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Abstract

We present a new algorithm for domain adaptation improving upon a discrepancy
minimization algorithm, (DM), previously shown to outperform a number of algorithms
for this problem. Unlike many previously proposed solutions for domain adaptation, our
algorithm does not consist of a fixed reweighting of the losses over the training sample.
Instead, the reweighting depends on the hypothesis sought. The algorithm is derived
from a less conservative notion of discrepancy than the DM algorithm called generalized
discrepancy. We present a detailed description of our algorithm and show that it can be
formulated as a convex optimization problem. We also give a detailed theoretical analysis
of its learning guarantees which helps us select its parameters. Finally, we report the results
of experiments demonstrating that it improves upon discrepancy minimization.
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1. Introduction

A standard assumption in statistical learning theory and PAC learning is that training
and test samples are drawn from the same distribution (Vapnik, 1998; Valiant, 1984). In
practice, however, this assumption often does not hold: the source and target distributions
may somewhat differ. This problem is known as domain adaptation and arises in a variety of
applications such as natural language processing and computer vision (Dredze et al., 2007;
Blitzer et al., 2007; Jiang and Zhai, 2007; Leggetter and Woodland, 1995; Mart́ınez, 2002;
Hoffman et al., 2014). The domain adaptation problem may appear when the distributions
over the instance space differ, the so-called covariate shift problem, or when the labeling
functions associated with each domain disagree. In practice, a combination of both issues
occurs and, for adaptation to succeed, the divergence between the two domains needs to be
relatively small. This is clear for the labeling functions since, if the learner receives source
labels that are vastly different from the target ones, no learning algorithm can generalize
well to the target domain. The same holds when input distributions largely differ.

This intuition was formalized by Ben-David et al. (2010) and Ben-David and Urner
(2012) who showed that even in the favorable scenario where the source and target dis-
tribution admit the same support, a sample of size in the order of that of the support is
needed in order to solve the domain adaptation problem. As the authors point out, the
domain adaptation problem becomes intractable when the labeling function for the training
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data is vastly different from the labeling function used for testing. On the other hand, when
some similarity between domains exist, it has been empirically and theoretically shown that
adaptation algorithms can be beneficial and in fact a large number of algorithms for this
task have been proposed over the past decade. The large majority of them fall in one of
the following paradigms:

1. Learning a new feature representation. The core idea behind these algorithms is
to map the source and target data into a new feature space where the difference between
source and target distributions is reduced. Transfer Component Analysis (TCA) (Pan
et al., 2011) and the work on Frustratingly Easy Domain Adaptation (FE) (Daumé
III, 2007) belong to this family of algorithms. Whereas some empirical evidence of the
effectiveness of these algorithms exists in the literature, to the best of our knowledge,
no work has been done to provide learning guarantees for these algorithms.

2. Reweighting. Originated in the Statistics literature on sample bias correction, these
techniques attempt to correct the difference between distributions by multiplying the
loss at each training example by a positive weight. Most of the classical algorithms such
as KMM (Huang et al., 2006), KLIEP (Sugiyama et al., 2007) and a two-step algorithm
by Bickel et al. (2007) fall in this category.

The main focus of this work will be on the latter. A common trait shared by most
algorithms in this category is that their reweighting schemes are based on the minimization
of a divergence measure between the empirical source and target distributions. For instance,
the KL-divergence in the case of KLIEP and the Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012) for KMM. The guarantees of these algorithms are therefore given as
a function of the chosen divergence. The main drawback of these measures is that they do
not take into account the hypothesis set or the loss function, both crucial components of
any learning algorithm. In contrast, the discrepancy introduced by Mansour et al. (2009)
and further studied by Cortes and Mohri (2011) is a measure of the divergence between
distributions tailored to domain adaptation that precisely takes into account both the loss
function and the hypothesis set. The dA-distance, introduced by Devroye et al. (1996)[pp.
271-272] under the name of generalized Kolmogorov-Smirnov distance, later by Ben-David
et al. (2006), coincides with the discrepancy when the binary loss function is used. The
discrepancy is a pivotal concept used in the analysis of several adaptation scenarios: the
Y-discrepancy or integral probability metric (Zhang et al., 2012) was successfully used by
Mohri and Muñoz (2012) to provide tight learning guarantees for the related task of learning
with drifting distributions, whereas a modified version of the discrepancy was used by
Germain et al. (2013) to study the problem of domain adaptation in a PAC-Bayesian setting.
The discrepancy-based generalization bounds given by Mansour et al. (2009) motivated a
discrepancy minimization (DM) algorithm (Cortes and Mohri, 2013), which attempts to
minimize said bounds. Besides its favorable theoretical guarantees, this algorithm was
shown to perform well in a number of adaptation tasks and to match or outperform several
other algorithms such as KMM, KLIEP and the aforementioned two stage algorithm by
Bickel et al. (2007).

One shortcoming of the DM algorithm, however, is that it seeks to reweight the loss
on the training samples to minimize a quantity defined as the maximum over all pairs of
hypotheses, including hypotheses that the learning algorithm might not ever consider as
candidates. Thus, the algorithm tends to be too conservative on its choice of weights. We
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present an alternative theoretically well founded algorithm for domain adaptation that is
based on minimizing a finer quantity, the generalized discrepancy, and that seeks to improve
upon DM. Unlike the DM algorithm, our algorithm does not consist of a fixed reweighting of
the losses over the training sample. Instead, the weights assigned to training sample losses
vary as a function of the hypothesis h. This helps us ensure that for every hypothesis, h,
the empirical loss on the source distribution is as close as possible to the empirical loss on
the target distribution for that particular h.

We describe the learning scenario considered (Section 2), then present a detailed descrip-
tion of our algorithm and show that it can be formulated as a convex optimization problem
(Section 3). Next, we analyze the theoretical properties of our algorithm, which guide us
in choosing the surrogate hypothesis set defining our algorithm (Section 4). In Section 5,
we further analyze the optimization problem defining our algorithm and derive an equiva-
lent form that can be handled by a standard convex optimization solver. In Section 6, we
report the results of experiments demonstrating that our algorithm improves upon the DM
algorithm in several tasks.

2. Learning Scenario

This section defines the learning scenario of domain adaptation we consider, which coincides
with that of Ben-David et al. (2006) or Mansour et al. (2009); Cortes and Mohri (2013).
We first introduce the definitions and concepts needed for the following sections. For the
most part, we follow the definitions and notation of Cortes and Mohri (2013).

Let X denote the input space and Y ⊆ R the output space. We define a domain as a
pair formed by a distribution over X and a target labeling function mapping from X to Y.
Throughout the paper, (Q, fQ) denotes the source domain and (P, fP ) the target domain
with Q the source and P the target distribution over X and with fQ, fP : X → Y the source
and target labeling functions, respectively.

In the scenario of domain adaptation we consider, the learner receives two samples: a
labeled sample of m points from the source domain S = ((x1, y1), . . . , (xm, ym)) ∈ (X ×Y)m

with x1, . . . , xm drawn i.i.d. according to Q and yi = fQ(xi) for i ∈ [1,m]; and an unlabeled
sample T = (x′1, . . . , x

′
n) ∈ X n of size n drawn i.i.d. according to the target distribution P .

We denote by Q̂ the empirical distribution corresponding to the (unlabeled) sample SX =
(x1, . . . , xm) and by P̂ the empirical distribution corresponding to T . We will be in fact more
interested in the scenario commonly encountered in practice where, in addition to these two
samples, the learner receives a small amount of labeled data T ′ = ((x′′1, y

′′
1), . . . , (x′′s , y

′′
s )) ∈

(X × Y)s from the target domain.

We consider a loss function L : Y × Y → R+ jointly convex in its two arguments. The
Lp losses commonly used in regression and defined by Lp(y, y

′) = |y′ − y|p for p ≥ 1 are
special instances of this definition. For any two functions h, h′ : X → Y and any distribu-
tion D over X , we denote by LD(h, h′) the expected loss of h(x) and h′(x): LD(h, h′) =
Ex∼D[L(h(x), h′(x))]. The learning problem consists of selecting a hypothesis h out of a
hypothesis set H with a small expected loss LP (h, fP ) with respect to the target domain.
We further extend this notation to arbitrary functions q : X → R with a finite support as
follows: Lq(h, h′) =

∑
x∈X q(x)L(h(x), h′(x)).
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X Input space Y Output space

P Target distribution Q Source distribution

P̂ Empirical target distribution Q̂ Empirical source distribution

T Target unlabeled sample S Labeled source sample

T ′ Small target labeled sample SX Unlabeled source sample

fP Target labeling function fQ Source labeling function

LP (h,fP ) Expected target loss LQ(h,fQ) Expected source loss

L
P̂

(h,fP ) Empirical target loss L
Q̂

(h,fQ) Empirical source loss

disc(P,Q) Discrepancy DISC(P̂ ,U) Generalized discrepancy

discH′′ (P,Q) Local Discrepancy discY (P,Q) Y-discrepancy

qmin DM solution Qh GDM solution

Table 1: Notation table.

3. Algorithm

In this section, we describe our new adaptation algorithm. We first review some related
previous work. Next, we present the key idea behind our algorithm and derive its general
form, and finally, formulate it as a convex optimization problem.

3.1. Previous Work

It was shown by Mansour et al. (2009) and Cortes and Mohri (2011) (see also the dA-distance
(Ben-David et al., 2006) in the case of binary loss for classification) that a key measure of
the difference of two distributions in the context of adaptation is the discrepancy. Given
a hypothesis set H, the discrepancy, disc, between two distributions P and Q over X is
defined by:

disc(P,Q) = max
h,h′∈H

∣∣LP (h′, h)− LQ(h′, h)
∣∣. (1)

The discrepancy has several advantages over other common divergence measures such as
the L1 distance. We refer the reader to (Medina, 2015) for a detailed discussion on this
subject. Several generalization bounds for adaptation in terms of the discrepancy have been
given in the past (Ben-David et al., 2006; Mansour et al., 2009; Cortes and Mohri, 2011,
2013). including pointwise guarantees in the case of kernel-based regularization algorithms,
which includes algorithms such as support vector machines (SVM), kernel ridge regression,
or support vector regression (SVR). The bounds given in (Mansour et al., 2009) motivated
a discrepancy minimization algorithm. Given a positive semi-definite (PSD) kernel K, the
hypothesis returned by the algorithm is the solution of the following optimization problem

min
h∈H

λ‖h‖2K + Lqmin(h, fQ), (2)

where ‖·‖K is the norm in the reproducing Hilbert space H induced by the kernel K and qmin

is a distribution over the support of Q̂ such that qmin = argminq∈Q disc(q, P̂ ), where Q =

[0, 1]SX is the set of all distributions defined over the support of Q̂. Besides its theoretical
motivation, this algorithm has been shown to outperform several other algorithms in a series
of experiments carried out by Cortes and Mohri (2013).
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Observe that, by definition, the objective function optimized by qmin corresponds to a
maximum over all pairs of hypotheses. But, the maximizing pair of hypotheses may not be
among the candidates ever considered by the learning algorithm. Thus, a learning algorithm
based on discrepancy minimization tends to be too conservative.

3.2. Main Idea

From here on we assume the algorithm selected by the learner is an instance of a regu-
larized risk minimization algorithm over the Hilbert space H induced by a PSD kernel K.
With knowledge of the target labels, these algorithms return a hypothesis h∗ solution of
minh∈H F (h) where

F (h) = λ‖h‖2K + L
P̂

(h, fP ), (3)

where λ ≥ 0 is a regularization parameter. Thus, h∗ can be viewed as the ideal hypothesis.

In view of that, we can formulate our objective, in the presence of a domain adaptation
problem, as that of finding a hypothesis h whose loss LP (h, fP ) with respect to the target
domain is as close as possible to LP (h∗, fP ). To do so, we will seek in fact a hypothesis h
that is as close as possible to h∗, which would imply the closeness of the losses with respect
to the target domains. We do not have access to fP and can only access the labels of
the training sample S. Thus, we must resort to using in our objective function, instead of
L
P̂

(h, fP ), a reweighted empirical loss over the training sample S. The main idea behind our
algorithm is to define, for any h ∈ H, a reweighting function Qh : SX = {x1, . . . , xm} → R
such that the objective function G defined for all h ∈ H by

G(h) = λ‖h‖2K + LQh(h, fQ) (4)

is uniformly close to F , thereby resulting in close minimizers. Since the first term of (3)
and (4) coincide, the idea consists equivalently of seeking Qh such that LQh(h, fQ) and
L
P̂

(h, fP ) be as close as possible. Observe that this departs from the standard reweighting
methods: instead of reweighting the training sample with some fixed set of weights, we
allow the weights to vary as a function of the hypothesis h. Note that we have further
relaxed the condition commonly adopted by reweighting techniques that the weights must
be non-negative and sum to one.

Of course, searching for Qh to directly minimize |LQh(h, fQ)−L
P̂

(h, fP )| is in general not
possible since we do not have access to fP , but it is instructive to consider the imaginary
case where the average loss L

P̂
(h, fP ) is known to us for any h ∈ H. Qh could then be

determined via

Qh = argmin
q∈F(SX ,R)

|Lq(h, fQ)− L
P̂

(h, fP )|, (5)

where F(SX ,R) is the set of real-valued functions defined over SX . For any h, we can in fact
select Qh such that LQh(h, fQ) = L

P̂
(h, fP ) since Lq(h, fQ) is a linear function of q. Thus,

the optimization problem (5) reduces to solving a simple linear equation. With this choice of
Qh, the objective functions F and G coincide and by minimizing G we can recover the ideal
solution h∗. Note that, in general, the DM algorithm could not recover that ideal solution.
Even a finer discrepancy minimization algorithm exploiting the knowledge of L

P̂
(h, fP ) for

all h and seeking a distribution q′min minimizing maxh∈H |Lq(h, fQ)−L
P̂

(h, fP )| could not,
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in general, recover the ideal solution since we could not have Lq′min
(h, fQ) = L

P̂
(h, fP ) for

all h ∈ H.
Of course, L

P̂
(h, fP ) is not accessible since the sample T is unlabeled. Instead, we will

consider a non-empty convex set of candidate hypotheses H ′′ ⊆ H that could contain a
good approximation of fP . Using H ′′ as a set of surrogate labeling functions leads to the
following definition of Qh instead of (5):

Qh = argmin
q∈F(SX ,R)

max
h′′∈H′′

|Lq(h, fQ)− L
P̂

(h, h′′)|. (6)

The choice of the subset H ′′ is of course key. Our choice will be based on the theoretical
analysis of Section 4. Nevertheless, we now present the formulation of the optimization
problem for an arbitrary choice of the convex subset H ′′.

Proposition 1 For any h ∈ H, let Qh be defined by (6). Then, the following identity holds
for any h ∈ H:

LQh(h, fQ) =
1

2

(
max
h′′∈H′′

L
P̂

(h, h′′) + min
h′′∈H′′

L
P̂

(h, h′′)
)
.

Proof For any h ∈ H, the equation Lq(h, fQ) = l with l ∈ R admits a solution q ∈
F(SX ,R). Thus, {Lq(h, fQ) : q ∈ F(SX ,R)} = R and for any h ∈ H, we can write

LQh(h, fQ) = argmin
l∈{Lq(h,fQ) : q∈F(SX ,R)}

max
h′′∈H′′

|l − L
P̂

(h, h′′)|

= argmin
l∈R

max
h′′∈H′′

|l − L
P̂

(h, h′′)|

= argmin
l∈R

max
h′′∈H′′

max
{
L
P̂

(h, h′′)− l, l − L
P̂

(h, h′′)
}

= argmin
l∈R

max
{

max
h′′∈H′′

L
P̂

(h, h′′)− l, l − min
h′′∈H′′

L
P̂

(h, h′′)
}

=
1

2

(
max
h′′∈H′′

L
P̂

(h, h′′) + min
h′′∈H′′

L
P̂

(h, h′′)
)
,

since the minimizing l is obtained for max
h′′∈H′′

L
P̂

(h, h′′)− l= l − min
h′′∈H′′

L
P̂

(h, h′′).

In view of this proposition, with our choice of Qh based on (6), the objective function
G of our algorithm (4) can be equivalently written for all h ∈ H as follows:

G(h) = λ‖h‖2K +
1

2

(
max
h′′∈H′′

L
P̂

(h, h′′) + min
h′′∈H′′

L
P̂

(h, h′′)
)
. (7)

Using the fact the L
P̂

is a jointly convex function, it is easy to show (see for instance Boyd
and Vandenberghe, 2004) that G is in fact a convex function too.

4. Learning Guarantees

Here, we present two different types of guarantees: a tight learning bound based on the
Rademacher complexity and a pointwise bound derived from a stability analysis. We further
show that our algorithm is in fact minimizing this pointwise bound. As in previous work,
we assume that the loss function L is µ-admissible.
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Definition 2 A loss function L is µ-admissible if there exists µ > 0 such that the inequality

|L(h(x), y)− L(h′(x), y)| ≤ µ|h(x)− h′(x)| (8)

holds for all (x, y) ∈ X × Y and h′, h ∈ H.

The Lp losses commonly used in regression, p ≥ 1, verify this condition (see Ap-
pendix C).

4.1. Rademacher Complexity Bounds

Definition 3 Let Z be any set and G be a family of functions mapping Z to R. Given
a sample S = {z1, . . . , zn} ⊂ Z, the empirical Rademacher complexity of G is denoted by
R̂S(G) and defined by

R̂S(G) =
1

n
E
σ

[
sup
g∈G

n∑

i=1

σig(zi)

]
,

where σis, called Rademacher variables, are independent random variables distributed ac-
cording to the uniform distribution over {−1, 1}. The Rademacher complexity of G is defined
as

Rn(G) = E
S

[
R̂S(G)

]
.

Our first generalization bound is given in terms of the Y-discrepancy, which is a gen-
eralization of the discrepancy distance. The Y-discrepancy was first introduced by Mohri
and Muñoz (2012) in the context of learning with drifting distributions.

Definition 4 The Y-discrepancy between two domains (P, fP ) and (Q, fQ) is defined by

discY(P,Q) = sup
h∈H

∣∣LQ(h, fQ)− LP (h, fP )
∣∣.

Note that the definition depends on the labeling functions fP and fQ. We do not explicitly
indicate that dependency for the sake of simplicity of the notation.

We follow the analysis of (Mohri and Muñoz, 2012) to derive the following tight gener-
alization bounds based on the notion of Y-discrepancy.

Proposition 5 Let HQ and HP be the families of functions defined as follows: HQ :=
{x 7→ L(h(x), fQ(x)) : h ∈ H} and HP := {x 7→ L(h(x), fP (x)) : h ∈ H}. Define MQ and
MP as MQ = supx∈X ,h∈H L(h(x), fQ(x)) and MP = supx∈X ,h∈H L(h(x), fP (x)). Then, for
any δ > 0,

1. with probability at least 1 − δ over the choice of a labeled sample S of size m, the fol-
lowing inequality holds for all h ∈ H:

LP (h, fP ) ≤ L
Q̂

(h, fQ) + discY(P,Q) + 2Rm(HQ) +MQ

√
log(1

δ )

2m
; (9)

2. with probability at least 1 − δ over the choice of a sample T of size n, the following
inequality holds for all h ∈ H and any distribution q over a sample SX :

LP (h, fP ) ≤ Lq(h, fQ) + discY(P̂ , q) + 2Rn(HP ) +MP

√
log(1

δ )

2n
. (10)
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Proof Let Φ(S) denote suph∈H LQ̂(h, fQ)− LP (h, fP ). Changing one point in S changes

Φ(S) by at most
MQ

m . Thus, by McDiarmid’s inequality, we have P
(
Φ(S)−E[Φ(S)] > ε

)
≤

e
− 2mε2

M2
Q . Therefore, for any δ > 0, with probability at least 1− δ, the following holds for all

h ∈ H:

LP (h, fP ) ≤ L
Q̂

(h, fQ) + E[Φ(S)] +MQ

√
log(1

δ )

2m
.

Next, we can bound E[Φ(S)] as follows:

E[Φ(S)] = E

[
sup
h∈H
L
Q̂

(h, fQ)− LP (h, fP )

]

≤ E

[
sup
h∈H
L
Q̂

(h, fQ)− LQ(h, fQ)

]
+ sup
h∈H
LQ(h, fQ)− LP (h, fP )

≤ 2Rm(HQ) + discY(P,Q),

where the last inequality follows from a standard symmetrization inequality in terms of the
Rademacher complexity and the definition of discY(P,Q).

For the second bound we have, starting with a standard Rademacher complexity bound
for HP , for any δ > 0, with probability at least 1− δ, the following holds for all h ∈ H:

LP (h, fP ) ≤ L
P̂

(h, fP ) + 2Rn(HP ) +MP

√
log(1

δ )

2n

≤ Lq(h, fQ) + L
P̂

(h, fP )− Lq(h, fQ) + 2Rn(HP ) +MP

√
log(1

δ )

2n
. (11)

Moreover, by definition L
P̂

(h, fP )−Lq(h, fQ) ≤ discY(P̂ , q) for any q. Replacing this bound
in (11) yields the result.

Observe that these bounds are tight as a function of the divergence measure (discrep-
ancy) we use: in the absence of adaptation, the following standard Rademacher complexity
learning bound holds:

L
P̂

(h, fP ) ≤ L
P̂

(h, fP ) + 2Rn(HP ) +MP

√
log(1

δ )

2n
.

Our second adaptation bound differs from this inequality only by the fact that L
P̂

(h, fP ) is

replaced with Lq(h, fQ) + discY(P̂ , q). But, by definition of Y-discrepancy, there exists an

h ∈ H such that |L
P̂

(h, fP ) − Lq(h, fQ)| = discY(P̂ , q). A similar analysis shows that our
first bound is also tight.

Given a labeled sample S from the source domain, Proposition 5 suggests choosing a
distribution q with support SX that minimizes the right-hand side of (10). However, the
quantity discY(P̂ , q) depends, by definition, on the unknown labels from the target domain
and therefore cannot be minimized. Thus, we will instead upper bound the Y-discrepancy
in terms of quantities that can be estimated.
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Let A(H) denote the set of all functions U : h 7→ Uh mapping H to F(SX ,R) such that
for all h ∈ H, h 7→ LUh(h, fQ) is a convex function. Thus, for any h ∈ H, Uh is a reweighting
function defined over SX . A(H) contains all constant functions U such that Uh = q for all
h ∈ H, where q is a distribution over SX . We will abuse the notation and denote this
functions also by q. By Proposition 1, A(H) also includes the function Q : h→ Qh used by
our algorithm.

Definition 6 (Generalized discrepancy) For any U ∈ A(H), the generalized discrep-
ancy between P̂ and U is denoted by DISC(P̂ ,U) and is defined by

DISC(P̂ ,U) = sup
h∈H,h′′∈H′′

|L
P̂

(h, h′′)− LUh(h, fQ)|. (12)

We also denote by d1(fP , H
′′) the L1 distance of fP to H ′′:

d1(fP , H
′′) = min

h0∈H′′
E
P̂
|h0(x)− fP (x)|. (13)

The following theorem gives an upper bound on the Y-discrepancy in terms of the general-
ized discrepancy and d1(fP , H

′′).

Proposition 7 For any distribution q over SX and any set H ′′, the following inequality
holds:

discY(P̂ , q) ≤ DISC(P̂ , q) + µd1(fP , H
′′).

Proof Let h0 ∈ H ′′, by the triangle inequality, we can write

discY(P̂ , q) = sup
h∈H
|Lq(h, fQ)− L

P̂
(h, fP )|

≤ sup
h∈H
|Lq(h, fQ)− L

P̂
(h, h0)|+ sup

h∈H
|L
P̂

(h, h0)− L
P̂

(h, fP )|

≤ sup
h∈H

max
h′′∈H′′

|Lq(h, fQ)− L
P̂

(h, h′′)|+ sup
h∈H
|L
P̂

(h, h0)− L
P̂

(h, fP )|.

The hypothesis h0 will later be chosen to minimize the distance of fP to H ′′. By the
µ-admissibility of the loss, the last term can be bounded as follows:

sup
h∈H
|L
P̂

(h, h0)− L
P̂

(h, fP )| ≤ µE
P̂
|fP (x)− h0(x)|.

Using this inequality and minimizing over h0 ∈ H ′′ yields:

discY(P̂ , q) ≤ sup
h∈H

max
h′′∈H′′

|Lq(h, fQ)− L
P̂

(h, h′′)|+ µd1(fP , H
′′)

= DISC(P̂ , q) + µd1(fP , H
′′),

which completes the proof.

We can also bound the Y-discrepancy in terms of the discrepancy measure and the
following measure of the difference of the source and target labeling functions:

ηH(fP , fQ) = min
h0∈H

(
max

x∈supp(P̂ )
|fP (x)− h0(x)|+ max

x∈supp(Q̂)
|fQ(x)− h0(x)|

)
.

9
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Proposition 8 The following inequality holds for all distributions q over SX :

discY(P̂ , q) ≤ disc(P̂ , q) + µ ηH(fP , fQ).

Proof By the triangle inequality and the µ-admissibility of the loss, the following inequality
holds for all h0 ∈ H:

discY(P̂ , q)

= sup
h∈H
|Lq(h, fQ)− L

P̂
(h, fP )|

≤ sup
h∈H

(
|L
P̂

(h, h0)− L
P̂

(h, fP )|+ |Lq(h, fQ)− Lq(h, h0)|
)

+ sup
h∈H
|Lq(h, h0)− L

P̂
(h, h0)|

≤ µ
(

sup
x∈supp(P̂ )

|h0(x)− fP (x)|] + sup
x∈supp(Q̂)

[|fQ(x)− h0(x)|]
)

+ disc(P̂ , q).

Minimizing over all h0 ∈ H gives discY(P̂ , q) ≤ µ ηH(fP , fQ) + disc(P̂ , q) and completes the
proof.

The following learning guarantees are immediate consequences of Propositions 5, 7 and
8.

Corollary 9 Let H ′′ ⊂ H be a convex set and q a distribution over SX . Then, for any
δ > 0, each of the following inequalities holds with probability at least 1− δ for all h ∈ H:

LP (h, fP ) ≤ Lq(h, fQ) + DISC(P̂ , q) + µd1(fP , H
′′) + 2Rn(HP ) +MP

√
log(1

δ )

2n
, (14)

LP (h, fP ) ≤ Lq(h, fQ) + disc(P̂ , q) + µ ηH(fP , fQ) + 2Rn(HP ) +MP

√
log(1

δ )

2n
. (15)

In general, the bounds (14) and (15) are not comparable. However, when L is an LP
loss for some p ≥ 1, we can show the existence of a set H ′′ for which (14) is a tighter bound
than (15). The result is expressed in terms of the local discrepancy defined by:

discH′′(P̂ , q) = sup
h∈H,h′′∈H′′

|L
P̂

(h, h′′)− Lq(h, h′′)|,

which is a finer measure than the standard discrepancy for which the supremum is defined
over a pair of hypotheses both in H ⊇ H ′′.

Theorem 10 Let L be the LP loss for some p ≥ 1. Let H := {B(r) : r ≥ 0} be a set of all
balls B(r) = {h′′ ∈ H|Lq(h′′, fQ) ≤ rp}. Then, for any distribution q over SX , there exists
H ′′ ∈ H such that the following holds:

DISC(P̂ , q) + µd1(fP , H
′′) ≤ discH′′(P̂ , q) + µ ηH(fP , fQ).

10
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Proof Fix a distribution q over SX . Let h∗0 be an element of argminh0∈H
(
L
P̂

(h0, fP )
1
p +

Lq(h0, fQ)
1
p
)
. Choose H ′′ ∈ H as H ′′ = {h′′ ∈ H|Lq(h′′, fQ) ≤ rp} with r = Lq(h∗0, fQ)

1
p .

Then, by definition, h∗0 is in H ′′. For the Lp loss, it is not hard to show that for all h, h′′ ∈ H,

|Lq(h, h′′) − Lq(h, fQ)| ≤ µ[Lq(h′′, fQ)]
1
p (see Appendix C). In view of this inequality, we

can write:

DISC(P̂ , q) = sup
h∈H,h′′∈H′′

|L
P̂

(h, h′′)− Lq(h, fQ)|

≤ sup
h∈H,h′′∈H′′

|L
P̂

(h, h′′)− Lq(h, h′′)|+ sup
h∈H,h′′∈H′′

|Lq(h, h′′)− Lq(h, fQ)|

≤ discH′′(P̂ , q) + max
h′′∈H′′

µ[Lq(h′′, fQ)]
1
p

= discH′′(P̂ , q) + µr = discH′′(P̂ , q) + µLq(h∗0, fQ)
1
p .

Using this inequality, Jensen’s inequality, and the fact that h∗0 is in H ′′, we can write

µd1(fP , H
′′) + DISC(P̂ , q)

≤ µ min
h0∈H′′

E
x∈P̂

[|fP (x)− h0(x)|] + µLq(h∗0, fQ)
1
p + discH′′(P̂ , q)

≤ µ min
h0∈H′′

E
x∈P̂

[|fP (x)− h0(x)|p]
1
p + µLq(h∗0, fQ)

1
p + discH′′(P̂ , q)

≤ µL
P̂

(h∗0, fP )
1
p + µLq(h∗0, fQ)

1
p + discH′′(P̂ , q).

Moreover, by definition of h∗0 the last expression is equal to

µ min
h0∈H

(
L
P̂

(h0, fP )
1
p + Lq(h0, fQ)

1
p

)
+ discH′′(P̂ , q)

≤ µ min
h0∈H

(
max

x∈supp(P̂ )
|fP (x)− h0(x)|+ max

x∈supp(Q̂)
|fQ(x)− h0(x)|

)
+ discH′′(P̂ , q)

= µ ηH(fP , fQ) + discH′′(P̂ , q).

which concludes the proof.

Theorem 10 shows that the generalized discrepancy can provide a finer measure of the
difference between two domains for some choices of H ′′. Therefore, for a good choice of H ′′,
an algorithm minimizing the right-hand side of (14) would benefit from better theoretical
guarantees than the DM algorithm. However, the optimization problem defined by (14)
is not jointly convex in q and h. Instead, we propose to first minimize the generalized
discrepancy and then use this reweighting function as input to our learning algorithm.
Further motivation for this two-stage algorithm is given in the following section.

4.2. Pointwise Guarantees

Similar to the guarantee presented by Cortes and Mohri (2013), we will seek to bound the
difference between an ideal solution h∗ and the solution obtained by our algorithm. We
begin by stating the following bound motivating the DM algorithm.

11
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Theorem 11 (Cortes and Mohri, 2013) Let q be an arbitrary distribution over SX and
let h∗ and hq be the hypotheses minimizing λ‖h‖2K + L

P̂
(h, fP ) and λ‖h‖2K + Lq(h, fQ)

respectively. Then, the following inequality holds:

λ‖h∗ − hq‖2K ≤ µ ηH(fP , fQ) + disc(P̂ , q). (16)

Notice that the solution of DM minimizes the right-hand side of (16), that is disc(P̂ , q).
The following theorem provides an analogous bound for our algorithm.

Theorem 12 Let U be an arbitrary element of A(H) and let h∗ and hU be the hypotheses
minimizing λ‖h‖2K + L

P̂
(h, fP ) and λ‖h‖2K + LUh(h, fQ) respectively. Then, the following

inequality holds for any convex set H ′′ ⊆ H:

λ‖h∗ − hU‖2K ≤ µd1(fP , H
′′) + DISC(P̂ ,U). (17)

Proof Fix U ∈ A(H) and let G
P̂

denote h 7→ L
P̂

(h, fP ) and GU the function h 7→
LUh(h, fQ). Since h 7→ λ‖h‖2K + G

P̂
(h) is convex and differentiable and since h∗ is its

minimizer, the gradient is zero at h∗, that is 2λh∗ = −∇G
P̂

(h∗). Similarly, since h 7→
λ‖h‖2K+GU(h) is convex, it admits a sub-differential at any h ∈ H. Since hU is a minimizer,
its sub-differential at hU must contain 0. Thus, there exists a sub-gradient g0 ∈ ∂GU(hU)
such that 2λhU = −g0, where ∂GU(hU) denotes the sub-differential of GU at hU. Using
these two equalities we can write

2λ‖h∗ − hU‖2K = 〈h∗ − hU, g0 −∇GP̂ (h∗)〉 = 〈g0, h
∗ − hU〉 − 〈∇GP̂ (h∗), h∗ − hU〉

≤ GU(h∗)−GU(hU) +G
P̂

(hU)−G
P̂

(h∗)

= L
P̂

(hU, fP )− LUh(hU, fQ) + LUh(h∗, fQ)− L
P̂

(h∗, fP )

≤ 2 sup
h∈H
|L
P̂

(h, fP )− LUh(h, fQ)|,

where we used for the first inequality the convexity of GU combined with the sub-gradient
property of g0 ∈ ∂GU(hU), and the convexity of G

P̂
. For any h ∈ H, using the µ-

admissibility of the loss, we can upper bound the operand of the max operator as follows:

|L
P̂

(h, fP )− LUh(h, fQ)| ≤ |L
P̂

(h, fP )− L
P̂

(h, h0)|+ |L
P̂

(h, h0)− LUh(h, fQ)|
≤ µ E

x∼P̂
|fP (x)− h0(x)|+ max

h′′∈H′′
|L
P̂

(h, h′′)− LUh(h, fQ)|,

where h0 is an arbitrary element of H ′′. Since this bound holds for all h0 ∈ H ′′, it follows
immediately that

λ‖h∗ − hU‖2K ≤ µ min
h0∈H′′

E
P̂
|fP (x)− h0(x)|+ sup

h∈H
max
h′′∈H′′

|L
P̂

(h, h′′)− LUh(h, fQ)|,

which concludes the proof.

Note that our choice of Q : h 7→ Qh minimizes the right-hand side of (17) among all
functions U ∈ A(H) since, for any U, we can write

DISC(P̂ ,U)= sup
h∈H

max
h′′∈H′′

|L
P̂

(h, h′′)−LUh(h, fQ)|≥ sup
h∈H

min
q∈F(SX )

max
h′′∈H′′

|L
P̂

(h, h′′)−Lq(h, fQ)|

= sup
h∈H

max
h′′∈H′′

|L
P̂

(h, h′′)− LQh(h, fQ)| = DISC(P̂ ,Q).

12
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Thus, in view of Theorem 10, for any constant function U ∈ A(H) with Uh = q for some
fixed distribution q over SX , the right-hand side of the bound of Theorem 11 is lower
bounded by the right-hand side of the bound of Theorem 12, since the local discrepancy is
a finer quantity than the discrepancy: discH′′(P̂ , q) ≤ disc(P̂ , q). Thus, as expected from
the discussion after Theorem 10, our algorithm benefits from a more favorable guarantee
than the DM algorithm for some particular choices of H ′′, especially since, our choice of Q
is based on the minimization over all elements in A(H) and not just the subset of constant
functions mapping to a distribution. The following pointwise guarantee follows directly
from Theorem 12.

Corollary 13 Let h∗ be a minimizer of λ‖h‖2K+L
P̂

(h, fP ) and hQ a minimizer of λ‖h‖2K+
LQh(h, fQ). Then, the following holds for any convex set H ′′ ⊆ H and for all (x, y) ∈ X×Y:

|L(hQ(x), y)− L(h∗(x), y)| ≤ µR

√
µd1(fP , H ′′) + DISC(P̂ ,Q)

λ
, (18)

where R2 = supx∈X K(x, x).

Proof By the µ-admissibility of the loss, the reproducing property of H, and the Cauchy-
Schwarz inequality, the following holds for all x ∈ X and y ∈ Y:

|L(hQ(x), y)− L(h∗(x), y)| ≤ µ|hQ(x)− h∗(x)|
= µ|〈hQ − h∗,K(x, ·)〉K |

≤ µ‖hQ − h∗‖K
√
K(x, x) ≤ R‖hQ − h∗‖K .

Upper bounding ‖hQ − h∗‖K using Theorem 12 and using the fact that Q : h → Qh is a
minimizer of the bound over all choices of U ∈ A(H) yields the desired result.

The pointwise loss guarantee just presented can be directly used to bound the difference
of the expected loss of h∗ and hQ in terms of the same upper bounds, e.g.,

LP (hQ, fP ) ≤ LP (h∗, fP ) + µR

√
µd1(fP , H ′′) + DISC(P̂ ,Q)

λ
. (19)

Similarly, Theorem 10 directly implies the following Corollary.

Corollary 14 Let h∗ be a minimizer of λ‖h‖2K+L
P̂

(h, fP ) and hQ a minimizer of λ‖h‖2K+
LQh(h, fQ). Let supx∈X K(x, x) = R2. Then, there exists a choice of H ′′ ∈ H for which the
following inequality holds uniformly over over (x, y) ∈ X × Y:

|L(hQ(x), y)− L(h∗(x), y)| ≤ µR

√
µηH(fP , fQ)+discH′′(P̂ , qmin)

λ
,

where qmin is the solution of the DM algorithm.

13



Cortes, Mohri and Muñoz Medina

The choice of the set H ′′ defining our algorithm is strongly motivated by the theoretical
results of this section. In view of Theorem 10, we restrict our choice of H ′′ to the family H,
parametrized only by the radius r. Since the generalized discrepancy DISC is a function of
the set H ′′ which in turn depends only on r, the radius r is chosen to minimize (19). This
can be done by using as a validation set a small amount of labeled data from the target
domain which is typically available in practice. In particular, as the size of the unlabeled
sample T ′ increases, our estimate of the optimal radius r becomes more accurate. We
provide a detailed description of our algorithm’s implementation in Section 5.

4.3. Comparison against Other Learning Bounds

We now compare the learning bounds just derived for our algorithm with those of some
common reweighting techniques. In particular, we compare our bounds with those of Cortes
et al. (2008) for the KMM algorithm. A similar comparison however can be derived for other
algorithms based on importance weighting such as KLIEP or uLSIF.

Assume P and Q admit densities p and q respectively. For every x ∈ X we denote by
β(x) = p(x)

q(x) the importance ratio and by β = β
∣∣
SX

its restriction to SX . We also let β̂ be
the solution to the optimization problem solved by the KMM algorithm. Let hβ denote the
solution to

min
h∈H

λ‖h‖2 + Lβ(h, fQ), (20)

and h
β̂

be the solution to

min
h∈H

λ‖h‖2 + L
β̂
(h, fQ). (21)

The following proposition due to Cortes et al. (2008) relates the error of these hypotheses.
The proposition requires the kernel K to be a strictly positive definite universal kernel, with
Gram matrix K given by Kij = K(xi, xj).

Proposition 15 Assume L(h(x), y) ≤ 1 for all (x, y) ∈ X ×Y, h ∈ H. For any δ > 0, with
probability at least 1− δ we have:

|LP (hβ, fP )− LP (h
β̂
, fP )| ≤ µ2R2λ

1
2
max(K)

λ

( εB′√
m

+
κ1/2

λ
1/2
min(K)

√
B′2

m
+

1

n

(
1 +

√
2 log

2

δ

))
, (22)

where ε and B′ are the hyperparameters defining the KMM algorithm and λmax(K), λmin(K)
denote the largest and smallest eigenvalues of K respectively.

This bound and the one obtained in (19) are of course not comparable since the depen-
dence on µ,R and λ is different. In some cases this dependency can be more favorable in
(22) whereas for other values of these parameters (19) provides a better bound. Moreover,
(22) depends on the condition number of K which can become really large in practice.
However, the most important difference between these bounds is that (19) is given in terms
of the ideal hypothesis h∗ while (22) is given in terms of hβ, which, in view of the results of
Cortes et al. (2010) is not guaranteed to have a good performance on the target distribution.
Therefore (22) does not, in general, provide an informative bound.
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4.4. Scenario of Additional Labeled Data

Here, we consider a rather common scenario in practice where, in addition to the labeled
sample S drawn from the source domain and the unlabeled sample T from the target
domain, the learner receives a small amount of labeled data from the target domain T ′ =
((x′′1, y

′′
1), . . . , (x′′s , y

′′
s )) ∈ (X × Y)s. This sample is typically too small to be used solely to

train an algorithm and achieve a good performance. However, it can be useful in at least
two ways that we discuss here.

One important benefit of T ′ is to serve as a validation set to determine the parameter
r that defines the convex set H ′′ used by our algorithm. The sample T ′ can also be used
to enhance the discrepancy minimization algorithm as we now show. Let P̂ ′ denote the
empirical distribution associated with T ′. To take advantage of T ′, the DM algorithm can
be trained on the sample of size (m+s) obtained by combining S and T ′, which corresponds
to the new empirical distribution Q̂′ = m

m+sQ̂+ s
m+s P̂

′. Note that for a fixed value m and

large values of s, Q̂′ essentially ignores the points from the source distribution Q, which
corresponds to the standard supervised learning scenario in the absence of adaptation.
Let q′min denote the discrepancy minimization solution when using Q̂′. Since supp(Q̂′) ⊇
supp(Q̂), the discrepancy using q′min is a lower bound on the discrepancy using qmin:

disc(q′min, P̂ ) = min
supp(q)⊆supp(Q̂′)

disc(P̂ , q) ≤ min
supp(q)⊆supp(Q̂)

disc(P̂ , q) = disc(qmin, P̂ ).

5. Optimization Solution

As shown in Section 3.2, the function G defining our algorithm is convex and the prob-
lem of minimizing the expression (7) is a convex optimization problem. Nevertheless,
the problem is not straightforward to solve, in particular because evaluating a term like
maxh′′∈H′′ LP̂ (h, h′′) that it contains requires solving a non-convex optimization problem.
Here, we present an exact solution in the case of the L2 loss by solving a semi-definite
programming (SDP) problem.

5.1. SDP Formulation

As discussed in Section 4, the choice of H ′′ is a key component of our algorithm. In view
of Corollary 14, we will consider the set H ′′ = {h′′ | Lqmin(h′′, fQ) ≤ r2}. Equivalently, as a
result of the reproducing property of H and the representer theorem, H ′′ may be defined as
{a ∈ Rm|

∑m
j=1 qmin(xj)(

∑m
i=1 aiqmin(xi)

1/2K(xi, xj)− yj)2 ≤ r2}. Also by the representer

theorem, the solution to (7) will be of the form h = n−1/2
∑n

i=1 biK(x′i, ·). Therefore,

given normalized kernel matrices Kt, Ks, Kst defined respectively as Kij
t = n−1K(x′i, x

′
j),

Kij
s = qmin(xi)

1/2qmin(xj)
1/2K(xi, xj) and Kij

st = n−1/2qmin(xj)
1/2K(x′i, xj), problem (7) is

equivalent to

min
b∈Rn

λb>Ktb +
1

2

(
max
a∈Rm

‖Ksa−y‖2≤r2
‖Ksta−Ktb‖2 + min

a∈Rm
‖Ksa−y‖2≤r2

‖Ksta−Ktb‖2
)
, (23)

where y = (qmin(x1)1/2y1, . . . , qmin(xm)1/2ym) is the vector of normalized labels.
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Friday, February 7, 2014

Figure 1: Illustration of the sampling process on the set H ′′.

Lemma 16 The Lagrangian dual of the problem

max
a∈Rm

‖Ksa−y‖2≤r2

1

2
‖Ksta‖2 − b>KtKsta,

is given by

min
η≥0,γ

γ

s.t.

(
−1

2K>stKst + ηK2
s

1
2K>stKtb− ηKsy

1
2b>KtKst − ηy>Ks η(‖y‖2 − r2) + γ

)
� 0.

Furthermore, the duality gap for these problems is zero.

The proof of the lemma is given in Appendix A. The lemma helps us derive the following
equivalent SDP formulation for our original optimization problem. Its solution can be found
in polynomial time using standard convex optimization solvers.

Proposition 17 The optimization problem (23) is equivalent to the following SDP:

max
α,β,ν,Z,z

1

2
Tr(K>stKstZ)− β − α

s. t

(
νK2

s + 1
2K>stKst − 1

4K̃ νKsy + 1
4K̃z

νy>Ks + 1
4z>K̃ α+ ν(‖y‖2 − r2)

)
� 0

(
λKt + K2

t
1
2KtKstz

1
2z>K>stKt β

)
� 0

(
Z z
z> 1

)
� 0 ∧ ν ≥ 0 ∧ Tr(K2

sZ)− 2y>Ksz + ‖y‖2 ≤ r2,

where K̃ = K>stKt(λKt + K2
t )
†KtKst, and A† denotes the pseudo-inverse of matrix A.

In the following section we derive a more efficient approximate solution to the optimization
problem using sampling, which helps reducing the problem to a simple QP.

5.2. QP Formulation

The SDP formulation described in the previous section is applicable for a specific choice
of H ′′. In this section, we present an analysis that holds for an arbitrary compact, convex
set H ′′. First, notice that the problem of minimizing G (expression (7)) is related to the
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minimum enclosing ball (MEB) problem. For a set D ⊆ Rd, the MEB problem is defined
as follows:

min
u∈Rd

max
v∈D
‖u− v‖2.

Omitting the regularization and the min term from (7) leads to a problem similar to the
MEB. Thus, we could benefit from the extensive literature and algorithmic study available
for this problem (Kumar et al., 2003; Schőnherr, 2002; Yildirim, 2008). However, to the
best of our knowledge, there is currently no solution available to this problem in the case of
an infinite set D, as in the case of our problem. Instead, we present a solution for solving
an approximation of (7) based on sampling.

Let {h1, . . . , hk} be a set of hypotheses on the boundary of H ′′, ∂H ′′ and let C =
C(h1, . . . , hk) denote their convex hull. The following is the sampling-based approximation
of (7) that we consider:

min
h∈H

λ‖h‖2K +
1

2
max
i=1,...,k

L
P̂

(h, hi) +
1

2
min
h′∈C
L
P̂

(h, h′). (24)

Proposition 18 Let Y = (Yij) ∈ Rn×k be the matrix defined by Yij = n−1/2hj(x
′
i) and

y′ = (y′1, . . . , y
′
k)
> ∈ Rk the vector defined by y′i = n−1

∑n
j=1 hi(x

′
j)

2. Then, the dual
problem of (24) is given by

max
α,γ,β

−
(
Yα+

γ

2

)>
Kt

(
λI +

1

2
Kt

)−1(
Yα+

γ

2

)
− 1

2
γ>KtK

†
tγ +α>y′ − β (25)

s.t. 1>α =
1

2
, 1β ≥ −Y>γ, α ≥ 0,

where 1 is the vector in Rk with all components equal to 1. Furthermore, the solution h
of (24) can be recovered from a solution (α,γ, β) of (25) by ∀x, h(x) =

∑n
i=1 aiK(xi, x),

where a =
(
λI + 1

2Kt)
−1(Yα+ 1

2γ).

The proof of the proposition is given in Appendix B. The result shows that, given a
finite sample h1, . . . , hk on the boundary of H ′′, (24) is in fact equivalent to a standard QP.
Hence, a solution can be found efficiently with one of the many off-the-shelf algorithms for
quadratic programming.

We now describe the process of sampling from the boundary of the set H ′′, which is
a necessary step for defining problem (24). We consider compact sets of the form H ′′ :=
{h′′ ∈ H | gi(h′′) ≤ 0}, where the functions gi are continuous and convex. For instance, we
could consider the set H ′′ defined in the previous section. More generally, we can consider
a family of sets H ′′p = {h′′ ∈ H| |

∑m
i=1 qmin(xi)|h(xi)− yi|p ≤ rp}.

Assume that there exists h0 satisfying gi(h0) < 0. Our sampling process is illustrated by
Figure 1 and works as follows: pick a random direction ĥ and define λi to be the minimal
solution to the system

(λ ≥ 0) ∧ (gi(h0 + λĥ) = 0).

Set λi =∞ if no solution is found and define λ∗ = mini λi. By the convexity and compact-
ness of H ′′ we can guarantee that λ∗ < ∞. The hypothesis h = h0 + λ∗ĥ satisfies h ∈ H ′′
and gj(h) = 0 for j such that λj = λ∗. The latter is straightforward. To verify the former,
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assume that gi(h0 + λ∗ĥ) > 0 for some i. The continuity of gi would imply the existence of
λ′i with 0 < λ′i < λ∗ ≤ λi such that gi(h0 + λ′iĥ) = 0. This would contradict the choice of

λi, thus, the inequality gi(h0 + λ∗ĥ) ≤ 0 must hold for all i.

Since a point h0 with gi(h0) < 0 can be obtained by solving a convex program and
solving the equations defining λi is, in general, simple, the process described provides an
efficient way of sampling points from the convex set H ′′.

5.3. Implementation for the L2 Loss

We now describe how to fully implement our sampling-based algorithm for the case where
L is equal to the L2 loss. In view of the results of Section 4, we let H ′′ = {h′′|‖h′′‖K ≤
Λ ∧ Lq(h′′, fQ) ≤ r2}. We first describe the steps needed to find a point h0 ∈ H ′′. Let
hΛ be such that ‖hΛ‖K = Λ and λr ∈ R+ be such that the solution hr to the optimization
problem

min
h∈H

λr‖h‖2 + Lq(h, fQ),

satisfies Lq(hr, fQ) = r2. It is easy to verify that the existence of λr is guaranteed for
minh∈H Lq(h, fQ) ≤ r2 ≤

∑m
i=1 q(xi)y

2
i . It is clear that the point h0 = 1

2(hr + hΛ) is in
the interior of H ′′. Of course, finding λr with the desired properties is not straightforward.
However, since r is chosen via validation, we do not need to find λr as a function of r.
Instead, we can simply select λr through validation too.

In order to complete the sampling process, we must have an efficient way of selecting a
random direction ĥ. If H ⊂ Rd is a set of linear hypotheses, a direction ĥ can be sampled
uniformly by letting ĥ = ξ

‖ξ‖ , where ξ is a standard Gaussian random variable in Rd. If H
is a subset of a RKHS, by the representer theorem, we only need to consider hypotheses of
the form h =

∑m
i=1 αiK(xi, ·). Therefore, we can sample a direction ĥ =

∑m
i=1 α

′
iK(xi, ·),

where the vector α′ = (α′1, . . . , α
′
m) is drawn uniformly from the unit sphere in Rm. A full

implementation of our algorithm thus consists of the following steps:

• find the distribution qmin = argminq∈Q disc(q, P̂ ). This can be done by using the
smooth approximation algorithm of Cortes and Mohri (2013);

• sample points from the set H ′′ using the sampling process described above;

• solve the QP introduced in Section 5.2.

Notice that our algorithm only requires solving a simple QP and therefore its complexity
is the same as other adaptation algorithms such as KMM, KLIEP and DM.

6. Experiments

Here, we report the results of extensive comparisons between GDM and several other adap-
tation algorithms which demonstrate the benefits of our algorithm. We use the implemen-
tation described in the previous section. The source code for our algorithm as well as all
other baselines described in this section can be found at http://cims.nyu.edu/~munoz.

6.1. Synthetic Data Set

To compare the performances of the GDM and DM algorithms, we considered the following
synthetic one-dimensional task, which is similar to the one considered by Huang et al.
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Figure 2: (a) Hypotheses obtained by training on source (green circles), target (red trian-
gles) and using DM (dashed blue) and GDM algorithms (solid blue). (b) Objective
functions for source and target distribution as well as GDM and DM algorithms.
Sets H and surrogate hypothesis set H ′′ ⊆ H are shown at the bottom. The
vertical lines represent the minimizing hypothesis for each loss.

(2006): the source domain examples were sampled from the uniform distribution over the
interval [.2, 1] and target ones sampled uniformly over [0, .25]. The labels were given by the
map x 7→ −x + x3 + ξ, where ξ is a Gaussian random variable with mean 0 and standard
deviation 0.1. Our hypothesis set was defined by the family of linear functions without an
offset. Figure 2(a) shows the regression hypotheses obtained by training the DM and GDM
algorithm as well as those obtained by training on the source and target distributions. The
ideal hypothesis is shown in red. Notice how the GDM solution gives a closer approximation
than DM to the ideal solution. In order to better understand the difference between the
solutions of these algorithms, Figure 2(b) depicts the objective function minimized by each
algorithm as a function of the slope w of the linear function, the only variable of the
hypothesis. The vertical lines show the value of the minimizing hypothesis for each loss.
Keeping in mind that the regularization parameter λ used in ridge regression corresponds
to a Lagrange multiplier for the constraint w2 ≤ Λ2 for some Λ (Cortes and Mohri, 2013)
[Lemma 1], the hypothesis set H = {w|w2 ≤ Λ2} is depicted at the bottom of this plot.
The shaded region represents the set H ′′ = H ∩ {h′′|Lqmin(h′′) ≤ r}. It is clear from this
plot that DM helps approximate the target loss function. Nevertheless, only GDM seems to
uniformly approach it. This should come as no surprise since our algorithm was precisely
designed to achieve that.

6.2. Adaptation Data Sets

We now present the results of evaluating our algorithm against several other adaptation
algorithms. GDM is compared against DM and training on the uniform distribution. The
following baselines were also used:

1. The KMM algorithm (Huang et al., 2006), which reweights examples from the source
distribution in order to match the mean of the source and target data in a feature space
induced by a universal kernel. The hyper-parameters of this algorithm were set to the

recommended values of B = 1000 and ε =
√
m√
m−1

.

2. KLIEP (Sugiyama et al., 2007). This algorithm estimates the importance ratio of the
source and target distribution by modeling this ratio as a mixture of basis functions and
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Figure 3: (a)MSE performance for different adaptation algorithms when adapting from
kin-8fh to the three other kin-8xy domains. (b) Relative error of DM over
GDM as a function of the ratio r

Λ .

learning the mixture coefficients from the data. Gaussian kernels were used as basis
functions for this algorithm and KMM. The bandwidth for the kernel was selected
from the set

{
σd : σ = 2−5, . . . , 25

}
via validation on the test set, where d is the mean

distance between points sampled from the source domain.

3. FE (Daumé III, 2007). This algorithm maps source and target data into a common
high-dimensional feature space where the difference of the distributions is expected to
reduce.

Since the two-stage algorithm of Bickel et al. (2007) was already shown to perform
similarly to KMM and KLIEP (Cortes and Mohri, 2013), for the sake of readability of our
results, we omitted the results of comparison with this algorithm. Finally, we compare our
algorithm with the ideal hypothesis h∗ returned by training on the target sample T , which
we denote by Tar. Notice that in practice, this is impossible as T is unlabeled so we use
this result only to show the best attainable performance.

We selected the set of linear functions as our hypothesis set. The learning algorithm
used for all tasks was ridge regression and the performance evaluated by the mean squared
error. We follow the setup of Cortes and Mohri (2011) and for all adaptation algorithms
we selected the parameter λ via 10-fold cross validation over the training data by using a
grid search over the set of values λ ∈ {2−10, . . . , 210}. The results of training on the target
distribution are presented for a parameter λ tuned via 10-fold cross validation over the
target data. We used the QP implementation of our algorithm with the sampling set H ′′

and the sampling mechanism defined at the end of Section 5.2, where the parameter λr was
chosen from the same set as λ via validation on a small amount of data from the target
distribution. Whereas there are other methods such as transfer cross validation (Zhong
et al., 2010) to select the parameters for our algorithm, these methods require the use of
importance weighting which as shown in (Cortes et al., 2010) is not theoretically justified.

In order to achieve a fair comparison, all other algorithms were allowed to use the small
amount of labeled data too. Since, with the exception of FE, all other baselines do not
propose a way of dealing with labeled data from the target distribution, we simply added
this data to the training set and ran the algorithms on the extended source data as discussed
in Section 4.4.
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Task: Sentiment
S T GDM DM Unif Tar KMM KLIEP F

B

K 0.763±(0.222) 1.056±(0.289) 1.00 0.517±(0.152) 3.328±(0.845) 3.494±(1.144) 0.942±(0.093)

E 0.574±(0.211) 1.018±(0.206) 1.00 0.367±(0.124) 3.018±(0.319) 3.022±(0.318) 0.857±(0.135)

D 0.936±(0.256) 1.215±(0.255) 1.00 0.623±(0.152) 2.842±(0.492) 2.764±(0.446) 0.936±(0.110)

K

B 0.854±(0.119) 1.258±(0.117) 1.00 0.665±(0.085) 2.784±(0.244) 2.642±(0.218) 1.047±(0.047)

E 0.975±(0.131) 1.460±(0.633) 1.00 0.653±(0.201) 2.408±(0.582) 2.157±(0.255) 0.969±(0.131)

D 0.884±(0.101) 1.174±(0.140) 1.00 0.665±(0.071) 2.771±(0.157) 2.620±(0.210) 1.111±(0.059)

E

B 0.723±(0.138) 1.016±(0.187) 1.00 0.551±(0.109) 3.433±(0.694) 3.290±(0.583) 1.035±(0.059)

K 1.030±(0.312) 1.277±(0.283) 1.00 0.636±(0.176) 2.173±(0.249) 2.223±(0.293) 0.955±(0.199)

D 0.731±(0.171) 1.005±(0.166) 1.00 0.518±(0.117) 3.363±(0.402) 3.231±(0.483) 0.974±(0.102)

D

B 0.992±(0.191) 1.026±(0.090) 1.00 0.740±(0.138) 2.571±(0.616) 2.475±(0.400) 0.986±(0.041)

K 0.870±(0.212) 1.062±(0.318) 1.00 0.557±(0.137) 2.755±(0.375) 2.741±(0.347) 0.940±(0.087)

E 0.674±(0.135) 0.994±(0.171) 1.00 0.478±(0.098) 2.939±(0.501) 2.878±(0.418) 0.907±(0.081)

Table 2: Adaptation from books (B), kitchen (K), electronics (E) and dvd (D) to all
other domains. Normalized results: MSE of training on the unweighted source
data is equal to 1. Results in bold represent the algorithm with the lowest MSE.

The first task we considered is given by the 4 kin-8xy Delve data sets (Rasmussen
et al., 1996). These data sets are variations of the same model: a realistic simulation of the
forward dynamics of an 8 link all-revolute robot arm. The task in all data sets consists of
predicting the distance of the end-effector from a target. The data sets differ by the degree
of non-linearity (fairly linear, x=f, or non-linear, x=n) and the amount of noise in the output
(moderate, y=m, or high, y=h). The data set defines 4 different domains, that is 12 pairs
of different distributions and labeling functions. A sample of 200 points from each domain
was used for training and 10 labeled points from the target distribution were used to select
H ′′. The experiment was carried out 10 times and the results of testing on a sample of
400 points from the target domain are reported in Figure 3(a). The bars represent the
median performance of each algorithm. The error bars are the low and high 25% quartiles
respectively. All results were normalized in such a way that the median performance of
training on the source is equal to 1. Notice that the performance of all algorithms is
comparable when adapting to kin8-fm since both labeling functions are fairly linear, yet
only GDM is able to reasonably adapt to the two data sets with different labeling functions.
In order to better understand the advantages of GDM over DM we plot the relative error
of DM against GDM as a function of the ratio r/Λ in Figure 3(b), where r is the radius
defining H ′′ and is selected through cross validation. Notice that when the ratio r/Λ is
small then both algorithms behave similarly which is most of the times for the adaptation
task fh to fm. On the other hand, a better performance of GDM can be obtained when the
ratio is larger. This is due to the fact that r/Λ measures the effective size of the set H ′′.
A small ratio means that the size of H ′′ is small and therefore the hypothesis returned by
GDM will be close to that of DM where as if H ′′ is large then GDM has the possibility of
finding a better hypothesis.

For our next experiment we considered the cross-domain sentiment analysis data set of
Blitzer et al. (2007). This data set consists of consumer reviews from 4 different domains:
books, kitchen, electronics and dvds. We used the top 1000 uni-grams and bi-grams
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Task: Images
S T GDM DM Unif Tar KMM KLIEP F

C

I 0.927±(0.051) 1.005±(0.010) 1.00 0.879±(0.048) 2.752±(3.820) 0.936±(0.016) 0.959±(0.035)

S 0.938±(0.064) 0.993±(0.018) 1.00 0.840±(0.057) 0.827±(0.017) 0.835±(0.020) 0.947±(0.025)

B 0.909±(0.040) 1.003±(0.013) 1.00 0.886±(0.052) 0.945±(0.022) 0.942±(0.017) 0.947±(0.019)

I

C 1.011±(0.015) 0.951±(0.011) 1.00 0.802±(0.040) 0.989±(0.036) 1.009±(0.042) 0.971±(0.024)

S 1.006±(0.030) 0.992±(0.016) 1.00 0.871±(0.030) 0.930±(0.018) 0.936±(0.016) 0.973±(0.017)

B 0.987±(0.022) 1.009±(0.010) 1.00 0.986±(0.028) 1.011±(0.028) 1.011±(0.028) 0.994±(0.018)

S

C 1.022±(0.037) 0.982±(0.035) 1.00 0.759±(0.033) 1.172±(0.043) 1.201±(0.038) 0.938±(0.036)

I 0.924±(0.049) 0.998±(0.030) 1.00 0.831±(0.047) 3.868±(4.231) 1.227±(0.039) 0.947±(0.028)

B 0.898±(0.072) 1.003±(0.044) 1.00 0.821±(0.053) 1.240±(0.039) 1.248±(0.041) 0.945±(0.021)

B

C 1.010±(0.014) 0.956±(0.017) 1.00 0.777±(0.031) 1.028±(0.033) 1.032±(0.031) 0.980±(0.019)

I 1.012±(0.010) 1.004±(0.007) 1.00 0.966±(0.009) 2.785±(3.803) 0.981±(0.018) 1.000±(0.004)

S 1.009±(0.018) 0.988±(0.010) 1.00 0.850±(0.035) 0.930±(0.022) 0.934±(0.024) 0.983±(0.013)

Table 3: Adaptation from caltech256 (C), imagenet (I), sun (S) and bing (B).

as the features for this task. For each pair of adaptation tasks we sampled 700 points from
the source distribution and 700 unlabeled points from the target. Only 50 labeled points
from the target distribution were used to tune the parameter r of our algorithm. The final
evaluation is done on a test set of 1000 points. The mean results and standard deviations
of this task are shown in Table 2 where the MSE values have been normalized in such a
way that the performance of training on the source without reweighting is always 1.

Finally, we considered a novel domain adaptation task (Tommasi et al., 2014) of
paramount importance in the computer vision community. The domains correspond to
4 well known collections of images: bing, caltech256, sun and imagenet. These data
sets have been standardized so that they all share the same feature representation and la-
beling function (Tommasi et al., 2014). We sampled 800 labeled points from the source
distribution and 800 unlabeled points from the target distribution as well as 50 labeled
target points to be used for validation of r. The results of testing on 1000 points from the
target domain are presented in Table 3 where, again, the results were normalized in such a
way that the performance of training on the source data is always 1.

After analyzing the results of this section we notice that the GDM algorithm consis-
tently outperforms DM and achieves similar or better performance than all other common
adaptation algorithms. It is worth noticing that in some cases, other algorithms perform
even worse than training on the unweighted sample. This deficiency of the KLIEP algo-
rithm had already been pointed out by Sugiyama et al. (2007) but here we observe that
this problem can also affect the KMM algorithm. Finally, let us point out that even though
the FE algorithm also achieved performances similar to GDM on the sentiment and image
adaptation, its performance was far from optimal adapting on the kin-8xy task. Since
there is a lack of theoretical understanding for this algorithm, it is hard to characterize the
scenarios where FE would perform better than GDM.

7. Conclusion

We presented a new theoretically well-founded domain adaptation algorithm seeking to
minimize a less conservative quantity than the DM algorithm. We presented an SDP so-
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lution for the particular case of the L2 loss which can be solved in polynomial time. Our
empirical results show that our new algorithm always performs better than or is on par
with the otherwise state-of-the-art DM algorithm. We also provided tight generalization
bounds for the domain adaptation problem based on the Y-discrepancy. As pointed out
in Section 4, an algorithm that minimizes the Y-discrepancy would benefit from the best
possible guarantees. However, the lack of labeled data from the target distribution makes
this algorithm not viable. This suggests analyzing a richer scenario where the learner is
allowed to ask for a limited number of labels from the target distribution. This setup, which
is related to active learning, seems to be in fact the closest one to real-life applications and
has started to receive attention from the research community (Berlind and Urner, 2015).
We believe that the discrepancy disc will play a central role in the analysis of that scenario
as well.
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Appendix A. SDP Formulation

Lemma 19 The Lagrangian dual of the problem

max
a∈Rm

‖Ksa−y‖2≤r2

1

2
‖Ksta‖2 − b>KtKsta, (26)

is given by

min
η≥0,γ

γ

s. t.

(
−1

2K>stKst + ηK2
s

1
2K>stKtb− ηKsy

1
2b>KtKst − ηy>Ks η(‖y‖2 − r2) + γ

)
� 0.

Furthermore, the duality gap for these problems is zero.

Proof For η ≥ 0 the Lagrangian of (26) is given by

L(a, η) =
1

2
‖Ksta‖2 − b>KtKsta− η(‖Ksa− y‖2 − r2)

= a>
(1

2
K>stKst − ηK2

s

)
a + (2ηKsy −K>stKtb)>a− η(‖y‖2 − r2).

Since the Lagrangian is a quadratic function of a and that the conjugate function of a
quadratic can be expressed in terms of the pseudo-inverse, the dual is given by

min
η≥0

1

4
(2ηKsy −K>stKtb)>

(
ηK2

s −
1

2
K>stKst

)†
(2ηKsy −K>stKtb)− η(‖y‖2 − r2)

s. t. ηK2
s −

1

2
K>stKst � 0.
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Introducing the variable γ to replace the objective function yields the equivalent problem

min
η≥0,γ

γ

s. t. ηK2
s −

1

2
K>stKst � 0

γ − 1

4
(2ηKsy −K>stKtb)>

(
ηK2

s −
1

2
K>stKst

)†
(2ηKsy −K>stKtb) + η(‖y‖2 − r2) ≥ 0

Finally, by the properties of the Schur complement (Boyd and Vandenberghe, 2004), the
two constraints above are equivalent to

(
−1

2K>stKst + ηK2
s

1
2K>stKtb− ηKsy(

1
2K>stKtb− ηKsy

)>
η(‖y‖2 − r) + γ

)
� 0.

Since duality holds for a general QCQP with only one constraint (Boyd and Vandenberghe,
2004)[Appendix B], the duality gap between these problems is 0.

Proposition 20 The optimization problem (23) is equivalent to the following SDP:

max
α,β,ν,Z,z

1

2
Tr(K>stKstZ)− β − α

s. t

(
νK2

s + 1
2K>stKst − 1

4K̃ νKsy + 1
4K̃z

νy>Ks + 1
4z>K̃ α+ ν(‖y‖2 − r2)

)
� 0 ∧

(
Z z
z> 1

)
� 0

(
λKt + K2

t
1
2KtKstz

1
2z>K>stKt β

)
� 0 ∧ Tr(K2

sZ)− 2y>Ksz + ‖y‖2 ≤ r2 ∧ ν ≥ 0,

where K̃ = K>stKt(λKt + K2
t )
†KtKst.

Proof
By Lemma 16, we may rewrite (23) as

min
a,γ,η,b

b>(λKt + K2
t )b +

1

2
a>K>stKsta− a>K>stKtb + γ (27)

s. t.

(
−1

2K>stKst + ηK2
s

1
2K>stKtb− ηKsy

1
2b>KtKst − ηy>Ks η(‖y‖2 − r2) + γ

)
∧ η ≥ 0

‖Ksa− y‖2 ≤ r2.

Let us apply the change of variables b = 1
2(λKt+K2

t )
†KtKsta+v. The following equalities

can be easily verified.

b>(λKt + K2
t )b =

1

4
a>K>stKt(λKt + K2

t )
†KtKsta + v>KtKsta + v>(λKt + K2

t )v.

a>K>stKtb =
1

2
a>K>stKt(λKt + K2

t )
†KtKsta + v>KtKsta.
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Thus, replacing b on (27) yields

min
a,v,γ,η

v>(λKt + K2
t )v + a>

(1

2
K>stKst −

1

4
K̃
)
a + γ

s. t.

(
−1

2K>stKst + ηK2
s

1
4K̃a + 1

2K>stKtv − ηKsy
1
4a>K̃ + 1

2v>KtKst − ηy>Ks η(‖y‖2 − r2) + γ

)
� 0 ∧ η ≥ 0

‖Ksa− y‖2 ≤ r2.

Introducing the scalar multipliers µ, ν ≥ 0 and the matrix
(

Z z
z> z̃,

)
� 0

as a multiplier for the matrix constraint, we can form the Lagrangian:

L := v>(λKt + K2
t )v + a>

(1

2
K>stKst −

1

4
K̃
)
a + γ − µη + ν(‖Ksa− y‖2 − r2)

− Tr

((
Z z
z z̃

)( −1
2K>stKst + ηK2

s
1
4K̃a + 1

2K>stKtv − ηKsy
1
4a>K̃ + 1

2v>KtKst − ηy>Ks η(‖y‖2 − r2) + γ

))
.

The KKT conditions ∂L
∂η = ∂L

∂γ = 0 trivially imply z̃ = 1 and Tr(K2
sZ)− 2y>Ksz + ‖y‖2 −

r2 + µ = 0. These constraints on the dual variables guarantee that the primal variables η
and γ will vanish from the Lagrangian, thus yielding

L =
1

2
Tr(K>stKstZ) + ν(‖y‖2 − r2) + v>(λKt + K2

t )v
> − z>K>stKtv

+ a>
(
νK2

s +
1

2
K>stKst −

1

4
K̃
)
a−

(
2νKsy +

1

2
K̃z
)>

a.

This is a quadratic function on the primal variables a and v with minimizing solutions

a =
1

2

(
νK2

s +
1

2
K>stKst −

1

4
K̃
)†(

2νKsy +
1

2
K̃z
)

and v =
1

2
(λKt + K2

t )
†KtKstz,

and optimal value equal to the objective of the Lagrangian dual:

1

2
Tr(K>stKstZ) + ν(‖y‖2 − r2)− 1

4
z>K̃z

− 1

4

(
2νKsy +

1

2
K̃z
)>(

νK2
s +

1

2
K>stKst −

1

4
K̃
)†(

2νKsy +
1

2
K̃z
)
.

As in Lemma 16, we apply the properties of the Schur complement to show that the dual
is given by

max
α,β,ν,Z,z

1

2
Tr(K>stKstZ)− β − α

s. t

(
νK2

s + 1
2K>stKst − 1

4K̃ νKsy + 1
4K̃z

νy>Ks + 1
4z>K̃ α+ ν(‖y‖2 − r2)

)
� 0 ∧

(
Z z
z> 1

)
� 0

Tr(K2
sZ)− 2y>Ksz + ‖y‖2 ≤ r2 ∧ β ≥ 1

4
z>K̃z ∧ ν ≥ 0.
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Finally, recalling the definition of K̃ and using the Schur complement one more time we
arrive to the final SDP formulation

max
α,β,ν,Z,z

1

2
Tr(K>stKstZ)− β − α

s. t

(
νK2

s + 1
2K>stKst − 1

4K̃ νKsy + 1
4K̃z

νy>Ks + 1
4z>K̃ α+ ν(‖y‖2 − r2)

)
� 0 ∧

(
Z z
z> 1

)
� 0

(
λKt + K2

t
1
2KtKstz

1
2z>K>stKt β

)
� 0 ∧ Tr(K2

sZ)− 2y>Ksz + ‖y‖2 ≤ r2 ∧ ν ≥ 0.

Appendix B. QP Formulation

Proposition 21 Let Y = (Yij) ∈ Rn×k be the matrix defined by Yij = n−1/2hj(x
′
i) and

y′ = (y′1, . . . , y
′
k)
> ∈ Rk the vector defined by y′i = n−1

∑n
j=1 hi(x

′
j)

2. Then, the dual
problem of (24) is given by

max
α,γ,β

−
(
Yα+

γ

2

)>
Kt

(
λI +

1

2
Kt

)−1(
Yα+

γ

2

)
− 1

2
γ>KtK

†
tγ +α>y′ − β (28)

s.t. 1>α =
1

2
, 1β ≥ −Y>γ, α ≥ 0,

where 1 is the vector in Rk with all components equal to 1. Furthermore, the solution h
of (24) can be recovered from a solution (α,γ, β) of (28) by ∀x, h(x) =

∑n
i=1 aiK(xi, x),

where a =
(
λI + 1

2Kt)
−1(Yα+ 1

2γ).

We will first prove a simplified version of the proposition for the case of linear hypotheses,
i.e. we can represent hypotheses in H and elements of X as vectors w,x ∈ Rd respectively.
Define X′ = n−1/2(x′1, . . . ,x

′
n) to be the matrix whose columns are the normalized sample

points from the target distribution. Let also {w1, . . . ,wk} be a sample taken from ∂H ′′ and
define W := (w1, . . . ,wk) ∈ Rd×k. Under this notation, problem (24) may be rewritten as

min
w∈Rd

λ‖w‖2 +
1

2
max
i=1,...,k

‖X′>(w −wi)‖2 +
1

2
min
w′∈C

‖X′>(w −w′)‖2. (29)

Lemma 22 The Lagrange dual of problem (29) is given by

max
α,γ,β

−
(
Yα+

γ

2

)>
X′>

(
λI+

X′X′>

2

)−1
X′
(
Y α+

γ

2

)
− 1

2
γ>X′>(X′X′>)†X′γ +α>y′ − β

s. t. 1>α =
1

2
1β ≥ −Y>γ α ≥ 0,

where Y = X′>W and y′i = ‖X′>wi‖2.
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Proof By applying the change of variable u = w′ − w, problem (29) is can be made
equivalent to

min
w∈Rdu∈C−w

λ‖w‖2 +
1

2
‖X′>w‖2 +

1

2
‖X′>u‖2 +

1

2
max
i=1,...,k

‖X′>wi‖2 − 2w>i X′X′>w.

By making the constraints on u explicit and replacing the maximization term with the
variable r the above problem becomes

min
w,u,r,µ

λ‖w‖2 +
1

2
‖X′>w‖2 +

1

2
‖X′>u‖2 +

1

2
r

s. t. 1r ≥ y′ − 2Y>X′>w ∧ 1>µ = 1 ∧ µ ≥ 0 ∧ Wµ−w = u.

For α, δ ≥ 0, the Lagrangian of this problem is defined as

L(w,u,µ, r,α, β, δ,γ ′) = λ‖w‖2 +
1

2
‖X′>w‖2 +

1

2
‖X′>u‖2 +

1

2
r + β(1>µ− 1)

+α>(y′ − 2(X′Y)>w − 1r)− δ>µ+ γ ′>(Wµ−w − u).

Minimizing with respect to the primal variables yields the following KKT conditions:

1>α =
1

2
1β = δ −W>γ ′. (30)

X′X′>u = γ ′ 2

(
λI +

X′X′>

2

)
w = 2(X′Y )α+ γ ′. (31)

Condition (30) implies that the terms involving r and µ will vanish from the Lagrangian.
Furthermore, the first equation in (31) implies that any feasible γ ′ must satisfy γ ′ = X′γ for

some γ ∈ Rn. Finally, it is immediate that γ ′>u = u>X′X′>u and 2w>
(
λI + X′X′>

2

)
w =

2α>(X′Y)>w + γ ′>w. Thus, at the optimal point, the Lagrangian becomes

−w>
(
λI +

1

2
X′X′>

)
w − 1

2
u>X′X′>u +α>y′ − β

s. t. 1>α =
1

2
1β = δ −W>γ ′ α ≥ 0 ∧ δ ≥ 0.

The positivity of δ implies that 1β ≥ −W>γ ′. Solving for w and u on (31) and applying
the change of variable X′γ = γ ′ we obtain the final expression for the dual problem:

max
α,γ,β

−
(
Yα+

γ

2

)>
X′>

(
λI+

X′X′>

2

)−1
X′
(
Y α+

γ

2

)
− 1

2
γ>X′>(X′X′>)†X′γ +α>y′ − β

s. t. 1>α =
1

2
1β ≥ −Y>γ α ≥ 0,

where we have used the fact that Y>γ = WX′>γ to simplify the constraints. Notice also
that we can recover the solution w of problem (29) as w = (λI + 1

2X′>X′)−1X′(Yα+ 1
2γ)

The proof of Proposition 18 follows from a straightforward application of the well
known matrix identities X′(λI + X′>X′)−1 = (λI + X′X′>)−1X′ and X′>X′(X′>X′)† =
X′>(X′X′>)†X′, and by the fact that the kernel matrix Kt is equal to X′>X′.
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Appendix C. µ-admissibility

Lemma 23 Assume that Lp(h(x), y) ≤M for all x ∈ X and y ∈ Y, then Lp is µ-admissible
with µ = pMp−1.

Proof Since x 7→ xp is p-Lipschitz over [0, 1] we can write

|L(h(x), y)− L(h′(x), y)| = Mp

∣∣∣∣
( |h(x)− y|

M

)p
−
( |h′(x)− y|

M

)p∣∣∣∣
≤ pMp−1|h(x)− y + y − h′(x)| = pMp−1|h(x)− h′(x)|.

Lemma 24 Let L be the Lp loss for some p ≥ 1 and let h, h′, h′′ be functions satisfying
Lp(h(x), h′(x)) ≤ M and Lp(h

′′(x), h′(x)) ≤ M for all x ∈ X , for some M ≥ 0. Then, for
any distribution D over X , the following inequality holds:

|LD(h, h′)− LD(h′′, h′)| ≤ pMp−1[LD(h, h′′)]
1
p . (32)

Proof Proceeding as in the proof of Lemma 23, we obtain

|LD(h, h′)− LD(h′′, h′)| = | E
x∈D

[
Lp(h(x), h′(x))− Lp(h′′(x), h′(x)

]
|

≤ pMp−1 E
x∈D

[
|h(x)− h′′(x)|

]
.

Since p ≥ 1, by Jensen’s inequality, we can write Ex∈D
[
|h(x) − h′′(x)|

]
≤ Ex∈D

[
|h(x) −

h′′(x)|p
]1/p

= [LD(h, h′′)]
1
p .
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Luc Devroye, Lázló Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recogni-
tion. Springer, 1996.

Mark Dredze, John Blitzer, Partha Pratim Talukdar, Kuzman Ganchev, João Graça, and
Fernando Pereira. Frustratingly hard domain adaptation for dependency parsing. In
EMNLP-CoNLL, 2007.

Pascal Germain, Amaury Habrard, François Laviolette, and Emilie Morvant. A PAC-
Bayesian approach for domain adaptation with specialization to linear classifiers. In
Proceedings of ICML, 2013.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexan-
der J. Smola. A kernel two-sample test. JMLR, 13:723–773, 2012.

Judy Hoffman, Trevor Darrell, and Kate Saenko. Continuous manifold based adaptation
for evolving visual domains. In Proceedings of IEEE CVPR, pages 867–874, 2014.

Jiayuan Huang, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt, and Bernhard
Schölkopf. Correcting sample selection bias by unlabeled data. In Proceedings of NIPS,
volume 19, pages 601–608, 2006.

Jing Jiang and ChengXiang Zhai. Instance Weighting for Domain Adaptation in NLP. In
Proceedings of ACL, pages 264–271, 2007.

Piyush Kumar, Joseph S. B. Mitchell, and E. Alper Yildirim. Computing core-sets and
approximate smallest enclosing hyperspheres in high dimensions. In ALENEX, Lecture
Notes Comput. Sci, pages 45–55, 2003.

29



Cortes, Mohri and Muñoz Medina
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