
Journal of Machine Learning Research 20 (2019) 1-62 Submitted 12/16; Revised 2/19; Published 2/19

Streaming Principal Component Analysis
From Incomplete Data

Armin Eftekhari armin.eftekhari@epfl.ch
Institute of Electrical Engineering
École Polytechnique Fédérale de Lausanne
Lausanne, VD 1015, Switzerland

Gregory Ongie gongie@uchicago.edu
Department of Statistics
University of Chicago
Chicago, IL 60637, USA

Laura Balzano girasole@umich.edu
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109, USA

Michael B. Wakin mwakin@mines.edu
Department of Electrical Engineering
Colorado School of Mines
Golden, CO 80401, USA

Editor: Tong Zhang

Abstract
Linear subspace models are pervasive in computational sciences and particularly used

for large datasets which are often incomplete due to privacy issues or sampling con-
straints. Therefore, a critical problem is developing an efficient algorithm for detecting
low-dimensional linear structure from incomplete data efficiently, in terms of both compu-
tational complexity and storage.

In this paper we propose a streaming subspace estimation algorithm called Subspace
Navigation via Interpolation from Partial Entries (SNIPE) that efficiently processes blocks
of incomplete data to estimate the underlying subspace model. In every iteration, SNIPE
finds the subspace that best fits the new data block but remains close to the previous
estimate. We show that SNIPE is a streaming solver for the underlying nonconvex matrix
completion problem, that it converges globally to a stationary point of this program re-
gardless of initialization, and that the convergence is locally linear with high probability.
We also find that SNIPE shows state-of-the-art performance in our numerical simulations.
Keywords: Principal component analysis, Subspace identification, Matrix completion,
Streaming algorithms, Nonconvex optimization, Global convergence

1. Introduction

Linear models are the backbone of computational science, and Principal Component Analysis
(PCA) in particular is an indispensable tool for detecting linear structure in collected data
(van Overschee and de Moor, 2012; Ardekani et al., 1999; Krim and Viberg, 1996; Tong

c©2019 Armin Eftekhari, Gregory Ongie, Laura Balzano, Michael B. Wakin.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/16-627.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/16-627.html

Eftekhari, Ongie, Balzano, and Wakin

(a) (b)

Figure 1: The sequence of generic vectors {st}Tt=1 drawn from an unknown r-dimensional
subspace S in panel (a) is only partially observed on random index sets {ωt}Tt=1. That is,
we only have access to incomplete data vectors {yt}Tt=1 in panel (b), where the white entries
are missing. Our objective is to estimate the subspace S from the incomplete data vectors,
when limited storage and processing resources are available. See Section 1 for the detailed
setup.

and Perreau, 1998). Principal components of a dataset are used, for example, to perform
linear dimensionality reduction, which is in turn at the heart of classification, regression
and other learning tasks that often suffer from the “curse of dimensionality”, where having
a small number of training samples in relation to the number of features typically leads to
overfitting (Hastie et al., 2013).

In this work, we are particularly interested in applying PCA to data that is presented
sequentially to a user, with limited processing time available for each item. Moreover, due
to hardware limitations, we assume the user can only store small amounts of data. Finally,
we also consider the possibility that the incoming data is incomplete, either due to physical
sampling constraints, or deliberately subsampled to facilitate faster processing times or to
address privacy concerns.

As one example, consider monitoring network traffic over time, where acquiring com-
plete network measurements at fine time-scales is impractical and subsampling is necessary
(Lakhina et al., 2004; Gershenfeld et al., 2010). As another example, suppose we have a
network of cheap, battery-powered sensors that must relay summary statistics of their mea-
surements, say their principal components, to a central node on a daily basis. Each sensor
cannot store or process all its daily measurements locally, nor does it have the power to
relay all the raw data to the central node. Moreover, many measurements are not reliable
and can be treated as missing. It is in this and similar contexts that we hope to develop a
streaming algorithm for PCA from incomplete data.

More formally, we consider the following problem: Let S be an r-dimensional subspace
with orthonormal basis S ∈ Rn×r. For an integer T , let the coefficient vectors {qt}Tt=1 ⊂
Rr be independent copies of a random vector q ∈ Rr with bounded expectation, namely,
E‖q‖2 < ∞. Consider the sequence of vectors {Sqt}Tt=1 ⊂ S and set st := Sqt for short.
At each time t ∈ [1 : T] := {1, 2, · · · , T}, we observe each entry of st independently with a
probability of p and collect the observed entries in yt ∈ Rn. Formally, we let ωt ⊆ [1 : n]
be the random index set over which st is observed and write this measurement process as
yt = Pωt · st, where Pωt ∈ Rn×n is the projection onto the coordinate set ωt, namely, it
equals one on its diagonal entries corresponding to the index set ωt and is zero elsewhere.

2

Streaming PCA From Incomplete Data

Our objective in this paper is to design a streaming algorithm to identify the subspace S
from the incomplete data {yt}Tt=1 supported on the index sets {ωt}Tt=1. Put differently, our
objective is to design a streaming algorithm to compute leading r principal components of
the full (but hidden) data matrix [s1 s2 · · · sT] from the incomplete observations [y1 y2 · · · yT],
see Figure 1. By the Eckart-Young-Mirsky Theorem, this task is equivalent to computing
leading r left singular vectors of the full data matrix from its partial observations (Eckart
and Young, 1936; Mirsky, 1966).

Assuming that r = dim(S) is known a priori (or estimated from data by other means),
we present the SNIPE algorithm for this task in Section 2. SNIPE is designed based on
the principle of least-change and, in every iteration, finds the subspace that best fits the
new data block but remains close to the previous estimate. SNIPE requires O(n) bits of
memory and performs O(n) flops in every iteration, which is optimal in its dependence on
the ambient dimension n. As discussed in Section 3, SNIPE has a natural interpretation as
a streaming algorithm for low-rank matrix completion (Davenport and Romberg, 2016).

Section 4 discusses the global and local convergence of SNIPE. In particular, the local
convergence rate is linear near the true subspace, namely, the estimation error of SNIPE
reduces by a factor of 1−cp in every iteration, for a certain factor c and with high probability.
This local convergence guarantee for SNIPE is a key technical contribution of this paper
which is absent in its close competitors, see Section 5.

Even though we limit ourselves to the “noise-free” case of yt = Pωtst in this paper,
SNIPE can also be applied (after minimal changes) when yt = Pωt(st +nt), where we might
think of nt ∈ Rn as measurement noise from a signal processing viewpoint. Alternatively
from a statistical viewpoint, nt represents the tail of the covariance matrix of the generative
model, from which {st}t are drawn. Moreover, SNIPE can be easily adapted to the dynamic
case where the underlying subspace S = S(t) changes over time. We leave the convergence
analysis of SNIPE under a noisy time-variant model to a future work. Similarly, entries of
incoming vectors are observed uniformly at random in our theoretical analysis but SNIPE
also applies to any incomplete data.

A review of prior art is presented in Section 5, and the performance of SNIPE and rival
algorithms are examined numerically in Section 6, where we find that SNIPE shows the state-
of-the-art performance. Technical proofs appear in Section 7 and in the appendices, with
Appendix A (Toolbox) collecting some of the frequently-used mathematical tools. Finally,
Appendix L offers an alternative initialization for SNIPE.

2. SNIPE

In this section, we present Subspace Navigation via Interpolation from Partial Entries
(SNIPE), a streaming algorithm for subspace identification from incomplete data, received
sequentially.

Let us first introduce some additional notation. Recall that we denote the incoming
sequence of incomplete vectors by {yt}Tt=1 ⊂ Rn, which are supported on index sets {ωt}Tt=1 ⊆
[1 : n]. For a block size b ≥ r, we concatenate every b consecutive vectors into a data block,
thereby partitioning the incoming data intoK = T/b non-overlapping blocks {Yk}Kk=1, where
Yk ∈ Rn×b for every k. We assume for convenience that K is an integer. We also often take
b = O(r) to maximize the efficiency of SNIPE, as discussed below.

3

Eftekhari, Ongie, Balzano, and Wakin

At a high level, SNIPE processes the first incomplete block Y1 to produce an estimate Ŝ1

of the true subspace S. This estimate is then iteratively updated after receiving each of the
new incomplete blocks {Yk}Kk=2, thereby producing a sequence of estimates {Ŝk}Kk=2 , see
Figure 2. Every Ŝk is an r-dimensional subspace of Rn with orthonormal basis Ŝk ∈ Rn×r;
the particular choice of orthonormal basis is inconsequential throughout the paper.

Figure 2: SNIPE concatenates every b incoming vectors into a block and iteratively updates
its estimate of the true subspace S after receiving each new block. That is, SNIPE updates
its estimate of S, from Ŝk−1 to Ŝk, after receiving the incomplete data block Yk ∈ Rn×b, see
Section 2 for the details.

More concretely, SNIPE sets Ŝ1 to be the span of leading r left singular vectors of
Y1, namely, the left singular vectors corresponding to largest r singular values of Y1, with
ties broken arbitrarily. Then, at iteration k ∈ [2 : K] and given the previous estimate
Ŝk−1 = span(Ŝk−1), SNIPE processes the columns of the kth incomplete block Yk one by
one and forms the matrix

Rk =

[
· · · yt + PωCt Ŝk−1

(
Ŝ∗k−1PωtŜk−1 + λIr

)†
Ŝ∗k−1yt · · ·

]
∈ Rn×b,

t ∈ [(k − 1)b+ 1 : kb], (1)

where † denotes the pseudo-inverse and λ ≥ 0 is a parameter. Above, PωCt = In−Pωt ∈ Rn×n
projects a vector onto the complement of the index set ωt. The motivation for the particular
choice of Rk above will become clear in Section 3. SNIPE then updates its estimate by setting
Ŝk to be the span of leading r left singular vectors of Rk. Algorithm 1 summarizes these
steps. Note that Algorithm 1 rejects ill-conditioned updates in Step 3 for the convenience
of analysis and that similar reject options have precedence in the literature (Balzano and
Wright, 2015). We however found implementing this reject option to be unnecessary in
numerical simulations.

Remark 1 [Computational complexity of SNIPE] We measure the per-iteration algo-
rithmic complexity of SNIPE by calculating the average number of floating-point operations
(flops) performed on an incoming vector. Every iteration of SNIPE involves finding leading
r left singular vectors of an n× b matrix. Assuming that b = O(r), this could be done with
O(nr2) flops. At the kth iteration with k ≥ 2, SNIPE also requires finding the pseudo-
inverse of Pωj Ŝk−1 ∈ Rn×r for each incoming vector which costs O(nr2) flops. Therefore
the overall computational complexity of SNIPE is O(nr2) flops per vector. As further dis-
cussed in Section 5, this matches the complexity of other algorithms for streaming PCA
even though here the received data is highly incomplete.

4

Streaming PCA From Incomplete Data

Remark 2 [Storage requirements of SNIPE] We measure the storage required by
SNIPE by calculating the number of memory elements stored by SNIPE at any given in-
stant. At the kth iteration, SNIPE must store the current estimate Ŝk−1 ∈ Rn×r (if avail-
able) and the new incomplete block Yk ∈ Rn×b. Assuming that b = O(r), this translates
into O(nr) + O(pnr) = O(nr) memory elements. SNIPE therefore requires O(nr) bits of
storage, which is optimal up to a constant factor.

Algorithm 1 SNIPE for streaming PCA from incomplete data

Input:
• Dimension r,

• Received data {yt}Tt=1 ⊂ Rn supported on index sets {ωt}Tt=1 ⊆ [1 : n], presented
sequentially in K = T/b blocks of size b ≥ r,

• Tuning parameter λ ≥ 0,

• Reject thresholds σmin, τ ≥ 0.

Output:

• r-dimensional subspace ŜK .

Body:

• Form Y1 ∈ Rn×b by concatenating the first b received vectors {yt}bt=1. Let Ŝ1, with
orthonormal basis Ŝ1 ∈ Rn×r, be the span of leading r left singular vectors of Y1,
namely, those corresponding to r largest singular values. Ties are broken arbitrarily.

• For k ∈ [2 : K], repeat:

1. Set Rk ← {}.
2. For t ∈ [(k − 1)b+ 1 : kb], repeat

– Set

Rk ←
[
Rk yt + PωCt Ŝk−1

(
Ŝ∗k−1PωtŜk−1 + λIr

)†
Ŝ∗k−1yt

]
,

where Pωt ∈ Rn×n equals one on its diagonal entries corresponding to the
index set ωt, and is zero elsewhere. Likewise, PωCt projects a vector onto the
complement of the index set ωt.

3. If σr(Rk) < σmin or σr(Rk) ≤ (1 + τ) ·σr+1(Rk), then set Ŝk ← Ŝk−1. Otherwise,
let Ŝk, with orthonormal basis Ŝk ∈ Rn×r, be the span of leading r left singular
vectors of Rk. Ties are broken arbitrarily. Here, σi(Rk) is the ith largest singular
value of Rk.

• Return ŜK .

5

Eftekhari, Ongie, Balzano, and Wakin

3. Interpretation of SNIPE

SNIPE has a natural interpretation as a streaming algorithm for low-rank matrix completion,
which we now discuss. First let us enrich our notation. Recall the incomplete data blocks
{Yk}Kk=1 ⊂ Rn×b and let the random index set Ωk ⊆ [1 : n] × [1 : b] be the support of Yk
for every k. We write that Yk = PΩk(Sk) for every k, where the complete (but hidden) data
block Sk ∈ Rn×b is formed by concatenating {st}kbt=(k−1)b+1. Here, PΩk(Sk) retains only the
entries of Sk on the index set Ωk, setting the rest to zero. By design, st = Sqt for every t
and we may therefore write that Sk = S ·Qk for the coefficient matrix Qk ∈ Rr×b formed by
concatenating {qt}kbt=(k−1)b+1. To summarize, {Sk}Kk=1 is formed by partitioning {st}Tt=1 into
K blocks. Likewise, {Qk, Yk,Ωk}Kk=1 are formed by partitioning {qt, yt, ωt}Tt=1, respectively.

With this introduction, let us form Y ∈ Rn×T by concatenating the incomplete blocks
{Yk}Kk=1 ⊂ Rn×b, supported on the index sets Ω ⊆ [1 : n]× [1 : T]. To find the true subspace
S, one might consider solvingmin

X,U
‖PU⊥X‖

2
F + λ‖PΩC (X)‖2F

PΩ (X) = Y,
(2)

where the minimization is over a matrix X ∈ Rn×T and r-dimensional subspace U ⊂ Rn.
Above, PU⊥ ∈ Rn×n is the orthogonal projection onto the orthogonal complement of sub-
space U and PΩ(X) retains only the entries of X on the index set Ω, setting the rest to zero.
Note that Program (2) encourages its solution(s) to be low-rank while matching the obser-
vations Y on the index set Ω. The term λ‖PΩC (X)‖2F for λ ≥ 0 is the Tikhonov regularizer
that controls the energy of solution(s) on the complement of index set Ω.

With complete data, namely, when Ω = [1 : n]×[1 : T], Program (2) reduces to PCA, as it
returns X = Y and searches for an r-dimensional subspace that captures most of the energy
of Y . That is, Program (2) reduces to minU ‖PU⊥Y ‖2F when Ω = [1 : n] × [1 : T], solution
of which is the span of leading r left singular vectors of Y in light of the Eckart-Young-
Mirsky Theorem (Eckart and Young, 1936; Mirsky, 1966). In this sense then, Program
(2) performs PCA from incomplete data. Note crucially that Program (2) is a nonconvex
problem because the Grassmannian G(n, r), the set of all r-dimensional subspaces in Rn, is
a nonconvex set.1 However, given a fixed subspace U ∈ G(n, r), Program (2) reduces to the
simple least-squares program{

min
X
‖PU⊥X‖

2
F + λ‖PΩC (X)‖2F

PΩ (X) = Y,
(3)

where the minimization is over X ∈ Rn×T . If in addition λ is positive, then Program (3) is
strongly convex and has a unique minimizer. Given a fixed feasible X ∈ Rn×T , Program (2)
has the same minimizers as

min
U∈G(n,r)

‖PU⊥X‖2F . (4)

1. The Grassmannian can be embedded in Rn×n via the map that takes U ∈ G(n, r) to the corresponding
orthogonal projection PU ∈ Rn×n. The resulting submanifold of Rn×n is a nonconvex set.

6

Streaming PCA From Incomplete Data

That is, for a fixed feasible X, Program (2) simply performs PCA on X. We might also
view Program (2) from a matrix completion perspective. More specifically, let

ρ2
r(X) =

∑
i≥r+1

σ2
i (X), (5)

be the residual of X, namely, the energy of its trailing singular values σr+1(X) ≥ σr+2(X) ≥
· · · . Like the popular nuclear norm ‖X‖∗ =

∑
i≥1 σi(X) in (Davenport and Romberg, 2016),

the residual ρr(X) gauges the rank ofX. In particular, ρr(X) = 0 if and only if rank(X) ≤ r.
Unlike the nuclear norm, however, the residual is still a nonconvex function of X. We now
rewrite Program (2) asmin

X,U
‖PU⊥X‖

2
F + λ‖PΩC (X)‖2F

PΩ (X) = Y
=

min
X

min
U∈G(n,r)

‖PU⊥X‖
2
F + λ‖PΩC (X)‖2F

PΩ (X) = Y

=

{
min
X

ρ2
r(X) + λ‖PΩC (X)‖2F

PΩ (X) = Y.
(6)

That is, if we ignore the regularization term λ‖PΩC (X)‖2F , Program (2) searches for a
matrix with the least residual, as a proxy for least rank, that matches the observations Y .
In this sense then, Program (2) is a “relaxation” of the low-rank matrix completion problem.
Several other formulations for the matrix completion problem are reviewed in (Davenport
and Romberg, 2016; Eftekhari et al., 2018b,a). We can also rewrite Program (2) in terms of
its data blocks by considering the equivalent program{

min
∑K

k=1 ‖P⊥U Xk‖2F + λ‖PΩCk
(Xk)‖2F

PΩk (Xk) = Yk k ∈ [1 : K],
(7)

where the minimization is over matrices {Xk}Kk=1 ⊂ Rn×b and subspace U ∈ G(n, r). Let us
additionally introduce a number of auxiliary variables into Program (7) by considering the
equivalent program

min
∑K

k=1 ‖P⊥UkXk‖2F + λ‖PΩCk
(Xk)‖2F

PΩk (Xk) = Yk k ∈ [1 : K]

U1 = U2 = · · · = UK ,
(8)

where the minimization is over matrices {Xk}Kk=1 ⊂ Rn×b and subspaces {Uk}Kk=1 ⊂ G(n, r).
Indeed, Programs (2,7,8) are all equivalent and all nonconvex. Now consider the following
approximate solver for Program (8) that alternatively solves for matrices and subspaces:

• Setting X1 = Y1 in Program (8), we minimize ‖P⊥U1
Y1‖2F over U1 ∈ G(n, r) and, by

the Eckart-Young-Mirsky Theorem, find a minimizer to be the span of leading r left
singular vectors of Y1, which coincides with Ŝ1 in SNIPE.

• For k ∈ [2 : K], repeat:

7

Eftekhari, Ongie, Balzano, and Wakin

– Setting Uk = Ŝk−1 in Program (8), we solve

{
minXk ‖PŜ⊥k−1

Xk‖2F + λ‖PΩCk
(Xk)‖2F

PΩk (Xk) = Yk,
(9)

over matrix Xk ∈ Rn×b. We verify in Appendix B that the minimizer of Program
(9) coincides with Rk in SNIPE, see (1).

– If σr(Rk) < σmin or σr(Rk) ≤ (1 + τ)σr+1(Rk), then no update is made, namely,
we set Ŝk = Ŝk−1. Otherwise, setting Xk = Rk in Program (8), we solve
min ‖P⊥UkRk‖

2
F over Uk ∈ G(n, r) to find Ŝk. That is, by the Eckart-Young-

Mirsky Theorem again, Ŝk is the span of leading r left singular vectors of Rk.
The output of this step matches Ŝk produced in SNIPE.

To summarize, following the above procedure produces {Rk}Kk=1 and {Ŝk}Kk=1 in SNIPE. In
other words, we might think of SNIPE as an approximate solver for Program (2), namely,
SNIPE is a streaming algorithm for low-rank matrix completion. In fact, the output of
SNIPE always converges to a stationary point of Program (2) in the sense described in
Section 4.

Another insight about the choice of Rk in (1) is as follows. Let us set λ = 0 for simplicity.
At the beginning of the kth iteration of SNIPE with k ≥ 2, the available estimate of the
true subspace is Ŝk−1 with orthonormal basis Ŝk−1. Given a new incomplete vector y ∈ Rn,
supported on the index set ω ⊆ [1 : n], z = Ŝk−1(PωŜk−1)†y best approximates y in Ŝk−1 in
`2 sense. In order to agree with the measurements, we minimally adjust this to y + PωCz,
where PωC projects onto the complement of index set ω. This indeed matches the expression
for the columns of Rk in SNIPE. We note that this type of least-change strategy has been
successfully used in the development of quasi-Newton methods for optimization (Nocedal
and Wright, 2006, Chapter 6).

4. Performance of SNIPE

To measure the performance of SNIPE—whose output is a subspace—we naturally use
principal angles as an error metric. More specifically, recall that S and ŜK denote the true
subspace and the output of SNIPE, respectively. Then the ith largest singular value of
PS⊥PŜK equals sin(θi(S, ŜK)), where

θ1(S, ŜK) ≥ θ2(S, ŜK) ≥ · · · ≥ θr(S, ŜK)

denote the principal angles between the two r-dimensional subspaces S, ŜK (Golub and
Van Loan, 2013). The estimation error of SNIPE is then

dG(S, ŜK) :=

√√√√1

r

r∑
i=1

sin2
(
θi(S, ŜK)

)
=
‖PS⊥PŜK‖F√

r
, (10)

8

Streaming PCA From Incomplete Data

which also naturally induces a metric topology on the Grassmannian G(n, r).2 Note also
that we will always reserve calligraphic letters for subspaces and capital letters for their
orthonormal bases, for example subspace S and its orthonormal basis S.

Our first result loosely speaking states that a subsequence of SNIPE converges to a
stationary point of the nonconvex Program (2) as T goes to infinity, see Section 7.1 for the
proof.

Theorem 3 [Global convergence] Consider an r-dimensional subspace S with orthonor-
mal basis S ∈ Rn×r. For an integer T , let the coefficient vectors {qt}Tt=1 ⊂ Rr be independent
copies of a random vector q ∈ Rr with bounded expectation, namely„ E‖q‖2 <∞. For every
t ∈ [1 : T], we observe each coordinate of st = Sqt ∈ S independently with a probability of
p and collect the observations in yt ∈ Rn, supported on a random index set ωt ⊆ [1 : n].
Fix positive λ, block size b ≥ r, positive reject thresholds σmin, τ , and consider the output
sequence of SNIPE in Algorithm 1, namely, {(Rk, Ŝk)}k. Also by partitioning {qt, st, yt, ωt}t,
form the coefficient blocks {Qk}k ⊂ Rr×b, data blocks {Sk}k ⊂ Rn×b, and incomplete data
blocks {Yk}k ⊂ Rn×b supported on index sets {Ωk}k ⊆ [1 : n]× [1 : b], as described in Section
3.

For every integer l, there exists an integer kl, for which the following asymptotic state-
ment is almost surely true as T → ∞. Consider the restriction of Program (2) to iteration
kl, namely, {

minX,U ‖PU⊥X‖2F + λ‖PΩCkl
(X)‖2F

PΩkl
(X) = Ykl ,

(11)

where the minimization is over matrix X ∈ Rn×b and r-dimensional subspace U . Then there
exists R ∈ Rn×b and r-dimensional subspace Ŝ such that

• Ŝ is the span of leading r left singular vectors of R,

• (R, Ŝ) is a stationary pair of Program (11), namely, it satisfies the first-order optimal-
ity conditions of Program (11),

• liml→∞ ‖Rkl −R‖F = 0,

• liml→∞ dG(Ŝkl ,S) = 0.

Remark 4 [Discussion of Theorem 3] Theorem 3 roughly speaking states that there
is a subsequence of SNIPE that converges to a stationary point of Program (2), which
was the program designed in Section 3 for PCA from incomplete data or, from a different
perspective, for low-rank matrix completion. Theorem 3 is however silent about the nature
of this stationary point, whether it is a local or global minimizer/maximizer, or a saddle
point. To some extent, this question is addressed below in Proposition 6.

More generally, we have been able to show that this stationary point is in fact rank-
r. When the block size of SNIPE is sufficiently large, namely when b = Ω(n), we can
further establish that the limit point of SNIPE is indeed a global minimizer of Program (2)

2. Another possible error metric is simply the largest principal angle θ1(S, ŜK). The two metrics are
very closely related: θ1(S, ŜK)/

√
r ≤ dG(S, ŜK) ≤ θ1(S, ŜK). However, we find that θ1(S, ŜK) is not

amenable for analysis of our problem, as opposed to dG(S, ŜK).

9

Eftekhari, Ongie, Balzano, and Wakin

and moreover SNIPE recovers the true subspace, namely, liml→∞ d(Ŝkl ,S) = 0, with high
probability and under certain standard conditions on the coherence of the true subspace
S and sampling probability p. We have not included these results here because SNIPE is
intended as a streaming algorithm and we are therefore more interested in the setting where
b = O(r), see Remarks 1 and 2 about the implementation of SNIPE. It is not currently
clear to us when SNIPE converges in general but, as suggested by Proposition 6 below, if
SNIPE converges, it does indeed converge to the true subspace S.

Remark 5 [Technical point about Theorem 3] Note that Theorem 3 is proved for
positive (but possibly arbitrarily small) σmin and τ . In particular, an update (Rk, Ŝk) is
rejected in Algorithm 1 if

σr(Rk)

σr+1(Rk)
≤ 1 + τ, (12)

for an (otherwise arbitrary) positive τ and whenever the ratio is well-defined. Here, σi(Rk)
is the ith largest singular value of Rk. This is merely a technical nuance, limited to the rth
singular value gap, that helps prevent the the output subspace Ŝk from oscillating in the
limit. Likewise, Theorem 3 does not address the case λ = 0 in Program (11), even though
λ can be made arbitrarily small in Theorem 3. This is again for technical convenience and
in fact the numerical simulations in Section 6 are all conducted with λ = 0.

Our second result establishes that, if SNIPE converges, then it converges to the true
subspace S, see Section 7.2 for the proof.

Proposition 6 [Convergence] Consider the setup in the first paragraph of Theorem 3.
Suppose that r independent copies of random coefficient vector q ∈ Rr almost surely form a
basis for Rr.3 Suppose also that the output of SNIPE converges to an r-dimensional subspace
Ŝ, namely,

lim
k→∞

dG(Ŝk, Ŝ) = 0. (13)

Then almost surely it must hold that Ŝ = S.

Remark 7 [Discussion of Proposition 6] Proposition 6 does not specify the conditions
under which SNIPE converges. Indeed, if the sampling probability p is too small, namely,
if very few of the entries of incoming vectors are observed, then SNIPE might not converge
at all as the numerical evidence suggests, see also Remark 4. However, if SNIPE converges,
then it converges to the true subspace S. The local rate of convergence is specified below.

The concept of coherence is critical in specifying the local convergence rate, since we
consider entrywise subsampling. The coherence of an r-dimensional subspace S with or-
thonormal basis S ∈ Rn×r is defined as

η (S) :=
n

r
max ‖S[i, :]‖22 , (14)

3. For example, this requirement is met if entries of q are independent Gaussian random variables with
zero-mean and unit variance.

10

Streaming PCA From Incomplete Data

where S[i, :] is the ith row of S. It is easy to verify that η(S) is independent of the choice
of orthonormal basis S and that

1 ≤ η(S) ≤ n

r
. (15)

It is also common to say that S is coherent (incoherent) when η(S) is large (small). Loosely
speaking, when S is coherent, its orthonormal basis S is “spiky.” An example is when S is
the span of a column-subset of the identity matrix. In contrast, when S is incoherent, entries
of S tend to be “diffuse.” Not surprisingly, identifying a coherent subspace from subsampled
data may require many more samples (Balzano and Wright, 2015; Mitliagkas et al., 2014;
Chen, 2015).

We will also use . and & below to suppress (most of) the universal constants. Moreover,
throughout C represents a universal constant, the value of which is subject to change in every
appearance.

Our next results specify the local convergence rate of SNIPE. Indeed, the convergence
speed near the true subspace S is linear as detailed in Theorems 8 and 10, and proved in
Section 7.3. In particular, Theorem 8 states that, when sufficiently small, the expected
estimation error of SNIPE reduces by a factor of 1− p/32 in every iteration.

Theorem 8 [Locally linear convergence of SNIPE in expectation] Consider the setup
in the first paragraph of Theorem 3. Fix a positive tuning parameter α, iteration k ∈ [2 : K],
and let Ek−1 be the event where

1√
nb

& p & log n log2
(
p
√
rdG(S, Ŝk−1)

) η(S)r

n
, (16)

dG(S, Ŝk−1) log

(
16

p
√
rdG(S, Ŝk−1)

)
.

p
3
2

√
log n

, (17)

‖Qk‖ ≤
σmin√
1− p/4

, (18)

where σmin is the reject threshold in SNIPE. Let also Ak be the event where the kth iteration
of SNIPE is not rejected (see Step 3 of Algorithm 1) and let 1Ak be the indicator for this
event, taking one if the event happens and zero otherwise. Then it holds that

E
[
1Ak · dG(S, Ŝk) | Ŝk−1,Ek−1

]
≤
(

1− p

32

)
dG(S, Ŝk−1). (19)

Remark 9 [Discussion of Theorem 8] When the sampling probability p is large enough
and SNIPE is near the true subspace S, Theorem 8 states that the expected estimation error
of SNIPE reduces by a factor of 1− p/32, if the iterate of SNIPE is not rejected. Note that:
1© The lower bound on the sampling probability p in (16) matches the one in the low-rank
matrix completion literature up to a logarithmic factor (Davenport and Romberg, 2016).
Indeed, SNIPE can be interpreted as a streaming matrix completion algorithm as discussed
in Section 3. The upper bound on p in (16) is merely for technical convenience and a tidier
presentation in the most interesting regime for p. Indeed, since we often take b = O(r)� n,
one might loosely read (16) as

1√
nr

& p &
η(S)r

n
, (20)

11

Eftekhari, Ongie, Balzano, and Wakin

in which the upper bound hardly poses a restriction even for moderately large data dimension
n, as it forces r = O(n

1
3). 2© Ignoring the logarithmic factors for simplicity, we may read

(17) as dG(S, Ŝk−1) . p3/2, which “activates” (19). In other words, the basin of attraction
of the true subspace S as a (possibly local) minimizer of the (nonconvex) Program (2) has
a radius of O(p3/2). 3© The indicator 1Ak in (19) removes the rejected iterates and similar
conditions implicitly exist in the analysis of other streaming PCA algorithms (Balzano and
Wright, 2015).

Note that Theorem 8 cannot tell us what the local convergence rate of SNIPE is, even
in expectation. Indeed, the expected reduction in the estimation error of SNIPE, specified
in (19), is not enough to activate (17) for the next iteration (namely, with k instead of
k − 1). That is, we cannot apply Theorem 8 iteratively and find the expected convergence
rate of SNIPE. A key technical contribution of this paper is specifying the local behaviour
of SNIPE below. With high probability, the estimation error does not increase by much
in every iteration near the true subspace. However, only in some of these iterations does
the error reduce. Overall, on a long enough interval, the estimation error of SNIPE near
the true subspace indeed reduces substantially and with high probability as detailed in
Theorem 10 and proved in Section 7.3. Performance guarantees for stochastic algorithms
on long intervals is not uncommon, see for example (Cartis and Scheinberg, 2017).

Theorem 10 [Locally linear convergence of SNIPE] Consider the setup in the first
paragraph of Theorem 3. Suppose that the output ŜK0 of SNIPE at iteration K0 ∈ [2 : K]
satisfies

dG(S, ŜK0) .
e
−Cp

3nb
η̃ p

7
2nb

η̃ log b log (Cη̃n) log2(K −K0)
, (21)

and that

K −K0 &
η̃ log b log(K −K0)

p2nb
. (22)

Above, C is a universal constant that might change in every appearance. Then it holds that

K∏
k=K0+1

1Ak · d(S, ŜK) .

(
1− Cp3nb

η̃ log b log(K −K0)

)K−K0

d(S, ŜK0), (23)

except with a probability of at most

b−C log(K−K0) +
K∑

k=K0+1

Pr

[
‖Qk‖ >

(
1 +

Cp3nb

η̃ log b

)
σmin

]
(24)

and provided that
1√
nb

& p & log2 b log n
η(S)r

n
. (25)

Above, σmin is the reject threshold of SNIPE and

η̃ = max
k∈[K0:K]

η̃k, (26)

12

Streaming PCA From Incomplete Data

η̃k := nb ·
‖PŜ⊥k−1

Sk‖2∞
‖PŜ⊥k−1

Sk‖2F
. (27)

Remark 11 [Discussion of Theorem 10] Loosely speaking, Theorem 10 states that, with
high probability, the estimation error of SNIPE over O(η̃n) iterations reduces linearly (i.e.,
exponentially fast) when SNIPE is near the true subspace and the sampling probability p
is large enough. Most of the remarks about Theorem 8 are also valid here. Let us also
point out that the dependence on the coefficient matrix Qk in (24) is mild but necessary.
As an example, consider the case where the coefficient vectors {qt}t are standard random
Gaussian vectors so that the coefficient matrices {Qk}k are standard random Gaussian
matrices, namely, populated with independent zero-mean Gaussian random variables with
unit variance. Then by taking

σmin = C
√
b/

(
1 +

Cp3nb

η̃ log b

)
,

we find that

Pr

[
‖Qk‖ >

(
1 +

Cp3nb

η̃ log b

)
σmin

]
= Pr

[
‖Qk‖ &

√
b
]
≤ e−Cb (28)

and consequently the failure probability in (24) becomes b−C log(K−K0)+(K−K0)e−Cb, which
can be made arbitrarily small by modestly increasing the block size b. For the reader’s
convenience, Appendix K collects the relevant spectral properties of a standard random
Gaussian matrix. The dependence on ‖Qk‖ in Theorem 8 is not an artifact of our proof
techniques. Indeed, when ‖Qk‖ � 1, it is likely that certain directions in S are over
represented which will skew the estimate of SNIPE in their favor.

Remark 12 [Coherence factor η̃] A key quantity in Theorem 10 is the new “coherence”
factor η̃ which is absent in the expected behavior of SNIPE in Theorem 8. Somewhat similar
to the coherence η(·) in (14), η̃k measures how “spiky” the matrix PS⊥k−1

Sk ∈ Rn×b is. In
fact, one may easily verify that

η̃k ≤ rank(PS⊥k−1
Sk) · ν(PS⊥k−1

Sk)
2 · η(span(PS⊥k−1

Sk)) · η(span(S∗kPS⊥k−1
)), (29)

where ν(PS⊥k−1
Sk) is the condition number of PS⊥k−1

Sk, namely, the ratio of largest to smallest
nonzero singular values. The number of iterations needed to see a reduction in estimation
error in (22) and the convergence rate of SNIPE in (23) both prefer η̃ to be small, namely,
prefer that {PS⊥k−1

Sk}k are all incoherent as measured by η̃k.
When SNIPE is close enough to true subspace S as required in (21), one would expect

that iterates of SNIPE would be nearly as coherent as S itself in the sense that η(Ŝk) ≈ η(S).
This intuition is indeed correct and also utilized in our analysis. However, even when
dG(S, Ŝk−1) is small and η(Ŝk−1), η(S) are both small, η̃k might be very large, namely,
PŜ⊥k−1

Sk might be a spiky matrix. Indeed, when b = r, (Ŝ⊥k−1)∗Sk is approximately the

(horizontal) tangent at Ŝk−1 to the geodesic on the Grassmannian G(n, r) that connects Ŝk−1

13

Eftekhari, Ongie, Balzano, and Wakin

to S. Even though both Ŝk−1 and S are incoherent subspaces, namely, η(Ŝk−1), η(S) are
both small, the tangent direction connecting the two is not necessarily incoherent. Despite
the dependence of our results on η̃, it is entirely possible that SNIPE with high probability
approaches the true subspace S from an incoherent tangent direction, of which there are
many. Such a result has remained beyond our reach. In fact, similar questions arise in
matrix completion. Iterative Hard Thresholding (IHT) is a powerful algorithm for matrix
completion with excellent empirical performance (Tanner and Wei, 2013), the convergence
rate of which has remained unknown, to the best of our knowledge. With {Mk}k denoting the
iterates of IHT, it is not difficult to see that if the differences {Mk −Mk−1}k are incoherent
matrices (i.e., not spiky), then the linear convergence rate of IHT would follow from rather
standard arguments.

5. Related Work

In this paper, we presented SNIPE for streaming PCA from incomplete data and, from a dif-
ferent perspective, SNIPE might be considered as a streaming matrix completion algorithm,
see Section 3. In other words, SNIPE is a “subspace tracking” algorithm that identifies the
linear structure of data as it arrives. Note also that t in our framework need not correspond
to time, see Figure 1. For example, only a small portion of a large data matrix Y can be
stored in the fast access memory of the processing unit, which could instead use SNIPE to
fetch and process the data in small chunks and iteratively update the principal components.
Moreover, SNIPE can be easily adapted to the dynamic case where the distribution of data
changes over time. In dynamic subspace tracking for example, the (hidden) data vector
st is drawn from the subspace S(t) ∈ G(n, r) that varies with time. Likewise, it is easy
to slightly modify SNIPE to handle noisy observations or equivalently to the case where
{st}t are generated from a distribution with possibly full-rank covariance matrix. We leave
investigating both of these directions to a future work.

Among several algorithms that have been proposed for tracking low-dimensional struc-
ture in a dataset from partially observed streaming data (Mitliagkas et al., 2014; Chi et al.,
2013; Mardani et al., 2015; Xie et al., 2013; Eftekhari et al., 2017), SNIPE might be most
closely related to GROUSE (Balzano et al., 2010; Balzano and Wright, 2013). GROUSE
performs streaming PCA from incomplete data using stochastic gradient projection on the
Grassmannian, updating its estimate of the true subspace with each new incomplete vector.
Both GROUSE and SNIPE were designed based on the principle of least-change, discussed
in Section 3. In fact, when GROUSE is sufficiently close to the true subspace and with a
specific choice of its step length, both algorithms have nearly identical updates, see (Balzano
and Wright, 2015, Equation 1.9). A weaker analogue of Theorem 8 for GROUSE was re-
cently established in (Balzano and Wright, 2015). More specifically, (Balzano and Wright,
2015) stipulates that, if the current estimate Ŝk is sufficiently close to the true subspace
S, then Ŝk+1 will be even closer to S in expectation. Such a result however cannot tell us
what the local convergence rate of SNIPE is, even in expectation, see the discussion right
before Theorem 10 above. In this sense, a key technical contribution of our work is estab-
lishing the local linear convergence of SNIPE, see Theorem 10, which is missing from its
close competitor GROUSE. In fact, the global convergence guarantees listed in Theorem 3

14

Streaming PCA From Incomplete Data

and Proposition 6 are also unique to SNIPE; such theoretical guarantees are not available
for GROUSE.

It might be interesting to add that our proposed update in SNIPE was inspired by that
of GROUSE when we found zero-filled updates were unreliable (Eftekhari et al., 2017).
However, GROUSE was derived as a purely streaming algorithm, and it therefore is not
designed to leverage common low-rank structure that may be revealed when a block of vec-
tors is processed at once. Therefore, for each block SNIPE often achieves a more significant
reduction in error than is possible with GROUSE.

Lastly, both SNIPE and GROUSE have a computational complexity of O(nr2) flops per
incoming vector, see Remark 1. Also, SNIPE and GROUSE both require O(nr) memory
elements of storage, see Remark 2. With complete data, namely, when no entries are missing,
a close relative of both SNIPE and GROUSE are incremental SVD algorithms, a class
of algorithms that efficiently compute the SVD of streaming data (Bunch and Nielsen,
1978; Balsubramani et al., 2013; Oja and Karhunen, 1985; Watanabe and Pakvasa, 1973;
Balsubramani et al., 2013; Brand, 2002).

A streaming PCA algorithm might also be interpreted as a stochastic algorithm for PCA
(Arora et al., 2012). Stochastic projected gradient ascent in this context is closely related
to the classical power method. In particular, the algorithm in (Mitliagkas et al., 2014)
extends the power method to handle missing data, in part by improving the main result
of (Lounici, 2014). With high probability, this algorithm converges globally and linearly
to the true subspace and, most notably, succeeds for arbitrarily small sampling probability
p, if the scope of the algorithm T is large enough. Additionally, this algorithm too has
a computational complexity of O(nr2) operations per vector and a storage requirement of
O(nr) memory elements. In practice, SNIPE substantially outperforms the power method,
as we will see in Section 6. A disadvantage of the power method is that it updates its
estimate of the true subspace with every O(n) incoming vectors; the waiting time might be
prohibitively long if n is large. In contrast, SNIPE frequently updates its estimate with every
b = O(r) incoming vectors. As we will see in Section 6, SNIPE substantially outperforms the
power method in practice. Let us add that POPCA (Gonen et al., 2016) is closely related
to the power method, for which the authors provide lower bounds on the achievable sample
complexity. However, POPCA has substantially greater memory demand than SNIPE, since
it maintains an estimate of the possibly dense n× n sample covariance matrix of incoming
data.

The PETRELS algorithm (Chi et al., 2013) operates on one column at a time (rather
than blocks) and global convergence for PETRELS, namely, convergence to a stationary
point of the underlying nonconvex program, is known. Designed for streaming matrix com-
pletion, the algorithm in (Mardani et al., 2015) also operates on one column at a time and
asymptotic onvergence to the true subspace is established, see Propositions 2 and 3 therein.
This framework is also extended to tensors. MOUSSE in (Xie et al., 2013) tracks a union
of subspaces rather than just one; SNIPE would function more like an ingredient of this
algorithm. Asymptotic consistency of MOUSSE is also established there. The theoretical
guarantees of SNIPE are more comprehensive in the sense that we also offer local conver-
gence rate for SNIPE, see Theorems 8 and 10. ReProcs, introduced in (Lois and Vaswani,
2015), tracks a slowly changing subspace when initialized sufficiently close.

15

Eftekhari, Ongie, Balzano, and Wakin

In the next section, we compare the performance of several of these algorithms in practice
and find that SNIPE competes empirically with state-of-the-art algorithms.

Even though we consider uniform random sampling of the entries of incoming vectors,
SNIPE can be applied to any incomplete data. For example, instead of uniform sampling
analyzed here, one can perhaps sample the entries of every incoming vector based on their
estimated importance. More specifically, in iteration k, one might observe each entry of the
incoming vector with a probability proportional to the leverage score of the corresponding
row of the current estimate Ŝk−1. In batch or offline matrix completion, using the idea
of leveraged sampling (as opposed to uniform sampling) alleviates the dependence on the
coherence factor η(S) in (16) (Eftekhari et al., 2018a; Chen, 2015). While interesting, we
have not pursued this direction in the current work.

6. Simulations

This section consists of two parts: first, we empirically study the dependence of SNIPE on
various parameters, and second we compare SNIPE with existing algorithms for streaming
subspace estimation with missing data. In all simulations, we consider an r-dimensional
subspace S ⊂ Rn and a sequence of generic vectors {st}Tt=1 ⊂ S. Each entry of these vectors
is observed with probability p ∈ (0, 1] and collected in vectors {yt}Tt=1 ⊂ Rn. Our objective
is to estimate S from {yt}, as described in Section 1.

Sampling probability We first set n = 100, r = 5, and let S be a generic r-dimensional
subspace, namely, the span of an n×r standard random Gaussian matrix. For various values
of probability p, we run SNIPE with block size b = 2r = 10 and scope of T = 500r = 2500,
recording the average estimation error dG(S, ŜK) over 50 trials, see (10). The average error
versus probability is plotted in Figure 3a.

Subspace dimension With the same setting as the previous paragraph, we now set p =
3r/n = 0.15 and vary the subspace dimension r, block size b = 2r, and scope T = 500r.
The average error versus subspace dimension is plotted in Figure 3b.

Ambient dimension This time, we set r = 5, p = 3r/n, b = 2r, T = 500r, and vary the
ambient dimension n. In other words, we vary n while keeping the number of samples per
vector fixed at about pn = 3r. The average error versus ambient dimension is plotted in
Figure 3c. Observe that the performance of SNIPE steadily degrades as n increases. This
is in agreement with Theorem 8 by substituting p = 3r/n there, which states that the error
reduces by a factor of 1−Cr/n, in expectation. A similar behavior is observed for our close
competitor, namely, GROUSE (Balzano and Wright, 2015).

Block size Next we set n = 100, r = 5, p = 3r/n, T = 500r, and vary the block size b.
The average error versus block size in both cases is depicted in Figure 3d. From Step 3 of
Algorithm 1, a block size of b ≥ r is necessary for the success of SNIPE and qualitatively
speaking larger values of b lead to better stability in face of missing data, which might
explain the poor performance of SNIPE for very small values of b. However, as b increases,
the number of blocks K = T/b reduces because the scope T is held fixed. As the estimation
error of SNIPE scales like (1− cp)−K in Theorem 10 for a certain factor c, the performance

16

Streaming PCA From Incomplete Data

0 0.2 0.4 0.6 0.8 1
p

10-20

10-15

10-10

10-5

100
d
G
(S

;
b S K)

(a)

2 4 6 8 10 12 14
r

10-15

10-10

10-5

100

d
G
(S

;
b S K)

(b)

0 100 200 300 400 500
n

10-15

10-10

10-5

100

d
G
(S

;
b S K)

(c)

0 10 20 30 40 50
b

10-6

10-4

10-2

100

102

d
G
(S

;
b S K)

(d)

Figure 3: Performance of SNIPE as (a) sampling probability p, (b) subspace dimension r,
(c) ambient dimension n, (d) block size b vary. ŜK is the output of SNIPE and dG(S, ŜK)
is its distance to the true subspace S, which generated the input of SNIPE. See Section 6
for details and note that each panel is generated with a different and random subspace S.

suffers in Figure 3d. It appears that the choice of b = 2r in SNIPE guarantees the best
empirical performance.

Coherence Lastly, we set n = 300, r = 10, p = 3r/n, b = 2r, and T = 500r. We then
test the performance of SNIPE as the coherence of S varies, see (14). To that end, let
S ⊂ Rn be a generic subspace with orthonormal basis S ∈ Rn×r. In particular S is obtained
by orthogonalizing the columns of a standard n × n random Gaussian matrix. Then, the
average coherence of S over 50 trials was 3.3334 � n/r and the average estimation error
of SNIPE was 2.795 · 10−5. On the other hand, let D ∈ Rn×n be a diagonal matrix with
entries D[i, i] = i−1 and consider S′ = DS. Unlike S, the new subspace S ′ := span(S′) is

17

Eftekhari, Ongie, Balzano, and Wakin

p = 0.15 p = 0.30 p = 0.45 p = 0.60 p = 0.75
dG < 10−3 dG < 10−7 dG < 10−3 dG < 10−7 dG < 10−3 dG < 10−7 dG < 10−3 dG < 10−7 dG < 10−3 dG < 10−7

GROUSE 878.0 (76.1) 1852.4 (85.2) 294.9 (20.6) 646.1 (26.8) 181.6 (13.8) 391.2 (18.0) 130.2 (10.3) 277.2 (12.8) 105.1 (11.7) 213.5 (12.8)
PETRELS 1689.0 (1394.1) 2853.7 (916.9) 421.8 (31.3) 1100.5 (64.2) 262.1 (25.3) 802.0 (31.1) 181.8 (20.2) 671.4 (22.8) 133.3 (21.3) 599.1 (24.0)
SNIPE 1815.7 (137.9) 3946.9 (182.4) 537.4 (39.9) 1236.4 (62.5) 282.4 (25.8) 649.6 (41.5) 171.4 (17.2) 391.4 (25.4) 105.5 (9.1) 241.6 (15.6)

SNIPE-overlap 1588.3 (183.8) 3319.5 (232.9) 318.7 (27.1) 704.6 (36.8) 131.8 (11.6) 296.4 (17.4) 71.3 (5.7) 155.6 (9.9) 44.2 (4.2) 91.8 (6.8)

Table 1: Average number of revealed data columns needed to reach the indicated subspace
recovery error for various sampling probabilities p over 100 random trials. Standard devia-
tions are given in parenthesis.

typically coherent since the energy of its orthonormal basis S′ is mostly concentrated along
its first few rows. This time, the average coherence of S ′ over 50 trials was 19.1773 ≈ n/r
and the average estimation error of SNIPE was substantially worse at 0.4286.

Comparisons Next we empirically compare SNIPE with GROUSE (Balzano et al., 2010;
Zhang and Balzano, 2016), PETRELS (Chi et al., 2013), and the modified power method in
(Mitliagkas et al., 2014). In addition to the version of SNIPE given in Algorithm 1, we also
include comparisons with a simple variant of SNIPE, which we call SNIPE-overlap. Unlike
SNIPE which processes disjoint blocks, SNIPE-overlap processes all overlapping blocks of
data. More precisely, for a block size b, SNIPE-overlap first processes data columns t =
1, 2, ..., b, followed by columns t = 2, 3, ..., b+ 1, and so on, whereas regular SNIPE processes
columns t = 1, 2, ..., b followed by t = b + 1, b + 2, ..., 2b, etc. The theory developed in
this paper does not hold for SNIPE-overlap because of lack of statistical independence
between iterations, but we include the algorithm in the comparisons since it represents a
minor modifications of the SNIPE-overlap framework and appears to have some empirical
benefits, as detailed below.

In these experiments, we set n = 100, r = 5, T = 5000, and take S ⊂ Rn to be a
generic r-dimensional subspace and simulate noiseless data samples as before. In Figure
4 we compare the algorithms for three values of sampling probability p, which shows the
average over 100 trials of the estimation error of algorithms (with respect to the metric dG)
relative to the number of revealed data columns. For SNIPE, we used the block size of
b = 2r. Having tried to get the best performance from GROUSE, we used the “greedy”
step-size as proposed in (Zhang and Balzano, 2016). For (Mitliagkas et al., 2014), we set
the block size as b = 1000 which was found empirically to yield the lowest subspace error
after T = 5000 iterations.

In Table 1 we also compare the average number of revealed columns needed to reach a
given error tolerance for each algorithm (as measured by error metric dG) for various values
of the sampling probability p. We omit the modified power method from the results since it
was unable to reach the given error tolerances in all cases. For the medium/high sampling
rates p = 0.45, 0.60, 0.75, SNIPE-overlap is fastest to converge, while regular SNIPE is
competitive with GROUSE and PETRELS. For the lower sampling rates p = 0.15, 0.30 we
find GROUSE yields the fastest convergence, although SNIPE-overlap is also competitive
with GROUSE for p = 0.30.

18

Streaming PCA From Incomplete Data

1000 2000 3000 4000 5000
t

10
-15

10
-10

10
-5

10
0

e
s
t
im

a
t
io
n
e
r
r
o
r
in

m
e
t
r
ic

d
G

SNIPE

SNIPE-overlap

GROUSE

PETRELS

Power method

(a) p = 0.30

1000 2000 3000 4000 5000
t

10
-15

10
-10

10
-5

10
0

e
s
t
im

a
t
io
n
e
r
r
o
r
in

m
e
t
r
ic

d
G

SNIPE

SNIPE-overlap

GROUSE

PETRELS

Power method

(b) p = 0.45

1000 2000 3000 4000 5000
t

10
-15

10
-10

10
-5

10
0

e
s
t
im

a
t
io
n
e
r
r
o
r
in

m
e
t
r
ic

d
G

SNIPE

SNIPE-overlap

GROUSE

PETRELS

Power method

(c) p = 0.60

Figure 4: Average subspace estimation error versus number of revealed data columns at the
specified sampling probability p, see Section 6 for details.

7. Theory

In this section, we prove the technical results presented in Section 4. A short word on
notation is in order first. We will frequently use MATLAB’s matrix notation so that, for
example, A[i, j] is the [i, j]th entry of A, and the row-vector A[i, :] corresponds to the ith
row of A. By {εi}i

ind.∼ Bernoulli(p), we mean that {εi}i are independent Bernoulli random
variables taking one with probability of p and zero otherwise. Throughout, Ei,j stands for
the [i, j]th canonical matrix so that Ei,j [i, j] = 1 is its only nonzero entry. The size of Ei,j
may be inferred from the context. As usual, ‖ · ‖ and ‖ · ‖F stand for the spectral and
Frobenius norms. In addition, ‖A‖∞ and ‖A‖2→∞ return the largest entry of a matrix A
(in magnitude) and the largest `2 norm of the rows of A, respectively. Singular values of

19

Eftekhari, Ongie, Balzano, and Wakin

a matrix A are denoted by σ1(A) ≥ σ2(A) ≥ · · · . For purely aesthetic reasons, we will
occasionally use the notation a ∨ b = max(a, b) and a ∧ b = min(a, b).

7.1. Convergence of SNIPE to a Stationary Point (Proof of Theorem 3)

Consider Program (2), namely,{
min fΩ (X,U) := ‖P⊥U X‖2F + λ‖PΩC (X)‖2F ,
PΩ(X) = Y,

(30)

where the minimization is over matrix X ∈ Rn×T and subspace U ∈ G(n, r). Before pro-
ceeding with the rest of the proof, let us for future reference record the partial derivatives
of fΩ below. Consider a small perturbation to X in the form of X + ∆, where ∆ ∈ Rn×T .
Let U ∈ Rn×r and U⊥ be orthonormal bases for U and its orthogonal complement U⊥,
respectively. Consider also a small perturbation to U in the form of U + U⊥∆′ ∈ Rn×r,
where ∆′ ∈ R(n−r)×r. The perturbation to fΩ(X,U) = fΩ(X,U) can be written as

fΩ

(
X + ∆, U + U⊥∆′

)
= fΩ (X,U) + 〈∆, ∂XfΩ (X,U)〉

+
〈
∆′, ∂UfΩ (X,U)

〉
+ o(‖∆‖F) + o(‖∆′‖F), (31)

where o(·) is the standard little-o notation. The partial derivatives of fΩ are listed below
and derived in Appendix D.

Lemma 13 For fΩ in Program (30), the first-order partial derivatives at (X,U) ∈ Rn×T ×
G(n, r) are

∂XfΩ (X,U) = 2PU⊥X + 2λPΩC (X) ∈ Rn×T ,

∂UfΩ (X,U) = −2(U⊥)∗XX∗U ∈ R(n−r)×r, (32)

where U ∈ Rn×r and U⊥ ∈ Rn×(n−r) are orthonormal bases for U and its orthogonal com-
plement, respectively.

Recall that Qk ∈ Rr×b is a random matrix with bounded expectation, namely, E‖Qk‖F <
∞. As K →∞, {Qk}Kk=1 therefore has a bounded subsequence. To keep the notation simple
and without any loss of generality, we assume that in fact the sequence {Qk}k is itself
bounded. As K → ∞ and for an integer l, we can always find an interval of length l over
which the same index set and nearly the same coefficient matrix repeats. More specifically,
consider an index set Ω̂ ⊆ [1 : n] × [1 : b] and a matrix Q̂ ∈ Rr×b in the support of the
distributions from which {Ωk}Kk=1 and {Qk}Kk=1 are drawn. For every integer l, as a result
of the second Borel-Cantelli lemma (Durrett, 2010, pg. 64), almost surely there exists a
contiguous interval

κl := [kl − l + 1 : kl], (33)

such that
Ωk = Ω̂, k ∈ κl, (34)

max
k∈κl
‖Qk − Q̂‖F ≤

1

l
. (35)

20

Streaming PCA From Incomplete Data

As l → ∞, the measurements corresponding to the interval κl converge. To be specific, let
Ŷ := P

Ω̂
(SQ̂) and note that

lim
l→∞

max
k∈κl

‖Yk − Ŷ ‖F = lim
l→∞

max
k∈κl

‖PΩk(SQk)− Ŷ ‖F

= lim
l→∞

max
k∈κl

‖P
Ω̂

(SQk)− Ŷ ‖F

= lim
l→∞

max
k∈κl

‖P
Ω̂

(S(Qk − Q̂))‖F

≤ lim
l→∞

max
k∈κl

‖Qk − Q̂‖F

= 0. (36)

The above observation encourages us to exchange (Ωk, Yk) with (Ω̂, Ŷ) on the interval κl.
Let us therefore study the program {

min f
Ω̂

(X,U),

P
Ω̂

(X) = Ŷ ,
(37)

where the minimization is over all matrices X ∈ Rn×b and subspaces U ∈ G(n, r). From a
technical viewpoint, it is in fact more convenient to relax the equality constraint above as{

min f
Ω̂

(X,U),

‖P
Ω̂

(X)− Ŷ ‖F ≤ ε,
(38)

for ε > 0. We fix ε for now. Let us next use alternative minimization to solve Program (38).
More specifically, recall (33) and consider the initialization Ŝkl−l,ε := Ŝkl−l, where Ŝkl−l is
the output of SNIPE at iteration kl − l, see Algorithm 1. For every k ∈ κl, consider the
program {

min f
Ω̂

(X, Ŝk−1,ε),

‖P
Ω̂

(X)− Ŷ ‖F ≤ ε,
(39)

and let Rk,ε be a minimizer of Program (39). We then update the subspace by solving

min
U∈G(n,r)

f
Ω̂

(Rk,ε,U), (40)

and setting Ŝk,ε to be a minimizer of Program (40). Recalling the definition of f
Ω̂
in Program

(30) and in light of the Eckart-Young-Mirsky Theorem, Program (40) can be solved by
computing top r left singular vectors of Rk,ε (Eckart and Young, 1936; Mirsky, 1966). For
future reference, note that the optimality and hence stationarity of Ŝk,ε in Program (40)
dictates that

∂UfΩ̂
(Rk,ε, Ŝk,ε) = 0, k ∈ κl, (41)

where ∂Uf was specified in Lemma 13. From the above construction of the sequence
{(Rk,ε, Ŝk,ε)}k∈κl , we also observe that

0 ≤ f
Ω̂

(Rk,ε, Ŝk,ε) ≤ fΩ̂
(Rk,ε, Ŝk−1,ε) ≤ fΩ̂

(Rk−1,ε, Ŝk−1,ε), (42)

21

Eftekhari, Ongie, Balzano, and Wakin

for every k ∈ [kl − l + 2 : kl] ⊂ κl, see (33). That is, {f
Ω̂

(Rk,ε, Ŝk,ε)}k∈κl is a nonincreasing
and nonnegative sequence. It therefore holds that

lim
l→∞

∣∣∣fΩ̂
(Rkl−1,ε, Ŝkl−1,ε)− fΩ̂

(Rkl,ε, Ŝkl−1,ε)
∣∣∣ = 0. (43)

By the feasibility of Rkl−1,ε in Program (39) and by the continuity of f
Ω̂

(X,U) in X, we
conclude in light of (43) that Rkl−1,ε too is a minimizer (and hence also a stationary point)
of Program (39) and in the limit of l → ∞. We therefore find by writing the stationarity
conditions of Program (39) at Rkl,ε that

‖P
Ω̂

(Rkl,ε)− Ŷ ‖F ≤ ε, (44)

lim
l→∞

∥∥∥∂XfΩ̂
(Rkl,ε, Ŝkl,ε) + λkl,ε(PΩ̂

(Rkl,ε)− Ŷ)
∥∥∥
F

= 0. (45)

for nonnegative λkl,ε. Recalling the definition of f
Ω̂

and that λ > 0 by assumption, we
observe that Program (39) is strongly convex in P

Ω̂C
(X) and consequently any pair of

minimizers of Program (39) must agree on the index set Ω̂C . Optimality of Rkl,ε and limit
optimality of Rkl−1,ε in Program (39) therefore imply that

lim
l→∞

∥∥P
Ω̂C

(Rkl−1,ε −Rkl,ε)
∥∥
F

= 0. (46)

On the index set Ω̂, on the other hand, the feasibility of both Rkl−1,ε and Rkl,ε in Program
(39) implies that

‖P
Ω̂

(Rkl−1,ε −Rkl,ε)‖F ≤ ‖PΩ̂
(Rkl−1,ε)− Ŷ ‖F + ‖P

Ω̂
(Rkl,ε)− Ŷ ‖F (triangle inequality)

≤ 2ε. (47)

Combining (46) and (47) yields that

lim
l→∞
‖Rkl−1,ε −Rkl,ε‖F

≤ lim
l→∞
‖P

Ω̂
(Rkl−1,ε −Rkl,ε)‖F + lim

l→∞
‖P

Ω̂C
(Rkl−1,ε −Rkl,ε)‖F (triangle inequality)

≤ 2ε, (see (46,47)) (48)

In light of (39), {Rkl,ε}l is bounded and consequently has a convergent subsequence. Without
loss of generality and to simplify the notation, we assume that {Rkl,ε}l is itself convergent,
namely, that there exists Rε ∈ Rn×b for which

lim
l→∞
‖Rkl,ε −Rε‖F ≤ 2ε. (49)

Let us now send ε to zero in (49) to obtain that

lim
ε→0

lim
l→∞
‖Rkl,ε −Rε‖F ≤ lim

ε→0
2ε = 0. (50)

We next show that it is possible to essentially change the order of limits above and also
conclude that (R, Ŝ) coincides with the output of SNIPE in limit. The following result is
proved in Appendix E.

22

Streaming PCA From Incomplete Data

Lemma 14 With the setup above, there exist a sequence {εi}i with limi→∞ εi = 0 and a
matrix R ∈ Rn×b such that

lim
l,i→∞

‖Rkl,εi −R‖F = lim
l→∞

lim
i→∞
‖Rkl,εi −R‖F = lim

i→∞
lim
l→∞
‖Rkl,εi −R‖F = 0. (51)

Moreover, suppose that the output of SNIPE in every iteration has a spectral gap in the sense
that there exists τ > 0 such that

σr(Rk)

σr+1(Rk)
≥ 1 + τ, (52)

for every k. Let Ŝkl,εi and Ŝ be the span of top r left singular vectors of Rkl,εi and R,
respectively. Then it holds that

lim
l,i→∞

dG(Ŝkl,εi ,S) = 0. (53)

Lastly, in the limit of l→∞, SNIPE produces (R, Ŝ) in every iteration, namely,

lim
l→∞
‖Rkl −R‖F = lim

l→∞
dG(Ŝkl , Ŝ) = 0, (54)

where (Rkl , Ŝkl) is the output of SNIPE in iteration kl, see Algorithm 1.

In fact, the pair (R, Ŝ) from Lemma 14 is stationary in limit in the sense described next and
proved in Appendix F.

Lemma 15 The pair (R, Ŝ) in Lemma 14 is a stationary point of the program{
min fΩkl

(X,U),

PΩkl
(X) = Ykl ,

(55)

as l→∞. The minimization above is over all matrices X ∈ Rn×b and subspaces U ∈ G(n, r).
More specifically, it holds that

lim
l→∞
‖∂UfΩkl

(R, Ŝ)‖F = 0, (56)

lim
l→∞
‖PΩkl

(R)− Ykl‖F = 0, (57)

lim
l→∞
‖PΩCkl

(∂XfΩkl
(R, Ŝ))‖F = 0. (58)

In words, Lemmas 14 and 15 together imply that the output of SNIPE in limit is a stationary
point of Program (55). This completes the proof of Theorem 3.

23

Eftekhari, Ongie, Balzano, and Wakin

7.2. Convergence of SNIPE (Proof of Proposition 6)

In iteration k of SNIPE, we partially observe the data block SQk ∈ Rn×b on a random index
set Ωk ⊂ [1 : n] × [1 : b], where Qk ∈ Rr×b is a random coefficient matrix. We collect the
observations in Yk = PΩk(SQk) ∈ Rn×b, see Sections 2 and 3 for the detailed setup. Note
that Rk in (1) can be written as

Rk = Yk + PΩCk
(Ŝk−1Q

′
k) = PΩk(SQk) + PΩCk

(Ŝk−1Q
′
k), (59)

where
Q′k :=

[
· · ·

(
Ŝ∗k−1PωtŜk−1 + λIr

)†
yt · · ·

]
∈ Rr×b. (60)

By (13), there exists Q′′k ∈ Rr×b and

R′k := PΩk(SQk) + PΩCk
(ŜQ′′k), (61)

such that
lim
k→∞

‖Rk −R′k‖F = 0. (62)

In (61) above, Ŝ ∈ Rn×r is an orthonormal basis for the subspace Ŝ. In Algorithm 1, the
rank-r truncated SVD of Rk spans Ŝk ∈ G(n, r), namely, the output of SNIPE in iteration
k. Let also Ŝ ′k ∈ G(n, r) denote the span of rank-r truncated SVD of R′k. The existence
of the reject option in Algorithm 1 with positive τ implies that Rk has a spectral gap and
therefore Ŝk is uniquely defined. Combining this with (62), we find that Ŝ ′k too is uniquely
defined in the limit of k →∞. Therefore another consequence of (62) is that

lim
k→∞

dG(Ŝk, Ŝ ′k) = 0. (63)

Then we have that

lim
k→∞

dG(Ŝ ′k, Ŝ) ≤ lim
k→∞

dG(Ŝ ′k, Ŝk) + lim
k→∞

dG(Ŝk, Ŝ) ≤ 0 + 0, (see (63,13)) (64)

namely, Ŝ ′k converges to Ŝ in the limit too. Let us now rewrite R′k as

R′k = PΩk(SQk − ŜQ′′k) + ŜQ′′k, (see (61)) (65)

which, together with (64), implies that

lim
k→∞

‖Ŝ∗PΩk(SQk − ŜQ′′k)‖F = 0. (66)

We can rewrite the above limit in terms of the data vectors (rather than data blocks) to
obtain that

lim
t→∞
‖Ŝ∗Pωt(Sqt − Ŝq′′t)‖F = 0, (67)

where {qt, q′′t }t form the columns of the blocks {Qk, Q′′k}k, and the index sets {ωt}t ⊆ [1 :
n] form {Ωk}k. There almost surely exists a subsequence {ti}i over which ωti = {1},
namely, there is a subsequence where we only observe the first entry of the incoming data
vector. Consider a vector q1 ∈ Rr in the support of the distribution from which {qt}t

24

Streaming PCA From Incomplete Data

are drawn. Then there also exists a subsequence of {ti}i, denoted by {tij}ij , such that
limj→∞ ‖qtij − q

1‖2 = 0. Restricted to the subsequence {tij}j , (67) reads as

0 = lim
j→∞

‖Ŝ∗Pωtij (Sqtij−Ŝq
′′
tij

)‖F = lim
j→∞

‖Ŝ∗P{1}(Sqtij−Ŝq
′′
tij

)‖F = ‖Ŝ∗P{1}(Sq1−Ŝq′′1)‖F ,

(68)
where we set q′′1 := limj→∞ q

′′
tij
; the limit exists by (60). Likewise, we can show that

vl := P{l}(Sq
l − Ŝq′′l) ∈ S⊥, l ∈ [1 : n], (69)

where {q′′l}l are defined similarly. Because dim(S⊥) = n − r, at most n − r of the vectors
{vl}nl=1 are linearly independent. Because the supports of {vl}l are disjoint, it follows that
there are at most n − r of the vectors {vl}nl=1 are nonzero. Put differently, there exists an
index set I ⊂ [1 : n] of size at least r such that

Sql = Ŝq′′l, l ∈ I. (70)

Almost surely, {ql}l∈I ⊂ Rr form a basis for Rr, and therefore S ⊆ Ŝ. Because Ŝ ∈ G(n, r)
by assumption, it follows that Ŝ = S, which completes the proof of Proposition 6.

7.3. Locally Linear Convergence of SNIPE (Proof of Theorems 8 and 10)

At iteration k ∈ [2 : K], SNIPE uses the current estimate Ŝk−1 and the new incomplete
block Yk to produce a new estimate Ŝk of the true subspace S. The main challenge here
is to compare the new and old principal angles with S, namely, compare dG(S, Ŝk) and
dG(S, Ŝk−1). Lemma 16 below, proved in Appendix G, loosely speaking states that dG(S, Ŝk)
reduces by a factor of 1−O(p) in expectation in every iteration, when dG(S, Ŝk) . p

5
2 and

ignoring all other parameters in this qualitative discussion. In other words, when sufficiently
small, the estimation error of SNIPE reduces in every iteration, but in expectation. The
actual behavior of SNIPE is more nuanced. Indeed, Lemma 16 below also adds that the
estimation error dG(S, Ŝk) in fact contracts in some iterations by a factor of 1− Cp, namely,

dG(S, Ŝk) . (1− Cp) · dG(S, Ŝk−1),

provided that dG(S, Ŝk−1) . p
5
2 . That is, when sufficiently small, the estimation error of

SNIPE reduces in some but not all iterations. In the rest of iterations, the error does not
increase by much, namely,

dG(S, Ŝk) ≈ dG(S, Ŝk−1),

with high probability and provided that dG(S, Ŝk−1) . p
5
2 .

Lemma 16 Fix k ∈ [2 : K], α, ν ≥ 1, and c > 0. Let Ek−1 be the event where

p & α2 log2 b log n
η(Ŝk−1)r

n
, (71)

dG(S, Ŝk−1) .
p

7
2nb

αc log b
√
r log n

, (72)

25

Eftekhari, Ongie, Balzano, and Wakin

and let E′k be the event where ‖Qk‖ ≤ ν · σmin, where σmin is the reject threshold in SNIPE,
see Algorithm 1. Then it holds that

E
[
dG(S, Ŝk) | Ŝk−1,Ek−1,E

′
k

]
≤ ν

(
1− p

2
+
p3nb

c

)
dG(S, Ŝk−1) +

b−Cα√
r
. (73)

Moreover, conditioned on Ŝk−1 and the event Ek−1 ∩ E′k, it holds that

dG(S, Ŝk) ≤ ν
(

1 +
p3nb

c

)
dG(S, Ŝk−1), (74)

except with a probability of at most b−Cα. Lastly, a stronger bound holds conditioned on
Ŝk−1 and the event Ek−1 ∩ E′k, namely,

dG(S, Ŝk) ≤ ν
(

1− p

4
+
p3nb

c

)
dG(S, Ŝk−1) (75)

with a probability of at least

φk(α) := 1− exp

(
−C1p

2nb

η̃k−1

)
− b−Cα, (76)

where

η̃k = η̃(PŜ⊥k−1
Sk) := nb ·

‖PŜ⊥k−1
Sk‖2∞

‖PŜ⊥k−1
Sk‖2F

. (77)

Let us now use Lemma 16 to complete the proofs of Theorems 8 and 10.

7.3.1. Proof of Theorem 8

With the choice of c = 4p2nb and ν = 1/
√

1− p/4, (73) reads as

E
[
dG(S, Ŝk) | Ŝk−1,Ek−1,E

′
k

]
≤ ν

(
1− p

2
+
p3nb

c

)
dG(S, Ŝk−1) +

b−Cα√
r

(see (73))

=

√
1− p

4
dG(S, Ŝk−1) +

b−Cα√
r

≤
(

1− p

8

)
dG(S, Ŝk−1) +

b−Cα√
r
. (78)

With the choice of

α = −
C log

(
p
√
rdG(S, Ŝk−1)/16

)
log b

, (79)

for an appropriate constant C above, the bound in (78) simplifies to

E
[
dG(S, Ŝk) | Ŝk−1,Ek−1,E

′
k

]
≤
(

1− p

8

)
dG(S, Ŝk−1) +

b−Cα√
r

(see (78))

≤
(

1− p

8

)
dG(S, Ŝk−1) +

p

16
dG(S, Ŝk−1)

26

Streaming PCA From Incomplete Data

≤
(

1− p

16

)
dG(S, Ŝk−1). (80)

Lastly we remove the conditioning on E′k above. Using the law of total expectation, we write
that

E
[
dG(S, Ŝk) | Ŝk−1,Ek−1

]
= E

[
dG(S, Ŝk) | Ŝk−1,Ek−1,E

′
k

]
· Pr[E′k] + E

[
dG(S, Ŝk) | Ŝk−1,Ek−1,E

′C
k

]
· Pr[E′Ck]

≤ E
[
dG(S, Ŝk) | Ŝk−1,Ek−1,E

′
k

]
+ Pr[E′Ck] (see (10))

≤
(

1− p

16

)
dG(S, Ŝk−1) + Pr[E′Ck] (see (80))

≤
(

1− p

32

)
dG(S, Ŝk−1), (81)

where the last line holds if
Pr[E′Ck] ≤ p

32
dG(S, Ŝk−1).

With the choice of c, ν, α above, let us also rewrite the event Ek−1 in Lemma 16. First, we
rewrite (72) as

dG(S, Ŝk−1) .
p

7
2nb

αc log b
√
r log n

=
Cp

3
2

α log b
√
r log n

= − Cp
3
2

log
(
p
√
rdG(S, Ŝk−1)/16

)√
r log n

. (see (79)) (82)

Second, we replace the coherence η(Ŝk−1) in (71) with the simpler quantity η(S). We can
do so thanks to Lemma 20 which roughly speaking states that a pair of subspaces A and B
with a small principal angle have similar coherences, namely, θ1(A,B) ≈ 0 =⇒ η(A) ≈ η(B).
More concretely, note that√

η(Ŝk−1) ≤
√
η (S) + dG(S, Ŝk−1)

√
n (see Lemma 20)

≤
√
η(S) + Cp

3
2

√
n

r log n
(see (82))

≤
√
η(S) + 1

(
if p .

1√
nb

)
≤ 2
√
η(S). (see (15)) (83)

This completes the proof of Theorem 8.

7.3.2. Proof of Theorem 10

For K0 ∈ [1 : K], we condition on ŜK0 . For positive c to be set later, suppose that

dG(S, ŜK0) .
e
−Cp

3nb
η̃ p

7
2nb

αc log b
√

log n
. (84)

27

Eftekhari, Ongie, Balzano, and Wakin

In particular, (84) implies that the error at iteration K0 is small enough to activate Lemma
16, see (72). For ν ≥ 1 to be set later, we condition for now on the event

E′ := ∩Kk=K0+1E
′
k, (85)

where the event E′k was defined in Lemma 16. Suppose also that (71) holds for every
k ∈ [K0 + 1 : K], namely,

p & max
k∈[K0:K−1]

η(Ŝk) ·
r log2 b log n

n
, (86)

which will next allow us to apply Lemma 16 repeatedly to all iterations in the interval
[K0 + 1 : K]. With the success probability φk(α) defined in Lemma 16, let us also define

φ(α) := min
k∈[K0+1:K]

φk(α) = 1− exp

(
−C1p

2nb

η̃

)
− b−Cα, η̃ := max

k∈[K0+1:K]
η̃k ≥ 1, (87)

where the inequality above follows because η̃k ≥ 1 for every k, see (77). We now partition
[K0 + 1 : K] into (non-overlapping) intervals {Ii}i, each with the length

l =
C2 log b log(K −K0)

φ(α)
, (88)

except possibly the last interval which might be shorter. Consider one of these intervals,
say I1. Then by Lemma 16 and the union bound, (74) holds for every iteration k ∈ I1

except with a probability of at most l · b−Cα because the length of I1 is l. That is, the
estimation error does not increase by much in every iteration in the interval I1. In some of
these iterations, the error in fact reduces. More specifically, (75) holds in iteration k with a
probability of at least φk(α), see (76). While b−Cα in (76) can be made arbitrary small by
increasing the tuning parameter α, this of course would not necessarily make φk(α) arbitrary
close to one. That is, there is a sizable chance that the estimation error does not contract
in iteration k. However, (75) holds at least in one iteration in the interval I1 except with a
probability of at most

(1− φ(α))l ≤ e−φ(α)l = b−C2 log(K−K0). (1 + a ≤ ea)

Therefore, except with a probabilty of at most lb−Cα + b−C2 log(K−K0), (75) holds at least
once and (74) holds for all iterations in the interval I1. It immediately follows that

dG(S, ŜK0+l)

dG(S, ŜK0)

≤ ν
(

1− p

4
+
p3nb

c

)
· νl−1

(
1 +

p3nb

c

)l−1

(see (74,75))

≤ νl exp

(
−p

4
+
p3np

c
+ (l − 1)

p3nb

c

)
(1 + a ≤ ea)

= νl exp

(
−p

4
+
lp3nb

c

)
, (89)

28

Streaming PCA From Incomplete Data

except with a probability of at most

lb−Cα + b−C2 log(K−K0). (90)

In particular, suppose that
c ≥ 4lp2nb, (91)

so that the exponent in the last line of (89) is negative. Let

imax :=

⌊
K −K0

l

⌋
,

and note that

dG(S, ŜK)

dG(S, ŜK0)
=

imax∏
i=1

dG(S, ŜK0+il)

dG(S, ŜK0+(i−1)l)
· dG(S, ŜK)

dG(S, ŜK0+imaxl)
. (92)

By applying the bound in (89) to all intervals {Ii}i, we then conclude that

dG(S, ŜK)

dG(S, ŜK0)

=

imax∏
i=1

dG(S, ŜK0+il)

dG(S, ŜK0+(i−1)l)
· dG(S, ŜK)

dG(S, ŜK0+imaxl)
(see (92))

≤
(
νl exp

(
−p

4
+
lp3nb

c

))⌊
K−K0

l

⌋
· νl
(

1 +
p3nb

c

)l
(see (89,74))

≤
(
νl exp

(
−p

4
+
lp3nb

c

))⌊
K−K0

l

⌋
· νl exp

(
lp3nb

c

)
(1 + a ≤ ea)

≤ νK−K0 exp

(⌊
K −K0

2l

⌋(
−p

4
+
lp3nb

c

))
· exp

(
lp3nb

c

)
≤ νK−K0 exp

(
K −K0

2l

(
−p

4
+
lp3nb

c

))
· exp

(
lp3nb

c

)
(if K −K0 ≥ l and (91) holds)

≤ νK−K0 exp

(
K −K0

2l

(
−p

4
+

3lp3nb

c

))
, (if K −K0 ≥ l) (93)

except with a probability of at most⌈
K −K0

l

⌉(
lb−Cα + b−C2 log(K−K0)

)
≤ 2(K −K0)

l

(
lb−Cα + b−C2 log(K−K0)

)
(if K −K0 ≥ l)

≤ (K −K0)e−Cα + b−CC2 log(K−K0), (94)

which follows from an application of the union bound to the failure probability in (90). With
the choice of α = α′ log b log(K − K0) with sufficiently large α′, the failure probability in
(94) simplifies to

(K −K0)e−Cα + b−C log(K−K0) = (K −K0) · (K −K0)−Cα
′ log b + b−C log(K−K0)

29

Eftekhari, Ongie, Balzano, and Wakin

≤ (K −K0)−Cα
′ log b + b−C log(K−K0)

= b−Cα
′ log(K−K0) + b−C log(K−K0)

≤ b−C log(K−K0). (95)

The next step involves elementary bookkeeping to upper-bound the last line of (93). Suppose
that

α &
log
(
Cη̃
p2nb

)
log b

, (96)

p .
1√
nb
. (97)

Using (96) and (97) with appropriate constants replacing & and . above, we may verify
that

b−Cα ≤ C1p
2nb

4η̃
, (see (96)) (98)

C1p
2nb

η̃
. 2, ((97) and η̃ ≥ 1) (99)

φ(α) = 1− exp

(
−C1p

2nb

η̃

)
− b−Cα (see (87))

≥ 1

2
· C1p

2nb

η̃
− b−Cα

(
(99) and e−a ≤ 1− a

2
for a . 2

)
≥ C1p

2nb

4η̃
, (see (98)) (100)

l =
C2 log b log(K −K0)

φ(α)
(see (88))

≤ 4C2η̃ log b log(K −K0)

C1p2nb
. (see (100)) (101)

Now with the choice of
c =

96C2

C1
η̃ log b log(K −K0), (102)

we may verify that

−p
4

+
3lp3nb

c
≤ −p

8
, (see (101,102)) (103)

and, revisiting (93), we find that

dG(S, ŜK)

dG(S, ŜK0)

≤ νK−K0 exp

(
K −K0

2l

(
−p

4
+

3lp3nb

c

))
(see (93))

30

Streaming PCA From Incomplete Data

≤ νK−K0 exp

(
−(K −K0)p

16l

)
(see (103))

=
(
ν exp

(
− p

16l

))K−K0

≤
(
ν exp

(
− Cp3nb

η̃ log b log(K −K0)

))K−K0

(see (101))

≤ νK−K0

(
1− Cp3nb

η̃ log b log(K −K0)

)K−K0

((97) and η̃ ≥ 1)

≤
(

1− Cp3nb

η̃ log b log(K −K0)

)K−K0

, (104)

where we set

ν = 1 +
Cp3nb

η̃ log b log(K −K0)
, (105)

for an appropriate choice of constant C. To reiterate, conditioned on the event E′ in (85),
(104) is valid provided that (84,86,96,97) hold and except with the probability of at most
b−C log(K−K0), see (95). In particular, to better interpret (86), we next replace the coherence
η(Ŝk) therein with the simpler quantity η(S). We can do so thanks to Lemma 20 which
roughly speaking states that a pair of subspaces A and B with a small principal angle have
similar coherences, namely, θ1(A,B) ≈ 0 =⇒ η(A) ≈ η(B). More concretely, Lemma 20
implies that √

η(Ŝk) ≤
√
η (S) + dG(S, Ŝk)

√
n. (106)

for every k. To bound the distance in the last line above, we observe that (104) holds also
after replacing K with any k ∈ [K0 + l : K], implying in particular that

dG(S, Ŝk) ≤ dG(S, ŜK0), k ∈ [K0 + l : K]. (107)

When k ∈ [K0 + 1 : K0 + l − 1] however, we cannot guarantee that the error reduces
and all we can say is that that the error does not increase by much. That is, for every
k ∈ [K0 + 1 : K0 + l − 1], we have that

dG(S, Ŝk) ≤ νk−K0

(
1 +

p3nb

c

)k−K0

dG(S, ŜK0) (see (74))

≤ νl
(

1 +
p3nb

c

)l
dG(S, ŜK0)

= νl
(

1 +
Cp3nb

η̃ log b log(K −K0)

)l
dG(S, ŜK0)

≤
(

1 +
Cp3nb

η̃ log b log(K −K0)

)2l

dG(S, ŜK0), (see (105)) (108)

with an appropriate choice of C in (105). We continue by writing that

dG(S, Ŝk) ≤
(

1 +
Cp3nb

η̃ log b log(K −K0)

)2l

dG(S, ŜK0) (see (108))

31

Eftekhari, Ongie, Balzano, and Wakin

≤ exp

(
Cp3nb

η̃ log b log(K −K0)
· l
)
dG(S, ŜK0) (1 + a ≤ ea)

≤ eCpdG(S, ŜK0) (see (101))

. dG(S, ŜK0). (p ≤ 1) (109)

Combining (107) and (109), we arrive at

dG(S, Ŝk) . dG(S, ŜK0), (110)

for every k ∈ [K0 + 1 : K], provided that (84,86,96,97) hold and except with a probability
of at most b−C log(K−K0), see (95). Substituting the above bound into (106) yields that√

η(Ŝk) ≤
√
η (S) + dG(S, Ŝk)

√
n (see (106))

≤
√
η (S) + CdG(S, ŜK0)

√
n (see (110))

≤
√
η (S) +

Cp
7
2n

3
2 b

αc log b
√

log n
(see (84))

≤
√
η (S) +

Cp
7
2n

3
2 b

αη̃ log2 b
√

log n log(K −K0)
(see (102))

≤
√
η (S) + 1. ((97) and η̃ ≥ 1)

≤ 2
√
η(S). (η(S) ≥ 1) (111)

Plugging back the bound above into (86) yields that

p & log2 b log n
η(S)r

n
. (112)

To summarize, conditioned on the event E′, we have established that (104) is valid under
(84,96,97,112) and except with a probability of at most b−C log(K−K0). The event E′ =
∩Kk=K0+1E

′
k itself holds except with a probability of at most

∑K
k=K0+1 Pr[E′Ck] by the union

bound. With an application of the law of total probability, (104) is therefore valid except
with a probability of at most b−C log(K−K0) +

∑K
k=K0+1 Pr[E′Ck]. This completes the proof

of Theorem 10.

Acknowledgments

AE would like to thank Anand Vidyashankar and Chris Williams for separately pointing out
the possibility of a statistical interpretation of SNIPE, as discussed at the end of Section 3.
AE is also extremely grateful to Raphael Hauser for his helpful insights. Lastly, the authors
would like to acknowledge and thank Dehui Yang for his involvement in the early phases
of this project. For this project, AE was supported by the Alan Turing Institute under
the EPSRC grant EP/N510129/1 and partially by the Turing Seed Funding grant SF019.
GO and LB were supported by ARO Grant W911NF-14-1-0634. LB was also supported
by DARPA grant 16-43-D3M-FP-037. MBW was partially supported by NSF grant CCF-
1409258 and NSF CAREER grant CCF-1149225.

32

Streaming PCA From Incomplete Data

Appendix A. Toolbox

This section collects a number of standard results for the reader’s convenience. We begin with
the following large-deviation bounds that are repeatedly used in the rest of the appendices
(Gross, 2011; Tropp, 2012). Throughout, C is a universal constant the value of which might
change in every appearance.

Lemma 17 [Hoeffding inequality] Let {zi}i be a finite sequence of zero-mean indepen-
dent random variables and assume that almost surely every zi belongs to a compact interval
of length li on the real line. Then, for positive α and except with a probability of at most
e−Cα

2/
∑
i l

2
i , it holds that

∑
i zi ≤ α.

Lemma 18 [Matrix Bernstein inequality for spectral norm] Let {Zi}i ⊂ Rn×b be a
finite sequence of zero-mean independent random matrices, and set

β := max
i
‖Zi‖,

σ2 :=

∥∥∥∥∥∑
i

E [Z∗i Zi]

∥∥∥∥∥ ∨
∥∥∥∥∥∑

i

E [ZiZ
∗
i]

∥∥∥∥∥ .
Then, for α ≥ 1 and except with a probability of at most e−Cα, it holds that∥∥∥∥∥∑

i

Zi

∥∥∥∥∥ . α ·max
(

log (n ∨ b) · β,
√

log (n ∨ b) · σ
)
.

For two r-dimensional subspaces A and B with principal angles θ1(A,B) ≥ θ2(A,B) ≥
· · · ≥ θr(A,B), recall the following useful identities about the principal angles between them:

sin (θ1 (A,B)) = ‖PA⊥PB‖ = ‖PA − PB‖ , (113)

√√√√ r∑
i=1

sin2 (θi (A,B)) = ‖PA⊥PB‖F =
1√
2
‖PA − PB‖F . (114)

Note also the following perturbation bound that is slightly stronger than the standard ones,
but proved similarly nonetheless (Wedin, 1972).

Lemma 19 [Perturbation bound] Fix a rank-r matrix A and let A = span(A). For
matrix B, let Br be a rank-r truncation of B obtained via SVD and set Br = span(Br).
Then, it holds that

‖PA − PBr‖ = ‖PA⊥PBr‖ ≤
‖PA⊥B‖
σr (B)

≤ ‖B −A‖
σr (B)

≤ ‖B −A‖
σr(A)− ‖B −A‖

,

1√
2
‖PA − PBr‖F = ‖PA⊥PBr‖F ≤

‖PA⊥B‖F
σr (B)

≤
‖B −A‖F
σr (B)

,

where σr(A) is the r largest singular value of A.

33

Eftekhari, Ongie, Balzano, and Wakin

Proof Let Br+ := B −Br denote the residual and note that

‖PA⊥PBr‖ =
∥∥∥PA⊥BrB†r∥∥∥ (Br = span(Br))

=
∥∥∥PA⊥ (B −Br+)B†r

∥∥∥ (B = Br +Br+)

=
∥∥∥PA⊥BB†r∥∥∥ (

span (B∗r+) ⊥ span (B∗r) = span
(
B†r

))
≤ ‖PA⊥B‖ · ‖B†r‖

=
‖PA⊥B‖
σr (Br)

=
‖PA⊥(B −A)‖

σr (Br)

≤ ‖B −A‖
σr (Br)

≤ ‖B −A‖
σr (A)− ‖B −A‖

. (Weyl’s inequality)

The proof is identical for the claim with the Frobenius norm and is therefore omitted.

Lastly, let us record what happens to the coherence of a subspace under a small pertur-
bation, see (14).

Lemma 20 [Coherence under perturbation] Let A,B be two r-dimensional subspaces
in Rn, and let dG(A,B) denote their distance, see (10). Then their coherences are related as√

η (B) ≤
√
η (A) + dG(A,B)

√
n.

Proof Let θi = θi(A,B) be the shorthand for the ith principal angle between the subspaces
A and B. It is well-known (Golub and Van Loan, 2013) that there exist orthonormal bases
A,B ∈ Rn×r for the subspaces A and B, respectively, such that

A∗B = diag
([

cos θ1 cos θ2 · · · cos θr
])

=: Γ ∈ Rr×r, (115)

where diag(a) is the diagonal matrix formed from vector a. There also exists A′ ∈ Rn×r
with orthonormal columns such that(

A′
)∗
B = diag

([
sin θ1 sin θ2 · · · sin θr

])
=: Σ ∈ Rr×r,

(
A′
)∗
A = 0, (116)

and, moreover,
span

([
A B

])
= span

([
A A′

])
. (117)

With A′ = span(A′), it follows that

B = PAB + PA′B = AA∗B +A′(A′)∗B = AΓ +A′Σ. (see (115) and (116)) (118)

Consequently,√
η (B) =

√
n

r
max
i
‖B[i, :]‖2 (see (14))

34

Streaming PCA From Incomplete Data

≤
√
n

r
max
i
‖A[i, :] · Γ‖2 +

√
n

r
max
i

∥∥A′[i, :] · Σ∥∥
2

((118) and triangle inequality)

≤
√
n

r
max
i
‖A[i, :]‖2 ‖Γ‖+

√
n

r
max
i

∥∥A′[i, :]∥∥
2
‖Σ‖

=
√
η (A) ‖Γ‖+

√
η(A′) ‖Σ‖ (see (14))

≤
√
η (A) ‖Γ‖+

√
n

r
‖Σ‖

(
η(A′) ≤ n

r

)
≤
√
η (A) +

√
n

r
sin θ1 (see (115) and (116))

=
√
η (A) +

√
n

r
‖PA⊥PB‖ (see (113))

≤
√
η (A) +

√
n

r
‖PA⊥PB‖F

=
√
η (A) + dG(A,B)

√
n, (see (10)) (119)

which completes the proof of Lemma 20.

Appendix B. Supplement to Section 3

In this section, we verify that

Rk =

{
arg min ‖PŜ⊥k−1

Xk‖2F + λ‖PΩCk
(Xk)‖2F

PΩk (Xk) = Yk,
(120)

when k ≥ 2. The optimization above is over Xk ∈ Rn×b. First note that Program (120) is
separable and equivalent to the following b programs:

Rk[:, j] =

{
arg min ‖PŜ⊥k−1

x‖22 + λ‖PωCt x‖
2
F

Pωt · x = yt,
t = (k − 1)b+ j, j ∈ [1 : b]. (121)

Above, Rk[:, j] ∈ Rn is the jth column of Rk in MATLAB’s matrix notation and the opti-
mization is over x ∈ Rn. To solve the jth program in (121), we make the change of variables
x = yt + WωCt

· z. Here, z ∈ Rn−m and WωCt
∈ {0, 1}n×(n−m) is defined naturally so that

PωCt = WωCt
W ∗
ωCt

. We now rewrite (121) as the following b unconstrained programs:

zj := arg min ‖PŜ⊥k−1
yt + PŜ⊥k−1

WωCt
z‖22 + λ‖PωCt WωCt

z‖2F

= arg min ‖(Ŝ⊥k−1)∗yt + (Ŝ⊥k−1)∗WωCt
z‖22 + λ‖z‖2F , t = (k − 1)b+ j, j ∈ [1 : b].

(122)

Above, Ŝ⊥k−1 ∈ Rn×(n−r) is an orthonormal basis for the subspace Ŝ⊥k−1 ∈ G(n, n − r) and
in particular PŜ⊥k−1

= Ŝ⊥k−1(Ŝ⊥k−1)∗. The optimization above is over z ∈ Rn−m. Note that

zj = −
(
W ∗
ωCt
PŜ⊥k−1

WωCt
+ λIn−m

)−1
W ∗
ωCt
PŜ⊥k−1

yt, j ∈ [1 : b], (123)

35

Eftekhari, Ongie, Balzano, and Wakin

are solutions of the least squares programs in (122) when m is large enough. For fixed j, we
simplify the expression for zj as follows:

zj = −
(
λIn−m +W ∗

ωCt
PŜ⊥k−1

WωCt

)−1
W ∗
ωCt
PŜ⊥k−1

yt

= −
(

(1 + λ)In−m −W ∗ωCt PŜk−1
WωCt

)−1
W ∗
ωCt
PŜ⊥k−1

yt

(
PŜ⊥k−1

= In − PŜk−1

)
=
−1

1 + λ

(
In−m +W ∗

ωCt
Ŝk−1

(
(1 + λ)Ir − Ŝ∗k−1PωCt Ŝk−1

)−1
Ŝ∗k−1WωCt

)
W ∗
ωCt
PŜ⊥k−1

yt

(inversion lemma)

=
−1

1 + λ

(
In−m +W ∗

ωCt
Ŝk−1

(
(1 + λ)Ir − Ŝ∗k−1PωCt Ŝk−1

)−1
Ŝ∗k−1WωCt

)
W ∗
ωCt
PŜ⊥k−1

Pωtyt

(yt = Pωtyt)

=
1

1 + λ

(
In−m +W ∗

ωCt
Ŝk−1

(
(1 + λ)Ir − Ŝ∗k−1PωCt Ŝk−1

)−1
Ŝ∗k−1WωCt

)
W ∗
ωCt
PŜk−1

yt(
WωCt

Pωt = 0
)

=
WωCt

PŜk−1
yt

1 + λ
+
W ∗
ωCt
Ŝk−1

1 + λ

(
(1 + λ)Ir − Ŝ∗k−1PωCt Ŝk−1

)−1
Ŝ∗k−1PωCt PŜk−1

yt(
PωCt = WωCt

W ∗
ωCt

)
=
WωCt

PŜk−1
yt

1 + λ

+
W ∗
ωCt
Ŝk−1

1 + λ

(
(1 + λ)Ir − Ŝ∗k−1PωCt Ŝk−1

)−1 (
Ŝ∗k−1PωCt Ŝk−1 − (1 + λ)Ir

)
Ŝ∗k−1yt

+W ∗
ωCt
Ŝk−1

(
(1 + λ)Ir − Ŝ∗k−1PωCt Ŝk−1

)−1
Ŝ∗k−1yt

= W ∗
ωCt
Ŝk−1

(
(1 + λ)Ir − Ŝ∗k−1PωCt Ŝk−1

)−1
Ŝ∗k−1yt

= W ∗
ωCt
Ŝk−1

(
λIr + Ŝ∗k−1PωtŜk−1

)−1
Ŝ∗k−1yt, (124)

which means that

yt +WωCt
zj = yt + PωCt Ŝk−1

(
λIr + Ŝ∗k−1PωtŜk−1

)−1
Ŝ∗k−1yt, (125)

is a solution of the jth program in (121) which indeed matches the jth column of Rk defined
in (1).

Appendix C. Proof of Proposition 24

Let us form the blocks Q1 ∈ Rb1×r, S1 ∈ Rn×b1 , and Ω1 ⊆ [1 : n] × [1 : b1] as usual, see
Section 3. As in that section, we also write the measurement process as Y1 = PΩ1(S1), where
PΩ1(·) projects onto the index set Ω1. Let us fix Q1 for now. Also let Y1,r ∈ Rn×b1 be a

36

Streaming PCA From Incomplete Data

rank-r truncation of Y1 obtained via SVD. SNIPE then sets Ŝ1 = span(Y1,r). Our objective
here is to control ‖PS⊥PŜ1

‖F . Since

‖PS⊥PŜ1
‖F ≤

√
r‖PS⊥PŜ1

‖,
(
Ŝ1 ∈ G(n, r)

)
(126)

it suffices to bound the spectral norm. Conditioned on Q1, it is easy to verify that E[Y1] =
E[PΩ1(S1)] = p · S1, suggesting that we might consider Y1 as a perturbed copy of p · S1

and perhaps consider Ŝ1 = span(Y1,r) as a perturbation of S = span(p · S1). Indeed, the
perturbation bound in Lemma 19 dictates that

‖PS⊥PŜ1
‖ ≤ ‖Y1 − pS1‖

p · σr (S1)− ‖Y1 − pS1‖

=
‖Y1 − pS1‖

p · σr (Q1)− ‖Y1 − pS1‖
(S1 = SQ1, S

∗S = Ir)

≤ 2

p
· ‖Y1 − pS1‖

σr (Q1)
.

(
if ‖Y1 − pSQ1‖ ≤

p

2
· σr(Q1)

)
(127)

It remains to bound the norm in the last line above. To that end, we study the concentration
of Y1 about its expectation by writing that

Y1 − pS1 = PΩ1 (S1)− pS1 =
∑
i,j

(εi,j − p)S1[i, j] · Ei,j =:
∑
i,j

Zi,j , (128)

where {εi,j}i,j
ind.∼ Bernoulli(p) and Ei,j ∈ Rn×b1 is the [i, j]th canonical matrix. Additionally,

{Zi,j}i,j are independent zero-mean random matrices. In order to appeal to the matrix
Bernstein inequality (Lemma 18), we compute the β and σ parameters below, starting with
β:

‖Zi,j‖ = ‖(εi,j − p)S1[i, j] · Ei,j‖
= |(εi,j − p)S1[i, j]| (‖Ei,j‖ = 1)

≤ |S1[i, j]| (εi,j ∈ {0, 1})
≤ ‖S1‖∞
≤ ‖S‖2→∞ ‖Q1‖2→∞ (S1 = SQ1, ‖AB∗‖∞ ≤ ‖A‖2→∞‖B‖2→∞)

≤
√
η (S) r

n
·

√
η (Q1) r

b1
· ‖Q1‖ (see (14))

=: β. (129)

Above, ‖A‖∞ and ‖A‖2→∞ return the largest entry of A in magnitude and the largest `2
norm of the rows of matrix A, respectively. As for σ, we write that∥∥∥∥∥∥E

∑
i,j

Zi,jZ
∗
i,j

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
i,j

E
[
(εi,j − p)2

]
S1[i, j]2 · Ei,i

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
i,j

p(1− p)S1[i, j]2 · Ei,i

∥∥∥∥∥∥ (εi,j ∼ Bernoulli(p))

37

Eftekhari, Ongie, Balzano, and Wakin

≤ p

∥∥∥∥∥∥
∑
i,j

S1[i, j]2 · Ei,j

∥∥∥∥∥∥
= p

∥∥∥∥∥∑
i

‖S1[i, :]‖22 · Ei,i

∥∥∥∥∥
= pmax

i
‖S1[i, :]‖22

= p ‖S1‖22→∞
≤ p ‖S‖22→∞ · ‖Q1‖2 (S1 = SQ1, ‖AB‖2→∞ ≤ ‖A‖2→∞‖B‖)

= p · η (S) r

n
· ‖Q1‖2. (see (14)) (130)

In a similar fashion, we find that∥∥∥∥∥∥E
∑
i,j

Z∗i,jZi,j

∥∥∥∥∥∥ ≤ p
∥∥∥∥∥∥
∑
j

‖S1[:, j]‖22Ej,j

∥∥∥∥∥∥
= p ‖S∗1‖

2
2→∞

≤ p · ‖S‖2 · ‖Q1‖22→∞ (S1 = SQ1, ‖AB‖2→∞ ≤ ‖A‖2→∞‖B‖)

≤ p · η (Q1) r

b1
· ‖Q1‖2, (‖S‖ = 1, see (14)) (131)

and eventually

σ2 =

∥∥∥∥∥∥E
∑
i,j

Z∗i,jZi,j

∥∥∥∥∥∥ ∨
∥∥∥∥∥∥E
∑
i,j

Zi,jZ
∗
i,j

∥∥∥∥∥∥
≤ pr

n

(
1 ∨ n

b1

)
(η (S) ∨ η (Q1)) ‖Q1‖2. (see (130) and (131)) (132)

Lastly,

max
(

log(n ∨ b1) · β,
√

log(n ∨ b1) · σ
)

. max

(
log(n ∨ b1) · r

n
,
√

log(n ∨ b1) ·
√
pr

n

)√
1 ∨ n

b1
·
√
η (S) ∨ η (Q1) · ‖Q1‖

(see (129) and (132))

≤
√

log(n ∨ b1) ·
√
pr

n

√
1 ∨ n

b1
·
√
η (S) ∨ η (Q1) · ‖Q1‖.

(
if p ≥ log (n ∨ b1) r

n

)
(133)

The Bernstein inequality now dictates that

‖Y1 − pS1‖ =

∥∥∥∥∥∥
∑
i,j

Zi,j

∥∥∥∥∥∥ (see (128))

38

Streaming PCA From Incomplete Data

. αmax
(

log(n ∨ b1) · β,
√

log(n ∨ b1 · σ
)

(see Lemma 18)

. α
√

log(n ∨ b1) ·
√
rp

n

√
1 ∨ n

b1
·
√
η (S) ∨ η (Q1) · ‖Q1‖, (see (133))

(134)

except with a probability of at most e−α. In particular, suppose that

p & α2ν(Q1)2

(
1 ∨ n

b1

)
(η (S) ∨ η (Q1)) r log(n ∨ b1)

n
,

(
ν(Q1) =

‖Q1‖
σr(Q1)

)
(135)

so that (127) holds. Then, by substituting (134) back into (127) and then applying (126),
we find that

‖PS⊥PŜ1
‖F√

r
≤ ‖PS⊥PŜ1

‖ (see (126))

≤ 2

p
· ‖Y1 − pS1‖

σr(Q1)
(see (127))

. α

√
log(n ∨ b1) · r

pn

(
1 ∨ n

b1

)
(η (S) ∨ η (Q1)) · ν (Q1) (see (134))

=: δ1 (ν(Q1), η(Q1)) , (136)

except with a probability of at most e−α and for fixedQ1. In order to remove the conditioning
on Q1, fix ν ≥ 1, 1 ≤ η1 ≤ b1

r , and recall the following inequality for events A and B:

Pr [A] = Pr [A|B] · Pr [B] + Pr
[
A|BC

]
· Pr

[
BC
]
≤ Pr [A|B] + Pr

[
BC
]
. (137)

Set Q1 = span(Q∗1) and let E be the event where both ν(Q1) ≤ ν and η(Q1) ≤ η1. Thanks
to the inequality above, we find that

Pr

[
‖PS⊥PŜ1

‖F√
r

& δ1 (ν, η1)

]

≤ Pr

[
‖PS⊥PŜ1

‖F√
r

& δ (ν, η1) | E

]
+ Pr

[
EC
]

(see (137))

≤ e−α + Pr [ν(Q1) > ν] + Pr [η(Q1) > η1] , (see (136)) (138)

which completes the proof of Proposition 24.

Appendix D. Proof of Lemma 13

We conveniently define the orthonormal basis

B =
[
U U⊥

]
∈ Rn×n.

Then the perturbation from U can be written more compactly as

U + U⊥∆′ = B

[
Ir
∆′

]
∈ Rn×r.

39

Eftekhari, Ongie, Balzano, and Wakin

In particular, orthogonal projection onto span(U + U⊥∆′) is

(U + U⊥∆′)(U + U⊥∆′)† = B

[
Ir
∆′

]
·
[
Ir
∆′

]†
B∗

= B

[
Ir
∆′

] (
Ir + ∆′∗∆′

)−1 [
Ir ∆′∗

]
O∗

= B

[
Ir ∆′∗

∆′ 0n−r

]
B∗ + o(‖∆′‖F), (139)

where 0n−r ∈ R(n−r)×(n−r) is the matrix of zeros of size n− r. From (30), note also that

fΩ(X,U) = 〈PU⊥ , XX∗〉+ λ‖PΩC (X)‖2F =
〈
In − UU †, XX∗

〉
+ λ‖PΩC (X)‖2F .

We can now write that

fΩ

(
X + ∆, U + U⊥∆′

)
=

〈
In −B

[
Ir ∆′∗

∆′ 0n−r

]
B∗, (X + ∆) (X + ∆)∗

〉
+ 2λPΩC (X) + o(‖∆‖F) + o(‖∆′‖F)

(see (139))

=

〈
B

[
0r −∆′∗

−∆′ In−r

]
B∗, (X + ∆) (X + ∆)∗

〉
+ 2λPΩC (X) + o(‖∆‖F) + o(‖∆′‖F)

=

〈[
0r −∆′∗

−∆′ In−r

]
, B∗ (XX∗ + ∆X∗ +X∆∗)B

〉
+ 2λPΩC (X) + o(‖∆‖F) + o(‖∆′‖F)

=

〈[
0r 0r×(n−r)

0(n−r)×r In−r

]
, B∗XX∗B

〉
+

〈[
0r 0r×(n−r)

0(n−r)×r In−r

]
, B∗∆X∗B +B∗X∆∗B

〉
−
〈[

0r ∆′∗

∆′ 0n−r

]
, B∗XX∗B

〉
+ 2λPΩC (X) + o(‖∆‖F) + o(‖∆′‖F). (140)

We can further simplify the above expansion as

fΩ

(
X + ∆, U + U⊥∆′

)
= fΩ (X,U) + 2 〈∆, PU⊥X〉 − 2

〈
∆′, (U⊥)∗XX∗U

〉
+ 2λPΩC (X) + o(‖∆‖F) + o(‖∆′‖F).

(141)

Therefore the partial derivatives of f are

∂XfΩ (X,U) = 2PU⊥X + 2λPΩC (X) ∈ Rn×T ,

∂UfΩ (X,U) = −2(U⊥)∗XX∗U ∈ R(n−r)×r, (142)

which completes the proof of Lemma 13.

40

Streaming PCA From Incomplete Data

Appendix E. Proof of Lemma 14

By definition in (39), {Rε′}ε′≤ε is a bounded set, see also Program (30) for the definition of
f

Ω̂
. Therefore there exist a subsequence {Rεi}i and a matrix R ∈ Rn×b such that

lim
i→∞

εi = 0, (143)

lim
i→∞
‖Rεi −R‖F = 0. (144)

That is, {Rεi}i converges to R. On the other hand, for every δ ≥ 0, (49) implies that there
exists an integer lδ that depneds on δ and

‖Rkl,ε −Rε‖F ≤ 2εl′ + δ, l ≥ lδ. (145)

Restricted to the sequence {εi}i above, (145) reads as

‖Rkl,εi −Rεi‖F ≤ 2εil
′ + δ, l ≥ lδ, (146)

which, in the limit of i→∞, yields that

lim
i→∞
‖Rkl,εi −Rεi‖F ≤ lim

i→∞
2εi + δ = δ, l ≥ lδ. (147)

We used (143) to obtain the identity above. An immediate consequence of (147) is that

lim
l→∞

lim
i→∞
‖Rkl,εi −Rεi‖F = 0. (148)

Invoking (144), it then follows that

lim
l→∞

lim
i→∞
‖Rkl,εi −R‖F = lim

l→∞
lim
i→∞
‖Rkl,εi −Rεi‖F (see (144))

= 0. (see (148)) (149)

Exchanging the order of limits above yields that

lim
i→∞

lim
l→∞
‖Rkl,εi −R‖F

≤ lim
i→∞

lim
l→∞
‖Rkl,εi −Rεi‖F + lim

i→∞
‖Rεi −R‖F (triangle inequality)

= lim
i→∞

lim
l→∞
‖Rkl,εi −Rεi‖F (see (144))

= 0. (see (50)) (150)

Therefore, (149) and (150) together state that Rk,εi converges to R as l, i→∞, namely,

lim
l,i→∞

‖Rkl,εi −R‖F = 0, (151)

thereby proving the first claim in Lemma 14, see (51). In order to prove the claim about sub-
spaces in Lemma 14, we proceed as follows. Recall the output of SNIPE, namely, {(Rk, Ŝk)}k
constructed in Algorithm 1. In light of Section 3, Rk is also the unique minimizer of Program

41

Eftekhari, Ongie, Balzano, and Wakin

(9). Recall that κl = [kl − l + 1 : kl] from (33). Recall also the construction of sequence
{(Rk,ε, Ŝk,ε)}k∈κl in the beginning of Section 7.1 and note that both procedures are initial-
ized identically at the beginning of interval κl, namely, Ŝkl−l,ε = Ŝkl−1. Therefore, for fixed
l, observe that4

lim
ε→0
‖Rk,ε −Rk‖F = 0, k ∈ κl, (152)

which, when restricted to {εi}i, reads as

lim
i→∞
‖Rk,εi −Rk‖F = 0, k ∈ κl. (153)

By design, every Rk has a spectral gap in the sense that there exists τ > 0 such that

σr(Rk)

σr+1(Rk)
≥ 1 + τ, (154)

for every k. Recall that Ŝk is the span of top r left singular vectors of Rk. An immediate
consequence of (154) is that Ŝk is uniquely defined, namely, there are no ties in the spectrum
of Rk. By (153), there are no ties in the spectrum of Rk,εi as well for sufficiently large i,
namely,

lim
i→∞

σr(Rk,εi)

σr+1(Rk,εi)
≥ 1 + τ, k ∈ κl. (155)

By sending l to infinity above, we find that

1 + τ ≤ lim
l→∞

lim
i→∞

σr(Rkl,εi)

σr+1(Rkl,εi)
(see (155))

= lim
l,i→∞

σr(Rkl,εi)

σr+1(Rkl,εi)
(see (151))

=
σr(R)

σr+1(R)
. (see (151)) (156)

Recall that Ŝk,εi is by definition the span of leading r left singular vectors of Rk,εi . Likewise,
let Ŝ be the span of leading r left singular vectors of R. An immediate consequence of the
second line of (156) is that Ŝkl,εi is uniquely defined, namely, no ties in the spectrum of
Rkl,εi in the limit of l, i → ∞. The third line of (156) similarly implies that Ŝ is uniquely
defined. Given the uniqueness of these subspaces, another implication of (151) is that

lim
l,i→∞

dG(Ŝkl,εi , Ŝ) = 0, (157)

where dG is the metric on Grassmannian defined in (10). Lastly we show that SNIPE in the
limit produces copies of (R, Ŝ) on the interval κl,l′ . This is done by simply noting that

lim
l→∞
‖Rkl −R‖F = lim

l→∞
lim
i→∞
‖Rkl,εi −R‖F (see (153))

4. To verify (152), note that for every feasible Xε in Program (38), X = Y + PΩ̂C (Xε) is feasible for
Program (37). Moreover, as ε → 0, ‖Xε − X‖F → 0 and consequently, by continuity, |fΩ̂(Xε,U) −
fΩ̂(X,U)| → 0. On the other hand, by definition, Rk is the unique minimizer of Program (37), namely,
fΩ̂(Rk,U) < fΩ̂(X,U) for any X 6= Rk feasible for Program (37). For sufficiently small ε, it follows that
fΩ̂(Rk,U) < fΩ̂(Xε,U) for any Xε that is feasible for Program (38) and lim infε→0 ‖Xε −Rk‖ > 0. That
is, the unique minimizer of Program (38) approaches Rk in the limit, namely, limε→0 ‖Rk,ε −Rk‖F = 0.

42

Streaming PCA From Incomplete Data

= lim
l,i→∞

‖Rkl,εi −R‖F (see (151))

= 0, (see (151)) (158)

lim
l→∞

dG(Ŝkl , Ŝ) = lim
l→∞

lim
i→∞

dG(Ŝkl,εi , Ŝ) (see (153))

= lim
l,i→∞

lim
i→∞

dG(Ŝkl,εi , Ŝ) (see (157))

= 0, (see (157)) (159)

which completes the proof of Lemma 14.

Appendix F. Proof of Lemma 15

By restricting (41) to {εi}i, we find that

0 = ∂UfΩ̂
(Rkl,εi , Ŝk,εi) (see (41))

= ∂UfΩkl
(Rkl,εi , Ŝk,εi), (see (34)) (160)

for every l, i. By the joint continuity of ∂UfΩkl
in Lemma 13, it follows that

0 = lim
l,i→∞

∥∥∥∂UfΩkl
(Rkl,εi , Ŝkl,εi)

∥∥∥
F

= lim
l→∞

∥∥∥∂UfΩkl
(R, Ŝ)

∥∥∥
F
, (see Lemma 14) (161)

which establishes (56). To establish (57), we restrict (44) to {εi}i and then send i, l to
infinity to find that

0 = lim
i→∞

lim
l→∞
‖P

Ω̂
(Rkl,εi)− Ŷ ‖F (see (44))

= lim
i→∞

lim
l→∞
‖PΩk(Rkl,εi)− Ykl‖F (see (34,36))

= lim
l→∞
‖PΩkl

(R)− Ykl‖F . (see Lemma 14) (162)

To establish (58), we restrict (45) to {εi}i and then send i to infinity to find that

0 = lim
i→∞

lim
l→∞

∥∥∥∂XfΩ̂
(Rkl,εi , Ŝkl,εi) + λkl,εi(PΩ̂

(Rkl,εi)− Ŷ)
∥∥∥2

F

= lim
i→∞

lim
l→∞

∥∥∥PΩ̂C

(
∂XfΩ̂

(Rkl,εi , Ŝkl,εi)
)∥∥∥2

F

+ lim
i→∞

lim
l→∞

∥∥∥PΩ̂

(
∂XfΩ̂

(Rkl,ε, Ŝkl,εi) + λk,εi(Rkl,εi − Ŷ)
)∥∥∥2

F

≥ lim
i→∞

lim
l→∞

∥∥∥PΩ̂C

(
∂XfΩ̂

(Rkl,εi , Ŝkl,εi)
)∥∥∥2

F

= lim
l→∞

∥∥∥PΩCkl

(
∂XfΩkl

(R, Ŝ)
)∥∥∥2

F
. (see (34) and Lemma 14) (163)

This completes the proof of Lemma 15.

43

Eftekhari, Ongie, Balzano, and Wakin

Appendix G. Proof of Lemma 16

Recall that by construction in Section 3, the rows of the coefficient matrix Qk ∈ Rb×r are
independent copies of the random vector q ∈ Rr. Setting Sk = S ·Q∗k ∈ Rn×b, we observe in
iteration k each entry of the data block Sk independently with a probability of p, collect the
observed entries in Yk ∈ Rn×b, supported on the index set Ωk ⊆ [1 : n]× [1 : b]. We write this
as Yk = PΩk(Sk), where the linear operator PΩk retains the entries on the index set Ωk and
sets the rest to zero. Recall also that Qk is obtained by concatenating the coefficient vectors
{qt}kbt=(k−1)b+1 ⊂ Rr. To unburden the notation, we enumerate these vectors as {qj}bj=1.
Likewise, we use the indexing {sj , yj , ωj}bj=1 for the data vectors, incomplete data vectors,
and their supports, respectively.

Given the new incomplete block Yk at iteration k, we update our estimate of the true
subspace S from the old Ŝk−1 as follows. We calculate the random matrix

Rn×b 3 Rk := Yk + PΩCk
(O (Yk)) , (164)

where the linear operator PΩCk
projects onto the complement of index set Ωk, and

O(Yk) =
[
· · · Ŝk−1(Pωj Ŝk−1)†yj · · ·

]
∈ Rn×b. (165)

Above, Ŝk−1 ∈ Rn×r is an orthonormal basis for the r-dimensional subspace Ŝk−1. If
σr(Rk) < σmin, reject this iteration, see Algorithm 1. Otherwise, let Rk,r denote a rank-r
truncation of Rk obtained via SVD. Then our updated estimate is Ŝk = span(Rk,r).

We condition on the subspace Ŝk−1 and the coefficient matrix Qk for now. To control the
estimation error dG(S, Ŝk), our strategy is to treat Rk as a perturbed copy of Sk = SQ∗k and
in turn treat Ŝk = span(Rk,r) as a perturbed copy of S = span(Sk). Indeed, an application
of the perturbation bound in Lemma 19 yields that

‖PS⊥PŜk‖F ≤
‖PS⊥Rk‖F
σr (Rk)

. (166)

To control the numerator above, we begin with some preparation. First, recalling the defi-
nition of O(Yk) from (165), we observe that

O (Yk) = O (PΩk (Sk)) (Yk = PΩk (Sk))

= O(PΩk(PŜk−1
Sk)) +O(PΩk(PŜ⊥k−1

Sk)) (linearity of O)

= PŜk−1
Sk +O(PΩk(PŜ⊥k−1

Sk)). (see (165)) (167)

The above decomposition allows us to rewrite R in (164) as

Rk = Yk + PΩCk
(O (Yk)) (see (164))

= PΩk(Sk) + PΩCk
(O (Yk)) (Yk = PΩk(Sk))

= PΩk (Sk) + PΩCk
(PŜk−1

Sk) + [PΩCk
◦O ◦ PΩk](PŜ⊥k−1

Sk)

(see (167), f ◦ g(x) := f(g(x)))

44

Streaming PCA From Incomplete Data

= Sk − PΩCk
(Sk) + PΩCk

(PŜk−1
Sk) + [PΩCk

◦O ◦ PΩk](PŜ⊥k−1
Sk)

= Sk − PΩCk
(PŜ⊥k−1

Sk) + [PΩCk
◦O ◦ PΩk](PŜ⊥k−1

Sk)

= Sk − PΩCk
(PŜ⊥k−1

Sk)− [PΩk ◦O ◦ PΩk] (PŜ⊥k−1
Sk) + [O ◦ PΩk] (PŜ⊥k−1

Sk). (168)

Since PS⊥Sk = PS⊥SQ
∗
k = 0, it immediately follows that

PS⊥Rk = −PS⊥ ·PΩCk
(PŜ⊥k−1

Sk)−PS⊥ · [PΩk ◦O ◦PΩk](PŜ⊥k−1
Sk)+PS⊥ · [O ◦ PΩk] (PŜ⊥k−1

Sk).

In particular, with an application of the triangle inequality above, we find that

‖PS⊥Rk‖F
≤
∥∥∥PΩCk

(PŜ⊥k−1
Sk) + [PΩk ◦O ◦ PΩk](PŜ⊥k−1

Sk)
∥∥∥
F

+
∥∥∥PS⊥ · [O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F
. (169)

We proceed by controlling each norm on the right-hand side above using the next two
technical lemmas, proved in Appendices H and I, respectively.

Lemma 21 It holds that

E
[∥∥∥PΩCk

(PŜ⊥k−1
Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F
| Ŝk−1, Qk

]
≤
√

1− p · ‖PS⊥PŜk−1
‖F · ‖Qk‖. (170)

For fixed Ŝk−1 and Qk, we also have∥∥∥PΩCk
(PŜ⊥k−1

Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1
Sk)
∥∥∥
F
≤ ‖PS⊥PŜk−1

‖F · ‖Qk‖. (171)

and the stronger bound∥∥∥PΩCk
(PŜ⊥k−1

Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1
Sk)
∥∥∥
F
≤
√

1− p/2 · ‖PS⊥PŜk−1
‖F · ‖Qk‖, (172)

except with a probability of at most

exp

(
−C1p

2nb

η̃k

)
, (173)

where

η̃k = η̃(PŜ⊥k−1
Sk) = nb ·

‖PŜ⊥k−1
Sk‖2∞

‖PŜ⊥k−1
Sk‖2F

. (174)

Lemma 22 For fixed Ŝk−1, Qk and α ≥ 1, it holds that

∥∥∥PS⊥ · [O ◦ PΩk] (PŜ⊥k−1
Sk)
∥∥∥
F
. α log b

√
log n

p
· ‖PS⊥PŜk−1

‖ · ‖PS⊥PŜk−1
‖F · ‖Qk‖, (175)

except with a probability of at most b−Cα and provided that p & α2 log2 b log n · η(Ŝk−1)r/n.

45

Eftekhari, Ongie, Balzano, and Wakin

We next use Lemmas 21 and 22 to derive two bounds for the numerator of (166), the weaker
bound holds with high probability but the stronger bound holds with only some probability.
More specifically, substituting (171) and (175) into (169) yields that

‖PS⊥Rk‖F
≤
∥∥∥PΩCk

(PŜ⊥k−1
Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F

+
∥∥∥PS⊥ · [O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F

(see (169))

≤

(
1 + Cα log b

√
log n

p
‖PS⊥PŜk−1

‖

)
‖PS⊥PŜk−1

‖F ‖Qk‖, (176)

except with a probability of at most b−Cα and provided that p & α2 log2 b log n ·η(Ŝk−1)r/n.
For positive c to be set later, let us further assume that

‖PS⊥PŜk−1
‖ ≤ ‖PS⊥PŜk−1

‖F .
p

7
2nb

cα log b
√

log n
. (177)

With an appropriate constant replacing . above, (176) simplifies to

‖PS⊥Rk‖F .

(
1 +

p3nb

c

)
‖PS⊥PŜk−1

‖F ‖Qk‖. (178)

A stronger bound is obtained by substituting (172, 175) into (169), namely,

‖PS⊥Rk‖F
≤
∥∥∥PΩCk

(PŜ⊥k−1
Sk) + [PΩk ◦O ◦ PΩk](PŜ⊥k−1

Sk)
∥∥∥
F

+
∥∥∥PS⊥ · [O ◦ PΩk](PŜ⊥k−1

Sk)
∥∥∥
F

(see (169))

≤
(√

1− p

2
+
p3nb

c

)
‖PS⊥PŜk−1

‖F ‖Qk‖ (see (172,175,177))

≤
(

1− p

4
+
p3nb

c

)
‖PS⊥PŜk−1

‖F ‖Qk‖, (179)

provided that p & α2 log2 b log n · η(Ŝk−1)r/n and except with a probability of at most

exp

(
−C1p

2nb

η̃k

)
+ b−Cα.

Note that (178) and (179) offer two alternative bounds for the numerator in the last line
(166), which we will next use to complete the proof of Lemma 16.

Fix the subspace Ŝk−1 for now. Let Ek−1 be the event where p & α2 log2 b log n ·
η(Ŝk−1)r/n and (177) holds. For ν ≥ 1 to be set later, let E′k be the event where

‖Qk‖ ≤ ν · σmin. (180)

Conditioned on the event Ek−1 ∩ E′k, we write that

‖PS⊥PŜk‖F ≤
‖PS⊥Rk‖F
σr (Rk)

(see (166))

46

Streaming PCA From Incomplete Data

≤
‖PS⊥Rk‖F

σmin

. ν

(
1 +

p3nb

c

)
‖PS⊥PŜk−1

‖F , (see (178)) (181)

except with a probability of at most b−Cα. A stronger bound is obtained from (179), namely,

‖PS⊥PŜk‖F ≤
‖PS⊥Rk‖F
σr (Rk)

(see (166))

≤ ν
(

1− p

4
+
p3nb

c

)
‖PS⊥PŜk−1

‖F , (see (179)) (182)

conditioned on the event Ek−1 ∩ E′k and except with a probability of at most

exp

(
−C1p

2nb

η̃k

)
+ b−Cα. (183)

This completes the proof of the probabilistic claims in Lemma 16, namely, (74) and (75).
To complete the proof of Lemma 16, we next derive a bound for the conditional expectation
of ‖PS⊥PŜk‖F . Let E

′′
k be the event where p & α2 log2 b log n · η(Ŝk−1)r/n and∥∥∥PS⊥ · [O ◦ PΩ]

(
PŜ⊥k−1

Sk

)∥∥∥
F
.
p3nb

c
‖PS⊥PŜk−1

‖F ‖Qk‖. (184)

In light of Lemma 22, we have that

Pr[E′′k|Ŝk−1,Ek,E
′
k] ≥ 1− b−Cα. (185)

Using the law of total expectation, we now write that

E
[
‖PS⊥PŜk‖F | Ŝk−1,Ek−1,E

′
k

]
= E

[
‖PS⊥PŜk‖F | Ŝk−1,Ek−1,E

′
k,E

′′
k

]
· Pr[E′′k|Ŝk−1,Ek−1,E

′
k]

+ E
[
‖PS⊥PŜk‖F | Ŝk−1,Ek−1,E

′
k,E

′′C
k

]
· Pr[E′′Ck |Ŝk−1,Ek−1,E

′
k]

≤ E
[
‖PS⊥PŜk‖F | Ŝk−1,Ek−1,E

′
k,E

′′
k

]
+
√
rPr[E′′Ck |Ŝk−1,Ek−1,E

′
k]

(
Ŝk ∈ G(n, r)

)
≤ E

[
‖PS⊥PŜk‖F | Ŝk−1,Ek−1,E

′
k,E

′′
k

]
+
√
rb−Cα (see (185))

≤ E
[
‖PS⊥Rk‖F
σr(Rk)

| Ŝk−1,Ek−1,E
′
k,E

′′
k

]
+ b−Cα ((166) and b ≥ r)

≤ σ−1
minE

[
‖PS⊥Rk‖F | Ŝk−1,Ek−1,E

′
k,E

′′
k

]
+ b−Cα. (186)

We next bound the remaining expectation above by writing that

E
[
‖PS⊥Rk‖F |Ŝk−1,Ek−1,E

′
k,E

′′
k

]
≤ E

[∥∥∥PΩCk
(PŜ⊥k−1

Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1
Sk)
∥∥∥
F

47

Eftekhari, Ongie, Balzano, and Wakin

+
∥∥∥PS⊥ · [O ◦ PΩ] (PŜ⊥k−1

Sk)
∥∥∥
F
| Ŝk−1,Ek−1,E

′
k,E

′′
k

]
(see (169))

≤ E
[∥∥∥PΩCk

(PŜ⊥k−1
Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F

+
p3nb

c
‖PS⊥PŜk−1

‖F ‖Qk‖ | Ŝk−1,Ek−1,E
′
k,E

′′
k

]
(see (184))

= E
[
E
[∥∥∥PΩCk

(PŜ⊥k−1
Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F
|Ŝk−1, Qk

]
+
p3nb

c
‖PS⊥PŜk−1

‖F ‖Qk‖|Ŝk−1,Ek−1,E
′
k,E

′′
k

]
≤ E

[√
1− p‖PS⊥PŜk−1

‖F ‖Qk‖+
p3nb

c
‖PS⊥PŜk−1

‖F ‖Qk‖|Ŝk−1,Ek−1,E
′
k,E

′′
k

]
(see (170))

= E
[
ν · σmin

(√
1− p+

p3nb

c

)
‖PS⊥PŜk−1

‖F |Ŝk−1,Ek−1,E
′
k,E

′′
k

]
(see (180))

= ν · σmin

(√
1− p+

p3nb

c

)
‖PS⊥PŜk−1

‖F

≤ ν · σmin

(
1− p

2
+
p3nb

c

)
‖PS⊥PŜk−1

‖F . (187)

Plugging the bound above back into (186) yields that

E
[
‖PS⊥PŜk‖F |Ŝk−1,Ek−1,E

′
k

]
≤ σ−1

minE
[
‖PS⊥Rk‖F | Ŝk−1,Ek−1,E

′
k,E

′′
k

]
+ b−Cα (see (186))

= ν

(
1− p

2
+
p3nb

c

)
‖PS⊥PŜk−1

‖F + b−Cα, (188)

which proves (73) and completes the proof of Lemma 16.

Appendix H. Proof of Lemma 21

Throughout, Ŝk−1, Qk is fixed. Recalling the definition of operator O(·) from (165), we write
that

[PΩk ◦O ◦ PΩk] (PŜ⊥k−1
Sk)

=
[
· · ·

(
Pωj Ŝk−1

)(
Pωj Ŝk−1

)
· PωjPŜ⊥k−1

Sqj · · ·
]

(see (165))

=
[
· · ·

(
Pωj Ŝk−1

)(
Pωj Ŝk−1

)
· PŜ⊥k−1

Sqj · · ·
]

=
[
· · · PŜk−1,j

· PŜ⊥k−1
Sqj · · ·

]
.

(
Ŝk−1,j := span(Pωj Ŝk−1)

)
(189)

Let also ŜCk−1,j := span(PωCj
Ŝk−1). Note that Ŝk−1 = Pωj Ŝk−1 + PωCj

Ŝk−1 and that

(Pωj Ŝk−1)∗(PωCj
Ŝk−1) = 0. Consequently, Ŝk−1,j ⊥ ŜCk−1,j and then PŜk−1

= PŜk−1,j
+

48

Streaming PCA From Incomplete Data

PŜCk−1,j
. Put differently, Ŝk−1 = Ŝk−1,j ⊕ ŜCk−1,j . Using this decomposition, we simplify

(189) as

[PΩk ◦O ◦ PΩk] (PŜ⊥k−1
Sk)

=
[
· · · PŜk−1,j

· PŜ⊥k−1
Sqj · · ·

]
(see (189))

=
[
· · · (PŜk−1

− PŜCk−1,j
) · PŜ⊥k−1

Sqj · · ·
] (

Ŝk−1 = Ŝk−1,j ⊕ ŜCk−1,j

)
= −

[
· · · PŜCk−1,j

· PŜ⊥k−1
Sqj · · ·

]
. (190)

It immediately follows that

PΩCk
(PŜ⊥k−1

Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1
Sk)

=
[
· · · PωCj

· PŜ⊥k−1
Sqj − PŜCk−1,j

· PŜ⊥k−1
Sqj · · ·

]
=
[
· · · PωCj

(In − PŜCk−1,j
)PωCj

· PŜ⊥k−1
Sqj · · ·

]
,

(
ŜCk−1,j = span(PωCj

Ŝk−1)
)

(191)

and consequently∥∥∥PΩCk
(PŜ⊥k−1

Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1
Sk)
∥∥∥2

F

=

b∑
j=1

∥∥∥PωCj (In − PŜCk−1,j
)PωCj

· PŜ⊥k−1
Sqj

∥∥∥2

2
(see (191))

≤
b∑

j=1

∥∥∥PωCj · PŜ⊥k−1
Sqj

∥∥∥2

2

=
∥∥∥PΩCk

(PŜ⊥k−1
SQk)

∥∥∥2

F

=
∥∥∥PΩCk

(PŜ⊥k−1
Sk)
∥∥∥2

F
. (Sk = SQk) (192)

Note that

E
[∥∥∥PΩCk

(PŜ⊥k−1
Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F
| Ŝk−1, Qk

]
≤

√
E
[∥∥∥PΩCk

(PŜ⊥k−1
Sk) + [PΩk ◦O ◦ PΩk] (PS⊥k−1

Sk)
∥∥∥2

F
| Ŝk−1, Qk

]
(Jensen’s inequality)

≤

√
E
[∥∥∥PΩCk

(PŜ⊥k−1
Sk)
∥∥∥2

F
| Ŝk−1, Qk

]
(see (192))

=

√√√√√E

∑
i,j

(1− εi,j)
∣∣∣(PŜ⊥k−1

Sk)[i, j]
∣∣∣2 | Ŝk−1, Qk

=
√

1− p‖PŜ⊥k−1
Sk‖F

49

Eftekhari, Ongie, Balzano, and Wakin

≤
√

1− p‖PŜ⊥k−1
S‖F ‖Qk‖ (Sk = SQ∗k, ‖AB‖F ≤ ‖A‖F · ‖B‖) (193)

where {εi,j}i,j
ind.∼ Bernoulli(p). We thus proved the first claim in Lemma 21, namely, (170).

Then note that ∥∥∥PΩCk
(PŜ⊥k−1

Sk) + [PΩk ◦O ◦ PΩk] (PS⊥k−1
Sk)
∥∥∥2

F

≤
∥∥∥PΩCk

(PŜ⊥k−1
Sk)
∥∥∥2

F
(see (192))

≤ ‖PŜ⊥k−1
Sk‖2F

≤ ‖PŜ⊥k−1
S‖2F ‖Qk‖2, (Sk = SQk) (194)

which proves the second claim, namely, (171). In fact, with some probability, a stronger
bound can be derived by controlling the deviation from the expectation in (193) using the
Hoeffding inequality (Lemma 17). With α = p

2‖PŜ⊥k−1
Sk‖2F in Lemma 17 and recalling that

Ŝk−1, Qk are fixed for now, we find that∥∥∥PΩCk
(PŜ⊥k−1

Sk)
∥∥∥2

F
≤ E

[∥∥∥PΩCk
(PŜ⊥k−1

Sk)
∥∥∥2

F
| Ŝk−1, Qk

]
+ α

= (1− p/2)‖PŜ⊥k−1
Sk‖2F (see (193))

= (1− p/2)‖PŜ⊥k−1
SQk‖2F (Sk = SQk)

≤ (1− p/2)‖PŜ⊥k−1
S‖2F ‖Qk‖

2 , (195)

except with a probability of at most

exp

− C1p
2‖PŜ⊥k−1

Sk‖4F∑
i,j |(PŜ⊥k−1

Sk)[i, j]|4

 ≤ exp

− C1p
2‖PŜ⊥k−1

Sk‖4F
‖PŜ⊥k−1

Sk‖2∞ · ‖PŜ⊥k−1
Sk‖2F

= exp

−C1p
2‖PŜ⊥k−1

Sk‖2F
‖PŜ⊥k−1

Sk‖2∞

=: exp

(
−C1p

2nb

η̃(PŜ⊥k−1
Sk)

)
, (196)

where ‖A‖∞ returns the largest entry of A in magnitude. Substituting (195) back into (194)
yields that ∥∥∥PΩCk

(PŜ⊥k−1
Sk) + [PΩk ◦O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F

≤
∥∥∥PΩCk

(PŜ⊥k−1
Sk)
∥∥∥
F

(see (194))

≤
√

1− p/2 · ‖PŜ⊥k−1
S‖F ‖Qk‖, (197)

which proves the last claim in Lemma 21, namely, (172).

50

Streaming PCA From Incomplete Data

Appendix I. Proof of Lemma 22

We fix Ŝk−1, Qk throughout. We begin by bounding the target quantity as∥∥∥PS⊥ · [O ◦ PΩk] (PŜ⊥k−1
Sk)
∥∥∥
F

=
∥∥∥PS⊥PŜk−1

· [O ◦ PΩk] (PŜ⊥k−1
Sk)
∥∥∥
F

(see (165))

≤ ‖PS⊥PŜk−1
‖ ·
∥∥∥[O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F

(‖AB‖F ≤ ‖A‖ · ‖B‖F) . (198)

We bound the random norm in the last line above in Appendix J.

Lemma 23 For α ≥ 1 and except with a probability of at most b−Cα, it holds that∥∥∥[O ◦ PΩk] (PŜ⊥k−1
Sk)
∥∥∥
F
. α log b

√
log n

p
‖PS⊥PŜk−1

‖F · ‖Qk‖, (199)

provided that p & α2 log2 b log n · η(Ŝk−1)r/n.

In light of the above lemma, we conclude that∥∥∥PS⊥ · [O ◦ PΩk] (PŜ⊥k−1
Sk)
∥∥∥
F

≤ ‖PS⊥PŜk−1
‖ ·
∥∥∥[O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F

(see (198))

. α log b

√
log n

p
‖PS⊥PŜk−1

‖ · ‖PS⊥PŜk−1
‖F · ‖Qk‖, (see (199)) (200)

except with a probability of at most b−Cα and provided that p & α2 log2 b log n ·η(Ŝk−1)r/n.
This completes the proof of Lemma 22.

Appendix J. Proof of Lemma 23

Using the definition of operator O in (165), we write that∥∥∥[O ◦ PΩk] (PŜ⊥k−1
Sk)
∥∥∥2

F

=
b∑

j=1

∥∥∥Ŝk−1(Pωj Ŝk−1)†Pωj · PŜ⊥k−1
Sqj

∥∥∥2

2
((165) and Sk = SQk)

=
b∑

j=1

∥∥∥Ŝk−1(Pωj Ŝk−1)†PŜ⊥k−1
Sqj

∥∥∥2

2

=
b∑

j=1

∥∥∥(Pωj Ŝk−1)†PŜ⊥k−1
Sqj

∥∥∥2

2
.

(
Ŝ∗k−1Ŝk−1 = Ir

)
(201)

For fixed j ∈ [1 : b], consider the summand in the last line above:∥∥∥(Pωj Ŝk−1)†PŜ⊥k−1
S · qj

∥∥∥
2
≤
∥∥∥(Pωj Ŝk−1)†PŜ⊥k−1

∥∥∥ · ‖PŜ⊥k−1
Sqj‖2

51

Eftekhari, Ongie, Balzano, and Wakin

=
∥∥∥(Pωj Ŝk−1)†Ŝ⊥k−1

∥∥∥ · ‖PŜ⊥k−1
Sqj‖2

(
PŜ⊥k−1

= Ŝ⊥k−1(Ŝ⊥k−1)∗
)

=: ‖Ẑj‖ · ‖PŜ⊥k−1
Sqj‖2. (202)

Above, Ŝ⊥k−1 is as usual an orthonormal basis for the subspace Ŝ⊥k−1. We can now revisit
(201) and write that

∥∥∥O(PŜ⊥k−1
Sk)
∥∥∥2

F
=

b∑
j=1

∥∥∥(Pωj Ŝk−1)†PŜ⊥k−1
Sqj)

∥∥∥2

2
(see (201))

≤ max
j
‖Ẑj‖2 ·

b∑
j=1

‖PŜ⊥k−1
Sqj‖22 (see (202))

= max
j
‖Ẑj‖2 · ‖PŜ⊥k−1

SQk‖2F

≤ max
j
‖Ẑj‖2 · ‖PŜ⊥k−1

S‖2F ‖Qk‖2. (‖AB‖F ≤ ‖A‖F · ‖B‖) (203)

It remains to control the maximum in the last line above. We first focus on controlling ‖Ẑj‖
for fixed j ∈ [1 : b]. Observe that Ẑj is a solution of the least-squares problem

min
Z∈Rn×(n−r)

∥∥∥Ŝ⊥k−1 − (Pωj Ŝk−1)Z
∥∥∥2

F
,

and therefore satisfies the normal equation

(Pωj Ŝk−1)∗
(

(Pωj Ŝk−1)Ẑj − Ŝ⊥k−1

)
= 0,

which is itself equivalent to

(Ŝ∗k−1Pωj Ŝk−1)Ẑj = Ŝ∗k−1Pωj Ŝ
⊥
k−1.

(
P 2
ωj = Pωj

)
(204)

In fact, since
E
[
Ŝ∗k−1Pωj Ŝ

⊥
k−1

]
= p · Ŝ∗k−1Ŝ

⊥
k−1 = 0,

E
[
Ŝ∗k−1Pωj Ŝk−1

]
= p · Ir,

(
Ŝ∗k−1Ŝk−1 = Ir

)
we can rewrite (204) as(

Ŝ∗k−1Pωj Ŝk−1 − E
[
Ŝ∗k−1Pωj Ŝk−1

])
Ẑj + p · Ẑj = ŜTk−1Pωj Ŝ

⊥
k−1 − E

[
ŜTk−1Pωj Ŝ

⊥
k−1

]
.

An application of the triangle inequality above immediately implies that

p‖Ẑj‖ ≤
∥∥∥Ŝ∗k−1Pωj Ŝk−1 − E

[
Ŝ∗k−1Pωj Ŝk−1

]∥∥∥ · ‖Ẑj‖+
∥∥∥Ŝ∗k−1Pωj Ŝ

⊥
k−1 − E

[
Ŝ∗k−1Pωj Ŝ

⊥
k−1

]∥∥∥ .
(205)

52

Streaming PCA From Incomplete Data

To control ‖Ẑj‖, we therefore need to derive large devation bounds for the two remaining
norms on the right-hand side above. For the first spectral norm, we write that

∥∥∥Ŝ∗k−1Pωj Ŝk−1 − E
[
Ŝ∗k−1Pωj Ŝk−1

]∥∥∥ =

∥∥∥∥∥∑
i

(εi − p) · Ŝ∗k−1Ei,iŜk−1

∥∥∥∥∥ =:

∥∥∥∥∥∑
i

Ai

∥∥∥∥∥ , (206)

where {εi}i
ind.∼ Bernoulli(p) and Ei,i ∈ Rn×n is the [i, i]th canonical matrix. Furthermore,

{Ai}i ⊂ Rr×r above are independent and zero-mean random matrices. To apply the Bern-
stein inequality (Lemma 18), we first compute the parameter β as

‖Ai‖ =
∥∥(εi − p) · S∗k−1Ei,iSk−1

∥∥ (see (206))

≤ ‖Ŝ∗k−1Ei,iŜk−1‖ (εi ∈ {0, 1})

= ‖Ŝk−1[i, :]‖22

≤ η(Ŝk−1)r

n
=: β. (see (14)) (207)

To compute the weak variance σ, we write that∥∥∥∥∥E
[∑

i

A2
i

]∥∥∥∥∥ =

∥∥∥∥∥∑
i

E
[
(εi − p)2

]
(Ŝ∗k−1Ei,iŜk−1)2

∥∥∥∥∥ (see (206))

=

∥∥∥∥∥∑
i

p(1− p)(Ŝ∗k−1Ei,iŜk−1)2

∥∥∥∥∥ (εi ∼ Bernoulli(p))

≤ p

∥∥∥∥∥∑
i

(Ŝ∗k−1Ei,iŜk−1)2

∥∥∥∥∥
= p

∥∥∥∥∥∑
i

Ŝ∗k−1Ei,iŜk−1Ŝ
∗
k−1Ei,iŜk−1

∥∥∥∥∥
= p

∥∥∥∥∥∑
i

‖Ŝk−1[i, :]‖22 · Ŝ∗k−1Ei,iŜk−1

∥∥∥∥∥
≤ p ·max

i
‖Ŝk−1[i, :]‖22 ·

∥∥∥∥∥∑
i

Ŝ∗k−1Ei,iŜk−1

∥∥∥∥∥
= p

∥∥∥∥∥∑
i

Ŝ∗k−1Ei,iŜk−1

∥∥∥∥∥
= p · η(Ŝk−1)r

n
·

∥∥∥∥∥∑
i

Ŝ∗k−1Ei,iŜk−1

∥∥∥∥∥ (see (14))

= p · η(Ŝk−1)r

n

(∑
i

Ei,i = In, Ŝ
∗
k−1Ŝk−1 = Ir

)
=: σ2. (208)

53

Eftekhari, Ongie, Balzano, and Wakin

It also follows that

max
(

log r · β,
√

log r · σ
)

= max

 log r · η(Ŝk−1)r

n
,

√
log r · p · η(Ŝk−1)r

n

 (see (207) and (208))

≤

√
log r · p · η(Ŝk−1)r

n
.

(
if p ≥ log r · η(Ŝk−1)r

n

)
(209)

As a result, for α ≥ 1 and except with a probability of at most e−Cα, it holds that∥∥∥Ŝ∗k−1Pωj Ŝk−1 − E
[
Ŝ∗k−1Pωj Ŝk−1

]∥∥∥ . αmax
(

log r · β,
√

log r · σ
)

(see Lemma 18)

≤ α

√
log r · p · η(Ŝk−1)r

n
. (210)

On the other hand, in order to apply the Bernstein inequality to the second spectral norm
in (205), we write that

∥∥∥Ŝ∗k−1Pωj Ŝ
⊥
k−1 − E

[
Ŝ∗k−1Pωj Ŝ

⊥
k−1

]∥∥∥ =

∥∥∥∥∥∑
i

(εi − p) Ŝ∗k−1Ei,iŜ
⊥
k−1

∥∥∥∥∥ =:

∥∥∥∥∥∑
i

Ai

∥∥∥∥∥ , (211)

where {εi}i
ind.∼ Bernoulli(p), Ei,i ∈ Rn×n is the ith canonical matrix, and {Ai}i ⊂ Rr×(n−r)

are zero-mean and independent random matrices. To compute the parameter β here, we
write that

‖Ai‖ =
∥∥∥(εi − p) Ŝ∗k−1Ei,iŜ

⊥
k−1

∥∥∥ (see (211))

≤ ‖Ŝ∗k−1Ei,iŜ
⊥
k−1‖ (εi ∈ {0, 1})

≤ ‖Ŝ∗k−1Ei,i‖
(

(Ŝ⊥k−1)∗Ŝ⊥k−1 = In−r

)
= ‖Ŝk−1[i, :]‖2

≤

√
η(Ŝk−1)r

n
=: β. (see (14)) (212)

To compute the weak variance σ, we notice that∥∥∥∥∥E
[∑

i

AiA
∗
i

]∥∥∥∥∥ =

∥∥∥∥∥∑
i

E
[
(εi − p)2

]
Ŝ∗k−1Ei,iŜ

⊥
k−1(Ŝ⊥k−1)∗Ei,iŜk−1

∥∥∥∥∥ (see (211))

=

∥∥∥∥∥∑
i

p(1− p) · Ŝ∗k−1Ei,iŜ
⊥
k−1(Ŝ⊥k−1)∗Ei,iŜk−1

∥∥∥∥∥ (εi ∼ Benoulli(p))

≤ p

∥∥∥∥∥∑
i

Ŝ∗k−1Ei,iŜ
⊥
k−1(Ŝ⊥k−1)∗Ei,iŜk−1

∥∥∥∥∥
54

Streaming PCA From Incomplete Data

≤ p

∥∥∥∥∥∑
i

Ŝ∗k−1Ei,iEi,iŜk−1

∥∥∥∥∥ (
Ŝ⊥k−1(Ŝ⊥k−1)∗ � In

)
= p

∥∥∥∥∥∑
i

Ŝ∗k−1Ei,iŜk−1

∥∥∥∥∥
= p.

(∑
i

Ei,i = In, Ŝ
∗
k−1Ŝk−1 = Ir

)
(213)

In a similar fashion, we find that∥∥∥∥∥E
[∑

i

A∗iAi

]∥∥∥∥∥ ≤ p
∥∥∥∥∥∑

i

(Ŝ⊥k−1)∗Ei,iŜk−1Ŝ
∗
k−1Ei,iŜ

⊥
k−1

∥∥∥∥∥
= p

∥∥∥∥∥∑
i

‖Ŝk−1[i, :]‖22 · (Ŝ⊥k−1)∗Ei,iŜ
⊥
k−1

∥∥∥∥∥
≤ p ·max

i
‖Ŝk−1[i, :]‖22 ·

∥∥∥∥∥∑
i

(Ŝ⊥k−1)∗Ei,iŜ
⊥
k−1

∥∥∥∥∥
= p ·max

i
‖Ŝk−1[i, :]‖22

(∑
i

Ei,i = In, (Ŝ⊥k−1)∗Ŝ⊥k−1 = In−r

)

= p · η(Ŝk−1)r

n
, (see (14)) (214)

and finally

σ = max

(∥∥∥∥∥E∑
i

AiA
∗
i

∥∥∥∥∥ ,
∥∥∥∥∥E∑

i

A∗iAi

∥∥∥∥∥
)

= max

√p,√p ·
√
η(Ŝk−1)r

n

 (see (213) and (214))

=
√
p.

(
η(Ŝk−1) ≤ n

r

)
(215)

We now compute

max
(

log n · β,
√

log n · σ
)

= max

log n

√
η(Ŝk−1

n
,
√

log n · p

 (see (212) and (215))

=
√

log n · p.

(
if p ≥ log n · η(Ŝk−1)r

n

)
(216)

Therefore, for α ≥ 1 and except with a probability of at most e−Cα, it holds that∥∥∥Ŝ∗k−1Pωj Ŝ
⊥
k−1 − E

[
Ŝ∗k−1Pωj Ŝ

⊥
k−1

]∥∥∥ . αmax
(

log n · β,
√

log n · σ
)

(see Lemma 18)

55

Eftekhari, Ongie, Balzano, and Wakin

= α
√

log n · p. (217)

Overall, by substituting the large deviation bounds (210) and (217) into (205), we find that

p‖Ẑj‖ ≤
∥∥∥Ŝ∗k−1Pωj Ŝk−1 − E

[
Ŝ∗k−1Pωj Ŝk−1

]∥∥∥ · ‖Ẑj‖
+
∥∥∥Ŝ∗k−1Pωj Ŝ

⊥
k−1 − E

[
Ŝ∗k−1Pωj Ŝ

⊥
k−1

]∥∥∥ (see (205))

. α

√
log r · p · η(Ŝk−1)r

n
· ‖Ẑj‖+ α

√
log n · p, (see (210) and (217))

except with a probability of at most e−Cα and under (209) and (216). It immediately follows
that

‖Ẑj‖ .
α
√

logn
p

1−
√

α2 log r·η(Ŝk−1)r
pn

(see the next line)

. α

√
log n

p
,

(
if
α2 log r · η(Ŝk−1)r

pn
. 1

)
(218)

except with a probability of at most e−Cα. In light of (209) and (216), we assume that
p & α2 log n · η(Ŝk−1)r/n. Then using the union bound and with the choice of α = α′ log b,
it follows that

max
j∈[1:b]

‖Ẑj‖ . α′ log b

√
log n

p
,

provided that p & α′2 log2 b · log n · η(Ŝk−1)r/n and except with a probability of at most
be−Cα

′ log b = b−Cα
′ . Invoking (203), we finally conclude that∥∥∥O(PŜ⊥k−1

Sk)
∥∥∥
F
≤ max

j
‖Ẑj‖ · ‖PŜ⊥k−1

PS‖F ‖Qk‖ (see (203))

. α′ log b

√
log n

p
· ‖PŜ⊥k−1

PS‖F ‖Qk‖.

A bound in expectation also easily follows: Let δ denote the factor of δ′ in last line above.
Then we have that

E
∥∥∥PS⊥ · [O ◦ PΩk] (PŜ⊥k−1

Sk)
∥∥∥
F

= δ

ˆ ∞
0

Pr

[∥∥∥PS⊥ · [O ◦ PΩ] (PŜ⊥k−1
Sk)
∥∥∥
F
> α′δ

]
dα′

≤ δ
(

1 +

ˆ ∞
1

Pr

[∥∥∥PS⊥ · [O ◦ PΩ] (PŜ⊥k−1
Sk)
∥∥∥
F
> α′δ

]
dα′
)

≤ δ
(

1 +

ˆ ∞
1

b−α
′
dα′
)

≤ 2δ

= 2 log b

√
log n

p
· ‖PŜ⊥k−1

PS‖F ‖Qk‖. (219)

This completes the proof of Lemma 23.

56

Streaming PCA From Incomplete Data

Appendix K. Properties of a Standard Random Gaussian Matrix

As a supplement to Remark 25, we show here that a standard random Gaussian matrix
G ∈ Rb×r is well-conditioned and incoherent when b is sufficiently large. From (Vershynin,
2012a, Corollary 5.35) and for fixed α ≥ 1, recall that

√
b− C3α

√
r ≤ σr(G) ≤ σ1(G) ≤

√
b+ C3α

√
r, (220)

except with a probability of at most e−α2r. It follows that

ν(G) =
σ1(G)

σr(G)
≤
√
b+ C3α

√
r√

b− C3α
√
r
, (221)

which can be made close to one by choosing b & α2r.
For the coherence, note that G(G∗G)−

1
2 ∈ Rb×r is an orthonormal basis for span(G).

Using the definition of coherence in (14), we then write that

η (span(G)) =
b

r
max
i∈[1:b]

∥∥∥G[i, :] (G∗G)−
1
2

∥∥∥2

2
(see (14))

≤ b

r
max
i
‖G[i, :]‖22 · ‖ (G∗G)−

1
2 ‖2

=
b

r
max
i
‖G[i, :]‖22 · (σr(G))−2

≤ b

r
max
i
‖G[i, :]‖22 ·

(√
b− C3α

√
r
)−2

(see (220))

≤ b

r
max
i
‖G[i, :]‖22 ·

(
b

2
− C2

3α
2r

)−1 (
(a− b)2 ≥ a2

2
− b2

)
.
b

r
max
i
‖G[i, :]‖22 ·

(
b− C4α

2r
)−1

, (222)

except with a probability of at most e−α2r. For fixed i, ‖G[i, :]‖22 is a chi-squared random
variable with r degrees of freedom so that

Pr
[
‖G[i, :]‖22 & β · r

]
≤ e−β, (223)

for β ≥ 1. An application of the union bound and the choice of β = Cα log b then leads us
to

Pr

[
max
i∈[1:b]

‖G[i, :]‖22 & α log b · r
]
≤ b · b−Cα = b−Cα. (224)

Substituting the bound above back into (222) yields that

η (span(G)) .
b

r
max
i
‖G[i, :]‖22 · (b− C4r)

−1 (see (222))

.
b

r
· rα log b · (b− C4r)

−1 (see (224))

.
αb log b

b− C4α2r
, (225)

except with a probability of at most e−αr + b−Cα. In particular, when b ≥ 2C4α
2r, we find

that η(span(G)) . α log b except with a probability of at most e−αr + b−Cα.

57

Eftekhari, Ongie, Balzano, and Wakin

Appendix L. Alternative Initialization

SNIPE in Algorithm 1 is initialized by truncating the SVD of the first incomplete block
Y1 ∈ Rn×b, where we often take b = O(r) to keep the computational and storage requirements
of SNIPE minimal, see Remarks 1 and 2. Put differently, with the notation of Section 3,
even though our end goal is to compute rank-r truncated SVD of the full (but hidden) data
block S1 ∈ Rn×b, SNIPE is initialized with truncated SVD of the incomplete (but available)
block Y1 = PΩ1(S1) ∈ Rn×b, which fills in the missing entries with zeros. Indeed, when
the first incomplete block Y1 arrives, there is no prior knowledge to leverage and zero-filling
the missing entries in Y1 is a sensible strategy. In contrast, for the rest of blocks k ≥ 2,
SNIPE uses its previous estimate Ŝk−1 to fill out the erased entries in Yk before updating
its estimate to Ŝk, see Algorithm 1.

One might instead initialize SNIPE with a larger block. More specifically, suppose that
we change the first block size to b1 ≥ b while keeping the rest of the blocks at the same size
b. Then we set Ŝ1 to be the span of leading r left singular vectors of the first incomplete
block Y1 ∈ Rn×b1 , while the rest of steps in Algorithm 1 do not change. As the size of the
first block b1 increases, Ŝ1 increasingly better approximates the true subspace S. Indeed,
one might consider Y1 = PΩ1(S1) = S1 + (PΩ1(S1) − S1) as a “noisy” copy of S1, where
the noise is due to the erasures. Roughly speaking then, as b1 increases, the energy of the
“signal” part, namely, ‖S1‖F , grows faster than and eventually dominates the energy of the
random noise ‖PΩ1(S1)−S1‖F . This intuition is made precise by the following result which
loosely speaking states that

dG(S, Ŝ1) .
√

r

pn
,

when b1 = Ω(n). This result is proved in Appendix C with the aid of standard large deviation
bounds.

Proposition 24 Consider an r-dimensional subspace S with orthonormal basis S ∈ Rn×r.
For an integer b1 ≥ r, let the coefficient vectors {qt}b1t=1 ⊂ Rr be independent copies of a
random vector q ∈ Rr. For every t ∈ [1 : b1], we observe each coordinate of st = Sqt ∈ S
independently with a probability of p and collect the observed entries in yt ∈ Rn, supported
on the random index set ωt ⊆ [1 : n]. We set Q1 = [q1 q2 · · · qb1] ∈ Rr×b1 and Y1 =
[y1 y2 · · · yb1] ∈ Rn×b1 for short. Let also Ŝ1 be the span of leading r left singular vectors of
Y1.

Then, for fixed α, ν ≥ 1 and 1 ≤ η ≤ b1/r, it holds that

dG(S, Ŝ1) . α · ν

√(
1 ∨ n

b1

)
(η ∨ η (S)) r log(n ∨ b1)

pn
, (226)

except with a probability of at most e−α + Pr[ν(Q1) > ν] + Pr[η(Q1) > η]. Above, ν(Q1)
is the condition number of Q1, η(Q1) is the coherence of Q1 = span(Q∗1) (see (14)), and
a ∨ b := max{a, b}.

Remark 25 [Discussion of Proposition 24] As (226) suggests, for Ŝ1 to be close to S1,
the first block should be a wide matrix, namely, b1 = O(n). This dependence on the block
size was anticipated. Indeed, it is well-understood that one needs O(n) samples in order

58

Streaming PCA From Incomplete Data

for the sample covariance matrix to closely approximate the covariance matrix of a random
vector in Rn (Vershynin, 2012b). As an example, consider the case where the coefficient
vectors {qt}b1t=1 are standard random Gaussian vectors and so Q1 ∈ Rn×b1 is a standard
random Gaussian matrix, namely, populated with zero-mean independent Gaussian random
variables with unit variance. Then both probabilities above are small when b1 is sufficiently
large. More specifically, we show in Appendix K that

Pr[ν(Q1) > ν] ≤ exp

(
−Cν − 1

ν + 1

)
, when b & r, (227)

Pr[η(Q1) > η] ≤ exp(−Cη/ log b), when b log2 b & η2r, (228)

for a Gaussian coefficient matrix Q1.

It is also worth noting that initializing SNIPE with a large first block can be done without
increasing the storage requirement or computational complexity of SNIPE, namely, replacing
the block size b = O(r) in first step of Algorithm 1 with b1 = O(n) can be done without
losing the streaming nature of SNIPE. More specifically, with the alternative initialization,
naively computing the truncated SVD of the first block requires O(b1n) = O(n2) bits of
storage and O(rb1n) = O(rn2) flops. These requirements can be significantly lowered by
implementing a state-of-the-art streaming PCA algorithm such as the “power method” in
(Mitliagkas et al., 2013). This suggests a two-phase algorithm. In the first phase, the power
method is applied to the incoming data, where the missing entries are filled with zeros. This
phase produces the estimate Ŝ1 in SNIPE, which serves as an initialization for the second
phase in which the main loop of SNIPE is applied to the incoming blocks, producing the
estimates {Ŝk}k≥2. If b1 is sufficiently large, the first phase brings us within the basin of
attraction of the true subspace S and activates the locally linear convergence of SNIPE to
S in the second phase, see Theorems 8 and 10.

References

B. A. Ardekani, J. Kershaw, K. Kashikura, and I. Kanno. Activation detection in functional
MRI using subspace modeling and maximum likelihood estimation. IEEE Transactions
on Medical Imaging, 18(2):101–114, 1999.

R. Arora, A. Cotter, K. Livescu, and N. Srebro. Stochastic optimization for PCA and
PLS. In Annual Allerton Conference on Communication, Control, and Computing, pages
861–868. IEEE, 2012.

A. Balsubramani, S. Dasgupta, and Y. Freund. The fast convergence of incremental PCA.
In Advances in Neural Information Processing Systems, pages 3174–3182, 2013.

L. Balzano and S. J Wright. On GROUSE and incremental SVD. In IEEE International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
pages 1–4. IEEE, 2013.

L. Balzano and S. J. Wright. Local convergence of an algorithm for subspace identification
from partial data. Foundations of Computational Mathematics, 15(5):1279–1314, 2015.

59

Eftekhari, Ongie, Balzano, and Wakin

L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces from
highly incomplete information. In Annual Allerton Conference on Communication, Con-
trol, and Computing, pages 704–711. IEEE, 2010.

M. Brand. Incremental singular value decomposition of uncertain data with missing values.
In European Conference on Computer Vision, pages 707–720. Springer, 2002.

J. R. Bunch and C. P. Nielsen. Updating the singular value decomposition. Numerische
Mathematik, 31(2):111–129, 1978.

C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization
methods based on probabilistic models. Mathematical Programming, pages 1–39, 2017.

Y. Chen. Incoherence-optimal matrix completion. IEEE Transactions on Information The-
ory, 61(5):2909–2923, 2015.

Y. Chi, Y. C. Eldar, and R. Calderbank. PETRELS: Parallel subspace estimation and
tracking by recursive least squares from partial observations. IEEE Transactions on Signal
Processing, 61(23):5947–5959, 2013.

M. A. Davenport and J. Romberg. An overview of low-rank matrix recovery from incomplete
observations. IEEE Journal of Selected Topics in Signal Processing, 10(4):608–622, 2016.

R. Durrett. Probability: Theory and examples. Cambridge university press, 2010.

C. Eckart and G. Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1:211–218, 1936. doi: 10.1007/BF02288367.

A. Eftekhari, L. Balzano, and M. B. Wakin. What to expect when you are expecting on the
Grassmannian. IEEE Signal Processing Letters, 24(6):872–876, 2017.

A. Eftekhari, M. B. Wakin, and R. A. Ward. MC2: A two-phase algorithm for leveraged
matrix completion. Information and Inference: A Journal of the IMA, 7(3):581–604,
2018a.

A. Eftekhari, D. Yang, and M. B. Wakin. Weighted matrix completion and recovery with
prior subspace information. IEEE Transactions on Information Theory, 64(6):4044–4071,
2018b.

N. Gershenfeld, S. Samouhos, and B. Nordman. Intelligent infrastructure for energy effi-
ciency. Science, 327(5969):1086–1088, 2010.

G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 2013.

A. Gonen, D. Rosenbaum, Y. C. Eldar, and S. Shalev-Shwartz. Subspace learning with
partial information. Journal of Machine Learning Research, 17(52):1–21, 2016.

D. Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Transactions
on Information Theory, 57(3):1548–1566, 2011.

60

Streaming PCA From Incomplete Data

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Series in Statistics. Springer New York, 2013.

H. Krim and M. Viberg. Two decades of array signal processing research: The parametric
approach. IEEE Signal Processing Magazine, 13(4):67–94, 1996.

A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. In ACM
SIGCOMM Computer Communication Review, volume 34, pages 219–230. ACM, 2004.

B. Lois and N. Vaswani. Online matrix completion and online robust PCA. In IEEE
International Symposium on Information Theory (ISIT), pages 1826–1830. IEEE, 2015.

K. Lounici. High-dimensional covariance matrix estimation with missing observations.
Bernoulli, 20(3):1029–1058, 2014.

M. Mardani, G. Mateos, and G. B. Giannakis. Subspace learning and imputation for stream-
ing big data matrices and tensors. IEEE Transactions on Signal Processing, 63(10):2663–
2677, 2015.

L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart. J. Math.
Oxford, pages 1156–1159, 1966.

I. Mitliagkas, C. Caramanis, and P. Jain. Memory limited, streaming PCA. In Advances in
Neural Information Processing Systems, pages 2886–2894, 2013.

I. Mitliagkas, C. Caramanis, and P. Jain. Streaming PCA with many missing entries.
Preprint, 2014.

J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research
and Financial Engineering. Springer New York, 2006.

E. Oja and J. Karhunen. On stochastic approximation of the eigenvectors and eigenvalues of
the expectation of a random matrix. Journal of Mathematical Analysis and Applications,
106(1):69–84, 1985.

J. Tanner and K. Wei. Normalized iterative hard thresholding for matrix completion. SIAM
Journal on Scientific Computing, 35(5):S104–S125, 2013.

L. Tong and S. Perreau. Multichannel blind identification: From subspace to maximum
likelihood methods. Proceedings of IEEE, 86:1951–1968, 1998.

J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Com-
putational Mathematics, 12(4):389–434, 2012.

P. van Overschee and B. L. de Moor. Subspace identification for linear systems: Theory,
implementation, applications. Springer US, 2012.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Y. C.
Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Applications, pages
95–110. Cambridge University Press, 2012a.

61

Eftekhari, Ongie, Balzano, and Wakin

R. Vershynin. How close is the sample covariance matrix to the actual covariance matrix?
Journal of Theoretical Probability, 25(3):655–686, 2012b.

S. Watanabe and N. Pakvasa. Subspace method of pattern recognition. In Proc. 1st. IJCPR,
pages 25–32, 1973.

P. Wedin. Perturbation bounds in connection with singular value decomposition. BIT
Numerical Mathematics, 12(1):99–111, 1972.

Y. Xie, J. Huang, and R. Willett. Change-point detection for high-dimensional time series
with missing data. IEEE Journal of Selected Topics in Signal Processing, 7(1):12–27,
2013.

D. Zhang and L. Balzano. Global convergence of a grassmannian gradient descent algorithm
for subspace estimation. In Proceedings of the International Conference on Artificial
Intelligence and Statistics, page 1460Ð1468, 2016.

62

	Introduction
	SNIPE
	Interpretation of SNIPE
	Performance of SNIPE
	Related Work
	Simulations
	Theory
	Convergence of SNIPE to a Stationary Point (Proof of Theorem 3)
	Convergence of SNIPE (Proof of Proposition 6)
	Locally Linear Convergence of SNIPE (Proof of Theorems 8 and 10)
	Proof of Theorem 8
	Proof of Theorem 10

	Toolbox
	Supplement to Section 3
	Proof of Proposition 24
	Proof of Lemma 13
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16
	Proof of Lemma 21
	Proof of Lemma 22
	Proof of Lemma 23
	Properties of a Standard Random Gaussian Matrix
	Alternative Initialization

