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Abstract

Stochastic bandits have been widely studied since decades. A very large panel of set-
tings have been introduced, some of them for the inclusion of some structure between
actions. If actions are associated with feature vectors that underlie their usefulness, the
discovery of a mapping parameter between such profiles and rewards can help the explo-
ration process of the bandit strategies. This is the setting studied in this paper, but in our
case the action profiles (constant feature vectors) are unknown beforehand. Instead, the
agent is only given sample vectors, with mean centered on the true profiles, for a subset
of actions at each step of the process. In this new bandit instance, policies have thus to
deal with a doubled uncertainty, both on the profile estimators and the reward mapping
parameters learned so far. We propose a new algorithm, called SampLinUCB, specifically
designed for this case. Theoretical convergence guarantees are given for this strategy, ac-
cording to various profile samples delivery scenarios. Finally, experiments are conducted
on both artificial data and a task of focused data capture from online social networks.
Obtained results demonstrate the relevance of the approach in various settings.

Keywords: Stochastic Linear Bandits, Profile-based Exploration, Upper Confidence
Bounds

1. Introduction

Multi-armed bandits (MAB) correspond to online decision problems where, at each step of a
sequential process, an agent has to choose an action - or arm - among a set of K actions, with
the aim to maximize some cumulative reward function. In the so-called stochastic MAB
setting, rewards collected for a given arm through time are assumed to be independently and
identically distributed, following some hidden stationary distribution on every individual
arm. The problem is therefore to deal with a tradeoff between exploitation - selecting actions
according to some estimations about their usefulness - and exploration - selecting actions
in order to increase the knowledge of their reward distribution. However, with classical
stochastic bandit policies, the convergence towards the optimal arms can be slow when the
number of actions becomes large.

On another hand, contextual bandits correspond to MAB settings where some side
information can be leveraged to improve estimations of reward distributions. In these
settings, a decision context is observed before selecting actions. This context can either
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correspond to a global decision feature vector or to specific feature vectors observed for
each single action. Depending on the setting, these features can vary over time, which can
help to predict reward fluctuations, or they can correspond to constant features on actions
- that we call action profiles in the following - whose structure can be used to improve
exploration policies over non-contextual approaches. In this paper we address the latter
case, where we assume stationary distributions of rewards, but where distributions depend
on constant profiles associated each arm. Reward distributions from the different arms are
connected by a common unknown parameter to be learned (Filippi et al., 2010).

However, we introduce a new scenario where, for various possible reasons (technical,
political, etc...), profile vectors are not available a priori. Instead, the agent gets sample
vectors, centered on the true profiles, for a subset of actions at each decision step. This
can happen in various situations where some restrictions limit our knowledge of the whole
decision environment. For example in a focused data capture or technology intelligence
scenario on social media, where an agent is asked to collect relevant information w.r.t.
to a given need. Because of the extremely large number of accounts on media such as
Twitter, the agent needs to focus on a subset of relevant users to follow at each time step
(Gisselbrecht et al., 2015). However, given the strict restrictions set by the media, no
knowledge about users is available beforehand. Profiles have therefore to be constructed
from users activities, which are only observed for a small fraction of users at each step. As
we will see later, the process which delivers profile samples can either be independent - e.g.,
an external process delivers activity samples for randomly chosen users at each step in the
case of data capture from Twitter - or be included in the decision process - e.g., activity
samples are only collected for followed users at the current time step.

To the best of our knowledge, this instance of contextual bandit has not been studied
in the literature. Existing bandit approaches do not fit with this new setting. First, even
if traditional algorithms such as UCB (Auer et al., 2002) could be applied, the informa-
tion provided by the sample profile vectors would be entirely ignored. Our claim is that
important benefits can arise from taking this available side-information into account. On
the other hand, existing contextual bandit policies do not take into account uncertainty on
context vectors, while we face here a bandit problem where uncertainty not only arises from
regression parameters, as classically considered by contextual approaches, but also from the
estimated profiles which serve as inputs for reward predictions at each step. The aim is
to propose an approach able to leverage structural distributions of arms, based on noisy
observations of their profiles, to improve over existing exploitation/exploration policies in
bandit settings with partial side-information.

The contribution of this paper is threefold:

• We propose a new instance of the contextual bandit problem, based on constant con-
texts for each action, where action profiles are not known beforehand, but built from
samples obtained at each iteration (3 cases are investigated regarding the sampling
process);

• We design the SampLinUCB algorithm to solve this problem, for which we demon-
strate some theoretical convergence guarantees;

• We experiment our proposal for both an artificial setting and a real-world task of
focused data capture from Twitter, to empirically demonstrate the benefits of such a
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profile-based approach with ony partial knowledge for exploitation/exploration prob-
lems.

The paper is organized as follows. In section 2, we present some background and related
works. In section 3, we formalize the problem, propose our algorithm and derive the regret
bound. Finally, section 4 reports our experiments.

2. Background: the Linear Stochastic Bandit

The multi-armed bandit problem, originally introduced in (Lai and Robbins, 1985) in its
stationary form, has been widely studied in the literature. This learning problem aims at
tackling the trade off between exploration and exploitation in decision processes where, at
each step, an agent must choose an action - or arm - among a finite set of size K. After each
decision, it receives a reward which quantifies the quality of the chosen action. The aim for
the agent is to maximize the cumulative reward trough time, or equivalently to minimize
the cumulative regret RT at step T defined as:

RT = max
i∈{1,2,...,K}

T∑
t=1

ri,t −
T∑
t=1

rit,t (1)

where it stands for the action selected at step t and ri,t the reward obtained by playing the
action i at step t. This represents the amount of rewards that has been lost by selecting
it at each step t, compared to what could be obtained by playing the optimal arm from
the beginning to the end of the process. Note that, at each step t, only the reward for the
chosen action rit,t is observed in practice, other ones remain unknown.

In the so-called stochastic case, one assume that rewards of an arm i are identically
and independently sampled from a distribution with mean νi. Therefore, one usually rather
consider the pseudo-regret of a policy, which introduces expectations of regret in the previous
definition:

R̂T = Tνi∗ −
T∑
t=1

νit (2)

where i? stands as the arm with the best reward expectation.
One of the simplest and most straightforward algorithms to deal with the stochastic

bandit problem is the well-known ε-greedy algorithm (Auer et al., 2002). This algorithm
selects the arm with the best reward mean empirical estimation with probability 1− ε and
uniformly selects an arm among the whole set regardless their current estimations with
probability ε. This guarantees to regularly reconsider estimations of all arms and therefore
prevents from getting stuck on sub-optimal arms. However, the reward loss resulting from
these blind selections prevents from ensuring a sub-linear upper bound of the pseudo-regret,
unless setting an appropriate decay on ε. But this requires to know a lower bound on the
difference of reward expectations between the best and the second best action (Auer et al.,
2002).

Upper Confidence Bound algorithms (UCB) is another family of bandit approaches
which define confident intervals for the reward expectations of each arm. Based on some con-
centration inequalities (Hoeffding, Bernstein, etc.), they propose optimistic policies which
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consider possible deviations of the estimated mean of each arm. By using upper bounds of
confidence intervals as selection scores, they ensure a cleaver balance between exploitation
and exploration. Many extensions of the famous UCB algorithm proposed in (Auer et al.,
2002) are known to guarantee a sub-linear bound of the pseudo-regret (see UCBV in (Audibert
et al., 2009), MOSS in (Audibert and Bubeck, 2009) or KL-UCB in (Garivier, 2011)).

At last, Thompson sampling algorithms, originally proposed in (Thompson, 1933), de-
velop a Bayesian approach to deal with uncertainty. By sampling from posterior distribu-
tions for the reward parameters, their exploration/exploitation mechanism is also proved to
ensure a sub-linear regret (see (Kaufmann et al., 2012b) and (Agrawal and Goyal, 2012)).

The contextual bandit setting is an instance of the bandit problem where context vectors
are observed before each decision step. Typically, contextual bandits assume a linear relation
between context features and reward expectations. Formally, if we observe a context vector
xi,t ∈ Rd for each action i ∈ K at each time-step t, we consider the following assumption:

∃β ∈ Rd such that ri,t = x>i,tβ + ηi,t (3)

where β is a mapping parameter between contexts and rewards, ηi,t is a zero-mean condi-
tionally R sub-Gaussian random noise, with constant R > 0 i.e: ∀λ ∈ R : E[eληi,t |Ht−1] ≤
eλ

2R2/2, with Ht−1 = {(is, xis,s, ris,s)}s=1..t−1.
In this context, given a set K of K actions, any contextual bandit algorithm proceeds

at each step t ∈ {1, 2, 3, . . . , T} as follows:

1. Observation of the context vector xi,t ∈ Rd for each i ∈ {1, ...,K};

2. According to the current estimate of β, selection of an action it and reception of the
associated reward rit,t;

3. Improvement of the selection policy by considering the new input (it, xit,t, rit,t) for
the estimation of β.

Various contextual algorithms have been proposed in the literature. The first contextual
bandit algorithm was introduced in (Auer, 2003). More recently the well-known LinUCB

algorithm has been proposed for a task of personalized recommendation in (Li et al., 2010)
and analyzed in (Chu et al., 2011). Both of these algorithms are UCB-like policies, each of
them selecting the action whose upper bound of its reward confidence bound is the highest.
Many other UCB approaches have been developed since then. In particular, algorithms
such as OFUL or ConfidenceBall proposed in (Abbasi-Yadkori et al., 2011) and (Dani
et al., 2008) have the advantage to enjoy a tighter regret upper bound (see also (Kaufmann
et al., 2012a) and (Rusmevichientong and Tsitsiklis, 2010)). As in the stochastic bandit
setting, Thompson sampling algorithms have also been designed for the contextual case,
which also proved to be powerful, first empirically in (Chapelle and Li, 2011) and then
theoretically in (Agrawal and Goyal, 2013) and (May et al., 2012).

In this paper, we consider a variant of the contextual bandit problem where contexts of
actions are constant, which we call action profiles in the following. Hence, in our setting
we assume that each action i ∈ K is associated with a profile vector µi ∈ Rd. The linear
assumption of equation 3 becomes:

∃β ∈ Rd such that ri,t = µ>i β + ηi,t (4)
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Thus, in this setting contexts cannot be used to anticipate some variations in the rewards
expectations as it is traditionally the case in the literature about contextual bandit, but they
can be leveraged to improve the exploration process, the use of a shared mapping parameter
β allowing one to define areas of interest in the representation space of the actions. To
illustrate this, the figure 1 represents the selection scores of a contextual algorithm (such as
OFUL that we rely on in the following) at a given step for a simple case where K = 4 and
d = 2. In this figure, green areas correspond to high scores, whereas red ones correspond
to low scores areas. Color variations render the latent structure inferred by the model. In
this setting, the algorithm would select the action 1, since its profile is located in the most
promising area of the space. On the other hand, the action 3 is located in an area that is
greatly less promising. The fact of using a common mapping parameter β allows one to
perform a mutual learning, where observations on some actions inform on the usefulness of
similar ones. This allows one to improve the exploration process by focusing more quickly
on the useful areas: Imagine that a great number of actions are located in the red area of
the figure. In that case, a classical bandit algorithm such as UCB would need to consider
each of these actions several times to reveal their low reward expectation. On the other
hand, a contextual bandit algorithm such as OFUL is able to avoid these actions really
more quickly because of the proximity with other bad actions.
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Figure 1: Illustration of OFUL scores for a profiles representation space.

This structured bandit setting has already been investigated in (Filippi et al., 2010).
This work showed that great improvements could indeed be obtained by exploiting the
structure of actions, since observations on some actions inform on the usefulness of similar
ones. This comes down to a classical stochastic bandit where the pseudo-regret can be
defined as follows:

R̂T =

>∑
t=1

µ>i?β − µ>itβ (5)
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where µi ∈ Rd stands for the profile of the action i ∈ K and µi? = arg max
µi,i=1..K

µ>i β corresponds

to the profile of the optimal action i?.
This is the setting which is studied in this paper. However, in our case the profile vectors

are unknown to the agent beforehand, they have to be discovered iteratively during the
process. Our problem differs from existing instances by the following two main aspects:

1. Action profiles are not directly available, one only get samples centered on them during
the process;

2. At each step, one only get samples for a subset of actions.

In the following, we derive an UCB-based policy for this new setting.

3. Profile-Based Bandit with Unknown Profiles

In this section, we explore our new setting in which the set of profiles {µ1, .., µK} is not
directly observed. Instead, at each iteration t, the agent is given a subset of actions Ot
such that for every i ∈ Ot, a sample xi,t of a random variable centered on µi is revealed.
By assuming the same linear hypothesis as described in the previous section (formula 4),
the relation of rewards with profiles can be re-written as follows for any time t, in order to
introduce profile samples:

∀s ≤ t : ri,s = µ>i β + ηi,s

= x̂>i,tβ + (µi − x̂i,t)>β + ηi,s

= x̂>i,tβ + ε>i,tβ + ηi,s (6)

where εi,t = µi − x̂i,t, x̂i,t =
1

ni,t

∑
s∈T obsi,t

xi,s, with T obsi,t = {s ≤ t, i ∈ Os} and ni,t = |T obsi,t |. In

words, ni,t corresponds to the number of times a sample has been obtained for the action i
until step t and x̂i,t corresponds to the empirical mean of observed samples for i at time t.
εi,t corresponds to the deviation of the estimator x̂i,t from the true profile µi.

Compared to traditional contextual bandits, the uncertainty is double : as classically it
arises from the β parameter estimator, but also from the profile estimators, since the algo-
rithm must both estimate β and the profile vectors {µ1, .., µK} from observations. Figure 21

illustrates this new setting. Contrary to figure 1 where profiles are known, here we only get
confidence areas for them, represented by circles centered on their corresponding empirical
mean (represented by a blue cross). From the law of large numbers, the more observations
for a given action we get, the lower the deviation between its true profile and its empirical
estimator is. Therefore, the more knowledge we get about a given action, the smaller its
confidence circle is. The best action is still the action 1, whose true profile (represented by
a black cross) is in the greenest area. However, this information is unknown from the agent.
A naive solution would be to directly use the empirical mean for each action in order to
determine the selection scores. From the figure, this would lead to select the sub-optimal

1. Note that this is only an illustration of the general principle, in practice the surface of selection scores
should also differ from figure 1, since β is estimated from biased inputs.
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action 2, whose empirical mean is located in a greener area than the one of other actions.
We propose to include the additional uncertainty in the selection scores by using the best
location inside the confidence ellipsoid it is possible to reach for each action. This allows
one to define an optimistic policy which would select the optimal action 1 in the example
figure, whose confidence area contains the most promising profiles (i.e., includes the most
green locations in the figure).
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Figure 2: Illustration of the additional uncertainty arising from profile estimators.

In the following we propose to define an algorithm fitted for this setting. After deriving
the algorithm in a generic context of samples delivery, we consider three different cases:

• Case 1: Every action delivers a profile sample at each step t (i.e., ∀t, Ot = {1, ...,K});
• Case 2: Each action i owns a probability pi of sample delivery: at each step t, an

action is included in Ot with probability pi;

• Case 3: At each step t, only the action selected at the previous step delivers a sample
(i.e., ∀t, Ot = it−1).

The first case corresponds to the simplest case, where Ot is constant over time. The
second case includes an additional difficulty since before any step, every action has not been
observed the same number of times, which leads to different levels of uncertainty. The last
case, probably the most interesting one for real-world applications, is the most difficult since
decisions at each step not only affect knowledge about reward distributions but also profile
estimations. For that case, it appears mandatory to take the uncertainty about profiles
into account in the selection policy to guarantee the process to converge towards optimal
actions.

After deriving confidence intervals for this new bandit instance, this section describes
the proposed algorithm and analyzes its regret for the three settings listed above. Then,
we consider the case where multiple actions can be performed at each step.
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3.1. Confidence Intervals

In the following, we derive a series of propositions which will allow us to define a selection
policy for our setting of profile-based bandit with unknown profiles. First, it is needed to
define an estimator for the mapping parameter β, and the associated confidence ellipsoid.
For that purpose, we rely on results from the theory of the self-normalized process (de la
Peña et al., 2009). The next step is to define a way to mix it with the uncertainty on profiles
to define an optimistic policy.

Proposition 1 Let us consider that for any action i, all profile samples xi,t ∈ Rd are iid
from a distribution with mean µi ∈ Rd. Let us also assume that there exists a real number
L > 0 such that ||xi,t|| ≤ L and a real number S > 0 such that ||β|| ≤ S. Then, for any i ∈ K
and any step s ≤ t, the random variable ηi,t,s = ε>i,tβ + ηi,s is conditionally sub-Gaussian

with constant Ri,t =

√
R2 +

L2S2

ni,t
.

Proof Available in appendix A.1.

In this proposition, R is the constant of the sub-Gaussian random noise of the rewards (ηs
from equation 6) and the notation ||x|| stands as the norm of a vector x (i.e., ||x|| =

√
xTx).

Since the noise ηi,t,s is sub-Gaussian, it will be possible to apply the theory of self-normalized
process for defining a confidence ellipsoid for β.

At step t, we can use the following set of observations to find an estimator for β:
{(x̂is,t, ris,s)}s=1..t−1 (i.e., at any decision step t, the reward ris,s observed at any previous
step s < t is associated with the profile of the selected action at step s, estimated knowing
samples observed from step 1 to step t). The following notations are used in the remaining
of the paper:

• η′t−1 = (ηis,s + ε>is,tβ)>s=1..t−1 the vector of noises of size t− 1.

• Xt−1 = (x̂>is,t)s=1..t−1 the (t − 1) × d matrix containing the empirical means of the
selected actions, where the s-th row corresponds to the estimator at step t of the
action selected at step s.

• Yt−1 = (ris,s)
>
s=1..t−1 the rewards vector of size t− 1.

• At−1 = diag(1/Ris,t)s=1..t−1 the diagonal (t − 1) × (t − 1) matrix, where the s-th
diagonal element equals 1/Ris,t. Note that, for a specific action, the value of its cor-
responding coefficient increases with the number of observed samples for this action.

With these notations, the linear application from profiles to rewards can be written as:

Yt−1 = Xt−1β + η
′
t−1 (7)

Proposition 2 We note β̂t−1 the least square estimator of the parameter β at step t, ac-
cording to the following l2-regularized regression problem, where each element is weighted
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by the corresponding coefficient 1/Ris,t:

β̂t−1 = arg min
β

t−1∑
s=1

1

Ris,t
(β>x̂is,t − ris,s)2 + λ||β||2 (8)

where λ > 0 is the l2-regularization constant.

We have:

β̂t−1 = (X>t−1At−1Xt−1 + λI)−1X>t−1At−1Yt−1 (9)

Proof Let us rewrite the minimization problem such as:
β̂t−1 = arg min

β
L with L = (Yt−1 −Xt−1β)>At−1(Yt−1 −Xt−1β) + λβ>β.

The gradient is given by:
∇βL = −2X>t−1At−1(Yt−1 −Xt−1β) + 2λβ = 2(X>t−1At−1Xt−1 + λI)β − 2X>t−1At−1Yt−1

By canceling this gradient, we get the announced result.

This estimator of β uses empirical means of observed samples as inputs. Weighting each
element according to the corresponding value Ris,t allows one to consider the uncertainty
associated with this approximation. It renders the confidence we have in the weighted input.
Note that this coefficient tends towards a constant when the number of observed samples
increases for the corresponding action. It allows one, according to the following proposition,
to define a confidence ellipsoid for the estimator of β.

Proposition 3 Let us define Vt−1 = λI + X>t−1At−1Xt−1 = λI +
t−1∑
s=1

x̂is,tx̂
>
is,t

Ris,t
. With the

same assumptions as in proposition 1, for any 0 < δ < 1, with a probability at least equal
to 1− δ, the estimator β̂t−1 verifies for all t ≥ 0:

||β̂t−1 − β||Vt−1 ≤

√√√√2 log

(
det(Vt−1)1/2det(λI)−1/2

δ

)
+
√
λS = αt−1 (10)

where ||x||V =
√
x>V x is the V-norm of the vector x.

Proof Available in appendix A.2.

This bound is very similar to the one defined in the OFUL algorithm (Abbasi-Yadkori
et al., 2011) to build its confidence ellipsoid. However, a notable difference lies in the
definition of the matrix Vt, in which weights in At are applied to cope with confidence
differences between profile estimators. Without this weighting, no confidence ellipsoid could
be found for β since no common bound could be defined for the various noises η

′
s (see the

proof of proposition 3 in appendix).
The following proposition can easily be deduced from the previous one to bound the

expectation of reward with known profiles.
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Proposition 4 For every i ∈ K, with probability greater than 1− δ, we have for all t ≥ 0:

β>µi ≤ β̂>t−1µi + αt−1||µi||V −1
t−1

(11)

Proof Available in appendix A.3

This upper-bound for the expected reward contains two distinct terms: while the former
corresponds to a classical exploitation term which estimates the expected reward with the
current parameters, the latter corresponds to an exploration term since it takes into account
the uncertainty on the reward parameter. If profiles were known, this could directly be used
as a selection score for an UCB-like policy. However, in our setting, profiles are unknown.
We have to consider confidence ellipsoids for the profiles of actions too. The following
proposition defines confidence bounds for the profile estimators.

Proposition 5 For every i ∈ K and any t > 0, with probability greater than 1 − δ/t2, we
have:

||x̂i,t − µi|| ≤ min(L

√
2d

ni,t
log

(
2dt2

δ

)
, 2L) = ρi,t,δ (12)

Proof This inequality comes from the application of the Hoeffding’s inequality to each
dimension separately. The min operator comes from the base hypothesis ||xi,t|| ≤ L, which
can be more restrictive than the Hoeffding assumption. The proof is available in appendix
A.4.

Contrary to the bound of the deviation of the mapping parameter β which holds si-
multaneously for all steps of the process, the one for the profile estimators is only valid
for each step separately. To obtain a bound holding for every step simultaneously, which
is important for the regret analysis (see section 3.3), we use the uniform bound principle.
For a given action i, we have: P(∀t, ||x̂i,t − µi|| ≤ ρi,t,δ) = 1 − P(∃t, ||x̂i,t − µi|| ≥ ρi,t,δ) ≥
1 −∑

t
P(||x̂i,t − µi|| ≥ ρi,t,δ) ≥ 1 −∑

t
δ/t2. This justifies the introduction of the t2 term

in the bound, which allows one to define a uniform probability over all steps since we have

thereby: P(∀t, ||x̂i,t − µi|| ≤ ρi,t,δ) ≥ 1− δ −
∞∑
t=2

δ/t2 = 1− δ − δ(π2/6− 1) ≥ 1− 2δ.

Now that we have defined probabilistic deviation bounds for the different estimators, we
can use them conjointly to define the confidence interval of the reward expectation for the
setting of unknown profiles, and thus to upper bound the expected reward for each action
i.

Proposition 6 For every i ∈ K and any t > 0, with probability greater than 1− δ/t2 − δ,
we have:

β>µi ≤ β̂>t−1(x̂i,t + εi,t) + αt−1||x̂i,t + ε̃i,t||V −1
t−1

(13)

with: εi,t =
ρi,t,δβ̂t−1

||β̂t−1||
ε̃i,t =

ρi,t,δx̂i,t√
λ||x̂i,t||V −1

t−1

10



Profile-Based Bandit with Unknown Profiles

Proof The proof is available in appendix A.5.

Compared to the bound given in proposition 4, we find the same two terms of exploita-
tion and exploration. However in this case, profile vectors that are unknown are replaced
by the estimator plus an additional term: εi,t in the former part and ε̃i,t in the latter one.
These terms aim at coping with profile uncertainty, considering confidence ellipsoids for
these profiles as defined in proposition 5. εi,t is collinear with β̂t−1. It is used to translate
the estimator x̂i,t so that β>µi is upper-bounded. ε̃i,t is collinear with x̂i,t. It is used to
translate the estimator x̂i,t so that the V −1

t−1-norm ||µi||V −1
t−1

is upper-bounded. This bound

enables us to derive an optimistic policy in the next section.

3.2. SampLinUCB

In this section, we detail our policy for the setting of unknown profiles, called SampLinUCB,
which is directly derived from the bound proposed in proposition 6. Its process is detailed
in algorithm 1. In words, it proceeds as follows:

1. Initialization of the shared variables V and b used to estimate the mapping parameter
β in lines 1 and 2. The d × d matrix V is initialized with an identity matrix times
the regularization parameter λ (the greater λ is, the more the parameter β will be
constrained to have components close to zero). The vector b is initialized as a null
vector of size d.

2. Initialization of the individual variables ni, x̂i, Ri, Ni and Si for every action in K
(lines 3 to 6). The two latter are additional scalar variables which enable efficient
updates for the shared variables after context observations. Ni counts the number of
times an action has been selected from the beginning, Si sums the rewards collected
by selecting i from the beginning.

3. At each iteration t, for each action i ∈ Ot, observation of the sample xi,t (line 11)
and update of individual variables ni, x̂i and Ri for action i (line 12) and shared
parameters V and b according to these new individual values for i (line 10 and 13).
Since shared parameters are simple sums of elements, they can be simply updated by
first removing old values (line 10) and then adding the new ones when updated (line
13). This is efficiently done without requiring an important memory load thanks to
scalar variables Ni and Si.

4. Computation of the selection score si,t (line 21) for each action i according to equation
14 detailed below, and selection of the action associated with the highest selection
score (line 23) (except in the early stages ≤ K where all actions are selected in turn
to initialize their counts in line 16).

5. Collection of the associated reward (line 25) and update of variables Ni, Si, V and b
according to this new outcome (lines 26 to 28).
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Algorithm 1: SampLinUCB

V = λId×d (Identity matrix of size d);1

b = 0d (Null vector of size d);2

for i ∈ K do3

Ni = 0; Si = 0;4

ni = 0; x̂i = 0d; Ri = +∞;5

end6

for t = 1..T do7

Reception of Ot;8

for i ∈ Ot do9

V = V −Ni
x̂ix̂
>
i

Ri
; b = b− Si

x̂i
Ri

;
10

Observation of xi,t;11

ni = ni + 1; x̂i =
(ni − 1)x̂i + xi,t

ni
; Ri =

√
R2 +

L2S2

ni
;

12

V = V +Ni
x̂ix̂
>
i

Ri
; b = b+ Si

x̂i
Ri

;
13

end14

if t ≤ K then15

Selection of it = t;16

end17

else18

β̂ = V −1b;19

for i ∈ K do20

Computation of si,t according to formula 14 ;21

end22

Selection of it = arg max
i∈K

si,t ;
23

end24

Reception of rit,t;25

Nit = Nit + 1;26

Sit = Sit + rit,t;27

V = V +
x̂it x̂

>
it

Rit
; b = b+ rit,t

x̂it
Rit

;
28

end29

The selection score si,t used in our policy for each action i at any step t is directly
derived from proposition 6:

si,t = (x̂i,t + εi,t)
>β̂t−1 + αt−1||x̂i,t + ε̃i,t||V −1

t−1
(14)

For cases 2 and 3 of the profile delivery mechanism (see at the beginning of the section),
there are actions i with ni,t = 0 in the early steps of the process. No sample has ever been
observed for these actions, which is problematic for the computation of ρi,t,δ, and therefore

12
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the computation of εi,t and ε̃i,t. For the case 2, where we are not active on the process for
observing contexts, this can be solved by simply ignoring actions until at least one sample
of profile has been observed for them. For the case 3 however, samples are only obtained
by selection. Thus, we need to force the observation of a sample for every action in the
first steps. In that way, for actions with ni,t = 0 at any step t, we arbitrarily set si,t = +∞
in order to make the policy favor actions without any knowledge to initialize the process.
Thus, in that case, algorithm 1 selects the K actions in turn in the K first steps of the
process.

The selection score defined in formula 14 corresponds to the upper-bound of the expected
reward for each action, as it is done in all UCB-based policies. Intuitively, it leads the
algorithm to select actions whose profile estimator is either in an area with high potential,
or is sufficiently uncertain to consider still likely that the action can be potentially useful.
The goal is to quickly rule out bad actions, whose confidence ellipsoid does not include
any potentially useful locations w.r.t. the current estimation of β. To better analyze the
algorithm, we propose below a new formulation of the selection score.

Proposition 7 The score si,t from equation 14 can be re-written in the following way:

si,t = x̂>i,tβ̂t−1 + αt−1||x̂i,t||V −1
t−1

+ ρi,t,δ

(
||β̂t−1||+

αt−1√
λ

)
(15)

Proof

si,t = (x̂i,t + εi,t)
>β̂t−1 + αt−1||x̂i,t + ε̃i,t||V −1

t−1

= x̂>i,tβ̂t−1 +
ρi,t,δβ̂

>
t−1

||β̂t−1||
β̂t−1 + αt−1||x̂i,t +

ρi,t,δx̂i,t√
λ||x̂i,t||V −1

t−1

||V −1
t−1

= x̂>i,tβ̂t−1 + ρi,t,δ||β̂t−1||+ αt−1

1 +
ρi,t,δ√

λ||x̂i,t||V −1
t−1

 ||x̂i,t||V −1
t−1

= x̂>i,tβ̂t−1 + αt−1||x̂i,t||V −1
t−1

+ ρi,t,δ

(
||β̂t−1||+

αt−1√
λ

)

This new formulation of the selection score allows one to take a different look at the
algorithm behavior. The first part of the score x̂>i,tβ̂t−1 + αt−1||x̂i,t||V −1

t−1
is similar to a

score that would use the classical OFUL algorithm (although with a different construction of
Vt), with an exploitation term and a classical exploration term considering the uncertainty

on the estimator of β. But it exhibits an additional part ρi,t,δ

(
||β̂t−1||+

αt−1√
λ

)
which is

directly proportional to the coefficient ρi,t,δ and thus enables some exploration w.r.t. the
uncertainty of the profile estimators. This highlights the premium granted to less observed
actions. Note that for the case 1, this additional part is the same for every action. It
therefore could be removed from the score since it does not permit to discriminate some
action w.r.t any other one. However, this new exploration term is particularly useful for the
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case 3, where observations of samples are directly connected to the selection policy, since
it prevents from moving aside some optimal actions that have unluckily provided only not
promising samples in the early steps.

To demonstrate that considering uncertainty on profiles is crucial in that case, let us
consider a scenario where the optimal action i? gets a null vector as the first profile sample.
Then, in a setting where all profile samples are in [0, L]d and all rewards are in [0,+∞], it
suffices that a sub-optimal action i gets a non-null vector as the first profile sample and a
positive value as the first reward to lead to a linear regret from a given step. Indeed, since
we only get samples with all components greater or equal than 0, i will never get a null
vector as a profile estimator. On the other hand, while i? is not selected, its profile estimator
cannot change from the null vector. Thus, with a naive algorithm that would not include
translations w.r.t. uncertainty of profiles, we would have si?,t = x̂>i?,tβ̂t−1 +α||x̂i?,t||V −1

t−1
= 0

for all t until it = i?. Now, the least square estimator of β approximates observed reward
values from estimated profiles. Since we have at least one non-null reward associated with a
non-null profile estimator, β will always output a positive expected reward at least for one
action. Thus, there is always an action i′ with si′,t > 0, which prevents from selecting the
optimal action until the end of the process. This shows that a naive algorithm is not well
fitted here, since it is likely to stay stuck on sub-optimal actions because of wrong knowledge
about profiles. The point is now to show that the proposed additional term enables to solve
this problem and ensures a sub-linear pseudo regret for our profile-based bandit algorithm
with unknown profiles.

3.3. Regret

The following proposition establishes an upper bound for the cumulative pseudo-regret of
the SamplinUCB algorithm proposed above. This is a generic bound for which no assumption
is done on the process generating Ot at each step t.

Proposition 8 (Generic bound) By choosing λ ≥ max(1, L2/
√
R2), with a probability

greater than 1 − 3δ, the cumulative pseudo-regret of the algorithm SampLinUCB is upper-
bounded by:

R̂T ≤ C + 4L

(√
d

λ
log

(
1 + TL2/λ

δ

)
+ 2S

)√
2d log

(
2dT 2

δ

) T∑
t=1

1
√
nit,t

+ 2

(√
d log

(
1 + TL2/λ

δ

)
+
√
λS

)

×

√√√√Td

(√
R2 + L2S2 log

(
1 +

TL2

λd

)
+

4L2

λ
log

(
2dT

δ

) T∑
t=1

1

nit,t

)
(16)

Proof Available in appendix A.6.
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The study of dominant factors of the bound given above enables to obtain the following
proposition for the three considered settings of the context delivery process, where we
removed dependencies on L, λ, R and S to simplify the notations.

Proposition 9 (Bounds for the three profile delivery settings) For each of the three
considered settings for the profile delivery process, the upper bound of the cumulative pseudo-
regret is2:

• For the case 1, with a probability greater than 1− 3δ:

R̂T = O
(
d log

(
T

δ

)√
T log(T )

)
(17)

• For the case 2, with a probability greater than (1−3δ)(1−δ), and for T ≥ 2 log(1/δ)/p2:

R̂T = O
(
d log

(
T

δ

)√
T

log(T )

p

)
(18)

where p is the probability of profile delivery for any action at each step.

• For the case 3, with a probability greater than 1− 3δ:

R̂T = O
(
d log

(
T

δ

)√
TK log(

T

K
)

)
(19)

Proof The proofs for these three bounds are respectively given in appendix A.7.1, A.7.2
and A.7.3.

Thus, in every setting our SamplinUCB algorithm ensures a sub-linear upper bound for
its cumulative pseudo-regret. The bound given for case 2 owns an additional dependency in
p, the probability of context delivery for each action at each step. Obviously, the higher this
probability is, the faster the uncertainty about profiles decreases. Note that this bound for
case 2 is only valid from a given number of iterations inversely proportional to p2, since it
requires a minimal number of observations to hold. The bound for case 3 owns a dependency
in the number of available actions K. This comes from the fact that only the selected action
reveals its profile at each step, which re-introduces the need of considering each action a
minimal number of times, as it is the case with traditional stationary approaches such as
the classical UCB algorithm. However, as we show in our experiments below, the use of the
structure of the actions, which enables some common learning of reward distributions, leads
to greatly better results than existing stationary algorithms in various cases.

2. O renders the relation ”dominated by”, which means that f = O(g) implies that there exists a strictly
positive constant C such that asymptotically we have: |f | ≤ C|g|.
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3.4. Extension to the multiple-plays setting

This short section extends our algorithm for the multiple-plays setting, where multiple
actions are chosen at each step. Rather than only selecting a single action it at any step t,
the algorithm has now to select a set Kt ⊆ K of k ≥ 1 actions for which it gets rewards.
Algorithm 1 is therefore adapted to this setting, by simply selecting the k best actions at
each step (those that get the best selection scores w.r.t. formula 14) rather than only the
best one (line 23 of the algorithm). The aim is still to maximize the cumulative reward
through time, where all rewards at any step t are simply summed to form the collected
reward at step t (although other Lipschitz functions could have been considered for the
collective reward construction from the k individual ones, such as proposed in Chen et al.
(2013)).

Definition 1 The cumulative pseudo-regret of our setting of bandit with multiple plays is
defined as:

R̂T =T
∑
i∈K?

µ>i β −
>∑
t=1

∑
i∈Kt

µ>i β (20)

with K? the set of k optimal actions, i.e. the k actions with the highest values µ>i β.

Proposition 10 (Generic bound for the multiple-plays setting) By choosing λ ≥
max(1, L2/

√
R2), with a probability greater than 1 − 3δ, the cumulative pseudo-regret for

our SampLinUCB algorithm with multiple selections is upper bounded by:

R̂T ≤ C + 4L

(√
d

λ
log

(
1 + TkL2/λ

δ

)
+ 2S

)√
2d log

(
2dT 2

δ

) T∑
t=1

∑
i∈Kt

1
√
ni,t

+ 2

(√
d log

(
1 + TkL2/λ

δ

)
+
√
λS

)

×

√√√√Td

(√
R2 + L2S2 log

(
1 +

TkL2

λd

)
+

4L2

λ
log

(
2dT

δ

) T∑
t=1

∑
i∈Kt

1

ni,t

)
(21)

Proof The proof is available in appendix A.8.

Equivalent bounds for the three cases of context delivery can be directly derived from
this new generic bound by applying the same methods as in the previous section. This
allows us to apply our algorithm for tasks where multiple actions can be triggered at each
step, such as in the data capture task considered in our experiments in section 4.2.

4. Experiments

This section is divided in two parts. First, we propose a series of experiments on artificial
data in order to observe the behavior of our approach in well-controlled environments. Then,
we give results obtained on real-world data, for a task of data capture from social media.
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4.1. Artifical Data

4.1.1. Protocol

Data Generation: In order to assess the performances of the SamplinUCB algorithm,
we propose to first experiment it in a context of simple selection (k = 1) on artificially
generated data. For that purpose, we set the horizon T to 30000 iterations, the number of
available actions K to 100 and the size of the profile space to d = 5 dimensions. Then, we

sampled a mapping vector β randomly in
[
−S/
√
d..S/

√
d
]d

, in order to fulfill the ||β|| ≤
S = 1 condition. For each arm i, we then sampled a random vector µi uniformly in[
−L/
√
d..L/

√
d
]d

with L = 1. Finally, for each iteration t ∈ {1, ..., T}, we proceeded as

follows to generate simulated data:

1. For each action i ∈ {1, ...,K}, we sampled a vector xi,t from the multivariate Gaussian
N (µi, σ

2I). Note that, in order to assess the influence of profile samples variations
on the performances of SampLinUCB, we tested different values for σ ∈ {0.5, 1.0, 2.0}.
Moreover, in order to guarantee that ||xi,t|| ≤ L = 1, while still getting sampled
centered on µi, the Gaussian is truncated symmetrically around µi. This is illustrated
by figure 3 for d = 1, where hatched areas correspond to excluded values. On the left
is given the case with µi > 0 and on the right the case with µi < 0;

2. For each action i ∈ {1, ...,K}, we sampled a reward ri,t from a Gaussian with mean
µ>i β and variance R2 = 1;

0 𝜇 𝐿-‐𝐿 2 𝜇	  -‐𝐿

(a) Case µ > 0

0𝜇 𝐿-‐𝐿 2 𝜇 + 𝐿

(b) Case µ < 0

Figure 3: Profile Samples Generation Process: Truncated Gaussians

To emhasize the need of exploration on profiles, note that we set to null vectors the
profile samples of the 100 first steps of each dataset. 100 datasets have been generated in
such a way. The results given below correspond to averages on these artificial datasets.
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Experimented Policies: We propose to compare SampLinUCB to the following bandit
policies:

• UCB: the well-known UCB approach (Auer et al., 2002), which selects at each step the
action with the best upper-confidence bound, estimated w.r.t. past rewards of actions,
without any assumption about some latent structure of the actions;

• UCBV: the UCBV algorithm (Audibert et al., 2009) is an extension of UCB, where the
variance of rewards for each action is included in the selection scores to lead the policy
to ground their estimations in an higher number of observations for noisier actions.

• UCB−δ: the UCB−δ algorithm (Abbasi-Yadkori et al., 2011) is a variant of UCB where
optimism is ensured via a concentration inequality based on auto-normalised process
(de la Peña et al., 2009), with a confidence level of 1− δ. In our experiments, we set
δ = 0.05;

• Thompson: the Thompson Sampling algorithm (Thompson, 1933) introduces random-
ness in the exploration process by sampling reward expectations from their posterior
at each time-step, following a Gaussian assumption of the rewards;

• MOSS: a variant of UCB, which usually obtains better results than the classical UCB but
requires the knowledge about the horizon T (Audibert and Bubeck, 2009);

None of these approaches use any side information. Therefore, the only noise they have
to deal with comes from the variance R2 of the Gaussian distributions of rewards. For
SampLinUCB an additional difficulty comes from the variations of the observed samples
of profiles. The point is therefore to know whether these samples can be leveraged to
exhibit some structure of the actions, that can benefit to stationary bandit tasks, despite
such variations. Additionaly, the following two contextual baselines are considered in our
experiments to analyze the performances of our approach:

• LinUCB: the very famous contextual approach that assumes a linear mapping between
observed contexts and rewards (Li et al., 2010). In our case, observed profile samples
correspond to the contexts that LinUCB takes into account in its selection policy. We
consider this baseline in the interesting setting where contexts are only delivered for
the selected arms (case 3 described above). In this setting, non selected arms deliver
null context vectors for the next step;

• MeanLinUCB: this baseline corresponds to our approach but without the exploration
term w.r.t. the profiles. Empirical means are considered as true profiles at each
step of the process (this comes down to set ρi,t,δ to 0 for every arm and every step).
As discussed above (see the last paragraph of section 3.2), such a baseline cannot
guarantee a sub-linear regret since it can infinitely stay stuck on sub-optimal arms,
but an empirical evaluation of its performances is useful to understand the benefits of
the proposed approach.

To analyze the performances of SampLinUCB, we implement the three scenarios studied
in previous sections. In the following, our approach is denoted SampLinUCB p=<p>, where p
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corresponds to the probability for any action to get a sample of its profile at every iteration.
Different values for p are considered: p ∈ {0, 0.005, 0.01, 1}. Note that p = 1 corresponds
to the case 1, while p = 0 refers to the case 3. In this latter instance, as considered in the
previous sections, the samples delivery process is replaced by the ability to observe samples
for the selected actions at each iteration. Note also that, for clarity and analysis purposes,
in instances with p > 0 we do not observe samples for the selected actions (which exactly
follows the cases studied in the previous section)3. In every instance, we set δ = 0.05 for
these experiments. Also, to avoid a too large exploration on profiles in the early steps, we
multiplied each ρi,t,δ by a 0.01 coefficient, which still guarantees a sub-linear regret in the
limit.

4.1.2. Results

Figures 4(a), 4(b) and 4(c) report the evolution of the cumulative pseudo-regret through
time for the tested policies, for σ values (variance of profile samples) respectively set to
σ = 2.0, σ = 1.0 and σ = 0.5. Note that the curves of UCB, UCB-δ, UCBV, Thompson and MOSS

are identical in every plot since their performances do not depend on the profile samples. We
first notice from these plots that UCB-δ and UCBV do not provide good results on these data.
It appears that these two policies over-explore during the whole bandit process. Thompson

and MOSS obtain better results in average, but still far from the best contextual approach
SampLinUCBp=1. This confirms that using profiles of arms can be greatly advantegeous
when there exist a linear correlation between these profiles and the associated rewards. In
this setting (which corresponds to the case 1 studied above), the profiles are discovered
step by step, but since we get a sample for every arm at each iteration, the estimators
quickly converge towards the true profiles. This explains the very good results for this easy
setting, and why there is nearly no differences in the results of SampLinUCBp=1 for the three
considered sample variances.

Let us now focus on the results provided by our SampLinUCB algorithm when only a
subset of arms gets profile samples at each step of the process. As expected, the more the al-
gorithm observes samples, the better it performs. However, we remark that SampLinUCBp=0

obtains better results than SampLinUCBp=0.005 for σ = 2 and σ = 1, and even better than
SampLinUCBp=0.01 when σ = 2 (while observing the same rate of samples as in this latter
setting). This denotes a stronger robustness to the profile sample variance. By dynamically
selecting the arms to observe, it is able to focus on the improvement of useful estima-
tors rather than getting as many samples but for randomly selected arms (and potentially
for arms that could be quickly discarded). In this interesting setting, SampLinUCB always
outperforms non-contextual approaches for the studied sample variances, while we note a
significant improvement of the results when the variance is low.

At last, we can note the very weak - near random - results obtained by LinUCB, which
directly bases its strategy on the observed samples. More interesting are the weak results
obtained by MeanLinUCB, which exhibits a linear regret. This emphasizes the crucial role
of the profile exploration term of SampLinUCB: While SampLinUCBp=0 is able to reconsider

3. Note that we could easily imagine tasks, which correspond to some mix of cases 2 and 3, where we both
get samples from an external process and for the selected actions. For such cases, we can reasonably
assume better results than those reported below for cases 2 and 3, since the process would benefit from
both sample sources.
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bad profiles observed in the early steps of the process, MeanLinUCB usually stays stuck on
the first actions that provided a non-nul sample associated with a positive reward. If they
are lucky, LinUCB and MeanLinUCB can exhibit good performances on some instances, but
they are clearly not well fitted for the bandit setting considered in this paper.
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Figure 4: Cumulative pseudo-regret through time on artificial data with different settings
for the profile samples delivery process (from very noisy samples on the left, to samples
with low variance on the right).

To conclude, it appears from these first experiments that our SampLinUCB algorithm,
while dealing with a doubled uncertainty (both on the mapping parameters and the profile
estimators), is able to leverage the latent structure that it discovers through time from noisy
samples of the profiles.

4.2. Real World Experiments: Social Data Capture

In this section we propose to apply our SampLinUCB algorithm to the task of dynamic
data capture from Twitter introduced in (Gisselbrecht et al., 2015). According to a given
information need, the aim is to collect relevant data from the streaming API proposed by
Twitter. This API provides messages published by users on the social network in real-
time. In this setting, each user account is associated with a stream of messages that can
be monitored. However, for various reasons (notably w.r.t. constraints set by the social
media), it is not possible to collect the whole activity of the social media. Only streams of
messages published by a subset of k users can be monitored simultaneously (k << K). The
aim is therefore to focus on users that are the most likely to publish messages that fit with
the data need. The difficulty is that we do not know anything about the users beforehand,
everything must be discovered during the capture process. We have thus to deal with an
exploitation/exploration problem that suits well with the bandit setting studied in this
paper.

Given a time period divided in T steps, the agent has to select, at each iteration t ∈
{1, ..., T} of the process, a subset Kt of k user accounts to follow, among the whole set of
possible users K (Kt ⊆ K). Given a relevance score ri,t assigned to the content posted by
user i ∈ Kt during iteration t of the process (the set of tweets he posted during iteration t),
the aim is to select at each iteration t the set of user accounts that maximize the sum of
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collected scores:

max
(Kt)t=1..T

T∑
t=1

∑
i∈Kt

ri,t (22)

4.2.1. Rewards

In our experiments, we attempt to focus on users that have a great impact on some specified
thematic. The Follow Streaming API of Twitter provides in real-time not only tweets posted
by the followed users, but also all the re-tweets and replies to these users other users post
on the network. Our reward function takes all of these messages into account to provide a
reward score ri,t for each user i ∈ Kt after each capture period t:

ri,t = tanh

 ∑
ω∈Ωi,t

gγ(ω)

 (23)

where Ωi,t contains the original messages from i, the re-tweets of messages from i and the
replies to i during the period t, and gγ is a function returning 1 if the content of the message
as argument is judged as belonging to the desired thematic γ, 0 otherwise. To build this
function gγ , we trained a SVM topic classifier on the 20 Newsgroups dataset (with TF bag
of words representations of the texts, after stemming via the Porter Stemmer algorithm).
We finally focus on 4 different topics γ: Politics, Religion, Science and Sport. Four different
reward functions are therefore considered in the following (one for each topic).

4.2.2. Profiles

Following the setting of our profile based bandit, we assume that each user i of the social
network is associated to an unknown vector µi corresponding to its profile. In these ex-
periments, we assume that the profile of a user i corresponds to the mean of its content

distribution: µi = lim
T→∞

1

T

∑T
t=1 xi,t, where xi,t is a given representation of the content

posted by i during step t− 1:

xi,t+1 = f(
∑
ω∈Ψi,t

ω) (24)

where Ψi,t ⊆ Ωi,t contains all messages posted by i during step t and ω ∈ Rm (with m the
size of the vocabulary) is a TF bag of words representation of a message (after stemming
via the Porter Stemmer algorithm). The function f aims at reducing the dimension of
the representations, since the dimension d of the profile samples is the main factor of
complexity in our algorithm, due to the required d×d matrix inversions. In order to reduce
the dimension of profiles, we used a Latent Dirichlet Allocation method specifically designed
for short texts (Hong and Davison, 2010), which aims at modeling texts as a mixture of
topics. We set the number of topics to d = 30 and learned the LDA model on a preliminary
3-days random capture from Twitter.
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4.2.3. Datasets

In order to be able to test different policies and simulate a real time decision process several
times, we propose to conduct our experiments on offline datasets:

• USElections: dataset containing 3 587 961 messages produced by 5000 users during
the ten days preceding the US presidential elections in 2012. The 5000 chosen accounts
are the first ones who used either “Obama”, “Romney” or “#USElections” from a
preliminary random capture on Twitter.

• OlympicGames: dataset containing 15 010 322 messages produced by 5000 users in
August 2016 during a period of three weeks covering the Olympic Games of Rio. The
5000 chosen accounts are the ones that were observed to use the most many hashtags
“#Rio2016”, “#Olympics”, “#Olympics2016” or “#Olympicgames” within a period
of preliminary random capture of three days before the Olympic Games.

• Brexit : dataset containing 2 118 235 messages produced by 5000 users during the
first week of October 2016. The 5000 chosen accounts are the first ones who used
“#Brexit” from a preliminary random capture from Twitter.

4.2.4. Results

As done in (Gisselbrecht et al., 2015), we set k, the number of listened users at each time
step, to 100, and the size of an iteration to 100 seconds. In these experiments, we assume
L = S = R = 1 and we set δ = 0.05 as done with artificial data.

Figures 5, 6 and 7 give the evolution of the cumulative reward through time for the
datasets USElections, OlympicGames and Brexit respectively. In every case, we consider
the four reward functions corresponding to the four topics Politic, Religion, Science and
Sport. In order to lighten the plots, we only give in these figures the results of SamplinUCB
for p = 0 and p = 1. In every plot, our algorithm is compared to the same baselines as
described in section 4.1, where the policies are extended for the multiple-plays setting (as
done in (Gisselbrecht et al., 2015)).

A first important observation from these plots is that in every setting, our algorithm
SampLinUCB obtains better results than every other policy, even CUCBV, the extension of
UCBV for the multiple-plays setting. Although CUCBV has demonstrated good performances
for the task of social data capture (Gisselbrecht et al., 2015), where a high variance can
be observed in the contents posted by users, the use of profiles associated to users of the
networks enables an even more efficient exploration process. Globally, same manner as
with artificial data, the performances of our approach increase with p, with a maximum
reached when p = 1. Note however that the setting p = 0 (the case 3 studied above) is
the most realistic one, since it does not use anything but the content collected by followed
users at each step, which is the case in practice when collecting data from a social media
such as Twitter. Interestingly, even for this setting the results obtained are always better
than those of every compared approach. The improvement w.r.t. CUCBV is less significant
for the Sport reward function for which greatly more rewards exist in the datasets (greatly
more messages are categorized as sport), which allows non-contextual approaches to quickly
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Figure 5: Evolution of the cumulative reward through time on the USElections dataset,
according to the three considered reward functions Politic, Religion, Science and Sport.

collect knowledge about reward expectations of users. But for every other reward function
SampLinUCBp=0 always obtained results comprised between 1.5 and 3 times the ones obtained
with the best non-contextual approach. Note also the crucial role of the exploration term
for profile discovery ρ, since MeanLinUCB, which considers current empirical sample means
as true profiles, always obtains greatly lower results than SampLinUCBp=0 (except for the
Science reward function on the OlympicGames and the Brexit datasets, where it benefits
from good rewards and profile samples observed for some useful users in the initialization
steps of the process). At last, as expected, LinUCB, which directly bases its selection policy
on profile samples observed at the current step, obtains very bad results (near random).
Since obtaining nul context vectors for every user not selected at the previous step, its
selection mechanism very early focuses on a given set of users without ever reconsidering the
others (except in the rare cases of context samples leading to negative reward expectations
according to β). All these results highlight the interest of the proposed approach, based on
confidence balls of the arm profiles, for tasks where contexts are only observed when the
arms are selected .

23



Lamprier, Gisselbrecht and Gallinari

0 2500 5000 7500 10000 12500 15000 17500

Time step

0

500

1000

1500

2000

2500

3000

3500

C
um

ul
at

iv
e

R
ew

ar
d

Random

CUCB

UCB − δ
CUCBV

MOSS

Thompson

LinUCB

MeanLinUCB

SampLinUCBp=0

SampLinUCBp=1

(a) Politic

0 2500 5000 7500 10000 12500 15000 17500

Time step

0

1000

2000

3000

4000

5000

6000

7000

C
um

ul
at

iv
e

R
ew

ar
d

Random

CUCB

UCB − δ
CUCBV

MOSS

Thompson

LinUCB

MeanLinUCB

SampLinUCBp=0

SampLinUCBp=1

(b) Religion

0 2500 5000 7500 10000 12500 15000 17500

Time step

0

5000

10000

15000

20000

25000

30000

C
um

ul
at

iv
e

R
ew

ar
d

Random

CUCB

UCB − δ
CUCBV

MOSS

Thompson

LinUCB

MeanLinUCB

SampLinUCBp=0

SampLinUCBp=1

(c) Science

0 2500 5000 7500 10000 12500 15000 17500

Time step

0

100000

200000

300000

400000

500000

C
um

ul
at

iv
e

R
ew

ar
d

Random

CUCB

UCB − δ
CUCBV

MOSS

Thompson

LinUCB

MeanLinUCB

SampLinUCBp=0

SampLinUCBp=1

(d) Sport

Figure 6: Evolution of the cumulative reward through time on the OlympicGames dataset,
according to the three considered reward functions Politic, Religion, Science and Sport.

Figures 8, 9 and 10 give the relative final cumulative rewards for different settings of the
sample delivery process on the datasets USElections, OlympicGames et Brexit respectively
(each score is normalized according to the score obtained when p = 1). Here we still observe
that performances tend to decrease with p, for settings where p > 0. However it must be
noticed that the setting p = 0 obtains results very close to other settings: it always obtains
at least 80% of the final cumulative reward obtained when every user delivers a sample at
each step of the process (p = 1). Better, in many cases SampLinUCBp=0 succeeds in obtaining
an higher final cumulative reward than p = 0.01 and p = 0.02. This is particularly true
for the Brexit dataset where the dynamic selection of samples to be delivered appears
very effective. On that dataset, SampLinUCBp=0 even usually reaches the performances of
SampLinUCBp=0.05, while observing greatly less profile samples at each step (only 100 over
5000 at each iteration, which corresponds to the observation rate of the setting p = 0.02).
While settings with p > 0 are greatly favored by the fact that they do not need to play an
arm to get a sample of its profile, SampLinUCBp=0 is not only active for the discovery of the
mapping parameters, but also for the estimation of profiles. Its knowledge about profiles
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Figure 7: Evolution of the cumulative reward through time on the Brexit dataset, according
to the three considered reward functions Politic, Religion, Science and Sport.

is directly connected to its selection strategy, with a selection score that favors promising
actions with high uncertainty about their profile. This leads to an algorithm that efficiently
deals with a trade-off between exploitation of good actions and exploration on both the
mapping parameter and the profiles of actions.

5. Conclusion

In this paper, we focused on structured stochastic bandits, where rewards depend on some
constant profile associated with actions. More specifically, we introduced the case where the
associated profiles are unknown beforehand, and must be discovered from samples delivered
during the process. This setting implies a doubled uncertainty, both on profile estimators
and on reward predictors, for which we designed a dedicated algorithm, named SamplinUCB,
that seeks at leveraging the structure of the unknown profiles in its exploration process.
Various settings for the profile samples delivery process have been considered, for which
we gave theoretical convergence guarantees. Finally, experiments on both artificial data

25



Lamprier, Gisselbrecht and Gallinari

p=1 p=0.5 p=0.1 p=0.05 p=0.02 p=0.01 p=0
0.0

0.2

0.4

0.6

0.8

1.0

F
in

al
C

um
ul

at
iv

e
R

ew
ar

d

(a) Politic

p=1 p=0.5 p=0.1 p=0.05 p=0.02 p=0.01 p=0
0.0

0.2

0.4

0.6

0.8

1.0

F
in

al
C

um
ul

at
iv

e
R

ew
ar

d

(b) Religion

p=1 p=0.5 p=0.1 p=0.05 p=0.02 p=0.01 p=0
0.0

0.2

0.4

0.6

0.8

1.0

F
in

al
C

um
ul

at
iv

e
R

ew
ar

d

(c) Science

p=1 p=0.5 p=0.1 p=0.05 p=0.02 p=0.01 p=0
0.0

0.2

0.4

0.6

0.8

1.0

F
in

al
C

um
ul

at
iv

e
R

ew
ar

d

(d) Sport

Figure 8: Final normalized cumulative rewards for SampLinUCB on USElections with differ-
ent p settings.
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Figure 9: Final normalized cumulative rewards for SampLinUCB on OlympicGames with
different p settings.

and a task of data capture from social networks demonstrate the very good behavior of the
proposed approach. Ongoing works concern the inclusion of a non-stationary part in the
selection strategy, where profiles may vary over time according to some evolving latent state
of the actions.
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Appendix A. Appendix

A.1. Proof of proposition 1

The two following lemmas directly come from the definition of the sub-gaussian variables.

Lemma 1 Let X be a random variable centered on 0. Then, X is said sub-gaussian with
constant R if one of the two equivalent following conditions holds:

• Laplace Condition: ∃R > 0,∀λ ∈ R,E[eλX ] ≤ eR2λ2/2
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Figure 10: Final normalized cumulative rewards for SampLinUCB on Brexit with different p
settings.

• Sub-Gaussian Tail: ∃R > 0, ∀γ > 0, P (|X| ≥ γ) ≤ 2e−γ
2/(2R2)

Lemma 2 Let X1 and X2 be two sub-gaussian variables with respective constant R1 and
R2. Let α1 and α2 be two real scalars. Then the variable α1X1 +α2X2 is sub-gaussian too,
with constant

√
α2

1R
2
1 + α2

2R
2
2.

The lemma 3 can be deduced from the application of the lemma 1 in the context of our
specific problem of profile-bandit with unknown profiles, where the deviation of the profile
estimators is a sub-gaussian variable.

Lemma 3 Let us assume that for any i all samples xi,t ∈ Rd observed for i at every step
t > 0 are iid with mean µi ∈ Rd. Let us also assume that ||xi,t|| ≤ L for every i and t, and
that ||β|| ≤ S. Then, for every i, and at each step t, β>εi,t is sub-gaussian with constant
LS
√
ni,t

(with εi,t = µi − x̂i,t).

Proof

By using the Cauchy-Schwarz inequality, for all i and at each step t we have: |x>i,tβ| ≤
||β||||x̂i,t|| ≤ LS. Then, given that for all i, all samples xi,t are iid and E[xi,t] = µi, we can
apply the Hoeffding inequality to the random variable β>x̂i,t with mean µ>i β:

∀γ > 0,P
(
|β>x̂i,t − β>µi| > γ

)
= P

(
|β>εi,t| > γ

)
≤ 2e−

ni,tγ
2

2S2L2

which allows us to say that ε>i,tβ is sub-gaussian with constant
LS
√
ni,t

.

We finally use the lemma 2 with the sum of β>εi,t and ηi,s to prove the proposition
1, which establishes the random variable β>εi,t + ηi,s is conditionally sub-gaussian with

constant Ri,t =

√
R2 +

L2S2

ni,t
.

27



Lamprier, Gisselbrecht and Gallinari

A.2. Proof of the proposition 3

To lighten notations, we removed the dependence on t in A and X. We have:

β̂t−1 = arg min
β

t−1∑
s=1

1

Ris,t
(β>x̂is,t − ris,s)2 + λ||β||2

= (X>AX + λI)−1X>AY

= (X>AX + λI)−1X>A(Xβ + η
′
)

= (X>AX + λI)−1X>Aη
′
+ (X>AX + λI)−1(X>AX + λI)β

− (X>AX + λI)−1λIβ

= (X>AX + λI)−1X>Aη
′
+ β − λ(X>AX + λI)−1β

Then, the following main arguments of this proof come from the theory of auto-
normalized process (de la Peña et al., 2009). By using a similar method to the one used in
(Abbasi-Yadkori et al., 2011), we get:

||β̂t−1 − β||Vt−1 ≤ ||X>Aη
′ ||V −1

t−1
+ λ||β||V −1

t−1

with Vt−1 = λI + X>AX, which is semi-definite positive since λ > 0. Since ||β|| ≤ S and
||β||2

V −1
t−1

≤ ||β||2/λmin(Vt−1) ≤ ||β||2/λ, we get:

||β̂t−1 − β||Vt−1 ≤ ||X>Aη
′ ||V −1

t−1
+
√
λS

By using the proposition 1 of (Abbasi-Yadkori et al., 2011), and since we know from

proposition 1 that
η
′
s

Ris,t
is sub-gaussian with constant 1, for any δ > 0, with a probability

of at least 1− δ, for every t ≥ 0 we have:

||X>Aη′ ||V −1
t−1

= ||
t−1∑
s=1

η
′
s

Ris,t
x̂is,t||V −1

t−1

≤

√√√√2 log

(
det(Vt−1)1/2det(λI)−1/2

δ

)

≤
√
d log

(
1 + tL2/λ

δ

)

A.3. Proof of the proposition 4

Proof Let us assume that the inequality of the proposition 3 is valid. Therefore, we have
for all t > 0 and every i ∈ K:
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β̂>t−1µi + αt−1||µi||V −1
t−1
− β>µi =(β̂t−1 − β)>µi + αt−1||µi||V −1

t−1

≥− ||β̂t−1 − β||Vt−1 ||µi||V −1
t−1

+ αt−1||µi||V −1
t−1

≥− αt−1||µi||V −1
t−1

+ αt−1||µi||V −1
t−1

=0

A.4. Proof of the proposition 5

With ||xi,t|| ≤ L, we know that, for any j ∈ [1..d], |xji,t| ≤ L. Thus, we can apply the
Hoeffding inequality to each dimension of the profile estimators:

∀γ > 0 : P
(
|x̂ji,t − µ

j
i | > γ/

√
d
)
≤ 2e−

ni,tγ
2

2L2d

Then, by using the fact that ||x̂i,t − µi|| ≤
1√
d

d∑
i=1
|x̂ii,t − µii| and the uniform bound

property, we get:

P (||x̂i,t − µi|| ≤ γ) ≥ 1− 2de−
ni,tγ

2

2L2d

Thus, for every i ∈ {1, . . . ,K} and every step t > 0, with a probability of at least
1− δ/t2:

||x̂i,t − µi|| ≤ L
√

2d

ni,t
log

(
2dt2

δ

)
This bound for the deviation of the profile estimator can be less restrictive than the base
assumption which states that for any i ∈ K and t ≥ 0, ||xi,t|| ≤ L. From this assumption
we indeed know that, ||x̂i,t|| ≤ L, ||µi|| ≤ L and thus ||x̂i,t − µi|| ≤ 2L .

We therefore consider the following bound that holds for any t ≥ 0 with a probability
greater than 1− δ/t2:

||x̂i,t − µi|| ≤ min(L

√
2d

ni,t
log

(
2dt2

δ

)
, 2L) = ρi,t,δ

A.5. Proof of the proposition 6

Proof Let us assume that the inequality of the proposition 5 is valid. Therefore, we have:

• ||µi||V −1
t−1
−||x̂i,t||V −1

t−1
≤ ||µi−x̂i,t||V −1

t−1
≤ ||µi−x̂i,t||/

√
λ ≤ ρi,t,δ/

√
λ. Thus: ||µi||V −1

t−1
≤

||x̂i,t||V −1
t−1

+ ρi,t,δ/
√
λ = ||x̂i,t + ε̃i,t||V −1

t−1
, with ε̃i,t = ρi,t,δx̂i,t/(

√
λ||x̂i,t||V −1

t−1
).
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• |β̂>t−1(x̂i,t − µi)| ≤ ||β̂t−1||||(x̂i,t − µi)|| ≤ β̂>t−1εi,t, with εi,t = ρi,t,δβ̂t−1/||β̂t−1||.

By using these two results and the uniform bound property, we can proof the proposition:

β̂>t−1(x̂i,t + εi,t) + αt−1||x̂i,t + ε̃i,t||V −1
t−1
− β>µi

=(β̂t−1 − β)>µi + αt−1||x̂i,t + ε̃i,t||V −1
t−1
− β̂>t−1(µi − x̂i,t) + β̂>t−1εi,t

≥− ||β̂t−1 − β||Vt−1 ||µi||V −1
t−1

+ αt−1||x̂i,t + ε̃i,t||V −1
t−1

+ β̂>t−1(x̂i,t − µi + εi,t)

≥− αt−1||µi||V −1
t−1

+ αt−1||x̂i,t + ε̃i,t||V −1
t−1

+ β̂>t−1(x̂i,t − µi + εi,t)

≥− αt−1||x̂i,t + ε̃i,t||V −1
t−1

+ αt−1||x̂i,t + ε̃i,t||V −1
t−1

+ β̂>t−1(x̂i,t − µi + εi,t)

≥0

A.6. Proof of the proposition 8

Lemma 4 For every i ∈ K and t > 0, with a probability of at least 1− δ/t2 − δ, we have:

β̂>t−1(x̂i,t + εi,t) + αt−1||x̂i,t + ε̃i,t||V −1
t−1
− β>µi
≤ 2αt||x̂i,t||V −1

t−1
+ 4
√
d(αt−1/

√
λ + S)ρi,t,δ

Proof

As for proposition 6, we assume that the inequality of proposition 5 holds. Then, noting
that ||εi,t||V −1

t−1
≤ ||εi,t||/

√
λ = ρi,t,δ/

√
λ and ||ε̃i,t||V −1

t−1
= ρi,t,δ/

√
λ, we have:

β̂>t−1(x̂i,t + εi,t) + αt−1||x̂i,t + ε̃i,t||V −1
t−1
− β>µi

=(β̂t−1 − β)>µi + αt−1||x̂i,t + ε̃i,t||V −1
t−1
− β̂>t−1(µi − x̂i,t) + β̂>t−1εi,t

≤||β̂t−1 − β||Vt−1 ||µi||V −1
t−1

+ αt−1||x̂i,t + ε̃i,t||V −1
t−1

+ β̂>t−1(x̂i,t − µi + εi,t)

≤2αt−1||x̂i,t + ε̃i,t||V −1
t−1

+ 2||β̂t−1||Vt−1 ||εi,t||V −1
t−1

≤2αt−1||x̂i,t||V −1
t−1

+ 2αt−1||ε̃i,t||V −1
t−1

+ 2(αt−1 + S
√
λ)||εi,t||V −1

t−1

≤2αt−1||x̂i,t||V −1
t−1

+ 4(αt−1/
√
λ+ S)ρi,t,δ
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Lemma 5 For every t, with a probability of at least 1− δ/t2− δ, the instantaneous pseudo-
regret of the algorithm SampLinUCB, noted regt = β>µi? − β>µit, is upper-bounded as:

regt ≤ 2αt−1||x̂it,t||V −1
t−1︸ ︷︷ ︸

reg
(1)
t

+ 4(αt−1/
√
λ+ S)ρit,t,δ︸ ︷︷ ︸

reg
(2)
t

Proof The previous lemma allows us to say that for all t:
sit,t ≤ β>µit + 2αt−1||x̂i,t||V −1

t−1
+ 4(αt−1/

√
λ+ S)ρi,t,δ

Now, given the selection policy of SampLinUCB and the proposition 6, we get for all t:
sit,t ≥ si?,t ≥ β>µi? . Thus:

regt ≤ sit,t − β>µit ≤ 2αt−1||x̂i,t||V −1
t−1

+ 4(αt−1/
√
λ+ S)ρi,t,δ

Next, we use the uniform bound property, the fact that
∞∑
t=2

δ

t2
= δ(π2/6−1) ≤ δ and the

fact that in the proposition 3 the bound is uniform (i.e., it holds for all step t simultaneously)
to say that, with a probability of at least 1− 2δ:

T∑
t=1

reg
(2)
t ≤ C +

T∑
t=2

4(αt−1/
√
λ+ S)ρit,t,δ

≤ C +

T∑
t=2

4(αt−1/
√
λ+ S)L

√
2d

ni,t
log

(
2dt2

δ

)

≤ C + 4L(αT /
√
λ+ S)

√
2d log

(
2dT 2

δ

) T∑
t=2

1
√
nit,t

On another hand, we have:

T∑
t=1

reg
(1)
t ≤

T∑
t=1

2αt−1||x̂it,t||2V −1
t−1

≤

√√√√T
T∑
t=1

4α2
t−1||x̂it,t||2V −1

t−1

≤ 2αT

√√√√T

T∑
t=1

||x̂it,t||2V −1
t−1

Now, it remains to upper-bound the term
T∑
t=1
||x̂it,t||2V −1

t−1

.

For that purpose, we introduce the following notation: νi,t,δ = L
√

2d/(ni,t) log (2dT/δ).
By using again the Hoeffding inequality, with a probability of at least 1 − δ/T , we get for
all s ≤ t− 1:
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||x̂is,t|| ≤ ||µis ||+ νis,t,δ

With ε̌i,t = min(νi,t,δ, ||µi||)µi/||µi||, we get, for all s ≤ t− 1:

1/
√
Ris,s||µis − ε̌is,s|| ≤ 1/

√
Ris,t||x̂is,t||

Then, we arrive to:

Vt−1 = λI +

t−1∑
s=1

1

Ris,t
x̂is,tx̂

>
is,t ≥ λI +

t−1∑
s=1

1

Ris,s
(µis − ε̌is,s)(µis − ε̌is,s)> = Wt−1

Which means that for every vector x: ||x||V −1
t−1
≤ ||x||W−1

t−1
.

Let us now define ε̂i,t = νi,t,δµi/(
√
λ||µi||W−1

t−1
), such that for all s ≤ t− 1:

||x̂is,t||W−1
t−1
≤ ||µis + ε̂is,s||W−1

t−1

and

||ε̂is,s||W−1
t−1

= νis,s,δ/
√
λ

Finally, by using the uniform bound property and the fact that
T∑
t=1

δ

T
= δ, with a

probability of at least 1− δ:

T∑
t=1

||x̂it,t||2V −1
t−1
≤

T∑
t=1

||x̂it,t||2W−1
t−1

≤
T∑
t=1

||µit + ε̂it,t||2W−1
t−1
≤

T∑
t=1

||µit + ε̂it,t − ε̌it,t + ε̌it,t||2W−1
t−1

≤
T∑
t=1

||µit − ε̌it,t||2W−1
t−1

+
T∑
t=1

||ε̂it,t||2W−1
t−1

+
T∑
t=1

||ε̌it,t||2W−1
t−1

≤
T∑
t=1

||µit − ε̌it,t||2W−1
t−1

+
2

λ

T∑
t=1

ν2
it,t,δ

≤
T∑
t=1

||µit − ε̌it,t||2W−1
t−1

+
4L2d

λ
log

(
2dT

δ

) T∑
t=1

1

nit,t
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On another hand, we have:

det(WT ) = det(WT−1 +
1

RiT ,T
(µiT − ε̌iT ,T )(µaT − ε̌iT ,T )>)

= det(WT−1)det(I +
1

RiT ,T
W
−1/2
T−1 (µiT − ε̌iT ,T )(W

−1/2
T−1 (µiT − ε̌iT ,T ))>)

= det(WT−1)(1 +
1

RiT ,T
||µiT − ε̌iT ,T ||2W−1

T−1
)

= det(λI)

T∏
t=1

(1 +
1

Rit,t
||µit − ε̌it,t||2W−1

t−1
)

Where we used the fact that all eigenvalues of I+xx> equal 1 except one that is associated
to the eigenvector x and thus equals 1 + ||x||2.

Since by assumption λ > max(1, L2/
√
R2), we have:

1

Rit,t
||µit − ε̌it,t||2W−1

t−1
≤ ||x̂it,t||2/

√
R2λ ≤ L2/

√
R2λ ≤ 1

Thus, by using the fact that x ≤ 2 log(1 + x) when 0 ≤ x ≤ 1, we get:

2 log

(
det(WT )

det(λI)

)
≥

T∑
t=1

1

Rit,t
||µit − ε̌it,t||2W−1

t−1

≥ min
t=1..T

(
1

Rit,t

) T∑
t=1

||µit − ε̌it,t||2W−1
t−1

≥ 1/
√
R2 + L2S2

T∑
t=1

||µit − ε̌it,t||2W−1
t−1

As in the lemma 11 of (Abbasi-Yadkori et al., 2011), we also have:

log

(
det(WT )

det(λI)

)
≤ d log

(
1 +

TL2

λd

)
Which leads us to:

T∑
t=1

||µit − ε̌it,t||2W−1
t−1
≤
√
R2 + L2S2d log

(
1 +

TL2

λd

)
Finally, same manner as in the lemma 10 of Abbasi-Yadkori et al. (2011), the trace-

determinant inequality gives:

αT ≤
√
d log

(
1 + TL2/λ

δ

)
+
√
λS

Gathering all these results together allows us to prove the announced result.
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A.7. Proof of the proposition 9

Lemma 6 When removing dependencies on L, λ, R and S, the bound from proposition 16
for the cumulative regret R̂T can written as follows (when T > d):

R̂T ≤ C + C1d log

(
T

δ

) T∑
t=1

1
√
nit,t

+ C2d log

(
T

δ

)√√√√T

T∑
t=1

1

nit,t

with C,C1 and C2 three constants.

Proof From proposition 16, we have:

R̂T ≤ C + R̂T,1 + R̂T,2

where:

R̂T,1 = 4L

(√
d

λ
log

(
1 + TL2/λ

δ

)
+ 2S

)√
2d log

(
2dT 2

δ

) T∑
t=1

1
√
nit,t

≤ Constant× d
√

log

(
T

δ

)
log

(
dT 2

δ

) T∑
t=1

1
√
nit,t

≤ Constant× d log

(
T

δ

) T∑
t=1

1
√
nit,t

(when T > d > 0)

And

R̂T,2 = 2

(√
d log

(
1 + TL2/λ

δ

)
+
√
λS

)

×

√√√√Td

(√
R2 + L2S2 log

(
1 +

TL2

λd

)
+

4L2

λ
log

(
2dT

δ

) T∑
t=1

1

nit,t

)

≤ Constant×
√
d log

(
T

δ

)√√√√Td

(
log(T ) + log

(
dT

δ

) T∑
t=1

1

nit,t

)

≤ Constant×
√
d log

(
T

δ

)√√√√Td log

(
dT

δ

) T∑
t=1

1

nit,t

≤ Constant× d log

(
T

δ

)√√√√T

T∑
t=1

1

nit,t
(when T > d > 0)

Thanks to this lemma, we are ready to derive specific bounds for the three considered profile
delivery settings.
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A.7.1. Case 1:

On one hand, we have:

T∑
t=1

1

nit,t
=

T∑
t=1

1

t
≤ 1 + log(T )

On the other hand, we have:

T∑
t=1

1
√
nit,t

=
T∑
t=1

1√
t
≤
∫ T

0

1√
t

dt ≤ 2
√
T

Finally, we get from lemma 6 that, when T > d > 0:

R̂T,1 ≤ C + C1d log

(
T

δ

)√
T + C2d log

(
T

δ

)√
T log(T )

with C,C1 and C2 three constants. Since the last term is clearly the greatest, we get the
announced result.

A.7.2. Case 2:

Lemma 7 ∀i,∀t ≥ d2 log(1/δ)/p2e, with a probability of at least 1− δ:

ni,t ≥
tp

2

Proof By the Hoeffding inequality, for all ε > 0:

P(ni,t ≥ tp− ε) ≥ 1− e−2ε2/t

By taking ε = tp/2, we get:

P(ni,t ≥ tp/2) ≥ 1− e−tp2/2

If t ≥ 2 log(1/δ)/p2, then 1− e−tp2/2 ≥ 1− δ, which proves the lemma.

Let us note u = ceil(2 log(1/δ)/p2). Thus, following lemma 7, with a probability of at
least 1− δ, we have:

T∑
t=1

1

nit,t
=

u∑
t=1

1

nit,t
+

T∑
t=u+1

1

nit,t

≤ u+
2

p

T∑
t=u+1

1

t

≤ u+
2

p

∫ T

u

1

t
dt

≤ u+
2 log(T )

p
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From another hand, still thanks to the lemma 7, with a probability of at least 1− δ:

T∑
t=1

1
√
nit,t

=
u∑
t=1

1
√
nit,t

+
T∑

t=u+1

1
√
nit,t

≤ u+

√
2

p

T∑
t=u+1

1√
t

≤ u+

√
2

p

∫ T

u

1√
t

dt

≤ u+ 2

√
2T

p

Finally, we get from lemma 6 that, when T > d > 0:

R̂T,1 ≤ C + C1d log

(
T

δ

)√
T

p
+ C2d log

(
T

δ

)√
T

log(T )

p

with C,C1 and C2 three constants. Since the last term is clearly the greatest, we get the
announced result.

A.7.3. Case 3:

First note that the sum
T∑
t=1

1

nit,t
is maximized when each action has delivered exactly bT/Kc

samples in the bT/KcK first iterations (i.e., every action has been played as many times).
Thus:

T∑
t=1

1

nit,t
≤

K∑
i=1

bT/Kc+1∑
t=1

1

t

≤ K
dT/Ke∑
t=1

1

t

≤ K(1 + log(dT/Ke))

With the same argument, we also get:

T∑
t=1

1
√
nit,t

≤ K
dT/Ke∑
t=1

1√
t

≤ 2K
√
dT/Ke

Finally, by noting that K log(dT/Ke) ∼ K log(T/K), that K
√
dT/Ke ∼

√
KT and by

using the generic bound from the proposition 9, we get the announced result. Finally, since
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K log(dT/Ke) ∼ K log(T/K) and K
√
dT/Ke ∼

√
KT , we get from lemma 6 that, when

T > d > 0:

R̂T,1 ≤ C + C1d log

(
T

δ

)√
KT + C2d log

(
T

δ

)√
TK log(T/K)

with C,C1 and C2 three constants. Since the last term is clearly the greatest, we get the
announced result.

A.8. Proof of the proposition 10

We follow a similar method to the one presented in Qin et al. (2014) for the specific case of
sums of individual rewards: Since we consider that the reward obtained by playing a set of
actions at a given step t is the sum of rewards observed for every single played action at t,
we have:

regt =
∑
i∈K?

µ>i β −
∑
i∈Kt

µ>i β

with K? the set of k optimal actions, i.e., those with greatest expectations µ>i β. Then, we
use the fact that for every step t:∑

i∈Kt

si,t ≥
∑
i∈K?

si?,t

This leads to:

regt ≤
∑
i∈Kt

2αt−1||x̂i,t||V −1
t−1

+ 4
√
d(αt−1/

√
λ+ S)ρi,t,δ

Where the matrix Vt−1 is defined by considering the k played actions at each step:

Vt−1 = λI +
t−1∑
s=1

∑
i∈Ks

1

Ri,t
x̂i,tx̂

>
i,t. The fact that we add k terms to the matrix V at each

iteration implies two distinct things:

• First on the confidence ellipsoid of β. For k actions played at each step, we have:

αT ≤
√
d log

(
1 + kTL2/λ

δ

)
+
√
λS;

• On another hand on the upper-bounding of
T∑
t=1

∑
it∈Kt

||µit − ε̌it,t||2W−1
t−1

. We have:

T∑
t=1

∑
it∈Kt

||µit − ε̌it,t||2W−1
t−1

≤
√
R2 + L2S2d log

(
1 +

TkL2

λd

)
Finally, we can use the same methods as in the previous proofs for deriving specific

bounds from the generic one, where the selection of k actions at each step appears explicitly

in the terms
T∑
t=1

∑
i∈Kt

1

ni,t
and

T∑
t=1

∑
i∈Kt

1
√
ni,t

.
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A.9. Table of the main notations

T number of steps of the process

K set of available actions

K number of available arms

k number of simultaneaous plays at each step

d dimension of the arms’ profiles

it arm selected at step t

i∗ arm with the highest final cumulative reward

ri reward obtained by arm i at step t

xi,t profile sample vector observed for arm i at step t

x̂i,t average of profile sample vectors observed for arm i until step t

L upper-bound for the profiles’ norm

Ot set of arms delivering a profile context at step t

ni,t number of samples observed for arm i until step t

µi profile vector of arm i

β mapping parameter between profiles and rewards

β̂t estimator of β at step t

S upper-bound for the β parameter norm

λ l2-regularization constant of the β estimator

ηi,t sub-gaussian noise of the reward of arm i at step t

R sub-gaussian constant of the rewards distribution

εi,t deviation between the true profile of arm i and its estimator at step t (εi,t =
µi − x̂i,t)

η
′
t−1 vector of reward deviations of the first t − 1 selected arms from their expec-

tation at step t: η
′
t−1 = (ηis,s + ε>is,tβ)>s=1..t−1

Ri,t sub-gaussian constant of the noise of the reward of i at step t w.r.t. x̂>i,tβ

Xt−1 (t−1)×d matrix containing the empirical means of the selected actions, where
the s-th row corresponds to the estimator at step t of the action selected at
step s: Xt−1 = (x̂>is,t)s=1..t−1

Yt−1 rewards vector of size t− 1: Yt−1 = (ris,s)
>
s=1..t−1

At−1 diagonal (t−1)×(t−1) matrix, where the s-th diagonal element equals 1/Ris,t:
At−1 = diag(1/Ris,t)s=1..t−1

δ parameter controling the confidence level of the regret bound

V −1
t variance-covariance matrix of the posterior distribution of β at step t

ρi,t,δ quantity used to bound the deviation of the estimators of profiles: ρi,t,δ =

min(L

√
2d

ni,t
log

(
2dt2

δ

)
, 2L)

si,t selection score for arm i at step t

αt exploration coefficient at step t w.r.t. the confidence of the beta estimator

ε̄t quantity used to bound µ>i β̂t
ε̃t quantity used to bound µ>i (β − β̂t)
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