62E+9 and 364.94, respectively,
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which are much higher than OLMAR (7.21E+16, 4.14E+8 and 58.51) and RMR (1.64E+17,
3.25E+8 and 181.34). Therefore, SSPO is an efficient short-term PO system for diverse
real-world stock markets. We also plot the CW evolution paths for different PO systems
on DJIA in Figure 7. On most days, the SSPO plot is over other systems, and it climbs up
significantly when there are good opportunities.

NYSE(O) NYSE(N) DJIA SP500 TSE

Market 14.50 ≈ 1.000475651 18.06 ≈ 1.000456431 0.76 ≈ 0.99947507 1.34 ≈ 1.000231276 1.61 ≈ 1.000381259

Beststock 54.14 ≈ 1.000715651 83.51 ≈ 1.000696431 1.19 ≈ 1.00034507 3.78 ≈ 1.001041276 6.28 ≈ 1.001461259

ONS 109.19 ≈ 1.000835651 21.59 ≈ 1.000486431 1.53 ≈ 1.00084507 3.34 ≈ 1.000951276 1.62 ≈ 1.000381259

CORN 8.09E+11 ≈ 1.004865651 2.33E+5 ≈ 1.001926431 0.78 ≈ 0.99951507 5.29 ≈ 1.001311276 9.80 ≈ 1.0001811259

Anticor 2.04E+7 ≈ 1.002985651 2.11E+5 ≈ 1.001916431 1.63 ≈ 1.00096507 5.61 ≈ 1.001351276 28.68 ≈ 1.002671259

PAMR 5.14E+15 ≈ 1.006425651 1.25E+6 ≈ 1.002196431 0.68 ≈ 0.99924507 5.09 ≈ 1.001281276 264.86 ≈ 1.004441259

CWMR 6.49E+15 ≈ 1.006465651 1.41E+6 ≈ 1.002206431 0.69 ≈ 0.99926507 5.95 ≈ 1.001401276 332.62 ≈ 1.004621259

OLMAR 7.21E+16 ≈ 1.006895651 4.14E+8 ≈ 1.003096431 2.54 ≈ 1.00184507 15.94 ≈ 1.002171276 58.51 ≈ 1.003241259

RMR 1.64E+17 ≈ 1.007045651 3.25E+8 ≈ 1.003056431 2.67 ≈ 1.00194507 8.28 ≈ 1.001661276 181.34 ≈ 1.004141259

SSPO 1.06E+18 ≈ 1.007375651 1.62E+9 ≈ 1.003306431 3.68 ≈ 1.00257507 16.97 ≈ 1.002221276 364.94 ≈ 1.004701259

Table 3: Final cumulative wealths of portfolio optimization systems on 5 benchmark data
sets. The approximate power form is used to make an intuitive sense of the ge-
ometric scaling effect of the daily geometric increasing factor on the final CW.
The base is the daily geometric increasing factor while the exponent is the total
number of trading days in the data set.
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Figure 7: Cumulative wealth evolution paths of portfolio optimization systems on DJIA.
The length of one period is one day.

4.3. Mean Excess Return

At the end of each day, we want to know what proportion of total wealth gained or
lost on this day. This concept can be represented by the term “return”: rt = b̂>t xt − 1.
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Mean Excess Return (MER) (Jegadeesh, 1990) is the average daily excess return of a system
compared with the market in the long run:

MER = r̄s − r̄m =
1

n

n∑
t=1

(rs,t − rm,t), (35)

where rs,t and rm,t are daily returns of a PO system and the market on the t-th day,
respectively. It is more worthy of implementing a PO system with a higher MER. Even a
small difference of MER leads to a large gap of CW in the long run, due to the geometric
scaling effect.

We present the MERs for different PO systems in Table 4. SSPO outperforms other
state-of-the-art systems on all the data sets. For instance, the MERs of SSPO (0.0036 and
0.0060) are much higher than those of OLMAR (0.0028 and 0.0045) and RMR (0.0029 and
0.0053) on DJIA and TSE, respectively. This is the reason why SSPO outperforms other
systems in cumulative wealth in the long run.

System NYSE(O) NYSE(N) DJIA SP500 TSE

Beststock 0.0003 0.0003 0.0011 0.0012 0.0016
ONS 0.0004 0.0003 0.0015 0.0007 0.0002
CORN 0.0049 0.0017 0.0002 0.0014 0.0020
Anticor 0.0026 0.0016 0.0016 0.0013 0.0027
PAMR 0.0064 0.0021 0.0001 0.0014 0.0050
CWMR 0.0064 0.0022 0.0001 0.0015 0.0053
OLMAR 0.0070 0.0032 0.0028 0.0024 0.0045
RMR 0.0071 0.0032 0.0029 0.0019 0.0053

SSPO 0.0076 0.0035 0.0036 0.0025 0.0060

Table 4: Mean excess returns of portfolio optimization systems on 5 benchmark data sets.

4.4. α Factor

According to the Capital Asset Pricing Model (CAPM) (Sharpe, 1964), the expected
return of a system can be decomposed into 2 parts: the market return component, and the
intrinsic excess return usually called the α Factor in the finance industry (Lintner, 1965).
The former is determined by the market environment, which cannot be improved by any
active investing strategy or PO system, while the latter can be improved by a good PO
system. The α Factor can be represented as follows:

E(rs) = βE(rm) + α, (36)

β̂ =
ĉ(rs, rm)

σ̂2(rm)
, α̂ = r̄s − β̂r̄m, (37)

where E(·) denotes the mathematical expectation, ĉ(·, ·) and σ̂(·) are the sample covariance
and the sample standard deviation (STD) computed on n trading days, respectively. In
finance, STD is a common tool to measure risk (volatility).

The α Factors of different PO systems are given in Table 5. SSPO outperforms other
PO systems on all the data sets, indicating that SSPO achieves high intrinsic excess returns
despite the market volatility. Particularly on DJIA data set which is difficult to handle,
SSPO achieves α = 0.0037, which is much higher than OLMAR (0.0029) and RMR (0.0030).
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In the real-world portfolio management, it is common to perform a right-tailed t-test
to see whether α is significantly > 0. If so, it indicates that the good performance of the
system is not due to luck (Grinold and Kahn, 1999; Li et al., 2015; Huang et al., 2013,
2016). According to the results in Table 5, SSPO achieves significantly better performance
than the market at a high confidence level of 99% (with all p-values < 0.01).

System
NYSE(O) NYSE(N) DJIA SP500 TSE
α p-Value α p-Value α p-Value α p-Value α p-Value

Beststock 0.0003 0.0195 0.0004 0.0176 0.0012 0.0838 0.0011 0.0593 0.0014 0.0606
ONS 0.0005 < 0.0001 0.0003 0.1257 0.0016 < 0.0001 0.0008 0.0040 0.0002 0.3514

CORN 0.0048 < 0.0001 0.0016 < 0.0001 0.0002 0.4077 0.0013 0.0190 0.0018 0.0278
Anticor 0.0026 < 0.0001 0.0016 < 0.0001 0.0017 0.0010 0.0012 0.0021 0.0025 < 0.0001
PAMR 0.0063 < 0.0001 0.0021 < 0.0001 0.0002 0.4275 0.0013 0.0259 0.0048 < 0.0001
CWMR 0.0063 < 0.0001 0.0021 < 0.0001 0.0002 0.4168 0.0014 0.0170 0.0051 < 0.0001
OLMAR 0.0069 < 0.0001 0.0031 < 0.0001 0.0029 0.0065 0.0023 0.0017 0.0042 0.0050

RMR 0.0070 < 0.0001 0.0031 < 0.0001 0.0030 0.0054 0.0018 0.0102 0.0051 < 0.0001

SSPO 0.0074 < 0.0001 0.0034 < 0.0001 0.0037 0.0009 0.0024 0.0019 0.0058 < 0.0001

Table 5: α factors (with p-values of t-tests) of portfolio optimization systems on 5 bench-
mark data sets.

4.5. Order Statistics

One may worry about that a PO system just simply selects the lucky assets with the
highest growth. To check this point, we can compare the system return rs,t = b̂>t xt − 1

with all the asset returns r
(i)
t = x

(i)
t − 1, i = 1, · · · , d (d is the number of assets in a data

set). By sorting the (d+ 1) returns {rs,t}
⋃
{r(i)
t }di=1 in the descending order, we can obtain

the rank of rs,t. If a PO system always chooses the lucky assets, then rs,t will always rank
very high in the investment.

We give a summary description of the rank of rs,t in the whole investment (n days)
on each data set for different PO systems, shown in Figure 8 and Table 6. It can be seen
that the ranks for SSPO cover a wide range instead of concentrating on the highest ranks.
Besides, the mean rank and the median rank of SSPO are close to the middle rank (d+1)/2
on each data set, indicating that SSPO is at the average return level of all the asset returns.
Furthermore, the rank results of SSPO are similar to other state-of-the-art short-term PO
systems, which means that SSPO has a similar return level to the related systems. To
summarize, SSPO does not simply select the lucky assets with the highest growth and its
returns are credible. Note that this rank test is different from the rank-dependent portfolio
(Fernholz, 2002) that takes the rank information as prior knowledge and exploits it to
formulate PO models.
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Figure 8: Box plots of the ranks for the system returns rs,t on 5 benchmark data sets. The
ranks for SSPO cover a wide range instead of concentrating on the highest ranks.

System
NYSE(O): 37 NYSE(N): 24 DJIA: 31 SP500: 26 TSE: 89

Median Mean Median Mean Median Mean Median Mean Median Mean

Market 19 18.63 12 12.25 16 16.12 13 13.34 43 42.88
Beststock 19 19.34 13 12.76 16 16.32 14 14.05 52 47.09

ONS 19 18.56 12 12.42 15 15.35 13 13.01 45 44.83
CORN 18 18.08 12 12.10 16 16.04 13 13.26 46 44.87
Anticor 17 17.25 12 11.72 15 15.32 13 12.98 39 41.77
PAMR 16 17.27 12 12.22 15 16.05 13 13.22 35 40.11
CWMR 16 17.22 12 12.19 16 16.09 13 13.18 35 40.01
OLMAR 17 17.56 12 12.26 15 15.45 12 13.31 43 43.12
RMR 16 17.40 12 12.26 15 15.34 13 13.40 40 42.18

SSPO 17 17.71 12 12.25 15 15.25 12 13.33 44 43.03

Table 6: Medians and means of the ranks for the system returns rs,t on 5 benchmark data
sets. The value of (d+ 1) is also given behind each data set name. The mean rank
and the median rank of SSPO are close to the middle rank (d+ 1)/2 on each data
set, which indicates that SSPO does not simply select the lucky assets with the
highest growth.
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4.6. Sharpe Ratio

In general, when an investor pursues high return, he/she should be ready to undertake
high risk. Thus he/she has to balance between return and risk all the time. Sharpe Ratio
(SR) (Sharpe, 1966) is such a measurement to meet this demand based on CAPM:

SR =
r̄s − rf
σ̂(rs)

, (38)

where rf is the daily return of some risk-free asset, which is not considered in this paper.
Hence we set rf = 0 to make SR a daily risk-adjusted return.

We compute and present the daily SRs of different PO systems in Table 7. SSPO
achieves the highest SR on NYSE(N) and DJIA, and is close to the best system on other
data sets. Besides, SSPO is competitive to OLMAR and RMR. For example, SSPO achieves
SR = 0.0791 on SP500 compared with RMR (0.0659), and achieves SR = 0.1054 on TSE
compared with OLMAR (0.0820). It indicates that SSPO has a good ability in balancing
between return and risk on the premise of good investing achievement with high CWs.

System
NYSE(O) NYSE(N) DJIA SP500 TSE

SR IR SR IR SR IR SR IR SR IR

Market 0.0549 Null 0.0458 Null −0.0273 Null 0.0224 Null 0.0491 Null
Beststock 0.0536 0.0241 0.0472 0.0225 0.0253 0.0560 0.0485 0.0468 0.0579 0.0490

ONS 0.0789 0.0424 0.0313 0.0129 0.0504 0.1574 0.0701 0.0582 0.0281 0.0093
CORN 0.1635 0.1570 0.0968 0.0859 −0.0097 0.0108 0.0581 0.0618 0.0675 0.0595
Anticor 0.1720 0.1743 0.0973 0.0899 0.0535 0.1255 0.0682 0.0834 0.1061 0.0993
PAMR 0.2149 0.2121 0.0864 0.0763 −0.0115 0.0036 0.0568 0.0573 0.1182 0.1131
CWMR 0.2169 0.2143 0.0858 0.0758 −0.0106 0.0047 0.0606 0.0623 0.1179 0.1129
OLMAR 0.2102 0.2071 0.1038 0.0958 0.0731 0.1058 0.0806 0.0848 0.0820 0.0769

RMR 0.2153 0.2123 0.1033 0.0953 0.0763 0.1092 0.0659 0.0678 0.0981 0.0932

SSPO 0.2073 0.2041 0.1060 0.0979 0.0919 0.1304 0.0791 0.0840 0.1054 0.1009

Table 7: Daily Sharpe Ratios (SR) and daily Information Ratios (IR) of portfolio optimiza-
tion systems on 5 benchmark data sets.

4.7. Information Ratio

Different from SR, Information Ratio (IR) (Treynor and Black, 1973) directly measures
the daily risk-adjusted excess return of a system compared with the market, which can be
seen as a combination of MER and SR. It is also worth reference for the concern with risk.

IR =
(r̄s − r̄m)

σ̂(rs − rm)
. (39)

We compute the daily IRs of different PO systems in Table 7. SSPO achieves the highest
IR on NYSE(N) and is close to the best system on other data sets. Moreover, SSPO is
competitive to OLMAR and RMR. For example, SSPO achieves IR = 0.0840, 0.1009 on
SP500 and TSE, respectively, while RMR achieves IR = 0.0678 on SP500 and OLMAR
achieves IR = 0.0769 on TSE. It shows the robustness of SSPO to risk on the premise of
good investing performance.
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4.8. Transaction Costs

In practice, transaction cost is an important issue in PO. Suppose we have to pay at a
transaction cost rate ν ∈ (0, 1) to update the portfolio. Then according to the proportional
transaction cost model (Blum and Kalai, 1999; Li et al., 2015; Huang et al., 2016), the
cumulative wealth at the beginning of the t-th day is

Sνn = S0

n∏
t=1

[(b̂>t xt) · (1−
ν

2

d∑
i=1

|b̂(i)
t − b̃

(i)
t−1|)], (40)

b̃
(i)
t−1 =

b̂
(i)
t−1 · x

(i)
t−1

b̂>t−1xt−1

, (41)

where b̃
(i)
t−1 denotes the adjusted portfolio of Asset i at the end of the (t − 1)-th day and

b̃0 is set as [0, · · · , 0]>. ν
2

∑d
i=1 |b̂

(i)
t − b̃

(i)
t−1| is the proportional transaction cost when we

change the adjusted portfolio b̃t−1 to the next portfolio b̂t.
To test the effectiveness of SSPO with consideration of transaction cost, we conduct

experiments of cumulative wealth with ν = 0 ∼ 0.5%, where ν = 0.5% is a rather high cost
rate for stock transactions. The results shown in Figure 9 indicate that SSPO outperforms
the two state-of-the-art systems OLMAR and RMR on all the data sets and thus it is
applicable to real-world financial environments.
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Figure 9: Cumulative wealths of portfolio optimization systems with respect to the trans-
action cost rate ν on 5 benchmark data sets.
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4.9. Running Times

We use a computer with an AMD A10-7800 CPU and an 8GB DDR3 1600MHz memory
card to run SSPO in the experiments, which shows that it is sufficiently fast for large-scale
and time-limited trading environments such as High-Frequency Trading (HFT) (Aldridge,
2013). The average running times (in seconds) of SSPO for one trade on different data
sets are: NYSE(O) (0.0576s), NYSE(N) (0.0450s), DJIA (0.0455s), SP500 (0.0449s), and
TSE (0.1190s). Hence SSPO has good computational efficiency besides significant investing
advantage.

5. Conclusions

We present a novel short-term sparse portfolio optimization (SSPO) system to concen-
trate wealth on a few assets with good increasing potential according to some empirical
financial principles. Few short-term PO systems construct sparse portfolios, and most ex-
isting sparsity systems are either lazy updates or for the long-term PO. These problems
motivate the design of SSPO. We further propose an ADMM algorithm for SSPO, and
prove that its augmented Lagrangian has a saddle point. This is the foundation of the
iterative formulae of ADMM but is seldom addressed before.

We conduct extensive experiments on 5 benchmark data sets with diverse real-world
stock data, which shows that SSPO outperforms other state-of-the-art short-term PO sys-
tems with all the investing performance measurements (cumulative wealth, mean excess
return and α Factor) on all the benchmark data sets. The order statistics of the SSPO
returns also indicate that SSPO does not simply select the lucky assets with the highest
growth and its returns are credible. SSPO is also competitive to other systems on the risk
metrics SR and IR, and shows robustness in balancing between return and risk. Further-
more, SSPO can withstand reasonable transaction costs and runs fast, thus it is applicable
to real-world financial environments including High-Frequency Trading. Therefore, SSPO
is an effective and robust system that is worth further investigations. In the future, we
will continue to establish more complex SSPO systems, so as to improve the investing
performance and the robustness to risk.
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