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Abstract

seglearn is an open-source Python package for performing machine learning on time se-
ries or sequences. The implementation provides a flexible pipeline for tackling classifica-
tion, regression, and forecasting problems with multivariate sequence and contextual data.
Sequences and series may be learned directly with deep learning models or via feature
representation with classical machine learning estimators. This package is compatible with
scikit-learn and is listed under scikit-learn ”"Related Projects”. The package depends
on numpy, scipy, and scikit-learn. seglearn is distributed under the BSD 3-Clause Li-
cense. Documentation includes a detailed API description, user guide, and examples. Unit
tests provide a high degree of code coverage. Source code and documentation can be
downloaded from https://github.com/dmbee/seglearn.
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1. Introduction

Many real-world machine learning problems e.g. voice recognition, human activity recog-
nition, power systems fault detection, stock price and temperature prediction, involve data
that is captured as sequences over a period of time (Aha, 2018). Sequential data sets do not
fit the standard supervised learning framework, where each sample (x,y) within the data
set is assumed to be independently and identically distributed (iid) from a joint distribution
P(x,y) (Bishop, 2011). Instead, the data consist sequences of (x,y) pairs, and nearby val-
ues of (x,y) within a sequence are likely to be correlated to each other. Sequence learning
exploits the sequential relationships in the data to improve algorithm performance.

2. Supported Problem Classes

Sequence data sets have a general formulation (Dietterich, 2002) as sequence pairs {(X;,y:) Y,
where each X; is a multivariate sequence with 7; samples (x;1,X;2,...,X; ;) and each y;
target is a univariate sequence with 7; samples (vy; 1,2, ..., ¥ 1;). The targets y; can ei-
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ther be sequences of categorical class labels (for classification problems), or sequences of
continuous data (for regression problems). The number of samples T; varies between the
sequence pairs in the data set. Time series with a regular sampling period may be treated
equivalently to sequences. Irregularly sampled time series are formulated with an additional
sequence variable t; that increases monotonically and indicates the timing of samples in the
data set {(t;, X;,yi)} Y,

Important sub-classes of the general sequence learning problem are sequence classification
and sequence prediction. In sequence classification problems (eg song genre classification),
the target for each sequence is a fixed class label y; and the data takes the form {(X;, v;) }¥;.
Sequence prediction involves predicting a future value of the target (y; 1) or future val-
Ues (Yi b1, Yit42s o Vit f) SIVEN (X4 1,X42, s Xit), (Yi1sYi,2s - Yirt), and sometimes also
<Xi,t+1a Xit+2y ++es Xi,t+f>-

A final important generalization is the case where contextual data associated with each
sequence, but not varying within the sequence, exists to support the machine learning
algorithm performance. Perhaps the algorithm for reading electrocardiograms will be given
access to laboratory data, the patient’s age, or known medical diagnoses to assist with
classifying the sequential data recovered from the leads.

seglearn provides a flexible, user-friendly framework for learning time series and se-
quences in all of the above contexts. Transforms for sequence padding, truncation, and
sliding window segmentation are implemented to fix sample number across all sequences
in the data set. This permits utilization of many classical and modern machine learning
algorithms that require fixed length inputs. Sliding window segmentation transforms the
sequence data into a piecewise representation (segments), which is particularly effective for
learning periodized sequences (Bulling et al., 2014). An interpolation transform is imple-
mented for resampling irregularly sampled time series. The sequence or time series data can
be learned directly with various neural network architectures (Lipton et al., 2015), or via a
feature representation which greatly enhances performance of classical algorithms (Bulling
et al., 2014).

3. Installation

The seglearn source code is available at: https://github.com/dmbee/seglearn. It is
operating system agnostic, and implemented purely in Python. The dependencies are numpy,
scipy, and scikit-learn. The package can be installed using pip:

$ pip install seglearn

Alternatively, seglearn can be installed from the sources:
$ git clone https://github.com/dmbee/seglearn
$ cd seglearn
$ pip install .

Unit tests can be run from the root directory using pytest.
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b) Direct Segment Learning
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Figure 1: Example seglearn pipelines for a) learning segment feature representations, b)
learning segments directly. X;: time series, y;: time series target, N: number of
time series in the data set, W; j: segment (derived from Xj;), f; ;: feature vector
(calculated from W ;), y; j: segment target, M;: number of segments derived
from time series X;, SVC: Support Vector Classifier, CNN: Convolution Neural
Network, RNN: Recurrent Neural Network.

4. Implementation

The seglearn API was implemented for compatibility with scikit-learn and its existing
framework for model evaluation and selection. The seglearn package provides means for
handling sequence data, segmenting it, computing feature representations, calculating train-
test splits and cross-validation folds along the temporal axis.! An iterable, indexable data
structure is implemented to represent sequence data with supporting contextual data.

The seglearn functionality is provided within a scikit-learn pipeline allowing the user
to leverage scikit-learn transformer and estimator classes, which are particularly helpful
in the feature representation approach to segment learning. Direct segment learning with
neural networks is implemented in pipeline using the keras package, and its scikit-learn
API. Examples of both approaches are provided in the documentation and example gallery.
The integrated learning pipeline, from raw data to final estimator, can be optimized within
the scikit-learn model_selection framework. This is important because segmentation
parameters (eg window size, segment overlap) can have a significant impact on sequence
learning performance (Burns et al., 2018; Bulling et al., 2014).

Sliding window segmentation transforms sequence data into a piecewise representation
(segments), such that predictions are made and scored for all segments in the data set.
Sliding window segmentation can be performed for data sets with a single target value
per sequence, in which case that target value is mapped to all segments generated from the
parent sequence. If the target for each is sequence is also a sequence, the target is segmented

1. Note splitting time series data along the temporal axis violates the assumption of independence between
train and test samples. However, this is useful in some cases, such as the analysis of a single series.
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as well and various methods may be used to select a single target value from the target
segment (e.g. mean value, middle value, last value, etc.) or the target segment sequence
can be predicted directly if an estimator implementing sequence to sequence prediction is
utilized.

A human activity recognition data set (Burns et al., 2018) consisting of inertial sensor
data recorded by a smartwatch worn during shoulder rehabilitation exercises is provided
with the source code to demonstrate the features and usage of the seglearn package.

5. Basic Example

This example demonstrates the use of seglearn for performing sequence classification with
our smartwatch human activity recognition data set.

>>> import seglearn as sgl

>>> from sklearn.model_selection import train_test_split

>>> from sklearn.ensemble import RandomForestClassifier

>>> from sklearn.preprocessing import StandardScaler

>>>

>>> data = sgl.load watch()

>>> X_train, X test, y_train, y_test = train_test_split(datal["X"], data["y"])
>>>

>>> clf = sgl.Pype([("seg", sgl.SegmentX(width=100, overlap=0.5)),
("features", sgl.FeatureRep()),

("scaler", StandardScaler()),

e ("rf", RandomForestClassifier())])

>>>
>>> clf.fit(X_train, y_train)

>>> score = clf.score(X_ test, y_test)
>>> print("accuracy score:", score)

accuracy score: 0.7805084745762711

6. Comparison to other Software

Three other Python packages for performing machine learning on time series and sequences
were identified: tslearn (Tavenard, 2017), cesium-ml (Naul et al., 2016), and tsfresh
(Christ et al., 2018). These were compared to seglearn based on time series learning
capabilities (Table 1), and performance (Table 2).

cesium-ml (v0.9.6) and tsfresh (v0.11.1) support feature representation learning of
multi-variate time series, and currently implement more features than does seglearn. How-
ever, the feature representation transformers are implemented as a pre-processing step,
independent to the otherwise sklearn compatible pipeline. This design choice precludes
end-to-end model selection. There are no examples or apparent support for problems where
the target is a sequence/time series or integration with deep learning models.
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Table 1: Comparison of time series learning package features for tslearn v0.1.18.4,
cesium-ml v0.9.6, tsfresh v0.11.1 and seglearn v1.0.2.

tslearn (v0.1.18.4) implements time-series specific classical algorithms for clustering,
classification, and barycenter computation for time series with varying lengths. There is no
support for feature representation learning, learning context data, or deep learning.

The performance comparison was conducted using our human activity recognition data
set with 140 multivariate time series with 6 channels sampled uniformly at 50 Hz and 7
activity classes. The series’ were all truncated to 4 seconds (200 samples). Classification ac-
curacy was measured on 35 series’ held out for testing, and 105 used for training. seglearn,
cesium-ml, and tsfresh were tested using the sklearn implementation of the SVM classi-
fier with a radial basis function (RBF) kernel on 5 features (median, minimum, maximum,
standard deviation, and skewness) calculated on each channel (total 30 features). tslearn
was evaluated with its own SVM classifier implementing a global alignment kernel (Cuturi
et al., 2007). The testing was performed using an Intel Core i7-4770 testbed with 16 GB of
installed memory, on Linux Mint 18.3 with Python 2.7.12.

Classification accuracy was identical between cesium-ml, tsfresh, and seglearn (as
they used the same features and classifier in the evaluation) though seglearn significantly
outperformed the other packages in terms of computation time. Classification performance
of the global alignment kernel SVM (GAK-SVM) implemented in tslearn was poor on our
data set, even following hyper-parameter optimization of gamma by grid search over the
log space [107%4,10%]. GAK-SVM is not typically applied to raw inertial data for human
activity recognition in the literature, and better performance has been achieved with this
algorithm in other time series applications (Cuturi and Doucet, 2011; Lorincz et al., 2013).
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tslearn cesium-ml ts-fresh seglearn

Classification accuracy 0.057 0.714 0.714 0.714
Computation time (seconds) 0.79 62.9 0.40 0.088

Table 2: Comparison of time series learning package performance on our human activity
recognition dataset.
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