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Abstract

When tracking user-specific online activities, each user’s preference is revealed in the form
of choices and comparisons. For example, a user’s purchase history is a record of her
choices, i.e. which item was chosen among a subset of offerings. A user’s preferences can
be observed either explicitly as in movie ratings or implicitly as in viewing times of news
articles. Given such individualized ordinal data in the form of comparisons and choices,
we address the problem of collaboratively learning representations of the users and the
items. The learned features can be used to predict a user’s preference of an unseen item to
be used in recommendation systems. This also allows one to compute similarities among
users and items to be used for categorization and search. Motivated by the empirical
successes of the MultiNomial Logit (MNL) model in marketing and transportation, and
also more recent successes in word embedding and crowdsourced image embedding, we
pose this problem as learning the MNL model parameters that best explain the data. We
propose a convex relaxation for learning the MNL model, and show that it is minimax
optimal up to a logarithmic factor by comparing its performance to a fundamental lower
bound. This characterizes the minimax sample complexity of the problem, and proves
that the proposed estimator cannot be improved upon other than by a logarithmic factor.
Further, the analysis identifies how the accuracy depends on the topology of sampling
via the spectrum of the sampling graph. This provides a guideline for designing surveys
when one can choose which items are to be compared. This is accompanied by numerical
simulations on synthetic and real data sets, confirming our theoretical predictions.

Keywords: Collaborative Ranking, Nuclear Norm Minimization, Multi-Nomial Logit
Model

1. Introduction

Given data on how users compared subsets of items, we address the fundamental problem
of learning a representation of users and items. Such data can be observed in the form
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of choices (e.g. which item was bought) or in the form of comparisons (e.g. which items
are rated higher). From such ordinal data on the items, we want to find low dimensional
representations, which we call (latent) features, that explain crucial aspects of the users’
choices. Once learned, these features can be used to predict each user’s preference over items
that the user has not seen yet, which can be used in recommendation systems and revenue
management. These learned features also provide an embedding of the users and items
on the same Euclidean space that allows us to directly quantify similarities via distances,
that can be used to categorize and cluster. These embeddings can reveal the underlying
structure of data such as images. Such an embedding of a discrete set of objects based
on ordinal data has recently gained tremendous attraction mainly due to word embeddings
based on co-occurrence data and their successes in numerous downstream natural language
processing tasks Mikolov et al. (2013b).

The fundamental question in such a representation learning is: what makes one repre-
sentation better than the others? Our guiding principle is that a good representation is
the one that defines a generative model that best explains the given data in the maximum
likelihood sense. To this end, we focus on a parametric generative model known as Multi-
Nomial Logit (MNL) model, widely used and studied in revenue management. The MNL
model has a natural interpretation of human choices as an outcome of maximizing a utility
by agents with noisy perception of the utility, also known as random utility model in Walker
and Ben-Akiva (2002); Azari Soufiani et al. (2012), defined as follows. Each user and item
has a latent low-dimensional feature ui ∈ Rr and vj ∈ Rr respectively. The true utility of
an item is the inner product of these two features Θij , 〈〈ui, vj〉〉 =

∑
k uikvjk. The inherent

low-rank structure of Θ = [Θij ] captures the collaborative nature of the problem, where
users with similar preferences in the past are likely to prefer similar items in the future.

When presented with a set of items, a user reveals a noisy ordering of the items sorted
according to her perceived utilities of the items, each of which is perturbed by an i.i.d. noise
added to the true utility Θij . The MNL model is a special case where the noise follows the
standard Gumbel distribution, and is one of the most popular models in choice theory for its
simplicity and empirical success McFadden (1973); McFadden and Train (2000). The MNL
model has several important properties, making this model realistic in various domains, in-
cluding marketing Guadagni and Little (1983), transportation McFadden (1980); Ben-Akiva
and Lerman (1985), biology Sham and Curtis (1995), sports games Tsokos et al. (2018) and
natural language processing Mikolov et al. (2013a). The MNL model (i) satisfies the ‘inde-
pendence of irrelevant alternatives’ in social choice theory Ray (1973); (ii) has a maximum
likelihood estimator (MLE) which is a convex program in Θ; and (iii) has a simple charac-
terization of sequential (random) choices as follows. Let P {a > {b, c, d}} denote the proba-
bility a was chosen as the best alternative among the set {a, b, c, d}. Then, the probability
that user i reveals a linear order (a > b > c > d) is P {a > {b, c, d}}P {b > {c, d}}P {c > d},
where P {a > {b, c, d}} = eΘia/(eΘia + eΘib + eΘic + eΘid). Essentially the user is modeled as
making a sequence of choices, choosing the best alternative first and then making choices
on the remaining ones. We give the precise definition of the MNL model in Section 2 for
pairwise comparisons and in Section 4 for higher order comparisons and choices. Beyond its
success in classical applications such as transportation and marketing, the MNL model and
its variants are being rediscovered and successfully applied in more modern applications
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such as embedding images using crowdsourcing Tamuz et al. (2011) and word embedding
Mikolov et al. (2013b), whose connections we make precise in Section 6.

Motivated by recent advances in learning low-rank models, e.g. Negahban et al. (2009);
Davenport et al. (2014), we ask the fundamental question of learning the MNL model from
data on comparisons and choices. We provide a general framework using convex relaxations
for learning the model. As data is collected in various forms on modern social computing
systems, we consider the following four canonical scenarios:

• Pairwise comparisons. The most simple and canonical piece of ordinal data one can
collect from a user at a time is a pairwise comparison; given two options, we ask the
user which one is better. Such data is prevalent in the real world and is the most
popular scenario studied in ranking literature, e.g. Shah et al. (2014). However, one
significant aspect of the real data that has not been addressed in the literature is
irregularities in the sampling. Consider an online seller with various products, say
cars and watches. It does not make sense to ask a user to compare a car and a
watch; one cannot sample an outcome of a comparison between a watch and a car.
However, knowing a user’s preference on cars can help in learning her preference on
watches. We want to propose a model and design an inference algorithm that can
take into account such restrictions in sampling. We further want to quantify the
gain in using all such data together in inference, as opposed to running inference in
each category separately. To this end, we propose a new model for sampling that we
call graph sampling. This model explains such irregularities in the real world data.
We propose a novel inference algorithm tailored for the given sampling pattern. Our
analysis captures precisely how the accuracy depends on the different topologies of
the sampling.

• Higher order comparisons. Consider an online market that collects each of its user’s
preference as a ranking over a subset of items that is ‘seen’ by the user. Such data
can be obtained by directly asking to compare some items, or by indirectly tracking
online activities on which items are viewed, how much time is spent on the page or how
the user rated the items. However, collecting such comparisons over multiple items
might come at a cost. We, therefore, want to quantify the gain in the accuracy of
the inference when higher order comparison outcomes are collected. We characterize
the optimal trade-off between accuracy and the number of items compared, and show
that our proposed algorithm seamlessly generalizes to this setting and also achieves
the optimal trade-off.

• Customer choices. One of the most widely applicable data collection scenarios is cus-
tomer purchase history. Online and offline service providers can track each customer
on which subset of items is offered and which item is chosen. Given historical data on
such choices on best-out-of-a-subset, we extract features on the users and items that
best explains the collected data.

• Bundled choices. Another data collection scenario that is gaining interest recently is
bundled choices Chu et al. (2011); Benson et al. (2018). Typical choice models assume
that the willingness to buy an item is independent of what else the user bought. In
many cases, however, we make ‘bundled’ purchases: we buy particular ingredients
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together for one recipe or we buy two connecting flights. One choice (the first flight)
has a significant impact on the other (the connecting flight). In order to optimize
the assortment (which flight schedules to offer) for maximum expected revenue, it is
crucial to accurately predict the willingness of the consumers to purchase bundled
items, based on past history. We propose a model that can capture such interacting
preferences for bundled items (e.g. jeans and shirts), and use this model to extract
the features of the items in each category from historical bundled purchase data. Both
our inference algorithm and the analyses extend to this setting, achieving the optimal
trade-off between sample size and accuracy.

Contribution. We first study the canonical scenario of pairwise comparisons from the
MNL model in Section 3. Our contribution in the modeling is a new sampling scenario we
call graph sampling that captures how different pairs of items have varying likelihood of
being compared together. Our algorithmic contribution is a convex relaxation with a new
regularizer using a variation of the standard nuclear norm tailored for the graph sampling
topology. Our theoretical contribution is in the analysis of the proposed estimator and a
matching fundamental lower bound (up to a poly-logarithmic factor). This (a) characterizes
the minimax sample complexity of the problem; (b) proves that the proposed estimator
cannot be improved upon; and (c) identifies how the accuracy depends on the topology of
sampling. This in turn provides a guideline for designing surveys when one has a choice on
which pairs are to be compared. This is accompanied by experiments on synthetic and real
data sets confirming our theoretical predictions.

This framework is extended to higher order comparisons in Section 4. We establish
minimax optimality (up to a poly-logarithmic factor) of our estimator and identify the
fundamental trade-off between accuracy and sample size. When each user provides a total
linear ordering among k items, we show that the required sample size effectively is reduced
by a factor of k. When the user provides her best choice (as in purchase history) instead
of the total linear ordering, we extend our framework and establish minimax optimality in
Section 5.2. We also consider a bundled purchase scenario in Section 5, where customers
buy pairs of items from each of the two categories. We extend our framework and establish
minimax optimality under the bundled purchase setting. We present experimental results on
both synthetic and real-world data sets confirming our theoretical predictions and showing
the improvement of the proposed approach in predicting users’ choices1.

Technically, we borrow analysis tools from 1-bit matrix completion Davenport et al.
(2014), matrix completion Negahban and Wainwright (2012), and restricted strong con-
vexity Negahban et al. (2009), and crucially utilize the Random Utility Model (RUM)
Thurstone (1927); Marschak (1960); Luce (1959) interpretation (outlined in Section 2.1) of
the MNL model to prove both the upper bound and the fundamental limit. This could be
of interest to analyzing more general class of RUMs.

Notations. We use |||A|||F and |||A|||∞to denote the Frobenius norm and the `∞ norm,
|||A|||nuc =

∑
i σi(A) to denote the nuclear norm where σi(A) denotes the i-th singular

value, and |||A|||2 = σ1(A) for the spectral norm. We use 〈〈u, v〉〉 =
∑

i uivi and ‖u‖ to

1. Code for our experiments are available at https://github.com/POLane16/Nucnorm-Ranking.
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denote the inner product and the Euclidean norm. All ones vector is denoted by 1, I
denotes the identity matrix and I(A) is the indicator function of the event A. The set of
the first N integers are denoted by [N ] = {1, . . . , N}.

1.1 Related Work

Bradley-Terry and Plackett-Luce models. The simplest form of the MNL model is
when all users are sharing the same feature vector such that each item is parametrized by
a scalar value. This is known as Bradley-Terry (BT) model when pairwise comparisons are
concerned and Plackett-Luce (PL) model when higher order comparisons are concerned.
This has been proposed and rediscovered several times in the last century Zermelo (1929);
Thurstone (1927); Bradley and Terry (1955); Luce (1959); Plackett (1975); McFadden (1973,
1980) in the context of ranking teams in sports games, ranking items based on surveys,
and ranking routes in transportation systems. Unlike the general MNL model, maximum
likelihood estimator for the BT and PL models are naturally convex programs. However,
learning the BT model has first been addressed in Jr. (1957) where the convergence of the
iterative algorithm is analyzed, without explicitly relying on the convexity of the problem.
A new algorithm based on Majorize-Minimize framework was proposed in Hunter (2004).
First sample complexity of learning BT model was provided in Negahban et al. (2012) where
a novel estimator, called Rank Centrality, of the BT parameters was proposed. The authors
construct a random walk over a graph where the nodes are the items and the transition
probability is constructed from the comparisons outcomes. This spectral approach is proven
to achieve a minimax optimal sample complexity. This has been a building block for several
ranking algorithms, which further process the Rank Centrality to get better accuracy on
top of it Chen and Suh (2015); Jang et al. (2016, 2017); Chen et al. (2017). For higher
order comparisons, the sample complexity of learning PL model was provided in Hajek
et al. (2014); Shah et al. (2014), where the Maximum Likelihood (ML) estimator is shown
to achieve the minimax optimality. Later, Maystre and Grossglauser (2015) made the
connection between the spectral approach of Rank Centrality and the ML estimator precise
by providing a unifying random walk view to the problem. This led to a novel Accelerated
Spectral Ranking algorithm introduced in Agarwal et al. (2018), which not only finds the
parameters of the PL model more efficiently in computation, but also achieves optimal
sample complexity under general sampling graphs. Recently, Borkar et al. (2016) treat
the learning problem as solving a noisy linear system, and propose an algorithm that is
amenable to on-line, distributed and asynchronous variants. Vojnovic and Yun (2016)
analyzes a more general class of random utility models known as Thurstone models, and
provide the minimax sample complexity by analyzing the ML estimator. Note that the ML
estimators for Thurstone models in general are computationally intractable.

Generalized BT and PL models. As studied in Rajkumar and Agarwal (2014), the
BT model covers a subset of probabilistic models over comparisons. There is a hierarchy
of models with increasing complexity and descriptive power. One popular extension is the
mixture of BT or PL models. It is known that any choice model can be approximated
arbitrarily close with a mixed PL model with sufficient number of mixture components
McFadden and Train (2000). The sample complexity of learning a mixed PL model was
analyzed in Oh and Shah (2014) where a tensor decomposition for learning a mixture model
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was proposed and analyzed under some separation conditions between the weights of the
mixtures. For a mixture of two PL model, Chierichetti et al. (2018) shows identifiability
and uniqueness of the mixture weights, when all marginal probability over all possible
rankings among two items and three items are known. In a crowdsourced setting, Chen et al.
(2013) models pairwise comparisons using a mixture of PL models consisting of hammer
distribution, which reports the true output of a comparison, and spammer distribution,
which reports the exact opposite of a comparison. A different approach that tackles the
problem by learning to cluster the users based on the pairwise comparisons is proposed
in Rui et al. (2015). The MNL model we study in this paper can be thought of as a
generalization of the mixed PL models, where each user has her own preference. To make
learning feasible, we inherently impose similarities among users via a low-rank condition.
Note that a mixed PL model with r mixture is a special case of the MNL model with
rank r, where each user’s membership is encoded as a r-dimensional feature in standard
basis. In the context of collaborative ranking, algorithms for learning the MNL model
from pairwise comparisons have been proposed in Park et al. (2015). Instead of nuclear
norm regularization as we propose in this paper, Park et al. (2015) proposes solving a
convex relaxation of maximizing the likelihood over matrices with bounded nuclear norm.
Under the standard assumption of uniformly chosen pairs, it is shown that this approach
achieves statistically optimal generalization error rate, instead of Frobenius norm error that
we analyze.

Beyond BT and PL models. Modeling choice is an important problem where the ul-
timate goal is to find the right parametric model to capture human choices. Ragain and
Ugander (2016); Blanchet et al. (2013) use Markov chains to model choices with the param-
eters in the transition matrix defining the probability model. Ideal point model Massimino
and Davenport (2018); Kazemi et al. (2018) assumes that the pairwise comparisons of two
items by a user depends on their distance from an ideal item (ideal point) for the user in some
metric embedding space of the items. Novel nonparametric models have also been proposed
to model human choices, for example Shah et al. (2016b); Pananjady et al. (2017); Fala-
hatgar et al. (2018) uses strong stochastic transitivity to model pairwise choices and Farias
et al. (2009) uses distribution over all permutations with sparse support to model higher
order choices. We also note that in the context of (non-collaborative) ranking, Gleich and
Lim (2011) has proposed nuclear norm minimization based algorithm when comparisons
between all pairs items are modeled as a low-rank skew-symmetric matrix. Other non-
parametric approaches to solving ranking include empirical risk minimization. Clémençon
et al. (2005) analyses risk minimization of U-statistics and a more feasible surrogate con-
vex loss minimization to estimate ranking. Katz-Samuels and Scott (2017) assumes that
rating of an item by a user is a Lipschitz function of the user-item pair and analyses a
nonparametric collaborative ranking algorithm from partial observation of such ratings.

While we are interested in the (parameters of) full ranking over all items, there have been
several recent works which aim to only approximately rank the items, such as retrieving
only the top-m items Chen and Suh (2015); Jang et al. (2016, 2017) or partitioning the
items into ordered buckets of fixed size Katariya et al. (2018); Heckel et al. (2018).
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2. Model and Approach for Pairwise Comparisons

The MultiNomial Logit (MNL) model is one of the most popular models that explains how
people make choices when given multiple options and is widely used in behavioral psychology
and revenue management. For brevity, we focus our discussion on data collected in the form
of pairwise comparisons in Sections 2 and 3, and defer the discussion of the MNL model in
its full generality to Sections 4 and 5 . We give a precise definition of the model for paired
comparisons and provide a novel algorithmic solution to learn this model from samples.

2.1 MultiNomial Logit (MNL) Model for Pairwise Comparisons

Let Θ∗ be a d1 × d2 dimensional matrix capturing preferences of d1 users on d2 items. The
probability with which a user, i ⊆ [d1], when presented with two items j1, j2 ⊆ [d2], prefers
item j1 over item j2 is,

P {j1 > j2} =
e

Θ∗ij1

e
Θ∗ij1 + e

Θ∗ij2
. (1)

This implies that, more preferred items (as per the ordering of Θ∗ij) are more likely to
be ranked higher, with the randomness in choices captured by the probabilistic model.

If we do not impose any further constraints on Θ∗, one entry of Θ∗ is not related in any
way to any other entries. This implies that one user’s preference is completely independent
of others’ and no efficient learning is possible. Each user’s preference has to be learned
separately. On the other hand, in real applications, it is reasonable to say that preferences
of users depend only on a handful of factors for example, quality, price, and aesthetics. We
do not know which features affect users’ choices, but we assume that there are r-dimensional
latent features for each of the users and items that govern such choices, and that r � d1, d2.
This assumption mathematically captures the conventional belief that when two people have
similar preferences over a subset of items, they tend to have similar tastes on other items
as well. Formally, MNL model assumes that Θ∗ is a rank r matrix with r � d1, d2. In
this paper, we do not impose a hard constraint on the rank and provide general results for
matrices of any rank. In this case, we identify how the accuracy depends on the rate of
decay of the singular values.

This MNL model has many roots. In revenue management, this has been proposed as a
special case of Random Utility Model (RUM). RUM explains choices that a person makes as
the result of maximizing perceived random utilities associated with the set of alternatives
presented. In the case of MNL, each decision maker and each alternative are associated
with an r-dimensional vector, ui and vj , resulting in a low-rank Θ∗ if Θ∗ij = 〈〈ui, vj〉〉. The
perceived utility of the item j for decision maker i is,

Uij = 〈〈ui, vj〉〉+ ξij , (2)

where ξij ’s are i.i.d. random variables following the standard Gumbel distribution. Different
choices of distributions give different variants of RUMs. In our analyses, we utilize this
RUM interpretation of the MNL model to prove a particular concentration in Section C.4,
for example. The model in Equation. (1) has also been re-discoverd several times in the
literature Zermelo (1929); Thurstone (1927); Luce (1959); Bradley and Terry (1955) in
several domains.
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2.2 Low-rank Regularization using Nuclear Norm Minimization

Given the low-rank structure of the model, a natural but inefficient approach is to minimize
the negative of the log likelihood, L(·), regularized by the rank:

Θ̂ ∈ arg min
Θ∈Rd1×d2

−L(Θ) + λ rank(Θ), (3)

for some parameter λ > 0. As this rank minimization is a notoriously challenging problem,
we instead solve a convex relaxation of it. Note that the nuclear norm ball is the convex hull
of rank-1 matrices Recht et al. (2010). Analogous to l1-norm in the case of sparse vectors,
nuclear norm is a tight convex surrogate for low-rank solutions. We propose the following
nuclear norm regularized optimization problem,

Θ̂ ∈ arg min
Θ∈Ω

−L(Θ) + λ |||Θ|||nuc, (4)

where Ω is a convex constraint which takes care of identifiability and Lipschitz smoothness
conditions. Nuclear norm regularization has been widely used Recht et al. (2010) for rank
minimization; however, provable guarantees exist only for quadratic loss functions L(Θ)
Candès and Recht (2009); Negahban and Wainwright (2012). Our analyses extend such
results to a convex loss, by first proving that −L(·) satisfies restricted strong convexity
property with high probability. Similar to how (non-collaborative) rank aggregation has
been generalized to any strongly log-concave distribution in Shah et al. (2014), our analysis
can naturally be extended to a general class of strongly log-concave distributions. We give
the expression for the log likelihood in Equation. (8) for pairwise comparisons.

3. Learning MNL Model from Pairwise Comparisons under Graph
Sampling

Probabilistic model for sampling. In order to provide performance guarantees on the
proposed approach, we need to specify how we sample the pairs that are to be compared.
We provide a novel sampling model, which we call graph sampling with respect to a weighted
graph G. This naturally generalizes Bernoulli sampling typically studied under matrix com-
pletion literature Candès and Recht (2009); Keshavan et al. (2010a); Negahban and Wain-
wright (2012); Jain et al. (2013), and the resulting analysis captures how the performance
depends on the topology of the samples. Note that the proposed graph sampling is different
from deterministic sampling graphs studied in Hajek et al. (2014); Shah et al. (2016a). This
is analytically tractable only in the simpler case of estimating the weight vector of the PL
model where there is only one user and the ML estimator is a convex program. However,
such deterministic sampling is notoriously hard to handle for matrix estimation, even in
the simpler case of matrix completion Bhojanapalli and Jain (2014). Hence, we introduce
a probabilistic model that allows enough flexibility to capture the interesting aspects of
sampling biases, i.e. grouping.

Precisely, we have a weighted undirected graph G = ([d2], E, {Pj1,j2}(j1,j2)∈E) with d2

nodes, which represent items, a set of edges E and the edge weight Pj1,j2 between nodes j1
and j2. The weights can be written in a symmetric matrix P ∈ Rd2×d2 , and Pj1,j2 +Pj2,j1 =
2Pj1,j2 represent the probability with which the pair (j1, j2) is chosen for comparison. Note
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that Pj,j = 0 , ∀j ∈ [d2], Pj1,j2 = Pj2,j1 and
∑

j1,j2∈[d2] Pj1,j2 = 1. We assume we get
i.i.d. samples from first choosing a random user among [d1] users, and then choosing a
pair (j1, j2) of items at random from P , and finally getting a random comparison from
the MNL model, i.e. the probability with which user i prefers item j1 over item j2 is

exp Θ∗ij1/
(

exp Θ∗ij1 + exp Θ∗ij2

)
.

One of the most important aspects of real-world data that is captured by this graph
sampling model is grouping. Consider two groups of items, say, cars and phones. It does
not make sense to ask an individual to compare a phone with a brand of a car (i.e. direct
comparison is not feasible), but knowing an individual’s preference on cars can help in
learning her preference on phones. In graph sampling terms, we are sampling from a graph
G consisting of two disjoint cliques: one for cars and another for phones. By analyzing such
a sampling scenario, we want to characterize the gain in using the data from both groups
of items together, although there are no inter-group comparisons.

In the preference matrix Θ∗, the values in the set of columns corresponding to each
connected component in the sampling graph can be arbitrarily shifted together, without
changing the pairwise comparisons outcome distributions. This is because adding the same
constant to those items that are compared does not change the probability (for those items
within the same group), i.e.

P {j1 > j2} =
e

Θ∗ij1

e
Θ∗ij1 + e

Θ∗ij2
=

e
Θ∗ij1

+c

e
Θ∗ij1

+c
+ e

Θ∗ij2
+c

,

and adding different constants to those items that are not in the same group does not change
the probability of the outcome as those items are never compared. Hence, to handle this
unidentifiability, we let a centered version of Θ∗ represent all those shifted versions defining
the same probability distribution. Formally, let a zero-one vector gk ∈ {0, 1}d2 denote the
group membership such that gi,k = 1 if item j is in group k, else gi,k = 0. Note that, by

definition, no item can be present in more than one group, that is,
∑G

k=1 gk = 1, where G
is the number of groups. We define an equivalence class of Θ∗ which represent the same
probabilistic model as

[Θ∗] =
{

Θ∗ +
G∑
k=1

ukg
T
k for all uk ∈ Rd1

}
. (5)

To overcome the identifiability issue, we represent each equivalence class with the centered
matrix satisfying

Θ∗gk = 0, ∀ k ∈ {1, 2, . . . , G} (6)

As matrices with large “spikiness” are known to be hard to estimate Negahban and
Wainwright (2012), we capture the dependence of the sample complexity on the spikiness
as measured by α := |||Θ∗|||∞. This captures the dynamic range of the underlying preference
matrix. For a related problem of matrix completion, where the loss L(θ) is quadratic, either
a similar condition on `∞ norm is required or another condition on incoherence is required.

Graph Laplacian. The performance of our approach depends on the sampling graph P
via its graph Laplacian defined as

L = diag(P1)− P (7)
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where diag(P1) is a diagonal matrix with
∑

v Pu,v in the diagonals. Notice that, L is
singular and the nullspace is spanned by vectors {gk}Gk=1. Let σmax(L) = ‖L‖2 and σmin(L)
be the smallest eigenvalue of L discounting the G zero-valued eigenvalues. Since the graph
has G disconnected maximal components and L is real symmetric, by spectral theorem,
L = UΣUT , where U is a matrix of size d2 × (d2 − G) and its d2 − G columns form an
orthonormal set, and Σ is a diagonal matrix such that its diagonal elements are the singular
values of L. Let L† := UΣ−1UT and Lx := UΣxUT for all x ∈ R. We also define the
Laplacian induced norms of matrices as,

|||Θ|||L :=
∣∣∣∣∣∣∣∣∣ΘL1/2

∣∣∣∣∣∣∣∣∣
F
, and, |||Θ|||L-nuc :=

∣∣∣∣∣∣∣∣∣ΘL1/2
∣∣∣∣∣∣∣∣∣

nuc
.

These Laplacian induced norms are more appropriate to analyze and quantify the distance
between the estimated matrix Θ̂ and Θ∗.

When items k(i), l(i) are chosen for comparison by user j(i) as the i-th pair of items,
we capture this choice with the matrix X(i) = ej(i)(ek(i) − el(i))

T . The outcome of the
comparison is represented by yi, with yi = 1 when item k(i) wins over item l(i) and yi = 0
if otherwise. The log-likelihood of the comparison outcomes with respect to a parameter
matrix Θ is,

L(Θ) =
1

n

n∑
i=1

[
yi〈〈Θ, X(i)〉〉 − log

(
1 + exp

(
〈〈Θ, X(i)〉〉

))]
. (8)

We propose and analyze the following convex optimization problem,

Θ̂ ∈ argmin
Θ∈Ωα

− L(Θ) + λ|||Θ|||L-nuc, (9)

where,

Ωα =
{

Θ ∈ Rd1×d2 | |||Θ|||∞ ≤ α,Θgk = 0, ∀ k ∈ [G]
}
, (10)

with an appropriately chosen λ = 8
√

2 max

{√
σ log(2d)

n , σmin(L)−1/2 log(2d)
n

}
with σ = max{

(d2−G)/d1, 1}, where d = (d1 +d2)/2. In practice, the sampling probability distribution P
and the corresponding Laplacian L might not be known. In those cases, we propose using
the empirical sampling probability distribution P̂ and corresponding empirical Laplacian
L̂ instead. We describe this version of the algorithm formally in Section 3.4.4, where we
empirically demonstrate the robustness of this approach. Further, in experiments with real
data sets, we use the empirical Laplacian Section 3.4.5.

3.1 Performance Guarantee

We consider the graph sampling scenario where each sample is i.i.d., the `-th sample consists
of user i` chosen uniformly at random, pair of items (j1,`, j2,`) chosen according to the
sampling graph G = ([d2], E, P ), and the resulting outcome y` distributed as the MNL
model with parameter Θ∗.

10
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Theorem 1 Under the graph sampling with respect to G = ([d2], E, P ) with a graph Lapla-
cian L, and under the MNL preference model with preference matrix Θ∗, solving the op-
timization problem in (9) with n i.i.d. samples achieves, with probability greater than 1 −
1/4d3,

1

d1

∣∣∣∣∣∣∣∣∣(Θ∗ − Θ̂
)
L1/2

∣∣∣∣∣∣∣∣∣
F

2
≤ 36λ

(
α+

1

ψ(2α)

)(√
2r
∣∣∣∣∣∣∣∣∣(Θ∗ − Θ̂

)
L1/2

∣∣∣∣∣∣∣∣∣
F
+

min{d1,d2−G}∑
j=r+1

σj(Θ
∗L1/2)

)
, (11)

for any r ∈ {1, 2, . . . ,min{d1, d2 − G}}, any λ ≥ 8
√

2 max

{√
σ log(2d)

n , σmin(L)−1/2 log(2d)
n

}
where σ = max{(d2 − G)/d1, 1} and d = (d1 + d2)/2, ψ(x) , ex/(1 + ex)2, and for n ≤
min{26d2

1σ
2, 22

(
d1σmin(L)−1

)2/3} log(2d).

We provide a proof in Appendix A. The above bound holds for any r, where r allows us
to trade off the two types of errors: the estimation error and the approximation error.
Concretely, the above bound shows a natural splitting of the error into two terms; the first
term corresponding to the estimation error for the top rank-r component of Θ∗ and the
second term corresponding to the approximation error for how well one can approximate
Θ∗ with a rank-r matrix. If we know the singular values of Θ∗, we can optimize over r
to get the tightest bound. If Θ∗ is exactly low-rank then applying a matching rank in the
bound gives the following guarantee.

Corollary 2 (Exact rank-r matrix) Under the same hypothesis as in Theorem 1 with a

choice of λ = c0 max

{√
σ log(2d)

n , σmin(L)−1/2 log(2d)
n

}
for some c0 > 0, if Θ∗ is exactly rank

r, there exists a positive constant c1 such that the proposed estimator achieves,

1√
d1

∣∣∣∣∣∣∣∣∣(Θ∗ − Θ̂
)
L1/2

∣∣∣∣∣∣∣∣∣
F
≤ c1

(
α+

1

ψ(2α)

)√
rmax

{√
σ d1 log(2d)

n
,√

(σmin(L)−1d1) log(2d)

n

}
, (12)

with probability at least 1− 2/(d1 + d2)3 and σ = max{(d2 −G)/d1, 1}.

The second term in the maximization is an artifact of the weakness of current analysis
technique and does not reflect the actual error. This is confirmed in our simulation results
on graphs with very small spectral gap in Figures 1.(b), (d), and (f), where the error in
Laplacian-induced norm error does not decrease with spectral gap of L as the line graph
has a much smaller spectral gap compared to a complete graph, for example. In fact, for
a special Θ∗ in Figure 1.(d) it is the other way, for which we do not have a theoretical
explanation.

The number of entries in Θ∗ is d1d2 and we want to rescale the Frobenius norm error
appropriately by 1/

√
d1d2. As a typical scaling of L1/2 is 1/

√
d2 in spectral norm, we

11
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only need to rescale the Laplacian-induced norm error by 1/
√
d1 in the left-hand side of

the above bound. For a rank-r Θ∗, the number of degrees of freedom in describing it is
r(d1 +d2)−r2 = O(r(d1 +d2)). The above theorem shows that the total number of samples
n needs to scale as O(r(d1 + d2) log d) in order to achieve an arbitrarily small error. This is
only a poly-logarithmic factor larger than the degrees of freedom. In Section 3.2 we make
this comparison precise by providing a lower bound that matches the upper bound up to a
logarithmic factor.

The upper-bound constraint in Theorem 1 on the number of samples n can be met for
large enough d1 and d2. For simplicity, assume that d1 = d2 = d and r is a constant. Since
σmin(L) = O(1/d2), the upper-bound on n becomes O(max{d2, d4/3}). For large enough d,
the upper bound on the RHS of Eq. (12) can be made arbitrarily small with n only scaling
as O(r d). This is significantly smaller than the upper-bound of O(d2) on n. Further, in the
experiments in Section 3.4, we show that n has no practical upper-bound constraint since
the error decreases at the same rate as predicted, for arbitrarily large values of n. This
constraint may not be necessary and might be a by-product of the proof techniques.

The dependence on the dynamic range α, however, is sub-optimal. It is expected that
the error increases with α, since the Θ∗ scales as α, but the exponential dependence in
the bound seems to be a weakness of the analysis (for example as seen from numerical
experiments in the right panel of Figure 6). Although the error increase with α, numerical
experiments suggest that it only increases at most linearly. However, tightening the scaling
with respect to α is a challenging problem, and such sub-optimal dependence is also present
in existing literature for learning even simpler models, such as the Bradley-Terry model
Negahban et al. (2012) or the Plackett-Luce model Hajek et al. (2014), which are special
cases of the MNL model studied in this paper.

Another issue is that the underlying matrix might not be exactly low rank. It is more
realistic to assume that it is approximately low rank. Following Negahban and Wainwright
(2012) we formalize this notion with “`q-ball” of matrices defined as

Bq(ρq) ≡ {Θ ∈ Rd1×d2 |
∑

j∈[min{d1,d2}]

|σj(Θ∗)|q ≤ ρq} . (13)

When q = 0, this is a set of rank-ρ0 matrices. For q ∈ (0, 1], this is set of matrices whose
singular values decay relatively fast. By optimizing the choice of r in Theorem 1, we get
the following result.

Corollary 3 (Approximately low-rank matrices) Suppose Θ∗ ∈ Bq(ρq) for some q ∈

(0, 1] and ρq > 0. Under the hypotheses of Theorem 1, with a choice of λ = c0 max

{
√

σ log(2d)
n , σmin(L)−1/2 log(2d)

n

}
for some constant c0 > 0 there exists a constant c1 > 0 such

that solving the optimization (9) achieves with probability at least 1− 2/(d1 + d2)3,

1√
d1

∣∣∣∣∣∣∣∣∣(Θ∗ − Θ̂
)
L1/2

∣∣∣∣∣∣∣∣∣
F
≤

c1
√
ρq√
d1

((
α+

1

ψ(2α)

)√d2
1 σ log(2d))

n

) 2−q
2

, (14)

provided n ≥ σ log(2d)/σmin(L).

12
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This is a strict generalization of Corollary 2. For q = 0 and ρ0 = r, this recovers the
exact low-rank estimation bound up to a factor of two. For approximate low-rank matrices
in an `q-ball, we lose in the error exponent, which reduces from one to (2− q)/2.

3.2 Information-theoretic Lower Bound

For a polynomial-time algorithm of convex relaxation, we gave in the previous section a
bound on the achievable error. We next compare this to the fundamental limit of this
problem, by giving a lower bound on the achievable error by any algorithm (efficient or
not). A simple parameter counting argument indicates that it requires the number of
samples to scale as the number of degrees of freedom i.e., n ∝ r(d1 + d2), to estimate a
d1 × d2 dimensional matrix of rank r. We construct an appropriate packing over the set of
low-rank matrices with bounded entries in Ωα defined as (10), and show that no algorithm
can accurately estimate the true matrix with high probability using the generalized Fano’s
inequality. This provides a constructive argument to lower bound the minimax error rate,
which in turn establishes that the bounds in Theorem 1 is sharp up to a logarithmic factor,
and proves no other algorithm can significantly improve over the nuclear norm minimization.

Theorem 4 Suppose Θ∗ has a rank r. Under the previously described graph based sampling
model, there exists a constant c > 0 such that

inf
Θ̂

sup
Θ∗∈Ωα

E
[ 1√

d1

∣∣∣∣∣∣∣∣∣(Θ∗ − Θ̂
)
L1/2

∣∣∣∣∣∣∣∣∣
F

]
≥ c min

{
e−α

√
r d1

n
,

αmax


√

r

tr
(
L†r
) , d2√

d1 log d


}
, (15)

where the infimum is taken over all measurable functions over the observed comparison
results and L†r is the pseudo inverse of the rank r approximation of the graph Laplacian.

A proof of this theorem is provided in Appendix B. The term of primary interest in this
bound is the first one, which shows the scaling of the (rescaled) minimax rate as

√
rd1/n

and matches the upper bound in (12) up to a logarithmic factor. It is the dominant term in

the bound whenever the number of samples is larger than n ≥ d1 max{tr
(
L†r
)
, d1 log d/d2

2}.
As suggested in numerical simulations on graphs with very small spectral gap in Figures

1.(b), (d), and (f), the dependence in tr
(
L†r
)

is an artifact of the weakness of the current

analysis technique. Here we note that, while the lower bound in Theorem 4 is in expec-
tation, the upper bound in Theorem 1 is a high-probability result. The upper bound can
immediately be translated into a bound in expected error with an additional term scaling
as ασmax(L)1/2

√
d2d
−3, which is smaller than other terms in the bound.

3.3 Performance Guarantee and Lower Bound for Complete Graph

It follows from a simple relation |||(Θ∗ − Θ̂)L1/2|||F ≥ σ
1/2
min|||Θ∗ − Θ̂|||F , which is true since

Θ∗, Θ̂ are in the range space of L, that the above upper bounds automatically give the error
bound in the Frobenius norm. When the sampling graph is uniform, i.e. a complete graph

13
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with equal weights Pj1,j2 = 1/d2(d2 − 1), ∀j1 6= j2, Frobenius norm is the right metric and
we show matching upper and lower bounds.

Corollary 5 (Complete graph upper-bound) Under the same hypothesis as in Corol-

lary 2, if G is a complete graph, with a choice of λ = c0 max

{√
σ log(2d)

n ,

√
(d2−1) log(2d)

n

}
for some c0 > 0, if Θ∗ is exactly rank r, there exists a positive constant c1 such that the
proposed estimator achieves,∣∣∣∣∣∣∣∣∣Θ∗ − Θ̂

∣∣∣∣∣∣∣∣∣
F√

d1(d2 − 1)
≤ c1

(
α+

1

ψ(2α)

)√
rmax

{√
σ d1 log(2d)

n
,

√
(d2 − 1)d1 log(2d)

n

}
, (16)

with probability at least 1− 2/(d1 + d2)3 and σ = max{(d2 − 1)/d1, 1}.

Corollary 6 (Complete graph lower-bound) Suppose Θ∗ has rank r. Under the pre-
viously described graph based sampling model with graph being a complete graph, there is a
universal numerical constant c > 0 such that

inf
Θ̂

sup
Θ∗∈Ωα

E
[ 1√

d1 (d2 − 1)

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F

]
≥ c min

{
e−α

√
r d1

n
,

αmax

{
1√

(d2 − 1)
,

d2√
d1 log d

}}
,

(17)

where the infimum is taken over all measurable functions over the observed comparison
results.

3.4 Experiments

We provide a first-order method to solve the proposed convex optimization, and provide
numerical experiments using this algorithm. We present two simulation results followed by
an experiment on real data.

For the synthetic experiments, we generate random rank-r matrices of dimension d ×
d, of the form Θ∗ = UV T with U ∈ Rd×r and V ∈ Rd×r entries generated i.i.d from
uniform distribution over [0, 1]. Then the connected-component-mean is subtracted form
each connected component, and then the whole matrix is scaled such that the largest entry
is α = 5. Note that this operation does not increase the rank of the matrix Θ. This is
because this de-meaning can be written as Θ −

∑
k ΘggT /(gT1) and both terms in the

operation are of the same column space as Θ which is of rank r.

3.4.1 Algorithm

Let Θ′ , ΘL1/2. As the nuclear norm regularizer in (9) is non differentiable, we use the
proximal gradient descent Agarwal et al. (2010); Cai et al. (2010). At each iteration, we
apply the following two operations on the current estimate, Θ′t, of Θ∗L1/2,

Θ̃′t+1 = Θ′t − ηt∇ΘL(Θ′tL
−1/2)L−1/2 (gradient descent) (18)

Θ′t+1 = Mt(Γt − ηtλI)+NT
t (singular value shrinkage and thresholding) (19)
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where MtΓtN
T
t := Θ̃′t is the singular value decomposition of Θ̃′t, such that Γt is a diagonal

matrix with positive entries, (·)+ is the entry-wise thresholding operation max(0, x), and ηt
is an appropriate step-size. Constraint of zero row sum, is taken care of by initializing the
descent algorithm with Θ′0 = 0, since rows of gradients sum to zero. In practice we do not
know the value of α, and hence in experiments we do not enforce the ‖Θ‖∞ ≤ α constraint.

Another issue in the implementation is that the convergence rate can be significantly
slower for some graph topologies. We accelerate the proximal gradient descent with the
following (modified) Barzilai-Borwein (BB) rule Barzilai and Borwein (1988) for choosing
the step-size ηt,

ηt =


|||Θ′t−Θ′t−1|||22

〈〈Θ′t−Θ′t−1,∇Θ′L′(Θ′t)−∇Θ′L′(Θ′t−1)〉〉 , when t is odd

〈〈Θ′t−Θ′t−1,∇Θ′L′(Θ′t)−∇Θ′L′(Θ′t−1)〉〉
|||∇Θ′L′(Θ′t)−∇Θ′L′(Θ′t−1)|||22

, when t is even
, (20)

where ∇Θ′L′(Θ′) := ∇ΘL(Θ′L−1/2)L−1/2. We stop the descent algorithm whenever an
upper bound of the KKT error is smaller than 10−5.

3.4.2 The Role of the Topology of the Sampling Pattern

In figure 1, we plot the error of our nuclear norm minimization based algorithm versus
number of samples (in log-scale), n for d1 = d2 = 300, r = 4, α = 5.0, G = 1. We consider

two errors here; root mean squared error (RMSE) =
∣∣∣∣∣∣∣∣∣Θ− Θ̂

∣∣∣∣∣∣∣∣∣
F
/
√
d1d2 and Laplacian

induced RMSE (L-RMSE)=
∣∣∣∣∣∣∣∣∣(Θ− Θ̂)L1/2

∣∣∣∣∣∣∣∣∣
F
/
√
d1. We plot these errors for four topologies

of varying spectral gaps. As discussed Section 3.1, we do not expect the L-RMSE error to
change much as we change the topology of sampling. However, as seen from the simple

relation |||(Θ∗− Θ̂)L1/2|||F ≥ σ1/2
min|||Θ∗− Θ̂|||F Frobenius norm error is more sensitive to the

topology of the sampling pattern, captured via the spectral gap, i.e. σmin(L). Specifically
we use the following graph topologies.

• Complete graph. We first consider a uniform sampling over a complete graph where
Pj1,j2 = 1/d2(d2−1) for all j1, j2 ∈ [d2]. The resulting spectral gap is 1/(d2−1), which
is the maximum possible value. Hence, complete graphs are optimal for learning MNL
models, compared in the error metric of the Frobenius norm for fairness.

• Star graph. Here we choose one item to be the center, and every other items can
only be compared to this center item uniformly at random. Let item 1 be the center
one, then Pj1,1 = P1,j2 = 1/2(d2 − 1). Standard spectral analysis shows that the
spectral gap is Θ(1/d2), and thus the graph is near-optimal for learning MNL models.

• Line graph. Next, we consider a line graph with d2−1 edges where Pj,j+1 = Pj+1,j =
1/2(d2 − 1). It has a spectral gap of Θ(1/d2

2), and is strictly sub-optimal for learning
MNL models.

• Barbell graph. Consider two equal sized groups of items. Within each group the
sub-graph is complete, and between the groups there is a single edge connecting one
of the node from group one and one of the node from group two. Each edge is chosen
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(a) RMSE for i.i.d. Θ∗
ij (b) L-RMSE for i.i.d. Θ∗

ij

(c) RMSE for barbell bias Θ∗
ij (d) L-RMSE for barbell bias Θ∗

ij

(e) RMSE for line bias Θ∗
ij (f) L-RMSE for line bias Θ∗

ij

Figure 1: Graphs with small spectral gap achieve significantly larger Frobenius norm

error (RMSE)
∣∣∣∣∣∣∣∣∣Θ− Θ̂

∣∣∣∣∣∣∣∣∣
F
/
√
d1d2, whereas the Laplacian-induced norm error (L-RMSE)∣∣∣∣∣∣∣∣∣(Θ− Θ̂)L1/2

∣∣∣∣∣∣∣∣∣
F
/
√
d1 is not sensitive to the spectral gap.
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uniformly at random for comparisons. The resulting spectral gap is Θ(1/d2
2), and this

graph too is strictly sub-optimal for learning MNL models.

First in sub-figures 1a, 1b, we plot RMSE and L-RMSE errors for different graphs using
randomly generated Θ∗ij . We see that L-RMSE curves for different graphs are the same (and
slopes in log-scale are as expected approaches −1/2 with more samples). Further, we do
not see any significant difference w.r.t the graph topology even when error is measured in
Frobenius norm. The reason is that since Θ∗ij ’s are generated i.i.d., the empirical distribu-
tions of any large sub-group of items would be similar. Thus, the means of the two cliques
of the barbell graph or the means of the items on the two far ends of the line graph are
similar. Thus although barbell and line graphs have small spectral gap (high mixing-time),
its effect is minimized because these sub-groups can individually be solved without having
them to mix since the empirical distributions of the Θ∗ij in the two sub-groups are similar.

To illustrate the role of the topology of the graph, we choose specific Θ∗ which depends
on the topology of the graph as guided by our analysis on the lower bound (Theorem 4)
in sub-figures 1c, 1d. The items are divided into two sets (corresponding to each side of
barbell graph), such that corresponding Θ∗ij are i.i.d. inside a set but have similar but
shifted means across the sets. We call this type of preference data as barbell biased. As
expected from theoretical analyses, L-RMSE behave similar to the i.i.d. case. However,
we see the Frobenius norm error significantly worse in the case of line and barbell shaped
graphs, as expected from the Frobenius error bound. In sub-figures 1e, 1f, we simulate line
biased preference data Θ∗. Items are ordered (in the order of the line graph), such that
Θ∗ij ’s have similar distributions but their means get shifted in an arithmetic progression as
you go down the ordering. Again, Frobenius norm error is significantly larger for line and
barbell graphs as spectral gaps are small.

3.4.3 The Gain in Inference over Multiple Groups of Items

Consider G groups of items such that, within each group, every pair of items is uniformly
likely to get compared, but items from different group are never compared with each each
other. As a baseline, one can run inference on each group separately. On the other hand,
we propose running inference on all the G groups jointly. Let Θ̂ be the estimate of Θ∗

when solving the groups together, and let Θ̄ be the estimate when groups are estimated
separately. Let L, L(k) be the graph Laplacians of the whole graph and k-th connected
component (group) respectively. suppose, for simplicity, that d1 = d2 and the groups are
equally sized complete sub-graph components,

L =
1

(d2 −G)

(
Id2×d2 −

G

d2

G∑
k=1

gkg
T
k

)
, and, (21)

L(k) =
1

(d2/G− 1)

(
I d2
G
× d2
G

− G

d2
11T

)
. (22)

According to Theorems 1 and 4, the L-RMSE error of Θ̂ satisfies,

1√
d1

∣∣∣∣∣∣∣∣∣(Θ∗ − Θ̂
)
L1/2

∣∣∣∣∣∣∣∣∣
F

=
1√

d1(d2 −G)

∣∣∣∣∣∣∣∣∣Θ∗ − Θ̂
∣∣∣∣∣∣∣∣∣

F
= Õ

(√
rd1

n

)
. (23)
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Figure 2: As the number of groups increase, the gain in joint inference increases.

Similarly L-RMSE error (with respect to the full Laplacian L) of Θ̄ satisfies,

1

d1

∣∣∣∣∣∣∣∣∣(Θ∗ − Θ̄
)
L1/2

∣∣∣∣∣∣∣∣∣
F

2
=

1

d1(d2 −G)

∣∣∣∣∣∣Θ∗ − Θ̄
∣∣∣∣∣∣

F

2
(24)

(a)
=

(d2/G− 1)

(d2 −G)

G∑
k=1

∣∣∣∣∣∣(Θ∗k − Θ̄k

)
(L(k))1/2

∣∣∣∣∣∣2
F

d2
(25)

=
1

G

G∑
k=1

Õ

(
rd1

n/G

)
(26)

= Õ

(
Grd1

n

)
, (27)

where (a) follows from Eq. (22) and assuming Θ∗k, Θ̄k are sub-matrices restricted to the
columns in group k. Thus the estimation errors when running joint inference and sepa-
rate inference for each group are of the order of OG(1) and OG(

√
G) respectively. That

is, a user’s preference in one group of items will be useful in inferring the same user’s
preference in another group of items. We illustrate this gain of joint inference in Figure
2. Concretely, the sampling graph G has G groups where each component is a complete
graph and d1 = d2 = 360, r = 4, α = 5.0, n = 214. Figure 2 plots the L-RMSE (RMSE)

=
∣∣∣∣∣∣∣∣∣(Θ− Θ̂)L1/2

∣∣∣∣∣∣∣∣∣
F
/
√
d1 (

∣∣∣∣∣∣∣∣∣(Θ− Θ̂)
∣∣∣∣∣∣∣∣∣

F
/
√
d1 d2) errors vs. G, when all the groups are solved

together (labelled as LMSE and MSE) or when the groups are solved separately (labelled
as LMSE Alone and MSE Alone) using our algorithm. We see that solving the components
together keeps the error relatively similar as the number of groups increase, but if we solve
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number of comparisons, n
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line: L
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Figure 3: L-RMSE for various sampling graphs when true Laplacian L is known (solid) and
when empirical Laplacian L̂ is used (dashed)

.

the groups separately the error increases with number of groups, although it is at a lower
rate than predicted by the upper bound.

3.4.4 Robustness to the Mismatched L-nuc Norm Regularizer

In practical scenarios, one might not have access to the sampling graph Laplacian L. We
propose using empirical Laplacian L̂ defined as

L̂ , diag
(
P̂1
)
− P̂ , (28)

where P̂ ∈ Rd2×d2 is the empirical distribution of sampled pairs in the given data. Under
the experimental setting from Figure 1b, we run additional experiments with this empirical
Laplacian L̂ in the optimization: minimize −L(Θ) + λ|||Θ|||L̂-nuc . Figure 3 illustrates that
the effect on the performance of not knowing the true L is marginal. Both approaches
achieve the same error.

3.4.5 Real data: Food100

To showcase the practicality of our nuclear norm based algorithm (9) we apply our algorithm
to the Food100 Data set2 Wilber et al. (2014). In the data set, n = 250320 triplets, denoted
by {(ai, bi, ci)}i, of 3 distinct food dishes from a selection of d = 100 were sampled. Then in

2. Data set is from https://vision.cornell.edu/se3/projects/cost-effective-hits.
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a crowdsourcing setting, users were asked if, ai is more similar to bi than to ci. The goal is
to learn an low-dimensional embedding of the 100 food items where the above similarities
are captured. We model the problem as learning an MNL model, parameterized by Θ∗,
which gives the following probability distribution for i-th user’s answer,

P {ai is more similar to bi than to ci} =
e

Θ∗ai,bi

e
Θ∗ai,bi + eΘ∗ai,ci

.

This is the same model as the pairwise comparisons from Section 2, except for the fact
that instead of a user (row) comparing two items (columns), here we compare a food item
(row) to two other food items (columns). We implement three different algorithms: our
nuclear norm based algorithm (‘nucnorm’), unregualrized (λ = 0) likelihood maximization
(‘fullrank’) and maximum likelihood based algorithm to learn rank-1 Plackett-Luce model
Luce (1959); Plackett (1975) (‘plackett’).

In Figure 4, we plot the mean log-likelihood of the learned model versus fraction x of the
data used for training for the various algorithms for testing (a) and training (b) data. If x
fraction of the data is used for training, we use the rest (1−x) of the data for testing. For the
nuclear norm minimization, we estimate the Laplacian L using the empirical distribution
of the triplets and λ is chosen to be 0.1

√
log(d)/2 d xn.

In the Fig. 4(b) (to the left) on the testing data set, we see that our MNL model based
nuclear norm regularized algorithm clearly outperforms both unregularized algorithm and
the Placket-Luce model estimator, especially when there is less training data. In fact, the
mean likelihood (log(Pmodel(test data))) on the testing data remains relatively the same
when we decrease the size of the training data, which supports our claim that real data has
low-rank structure. In the Fig. 4(b) (right) on the training data sets, the non-regularized
approach of ‘fullrank’ achieves higher likelihood on the training data, indicating that it
overfits to training data.

(a) Mean log-likelihood on testing data set (b) Mean likelihood on training data set

Figure 4: Mean log-likelihood vs fraction of the total data used for training. Our nuclear
norm regularized algorithm (‘nucnorm’) fits the test data better than both unregularized
algorithm (‘fullrank’) and Plackett-Luce model based estimation, especially when training
data is small in size.
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Dessert

Meat

Salad

Figure 5: Food100: t-SNE embedding of the columns of the learned MNL parameter Θ̂.
Desserts (bottom left) are seperated from other dishes. Meat dishes are also separated from
vegetable dishes.

In Fig. 5 we plot the t-SNE embedding Maaten and Hinton (2008) of the columns of the
estimated MNL parameter matrix Θ̂ when all the data is used for training. The desserts
(left bottom) are separated from other dishes, and meat dishes and salad dishes form two
clusters (top right).

4. Learning the MNL Model under Higher Order Comparisons

Higher order comparisons, where a subset of k items are offered to a user who then provides a
complete ranking (total linear ordering) of those item, is a natural generalization of pairwise
comparisons, that captures some aspect of heterogeneous and complex modern data sets.
We refer to such scenarios as k-wise comparisons or k-wise rankings. The MNL model
generalizes to such comparisons. Let Θ∗ be the d1 × d2 dimensional matrix capturing the
preference of d1 users on d2 items, where the rows and columns correspond to users and
items, respectively. In this k-wise ranking setting, when a user i is presented with a set,
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Si ⊆ [d2], of k alternatives she reveals her preferences as a ranked list over those items. To
simplify the notations, we assume that all the users compare the same number k of items,
but the analysis naturally generalizes to the case when the size might differ from a user to
a user and when each user provides more than one k-wise ranking. Let vi,` ∈ Si denote the
(random) `-th best choice of user i. Each user gives a ranking, independent of other users’
rankings, from

P {vi,1, . . . , vi,k|Si is presented to user i} =
k∏
`=1

e
Θ∗i,vi,`∑

j∈Si,` e
Θ∗i,j

, (29)

where with Si,` ≡ Si \ {vi,1, . . . , vi,`−1} and Si,1 ≡ Si. For a user i, the i-th row of Θ∗

represents the underlying preference vector of the user, and the more preferred items are
more likely to be ranked higher.

Similar to the pairwise comparisons, the distribution (29) is independent of shifting each
row of Θ∗ by a constant. Since we can only estimate Θ∗ up to this equivalent class, we search
for the one whose rows sum to zero, i.e.

∑
j∈[d2] Θ∗i,j = 0 for all i ∈ [d1]. For capturing the

“spikiness” Negahban and Wainwright (2012) of Θ∗, we define α ≡ maxi,j1,j2 |Θ∗ij1 − Θ∗ij2 |
to denote the dynamic range of the underlying Θ∗, such that when k items are compared,
we always have

1

k
e−α ≤ 1

1 + (k − 1)eα
≤ P {vi,1 = j} ≤ 1

1 + (k − 1)e−α
≤ 1

k
eα , (30)

for all j ∈ Si, all Si ⊆ [d2] satisfying |Si| = k and all i ∈ [d1]. We do not make any
assumptions on α other than that α = O(1) with respect to d1 and d2. Given this definition,
we solve the following optimization

Θ̂ ∈ arg min
Θ∈Ωα

−L(Θ) + λ|||Θ|||nuc, (31)

where,

L(Θ) =
1

k d1

d1∑
i=1

k∑
`=1

〈〈Θ, eieTvi,`〉〉 − log

∑
j∈Si,`

exp
(
〈〈Θ, eieTj 〉〉

) , (32)

over

Ωα =
{
A ∈ Rd1×d2

∣∣ |||A|||∞ ≤ α, and ∀i ∈ [d1] we have
∑
j∈[d2]

Aij = 0
}
. (33)

Note that unlike graph sampling for pairwise comparisons, we assume that each user is
presented a subset of k items and provides a complete ranking over those k items. This
choice of sampling scenario, together with independent choices of the items in subset Si’s,
is crucial for getting a bound that is tight in its scaling with respect to not only d1, d2, and
r, but also k, as a certain independence is required to apply the symmetrization technique
(in Lemma 29) which gives us the desired tight bound on the error. It trivially follows
from our analysis that one can relax the assumptions in the sampling scenario significantly
(e.g. sampling without replacement, heterogeneous sampling probabilities for each item-user
pair, etc.), and the only change in the upper bound of Eq. (34) will be a weaker dependence
k.
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4.1 Performance Guarantee

We provide an upper bound on the resulting error of our convex relaxation, when a multi-set
of items Si presented to user i is drawn uniformly at random with replacement. Precisely,
for a given k, Si = {ji,1, . . . , ji,k} where ji,`’s are independently drawn uniformly at random
over the d2 items. Further, if an item is sampled more than once, i.e. if there exists
ji,`1 = ji,`2 for some i and `1 6= `2, then we assume that the user treats these two items as
if they are two distinct items with the same MNL weights Θ∗i,ji,`1

= Θ∗i,ji,`2
. The resulting

preference is therefore always over k items (with possibly multiple copies of the same item),
and distributed according to (29). For example, if k = 3, it is possible to have Si = {ji,1 =
1, ji,2 = 1, ji,3 = 2}, in which case the resulting ranking can be (vi,1 = ji,1, vi,2 = ji,3, vi,3 =

ji,2) with probability (eΘ∗i,1)/(2 eΘ∗i,1 + eΘ∗i,2)× (eΘ∗i,2)/(eΘ∗i,1 + eΘ∗i,2). Such a sampling with
replacement is necessary for the analysis, where we require independence in the choice of the
items in Si in order to apply the symmetrization technique (e.g. Boucheron et al. (2013)) to
bound the expectation of the deviation (cf. Appendix C.4). Similar sampling assumptions
have been made in existing analyses on learning low-rank models from noisy observations,
e.g. Negahban and Wainwright (2012). Let d ≡ (d1 + d2)/2, and let σj(Θ

∗) denote the j-th
singular value of the matrix Θ∗. Define

λ0 ≡ e2α

√
d1 log d+ d2 (log d)2(log 2d)4

k d2
1 d2

. (34)

Theorem 7 Under the described sampling model, assume 24 ≤ k ≤ min{d2
1 log d, (d2

1 +
d2

2)/(2d1) log d, (1/e) d2(4 log d2 + 2 log d1)}, and λ ∈ [480λ0, c0λ0] with any constant c0 =
O(1) larger than 480. Then, solving the optimization (31) achieves

1

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣2

F
≤ 288

√
2 e4αc0λ0

√
r
∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

+ 288e4αc0λ0

min{d1,d2}∑
j=r+1

σj(Θ
∗) , (35)

for any r ∈ {1, . . . ,min{d1, d2}} with probability at least 1−2d−3−d−3
2 where d = (d1+d2)/2.

A proof is provided in Appendix C. This bound holds for all values of r and one could
potentially optimize over r. We show such results in the following corollaries.

Corollary 8 (Exact low-rank matrices) Suppose Θ∗ has rank at most r. Under the
hypotheses of Theorem 7, solving the optimization (31) with the choice of the regularization
parameter λ ∈ [480λ0, c0λ0] achieves with probability at least 1− 2d−3 − d−3

2 ,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤ 288

√
2e6αc0

√
r(d1 log d+ d2 (log d)2(log 2d)4)

k d1
. (36)

The number of entries is d1d2 and we rescale the Frobenius norm error appropriately by
1/
√
d1d2. For a rank-r matrix Θ∗ with r(d1 + d2)− r2 = O(r(d1 + d2)) degrees of freedom,

the above theorem shows that the total number of samples, which is (k d1), needs to scale
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as O(rd1(log d) + rd2 (log d)2(log 2d)4) in order to achieve an arbitrarily small error. This is
only poly-logarithmic factor larger than the degrees of freedom. In Section 4.2, we provide a
lower bound on the error directly, that matches the upper bound up to a logarithmic factor.
The dependence on the dynamic range α is sub-optimal. The exponential dependence in the
bound seems to be a weakness of the analysis, as seen from numerical experiments in the
right panel of Figure 6. Although the error increase with α, numerical experiments suggests
that it only increases at most linearly. A practical issue in achieving the above rate is the
choice of λ, since the dynamic range α is not known in advance. Figure 6 illustrates that
the error is not sensitive to the choice of λ for a wide range.

For approximately low-rank matrices in `q-ball defined in (13), optimizing the choice of
r in Theorem 7, we get the following result. This is a strict generalization of Corollary 8
and a proof of this Corollary is provided in Appendix D.

Corollary 9 (Approximately low-rank matrices) Suppose Θ∗ ∈ Bq(ρq) for some q ∈
(0, 1] and ρq > 0. Under the hypotheses of Theorem 7, solving the optimization (31) with
the choice of the regularization parameter λ ∈ [480λ0, c0λ0] achieves with probability at least
1− 2d−3,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤

2
√
ρq√

d1d2

288
√

2c0e
6α

√
d1d2(d1 log d+ d2 (log d)2(log 2d)4)

k d1


2−q

2

.(37)

4.2 Information-theoretic Lower Bound for Low-rank Matrices

A simple parameter counting argument indicates that it requires the number of samples to
scale as the degrees of freedom i.e., kd1 ∝ r(d1 + d2), to estimate a d1 × d2 dimensional
matrix of rank r. By applying Fano’s inequality with appropriately chosen hypotheses, the
following lower bound establishes that the bound in Theorem 7 is sharp up to a logarithmic
factor.

Theorem 10 Suppose Θ∗ has rank r. Under the described sampling model, for large enough
d1 and d2 ≥ d1, there is a universal numerical constant c > 0 such that

inf
Θ̂

sup
Θ∗∈Ωα

E
[ 1√

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F

]
≥ c min

{
αe−α

√
r d2

k d1
,

αd2√
d1d2 log d

}
, (38)

where the infimum is taken over all measurable functions over the observed ranked lists
{(vi,1, . . . , vi,k)}i∈[d1].

A proof of this theorem is provided in Appendix E. The term of primary interest in
this bound is the first one, which shows the scaling of the (rescaled) minimax rate as√
r(d1 + d2)/(kd1) (when d2 ≥ d1), and matches the upper bound in (35). It is the dom-

inant term in the bound whenever the number of samples is larger than the degrees of
freedom by a logarithmic factor, i.e., kd1 > r(d1 + d2) log d, ignoring the dependence on
α. This is a typical regime of interest, where the sample size is comparable to the latent
dimension of the problem. In this regime, Theorem 10 establishes that the upper bound in
Theorem 7 is minimax-optimal up to a logarithmic factor in the dimension d.
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4.3 Rank Breaking for Higher Order Comparisons

A common approach in practice to handle higher order comparisons is rank breaking, which
refers to the practice of breaking the higher order comparisons into a set of pairwise com-
parisons and applying an estimator tailored for pairwise comparisons treating each pair as
independent Azari Soufiani et al. (2013, 2014). When the higher order comparison is given
as partial rankings (as opposed to total linear ordering as we assume) then rank breaking
can be inconsistent, and special algorithms are needed for weighted rank breaking Khetan
and Oh (2016a,b). However, when k-wise rankings (also called total linear orderings) are
observed as we assume, simple and standard rank breaking achieves a similar performance
as the higher order estimator in (31). Assume that ui,m, i ∈ [d1], m ∈ [k], denotes the
m-th element observed by the i-th user. Concretely, in rank breaking, we convert the k-
wise ranking data into pairwise ranking data and then we solve the following optimization
problem:

L(Θ) =
1

d1

(
k
2

) ∑
i∈[d1]

∑
(m1,m2)∈P0

(
Θi, hi(m1,m2) − log

(
exp

(
Θi, ui,m1

)
+ exp

(
Θi, ui,m2

)))
,

(39)

where P0 = {(i, j) : 1 ≤ i < j ≤ k}, and hi (m1,m2) and li (m1,m2) is defined as the higher
and lower ranked index among ui,m1 and ui,m2 respectively. Then modified optimization
problem becomes,

Θ̂ ∈ arg min
Θ∈Ωα

−L(Θ) + λ|||Θ|||nuc (40)

Let d ≡ (d1 + d2)/2, and let σj(Θ
∗) denote the j-th singular value of the matrix Θ∗. Define

λ0 ≡

√
d log d

k d2
1 d2

. (41)

With this choice of regularization coefficient, we get the following upper bounds on the
rank breaking estimator (40) that are comparable to the upper bounds of k-wise ranking
estimator in Theorem 7 and Corollary 8.

Theorem 11 Under the described sampling model, assume 2(c+ 4) log d ≤ k ≤
max{d1, d

2
2/d1} log d, d1 ≥ 4, and λ ∈ [2

√
32(c+ 4)λ0, cpλ0] with any constant c = O(1)

larger than 2
√

32(c+ 4). Then, solving the optimization (40) achieves

1

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣2

F
≤ 144

√
2 e2αcλ

√
r
∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

+ 144e2αcλ

min{d1,d2}∑
j=r+1

σj(Θ
∗) , (42)

for any r ∈ {1, . . . ,min{d1, d2}} with probability at least 1 − 2d−c − 2d−213
where d =

(d1 + d2)/2.

A proof of this theorem is provided in Appendix F, and the following corollary follows
for rank-r matrices.
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Corollary 12 (Exact low-rank matrices) Suppose Θ∗ has rank at most r. Under the
hypotheses of Theorem 11, there exists a constant c1 > 0 such that solving the optimization
(40) with the choice of the regularization parameter λ ∈ [2

√
32(c+ 4)λ0, cλ0] achieves with

probability at least 1− 2d−c − 2d−213
,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤ 144

√
2e2αc1

√
rd log d

k d1
. (43)

4.4 Experiments

We provide results from numerical experiments on both synthetic and real data sets.

4.4.1 Algorithm

Similar to the case of pairwise comparisons in Section 3.4.1, we use proximal gradient descent
Agarwal et al. (2010); Cai et al. (2010) along with modified Barzilai-Borwein (BB) step-size
selection rule Barzilai and Borwein (1988) with the initial point Θ0 = 0. Each iteration of
the algorithm applies the following two operations on the current estimate, Θt, of Θ∗,

Θ̃t+1 = Θt − ηt∇ΘL(Θt) (gradient descent) (44)

Θt+1 = Mt(Γt − ηtλI)+NT
t (singular value shrinkage and thresholding) (45)

where MtΓtN
T
t := Θ̃t is the singular value decomposition of Θ̃t, such that Γt is a diagonal

matrix with positive entries, (·)+ is the entry-wise thresholding operation max(0, x), and ηt
is an BB step-size calculated as,

ηt =

{
|||Θt −Θt−1|||22/〈〈Θt −Θt−1,∇ΘL(Θt)−∇ΘL(Θt−1)〉〉, when t is odd

〈〈Θt −Θt−1,∇ΘL(Θt)−∇ΘL(Θt−1)〉〉/|||∇ΘL(Θt)−∇ΘL(Θt−1)|||22, when t is even
.

(46)

4.4.2 Simulation: Higher Order Comparisons

The left panel of Figure 6 confirms the scaling of the error rate as predicted by Corollary 8.
The lines merge to a single line when the sample size is rescaled appropriately (inset). We
make a choice of λ =

√
(log d)/(kd2). This choice is independent of α and is smaller than

proposed in Theorem 7. We generate the random rank-r true MNL parameters matrices of
dimension d×d using the process mentioned in Section 3.4.1. The root mean squared error
(RMSE) is plotted where RMSE = (1/

√
d1 d2)|||Θ∗ − Θ̂|||F. We implement and solve the

convex optimization (31) using proximal gradient descent method as analyzed in Agarwal
et al. (2010). The right panel in Figure 6 illustrates that the actual error is insensitive to
the choice of λ for a broad range of λ ∈ [

√
(log d)/(kd2), 28

√
(log d)/(kd2)], after which it

increases with λ.

4.4.3 Simulation: Rank Breaking

In this section we compare the higher order k-wise comparison algorithm (31) (‘kwise’)
with the pairwise rank breaking algorithm (40) (‘kbreak’). We use the same setting as
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Figure 6: The (rescaled) RMSE scales as
√
r(log d)/k as expected from Corollary 8 for fixed

d = 50 (left). In the inset, the same data is plotted versus rescaled sample size k/(r log d).
The (rescaled) RMSE is stable for a broad range of λ and α for fixed d = 50 and r = 3
(right).

in Section 4.4.2, where we observe samples from k-wise ranking from an underlying true
MNL model and the aim is to recover the true parameter Θ∗ of the model. We use
λ = 0.45

√
(log d)/(kd2) and λ = 0.1

√
(log d)/(kd2) for k-wise and pairwise rank breaking

algorithms respectively. In Fig. 7 we plot the RMSE for both the algorithm for d = 50
and r = 3, 12. We note that the even though the RMSE decreases in the rate as predicted
by the theorem, we see that pairwise rank breaking is worser than the higher order k-wise
algorithm which directly uses the k-wise rankings. This is consistent with the experimental
observation made previously in Hajek et al. (2014). Further we note that rank breaking
is much slower than the other algorithm, since gradient computation of the former takes
O(k2) time whereas for the latter it can be computed in O(k) time.

4.4.4 Real data: Jester

Jester data set3 Goldberg et al. (2001) has 24, 982 users, each rating a subset of 100 jokes
on continuous scale of [−10, 10]. As the scale is continuous, we derive ordinal data from
the scores (ties broken uniformly at random). We use only the 7200 users who rated all
the jokes for our experiments. For each user, k = 100x jokes were randomly selected
uniformly at random for training, rest of the 100 − k = 100(1 − x) jokes where used for
testing, where x is the fraction of jokes selected for training. We implment four algo-
rithms: nuclear norm minimization (‘nucnorm’) (31), unregularized (λ = 0) log-likelihood
maximization (‘fullrank’), rank-1 Plackett-Luce model estimation (‘plackett’), and rank
breaking algorithm (‘rankbreak’) (40). We use λ = 0.7

√
(0.5 log(d1d2))/(kd1

√
d1d2) and

λ = 0.16
√

(0.5 log(d1d2))/(kd1

√
d1d2) for k-wise and pairwise rank breaking algorithms

respectively. In Fig. 8 (a) we plot the multiplicative bias in the mean log-likelihood on the
testing data versus the fraction x of training data used. For each model in {‘nucnorm’,

3. Data set is from http://eigentaste.berkeley.edu/dataset/.
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RMSE

sample size k

Figure 7: Rank Breaking: RMSE error versus number of samples per user k. k-wise (‘kwise’)
algorithm performs better than the rank breaking (‘kbreak’) approach.

‘fullrank’, ‘plackett’, ‘rankbreak’}, we plot in the y-axis

log(Pmodel(test data))− log(Pfullrank(test data))

|log(Pfullrank(test data))|
,

using fullrank model as a baseline as it has the least test likelihood. Plackett-Luce model
achieves the best performance when sample size is small, as this simplest model avoids
overfitting. However, for most regimes of sample size, both the nuclear norm minimization
and rank breaking achieve similar performance improving upon the others.

The same trend holds when we measure the perfomrance in the normalized Spearman’s
footule distance Diaconis and Graham (1977) F (π1, π2) ∈ [0, 1] between two rank-lists π1,
π2 of length k:

F (π1, π2) =
2

k2

k∑
i=1

|π1(i)− π2(i)|

In Fig. 8 (b) we plot the average normalized Spearman’s footrule distance between the
ground truths and the most likely ranking on the testing data under the estimated model
parameters. We see that k-wise nuclear norm minimization and rank breaking algorithms
perform the best in recovering the true ranking, except when the fraction of training data
used is very small so that the rank-1 Plackett-Luce recovers better ranking.

4.4.5 Real data: Irish Election

The Irish Election data set4 is an opinion poll conducted among 1083 participants during
the 1997 Irish presidential election campaign Gormley and Murphy (2009). Each partici-
pant responded with a ranking the of their top 1, 2, 3, 4, or 5 choices from the 5 candidates:

4. Data set is from https://projecteuclid.org/euclid.aoas/1231424218#supplemental.
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(a) Multiplicative bias in the mean log-likelihood (b) Spearman’s footrule distance

Figure 8: Jester data set: Performance on test data vs. fraction of the total data used for
training. The proposed nuclear norm regularized algorithm (‘nucnorm’) and rank breaking
(‘rankbreak’) improves upon both the unregularized algorithm (‘fullrank’) and the Plackett-
Luce model estimation (‘plackett’) for most regimes of the sample size.

Banotti, McAleese, Nally, Roche, and Scallon. For our experiments we use only the 807
participants who gave their top-5 choices, i.e. full-rankings of all the candidates. Next we
divide these participants into 60 (2x3x5x2) group according to a Cartesian product of four
categorizations: sex (male/female), marital status (single/married/widowed+divorced), so-
cial class (F/AB/C1/C2/DE)5, location (rural/city+town). We assume that within each
group the responses of its member follow the same distriubtion and these distributions of
all all the groups are captured by an MNL model with parameter Θ∗ ∈ R60×5. We imple-
ment three algorithms: nuclear norm minimization (‘nucnorm’) (31), unregularized (λ = 0)
log-likelihood maximization (‘fullrank’), and rank-1 Plackett-Luce model estimation (‘plack-
ett’). We use λ = 0.8

√
(0.5 log(d1d2))/(kd1

√
d1d2). If x randomly sampled fraction of the

data is used for training, then rest of the data is used for testing. In Fig. 9 we plot the
mean log-likelihood (log(Pmodel(test data))) on the testing data versus the fraction of train-
ing data used. We see that nuclear norm minimization and Plackett-Luce model estimation
tie for the first place and both improves significantly upon the un-regularized full-rank MNL
model estimation. In Fig. 11 we plot the t-SNE Maaten and Hinton (2008) embedding of the
rows of the estimated parameter matrix Θ̂ when all the data is used for training. In Fig. 11a
the markers represent the marital status of the group: single/married/divorced+widowed.
In Fig. 11b the markers represent the social class of the groups. We see that married (left)
and divorced+widowed (right) groups are clearly separated in the embedding, indicating
that marital status influences the preference of candidates. However, we see that the social
classes are less influential.

In Fig. 10 we represent the voting characteristics of the top 4 right singular vectors
{v̂j}4j=1 of Θ̂, which has a rank of 4 when all the data is used for training. The each stacked
bar corresponds to the singular value σj marked on the x-axis. Partition of a bar represents
the choice model distribution of the corresponding singular vector: exp(vj)/(1

T exp(vj)),

5. Social classes are F: farmer, AB: middle class. C1: lower middle class, C2: skilled working class, and
DE: other working class.
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Figure 9: Irish Election: Mean log-
likelihood on the test data versus fraction
of the data used for training. Nuclear norm
minimization and Plackett-Luce model esti-
mator tie for the best performance.
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Figure 10: Irish Election: Each bar corre-
sponds to rank distribution of one of the
singular 4 values (x-axis) of the Θ̂. Heights
of the partitions represent the probability
with which the distribution ranks the corre-
sponding candidate as first (Section 4.4.5).

where exp(vj) is the element-wise exponentiation operator. We see that there are 2 majors
voting “basis” distributions; one favoring McAleese and another favoring Roche. Simi-
lar voting blocs have been observed earlier Gormley and Murphy (2009). Even though
Placket-Luce model estimator achieves the similar likelihood as our nuclear norm regular-
ized algorithm, the latter helps us in identifying voter “basis”, solely from rank data without
using the side-information on the voters as in Gormley and Murphy (2009).

single
married
divorced

(a) Martial status

F
AB
C1
C2
DE

(b) Social class

Figure 11: Irish Election: t-SNE embedding of rows of the estimated parameter matrix Θ̂.
The markers correspond to the marital or social status (F: farmer, AB: middle class. C1:
lower middle class, C2: skilled working class, DE: other working class) of the rows.
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5. Learning the MNL Model from Choices

Choice modeling has had widespread success in numerous application domains such as
transportation and marketing Train (1986); Guadagni and Little (1983). Choice models
stem from revenue management to tackle the fundamental problem of maximizing expected
revenue where the expectation is taken over a probabilistic choice model that is learned from
historical purchase data. Revenue management has focused on designing efficient solvers
for the optimization problem with exact or approximation guarantees, and has less to do
with learning the parameters of probabilistic choice model of interest.

In this section, we tackle this unexplored domain of learning choice models from samples
with provable guarantees on the sample complexity. In particular, we study learning the
MNL model from choices. We study two types of choices under the MNL model that
together include all practical scenarios of interest: bundled choice and consumer choice.

Bundled choice. We consider a novel scenario of significant practical interest: choice
modeling from bundled purchase history. In this setting, we assume that we have bundled
purchase history data from n users. Precisely, there are two categories of interest with d1

and d2 alternatives in each category respectively. For example, there are d1 tooth pastes to
choose from and d2 tooth brushes to choose from. For the i-th user, a subset Si ⊆ [d1] of
alternatives from the first category is presented along with a subset Ti ⊆ [d2] of alternatives
from the second category. We use k1 and k2 to denote the number of alternatives presented
to a single user, i.e. k1 = |Si| and k2 = |Ti|, and we assume that the number of alternatives
presented to each user is fixed, to simplify notations. However, the analysis naturally
generalizes if the number differs from a user to another user. Given these sets of alternatives,
each user makes a ‘bundled’ purchase, of an item from Si and another item from Ti together,
and we use (ui, vi) to denote these bundled pair of alternatives (e.g. a tooth brush and a
tooth paste) purchased by the i-th user. Each user makes a choice of the best alternative,
independent of other users’s choices, according to the MNL model as

P {(ui, vi) = (j1, j2)} =
e

Θ∗j1,j2∑
j′1∈Si,j′2∈Ti

e
Θ∗
j′1,j
′
2

, (47)

for all j1 ∈ Si and j2 ∈ Ti. We emphasize here that the preference matrix is indexed by
items of type one (in the rows) and items of type two (in the columns). We are taking
the existing standard MNL model over user-item pairs to propose a novel choice model for
bundled purchases over two types of items. One could go beyond paired bundled choices
and include the user identity as another dimension, or add other types of items and consider
higher order bundled purchases. This would require MNL model over higher order tensors,
which is outside the scope of this paper, but are interesting generalizations. The main
challenge in learning such tensor MNL models is that nuclear norm of a higher order tensor
is not a computable quantity and hence minimizing the nuclear norm is not algorithmically
feasible Yuan and Zhang (2014). Efficient methods exist based on alternating minimizations,
but existing analysis tools can handle only quadratic losses Jain and Oh (2014).

The distribution (47) is independent of shifting all the values of Θ∗ by a constant.
Hence, there is an equivalent class of Θ∗ that gives the same distribution for the choices:
[Θ∗] ≡ {A ∈ Rd1×d2 |A = Θ∗+ c11T for some c ∈ R} . Since we can only estimate Θ∗ up to
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this equivalent class, we search for the one that sums to zero, i.e.
∑

j1∈[d1],j2∈[d2] Θ∗j1,j2 = 0.
Let α = maxj1,j′1∈[d1],j2,j′2∈[d2] |Θ∗j1,j2 − Θ∗j′1,j′2

|, denote the dynamic range of the underlying

Θ∗, such that when k1 × k2 alternatives are presented, we always have

1

k1k2
e−α ≤ P {(ui, vi) = (j1, j2)} ≤ 1

k1k2
eα , (48)

for all (j1, j2) ∈ Si × Ti and for all Si ⊆ [d1] and Ti ⊆ [d2] such that |Si| = k1 and |Ti| = k2.
We do not make any assumptions on α other than that α = O(1) with respect to d1 and
d2. Assuming Θ∗ is well approximated by a low-rank matrix, we solve the following convex
relaxation, given the observed bundled purchase history {(ui, vi, Si, Ti)}i∈[n]:

Θ̂ ∈ arg min
Θ∈Ωα

L(Θ) + λ|||Θ|||nuc , (49)

where the negative log likelihood function according to (47) is

L(Θ) = − 1

n

n∑
i=1

〈〈Θ, euieTvi〉〉 − log

 ∑
j1∈Si,j2∈Ti

exp
(
〈〈Θ, ej1eTj2〉〉

) , and (50)

Ωα ≡
{
A ∈ Rd1×d2

∣∣ |||A|||∞ ≤ α, and
∑

j1∈[d1],j2∈[d2]

Aj1,j2 = 0
}
. (51)

Compared to collaborative ranking, (a) rows and columns of Θ∗ correspond to an alter-
native from the first and second category, respectively; (b) each sample corresponds to the
purchase choice of a user which follow the MNL model with Θ∗; (c) each person is presented
subsets Si and Ti of items from each category; (d) each sampled data represents the most
preferred bundled pair of alternatives.

Customer choice. The standard customer choice can be thought of as either a special
case of bundled choice or as a special case of higher order comparisons. We consider the
standard customer choice data from purchase history. In this setting, we assume that we
have purchase history data from d1 users over d2 alternatives. The i-th sample is i.i.d. with
user ui chosen uniformly at random and a subset Si ⊆ [d2] of alternatives of size k. We
fix k in order to be efficient in the notations and any variable size offerings can be handled
seamlessly. We assume Si is chosen uniformly at random with replacement, in a similar way
as bundled choice and higher order comparisons.

Given these sets of alternatives, the user ui makes a ‘choice’ and we use vi to denote
the purchased alternative by the i-th (sampled) user. Each user makes a choice of the best
alternative, independent of other users’s choices, according to the MNL model as

P {vi = j2|ui = j1} =
e

Θ∗j1,j2∑
j′2∈Si

e
Θ∗
j1,j
′
2

, (52)

for all j2 ∈ Si. Up to the fact that we index rows by users and not items of one category,
this is a special case of the bundled choice model where we fix k1 = 1. Mathematically,
all of our results under consumer choices are derived as corollaries from our results under
bundled choices, but given the prevalent interest in customer choice models, we emphasize
the implications of our framework under customer choice models in a separate section (see
Section 5.2).
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5.1 Learning the MNL Model from Bundled Choices

We provide an upper bound on the error achieved by our convex relaxation, when the multi-
set of alternatives Si from the first category and Ti from the second category are drawn
uniformly at random with replacement from [d1] and [d2] respectively. Precisely, for given

k1 and k2, we let Si = {j(i)
1,1, . . . , j

(i)
1,k1
} and Ti = {j(i)

2,1, . . . , j
(i)
2,k2
}, where j

(i)
1,`’s and j

(i)
2,`’s

are independently drawn uniformly at random over the d1 and d2 alternatives, respectively.
Similar to the previous section, this sampling with replacement is necessary for the analysis.
Define

λ0 =

√
e2α max{d1, d2} log d

n d1 d2
. (53)

Theorem 13 Under the described sampling model, assume 16e2α min{d1, d2} log d ≤ n and
n ≤ min{d5, k1k2 max{d2

1, d
2
2}} log d, and λ ∈ [8λ0, c1λ0] with any constant c1 = O(1) larger

than
max{8, 128/

√
min{k1, k2}}. Then, solving the optimization (49) achieves

1

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣2

F
≤ 48

√
2 e2αc1λ

√
r
∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

+ 48e2αc1λ

min{d1,d2}∑
j=r+1

σj(Θ
∗) , (54)

for any r ∈ {1, . . . ,min{d1, d2}} with probability at least 1− 2d−3 where d = (d1 + d2)/2.

A proof is provided in Appendix G. Optimizing over r gives the following corollaries.

Corollary 14 (Exact low-rank matrices) Suppose Θ∗ has rank at most r. Under the
hypotheses of Theorem 13, solving the optimization (49) with the choice of the regularization
parameter λ ∈ [8λ0, c1λ0] achieves with probability at least 1− 2d−3,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤ 48

√
2e3αc1

√
r(d1 + d2) log d

n
. (55)

This corollary shows that the number of samples n needs to scale as O(r(d1 + d2) log d) in
order to achieve an arbitrarily small error. This is only a logarithmic factor larger than the
number of degrees of freedom. For approximately low-rank matrices in an `1-ball as defined
in (13), we show an upper bound on the error, whose error exponent reduces from one to
(2− q)/2.

Corollary 15 (Approximately low-rank matrices) Suppose Θ∗ ∈ Bq(ρq) for some q ∈
(0, 1] and ρq > 0. Under the hypotheses of Theorem 13, solving the optimization (49) with
the choice of the regularization parameter λ ∈ [8λ0, c1λ0] achieves with probability at least
1− 2d−3,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤

2
√
ρq√

d1d2

(
48
√

2c1e
3α

√
d1d2(d1 + d2) log d

n

) 2−q
2

. (56)
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This follows from the same line of proof as in the proof of Corollary 9 in Appendix D. We
next, provide a fundamental lower bound on the error, that matches the upper bound up
to a logarithmic factor.

Theorem 16 Suppose Θ∗ has rank r. Under the described sampling model, there is a
universal constant c > 0 such that that the minimax rate where the infimum is taken over
all measurable functions over the observed purchase history {(ui, vi, Si, Ti)}i∈[n] is lower
bounded by

inf
Θ̂

sup
Θ∗∈Ωα

E
[ 1√

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F

]
≥ c min

{√
e−5α r (d1 + d2)

n
,
α(d1 + d2)√
d1d2 log d

}
. (57)

We provide a proof in Appendix H. The first term is dominant, and when the sample size
is comparable to the latent dimension of the problem, Theorem 13 is minimax optimal up
to a logarithmic factor. We emphasize here that the bound in (55) and the matching lower
bound in (57) do not depend on the size of the offerings k1 and k2. It is independent of how
large k1 and k2 are because, we only observe one choice, and intuitively the information we
get scales at best by a factor of log(k1k2). The theorems prove that there is no essential
gain in learning from large offerings. One might be tempted to stop at proving an upper
bound that scales as O(

√
k1k2r(d1 + d2) log d/n), which is larger than (55) by a factor of√

k1k2. Such a loose bound follows if one ignores the tight concentration analysis that we
do using the symmetrization technique (e.g. in Lemma 29). Getting the tight dependency
in k1 and k2 is one of the crucial technical challenges we overcome in this paper.

5.2 Learning the MNL Model from Customer Choices

The results for the customer choice model follow immediately from the results in bundled
choice model by simply setting k1 = 1, and we explicitly write those corollaries in this
section for completeness. The proposed estimator is minimax optimal up to a logarithmic
factor under the standard customer choice model of sampling.

Corollary 17 Under the described sampling model, assume 16e2α min{d1, d2} log d ≤ n ≤
min{d5, kmax{d2

1, d
2
2}} log d, and λ ∈ [8λ0, c1λ0] with any constant c1 = O(1) larger than

128. Then, solving the optimization (49) achieves

1

d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣2

F
≤ 48

√
2 e2αc1λ

√
r
∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

+ 48e2αc1λ

min{d1,d2}∑
j=r+1

σj(Θ
∗) , (58)

for any r ∈ {1, . . . ,min{d1, d2}} with probability at least 1− 2d−3 where d = (d1 + d2)/2.

Corollary 18 (Exact low-rank matrices) Suppose Θ∗ has rank at most r. Under the
hypotheses of Theorem 17, solving the optimization (49) with the choice of the regularization
parameter λ ∈ [8λ0, c1λ0] achieves with probability at least 1− 2d−3,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤ 48

√
2e3αc1

√
r(d1 + d2) log d

n
. (59)
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Corollary 19 (Approximately low-rank matrices) Suppose Θ∗ ∈ Bq(ρq) for some q ∈
(0, 1] and ρq > 0. Under the hypotheses of Theorem 17, solving the optimization (49) with
the choice of the regularization parameter λ ∈ [8λ, c1λ] achieves with probability at least
1− 2d−3,

1√
d1d2

∣∣∣∣∣∣∣∣∣Θ̂−Θ∗
∣∣∣∣∣∣∣∣∣

F
≤

2
√
ρq√

d1d2

(
48
√

2c1e
3α

√
d1d2(d1 + d2) log d

n

) 2−q
2

. (60)

We emphasize again that the bound in (59) does not depend on the size of the of-
ferings k. It is significantly easier to stop at proving an upper bounds that scale as
O(
√
kr(d1 + d2) log d/n), which are larger than (59) by a factor of

√
k. Such a loose bound

follows if one ignores the tight concentration analysis that we do using the symmetrization
technique (e.g. in Lemma 29). Getting the tight dependency in k is one of the crucial
technical challenges we overcome in this paper.

5.3 Experiments

We applied our algorithm to a real world choice data set. The implementation is similar to
that of higher order comparisons (see Section 4.4.1).

5.3.1 Real data: Extended Bakery

Extended Bakery data set 6 Benson et al. (2018) consists of details of 75,000 purchases at a
bakery from a selection of 50 items, specifically each purchase is recorded by the set of items
bought together. We use only the 13,579 purchases where a pair of items where bought. We
divide the items into five categories: cakes (1-10), tarts (11-21), cookies (22-30), pastries
(31-40) and drinks (41-50). We study four cases of bundled pairs, cakes and drinks, tarts
and drinks, cookies and drinks, and pastries and drinks. These cases have 1503, 910, 500 and
1791 purchases in them respectively. We model the data with an MNL model parameterized
by a matrix Θ∗, such that rows and columns corresponds to first and second categories
respectively. For every purchase we assume that the subset of alternatives presented is the
universal choice set, that is k1 = d1 and k2 = d2, so that the purchase of item j1 from
category 1 and j1 from category 2 has a probability of exp(Θ∗j1,j2)/

∑d1,d2

j′1,j
′
2=1

exp(Θ∗j′1,j′2
),

where d1, d2 are number of items in category 1 and 2 respectively. We also fit the separable
model proposed in Benson et al. (2018), which is a simpler model with Θ∗j,j2 = a∗j1 + b∗j2 ,

where a ∈ Rd1 , b ∈ Rd2 .

In Fig. 12 we plot the mean log-likelihood on the test data versus the fraction of the
data used for our nuclear norm minimization based algorithm (‘nucnorm’), un-regularized
log-likelihood maximization algorithm (‘fullrank’), and maximum likelihood estimator for
the separable model (‘separable’) over 10 trials. We see that nuclear norm minimization
outperforms the ‘fullrank’ and ‘separable’ algorithms. This is consistent with the marketing
practice, of providing different prices for bundled combinations of products, which uses the
rationale that, worth of a bundle of products might be different from the sum of the worths

6. Data set is from https://github.com/arbenson/discrete-subset-choice/tree/master/data.
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(a) Cakes and Drinks (b) Tarts and Drinks

(c) Cookies and Drinks (d) Pastries and Drinks

Figure 12: Bakery: Mean log-likelihood on test data versus fraction of data used for training.
Nuclear norm minimization improves upon the un-regularized likelihood maximization and
separable model, for most of the regimes we consider.

of the individual products constituting the bundle. We also note that the un-regularized
algorithm (‘fullrank’) has the worst performance and high variance and separable model fits
the samples almost as good as the nuclear norm minimization in the case of cookies and
drinks in the large training data regime.

6. Conclusion

The sample complexity of learning one of the most popular choice models known as Multi-
Nomial Logit model has not been addressed in the literature. The main challenge is in the
inherent low-rank structure of the parameter to be learned, which leads to a non-convex
likelihood maximized problem. Thanks to recent advances in learning low-rank matrices, in
particular in 1-bit matrix completion Davenport et al. (2014), matrix completion Negahban
and Wainwright (2012), and restricted strong convexity Negahban et al. (2009), we have
a polynomial time algorithm and the technical tools to characterize the fundamental sam-
ple complexity of learning MNL from samples. This provides a novel algorithm to learn a
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low-dimensional representation of users and items from users’ historical comparisons and
choices. We study three types of data, pairwise comparison, higher order comparison, and
choices, and take the first principle approach of identifying the fundamental limits and also
developing efficient algorithms matching those fundamental trade offs. We provide a uni-
fying framework to learn the latent preferences by solving a convex program. For each of
the data types, accompanied by natural sampling scenarios, we show that our framework
achieves a minimax optimal performance, and hence cannot be improved upon other than a
small logarithmic factor. This opens a new door to learn representations from comparisons
and choices, and we propose new research directions and challenges below. Beyond the
low-rank model studied in this paper, recent advances in modeling data in a matrix form
such as low algebraic dimension by Ongie et al. (2018) and non-parametric approximation
by Borgs et al. (2017) can provide new research directions for modeling choice.

Efficient implementations via non-convex optimization. Nuclear norm minimiza-
tion, while polynomial-time, is still slow. We want first-order methods that are efficient
with provable guarantees. Two main challenges are providing a good initialization to start
such non-convex approaches and analyzing gradient descent on the likelihood maximization
which is non-convex.

Recent advances in non-convex optimization with rank-constraints have developed via
a sequence of innovations that can be summarized as follows, in a number of example
problems including matrix completion, robust PCA, matrix sensing, phase retrieval. First,
a convex relaxation of nuclear norm minimization is analyzed, e.g. Candès and Recht
(2009). Then, a more efficient two-step non-convex optimization approach is proposed with
provable guarantees where a global initialization step is followed by a first-order method
e.g. Keshavan et al. (2010a,b). Next, first-order methods starting at any initialization
point is analyzed via understanding the geometry and checking the stationary points of the
objective function e.g. Ge et al. (2016). This recipe, spurred by the advances in the matrix
completion problem, has been repeated for several interesting problems involving low rank
matrices, over the last decade and over numerous publications by collective effort of the
machine learning community.

For the problem of learning MNL, we are at the first stage of this progression where
we propose a convex relaxation and provide minimax optimal guarantees. We currently do
not have the analysis tools to follow up in analyzing an efficient non-convex optimization
problem, although writing the algorithm and implementing is straight forward, and also has
been proposed in Park et al. (2015). It is a promising research direction to overcome the
challenges in analyzing non-convex optimization methods for the MNL likelihood objective
function.

Assumption on sampling with replacement. As mentioned earlier, we assume sam-
pling with replacement, where we can ask a user to compare the same pair more than once,
and also we can ask a user to compare two copies of the identical item. Although such
sampling with replacement does not happen in practice, the number of such collisions is
also very low with high probability under the proposed model. Further, such assumption
is critical for getting an upper bound that is tight not only in r, d1 and d2, but also in k
for higher order comparisons and choices. If, instead, one is interested in sampling without
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replacement, then one either can resort to proving a loose bound that is weaker in its de-
pendence in k (and follows trivially as a corollary of the proof of our results) or needs to
invent new innovative concentration bounds that do not rely on the powerful symmetriza-
tion. The first option is trivial, so we do not provide such corollaries in this paper, and
the second option provides an interesting but technically challenging question of resolving
between sampling with replacement and sampling without replacement. This we believe is
outside the scope of this paper.

Modern data analysis applications. As learning representation from ordinal data is
of fundamental interest, there are numerous exciting applications that both the algorith-
mic framework and also the analysis techniques we develop could be naturally extended
to. We present two such examples. First is a recent application of embedding objects with
crowdsourced similarity measures, first proposed in Tamuz et al. (2011). Consider a crowd-
sourcing setting where you have d images and want to learn similarities among those images
such that one can embed those images in a lower dimensional Euclidean space. One can
show to a person a triplet of images (i1, i2, i3) and ask whether the image in the middle is
more similar to the one in the left or the right. A natural model proposed in Tamuz et al.
(2011) is to assume that there exists a similarity parameter matrix Θ ∈ Rd×d such that

P {i1 is more similar to i2 than i3 is to i2} =
eΘi2,i1

eΘi2,i1 + eΘi2,i3
.

A heuristic algorithm is proposed to learn a low-rank Θ without guarantees. Given the
similarity of this model to MNL in (1), both our algorithm and also the analysis will go
through to provide a tight characterization of the sample complexity of this problem.

The second application is in word embedding Mikolov et al. (2013b), where the goal is
to find embeddings for English words in a lower dimensional Euclidean space. The most
successful word embedding has been based on fitting a low-rank matrix Θ ∈ Rd×d where d
is the size of the vocabulary, over an MNL-type model:

P {word i and word j appear within distance ten|word j appear in a sentence} =
eΘij∑
i′ e

Θi′j
.

As the denominator involves summation over millions of words in the vocabulary, efficient
heuristics are proposed to learn such a model from skip-grams; a skip-gram is the count
matrix counting how many times words co-appear in the same sentence within a predefined
distance. There are several challenges in applying our framework directly to such a setting
mainly due to the size of the problem, but nevertheless our analysis can be applied directly
to identify the fundamental minimax sample complexity of learning a word embedding from
skip-grams.
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Appendix A. Proof of the Upper Bound for Graph Sampling Theorem 1

The proof of the theorem relies on the following two lemmas. First lemma shows that the
negative of the log-likelihood satisfies Restricted Strong Convexity with high probability.

Lemma 20 (Restricted Strong Convexity) Let R = max

{√
σ log(2d)

n , σmin(L)−1/2 log(2d)
n

}
and the set A(α) =

{
Θ ∈ Rd1×d2 , |||Θ|||∞ ≤ α, |||Θ|||L-nuc ≤

|||ΘL1/2|||2
F

16αd1R

}
. Then we have,

1

n

n∑
i=1

(〈〈Θ, Xi〉〉)2 ≥ 1

3d1
|||Θ|||2L, ∀ Θ ∈ A(α), (61)

with probability at least 1− 2(2d)−4, provided that n ≤ log (2d) min{22(d1σmin(L)−1)2/3,
26d2

1σ
2}, .

Here the upper bound on n may not be necessary, but it is present due to a technical
difficulty in using the peeling argument. The intuition behind the above lemma is that the
empirical average uniformly concentrates around its expectation. Proof is in Section A.1.
The next lemma says that the gradient of the log-likelihood at the actual parameter matrix,
Θ∗ is controllably small.

Lemma 21 (Bounded Gradient) Let R = max

{√
σ log(2d)

n , σmin(L)−1/2 log(2d)
n

}
. The

spectral norm of gradient of the log-likelihood at the actual parameter matrix, ∇L(Θ∗),
can be upper-bounded with high probability as follows,

P
{∥∥∥∇L(Θ∗)L−1/2

∥∥∥
2
≥
√

32R
}
≤ 1

(d1 + d2)3
(62)

Proof the above lemma is in Section A.4. Let ∆ = Θ̂−Θ∗.

Case 1: ∆ /∈ A(2α) Then,

|||∆|||2L ≤ 32αd1R|||∆|||L-nuc

Case 2: ∆ ∈ A(2α) We first write down the second order Taylor series expansion of L(Θ̂)
at around Θ = Θ∗.

−L(Θ̂) = −L(Θ∗) + 〈〈−∇L(Θ∗),∆〉〉+
1

2n

n∑
i=1

ψ
(
〈〈Θ∗, X(i)〉〉+ s〈〈∆, X(i)〉〉

)
〈〈∆, X(i)〉〉2,

(63)

where ψ(x) = ex/(1 + ex)2, x ∈ [−2α, 2α] and s ∈ [0, 1]. Next using Lemma 20 and the fact
that ψ(x) attains minimum at x = 2α we get,

−L(Θ̂) + L(Θ∗) + 〈〈∇L(Θ∗),∆〉〉 ≥ 1

2n

n∑
i=1

ψ(2α)〈〈∆, X(i)〉〉2 ≥ ψ(2α)

6d1
|||∆|||2L, (64)
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with probability at least 1−1/(d1 +d2)3. Since Θ̂ is the minimizer for the objective function
9, we have,

−L(Θ̂) + λ
∣∣∣∣∣∣∣∣∣Θ̂∣∣∣∣∣∣∣∣∣

L-nuc
≤ −L(Θ∗) + λ|||Θ∗|||L-nuc,

which in turn gives us,

ψ(2α)

6d1
|||∆|||2L ≤ −L(Θ̂) + L(Θ∗) + 〈〈∇L(Θ∗),∆〉〉

(65)

≤ λ
(
|||Θ∗|||L-nuc −

∣∣∣∣∣∣∣∣∣Θ̂∣∣∣∣∣∣∣∣∣
L-nuc

)
+ 〈〈∇L(Θ∗),∆〉〉

≤ λ (|||∆|||L-nuc) + 〈〈∇L(Θ∗)L−1/2,∆L1/2〉〉

≤ λ (|||∆|||L-nuc) +
∥∥∥∇L(Θ∗)L−1/2

∥∥∥
2
|||∆|||L-nuc, (66)

where last two inequalities follow from the triangle inequality for nuclear norm and gener-
alized Hölder’s inequality. Now we put λ = 2

√
32R and use Lemma 21 to get,

|||∆|||2L ≤
6d1

ψ(2α)

(
λ+

λ

2

)
|||∆|||L-nuc ≤

9d1λ

ψ(2α)
|||∆|||L-nuc, (67)

with probability at least 1− 1/(d1 + d2)3. Combining Case 1 and 2 we get,

|||∆|||2L ≤ 9

(
α+

1

ψ(2α)

)
d1λ|||∆|||L-nuc

Lemma 22 If λ ≥ 2|||∇L(Θ∗)|||2, then we have

|||∆|||L-nuc ≤ 4
√

2r|||∆|||L + 4

min{d1,d2−G}∑
j=r+1

σj(Θ
∗L1/2) , (68)

for all r ∈ [min{d1, d2 −G}]. (Proof in Section A.5)

Finally, utilizing the above lemma, we get,

1

d1
|||∆|||2L ≤ 36λ

(
α+

1

ψ(2α)

)√2r|||∆|||L +

min{d1,d2−G}∑
j=r+1

σj(Θ
∗L1/2)


A.1 Proof of Lemma 20

P

{
1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
≥ 1

3d1
|||Θ|||2L, ∀ Θ ∈ A

}

= 1− P

{
∃ Θ ∈ A, such that

1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3d1
|||Θ|||2L

}
(69)
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When Θ ∈ A,

|||Θ|||2L ≥ 16αd1R|||Θ|||L-nuc ≥ 16αd1R|||Θ|||L =⇒ |||Θ|||L ≥ 16αd1R := µ , (70)

where the second inequality follows from |||Θ|||L-nuc =
∣∣∣∣∣∣ΘL1/2

∣∣∣∣∣∣
nuc
≥
∣∣∣∣∣∣ΘL1/2

∣∣∣∣∣∣
F

= |||Θ|||L.

Lemma 23 Let B(D) :=
{

Θ ∈ Rd1×d2 ||||Θ|||∞ ≤ α, |||Θ|||L ≤ D, |||Θ|||L-nuc ≤
D2

16αd1R

}
, and,

ZD := sup
Θ∈B(D)

(
− 1
n

∑n
i=1

(
〈〈Θ, X(i)〉〉

)2
+ 2

d1
|||Θ|||2L

)
, then,

P
{
ZD ≥

3

2d1
D2

}
≤ exp

(
− nD4

32α4d2
1

)
. (71)

Above lemma is proved in Section A.2. Let β =
√

10
9 , then the sets,

S` =

{
Θ ∈ Rd1×d2 ||||Θ|||∞ ≤ α, β

`−1µ ≤ |||Θ|||L ≤ β
`µ, |||Θ|||L-nuc ≤

(β`µ)2

16αd1R

}
, ` = 1, 2, 3, . . . ,

(72)

cover the set A, that is A ⊂ ∪∞`=1S` and S` ⊆ B(β`µ). This gives us,

P

{
∃ Θ ∈ A s.t.

1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3d1
|||Θ|||2L

}

≤
∞∑
`=1

P

{
∃ Θ ∈ S` s.t.

1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3d1
|||Θ|||2L

}

≤
∞∑
`=1

P

{
∃ Θ ∈ B(β`µ) s.t.

1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3d1
|||Θ|||2L

}
(73)

If there exists a Θ ∈ B(β`µ) such that 1
n

∑n
i=1

(
〈〈Θ, X(i)〉〉

)2
< 1

3d1
|||Θ|||2L then,

Zβ`µ ≥ −
1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
+

2

d1
|||Θ|||2L >

5

3d1
|||Θ|||2L ≥

5

3d1
β2`−2µ2 =

3

2d1
(β`µ)2,

which gives us,

P

{
∃ Θ ∈ A 3 1

n

n∑
i=1

(
〈〈Θ, X(i)〉〉

)2
<

1

3d1
|||Θ|||2L

}
≤
∞∑
`=1

P
{
Zβ`µ >

3

2d1
(β`µ)2

}
(a)

≤
∞∑
`=1

exp

(
−n(β`µ)4

32α4d2
1

)
(b)

≤
∞∑
`=1

exp

(
−4`(β − 1)nµ4

32α4d2
1

)
(c)

≤ 2 exp

(
−4(β − 1)nµ4

32α4d2
1

)
(74)
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where (a) is from Lemma 23, (b) is true since β4` ≥ 4`(β−1) when β ≥ 1 and (c) is obtained
by summing the geometric series, with common ratio less than 1/2, in previous inequality.
Finally if we assume that n ≤ 26d2

1σ
2 log (2d) and n ≤ 22(d1σmin(L)−1)2/3 log (2d), then we

have 22 log(2d) ≤ 4(β − 1)nµ4/32α4d2
1 as follows

4(β − 1)nµ4

32α4d2
1

=
4(β − 1)n(16αd1R)4

32α4d2
1

= 213(β − 1)d2
1 max

{
σ2 log2(2d)

n
,
σmin(L)−2 log4(2d)

n3

}
≥ 22 log(2d) (75)

A.2 Proof of Lemma 23

Notice that the 2
d1
|||Θ|||2L is the mean of 1

n

∑n
i=1〈〈Θ, X(i)〉〉2,

E

[
1

n

n∑
i=1

〈〈Θ, X(i)〉〉2
]

=
1

d1

∑
j∈[d1]

∑
k,l∈[d2]

(Θj,k −Θj,l)
2Pk,l

=
2

d1

∑
j

∑
k

Θ2
j,k

∑
l

Pk,l − 2
∑
k,l

Θj,kΘj,lPk,l

(a)
=

2

d1

∑
j

〈〈ΘjΘ
T
j ,diag(Pk)〉〉 − 2〈〈ΘjΘ

T
j , P 〉〉

=
2

d1

∑
j

〈〈ΘjΘ
T
j , L〉〉 =

2

d1

∣∣∣∣∣∣∣∣∣ΘL1/2
∣∣∣∣∣∣∣∣∣2

F

where, in (a) Pk =
∑

l∈[d2] Pk,l and Θj is the j-th row of Θ. Therefore we use the following
standard technique to get a handle on supremum of deviation from mean.

First, we use bounded differences property to prove that ZD concentrates around its
mean. We write ZD(X(1), . . . , X(n)) to represent ZD as a function of n independent random
variables. Now, let X(i) and X̃(i) be two realization of the i-th (1 ≤ i ≤ n) random
parameter of ZD, then,

∣∣∣ZD(X(1), . . . , X(i), . . . , X(n))− ZD(X(1), . . . , X̃(i), . . . , X(n))
∣∣∣

=

∣∣∣∣∣ sup
Θ∈B(D)

(
− 1

n

n∑
i=1

〈〈Θ, X(i)〉〉2 +
2

d1
|||Θ|||2L

)
−

sup
Θ′∈B(D)

− 1

n

 n∑
i=1,i 6=i′

〈〈Θ′, X(i)〉〉2 + 〈〈Θ′, X̃(i′)〉〉2
+

2

d1

∣∣∣∣∣∣Θ′∣∣∣∣∣∣2
L

∣∣∣∣∣ (76)
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Now WLOG assume that ZD(X(1), . . . , X(i), . . . , X(n)) ≥ ZD(X(1), . . . , X̃(i), . . . , X(n)) and
the first supremum is achieved at Θ̄, which gives us.

= sup
Θ∈B(D)

(
− 1

n

n∑
i=1

〈〈Θ, X(i)〉〉2 +
2

d1
|||Θ|||2L

)
−

sup
Θ′∈B(D)

− 1

n

 n∑
i=1
i 6=i′

〈〈Θ′, X(i)〉〉2 + 〈〈Θ′, X̃(i′)〉〉2

+
2

d1

∣∣∣∣∣∣Θ′∣∣∣∣∣∣2
L



≤

(
− 1

n

n∑
i=1

〈〈Θ̄, X(i)〉〉2 +
2

d1

∣∣∣∣∣∣Θ̄∣∣∣∣∣∣2
L

)
−

− 1

n

 n∑
i=1
i 6=i′

〈〈Θ̄, X(i)〉〉2 + 〈〈Θ̄, X̃(i′)〉〉2

+
2

d1

∣∣∣∣∣∣Θ̄∣∣∣∣∣∣2
L


≤ sup

Θ∈B(D)

1

n

∣∣∣〈〈Θ, X(i)〉〉2 − 〈〈Θ, X̃(i)〉〉2
∣∣∣

≤ 4α2

n
, (77)

where the last inequality is true since, |||Θ|||∞ ≤ α for any Θ ∈ B(D) ⊆ Ωα. Now we upper
bound E [ZD] as follows,

E [ZD]
(a)

≤ 2E

[
sup

Θ∈B(D)

1

n

n∑
i=1

εi〈〈Θ, X(i)〉〉2
]

(b)

≤ 4αE

[
sup

Θ∈B(D)

1

n

n∑
i=1

εi〈〈ΘL1/2, X(i)L−1/2〉〉

]

≤ 4αE

[
sup

Θ∈B(D)
|||Θ|||L-nuc

∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)L−1/2

∥∥∥∥∥
2

]

≤ 4α sup
Θ∈B(D)

|||Θ|||L-nucE

[∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)L−‘1/2

∥∥∥∥∥
2

]
,

where (a) is standard symmetrization argument using i.i.d. Rademacher variables {εi}ni=1

and since |〈〈Θ, X(i)〉〉| ≤ 2α we use Ledoux-Talagrand contraction inequality Ledoux and
Talagrand (2013) to obtain (b).

Lemma 24 Let R = max

{√
σ log(2d)

n , σmin(L)−1/2 log(2d)
n

}
. For {X(i)}ni=1 as defined in the

graph sampling and for a binary random variable εi such that E
[
εi|X(i)

]
= 0 and |εi| ≤ 1,

we have,

P

{∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)L−1/2

∥∥∥∥∥
2

≥
√

32R

}
≤ 1

(d1 + d2)3
, and, E

[∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)L−1/2

∥∥∥∥∥
2

]
≤ 4R .

(78)
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Proof of the lemma is in Section A.3. Now using Lemma 24 we have E [ZD]

≤ 16Rα supΘ∈B(D) |||Θ|||L-nuc ≤
D2

d1
. Then using the bounded differences property and the

upper bound on the mean, we get the McDiarmid’s concentration,

P
{
ZD −D2/d1 ≥ t

}
≤ P {ZD − E [ZD] ≥ t}

≤ exp

(
− nt

2

8α4

)
(79)

and putting t = D2/2d1 gives us the theorem.

A.3 Proof of Lemma 24

Let Wi := 1
nεiX

(i)L−1/2 = 1
nεiej(i)

(
ek(i) − el(i)

)T
L−1/2 and pseudo-inverse of L be L†,

then, ‖Wi‖2 ≤ σmin(L)−1/2
√

2/n,

E
[
WiW

T
i

]
= E

[
1

n2
ej(i)

(
ek(i) − el(i)

)T
L−1/2L−1/2

(
ek(i) − el(i)

)
eTj(i)

]
= E

[
1

n2
ej(i)e

T
j(i)

]
E
[(
ek(i) − el(i)

)T
L†
(
ek(i) − el(i)

)]
=

1

n2d1
Id1×d1 × 2

(
E
[
eTk(i)L

†ek(i)

]
− E

[
eTk(i)L

†el(i)

])
=

2

n2d1

 ∑
u∈[d1]

PuL
†
u,u −

∑
u,v∈[d1]

Pu,vL
†
u,v

 Id1×d1

=
2

n2d1
〈〈L,L†〉〉Id1×d1

=
2(d2 −G)

n2d1
Id1×d1 , (80)

E
[
W T
i Wi

]
= L−1/2E

[
1

n2

(
ek(i) − el(i)

) (
ek(i) − el(i)

)T]
L−1/2

=
1

n2
L−1/2

 d2∑
u,v=1

(eu − ev) (eu − ev)T Pu,v

L−1/2

=
1

n2
L−1/2 (2L)L−1/2

=
2

n2
(Id2×d2 −

∑
k∈[G]

gkg
T
k /|||gk|||

2
2) , and, (81)

max

{∥∥∥∥∥E
[

n∑
i=1

WiW
T
i

]∥∥∥∥∥
2

,

∥∥∥∥∥E
[

n∑
i=1

W T
i Wi

]∥∥∥∥∥
2

}
≤

n∑
i=1

max
{∥∥E [WiW

T
i

]∥∥
2
,
∥∥E [W T

i Wi

]∥∥
2

}
(82)

≤ 2

n
σ . (83)
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where σ = max
{
d2−G
d1

, 1
}

. Now by Matrix Bernstein concentration theorem Tropp (2015)

we have,

P

{∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)L−1/2

∥∥∥∥∥
2

≥ t

}
≤ exp

(
−nt2/2

2σ +
√

2σmin(L)−1/2t/3

)
, and, (84)

‘E

[∥∥∥∥∥ 1

n

n∑
i=1

εiX
(i)L−1/2

∥∥∥∥∥
2

]
≤
√

4σ log(d1 + d2)

n
+

√
2σmin(L)−1

3n
log(d1 + d2) . (85)

Choosing t = max

{√
24σ log(d1+d2)

n ,
16
√

2σmin(L)−1 log(d1+d2)

n

}
produces the desired result.

A.4 Proof of Lemma 21

The gradient can be written down as,

∇L(Θ∗) =
1

n

n∑
i=1

(
yi −

exp(〈〈Θ∗, X(i)〉〉)
1 + exp(〈〈Θ∗, X(i)〉〉)

)
X(i). (86)

Then Lemma 24 directly gives the result because,

E

[
yi −

exp(〈〈Θ∗, X(i)〉〉)
1 + exp(〈〈Θ∗, X(i)〉〉)

∣∣∣∣X(i)

]
= 0 and

∣∣∣∣∣yi − exp(〈〈Θ∗, X(i)〉〉)
1 + exp(〈〈Θ∗, X(i)〉〉)

∣∣∣∣∣ ≤ 1.

A.5 Proof of Lemma 22

Denote the singular value decomposition of Θ∗L1/2 by Θ∗L1/2 = UΣV T , where U ∈ Rd1×d1

and V ∈ Rd2×d2 are orthogonal matrices. For a given r ∈ [min{d1, d2 − G}], let Ur =
[u1, . . . , ur] and Vr = [v1, . . . , vr], where ui ∈ Rd1×1 and vi ∈ Rd2×1 are the left and right
singular vectors corresponding to the i-th largest singular value, respectively. Define T to be
the subspace spanned by all matrices in Rd1×d2 of the form UrA

T or BV T
r for any A ∈ Rd2×r

or B ∈ Rd1×r, respectively. The orthogonal projection of any matrix M ∈ Rd1×d2 onto the
space T is given by PT (M) = UrU

T
r M + MVrV

T
r − UrUTr MVrV

T
r . The projection of M

onto the complement space T⊥ is PT⊥(M) = (I − UrUTr )M(I − VrV T
r ). The subspace T

and the respective projections onto T and T⊥ play crucial a role in the analysis of nuclear
norm minimization, since they define the sub-gradient of the nuclear norm at Θ∗. We refer
to Candès and Recht (2009) for more detailed treatment of this topic.

Let ∆′ = PT (∆L1/2) and ∆′′ = PT⊥(∆L1/2). Notice that PT (Θ∗L1/2) = UrΣrV
T
r , where

Σr ∈ Rr×r is the diagonal matrix formed by the top r singular values. Since PT (Θ∗L1/2)
and ∆′′ have row and column spaces that are orthogonal, it follows from Lemma 2.3 in
Recht et al. (2010) that∣∣∣∣∣∣∣∣∣PT (Θ∗L1/2)−∆′′

∣∣∣∣∣∣∣∣∣
nuc

=
∣∣∣∣∣∣∣∣∣PT (Θ∗L1/2)

∣∣∣∣∣∣∣∣∣
nuc

+
∣∣∣∣∣∣∆′′∣∣∣∣∣∣

nuc
.
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Hence, in view of the triangle inequality,∣∣∣∣∣∣∣∣∣Θ̂L1/2
∣∣∣∣∣∣∣∣∣

nuc
=
∣∣∣∣∣∣∣∣∣PT (Θ∗L1/2) + PT⊥(Θ∗L1/2)−∆′ −∆′′

∣∣∣∣∣∣∣∣∣
nuc

≥
∣∣∣∣∣∣∣∣∣PT (Θ∗L1/2)−∆′′

∣∣∣∣∣∣∣∣∣
nuc
−
∣∣∣∣∣∣∣∣∣PT⊥(Θ∗L1/2)−∆′

∣∣∣∣∣∣∣∣∣
nuc

=
∣∣∣∣∣∣∣∣∣PT (Θ∗L1/2)

∣∣∣∣∣∣∣∣∣
nuc

+
∣∣∣∣∣∣∆′′∣∣∣∣∣∣

nuc
−
∣∣∣∣∣∣∣∣∣PT⊥(Θ∗L1/2)−∆′

∣∣∣∣∣∣∣∣∣
nuc

≥
∣∣∣∣∣∣∣∣∣PT (Θ∗L1/2)

∣∣∣∣∣∣∣∣∣
nuc

+
∣∣∣∣∣∣∆′′∣∣∣∣∣∣

nuc
−
∣∣∣∣∣∣∣∣∣PT⊥(Θ∗L1/2)

∣∣∣∣∣∣∣∣∣
nuc
−
∣∣∣∣∣∣∆′∣∣∣∣∣∣

nuc

=
∣∣∣∣∣∣∣∣∣Θ∗L1/2

∣∣∣∣∣∣∣∣∣
nuc

+
∣∣∣∣∣∣∆′′∣∣∣∣∣∣

nuc
− 2
∣∣∣∣∣∣∣∣∣PT⊥(Θ∗L1/2)

∣∣∣∣∣∣∣∣∣
nuc
−
∣∣∣∣∣∣∆′∣∣∣∣∣∣

nuc
. (87)

Because Θ̂ is an optimal solution, we have

λ
(∣∣∣∣∣∣∣∣∣Θ̂L1/2

∣∣∣∣∣∣∣∣∣
nuc
−
∣∣∣∣∣∣∣∣∣Θ∗L1/2

∣∣∣∣∣∣∣∣∣
nuc

)
≤ −L(Θ∗) + L(Θ̂)

(a)

≤ 〈〈∆L1/2,∇L(Θ∗)L−1/2〉〉
(b)

≤ |||∆|||L-nuc

∣∣∣∣∣∣∣∣∣∇L(Θ∗)L−1/2
∣∣∣∣∣∣∣∣∣

2
≤ λ

2
|||∆|||L-nuc, (88)

where (a) holds due to the convexity of −L; (b) follows from the Cauchy-Schwarz inequality;
the last inequality holds due to the assumption that λ ≥ 2|||∇L(Θ∗)|||2. Combining (87)
and (88) yields

2
(∣∣∣∣∣∣∆′′∣∣∣∣∣∣

nuc
− 2
∣∣∣∣∣∣∣∣∣PT⊥(Θ∗L1/2)

∣∣∣∣∣∣∣∣∣
nuc
−
∣∣∣∣∣∣∆′∣∣∣∣∣∣

nuc

)
≤ |||∆|||L-nuc ≤

∣∣∣∣∣∣∆′∣∣∣∣∣∣
nuc

+
∣∣∣∣∣∣∆′′∣∣∣∣∣∣

nuc
.

Thus |||∆′′|||nuc ≤ 3|||∆′|||L-nuc + 4
∣∣∣∣∣∣PT⊥(Θ∗L1/2)

∣∣∣∣∣∣
nuc

. By triangle inequality,

|||∆|||L-nuc ≤ 4
∣∣∣∣∣∣∆′∣∣∣∣∣∣

nuc
+ 4
∣∣∣∣∣∣∣∣∣PT⊥(Θ∗L1/2)

∣∣∣∣∣∣∣∣∣
nuc

.

Notice that ∆′ = UrU
T
r ∆L1/2 + (I − UrU

T
r )∆L1/2VrV

T
r . Both UrU

T
r ∆L1/2 and (I −

UrU
T
r )∆L1/2VrV

T
r have rank at most r. Thus ∆′ has rank at most 2r. Hence, |||∆′|||nuc ≤√

2r|||∆′|||F ≤
√

2r
∣∣∣∣∣∣∆L1/2

∣∣∣∣∣∣
F
≤
√

2r|||∆|||L. Then the theorem follows because∣∣∣∣∣∣PT⊥(Θ∗L1/2)
∣∣∣∣∣∣

nuc
=
∑min{d1,d2}

j=r+1 σj(Θ
∗L1/2).

Appendix B. Proof of the Information-theoretic Graph Sampling Lower
Bound, Theorem 4

The proof uses Fano Inequality based packing set argument to get an lower bound on the
error of any (measurable) estimator. We will construct a packing set in Ωα with a minimum
distance of δ between any pair of elements in the packing.

Let {Θ(1),Θ(2), . . . ,Θ(M)} be a set of M matrices within the set Ωα, satisfying∣∣∣∣∣∣Θ(`1) −Θ(`1)
∣∣∣∣∣∣

L
≥ δ for all `1, `2 ∈ [M ]. Now, Θ(N) is uniformly drawn from this set and

then the comparison results (according to MNL model) of n randomly chosen pairs of items,
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each drawn according to the probability matrix P and each compared by uniformly chosen
user. Let N̂ be the best estimator of N from the observations. Then we can show that,

sup
Θ∗∈Ωα

P
{∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣2
L
≥ δ2

2

}
≥ P

{
N̂ 6= N

}
, (89)

Now we have converted the problem of finding the minimum estimation error, into
finding the minimum probability error of a M -ary hypothesis testing problem. If we can
prove that the above RHS is lower bounded by 1/2, we are done.

The generalized Fanos inequality along with data processing inequality gives us,

P
{
N̂ 6= N

}
≥ 1− E[ I(N̂ ;N) ] + log 2

logM
(90)

≥ 1−
(
M
2

)−1∑
`1,`2∈[M ]DKL(Θ(`1)‖Θ(`2)) + log 2

logM
, (91)

where DKL(Θ(`1)‖Θ(`2)) denotes the expected Kullback-Leibler divergence between the prob-
ability distributions of the comparison results of the observed nd1 pairs, for N = `1 and
N = `2. The expectation is taken over different choices for the selected pairs for comparison.

DKL(Θ(`1)‖Θ(`2)) =
n

d1

∑
i∈[d1]

{j,j′}⊂[d2]

2Pj,j′

[
eΘ

(`1)
ij

eΘ
(`1)
ij + e

Θ
(`1)

ij′
log


eΘ

(`1)
ij

/(
eΘ

(`1)
ij + e

Θ
(`1)

ij′

)

eΘ
(`2)
ij

/(
eΘ

(`2)
ij + e

Θ
(`2)

ij′

)


(92)

+
e

Θ
(`1)

ij′

eΘ
(`1)
ij + e

Θ
(`1)

ij′
log


e

Θ
(`1)

ij′

/(
eΘ

(`1)
ij + e

Θ
(`1)

ij′

)

e
Θ

(`2)

ij′

/(
eΘ

(`2)
ij + e

Θ
(`2)

ij′

)

]

(93)

where n is the number of pairs of items selected and compared by one random user each,
Pj,j′ is half the probability with which item pair {j, j′} is selected and the observation

probabilities come from the standard MNL model. Let xijj′ ≡ e
Θ

(`1)

ij′ /(eΘ
(`1)
ij + e

Θ
(`1)

ij′ ) and

yijj′ ≡ e
Θ

(`2)

ij′ /(eΘ
(`2)
ij + e

Θ
(`2)

ij′ ).
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DKL(Θ(`1)‖Θ(`2))
(a)
= n

∑
i∈[d1]

1

d1

∑
{j,j′}⊂[d2]

2Pj,j′

[
xijj′ log

xijj′

yijj′
+ (1− xijj′) log

1− xijj′
1− yijj′

]
(94)

(a)

≤ n
∑
i∈[d1]

1

d1

∑
{j,j′}⊂[d2]

2Pj,j′

[
xijj′

xijj′ − yijj′
yijj′

+ (1− xijj′)
yijj′ − xijj′

1− yijj′

]
(95)

= 2n
∑
i∈[d1]

1

d1

∑
{j,j′}⊂[d2]

(xijj′ − yijj′)Pj,j′(xijj′ − yijj′)
yijj′(1− yijj′)

(96)

(b)

≤ 8ne2α
∑
i∈[d1]

1

d1

∑
{j,j′}⊂[d2]

(xijj′ − yijj′)Pj,j′(xijj′ − yijj′), (97)

where (a) is due to the fact that log(x/y) ≤ (x− y)/y for x/y ≥ 0 and (b) is true because

|Θ(`2)
ij | ≤ α implies, yijj′ = eΘ

(`2)
ij /(eΘ

(`2)
ij + e

Θ
(`2)

ij′ ) ≥ e−2α/2 which in turn implies, yijj′(1−
yijj′) ≥ e−2α(2− e−2α)/4 ≥ e−2α/4. Let f(z) = 1/(1 + e−z), a 1-Lipschitz function, it can

be seen that (xijj′ − yijj′)2 = (f(Θ
(`1)
ij − Θ

(`1)
ij′ ) − f(Θ

(`2)
ij − Θ

(`2)
ij′ ))2 ≤ ((Θ

(`1)
ij − Θ

(`1)
ij′ ) −

(Θ
(`2)
ij −Θ

(`2)
ij′ ))2. This gives us,

DKL(Θ(`1)‖Θ(`2)) ≤ 8ne2α

d1

∑
i∈[d1]

∑
{j,j′}⊂[d2]

Pu,v((Θ
(`1)
ij −Θ

(`2)
ij )− (Θ

(`1)
ij′ −Θ

(`2)
ij′ ))2, (98)

(a)

≤ 8ne2α

d1

∑
i∈[d1]

(Θ(`1) −Θ(`2))iL(Θ(`1) −Θ(`2))i, (99)

=
8ne2α

d1

∑
i∈[d1]

(Θ(`1) −Θ(`2))iL(Θ(`1) −Θ(`2))i, (100)

=
8ne2α

d1

∣∣∣∣∣∣∣∣∣(Θ(`1) −Θ(`2))L1/2
∣∣∣∣∣∣∣∣∣2

F
(101)

=
8ne2α

d1

∣∣∣∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣∣∣∣2

L
(102)

(103)

where (a) is due to the fact that L = diag(Pu)−P is the Laplacian of the probability matrix
P, and Θi denotes the i-th row of matrix Θ. Combining the above with (91), we get,

P
{
N̂ 6= N

}
≥ 1−

(
M
2

)−1∑
`1,`2∈[M ](8ne

2α/d1)
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
L

+ log 2

logM
. (104)

The remainder of the proof relies on the following probabilistic packing.
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Lemma 25 For each r ∈ {1, . . . , d1}, and for any positive δ > 0 there exists a family of
d1 × d2 dimensional matrices {Θ(1), . . . ,Θ(M(δ))} with cardinality M(δ) = bexp(rd1/256)c
such that each matrix is rank r and the following bounds hold:∣∣∣∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣∣∣∣
L
≤ δ , for all ` ∈ [M ] (105)∣∣∣∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣∣∣∣
L
≥ δ , for all `1, `2 ∈ [M ] (106)

Θ(`) ∈ Ωα̃ , for all ` ∈ [M ] , (107)

with α̃ = (8δ/d2)
√

2 log d for d = (d1 + d2)/2.

Now if we assume δ ≤ αd2/8
√

2 log d, we get Θ(`) ∈ Ωα for ` ∈ [M ]. The above lemma also

implies that
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
F
≤ 4δ2 which implies,

P
{
N̂ 6= N

}
≥ 1− 32ne2αδ2/d1 + log 2

rd1/256
≥ 1

2
, (108)

where the last inequality holds when δ ≤ (e−α/128)
√
rd2

1/n. Along with (89), this proves
that,

inf
Θ̂

sup
Θ∗∈Ωα

E
[∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
L

]
≥ δ

2
, (109)

for all δ ≤ min{αd2/8
√

2 log d, (e−α/128)
√
rd2

1/n}.
Similarly using the following lemma, Lemma 26, we can prove that,

inf
Θ̂

sup
Θ∗∈Ωα

E
[∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
L

]
≥ δ

2
, (110)

for all δ ≤ min{α
√
rd1/tr

(√
(Lr)†

)
, (e−α/128)

√
rd2

1/n}.

Lemma 26 For each r ∈ {1, . . . , d1}, and for any positive δ > 0 there exists a family of
d1 × d2 dimensional matrices {Θ(1), . . . ,Θ(M(δ))} with cardinality M(δ) = bexp(rd1/256)c
such that each matrix is rank r and the following bounds hold:∣∣∣∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣∣∣∣
L
≤ δ , for all ` ∈ [M ] (111)∣∣∣∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣∣∣∣
L
≥ δ , for all `1, `2 ∈ [M ] (112)

Θ(`) ∈ Ωα̃ , for all ` ∈ [M ] , (113)

with α̃ = δ
√

tr ((Lr)†)/
√
rd1, where Lr is the (best) rank r approximation of L.

Now combining (109) and (110), and maximizing the RHS proves the theorem.
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B.1 Proof of Lemma 25

Following the construction in Negahban and Wainwright (2012), we use probabilistic method
to prove the existence of the desired family. We will show that the following procedure
succeeds in producing the desired family with probability at least half, which proves its
existence. Let d = (d1 + d2)/2, and suppose d2 ≥ d1 without loss of generality. For the
choice of M ′ = erd2/576, and for each ` ∈ [M ′], generate a rank-r matrix Θ(`) ∈ Rd1×d2 as
follows:

Θ(`) =
δ√
rd2

U(V (`))T
(
Id2×d2 −

∑
i∈[G]

gig
T
i

gTi gi

)
, (114)

where U ∈ Rd1×r is a random orthogonal basis such that UTU = Ir×r and V (`) ∈ Rd2×r is

a random matrix with each entry V
(`)
ij ∈ {−1,+1} chosen independently and uniformly at

random. By construction, notice that,∣∣∣∣∣∣∣∣∣Θ(`)
∣∣∣∣∣∣∣∣∣2

L
=

δ2

r d2

∣∣∣∣∣∣∣∣∣(V (`))TL1/2
∣∣∣∣∣∣∣∣∣2

F
=

δ2

r d2

∑
i∈[d2]

(V
(`)
i )TLV

(`)
i ≤ δ2

r d2
|||L|||2

∑
i∈[d2]

∣∣∣∣∣∣∣∣∣V (`)
i

∣∣∣∣∣∣∣∣∣2
F

= δ2 ,

(115)

where V
(`)
i is the i-th column of V (`), since gi

G
i=1 span the null space of the Laplacian L,

|||L|||2 ≤ 1, and
∣∣∣∣∣∣V (`)

∣∣∣∣∣∣
F

=
√
rd2. Now, consider

∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣2

F
=

(δ2/(rd2))
∣∣∣∣∣∣(V (`1) − V (`2))T

∣∣∣∣∣∣2
L
≡ f(V (`1), V (`2)) which is a function over 2rd2 i.i.d. random

Rademacher variables V (`1) and V (`2) which define Θ(`1) and Θ(`2) respectively. Since f is
Lipschitz in the following sense, we can apply McDiarmid’s concentration inequality. For
all (V (`1), V (`2)) and (Ṽ (`1), Ṽ (`2)) that differ in only one variable, say Ṽ (`1) = V (`1) + 2eij ,
for some standard basis matrix eij , we have∣∣f(V (`1), V (`2))− f(Ṽ (`1), Ṽ (`2))

∣∣ =∣∣∣∣ δ2

r d2

∣∣∣∣∣∣∣∣∣(V (`1) − V (`2))T
∣∣∣∣∣∣∣∣∣2

L
− δ2

r d2

∣∣∣∣∣∣∣∣∣(V (`1) − V (`2) + 2eij)
T
∣∣∣∣∣∣∣∣∣2

L

∣∣∣∣ (116)

=
δ2

r d2

∣∣∣ 2eTi L(V
(`1)
j − V (`2)

j ) + 4eTi Lei

∣∣∣ (117)

=
δ2

r d2
(2|||Li|||1

∣∣∣∣∣∣∣∣∣V (`1)
j − V (`2)

j

∣∣∣∣∣∣∣∣∣
∞

+ 4Pi) (118)

≤ 12 δ2

r d2
, (119)

where we used the fact that |||Li|||1 = 2Pi ≤ 2 and V (`1)− V (`2) is entry-wise bounded by 2.
The expectation E[f(V (`1), V (`2))] is

δ2

r d2
E
[∣∣∣∣∣∣∣∣∣(V (`1) − V (`2))T

∣∣∣∣∣∣∣∣∣2
L

]
=

2δ2

r d2
E
[∣∣∣∣∣∣∣∣∣(V (`1))T

∣∣∣∣∣∣∣∣∣2
L

]
≤ 2δ2 , (120)

where we use equation (115). Applying McDiarmid’s inequality with bounded difference
12δ2/(rd2), we get that

P
{
f(V (`1), V (`2)) ≤ 2δ2 − t

}
≤ exp

{
− t2 r d2

144 δ4

}
, (121)

50



Learning from Comparisons and Choices

Since there are less than (M ′)2 pairs of (`1, `2), setting t = δ2 and applying the union bound
gives

P
{

min
`1,`2∈[M ′]

∣∣∣∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣∣∣∣2

F
≥ δ2

}
≥ 1− exp

{
− r d2

144
+ 2 logM ′

}
≥ 7

8
, (122)

where we used M ′ = exp{rd2/576} and d2 ≥ 607.
We are left to prove that Θ(`)’s are in Ω(8δ/d2)

√
2 log d2

as defined in (10). Since we removed

the mean for each connected component, such that Θ(`)gi = 0, ∀i ∈ [G] by construction,
we only need to show that the maximum entry is bounded by (8δ/d2)

√
2 log d2. We first

prove an upper bound in (124) for a fixed ` ∈ [M ′], and use this to show that there exists
a large enough subset of matrices satisfying this bound. From (114), consider (UV T )ij =
〈〈ui, vj〉〉, where ui ∈ Rr is the first r entries of a random vector drawn uniformly from the
d2-dimensional sphere, and vj ∈ Rr is drawn uniformly at random from {−1,+1}r with
‖vj‖ =

√
r. Using Levy’s theorem for concentration on the sphere Ledoux (2005), we have

P {|〈〈ui, vj〉〉| ≥ t} ≤ 2 exp
{
− d2 t

2

8 r

}
. (123)

Notice that by the definition (114), maxi,j |Θ(`)
ij | ≤ (2δ/

√
rd2) maxi,j |〈〈ui, vj〉〉|. Setting

t =
√

(32r/d2) log d2 and taking the union bound over all d1d2 indices, we get

P
{

max
i,j
|Θ(`)

ij | ≤
2δ
√

32 log d2

d2

}
≥ 1− 2d1d2 exp

{
− 4 log d2

}
≥ 1

2
, (124)

for a fixed ` ∈ [M ′]. Consider the event that there exists a subset S ⊂ [M ′] of cardinality
M = (1/4)M ′ with the same bound on maximum entry, then from (124) we get

P
{
∃S ⊂ [M ′] such that

∣∣∣∣∣∣∣∣∣Θ(`)
∣∣∣∣∣∣∣∣∣
∞
≤ 2δ

√
32 log d2

d2
for all ` ∈ S

}
≥

M ′∑
m=M

(
M ′

m

)(1

2

)m
,

(125)

which is larger than half for our choice of M < M ′/2.

B.2 Proof of Lemma 26

Inspired from the construction in Negahban and Wainwright (2012), we furnish the following
probabilistic argument for the existence of the desired family. For the choice of M =
berd1/256c, and for each ` ∈ [M ], generate a rank-r matrix Θ(`) ∈ Rd1×d2 as follows:

Θ(`) =
δ√
rd1

V (`)

√
Λ†rU

T
r , (126)

where the columns of Ur ∈ Rd2×r are the top r singular vectors of L = UΛUT , Λr is
a diagonal matrix in Rr×r and its diagonal elements are the top r singular values of L
corresponding to columns of Ur, † represents the Moore-Penrose pseudo inverse, and V (`)

is a random matrix with each entry V
(`)
ij ∈ {−1,+1} chosen independently and uniformly

at random. First by definition,
∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣
L

= (δ/
√
rd1)

∣∣∣∣∣∣V (`)
∣∣∣∣∣∣

F
≤ δ, since

∣∣∣∣∣∣V (`)
∣∣∣∣∣∣

F
=
√
rd1.
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Define f as f(V (`1), V (`2)) ≡
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
L

= (δ2/(rd1))
∣∣∣∣∣∣V (`1) − V (`2)

∣∣∣∣∣∣2
F

which is
a function of 2rd1 i.i.d. random Rademacher variables. Now we can apply McDiarmid’s
concentration inequality since f is Lipschitz as folows. For all (V (`1), V (`2)) and (Ṽ (`1), Ṽ (`2))
that differ in only one variable, say Ṽ (`1) = V (`1) + 2eij , for some standard basis matrix eij ,
we have ∣∣f(V (`1), V (`2))− f(Ṽ (`1), Ṽ (`2))

∣∣
=

∣∣∣∣ δ2

r d2

∣∣∣∣∣∣∣∣∣V (`1) − V (`2)
∣∣∣∣∣∣∣∣∣2

F
− δ2

r d2

∣∣∣∣∣∣∣∣∣V (`1) − V (`2) + 2eij

∣∣∣∣∣∣∣∣∣2
F

∣∣∣∣
=

∣∣∣∣ δ2

r d2
|||2eij |||2F +

δ2

r d2
〈〈(V (`1) − V (`2)), 2eij〉〉

∣∣∣∣
≤ 4 δ2

r d1
+

δ2

r d1

∣∣∣∣∣∣∣∣∣V (`1) − V (`2)
∣∣∣∣∣∣∣∣∣
∞
|||2eij |||1

≤ 8 δ2

r d1
, (127)

where the penultimate step is true since (V (`1) − V (`2)) is entry-wise bounded by 2. The
expectation E[f(V (`1), V (`2))] is

δ2

r d1
E
[∣∣∣∣∣∣∣∣∣(V (`1) − V (`2))

∣∣∣∣∣∣∣∣∣2
F

]
=

2δ2

r d1
E
[∣∣∣∣∣∣∣∣∣V (`1)

∣∣∣∣∣∣∣∣∣2
F

]
= 2 δ2 . (128)

Now applying McDiarmid’s inequality on the function f , we get that

P
{
f(V (`1), V (`2)) ≤ 2δ2 − t

}
≤ exp

{
− t2 r d1

64 δ4

}
, (129)

Setting t = δ2 and applying the union bound gives us,

P
{

min
`1,`2∈[M ]

∣∣∣∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣∣∣∣2

F
≥ δ2

}
≥ 1− exp

{
− r d1

64
+ 2 logM

}
> 0 . (130)

In the last step, we used M = bexp{rd1/ 256}c. At last we prove that Θ(`)’s are in
Ω
δ
√

tr((Lr)†)/rd1
as defined in (10). Since we know that gi belongs to the kernel of L for all i ∈

[G], Θ(`)g = 0 by construction (6). From (126), consider (V

√
Λ†rUTr )ij = 〈〈vi,

√
Λ†r(ur)j〉〉,

where (ur)j ∈ Rr is the vector of i-th entries of the top r singular vectors of L, and vi ∈ Rr
is drawn uniformly at random from {−1,+1}r.

∣∣∣〈〈vi,√Λ†r(ur)j〉〉
∣∣∣ ≤ |||vi|||∞∣∣∣∣∣∣∣∣∣∣∣∣√Λ†r(ur)j

∣∣∣∣∣∣∣∣∣∣∣∣
1

≤
√

tr
(

Λ†r
)

=
√

tr ((Lr)†) . (131)

The above inequality proves that
∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣
∞ is upper bounded as desired.
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Appendix C. Proof of Theorem 7

We first introduce some additional notations used in the proof. Recall that L(Θ) is the log

likelihood function. Let ∇L(Θ) ∈ Rd1×d2 denote its gradient such that ∇ijL(Θ) = ∂L(Θ)
∂Θij

.

Let ∇2L(Θ) ∈ Rd1d2×d1d2 denote its Hessian matrix such that ∇2
ij,i′j′L(Θ) = ∂2L(Θ)

∂Θij∂Θi′j′
. By

the definition of L(Θ) in (32), we have

∇L(Θ∗) = − 1

k d1

d1∑
i=1

k∑
`=1

ei(evi,` − pi,`)
T , (132)

where pi,` denotes the conditional choice probability at `-th position. Precisely, pi,` =∑
j∈Si,` pj|(i,`)ej where pj|(i,`) is the probability that item j is chosen at `-th position

from the top by the user i conditioned on the top ` − 1 choices such that pj|(i,`) ≡
P {vi,` = j|vi,1, . . . , vi,`−1, Si} = eΘ∗ij/(

∑
j′∈Si,` e

Θij′ ) and Si,` ≡ Si \ {vi,1, . . . , vi,`−1}, where
Si is the set of alternatives presented to the i-th user and vi,` is the item ranked at the `-th

position by the user i. Notice that for i 6= i′, ∂2L(Θ)
∂Θij∂Θi′j′

= 0 and the Hessian is

∂2L(Θ)

∂Θij∂Θij′
=

1

k d1

k∑
`=1

I
(
j ∈ Si,`

)∂pj|(i,`)
∂Θij′

=
1

k d1

k∑
`=1

I
(
j, j′ ∈ Si,`

) (
pj|(i,`)I(j = j′)− pj|(i,`)pj′|(i,`)

)
. (133)

This Hessian matrix is a block-diagonal matrix∇2L(Θ) = diag(H(1)(Θ), . . . ,H(d1)(Θ)) with

H(i)(Θ) =
1

k d1

k∑
`=1

(
diag(pi,`)− pi,`pTi,`

)
. (134)

Let ∆ = Θ∗− Θ̂ where Θ̂ is the optimal solution of the convex program in (31). We first
introduce three key technical lemmas. The first lemma follows from Lemma 1 of Negahban
and Wainwright (2012), and shows that ∆ is approximately low-rank.

Lemma 27 If λ ≥ 2|||∇L(Θ∗)|||2, then we have

|||∆|||nuc ≤ 4
√

2r|||∆|||F + 4

min{d1,d2}∑
j=r+1

σj(Θ
∗) , (135)

for all r ∈ [min{d1, d2}].

Proof of the above lemma is omitted because of its similarity to that of Lemma 22. The
following lemma provides a bound on the gradient using the concentration in measure of
sum of independent random matrices Tropp (2011).
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Lemma 28 For any positive constant c ≥ 1 and k ≤ (1/e) d2(4 log d2 + log d1), with
probability at least 1− 2d−c − d−3

2 ,

|||∇L(Θ∗)|||2

≤

√
4(1 + c) log d

k d2
1

max
{√

d1/d2, e
2α
√

4(1 + c) log(d)(8 log d2 + 2 log d1) log k
}
. (136)

Since we are typically interested in the regime where the number of samples is much smaller
than the dimension d1 × d2 of the problem, the Hessian is typically not positive definite.
However, when we restrict our attention to the vectorized ∆ with relatively small nuclear
norm, then we can prove restricted strong convexity, which gives the following bound.

Lemma 29 (Restricted Strong Convexity for collaborative ranking) Fix any Θ ∈
Ωα and assume 24 ≤ k ≤ min{d2

1, (d
2
1 +d2

2)/(2d1)} log d. Under the random sampling model
of the alternatives {ji`}i∈[d1],`∈[k] and the random outcome of the comparisons described in

section 1, with probability larger than 1− 2d−218
,

Vec(∆)T ∇2L(Θ) Vec(∆) ≥ e−4α

24 d1d2
|||∆|||2F , (137)

for all ∆ in A where

A =
{

∆ ∈ Rd1×d2
∣∣ |||∆|||∞ ≤ 2α ,

∑
j∈[d2]

∆ij = 0 for all i ∈ [d1] and |||∆|||2F ≥ µ|||∆|||nuc

}
.

(138)

with

µ ≡ 210 e2α αd2

√
d1 log d

k min{d1, d2}
. (139)

Building on these lemmas, the proof of Theorem 7 is divided into the following two
cases. In both cases, we will show that

|||∆|||2F ≤ 72 e4αc0λ0 d1d2 |||∆|||nuc , (140)

with high probability. Applying Lemma 27 proves the desired theorem. We are left to show
Eq. (140) holds.

Case 1: Suppose |||∆|||2F ≥ µ |||∆|||nuc. With ∆ = Θ∗ − Θ̂, the Taylor expansion yields

L(Θ̂) = L(Θ∗)− 〈〈∇L(Θ∗),∆〉〉+
1

2
Vec(∆)∇2L(Θ)VecT (∆), (141)

where Θ = aΘ̂+(1−a)Θ∗ for some a ∈ [0, 1]. It follows from Lemma 29 that with probability
at least 1− 2d−218

,

L(Θ̂)− L(Θ∗) ≥ −〈〈∇L(Θ∗),∆〉〉+
e−4α

48 d1 d2
|||∆|||2F

≥ −|||∇L(Θ∗)|||2|||∆|||nuc +
e−4α

48 d1 d2
|||∆|||2F .
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From the definition of Θ̂ as an optimal solution of the minimization, we have

L(Θ̂)− L(Θ∗) ≤ λ
(
|||Θ∗|||nuc −

∣∣∣∣∣∣∣∣∣Θ̂∣∣∣∣∣∣∣∣∣
nuc

)
≤ λ|||∆|||nuc .

By the assumption, we choose λ ≥ 480λ0. In view of Lemma 28, this implies that λ ≥
2|||∇L(Θ∗)|||2 with probability at least 1 − 2d−3. It follows that with probability at least

1− 2d−3 − 2d−218
,

e−4α

48d1d2
|||∆|||2F ≤

(
λ+ |||∇L(Θ∗)|||2

)
|||∆|||nuc ≤

3λ

2
|||∆|||nuc .

By our assumption on λ ≤ c0λ0, this proves the desired bound in Eq. (140)
Case 2: Suppose |||∆|||2F ≤ µ |||∆|||nuc. By the definition of µ and the fact that c0 ≥ 480,
it follows that µ ≤ 72 e4αc0λ0 d1d2, and we get the same bound as in Eq. (140).

C.1 Proof of Lemma 28

Define Xi = −ei
∑k

`=1(evi,` − pi,`)T such that ∇L(Θ∗) = 1
k d1

∑d1
i=1Xi, which is a sum of d1

independent random matrices. Although |||Xi|||2 can be as large as O(k), this occurs with
very low probability. We make this precise in the following lemma and focus on the case
where |||Xi|||2 = O(

√
k) for all i ∈ [d1].

Lemma 30 For a fixed i ∈ [d1] and j ∈ [d2], if k ≤ (1/e) d2 (4 log d2 + log d1), then the
number of times the item j is observed by the user i is at most 8(log d2) + 2(log d1) with
probability larger than 1− 1/(d4

2d1).

Proof is given in the end of this Section. Applying union bound over the d1 items and
d2 users, we have the multiplicity in sampling for any item for all users is bounded by
8(log d2) + 2(log d1) with probability at least 1 − d−3

2 . We denote this event by A and let
I (A) be the indicator function that all the multiplicities in sampling are bounded. We first
upper bound |||(

∑
iXi) I (A)|||2 using the Matrix Bernstein inequality Tropp (2011).

|||XiI (A)|||2 =
∥∥∥I (A)

k∑
`=1

(
evi,` − pi,`

)∥∥∥
(a)

≤
∥∥∥I (A)

k∑
`=1

evi,l

∥∥∥+
∥∥∥I (A)

k∑
`=1

pi,`

∥∥∥
(b)

≤ (8(log d2) + 2(log d1))
√

min{k, d2}
(

1 +

(
k∑
`=1

e2α

`

))
(c)

≤
√
k(8(log d2) + 2(log d1))

(
1 + 2e2α log k

)
≤ 3
√
k(8(log d2) + 2(log d1))e2α log k , (142)

where (a) is by triangle inequality, (b) is because under the given event A each term in∑
` evi,` and

∑
l pi,` are upper bounded by log d2 and

(∑k
`=1

e2α

`

)
log d2 respectively and

because there can be at most min{d2, k} non-zero entries in the two vectors
∑

` evi,` and
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∑
` pi,` and, (c) is due to the fact that k-th harmonic number

∑k
`=1

1
` is upper bounded by

log k. We also have,∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i

E
[
XiX

T
i I (A)

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i

E
[
XiX

T
i

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
d1∑
i=1

eie
T
i E

 k∑
`,`′=1

(
evi,` − pi,`

)T (
evi,`′ − pi,`′

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

eie
T
i E

[
k∑
`=1

(
evi,` − pi,`

)T (
evi,` − pi,`

)]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

eie
T
i E

[
k∑
`=1

eTvi,`evi,` − p
T
i,`pi,`

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

eie
T
i E

[
k∑
`=1

eTvi,`evi,`

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= k|||Id1×d1 |||2 = k, (143)

and ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E
[
XT
i XiI (A)

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E
[
XT
i Xi

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
d1∑
i=1

E

 k∑
`,`′=1

(evi,` − pi,`)(evi,`′ − pi,`′)
T

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E

[
k∑
`=1

(evi,` − pi,`)(evi,` − pi,`)
T

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

(144)

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E

[
k∑
`=1

evi,`e
T
vi,`
− pi,`pTi,`

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

E

[
k∑
`=1

evi,`e
T
vi,`

]∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
d1∑
i=1

k

d2
Id2×d2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

=
kd1

d2
. (145)

By matrix Bernstein inequality Tropp (2011),

P
(
|||∇L(Θ∗)I (A)|||2 > t

)
≤ (d1 + d2) exp

( −k2 d2
1 t

2/2

(d1k/min{d2, d1}) + (3e2αk3/2d1(8(log d2) + 2(log d1)) log k t/3)

)
,
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which gives the tail probability of 2d−c for the choice of

t = max

{√
4(1 + c) log d

k d1 min{d2, d1}
,

4(1 + c)e2α log(d) (8(log d2) + 2(log d1)) log k

k1/2 d1

}

=

√
4(1 + c) log d

k1/2 d1
max

{√
d1/d2 , e

2α
√

4(1 + c) log(d) (8(log d2) + 2(log d1)) log k
}
.

Now with a high probability of 1− 2
dc −

1
d3

2
the desired bound is true.

C.2 Proof of Lemma 30

In a classical balls-in-bins setting, we consider k as the number of balls and d2 as the number
of bins. We can consider the number of balls in a particular bin as the number of times
the user i observes item j. Let the event that this number is at least δ be denoted by

the event Ajδ. Then, P
{
Ajδ

}
≤
(
k
δ

)
1
dδ2
≤
(
ke
d2δ

)δ
. Using the fact that (1/x)x ≤ a for any

x ≥ (2 log(1/a))/(log log(1/a)), we let x = d2δ/(ke) to get(
ke

d2δ

)δ
≤ a

ke
d2 ,

for δ ≥ (ke/d2)(2 log(1/a))/(log log(1/a)). Choosing a = (1/d4
2d1)d2/ke, we have P

{
Ajδ

}
≤

1/(d1d
4
2), for a choice of δ = 2 log(d4

2d1) ≥ 2 log(d4
2d1)/(log((d2/ke) log(d4

2d1))).

C.3 Proof of Lemma 29

Recall that the Hessian matrix is a block-diagonal matrix with the i-th block H(i)(Θ) given
by (134). We use the following remark from Hajek et al. (2014) to bound the Hessian.

Remark 31 (Hajek et al., 2014, Claim 1) Given θ ∈ Rr, let p be the column probability
vector with pi = eθi/(eθ1 + · · · + eθρ) for each i ∈ [ρ] and for any positive integer ρ. If
|θi| ≤ α, for all i ∈ [ρ], then

e2α
(

diag(p)− ppT
)
� 1

ρ
diag(1)− 1

ρ2
11T .

By letting 1Si,` =
∑

j∈Si,` ej and applying the above claim, we have

e2αH(i)(Θ) � 1

k d1

k∑
`=1

(
1

k − `+ 1
diag(1Si,`)−

1

(k − `+ 1)2
1Si,`1

T
Si,`

)

=
1

2 k d1

k∑
`=1

1

(k − `+ 1)2

∑
j,j′∈Si,`

(ej − ej′)(ej − ej′)T

� 1

2 k3 d1

k∑
`=1

∑
j,j′∈Si,`

(ej − ej′)(ej − ej′)T .
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Hence,

Vec(∆)∇2L(Θ)VecT (∆) =

d1∑
i=1

(∆T ei)
TH(i)(Θ)(∆T ei)

≥ e−2α

2 k3 d1

d1∑
i=1

k∑
`=1

∑
j,j′∈Si,`

∣∣∣∣∣∣eTi ∆(ej − ej′)
∣∣∣∣∣∣2

2
.

By changing the order of the summation, we get that

k∑
`=1

∑
j,j′∈Si,`

∣∣∣∣∣∣eTi ∆(ej − ej′)
∣∣∣∣∣∣2

2
=

k∑
`,`′=1

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑
`′′=1

I
(
σi(ji,`′′ )

≤ min{σi(ji,`), σi(ji,`′)}
)
.

Define

χi,`,`′,`′′ ≡ I
(
σi(ji,`′′ ) ≤ min{σi(ji,`), σi(ji,`′)}

)
, (146)

and let

H(∆) ≡ e−2α

2 k3 d1

d1∑
i=1

k∑
`,`′=1

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑
`′′=1

χi,`,`′,`′′ .

Then we have VecT (∆)∇2L(Θ)Vec(∆) ≥ H(∆). To prove the theorem, it suffices to bound
H(∆) from the below. First, we prove a lower bound on the expectation E[H(∆)]. No-
tice that for ` 6= `′, the conditional expectation of χi,`,`′,`′′ ’s, given the set of alternatives
presented to user i is

E
[ k∑
`′′=1

χi,`,`′,`′′
∣∣ ji,1, . . . , ji,k] = 1 +

∑
`′′ 6=`,`′

exp(θi,ji,`′′ )

exp(θi,ji,`′′ ) + exp(θi,ji,`′ ) + exp(θi,ji,`)

≥ 1 +
k − 2

1 + 2e2α
≥ k

3e2α
.

Then,

E[H(∆)] =
e−2α

2 k3 d1

∑
i,`,`′

E
[
〈〈∆, ei,ji,` − ei,ji,`′ 〉〉

2E
[ k∑
`′′=1

χi,`,`′,`′′
∣∣ ji,1, . . . , ji,k]]

≥ e−4α

6 k2 d1

d1∑
i=1

∑
`,`′∈[k]

E
[
〈〈∆, ei,ji,` − ei,ji,`′ 〉〉

2
]

=
e−4α

6 k2 d1

d1∑
i=1

∑
6̀=`′∈[k]

 2

d2

d2∑
j=1

∆2
ij −

2

d2
2

d2∑
j,j′=1

∆ij∆ij′


=

e−4α(k − 1)

3 k d1 d2
|||∆|||2F , (147)
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where the last equality holds because
∑

j∈[d2] ∆ij = 0 for ∆ ∈ Ω2α and for all i ∈ [d1].
We are left to prove that H(∆) cannot deviate from its mean too much. Suppose there

exists a ∆ ∈ A such that Eq. (137) is violated, i.e. H(∆) < (e−4α/(24 d1d2))|||∆|||2F. We
will show this happens with a small probability. From Eq. (147), we get that for k ≥ 24,

E[H(∆)]−H(∆) ≥ (7k − 8)

24k

e−4α

d1 d2
|||∆|||2F

≥ (20/3) e−4α

24 d1d2
|||∆|||2F . (148)

We use a peeling argument as in (Negahban and Wainwright, 2012, Lemma 3), Van De Geer
(2000) to upper bound the probability that Eq. (148) is true. We first construct the
following family of subsets to cover A such that A ⊆

⋃∞
`=1 S`. Recall

µ = 210e2ααd2

√
(d1 log d)/(kmin{d1, d2}), define in (139). Notice that since for any ∆ ∈ A,

|||∆|||2F ≥ µ|||∆|||nuc ≥ µ|||∆|||F, it follows that |||∆|||F ≥ µ. Then, we can cover A with the
family of sets

S` =
{

∆ ∈ Rd1×d2

∣∣∣ |||∆|||∞ ≤ 2α , β`−1µ ≤ |||∆|||F ≤ β
`µ ,∑

j∈[d2]

∆ij = 0 for all i ∈ [d1], and |||∆|||nuc ≤ β
2`µ
}
,

where β =
√

10/9 and for ` ∈ {1, 2, 3, . . .}. This implies that when there exists a ∆ ∈ A
such that (148) holds, then there exists an ` ∈ Z+ such that ∆ ∈ S` and

E[H(∆)]−H(∆) ≥ (20/3) e−4α

24 d1d2
β2(`−1)µ2

≥ e−4α

4 d1d2
β2`µ2 . (149)

Applying the union bound over ` ∈ Z+, we get from (148) and (149) that

P
{
∃∆ ∈ A , H(∆) <

e−4α

24 d1d2
|||∆|||2F

}
≤

∞∑
`=1

P

{
sup

∆∈S`

(
E[H(∆)]−H(∆)

)
>

e−4α

4 d1d2
(β`µ)2

}

≤
∞∑
`=1

P

{
sup

∆∈B(β`µ)

(
E[H(∆)]−H(∆)

)
>

e−4α

4 d1d2
(β`µ)2

}
, (150)

where we define a new set B(D) such that S` ⊆ B(β`µ):

B(D) =
{

∆ ∈ Rd1×d2
∣∣ ‖∆‖∞ ≤ 2α, |||∆|||F ≤ D,∑
j∈[d2]

∆ij = 0 for all i ∈ [d1], µ|||∆|||nuc ≤ D
2
}
. (151)

The following key lemma provides the upper bound on this probability.
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Lemma 32 For (16 min{d1, d2} log d)/(3d1) ≤ k ≤ d2
1 log d,

P

{
sup

∆∈B(D)

(
E[H(∆)]−H(∆)

)
≥ e−4α

4d1d2
D2

}
≤ exp

{
− e−4α kD4

219α4d1d2
2

}
. (152)

Let η = exp
(
− e−4α4k(β−1.002)µ4

219α4d1d2
2

)
. Applying the tail bound to (150), we get

P
{
∃∆ ∈ A , H(∆) <

e−4α

24 d1d2
|||∆|||2F

}
≤

∞∑
`=1

exp
{
− e−4αk(β`µ)4

219α4d1d2
2

}
(a)

≤
∞∑
`=1

exp
{
− e−4α4k`(β − 1.002)µ4

219α4d1d2
2

}
≤ η

1− η
,

where (a) holds because βx ≥ x log β ≥ x(β − 1.002) for the choice of β =
√

10/9. By the
definition of µ,

η = exp
{
− 223 e4αd2

2d1(log d)2(β − 1.002)

k(min{d1, d2})2

}
≤ exp{− 218 log d} ,

where the last inequality follows from the assumption that k ≤ max{d1, d
2
2/d1} log d =

(d2
2d1 log d)/(min{d1, d2})2, and β − 1.002 ≥ 2−5. Since for d ≥ 2, exp{−218 log d} ≤ 1/2

and thus η ≤ 1/2, the lemma follows by assembling the last two displayed inequalities.

C.4 Proof of Lemma 32

Recall that

H(∆) =
e−2α

2 k3 d1

d1∑
i=1

k∑
`,`′=1

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑
`′′=1

χi,`,`′,`′′ ,

with χi,`,`′,`′′ = I
(
σi(ji,`′′ ) ≤ min{σi(ji,`), σi(ji,`′)}

)
. Let Z = sup∆∈B(D) E[H(∆)] −H(∆)

be the worst-case random deviation of H(∆) form its mean. We prove an upper bound
on Z by showing that Z − E[Z] ≤ e−4αD2/(64d1d2) with high probability, and E[Z] ≤
9e−4αD2/(40d1d2). This proves the desired claim in Lemma 32.

To prove the concentration of Z, we utilize the random utility model (RUM) theoretic
interpretation of the MNL model. The random variable Z depends on the random choice of
alternatives {ji,`}i∈[d1],`∈[k] and the random k-wise ranking outcomes {σi}i∈[d1]. The random
utility theory, pioneered by Thurstone (1927); Marschak (1960); Luce (1959), tells us that
the k-wise ranking from the MNL model has the same distribution as first drawing indepen-
dent (unobserved) utilities ui,`’s of the item ji,` for user i according to the standard Gumbel

Cumulative Distribution Function (CDF) F (c−Θi,ji,`) with F (c) = e−e
−c

, and then ranking
the k items for user i according to their respective utilities. Given this definition of the MNL

model, we have χi,`,`′,`′′ = I
(
ui,`′′ ≥ max{ui,`, ui,`′}

)
. Thus Z is a function of independent
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choices of the items and their (unobserved) utilities, i.e. Z = f({(ji,`, ui,`)}i∈[d1],`∈[k]). Let
xi,` = (ji,`, ui,`) and write H(∆) as H(∆, {xi,`}i∈[d1],`∈[k]). This allows us to bound the dif-
ference and apply McDiarmid’s tail bound. Note that for any i ∈ [d1], ` ∈ [k], x1,1, . . . , xd1,k,
and x′i,`, ∣∣ f(x1,1, . . . , xi,`, . . . , xd1,k

)
− f

(
x1,1, . . . , x

′
i,`, . . . , xd1,k

) ∣∣
=
∣∣ sup

∆∈B(D)
(E [H(∆)]−H(∆, x1,1, . . . , xi,`, . . . , xd1,k))−

sup
∆∈B(D)

(
E [H(∆)]−H(∆, x1,1, . . . , x

′
i,`, . . . , xd1,k)

) ∣∣
≤ sup

∆∈B(D)

∣∣H(∆, x1,1, . . . , xi,`, . . . , xd1,k)−H(∆, x1,1, . . . , x
′
i,`, . . . , xd1,k)

∣∣
(a)

≤ e−2α

2 k3 d1
sup

∆∈B(D)

{
2
∑
`′∈[k]

〈〈∆, ei,ji,` − ei,ji,`′ 〉〉
2

k∑
`′′=1

χi,`,`′,`′′+∑
`′,`′′∈[k]

〈〈∆, ei,ji,`′ − ei,ji,`′′ 〉〉
2χi,`′,`′′,`

}
(b)

≤ 8α2e−2α

k3 d1

{
2

∑
`′∈[k]\{`}

k∑
`′′=1

χi,`,`′,`′′ +
∑

`′,`′′∈[k],`′ 6=`′′,

χi,`′,`′′,`

}
≤ 16α2e−2α

k d1
,

where (a) follows because for a fixed i and `, the random variable xi,` = (ji,`, ui,`) can appear
in three terms, i.e.

∑
`′,`′′〈〈∆, ei,ji,` − ei,ji,`′ 〉〉

2χi,`,`′,`′′ +
∑

`′,`′′〈〈∆, ei,ji,`′ − ei,ji,`〉〉
2χi,`′,`,`′′ +∑

`′,`′′〈〈∆, ei,ji,`′ − ei,ji,`′′ 〉〉
2χi,`′,`′′,`, and (b) follows because |∆ij | ≤ 2α for all i, j since ∆ ∈

B(D). The last inequality follows because in the worst case,
∑

`′∈[k]\{`}
∑k

`′′=1 χi,`,`′,`′′ ≤
k(k − 1)/2 and

∑
`′,`′′∈[k],`′ 6=`′′ χi,`′,`′′,` ≤ k(k − 1). This holds with equality if σi(ji,`) = k

and σi(ji,`) = 1, respectively. By bounded differences inequality, we have

P {Z − E [Z] ≥ t} ≤ exp

(
− k2 d2

1 t
2

27 α4e−4αd1k

)
,

It follows that for the choice of t = e−4αD2/(64d1d2),

P
{
Z − E [Z] ≥ e−4αD2

64d1d2

}
≤ exp

(
− e−4αkD4

219α4d1d2
2

)
.

We are left to prove the upper bound on E[Z] using symmetrization and contraction.
Define random variables

Yi,`,`′,`′′(∆) ≡ (∆i,ji,` −∆i,ji,`′ )
2χi,`,`′,`′′ , (153)

where the randomness is in the choice of alternatives ji,`, ji,`′ , and ji,`′′ , and the outcome of
the comparisons of those three alternatives.
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The main challenge in applying the symmetrization to
∑

`,`′,`′′∈[k] Yi,`,`′,`′′(∆) is that
we need to partition the summation over the set [k] × [k] × [k] into subsets of indepen-
dent random variables, such that we can apply the standard symmetrization argument.
To this end, we prove in the following lemma a generalization of the well-known prob-
lem of scheduling a round robin tournament to a tournament of matches involving three
teams each. No teams are present in more than one triple in a single round, and we
want to minimize the number of rounds to cover all combination of triples are matched.
For example, when there are k = 6 teams, there is a simple construction of such a tour-
nament: T1 = {(1, 2, 3), (4, 5, 6)}, T2 = {1, 2, 4), (3, 5, 6)}, T3 = {(1, 2, 5), (3, 4, 6)}, T4 =
{(1, 2, 6), (3, 4, 5)}, T5 = {(1, 3, 4), (2, 5, 6)}, T6 = {(1, 3, 5), (2, 4, 6)}, T7 = {(1, 3, 6), (2, 4, 5)},
T8 = {(1, 4, 5), (2, 3, 6)}, T9 = {(1, 4, 6), (2, 3, 5)}, T10 = {(1, 5, 6), (2, 3, 4)}. This is a perfect
scheduling of a tournament with three teams in each match. For a general k, the following
lemma provides a construction with O(k2) rounds.

Lemma 33 There exists a partition (T1, . . . , TN ) of [k]× [k]× [k] for some N ≤ 24k2 such
that Ta’s are disjoint subsets of [k]× [k]× [k],

⋃
a∈[N ] Ta = [k]× [k]× [k], |Ta| ≤ bk/3c and

for any a ∈ [N ] the set of random variables in Ta satisfy

{Yi,`,`′,`′′}i∈[d1],(`,`′,`′′)∈Ta are mutually independent .

Now, we are ready to partition the summation.

E
[
Z
]

=
e−2α

2 k3 d1
E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
`,`′,`′′∈[k]

{
E[Yi,`,`′,`′′(∆)]− Yi,`,`′,`′′(∆)

}]
=

e−2α

2 k3 d1
E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
a∈[N ]

∑
(`,`′,`′′)∈Ta

{
E[Yi,`,`′,`′′(∆)]− Yi,`,`′,`′′(∆)

}]
≤ e−2α

2 k3 d1

∑
a∈[N ]

E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

{
E[Yi,`,`′,`′′(∆)]− Yi,`,`′,`′′(∆)

}]
≤ e−2α

k3 d1

∑
a∈[N ]

E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′Yi,`,`′,`′′(∆)
]

=
e−2α

k3 d1

∑
a∈[N ]

E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′(∆i,ji,` −∆i,ji,`′ )
2χi,`,`′,`′′

]
,(154)

where the first inequality follows from the fact that sum of the supremum is no less than
the supremum of the sum, and the second inequality follows from standard symmetriza-
tion argument applied to independent random variables {Yi,`,`′,`′′(∆)}i∈[d1],(`,`′,`′′)∈Ta with
i.i.d. Rademacher random variables ξi,`,`′,`′′ ’s. Since (∆i,ji,` −∆i,ji,`′ )

2χi,`,`′,`′′ ≤ 4α|∆i,ji,` −
∆i,ji,`′ |χi,`,`′,`′′ , we have by the Ledoux-Talagrand contraction inequality Ledoux and Tala-
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grand (2013) that

E
[

sup
∆∈B(D)

∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′(∆i,ji,` −∆i,ji,`′ )
2χi,`,`′,`′′

]
≤ 8αE

[
sup

∆∈B(D)

∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′ χi,`,`′,`′′ 〈〈∆, ei(eji,` − eji,`′ )
T 〉〉
]

(155)

Applying Hölder’s inequality, we get that∣∣∣ ∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′ χi,`,`′,`′′ 〈〈∆, ei(eji,` − eji,`′ )
T 〉〉
∣∣∣

≤ |||∆|||nuc

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

ξi,`,`′,`′′ χi,`,`′,`′′
(
ei(eji,` − eji,`′ )

T
)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (156)

We are left to prove that the expected value of the right-hand side of the above inequality
is bounded by C|||∆|||nuc

√
kd1 log d/min{d1, d2} for some numerical constant C. For i ∈ [d1]

and (`, `′, `′′) ∈ Ta, let Wi,`,`′,`′′ = ξi,`,`′,`′′ χi,`,`′,`′′
(
ei(eji,` − eji,`′ )

T
)

be independent zero-
mean random matrices, such that∣∣∣∣∣∣Wi,`,`′,`′′

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣∣∣∣ξi,`,`′,`′′ χi,`,`′,`′′ (ei(eji,` − eji,`′ )T )∣∣∣∣∣∣∣∣∣2 ≤ √2 ,

almost surely, and

E[Wi,`,`′,`′′W
T
i,`,`′,`′′ ] = E[

(
ei(eji,` − eji,`′ )

T (eji,` − eji,`′ )e
T
i

)
χi,`,`′,`′′ ]

= 2E
[
χi,`,`′,`′′

]
eie

T
i

� 2eie
T
i ,

and

E[W T
i,`,`′,`′′Wi,`,`′,`′′ ] = E[

(
(eji,` − eji,`′ )e

T
i ei(eji,` − eji,`′ )

T
)
χi,`,`′,`′′ ]

� E[(eji,` − eji,`′ )e
T
i ei(eji,` − eji,`′ )

T ]

=
2

d2
Id2×d2 −

2

d2
2

11T .

This gives

σ2 = max


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∑
i∈[d1]

(`,`′,`′′)∈Ta

E[Wi,`,`′,`′′W
T
i,`,`′,`′′ ]

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

,

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∑
i∈[d1]

(`,`′,`′′)∈Ta

E[W T
i,`,`′,`′′Wi,`,`′,`′′ ]

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2


≤ max

{
2|Ta| ,

2d1|Ta|
d2

}
=

2d1|Ta|
min{d1, d2}

≤ 2d1k

3 min{d1, d2}
,
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since we have designed Ta’s such that |Ta| ≤ k/3. Applying matrix Bernstein inequality
Tropp (2011) yields the tail bound

P


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

Wi,`,`′,`′′

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≥ t

 ≤ (d1 + d2) exp
( −t2/2
σ2 +

√
2t/3

)
.

Choosing t = max
{√

32kd1 log d/(3 min{d1, d2}), (16
√

2/3) log d
}

, we obtain with proba-
bility at least 1− 2d−3,∣∣∣∣∣∣

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

Wi,`,`′,`′′

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ max

{√
32kd1 log d

3 min{d1, d2}
,

16
√

2 log d

3

}
.

It follows from the fact
∣∣∣∣∣∣∣∣∣∑i∈[d1]

∑
(`,`′,`′′)∈TaWi,`,`′,`′′

∣∣∣∣∣∣∣∣∣
2
≤
∑

i,(`,`′,`′′)

∣∣∣∣∣∣Wi,`,`′,`′′
∣∣∣∣∣∣

2
≤
√

2d1k
3

that

E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(`,`′,`′′)∈Ta

Wi,`,`′,`′′

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 ≤ max

{√
32kd1 log d

3 min{d1, d2}
,
16
√

2 log d

3

}
+

2
√

2d1k

3d3

≤ 2

√
32kd1 log d

3 min{d1, d2}
,

where the last inequality follows from the assumption that (16 min{d1, d2} log d)/(3d1) ≤
k ≤ d2

1 log d. Substituting this in the RHS of Eq. (156), and then together with Eqs. (155)
and (154), this gives the following desired bound:

E[Z] ≤
∑
a∈[N ]

sup
∆∈B(D)

16αe−2α

k3 d1

√
32kd1 log d

3 min{d1, d2}
|||∆|||nuc

≤
∑
a∈[N ]

e−4α
√

2

16
√

3k2 d1 d2

(
210e2ααd2

√
d1 log d

kmin{d1, d2}

)
︸ ︷︷ ︸

=µ

|||∆|||nuc

≤ 9e−4αD2

40d1d2
,

where the last inequality holds because N ≤ 4k2 and µ|||∆|||nuc ≤ D2.

C.5 Proof of Lemma 33

Recall that Yi,`,`′,`′′(∆) = (∆i,ji,` −∆i,ji,`′ )
2χi,`,`′,`′′ , as defined in (153). From the random

utility model (RUM) interpretation of the MNL model presented in Section 1, it is not dif-
ficult to show that Yi,`,`′,`′′ and Yi,˜̀,˜̀′,˜̀′′ are mutually independent if the two triples (`, `′, `′′)

and (˜̀, ˜̀′, ˜̀′′) do not overlap, i.e., no index is present in both triples.
Now, borrowing the terminologies from round robin tournaments, we construct a sched-

ule for a tournament with k teams where each match involve three teams. Let Ta,b denote
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a set of triples playing at the same round, indexed by two integers a ∈ {3, . . . , 2k − 3} and
b ∈ {5, . . . , 2k − 1}. Hence, there are total N = (2k − 5)2 rounds.

Each round (a, b) consists of disjoint triples and is defined as

Ta,b ≡
{

(`, `′, `′′) ∈ [k]× [k]× [k] | ` < `′ < `′′, `+ `′ = a, and `′ + `′′ = b
}
.

We need to prove that (a) there is no missing triple; and (b) no team plays twice in a
single round. First, for any ordered triple (`, `′, `′′), there exists a ∈ {3, . . . , 2k − 3} and
b ∈ {5, . . . , 2k − 1} such that ` + `′ = a and `′ + `′′ = b. This proves that all ordered
triples are covered by the above construction. Next, given a pair (a, b), no two triples in
Ta,b can share the same team. Suppose there exists two distinct ordered triples (`, `′, `′′)
and (˜̀, ˜̀′, ˜̀′′) both in Ta,b, and one of the triples are shared. Then, from the two equations
` + `′ = ˜̀+ ˜̀′ = a and `′ + `′′ = ˜̀′ + ˜̀′′ = b, it follows that all three indices must be the
same, which is a contradiction. This proves the desired claim for ordered triples.

One caveat is that we wanted to cover the whole [k]× [k]× [k], and not just the ordered
triples. In the above construction, for example, a triple (3, 2, 1) does not appear. This can
be resolved by simply taking all Ta,b’s from the above construction, and make 6 copies of
each round, and permuting all the triples in each copy according to the same permutation
over {1, 2, 3}. This increases the total rounds to N = 6(2k − 5)2 ≤ 24k2. Note that
|Ta,b| ≤ bk/3c since no item can be in more than one triple.

Appendix D. Proof of Estimating Approximate Low-rank Matrices in
Corollary 9

We follow closely the proof of a similar corollary in Negahban and Wainwright (2012). First
fix a threshold τ > 0, and set r = max{j|σj(Θ∗) > τ}. With this choice of r, we have

min{d1,d2}∑
j=r+1

σj(Θ
∗) = τ

min{d1,d2}∑
j=r+1

σj(Θ
∗)

τ
≤ τ

min{d1,d2}∑
j=r+1

(σj(Θ∗)
τ

)q
≤ τ1−qρq .

Also, since rτ q ≤
∑r

j=1 σj(Θ
∗)q ≤ ρq, it follows that

√
r ≤ √ρqτ−q/2. Using these bounds,

Eq. (35) is now∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣2

F
≤ 288

√
2c0e

4αd1d2λ0︸ ︷︷ ︸
=A

(√
ρqτ
−q/2

∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

F
+ τ1−qρq

)
.

With the choice of τ = A and due to the fact that x2 ≤ bx+ c implies x ≤ (b+
√
b2 + 4c)/2

we have, ∣∣∣∣∣∣∣∣∣Θ̂−Θ
∣∣∣∣∣∣∣∣∣

F
≤ 2
√
ρqA

(2−q)/2 .

Appendix E. Proof of the Information-theoretic Lower Bound in
Theorem 10

The proof uses information-theoretic methods which reduces the estimation problem to a
multiway hypothesis testing problem. To prove a lower bound on the expected error, it
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suffices to prove that,

sup
Θ∗∈Ωα

P
{∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣2
F
≥ δ2

4

}
≥ 1

2
. (157)

To prove the above claim, we follow the standard recipe of constructing a packing in Ωα.
Consider a family {Θ(1), . . . ,Θ(M(δ)} of d1 × d2 dimensional matrices contained in Ωα sat-
isfying

∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣

F
≥ δ for all `1, `2,∈ [M(δ)]. We will use M to refer to M(δ) for

simplify the notation. Suppose we draw an index L ∈ [M(δ)] uniformly at random, and we
are given direct observations σi as per MNL model with Θ∗ = Θ(L) on a randomly chosen
set of k items Si for each user i ∈ [d1]. It follows from triangular inequality that

sup
Θ∗∈Ωα

P
{∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣2
F
≥ δ2

4

}
≥ P

{
L̂ 6= L

}
, (158)

where L̂ is the resulting best estimate of the multiway hypothesis testing on L. The gener-
alized Fano’s inequality gives

P
{
L̂ 6= L|S(1), . . . , S(d1)

}
≥ 1− I(L̂;L) + log 2

logM
(159)

≥ 1−
(
M
2

)−1∑
`1,`2∈[M ]DKL(Θ(`1)‖Θ(`2)) + log 2

logM
,(160)

where DKL(Θ(`1)‖Θ(`2)) denotes the Kullback-Leibler divergence between the distributions
of the partial rankings P

{
σ1, . . . , σd1 |Θ(`1), S(1), . . . , S(d1)

}
and

P
{
σ1, . . . , σd1 |Θ(`2), S(1), . . . , S(d1)

}
. The second inequality follows from a standard tech-

nique, which we repeat here for completeness. Let Σ = {σ1, . . . , σd1} denote the observed
outcome of comparisons. Since L–Θ(L)–Σ–L̂ form a Markov chain, the data processing
inequality gives I(L̂;L) ≤ I(Σ;L). For simplicity, we drop the conditioning on the set
of alternatives {S(1), . . . , S(d1)}, and and let p(·) denotes joint, marginal, and conditional
distribution of respective random variables. It follows that

I(Σ;L) =
∑

`∈[M ],Σ

p(Σ|`) 1

M
log

p(`,Σ)

p(`)p(Σ)

=
1

M

∑
`∈[M ]

∑
Σ

p(Σ|`) log
p(Σ|`)

1
M

∑
`′ p(Σ|`′)

≤ 1

M2

∑
`,`′∈[M ]

∑
Σ

p(Σ|`) log
p(Σ|`)
p(Σ|`′)

=
1

M2

∑
`,`′∈[M ]

DKL(Θ(`1)‖Θ(`2)) , (161)

where the first inequality follows from Jensen’s inequality. To compute the KL-divergence,
recall that from the RUM interpretation of the MNL model (see Section 1), one can generate
sample rankings Σ by drawing random variables with exponential distributions with mean
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eΘ∗ij ’s. Precisely, let X(`) = [X
(`)
ij ]i∈[d1],j∈Si denote the set of random variables, where X

(`)
ij

is drawn from the exponential distribution with mean e−Θ
(`)
ij . The MNL ranking follows

by ordering the alternatives in each Si according to this {X(`)
ij }j∈Si by ranking the smaller

ones on the top. This forms a Markov chain L–X(L)–Σ, and the standard data processing
inequality gives

DKL(Θ(`1)‖Θ(`2)) ≤ DKL(X(`1)‖X(`2)) (162)

=
∑
i∈[d1]

∑
j∈Si

{
eΘ

(`1)
ij −Θ

(`2)
ij − (Θ

(`1)
ij −Θ

(`2)
ij )− 1

}
(163)

≤ e2α

4α2

∑
i∈[d1]

∑
j∈Si

(Θ
(`1)
ij −Θ

(`2)
ij )2 , (164)

where the last inequality follows from the fact that ex − x − 1 ≤ (e2α/(4α2))x2 for any
x ∈ [−2α, 2α]. Taking expectation over the randomly chosen set of alternatives,

ES(1),...,S(d1)[DKL(Θ(`1)‖Θ(`2))] ≤ e2α k

4α2 d2

∣∣∣∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣∣∣∣2

F
. (165)

Combined with (160), we get that

P
{
L̂ 6= L

}
= ES(1),...,S(d1)[P

{
L̂ 6= L|S(1), . . . , S(d1)

}
] (166)

≥ 1−
(
M
2

)−1∑
`1,`2∈[M ](e

2αk/(4α2d2))
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
F

+ log 2

logM
, (167)

The remainder of the proof relies on the following probabilistic packing.

Lemma 34 Let d2 ≥ d1 ≥ 607 be positive integers. Then for each r ∈ {1, . . . , d1}, and for
any positive δ > 0 there exists a family of d1× d2 dimensional matrices {Θ(1), . . . ,Θ(M(δ))}
with cardinality M(δ) = b(1/4) exp(rd2/576)c such that each matrix is rank r and the
following bounds hold: ∣∣∣∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣∣∣∣
F
≤ δ , for all ` ∈ [M ] (168)∣∣∣∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣∣∣∣
F
≥ δ , for all `1, `2 ∈ [M ] (169)

Θ(`) ∈ Ωα̃ , for all ` ∈ [M ] , (170)

with α̃ = (8δ/d2)
√

2 log d for d = (d1 + d2)/2.

We omit the proof of the above lemma since it is similar to that of Lemma 25. Suppose
δ ≤ αd2/(8

√
2 log d) such that the matrices in the packing set are entry-wise bounded by

α, then the above lemma implies that
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
F
≤ 4δ2, which gives

P
{
L̂ 6= L

}
≥ 1−

e2αkδ2

α2d2
+ log 2

rd
576 − 2 log 2

≥ 1

2
,
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where the last inequality holds for δ2 ≤ (α2d2/(e
2αk))((rd/1152) − 2 log 2). If we assume

rd ≥ 3195 for simplicity, this bound on δ can be simplified to δ ≤ αe−α
√
r d2 d/(2304 k).

Together with (157) and (158), this proves that for all δ ≤ min{αd2/(8
√

2 log d),
αe−α

√
r d2 d/(2304 k)},

inf
Θ̂

sup
Θ∗∈Ωα

E
[ ∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

]
≥ δ

4
.

Choosing δ appropriately to maximize the right-hand side finishes the proof of the desired
claim.

Appendix F. Proof of Pairwise Rank Breaking in Theorem 11

Analogous to Section C, we define the gradient ∇L(Θ) as ∇ijL = ∂L(Θ)
∂Θij

and ∆ ≡ Θ̂−Θ∗,

and provide two main technical lemmas.

Lemma 35 If λ ≥ 2|||∇L(Θ∗)|||2, then we have,

|||∆|||nuc ≤ 4
√

2r|||∆|||F + 4

min{d1,d2}∑
j=ρ+1

σj(Θ
∗) , (171)

for all ρ ∈ [min{d1, d2}].

Proof This follows from the proof of Lemma 27, which only depends on the convexity of
L(Θ).

Lemma 36 For any positive constant c ≥ 1, if k ≤ max{d1, d
2
2/d1} log d and d1 ≥ 4 then

with probability at least 1− 2d−c,

|||∇L(Θ∗)|||2 ≤

√
16(c+ 4) log d

k d2
1

max

{√
max

{
1

4
,
d1

d2

}
,

2

3

√
2(c+ 4) log d

k

}
. (172)

The proof of this lemma is provided in Section F.1. We will simplify the above lemma by
assuming, 2(c + 4) log d ≤ k which implies the last term in RHS is less than equal to first
term,

2

3

√
2(4 + c) log d

k
≤
√

1

4
. (173)

(173) simplifies (172) as,

|||∇L(Θ∗)|||2 ≤

√
16(c+ 4) log d

k d2
1

max

{
1

4
,
d1

d2

}

≤

√
32d (c+ 4) log d

k d2
1 d2

(a)

≤
√

32(c+ 4)λ , (174)
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where (a) is due to (41) .
For Lemma 35 and further proof of Theorem11 we want λ ≥ 2|||∇L(Θ)|||2, therefore we

assume that,

λ ∈ [2
√

32(c+ 4)λ, cpλ], for some cp ≥ 2
√

32(c+ 4) (175)

Similar to the k-wise ranking,we will divide the proof into two cases and each part we
will prove that |||∆|||2F ≤ 36e2α c λ d1d2 |||∆|||nuc with probability at least 1− 2/dc − 2/d213

.
We define a new constant µ as,

µ = 16α

√
48 d1d2

2 log d

k min{d1, d2}
. (176)

Case 1: Assume µ|||∆|||nuc ≤ |||∆|||
2
F.

Since L is a sum of a linear function of Θ and log-sum-exponential functions, which are
convex, we know that L is a convex function of Θ. Therefore, by convexity and Taylor
expansion we get,

L(Θ̂) = L(Θ∗)− 〈〈∇L(Θ∗),∆〉〉 + (177)

1

2! d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

e
Θi,ui,m1 e

Θi,ui,m2(
e

Θi,ui,m1 + e
Θi,ui,m2

)2

(
∆i,ui,m1

−∆i,ui,m2

)2
,

where Θ = aΘ∗ + (1− a)Θ̂ for some a ∈ [0, 1] and P0 = {(i, j)| 1 ≤ i < j ≤ k}. We lower
bound the final term in (177) as,

1

2! d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

e
Θi,ui,m1 e

Θi,ui,m2(
e

Θi,ui,m1 + e
Θi,ui,m2

)2

(
∆i,ui,m1

−∆i,ui,m2

)2

(a)

≥ 1

2 d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

e−αeα

(e−α + eα)2

(
∆i,ui,m1

−∆i,ui,m2

)2

≥ 1

2 d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

e−2α

4

(
∆i,ui,m1

−∆i,ui,m2

)2
, (178)

where (a) is due to the fact that ∆ij ’s are upper and lower bounded by α and−α respectively.
We can bound this term further according to the following Lemma.

Lemma 37 For (4 log d)/9 ≤ k ≤ max{d1, d
2
2/d1} log d, with probability at least 1−2d−213

,

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

(
∆i,ui,m1

−∆i,ui,m2

)2
≥ 1

3d1d2
|||∆|||2F , (179)

for all ∆ ∈ Ap where,

A =

{
∆ ∈ Rd1×d2

∣∣∣ |||∆|||∞ ≤ 2α,
∑
j∈[d2]

∆ij = 0 , for all i ∈ [d2], and µ|||∆|||nuc ≤ |||∆|||
2
F

}
.

(180)
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The proof is given in Section F.2. Now using Lemma 37 and (178) with high probability
we get,

1

2! d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

e
Θi,ui,m1 e

Θi,ui,m2(
e

Θi,ui,m1 + e
Θi,ui,m2

)2

(
∆i,ui,m1

−∆i,ui,m1

)2
≥ e−2α

24 d1 d2
|||∆|||2F .

(181)

Incorporating the above inequality in (177) we obtain,

e−2α

24 d1 d2
|||∆|||2F ≤ L(Θ̂)− L(Θ∗) + 〈〈∇L(Θ∗),∆〉〉 . (182)

From the definition of Θ̂ we have L(Θ̂)−L(Θ∗) ≤ λ
(
|||Θ∗|||nuc −

∣∣∣∣∣∣∣∣∣Θ̂∣∣∣∣∣∣∣∣∣
nuc

)
≤ λ|||∆|||nuc,

and we assume that λ ≥ 2
√

32(c+ 1) λ, so that λ ≥ 2|||∇L (Θ∗)|||2 is true with a probability
of at least 1− 2d−c from Lemma 36 . These give us the following with at least probability
1− 2d−c − 2d−213

.

e−2α

24 d1 d2
|||∆|||2F ≤ λ|||∆|||nuc + |||∇L(Θ∗)|||2|||∆|||nuc

≤ 3λ

2
|||∆|||nuc (183)

which gives us,

|||∆|||2F ≤ 36e2α λ d1d2 |||∆|||nuc

(a)

≤ 36e2α cp λ d1d2 |||∆|||nuc , (184)

where (a) is due to the fact that λ ≤ cpλ.
Case 2: Assume |||∆|||2F ≤ µ|||∆|||nuc.

Here we prove that µ ≤ 36 e2α cpλ d1d2.

µ

36 e2α cpλ d1d2

(a)

≤ α

e2α
× 16

√
48

72
√

32(c+ 4)
×

√
d1d2

min{d1, d2}d
(b)

≤ 1× 16
√

48

72
√

32× 4
×
√

max{d1, d2}
d

(c)

≤
√

max{d1, d2}
2d

(d)

≤ 1 , (185)

where (a) is by substituting µ, λ and cp from (176), (41) and (175) respectively, (b) is
because x ≤ ex (c) is because d = (max{d1, d2}+ min{d1, d2})/2.

Now combining the above result with (171) we get with probability at least 1− 2d−c −
2d−213

,

1

d1d2
|||∆|||2F ≤ 144

√
2e2αcpλ

√
r|||∆|||F + 144e2αcpλ

min{d1,d2}∑
j=ρ+1

σj(Θ
∗) . (186)
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F.1 Proof of Lemma 36

From definition of L(Θ) in (39) we get,

∇Lp(Θ∗) =
1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

ei
(
eli(m1,m2) − ehi(m1,m2)

)T
exp

(
Θ∗i,hi(m1,m2) −Θ∗i,li(m1,m2)

)
+ 1

, (187)

where P0 = {(i, j)| 1 ≤ i < j ≤ k}. We use the matrix Bernstein inequality Tropp
(2011) for the sum of independent matrices. Similar to Lemma 42, we can partition the
set of all pairs P0 into (k − 1) sets {Pa}a∈[k−1] of k/2 disjoint pairs each. Define Ya ≡∑d1

i=1

∑
(m1,m2)∈Pa X̃i,m1,m2 , and

X̃i,m1,m2 ≡
exp

(
Θ∗i,li(m1,m2)

)
exp

(
Θ∗i,hi(m1,m2)

)
+ exp

(
Θ∗i,li(m1,m2)

)ei (eli(m1,m2) − ehi(m1,m2)

)T
,

such that

∇Lp(Θ∗) =
1

d1

(
k
2

) k−1∑
a=1

Ỹa . (188)

For a fixed value of a, it is easy to see that X̃i,m1,m2 ’s are independent. Further, we can

easily show that E
[
X̃i,m1,m2

]
= 0, and ‖X̃i,m1,m2‖2 ≤

√
2. We also have,

E
[
X̃i,m1,m2X̃

T
i,m1,m2

]
� 2 eie

T
i E

E
 exp

(
Θ∗i,li(m1,m2)

)2

(
exp

(
Θ∗i,ui,m1

)
+ exp

(
Θ∗i,ui,m2

))2

∣∣∣∣∣ui,m1 , ui,m1




(a)
= 2 eie

T
i E

 exp
(

Θ∗iui,m1

)
exp

(
Θ∗iui,m2

)
(

exp
(

Θ∗i,ui,m1

)
+ exp

(
Θ∗i,ui,m2

))2


(b)

� 1

2
eie

T
i , (189)

where we get (a) from the MNL model for the random choice of li(m1,m2), (b) is due to
the fact that xy/(x+ y)2 ≤ 1/4 for all x, y > 0.
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Let pi,m1,m2 ≡

(
exp(Θ∗i,ui,m1

)eui,m1
+exp(Θ∗i,ui,m2

)eui,m2

)
(

exp(Θ∗i,ui,m1
)+exp(Θ∗i,ui,m2

)

) , then we have,

E
[
X̃T
i,m1,m2

X̃i,m1,m2

]
= E

[
(ehi(m1,m2) − pi,m1,m2)(ehi(m1,m2) − pi,m1,m2)T

]
= E

[
ehi(m1,m2)e

T
hi(m1,m2)

]
− E

[
pi,m1,m2p

T
i,m1,m2

]
(a)

� E
[
eui,m1

eTui,m1
+ eui,m2

eTui,m2

]
=

2

d2
Id2×d2 , (190)

where (a) comes from the fact that pi,m1,m2p
T
i,m1,m2

is a positive semi-definite matrix. There-
fore using (189) and (190), we get

σ2 ≡


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∑
i∈[d1]

(m1,m2)∈Pa

E
[
X̃i,m1,m2X̃

T
i,m1,m2

]∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

,

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∑
i∈[d1]

(m1,m2)∈Pa

E
[
X̃T
i,m1,m2

X̃i,m1,m2

]∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2


≤ kmax

{
1

4
,
d1

d2

}
. (191)

Define ρ ≡ max {1/4, d1/d2}, then by the matrix Bernstein inequality Tropp (2011), ∀ a ∈
[k − 1],

P
(∣∣∣∣∣∣∣∣∣Ỹa∣∣∣∣∣∣∣∣∣

2
> t
)
≤ (d1 + d2) exp

(
−t2/2

kρ+
√

2t/3

)
,

which gives a tail probability of 2d−c/(k − 1) for the choice of

t = max

{√
4kρ ((1 + c) log d+ log(k − 1)) ,

4
√

2((1 + c) log d+ log(k − 1))

3

}
. (192)

For this choice of t, using union bound we can get the probabilistic bound on the derivative
of log likelihood as,

P

(
‖∇Lp(Θ∗)‖2 ≥

k − 1

d1

(
k
2

) t) ≤ P

(
k−1∑
a=1

∣∣∣∣∣∣∣∣∣Ỹa∣∣∣∣∣∣∣∣∣
2
≥ (k − 1)t

)
(a)

≤ P

(
max
a∈[k−1]

∣∣∣∣∣∣∣∣∣Ỹa∣∣∣∣∣∣∣∣∣
2
≥ t

)
(b)

≤
k−1∑
a=1

P
(∣∣∣∣∣∣∣∣∣Ỹa∣∣∣∣∣∣∣∣∣

2
≥ t
)

= 2 d−c , (193)
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where we obtain (a) by pigeon-hole principle which implies that among a set of numbers,
there should be, at the very least one number greater or equal to the average of the set of
numbers and (b) by union-bound. Assuming k ≤ max{d1, d

2
2/d1} log d and d1 ≥ 4, we have,

(c+ 1) log d+ log(k − 1) ≤ (c+ 4) log d , (194)

from log(k−1) ≤ log
(
max{d1, d

2
2/d1} log d

)
≤ log(

(
(d2

1 + d2
2) log d)/d1

)
≤ log

(
(4 d2 log d)/d1

)
≤ 3 log d. This proves the desired lemma.

F.2 Proof of Lemma 37

With a slight abuse of notation, we define H̃ as

H̃(∆) ≡ 1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

(
∆i,ui,m1

−∆i,ui,m2

)2
, (195)

and provide a lower bound. The mean is easily computed as

E
[
H̃(∆)

]
=

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

 2

d2

∑
j∈[d2]

∆2
ij −

2

d2
2

∑
j∈[d2]

∆ij

∑
j′∈[d2]

∆ij′


=

2

d1d2
|||∆|||2F , (196)

where we used the fact that
∑

j ∆ij = 0. We want to upper bound the probability that

H̃(∆) ≤ 1
3d1d2

|||∆|||2F for some ∆ ∈ A. As in the case of k-wise ranking we using the follow-
ing peeling argument used in (Negahban and Wainwright, 2012, Lemma 3), Van De Geer
(2000). The strategy is to split this above event as union of many event events as follows.
We construct the following family of subsets {S̃`} such that A ⊆ ∪∞`=1S̃` and,

S̃` =

{
∆ ∈ Rd1×d2

∣∣∣ |||∆|||∞ ≤ 2α, β`−1µ ≤ |||∆|||F ≤ β
`µ,

∑
j∈[d2]

∆ij = 0 for all i ∈ [d2], and |||∆|||nuc ≤ β
2`µ

}
, (197)

where β =
√

10/9 and ` ∈ {1, 2, 3, . . .}. This is true since, for any ∆ ∈ A, |||∆|||2F ≥ µ|||∆|||nuc

and this implies |||∆|||2F ≥ µ|||∆|||F (or, |||∆|||F ≥ µ). Also note that,

H̃(∆) ≤ 1

3d1d2
|||∆|||2F =⇒ 2

d1d2
|||∆|||2F − H̃(∆) ≥ 5

3d1d2
|||∆|||2F

=⇒
(
E
[
H̃(∆)

]
− H̃(∆)

)
≥ 5

3d1d2
|||∆|||2F . (198)
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Therefore using union bound we get,

P
(
∃ ∆ ∈ A s.t. H̃(∆) ≤ 1

3d1d2
|||∆|||2F

)
≤
∞∑
`=1

P

(
sup

∆∈S̃`
(E
[
H̃(∆)

]
− H̃(∆)) ≥ 5

3d1d2
|||∆|||2F

)
(a)

≤
∞∑
`=1

P

(
sup

∆∈S̃`
(E
[
H̃(∆)

]
− H̃(∆)) ≥ 3

2d1d2
(β`µ)2

)
(b)

≤
∞∑
`=1

P

(
sup

∆∈B̃(β`µ)

(E
[
H̃(∆)

]
− H̃(∆)) ≥ 3

2d1d2
(β`µ)2

)
, (199)

where B̃(D) is defined as,

B̃(D) =

{
∆ ∈ Rd1×d2

∣∣∣ |||∆|||∞ ≤ 2α, |||∆|||F ≤ D,

∑
j∈[d2]

∆ij = 0 for all i ∈ [d2], and µ|||∆|||nuc ≤ D
2

}
, (200)

and (a)is true because for ∆ ∈ S̃l,

5

3d1d2
|||∆|||2F ≥

5

3d1d2
(β`−1µ)2 =

3

2d1d2
(β`µ)2 , (201)

and (b) is true because S̃` ⊂ B̃(β`µ). Now we use following lemma to upper bound (199).

Lemma 38 For 4(log d)/3 ≤ k ≤ d2 log d,

P

(
sup

∆∈B̃(D)

(E
[
H̃(∆)

]
− H̃(∆)) ≥ 3

2d1d2
D2

)
≤ exp

(
−kD4

2048 α4 d1d2
2

)
(202)
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Proof has been relegated to Section F.3. Now by (199) and Lemma 38 we get,

P
(
∃ ∆ ∈ A s.t. H̃(∆) ≤ 1

3d1d2
|||∆|||2F

)
≤
∞∑
`=1

exp

(
−k
(
β` µ

)4
2048 α4 d1d2

2

)
(a)

≤
∞∑
`=1

exp

(
−213 9 β4` d1d

2
2 log2 d

k min2{d1, d2}

)
(b)

≤
∞∑
`=1

exp

(
−213 9 4`× 1

36 d1d
2
2 log2 d

k min2{d1, d2}

)
(c)

≤
∞∑
`=1

exp
(
−213 ` log d

)
=
∞∑
`=1

(
1

d213

)`
(d)
=

1/d213

1− 1/d213

(e)

≤ 2

d213 , (203)

where we get (a) by substituting µ from (176), (b) by the fact that for β =
√

10/9 and x ≥ 1,
βx ≥ x log β ≥ x(β − 1) ≥ x/32, (c) is obtained by assuming k ≤ max{d1, d

2
2/d1} log d, we

get (d) because we are summing an infinite geometric sequence with common ratio of 1/d213

and (e) is because for d ≥ 2, 1/d213
is less than 1/2.

F.3 Proof of Lemma 38

With a slight abuse of notations, let Z̃ ≡ sup∆∈B̃(D)

(
E
[
H̃(∆)

]
− H̃(∆)

)
. Notice that

Z̃ is a function of d1k random variables, {ui,`}i∈[d1],`∈[k]. We apply the McDiarmid’s

bounded differences inequality. Let Z̃1 and Z̃2 be two realizations of Z̃ where value of
only one random variable ui′,`′ is changed to u′i′,`′ . Also with a little more abuse of

notation the two realizations of H̃(∆) are written as H̃(∆′, u1,1, . . . , ui′,`′ , . . . , ud1,k) and
H̃(∆′, u1,1, . . . , u

′
i′,`′ , . . . , ud1,k). We let ∆∗ be the maximizer of max{Z̃1, Z̃2}. Maximum

75



Negahban, Oh, Thekumparampil, and Xu

absolute difference between them is upper bounded as follows,

|Z̃1 − Z̃2|

=

∣∣∣∣∣ max
∆∈B̃(D)

(
E
[
H̃(∆)

]
− H̃(∆, u1,1, . . . , ui′,`′ , . . . , ud1,k)

)
−

sup
∆′∈B̃(D)

(
E
[
H̃(∆′)

]
− H̃(∆′, u1,1, . . . , u

′
i′,`′ , . . . , ud1,k)

) ∣∣∣∣∣
(a)

≤

∣∣∣∣∣ (E [H̃(∆∗)
]
− H̃(∆∗, u1,1, . . . , ui′,`′ , . . . , ud1,k)

)
−

(
E
[
H̃(∆∗)

]
− H̃(∆∗, u1,1, . . . , u

′
i′,`′ , . . . , ud1,k)

) ∣∣∣∣∣
≤ sup

∆∈B̃(D)

∣∣∣∣∣H̃(∆, u1,1, . . . , ui′,`′ , . . . , ud1,k)− H̃(∆, u1,1, . . . , u
′
i′,`′ , . . . , ud1,k)

∣∣∣∣∣
(b)

≤ sup
∆∈B̃(D)

∣∣∣∣∣ 1

d1

(
k
2

) ∑
` 6=`′

(
∆i′,ui′,`

−∆i′,ui′,`′

)2
−
(

∆i′,ui′,`
−∆i′,u′

i′,`′

)2
∣∣∣∣∣

(c)

≤ 1

d1

(
k
2

)(k − 1) (4α)2 =
32α2

d1k
. (204)

where (a) follows from the fact that ∆∗ is maximizer of max{Z̃1, Z̃2}, (b) is due to the fact
that the terms which change because of u′i′,`′ are the k− 1 difference square terms between
∆iui′,` 6=`′ and ∆i, ui′,`′ and (c) is because maximum and minimum value of difference square

terms are (4α)2 and 0 respectively. Using McDiarmid’s bounded differences inequality we
get,

P{Z̃ − E
[
Z̃
]
≥ ε} ≤ exp

− 2ε2

d1k
(

32α2

d1k

)2

 , (205)
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because of (204) and the fact that there are d1k random variables. We upper bound E
[
Z̃
]

as follows.

E
[
Z̃
]

= E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

E
[(

∆i, ui,m1
−∆i, ui,m2

)2
]
−
(

∆i, ui,m1
−∆i, ui,m2

)2

(a)

≤ E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈P0

2ξ̃i,m1,m2

(
∆i, ui,m1

−∆i, ui,m2

)2

(b)

≤ E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

k−1∑
a=1

∑
(m1,m2)∈Pa

2ξ̃i,m1,m2

(
∆i, ui,m1

−∆i, ui,m2

)2

(c)

≤
k−1∑
a=1

E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈Pa

2ξ̃i,m1,m2

(
∆i, ui,m1

−∆i, ui,m2

)2
, (206)

where (a) is by standard symmetrization technique as used in k-wise ranking and
{ξi,m1,m2}i∈[d1], m1,m2∈[k] are i.i.d. Rademacher variables, (b) is due to the fact that we
can partition set of all pairs into k − 1 independent sets as in (188) and (c) is because of
fact that supremum of sum is less than or equal to sum of supremum and the linearity of
expectation. Since |∆i, ui,m1

− ∆i, ui,m2
| ≤ 4α, we can use Ledoux-Talagrand contraction

inequality Ledoux and Talagrand (2013) on (206) to get,

E[Z̃] ≤
k−1∑
a=1

E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈Pa

2ξ̃i,m1,m2

(
∆i, ui,m1

−∆i, ui,m2

)2

≤
k−1∑
a=1

E sup
∆∈B̃(D)

1

d1

(
k
2

) d1∑
i=1

∑
(m1,m2)∈Pa

4α 2ξ̃i,m1,m2

(
∆i, ui,m1

−∆i, ui,m2

)
(a)

≤
k−1∑
a=1

8α

d1

(
k
2

)E sup
∆∈B̃(D)

〈〈
d1∑
i=1

∑
(m1,m2)∈Pa

W̃i,m1,m2 ,∆〉〉

(b)

≤
k−1∑
a=1

8α

d1

(
k
2

)E
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
d1∑
i=1

∑
(m1,m2)∈Pa

W̃i,m1,m2

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 sup
∆∈B̃(D)

|||∆|||nuc , (207)

where we get (a) by putting W̃i,m1,m2 = ξ̃i,m1,m2ei(eui,m1
−eui,m2

)T and (b) is due to Hölder’s
inequality (〈〈x, y〉〉 ≤ |||x|||2|||y|||nuc). Now we use Bernstein’s inequality Tropp (2011) to up-
perbound the above expectation terms. First fix a to value in [k − 1]. We can easily show
that W̃i,m1,m2 is zero mean and,

∣∣∣∣∣∣∣∣∣W̃i,m1,m2

∣∣∣∣∣∣∣∣∣
2
≤
√

2 . (208)
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We also get,

E
[
W̃i,m1,m2W̃

T
i,m1,m2

]
= 2eie

T
i E
[
1− eTui,m1

eui,m2

]
� eieTi

(
2− 2

d2

)
� 2eie

T
i , (209)

and,

E
[
W̃ T
i,m1,m2

W̃i,m1,m2

]
= E

[
2eui,m1

eTui,m1
− 2eui,m1

eTui,m2

]
� 2

d2
Id2×d2 −

2

d2
2

11d2×d2

� 2

d2
Id2×d2 . (210)

Therefore, using (209) and (210), the standard deviation of
∑

(i,m1,m2) Zi,m2,m2 is,

σ2 = max


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∑
i∈[d1]

(m1,m2)∈Pa

E
[
W̃i,m2,m2W̃

T
i,m2,m2

]∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

,

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

∑
i∈[d1]

(m1,m2)∈Pa

E
[
W̃ T
i,m2,m2

W̃i,m2,m2

]∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2


≤ max

{
d1k

2

2

d1
|||I|||2,

d1k

2

2

d2
|||I|||2

}
=

kd1

min{d1, d2}
. (211)

By matrix Bernstein inequality Tropp (2011), ∀ a ∈ [k − 1],

P

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i∈[d1]

∑
(m1,m2)∈Pa

W̃i,m2,m2

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

> t

 ≤ (d1 + d2) exp
( −t2/2

2kd1/min{d1, d2}+
√

2t/3

)
,

which gives a tail probability of 2d−c1 for the choice of

t = max

{√
8kd1 ((1 + c1) log d)

min{d1, d2}
,

4
√

2 ((1 + c1) log d)

3

}

=

√
8kd1 ((1 + c1) log d)

min{d1, d2}
,when k ≥ 4(c1 + 1) log d/9 . (212)

Therefore ∀ a ∈ [k − 1],

E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
d1∑
i=1

∑
(m1,m2)∈Pa

W̃i,m2,m2

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 ≤√8kd1 ((1 + c1) log d)

min{d1, d2}
+

2

dc1

√
2d1k

2
, (213)
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because from (208) we get

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑ i∈[d1]

(m1,m2)∈Pa
W̃i,m2,m2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤
∑

i∈[d1]
(m1,m2)∈Pa

∣∣∣∣∣∣∣∣∣W̃i,m2,m2

∣∣∣∣∣∣∣∣∣
2
≤ d1k

2(
√

2)
.

From (207) and (213), putting c1 = 2, we get,

E
[
Z̃
]
≤

k−1∑
a=1

8α

d1

(
k
2

) (√ 24 kd1 log d

min{d1, d2}
+

√
2d1k

d2

)
sup

∆∈B̃(D)

|||∆|||nuc

(a)

≤ 8α

(
2

√
24 log d

k d1 min{d1, d2}
+

2
√

2

d2

)
D2

µ

(b)

≤ 16α

√
48 log d

k d1 min{d1, d2}
D2 1

16α

√
k min{d1, d2}
48d1d2

2 log d

=
D2

d1d2
, (214)

where (a) is obtained because of (200) which gives supD∈B(D) |||∆|||nuc ≤ D2/µ and (b) can

be got by assuming k ≤ d2 log d. Using the above bound in (205) we get,

P{Z̃ −D2/(d1d2) ≥ ε} ≤ P{Z̃ − E
[
Z̃
]
≥ ε} ≤ exp

− 2ε2

d1k
(

32α2

d1k

)2

 , (215)

and using ε = D2/(2d1d2) will get us the required bound.

Appendix G. Proof of Bundled Choices Theorem 13

We use similar notations and techniques as the proof of Theorem 7 in Appendix C. From the
definition of L(Θ) in Eq. (51), we have for the true parameter Θ∗, the gradient evaluated
at the true parameter is

∇L(Θ∗) = − 1

n

n∑
i=1

(euie
T
vi − pi) , (216)

where pi denotes the conditional probability of the MNL choice for the i-th sample. Pre-
cisely, pi =

∑
j1∈Si

∑
j2∈Ti pj1,j2|Si,Tiej1e

T
j2

where pj1,j2|Si,Ti is the probability that the pair of
items (j1, j2) is chosen at the i-th sample such that pj1,j2|Si,Ti ≡ P {(ui, vi) = (j1, j2)|Si, Ti} =

e
Θ∗j1,j2/(

∑
j′1∈Si,j′2∈Ti

e
Θ∗
j′1,j
′
2 ), where (ui, vi) is the pair of items selected by the i-th user

among the set of pairs of alternatives Si × Ti. The Hessian can be computed as

∂2L(Θ)

∂Θj1,j2 ∂Θj′1,j
′
2

=
1

n

n∑
i=1

I
(
(j1, j2) ∈ Si × Ti

)∂pj1,j2|Si,Ti
∂Θj′1,j

′
2

(217)

=
1

n

n∑
i=1

I
(
(j1, j2), (j′1, j

′
2) ∈ Si × Ti

) (
pj1,j2|Si,TiI((j1, j2) = (j′1, j

′
2))− pj1,j2|Si,Tipj′1,j′2|Si,Ti

)
,

(218)
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We use ∇2L(Θ) ∈ Rd1d2×d1d2 to denote this Hessian. Let ∆ = Θ∗−Θ̂ where Θ̂ is an optimal
solution to the convex optimization in (49). We introduce the following key technical
lemmas. The following lemma provides a bound on the gradient using the concentration of
measure for sum of independent random matrices Tropp (2011).

Lemma 39 For any positive constant c ≥ 1 and n ≥ (4(1 + c)e2αd1d2 log d)/max{d1, d2},
with probability at least 1− 2d−c,

|||∇L(Θ∗)|||2 ≤

√
4(1 + c)e2α max{d1, d2} log d

d1 d2 n
. (219)

Since we are typically interested in the regime where the number of samples is much smaller
than the dimension d1 × d2 of the problem, the Hessian is typically not positive definite.
However, when we restrict our attention to the vectorized ∆ with relatively small nuclear
norm, then we can prove restricted strong convexity, which gives the following bound.

Lemma 40 (Restricted Strong Convexity for bundled choice modeling) Fix any Θ
∈ Ωα and assume (min{d1, d2}/min{k1, k2}) log d ≤ n ≤ min{d5 log d, k1k2 max{d2

1, d
2
2} log d}.

Under the random sampling model of the alternatives {jia}i∈[n],a∈[k1] from the first set of
items [d1], {jib}i∈[n],b∈[k1] from the second set of items [d2] and the random outcome of the

comparisons described in section 1, with probability larger than 1− 2d−225
,

Vec(∆)T ∇2L(Θ) Vec(∆) ≥ e−2α

8 d1 d2
|||∆|||2F , (220)

for all ∆ in A where

A =
{

∆ ∈ Rd1×d2
∣∣ |||∆|||∞ ≤ 2α ,

∑
j1∈[d1],j2∈[d2]

∆j1j2 = 0 and |||∆|||2F ≥ µ
′|||∆|||nuc

}
. (221)

with

µ′ ≡ 210 αd1d2

√
log d

n min{d1, d2} min{k1, k2}
. (222)

Building on these lemmas, the proof of Theorem 13 is divided into the following two
cases. In both cases, we will show that

|||∆|||2F ≤ 12 e2αc1λ d1d2 |||∆|||nuc , (223)

with high probability. Finally, applying an omitted result similar to Lemma 27 proves the
desired theorem. We are left to show Eq. (223) holds.

Case 1: Suppose |||∆|||2F ≥ µ′ |||∆|||nuc. With ∆ = Θ∗ − Θ̂, the Taylor expansion yields

L(Θ̂) = L(Θ∗)− 〈〈∇L(Θ∗),∆〉〉+
1

2
Vec(∆)∇2L(Θ)VecT (∆), (224)
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where Θ = aΘ̂+(1−a)Θ∗ for some a ∈ [0, 1]. It follows from Lemma 40 that with probability
at least 1− 2d−225

,

L(Θ̂)− L(Θ∗) ≥ −|||∇L(Θ∗)|||2|||∆|||nuc +
e−2α

8 d1 d2
|||∆|||2F .

From the definition of Θ̂ as an optimal solution of the minimization, we have

L(Θ̂)− L(Θ∗) ≤ λ
(
|||Θ∗|||nuc −

∣∣∣∣∣∣∣∣∣Θ̂∣∣∣∣∣∣∣∣∣
nuc

)
≤ λ|||∆|||nuc .

By the assumption, we choose λ ≥ 8λ0. In view of Lemma 39, this implies that λ ≥
2|||∇L(Θ∗)|||2 with probability at least 1 − 2d−3. It follows that with probability at least

1− 2d−3 − 2d−225
,

e−2α

8d1d2
|||∆|||2F ≤

(
λ+ |||∇L(Θ∗)|||2

)
|||∆|||nuc ≤

3λ

2
|||∆|||nuc .

By our assumption on λ ≤ c1λ0, this proves the desired bound in Eq. (223)
Case 2: Suppose |||∆|||2F ≤ µ′ |||∆|||nuc. By the definition of µ and the fact that c1 ≥
128/

√
min{k1, k2}, it follows that µ′ ≤ 12 e2αc1λ d1d2, and we get the same bound as in

Eq. (223).

G.1 Proof of Lemma 39

Define Xi = −(euie
T
vi − pi) such that ∇L(Θ∗) = (1/n)

∑n
i=1Xi, which is a sum of n

independent random matrices. Note that since pi is entry-wise bounded by e2α/(k1k2),

|||Xi|||2 ≤ 1 +
e2α

√
k1k2

,

and
n∑
i=1

E[XiX
T
i ] =

n∑
i=1

(E[euie
T
ui ]− pip

T
i ) (225)

�
n∑
i=1

E[euie
T
ui ] (226)

� e2α n

d1
Id1×d1 , (227)

where the last inequality follows from the fact that for any given Si, ui will be chosen with
probability at most e2α/k1, if it is in the set Si which happens with probability k1/d1.
Therefore, ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

E[XiX
T
i ]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ e2α n

d1
. (228)

Similarly, ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

E[XT
i Xi]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ e2α n

d2
. (229)
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Applying matrix Bernstein inequality Tropp (2011), we get

P {|||∇L(Θ∗)|||2 > t}

≤ (d1 + d2) exp
{ −n2t2/2

(e2αnmax{d1, d2}/(d1d2)) + ((1 + (e2α/
√
k1k2))nt/3)

}
, (230)

which gives the desired tail probability of 2d−c for the choice of

t = max
{√4(1 + c)e2α max{d1, d2} log d

d1d2n
,

4(1 + c)(1 + e2α√
k1k2

) log d

3n

}
=

√
4(1 + c)e2α max{d1, d2} log d

d1d2n
,

where the last equality follows from the assumption, n ≥ (4(1+c)e2αd1d2 log d)/max{d1, d2}.

G.2 Proof of Lemma 40

Thee quadratic form of the Hessian defined in (218) can be lower bounded by

Vec(∆)T ∇2L(Θ) Vec(∆) ≥ e−2α

2 k2
1 k

2
2 n

n∑
i=1

∑
j1,j′1∈Si

∑
j2,j′2∈Ti

(
∆j1,j2 −∆j′1,j

′
2

)2
︸ ︷︷ ︸

≡H(∆)

, (231)

which follows from Remark 31. To lower bound H(∆), we first compute the mean:

E[H(∆)] =
e−2α

2 k2
1 k

2
2 n

n∑
i=1

E
[ ∑
j1,j′1∈Si

∑
j2,j′2∈Ti

(
∆j1,j2 −∆j′1,j

′
2

)2]
(232)

=
e−2α

d1 d2
|||∆|||2F , (233)

where we used the fact that E[
∑

j1∈Si,j2∈Ti ∆j1,j2 ] = (k1k2/(d1d2))
∑

j′1∈[d1],j′2∈[d2] ∆j′1,j
′
2

= 0

for ∆ ∈ Ω2α in (51).
We now prove that H(∆) does not deviate from its mean too much. Suppose there exists

a ∆ ∈ A defined in (221) such that Eq. (220) is violated, i.e. H(∆) < (e−2α/(8d1d2))|||∆|||2F.
In this case,

E[H(∆)]−H(∆) ≥ 7 e−2α

8d1d2
|||∆|||2F . (234)

We will show that this happens with a small probability. We use the same peeling argument
as in Appendix C with

S` =
{

∆ ∈ Rd1×d2 | |||∆|||∞ ≤ 2α, β`−1µ′ ≤ |||∆|||F ≤ β
`µ′,∑

j1∈[d1],j2∈[d2]

∆j1,j2 = 0, and |||∆|||nuc ≤ β
2`µ′

}
,
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where β =
√

10/9 and for ` ∈ {1, 2, 3, . . .}, and µ′ is defined in (222). By the peeling
argument, there exists an ` ∈ Z+ such that ∆ ∈ S` and

E[H(∆)]−H(∆) ≥ 7 e−2α

8d1d2
β2`−2(µ′)2 ≥ 7 e−2α

9 d1d2
β2`(µ′)2 . (235)

Applying the union bound over ` ∈ Z+,

P
{
∃∆ ∈ A , H(∆) <

e−2α

8 d1 d2
|||∆|||2F

}
≤

∞∑
`=1

P

{
sup

∆∈S`

(
E[H(∆)]−H(∆)

)
>

7 e−2α

9d1d2
(β`µ′)2

}

≤
∞∑
`=1

P

{
sup

∆∈B′(β`µ′)

(
E[H(∆)]−H(∆)

)
>

7e−2α

9d1d2
(β`µ′)2

}
, (236)

where we define the set B′(D) such that S` ⊆ B′(β`µ′):

B′(D) =
{

∆ ∈ Rd1×d2
∣∣ ‖∆‖∞ ≤ 2α, |||∆|||F ≤ D,

∑
j1∈[d1],j2∈[d2]

∆j1j2 = 0, µ′|||∆|||nuc ≤ D
2
}
.

(237)

The following key lemma provides the upper bound on this probability.

Lemma 41 For (min{d1, d2}/min{k1, k2}) log d ≤ n ≤ d5 log d,

P

{
sup

∆∈B′(D)

(
E[H(∆)]−H(∆)

)
≥ e−2αD2

2d1d2

}
≤ exp

{
− n min{k2

1, k
2
2} k1k2D

4

210α4d2
1d

2
2

}
.

(238)

Let η = exp
(
−nk1k2 min{k2

1 ,k
2
2}(β−1.002)(µ′)4

210α4d2
1d

2
2

)
. Applying the tail bound to (236), we get

P
{
∃∆ ∈ A , H(∆) <

e−2α

8 d1d2
|||∆|||2F

}
≤

∞∑
`=1

exp
{
− nk1k2 min{k2

1, k
2
2} (β`µ′)4

210α4d2
1d

2
2

}
(a)

≤
∞∑
`=1

exp
{
− nk1k2 min{k2

1, k
2
2}`(β − 1.002)(µ′)4

210α4d2
1d

2
2

}
≤ η

1− η
,

where (a) holds because βx ≥ x log β ≥ x(β − 1.002) for the choice of β =
√

10/9. By the
definition of µ′,

η = exp
{
− 230 k1k2 max{d2

2, d
2
1}(log d)2(β − 1.002)

n

}
≤ exp{− 225 log d} ,

where the last inequality follows from the assumption that n ≤ k1k2 max{d2
1, d

2
2} log d, and

β − 1.002 ≥ 2−5. Since for d ≥ 2, exp{−225 log d} ≤ 1/2 and thus η ≤ 1/2, the lemma
follows by assembling the last two displayed inequalities.
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G.3 Proof of Lemma 41

Let Z ≡ sup∆∈B′(D) E[H(∆)] − H(∆) and consider the tail bound using McDiarmid’s in-

equality. Note that Z has a bounded difference of (8α2e−2α max{k1, k2})/(k2
1k

2
2n) when one

of the k1k2n independent random variables are changed, which gives

P {Z − E[Z] ≥ t} ≤ exp
(
− k4

1k
4
2n

2t2

64α4e−4α max{k2
1, k

2
2}k1k2n

)
. (239)

With the choice of t = D2/(4e2α d1d2), this gives

P
{
Z − E[Z] ≥ e−2α

4d1d2
D2

}
≤ exp

(
− k3

1k
3
2nD

4

210α4d2
1d

2
2 max{k2

1, k
2
2}

)
. (240)

We first construct a partition of the space similar to Lemma 33. Let

k̃ ≡ min{k1, k2} . (241)

Lemma 42 There exists a partition (T1, . . . , TN ) of {[k1] × [k2]} × {[k1] × [k2]} for some
N ≤ 2k2

1k
2
2/k̃ such that T`’s are disjoint subsets,

⋃
`∈[N ] T` = {[k1] × [k2]} × {[k1] × [k2]},

|T`| ≤ k̃ and for any ` ∈ [N ] the set of random variables in T` satisfy

{(∆ji,a,ji,b −∆ji,a′ ,ji,b′ )
2}i∈[n],((a,b),(a′,b′))∈T` are mutually independent .

where ji,a for i ∈ [n] and a ∈ [k1] denote the a-th chosen item to be included in the set Si.

Now we prove an upper bound on E[Z] using the symmetrization technique. Recall that
ji,a is independently and uniformly chosen from [d1] for i ∈ [n] and a ∈ [k1]. Similarly, ji,b
is independently and uniformly chosen from [d1] for i ∈ [n] and b ∈ [k2].

E[Z]

=
e−2α

2 k2
1 k

2
2 n

E

 sup
∆∈B′(D)

n∑
i=1

∑
a,a′∈[k1]
b,b′∈[k2]

E
[(

∆ji,a,ji,b −∆ji,a′ ,ji,b′

)2]− (∆ji,a,ji,b −∆ji,a′ ,ji,b′

)2


≤ e−2α

2 k2
1 k

2
2 n

∑
`∈[N ]

E

 sup
∆∈B′(D)

n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

E
[(

∆j1,j2 −∆j′1,j
′
2

)2]− (∆j1,j2 −∆j′1,j
′
2

)2
≤ e−2α

k2
1 k

2
2 n

∑
`∈[N ]

E

 sup
∆∈B′(D)

n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2

(
∆j1,j2 −∆j′1,j

′
2

)2 , (242)

where the first inequality follows for the fact that the supremum of the sum is smaller than
the sum of supremum, and the second inequality follows from standard symmetrization
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with i.i.d. Rademacher random variables ξi,j1,j2,j′1,j′2 ’s. It follows from Ledoux-Talagrand
contraction inequality Ledoux and Talagrand (2013) that

E

 sup
∆∈B′(D)

n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2

(
∆j1,j2 −∆j′1,j

′
2

)2 (243)

≤ 8αE

 sup
∆∈B′(D)

n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2

(
∆j1,j2 −∆j′1,j

′
2

) (244)

≤ 8αE

 sup
∆∈B′(D)

|||∆|||nuc

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2

(
ej1,j2 − ej′1,j′2

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 (245)

≤ 8αD2

µ′
E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2

(
ej1,j2 − ej′1,j′2

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 , (246)

where the second inequality follows for the Hölder’s inequality and the last inequality follows
from µ′|||∆|||nuc ≤ D2 for all ∆ ∈ B′(D). To bound the expected spectral norm of the random

matrix, we use matrix Bernstein’s inequality. Note that
∣∣∣∣∣∣∣∣∣ξi,j1,j2,j′1,j′2c∣∣∣∣∣∣∣∣∣2 ≤ √2 almost surely,

E[(ej1,j2 − ej′1,j′2)(ej1,j2 − ej′1,j′2)T ] � (2/d1)Id1×d1 , and E[(ej1,j2 − ej′1,j′2)T (ej1,j2 − ej′1,j′2)] �
(2/d2)Id2×d2 . It follows that σ2 = 2n|T`|/min{d1, d2}, where |T`| ≤ min{k1, k2}. It follows
that

P


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2

(
ej1,j2 − ej′1,j′2

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

> t


≤ (d1 + d2) exp

{ −t2/2
2nmin{k1, k2}/min{d1, d2}+

√
2t/3

}
,

Choosing t = max{
√

64n(min{k1, k2}/min{d1, d2}) log d, (16
√

2/3) log d}, we obtain a bound
on the spectral norm of t with probability at least 1− 2d−7. From the fact that∣∣∣∣∣∣∣∣∣∑n

i=1

∑
(j1,j2,j′1,j

′
2)∈T` ξi,j1,j2,j′1,j′2

(
ej1,j2 − ej′1,j′2

)∣∣∣∣∣∣∣∣∣
2
≤ (n/

√
2) min{k1, k2}, it follows that

E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
i=1

∑
(j1,j2,j′1,j

′
2)∈T`

ξi,j1,j2,j′1,j′2

(
ej1,j2 − ej′1,j′2

)∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

 (247)

≤ max
{√64n min{k1, k2} log d

min{d1, d2}
, (16
√

2/3) log d
}

+
2nmin{k1, k2}√

2d7
(248)

≤

√
66n min{k1, k2} log d

min{d1, d2}
(249)
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which follows form the assumption that nmin{k1, k2} ≥ min{d1, d2} log d and n ≤ d5 log d.
Substituting this bound in (242), and (246), we get that

E[Z] ≤ 16e−2ααD2

µ′

√
66 log d

nmin{k1, k2}min{d1, d2}
(250)

≤ e−2αD2

4 d1d2
. (251)

Appendix H. Proof of the Information-theoretic Lower Bound in
Theorem 16

This proof follow closely the proof of Theorem 10 in Appendix E. We apply the generalized
Fano’s inequality in the same way to get Eq. (160)

P
{
L̂ 6= L

}
≥ 1−

(
M
2

)−1∑
`1,`2∈[M ]DKL(Θ(`1)‖Θ(`2)) + log 2

logM
, (252)

The main challenge in this case is that we can no longer directly apply the RUM interpre-
tation to compete DKL(Θ(`1)‖Θ(`2)). This will result in over estimating the KL-divergence,
because this approach does not take into account that we only take the top winner, out
of those k1k2 alternatives. Instead, we compute the divergence directly, and provide an
appropriate bound. Let the set of k1 rows and k2 columns chosen in one of the n samples
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be S ⊂ [d1] and T ⊂ [d2] respectively. Then,

DKL(Θ(`1)‖Θ(`2))

(a)
=

n(
d1

k1

)(
d2

k2

)∑
S,T

∑
i∈S
j∈T

eΘ
(`1)
ij∑

i′∈S
j′∈T

e
Θ

(`1)

i′j′
log

e
Θ

(`1)
ij
∑

i′∈S
j′∈T

e
Θ

(`2)

i′j′

eΘ
(`2)
ij
∑

i′∈S
j′∈T

e
Θ

(`1)

i′j′


(b)

≤ n(
d1

k1

)(
d2

k2

)∑
S,T

∑
i,j

e2Θ
(`1)
ij
∑

i′,j′ e
Θ

(`2)

i′j′ − eΘ
(`1)
ij +Θ

(`2)
ij
∑

i′,j′ e
Θ

(`1)

i′j′

eΘ
(`2)
ij

(∑
i′,j′ e

Θ
(`1)

i′j′

)2


(c)

≤ ne2α

k2
1k

2
2

(
d1

k1

)(
d2

k2

)∑
S,T

∑
i,j

e2Θ
(`1)
ij −Θ

(`2)
ij

∑
i′,j′

e
Θ

(`2)

i′j′ − eΘ
(`1)
ij

∑
i′,j′

e
Θ

(`1)

i′j′



=
ne2α

k2
1k

2
2

(
d1

k1

)(
d2

k2

)∑
S,T

∑
i′,j′

e
Θ

(`2)

i′j′
∑
i,j

(
eΘ

(`1)
ij − eΘ

(`2)
ij

)2

eΘ
(`2)
ij

−
(∑

i,j

(eΘ
(`1)
ij − eΘ

(`2)
ij )

)2


(d)

≤ ne4α

k1k2

(
d1

k1

)(
d2

k2

)∑
S,T

∑
i,j

(
eΘ

(`1)
ij − eΘ

(`2)
ij

)2

(e)

≤ ne5α

k1k2

(
d1

k1

)(
d2

k2

)∑
S,T

∑
i,j

(
Θ

(`1)
ij −Θ

(`2)
ij

)2

(f)
=

ne5α

d1d2

∣∣∣∣∣∣∣∣∣Θ(`1)
ij −Θ

(`2)
ij

∣∣∣∣∣∣∣∣∣2
F

Here (a) is by definition of KL-distance and the fact that S, T are chosen uniformly
from all possible such sets and (b) is due to the fact that log(x) ≤ x − 1 with x =

(eΘ
(`1)
ij
∑

i′∈S,j′∈T e
Θ

(`2)

i′j′ )/(eΘ
(`2)
ij
∑

i′∈S,j′∈T e
Θ

(`1)

i′j′ ). The constants at (c) is due to the fact

that each element of Θ(`1) is upper bounded by α and lower bounded by −α. We can get
(d) by removing the second term which is always negative, and using the bond of α. (e) is
obtained because ex where −α ≤ x ≤ α is Lipschitz continuous with Lipschitz constant eα.
At last (f) is obtained by simple counting of the occurrences of each ij. Thus we have,

P
{
L̂ 6= L

}
≥ 1−

(
M
2

)−1∑
`1,`2∈[M ]

ne5α

d1d2

∣∣∣∣∣∣∣∣∣Θ(`2)
ij −Θ

(`2)
ij

∣∣∣∣∣∣∣∣∣2
F

+ log 2

logM
, (253)

The remainder of the proof relies on the following probabilistic packing.

Lemma 43 Let d2 ≥ d1 be sufficiently large positive integers. Then for each r ∈ {1, . . . , d1},
and for any positive δ > 0 there exists a family of d1 × d2 dimensional matrices {Θ(1), . . . ,
Θ(M(δ))} with cardinality M(δ) = b(1/4) exp(rd2/576)c such that each matrix is rank r and
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the following bounds hold: ∣∣∣∣∣∣∣∣∣Θ(`)
∣∣∣∣∣∣∣∣∣

F
≤ δ , for all ` ∈ [M ] (254)∣∣∣∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣∣∣∣
F
≥ 1

2
δ , for all `1, `2 ∈ [M ] (255)

Θ(`) ∈ Ωα̃ , for all ` ∈ [M ] , (256)

with α̃ = (8δ/d2)
√

2 log d for d = (d1 + d2)/2.

Suppose δ ≤ αd2/(8
√

2 log d) such that the matrices in the packing set are entry-wise

bounded by α, then the above lemma 43 implies that
∣∣∣∣∣∣Θ(`1) −Θ(`2)

∣∣∣∣∣∣2
F
≤ 4δ2, which gives

P
{
L̂ 6= L

}
≥ 1−

e5αn4δ2

d1d2
+ log 2

rd2
576 − 2 log 2

≥ 1

2
, (257)

where the last inequality holds for δ2 ≤ (rd1d
2
2/(1152e5αn)) and assuming rd2 ≥ 1600.

Together with (257) and (255), this proves that for all δ ≤ min{αd2/(8
√

2 log d),√
rd1d2

2/(9216 e5αn)},

inf
Θ̂

sup
Θ∗∈Ωα

E
[ ∣∣∣∣∣∣∣∣∣Θ̂−Θ∗

∣∣∣∣∣∣∣∣∣
F

]
≥ δ/4 .

Choosing δ appropriately to maximize the right-hand side finishes the proof of the desired
claim. Also by symmetry, we can apply the same argument to get similar bound with d1

and d2 interchanged.

H.1 Proof of Lemma 43

We show that the following procedure succeeds in producing the desired family with prob-
ability at least half, which proves its existence. Let d = (d1 + d2)/2, and suppose d2 ≥ d1

without loss of generality. For the choice of M ′ = erd2/576, and for each ` ∈ [M ′], generate
a rank-r matrix Θ(`) ∈ Rd1×d2 as follows:

Θ(`) =
δ√
rd2

U(V (`))T − δ√
rd2

1TU(V (`))T1

d1d2
11T , (258)

where U ∈ Rd1×r is a random orthogonal basis such that UTU = Ir×r and V (`) ∈ Rd2×r is

a random matrix with each entry V
(`)
ij ∈ {−1,+1} chosen independently and uniformly at

random. By construction, notice that
∣∣∣∣∣∣Θ(`)

∣∣∣∣∣∣
F
≤ (δ/

√
rd2)

∣∣∣∣∣∣U(V (`))T
∣∣∣∣∣∣

F
= δ.

Now, by triangular inequality, we have∣∣∣∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣∣∣∣

F

≥ δ√
rd2

∣∣∣∣∣∣∣∣∣U(V (`1) − V (`2))T
∣∣∣∣∣∣∣∣∣

F
− δ |1TU(V (`1) − V (`2))T1|

d1d2

√
rd2

∣∣∣∣∣∣11T ∣∣∣∣∣∣
F

≥ δ√
rd2

∣∣∣∣∣∣∣∣∣V (`1) − V (`2)
∣∣∣∣∣∣∣∣∣

F︸ ︷︷ ︸
A

− δ√
r d1 d2

2

(
|1TU(V (`1))T1|︸ ︷︷ ︸

B

+|1TU(V (`2))T1|
)
.
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We will prove that the first term is bounded by A ≥
√
rd2 with probability at least 7/8 for

all M ′ matrices, and we will show that we can find M matrices such that the second term
is bounded by B ≤ 8

√
2rd2 log(32r) log(32d) with probability at least 7/8. Together, this

proves that with probability at least 3/4, there exists M matrices such that

∣∣∣∣∣∣∣∣∣Θ(`1) −Θ(`2)
∣∣∣∣∣∣∣∣∣

F
≥ δ

(
1−

√
27 log(32r) log(32d)

d1d2

)
≥ 1

2
δ ,

for all `1, `2 ∈ [M ] and for sufficiently large d1 and d2.
Applying similar McDiarmid’s inequality as Eq. (122) in Appendix E, it follows that

A2 ≥ rd2 with probability at least 7/8 for M ′ = erd2/576 and a sufficiently large d2.
To prove a bound on B, we will show that for a given `,

P
{
|1TU(V (`))T1| ≤ 8

√
2rd2 log(32r) log(32d)

}
≥ 7

8
. (259)

Then using the similar technique as in (125), it follows that we can find M = (1/4)M ′

matrices all satisfying this bound and also the bound on the max-entry in (260). We
are left to prove (259). We apply a series of concentration inequalities. Let H1 be the

event that {|〈〈V (`)
i ,1〉〉| ≤

√
2d2 log(32r) for all i ∈ [r]}. Then, applying the standard

Hoeffding’s inequality, we get that P {H1} ≥ 15/16, where V
(`)
i is the i-th column of

V (`). We next change the variables and represent 1TU as
√
d1u

T Ũ , where u is drawn
uniformly at random from the unit sphere and Ũ is a r dimensional subspace drawn
uniformly at random. By symmetry,

√
d1u

T Ũ have the same distribution as 1TU . Let
H2 be the event that {|〈〈Ũi, (V (`))T1〉〉| ≤

√
16r(d2/d1) log(32r) log(32d) for all i ∈ [d1]},

where Ũi is the i-th row of Ũ . Then, applying Levy’s theorem for concentration on the
sphere Ledoux (2005), we have P {H2|H1} ≥ 15/16. Finally, let H3 be the event that
{|
√
d1〈〈u, Ũ(V (`))T 〉〉1| ≤ 8

√
2rd2 log(32r) log(32d)}. Then, again applying Levy’s concen-

tration, we get P {H3|H1, H2} ≥ 15/16. Collecting all three concentration inequalities, we
get that with probability at least 13/16, |1TU(V (`))T1| ≤ 8

√
2rd2 log(32r) log(32d), which

proves Eq. (259).
We are left to prove that Θ(`)’s are in Ω(8δ/d2)

√
2 log d2

as defined in (51). Similar to Eq.
(124), applying Levy’s concentration gives

P
{

max
i,j
|Θ(`)

ij | ≤
2δ
√

32 log d2

d2

}
≥ 1− 2 exp

{
− 2 log d2

}
≥ 1

2
, (260)

for a fixed ` ∈ [M ′]. Then using the similar technique as in (125), it follows that there exists
M = (1/4)M ′ matrices all satisfying this bound and also the bound on B in Eq. (259).

References

A. Agarwal, S. Negahban, and M. Wainwright. Fast global convergence rates of gradient
methods for high-dimensional statistical recovery. In In NIPS, pages 37–45, 2010.

A. Agarwal, P. Patil, and S. Agarwal. Accelerated spectral ranking. In International
Conference on Machine Learning, pages 70–79, 2018.

89



Negahban, Oh, Thekumparampil, and Xu

H. Azari Soufiani, D. C. Parkes, and L. Xia. Random utility theory for social choice. In
NIPS, pages 126–134, 2012.

H. Azari Soufiani, W. Chen, D. C. Parkes, and L. Xia. Generalized method-of-moments
for rank aggregation. In Advances in Neural Information Processing Systems 26, pages
2706–2714, 2013.

H. Azari Soufiani, D. Parkes, and L. Xia. Computing parametric ranking models via rank-
breaking. In Proceedings of The 31st International Conference on Machine Learning,
pages 360–368, 2014.

J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA journal of
numerical analysis, 8(1):141–148, 1988.

M. E. Ben-Akiva and S. R. Lerman. Discrete choice analysis: theory and application to
travel demand, volume 9. MIT press, 1985.

A. R. Benson, R. Kumar, and A. Tomkins. A discrete choice model for subset selection.
In Proceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, pages 37–45. ACM, 2018.

S. Bhojanapalli and P. Jain. Universal matrix completion. arXiv preprint arXiv:1402.2324,
2014.

J. Blanchet, G. Gallego, and V. Goyal. A markov chain approximation to choice modeling.
In EC, pages 103–104, 2013.

C. Borgs, J. Chayes, C. E. Lee, and D. Shah. Iterative collaborative filtering for sparse
matrix estimation. arXiv preprint arXiv:1712.00710, 2017.

V. S. Borkar, N. Karamchandani, and S. Mirani. Randomized Kaczmarz for rank aggrega-
tion from pairwise comparisons. In Information Theory Workshop (ITW), 2016 IEEE,
pages 389–393. IEEE, 2016.

S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A nonasymptotic
theory of independence. Oxford University Press, 2013.

R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1955.

J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations
of Computational Mathematics, 9(6):717–772, 2009.

X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz. Pairwise ranking aggregation
in a crowdsourced setting. In Proceedings of the sixth ACM international conference on
Web search and data mining, pages 193–202. ACM, 2013.

90



Learning from Comparisons and Choices

Y. Chen and C. Suh. Spectral mle: Top-k rank aggregation from pairwise comparisons. In
International Conference on Machine Learning, pages 371–380, 2015.

Y. Chen, J. Fan, C. Ma, and K. Wang. Spectral method and regularized mle are both
optimal for top-k ranking. arXiv preprint arXiv:1707.09971, 2017.

F. Chierichetti, R. Kumar, and A. Tomkins. Learning a mixture of two multinomial logits.
In International Conference on Machine Learning, pages 960–968, 2018.

C. Chu, P. Leslie, and A. Sorensen. Bundle-size pricing as an approximation to mixed
bundling. The American Economic Review, pages 263–303, 2011.
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