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Abstract

In stochastic optimization, the population risk is generally approximated by the empirical
risk which is in turn minimized by an iterative algorithm. However, in the large-scale
setting, empirical risk minimization may be computationally restrictive. In this paper, we
design an efficient algorithm to approximate the population risk minimizer in generalized
linear problems such as binary classification with surrogate losses and generalized linear
regression models. We focus on large-scale problems where the iterative minimization of
the empirical risk is computationally intractable, i.e., the number of observations n is
much larger than the dimension of the parameter p (n � p � 1). We show that under
random sub-Gaussian design, the true minimizer of the population risk is approximately
proportional to the corresponding ordinary least squares (OLS) estimator. Using this
relation, we design an algorithm that achieves the same accuracy as the empirical risk
minimizer through iterations that attain up to a quadratic convergence rate, and that are
computationally cheaper than any batch optimization algorithm by at least a factor ofO(p).
We provide theoretical guarantees for our algorithm, and analyze the convergence behavior
in terms of data dimensions. Finally, we demonstrate the performance of our algorithm on
well-known classification and regression problems, through extensive numerical studies on
large-scale datasets, and show that it achieves the highest performance compared to several
other widely used optimization algorithms.

Keywords: Generalized Linear Problems, Stochastic optimization, Subsampling, Dimen-
sion reduction in optimization.

1. Introduction

We consider the following stochastic optimization problem

minimize
β∈Rp

R(β) := E
[
Ψ (〈x, β〉)− y〈x, β〉

]
, (1)
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where Ψ : R → R is a non-linear function, y ∈ Y ⊂ R denotes the response variable,
x ∈ X ⊂ Rp denotes the predictor (or covariate), and the expectation is over the joint
distribution of (y, x). The above minimization is called a generalized linear problem in its
canonical representation, and it is commonly encountered in statistical learning. Celebrated
examples include binary classification with smooth surrogate losses (Buja et al., 2005; Reid
and Williamson, 2010), and generalized linear models (GLMs) such as Poisson regression,
logistic regression, ordinary least squares, multinomial regression with many applications
involving graphical models (Nelder and Baker, 1972; McCullagh and Nelder, 1989; Wain-
wright and Jordan, 2008; Koller and Friedman, 2009). These methods play a crucial role
in numerous machine learning and statistics problems, and they provide a miscellaneous
framework for many regression and classification tasks.

The exact minimization of the stochastic optimization problem (1) requires the knowl-
edge of the underlying distribution of the variables (y, x). In practice, however, the joint
distribution of the pair is not available; therefore, after observing n independent data points
(yi, xi), the standard approach is to minimize the following surrogate of (1), often referred
to as empirical risk approximation

minimize
β∈Rp

R̂(β) :=
1

n

n∑
i=1

Ψ (〈xi, β〉)− yi〈xi, β〉. (2)

In the case of GLMs, the empirical risk minimization given in (2) is equivalent to the
maximum likelihood estimation (MLE), whereas in the case of binary classification, it is
generally referred to as surrogate loss minimization. Due to the non-linear structure of the
optimization task given in (2), minimizing the empirical risk requires iterative methods. The
first-order approximation of the non-linear risk yields the gradient descent algorithm, which
attains a (local) linear convergence rate under certain conditions with O(np) per-iteration
cost. Although its convergence rate is slow compared to that of the second-order methods,
its modest per-iteration cost makes it practical for large-scale problems. Regardless of
the problem formulation, the most commonly used optimization method for computing
the MLE is the Newton-Raphson method, which may be viewed as a reweighted least
squares algorithm (McCullagh and Nelder, 1989; Buja et al., 2005). This method uses a
second-order approximation to benefit from the curvature of the log-likelihood and achieves
locally quadratic convergence. A drawback of this approach is its excessive per-iteration
cost of O(np2). To remedy this, Hessian-free Krylov sub-space based methods such as
conjugate gradient can be used, but the resulting direction is imprecise (Hestenes and Stiefel,
1952; Paige and Saunders, 1975; Martens, 2010). In the regime n � p, another popular
optimization technique is the class of Quasi-Newton methods (Bishop, 1995; Nesterov, 2004),
which can attain a per-iteration cost of O(np), and the convergence rate is locally super-
linear; a well-known member of this class of methods is the BFGS algorithm (Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).

In this paper, we take an alternative approach for minimizing (1), based on an identity
that is well-known in some areas of statistics, but appears to have received relatively little
attention for its computational implications in large-scale problems. Let βpop denote the
true minimizer of the population risk given in (1), and let βols denote the corresponding

ordinary least squares (OLS) coefficients defined as βols = E
[
xxT

]−1 E [xy]. Then, under
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certain random predictor (design) models,

βpop ∝ βols. (3)

For logistic regression with Gaussian design (which is equivalent to Fisher’s discriminant
analysis), (3) was noted by Fisher in the 1930s (Fisher, 1936); a more general formulation
for models with Gaussian design is given in Brillinger (1982). The relationship (3) suggests
that if the constant of proportionality is known, then βpop can be estimated by computing
the OLS estimator, which may be substantially simpler than minimizing the empirical risk.
In fact, in some applications like binary classification, it may not be necessary to find the
constant of proportionality in (3). Our work in this paper builds on this idea.

Our contributions can be summarized as follows.

1. We show that βpop is approximately proportional to βols in the random design setting,
regardless of the covariate (predictor) distribution. That is, we prove∥∥∥βpop − cΨ × βols

∥∥∥
∞

. c
‖βpop‖∞√

p
,

for some cΨ ∈ R which depends on the non-linearity Ψ. We note that above rate is
the relative decay, and it is obtained under the assumption that E[〈x, βpop〉2] . c2.
Our generalization uses zero-bias transformations (Goldstein and Reinert, 1997). We
also show that the relation (3) still holds under certain types of regularization.

2. We design a computationally efficient estimator for βpop by first estimating the OLS
coefficients, and then estimating the proportionality constant cΨ via line search. We
refer to the resulting estimator as the Scaled Least Squares (SLS) estimator and denote
it by β̂ sls. After estimating the OLS coefficients, the second step of our algorithm in-
volves finding a root of a real valued function; this can be accomplished using iterative
methods with up to a quadratic convergence rate and only O(n) per-iteration cost.
This is computationally cheaper than the classical batch methods such as gradient
descent by at least a factor of O(p).

3. For random design with sub-Gaussian predictors and bounded Ψ(2), we show that

∥∥∥β̂ sls − βpop
∥∥∥
∞

.
‖βpop‖∞√

p
+

√
p

n
.

This bound characterizes the performance of the proposed estimator in terms of data
dimensions, and justifies the use of the algorithm in the large-scale setting where
n � p � 1. We also provide theoretical guarantees when subsampling is utilized in
the algorithm for further efficiency.

4. We demonstrate how to transform a binary classification problem with smooth surro-
gate loss into a generalized linear problem, and how our methods can be applied to
obtain a computationally efficient optimization scheme.
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5. We propose a scalable optimization method for converting one generalized linear prob-
lem to another by exploiting the proportionality relation (3). The proposed algorithm
requires only O (n) computations per each iteration, with no additional one-time cost.
We further discuss the canonicalization of the square loss, which may be of indepen-
dent interest for non-convex optimization.

6. We empirically study the statistical and computational performance of β̂ sls, and com-
pare it to that of the empirical risk minimizer (using several well-known implementa-
tions), on a variety of large-scale datasets.

The rest of the paper is organized as follows: Section 1.1 surveys the related work
and Section 2 introduces the required background and the notation. In Section 3, we
provide the intuition behind the relationship (3), which are based on exact calculations
for the Gaussian design setting. In Section 4, we propose our algorithm and discuss its
computational properties. Theoretical results are given in Section 5. In Section 6, we
propose an algorithm to convert one GLM type to another. We discuss how a binary
classification problem can be cast as a generalized linear problem in Section 7, and in
Section 7.1 we propose a method to canonicalize the square loss. Section 8 provides a
thorough comparison between the proposed algorithm and other existing methods. Finally,
we conclude with a brief discussion in Section 9.

1.1. Related work

As mentioned in Section 1, the relationship (3) is well-known in several forms in statistics
literature. Brillinger (1982) derived (3) for models with Gaussian predictors using Stein’s
lemma. Li and Duan (1989) studied model misspecification problems in statistics and
derived (3) when the predictor distribution has linear conditional means (this is a slight
generalization of Gaussian predictors). The relation (3) has led to various techniques for
dimension reduction (Li, 1991; Li and Dong, 2009), and more recently, it has been studied
by Plan and Vershynin (2016); Thrampoulidis et al. (2015) in the context of compressed
sensing. It has been shown that the standard lasso estimator may be very effective when
used in models where the relationship between the expected response and the signal is
nonlinear, and the predictors (i.e. the design or sensing matrix) are Gaussian. A common
theme for all of this previous work is that it focuses solely on settings where (3) holds
exactly and the predictors (covariates) are Gaussian (or, in the case of Li and Duan (1989),
very nearly Gaussian).

The proportionality relation is solely based on Stein’s lemma and its variants. There
are recent studies using Stein’s lemma in various machine learning and optimization tasks
such as second-order optimization (Erdogdu, 2015, 2016, 2017), Bayesian inference (Liu and
Wang, 2016), measuring sample quality and model evaluation tasks (Gorham and Mackey,
2015; Liu et al., 2016).

Two key novelties of the present paper are (i) our focus on the computational benefits
following from (3) for large scale problems with n� p� 1; and (ii) our rigorous finite sam-
ple analysis of models with non-Gaussian predictors, where (3) is shown to be approximately
valid. To the best of our knowledge, the present paper and its earlier version Erdogdu et al.
(2016) are the first to consider the relation (3) in the context of optimization.
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2. Preliminaries and Notation

We assume a random design setting, where the observed data consists of n random iid pairs
(y1, x1), (y2, x2), . . ., (yn, xn); yi ∈ Y ⊂ R is the response variable and xi = (xi1, · · · , xip)T ∈
X ⊂ Rp is the vector of predictors or covariates. We focus on problems where the mini-
mization (1) is desirable, but we allow model misspecification, and do not need to assume
that (yi, xi) are actually drawn from a particular parametric model. In other words, the
joint distribution of (yi, xi) can be arbitrary.

βpop = argmin
β∈Rp

E
[
Ψ(〈xi, β〉)− yi〈xi, β〉

]
. (4)

While we make no assumptions on Ψ beyond smoothness, note that when the optimiza-
tion problem is GLM, and Ψ is the cumulant generating function for yi | xi, then the
problem reduces to the standard GLM with canonical link and regression parameters βpop

(McCullagh and Nelder, 1989). Examples of GLMs in this form include logistic regression
with Ψ(w) = log{1 + ew}, Poisson regression with Ψ(w) = ew, and linear regression (least
squares) with Ψ(w) = w2/2.

Our objective is to find a computationally efficient estimator for βpop. The alternative
estimator for βpop proposed in this paper is related to the OLS coefficient vector, which is de-
fined by βols := E[xix

T
i ]−1E [xiyi]; the corresponding OLS estimator is β̂ols := (XTX)−1XT y,

where X = (x1, . . . , xn)T is the n× p design matrix and y = (y1, . . . , yn)T ∈ Rn.

Additionally, throughout the text we let [m]={1, 2, ...,m}, for positive integers m, and
we denote the size of a set S by |S|. The m-th derivative of a function g : R → R is
denoted by g(m). For a vector u ∈ Rp and a n× p matrix U, we let ‖u‖q and ‖U‖q denote
the `q-vector and -operator norms, respectively. If S ⊆ [n], let US denote the |S| × p
matrix obtained from U by extracting the rows that are indexed by S. For a symmetric
matrix M ∈ Rp×p, λmax(M) and λmin(M) denote the maximum and minimum eigenvalues,
respectively, and ρq(M) for q ∈ {1, 2,∞} denotes the condition number of M with respect to
`q-norm. We denote by Np the p-variate normal distribution, and all expectations are over
all randomness inside the brackets. Finally, we use a . b and a ≤ O (b) interchangeably,
whichever is convenient (where O (·) refers to the big O notation).

3. From OLS to the True Minimizer: Gaussian Case

To motivate our methodology, we assume in this section that the covariates are multivariate
normal, as in Brillinger (1982). These distributional assumptions will be relaxed to a certain
extent in Section 5.

Proposition 1 Assume that the covariates are multivariate normal with mean 0 and co-
variance matrix Σ, i.e. xi ∼ Np(0,Σ). Then βpop can be written as

βpop = cΨ × βols, (5)

where cΨ ∈ R is the fixed point of the mapping

z → E
[
Ψ(2)(〈xi, βols〉z)

]−1
. (6)
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Proof [of Proposition 1] The stationary point of the minimization problem in (4) satisfies
the following normal equations,

E [yixi] = E
[
xiΨ

(1)(〈xi, β〉)
]

for i = 1, 2, ..., p. (7)

Now, denote by φ(x | Σ) the multivariate normal density with mean 0 and covariance matrix
Σ. We recall the well-known property of Gaussian density dφ(x | Σ)/dx = −Σ−1xφ(x | Σ).
Using this and the integration by parts on the right hand side of the above equation, we
obtain for i = 1, 2, ..., p

E
[
xiΨ

(1)(〈xi, β〉)
]

=

∫
xΨ(1)(〈x, β〉)φ(x | Σ) dx, (8)

=Σβ E
[
Ψ(2)(〈xi, β〉)

]︸ ︷︷ ︸
∈ R

,

which is basically the Stein’s lemma. Combining this with the normal equations (7) and
multiplying both side with Σ−1, we obtain the desired result.

Proposition 1 and its proof provide the main intuition behind our proposed method.
Observe that in our derivation, we only worked with the right hand side of the normal
equations (7) which does not depend on the response variable yi. Therefore, the equivalence
will hold regardless of the joint distribution of (yi, xi). This is the main difference from the
proof of Brillinger (1982) where yi is assumed to follow a single index model. In Section 5,
where we extend the method to non-Gaussian predictors, the identity (8) is generalized via
the zero-bias transformations from Goldstein and Reinert (1997).

3.1. Regularization

A version of Proposition 1 incorporating regularization — an important tool for datasets
where p is large relative to n or the predictors are highly collinear — is also possible, as out-
lined briefly in this section. We focus on `2-regularization (ridge regression) in this section;
some connections with lasso (`1-regularization) are discussed in Section 5 and Corollary 6.

For λ ≥ 0, define the `2-regularized empirical risk minimizer,

βpopλ = argmin
β∈Rp

E [Ψ(〈xi, β〉)− yi〈xi, β〉] +
λ

2
‖β‖22 (9)

and the corresponding `2-regularized OLS coefficients βolsλ =
(
E
[
xix

T
i

]
+ λI

)−1 E [xiyi] (so
βpop = βpop0 and βols = βols0 ). The same argument as above implies that

βpopλ = cΨ × βolsγ , where γ = λcΨ. (10)

This suggests that the ordinary ridge regression for the linear model can be used to estimate
the `2-regularized empirical risk minimizer βpopλ . Further pursuing these ideas for problems
where regularization is a critical issue may be an interesting area for future research.
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Algorithm 1 SLS: Scaled Least Squares Estimator

Input: Data (yi, xi)
n
i=1

Step 1. Compute the least squares estimator: β̂ols and ŷ = Xβ̂ols.
For a sub-sampling based OLS estimator, let S ⊂ [n] be a

random subset and take β̂ols = |S|
n (XT

SXS)−1XT y.

Step 2. Solve the following equation for c ∈ R: 1 = c
n

∑n
i=1 Ψ(2)(c ŷi).

Use Newton’s root-finding method:
Initialize c;
Repeat until convergence:

c← c−
c 1
n

∑n
i=1 Ψ(2)(c ŷi)− 1

1
n

∑n
i=1

{
Ψ(2)(c ŷi) + c ŷiΨ(3)(c ŷi)

}.

Output: β̂ sls = c× β̂ols.

4. SLS: Scaled Least Squares Estimator

Motivated by the results in the previous section, we design a computationally efficient
algorithm that approximates the stochastic optimization problem (1) that is as simple as
solving the least squares problem; it is described in Algorithm 1. The algorithm has two
basic steps. First, we estimate the OLS coefficients, and then in the second step we estimate
the proportionality constant via a simple root-finding algorithm.

There are numerous fast optimization methods to solve the least squares problem, and
even a superficial review of these could go beyond the page limits of this paper. We empha-
size that this step (finding the OLS estimator) does not have to be iterative and it is the main
computational cost of the proposed algorithm. We suggest using a sub-sampling based esti-
mator for βols, where we only use a subset of the observations to estimate the covariance ma-
trix. Let S ⊂ [n] be a random sub-sample and denote by XS the sub-matrix formed by the

rows of X in S. Then the sub-sampled OLS estimator is given as β̂ols =
(

1
|S|X

T
SXS

)−1 1
nXT y.

Properties of sub-sampling and sketching based estimators have been well-studied (Ver-
shynin, 2010; Dhillon et al., 2013; Erdogdu and Montanari, 2015; Pilanci and Wainwright,
2015; Roosta-Khorasani and Mahoney, 2016a,b). For sub-Gaussian covariates, it suffices to
use a sub-sample size of O (p log(p)) (Vershynin, 2010). Hence, this step requires a single
time computational cost of O

(
|S|p2 + p3 + np

)
≈ O

(
pmax{p2 log(p), n}

)
. For other ap-

proaches, we refer reader to Rokhlin and Tygert (2008); Drineas et al. (2011); Dhillon et al.
(2013); Erdogdu and Montanari (2015) and the references therein.

The second step of Algorithm 1 involves solving a simple root-finding problem. As with
the first step, there are numerous methods available for completing this task. Newton’s
root-finding method with quadratic convergence or Halley’s method with cubic convergence
may be appropriate choices. We highlight that this step costs only O (n) per-iteration and
that we can attain fast convergence rates of higher order algorithms. The resulting per-
iteration cost is cheaper than commonly used batch algorithms by at least a factor of O (p)
— indeed, the cost of computing the gradient is O (np). For simplicity, we use Newton’s
root-finding method. We also note that in certain classification problems, only the direction
of βpop is needed to make a prediction, so there is no need to compute the scaling constant.
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Figure 1: Logistic regression with iid standard Gaussian design. The left plot shows the computa-
tional cost (time) for finding the MLE and SLS as n grows and p = 200. The middle and the right
plots depict the accuracy of the estimators in standard and log scales, respectively. In the regime
where the MLE is expensive to compute, the SLS is found much more rapidly and has the same
accuracy. R’s built-in functions are used to find the MLE.

Correct initialization of the scaling constant c depends on the optimization problem. For
example, in the case of GLM problems, assuming that the GLM is a good approximation
to the true conditional distribution, by the law of total variance and basic properties of
GLMs, we have

Var (yi) = E [Var (yi | xi)] + Var (E [yi | xi]) ≈ c−1
Ψ + Var

(
Ψ(1)(〈xi, β〉)

)
. (11)

It follows that the initialization c = 2/Var (yi) is reasonable as long as we have c−1
Ψ ≈

E [Var (yi | xi)] not much smaller than Var
(
Ψ(1)(〈xi, β〉)

)
. Our experiments show that SLS

is very robust to initialization.
In Figure 1, we compare the performance of our SLS estimator to that of the MLE

in a GLM optimization problem, when both are used to analyze synthetic data generated
from a logistic regression model under general Gaussian design with randomly generated
covariance matrix. The left plot shows the computational cost of obtaining both estimators
as n increases for fixed p = 200. The middle and the right plots show the accuracy of
the estimators where the latter is in log-scale. In the regime n � p � 1 — where the
MLE is hard to compute — the MLE and the SLS achieve the same accuracy, yet SLS
has significantly smaller computation time. We refer the reader to Section 5 for theoretical
results characterizing the finite sample behavior of the SLS.

5. Theoretical Results

In this section, we use the zero-bias transformations (Goldstein and Reinert, 1997) to gen-
eralize the equivalence relation given in the previous section to the settings where the
covariates are non-Gaussian.

Definition 2 Let z be a random variable with mean 0 and variance σ2. Then, there exists
a random variable z∗ that satisfies E [zf(z)] = σ2E[f (1)(z∗)], for all differentiable functions
f . The distribution of z∗ is said to be the z-zero-bias distribution.

The existence of z∗ in Definition 2 is a consequence of Riesz representation theorem (Gold-
stein and Reinert, 1997). The normal distribution is the unique distribution whose zero-bias
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transformation is itself (i.e. the normal distribution is a fixed point of the operation mapping
the distribution of z to that of z∗ – which is basically Stein’s lemma).

To provide some intuition behind the usefulness of the zero-bias transformation, we refer
back to the proof of Proposition 1. For simplicity, assume that the covariate vector xi has
iid entries with mean 0, and variance 1. Then the zero-bias transformation applied to the
j-th normal equation in (7) yields

E [yixij ] = E
[
xijΨ

(1)
(
xijβj + Σk 6=jxikβk

)]
︸ ︷︷ ︸

j-th normal equation

= βjE
[
Ψ(2)

(
x∗ijβj + Σk 6=jxikβik

)]
︸ ︷︷ ︸

Zero-bias transformation

. (12)

The distribution of x∗ij is the xij-zero-bias distribution and is entirely determined by the
distribution of xij ; general properties of x∗ij can be found, for example, in Chen et al.
(2010). If β is well spread, it turns out that taken together, with j = 1, . . . , p, the far
right-hand side in (12) behaves similar to the right side of (8), with Σ = I; that is, the
behavior is similar to the Gaussian case, where the proportionality relationship given in
Proposition 1 holds. This argument leads to an approximate proportionality relationship
for problems with non-Gaussian predictors, which, when carried out rigorously, yields the
following result.

Theorem 3 Suppose that the whitened covariates wi = Σ−
1/2xi are independent random

vectors with mean 0, covariance I, and sub-Gaussian norm κx. Furthermore, wi’s have con-
stant first and second conditional moments, i.e., ∀j ∈ [p] and β̃ = Σ

1/2βpop, E[wij
∣∣Σk 6=j β̃kwik]

and E[w2
ij

∣∣Σk 6=j β̃kwik] are deterministic, and the function Ψ(2) is Lipschitz continuous with

constant k. Then, for cΨ = 1/E
[
Ψ(2)(〈xi, βpop〉)

]
, we have∥∥∥∥ 1

cΨ
× βpop − βols

∥∥∥∥
∞
≤ η‖Σ1/2βpop‖∞ ‖βpop‖∞ , where η = 8kκ3

xρ∞. (13)

Theorem 3 is proved in Section 10 of the Appendix. It implies that the population parame-
ters βols and βpop are approximately equivalent up to a scaling factor, with a relative error
bound of O(‖Σ1/2βpop‖∞). For the above analysis to provide a decreasing bound in the
dimension p, one needs a tractability assumption on either one of the terms in the error
bound. The most common way to achieve this is to introduce a structure on the inner prod-
uct between x and βpop, e.g. E[〈x, βpop〉2]1/2 = O

(√
p
)

suffices to get a decay in (13). We
emphasize that it is common practice to standardize the response and the features before
training any model; therefore this preliminary procedure can provide the required order and
consequently the desired decay in p.

Below, we discuss two commonly encountered settings in the literature as two corollaries.

Corollary 4 Let the assumptions of Theorem 3 hold. If we further assume that the covari-
ates xi are supported on a ball of radius r, and Σ1/2 is diagonally dominant, we have∥∥∥∥ 1

cΨ
× βpop − βols

∥∥∥∥
∞
≤ η
‖βpop‖2∞√

p
, where η = 16krκ3

x

√
ρ2ρ∞. (14)

Note that we do not require an underlying model assumption between y and x. There-
fore, one can always perform under the finite support assumption by first scaling the design
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matrix appropriately, and then using the proposed estimator. This assumption is common
in many fields, yet can appear in different forms. For example in the machine learning litera-
ture, the standard convention (the same setting in Corollary 4) is to assume that ‖xi‖2 ≤ r,
and that ‖βpop‖2 = O

(√
p
)

(Kalai and Sastry, 2009; Shalev-Shwartz et al., 2009; Kakade
et al., 2011), or the inner product is supported on an interval |〈x, βpop〉| ≤ b almost surely
(Alquier and Biau, 2013), where the latter is a more strict assumption. In the compressed
sensing and other areas in statistics, a similar assumption is imposed on the covariance
matrix E

[
xxT

]
= Σ̃/p which provides us with E[‖x‖22] = O (1) (Donoho et al., 2009; Bayati

and Montanari, 2012; Bayati et al., 2013; Su and Candes, 2016).
On the other hand, the standard convention in the dimension reduction techniques

is to assume that the covariates have norm of order
√
p, i.e. E [‖x‖2] = O

(√
p
)
, and

the coefficients have norm of order 1, i.e. ‖β‖2 = τ = O (1) (Duan and Li, 1991; Hall
and Li, 1993; Hristache et al., 2001). This setting again yields that the inner product
between those two vectors are tractable and provides us with a decay in the latter term,
i.e. ‖βpop‖∞ = O

(
1/
√
p
)
. In this setting, Theorem 3 yields the following corollary.

Corollary 5 Let the assumptions of Theorem 3 hold. If we further assume that βpop is
r-well-spread in the sense that for ‖βpop‖2 = τ , we have τ/ ‖βpop‖∞ = r

√
p for some r ≤ 1,∥∥∥∥ 1

cΨ
× βpop − βols

∥∥∥∥
∞
≤ η
‖βpop‖∞√

p
, where η = 8kκ3

xρ∞(τ/r)‖Σ1/2‖∞. (15)

In the above bound, the decay is in fact 1/p, but we chose to state the relative decay. We
emphasize that both settings in Corollaries 4 and 5 are equivalent and both assumptions
lead a tractable inner product 〈x, βpop〉. The constants κx, ρk are invariant to the scalings
considered in both settings.

The assumption that βpop is well-spread can be relaxed with minor modifications. For
example, if we have a sparse coefficient vector, where supp(βpop) = {j; βpopj 6= 0} is the
support set of βpop, then Corollary 5 holds with p replaced by the size of the support set.

The assumptions on the conditional moments are the relaxed versions of assumptions
that are commonly encountered in dimension reduction techniques. For example, sliced
inverse regression methods assume that the first conditional moment E

[
x
∣∣〈x, β〉] is linear

in x for all β (Li and Duan, 1989; Li, 1991), which is satisfied by elliptically distributed
random vectors. An important case that is not covered by these methods is the independent
coordinate case, i.e., when the whitened covariates have independent, but not necessarily
identical entries. This is made possible by introducing additional approximation error (i.e.
suboptimality due to non-Gaussian design). We refer reader to Li and Dong (2009), for
a good review of dimension reduction techniques and their corresponding assumptions.
We also highlight that our moment assumptions can be relaxed further, at the expense of
introducing some additional complexity into the results.

An interesting consequence of Theorem 3 and the corollaries following the theorem is
that whenever an entry of βpop is zero, the corresponding entry of βols has to be small, and
conversely. For λ ≥ 0, define the lasso coefficients

βlassoλ = argmin
β∈Rp

1

2
E
[
(yi − 〈xi, β〉)2

]
+ λ ‖β‖1 . (16)

10



Scalable Approximations for Generalized Linear Problems

Corollary 6 Let supp(β) denote the support of β, i.e., the set {i ∈ [p] : βi 6= 0}. Given
‖ 1
cΨ
βpop − βols‖∞ ≤ δ, and for any λ ≥ δ, if E [xi] = 0 and E

[
xix

T
i

]
= I, we have

supp(βlasso) ⊂ supp(βpop).

Further, if λ and βpop also satisfy that ∀j ∈ supp(βpop), |βpopj | > cΨ (λ+ δ), then we have

supp(βlasso) = supp(βpop).

We note that δ above can be obtained using Theorem 3 or its corollaries. So far in this
section, we have only discussed properties of the population parameters, such as βpop and
βols. In the remainder of this section, we turn our attention to the results on the estimators
that are the main focus of this paper; these results ultimately build on our earlier results,
i.e. Theorem 3. We will be considering the setting in Corollary 5 in the rest of this section,
i.e., ‖x‖2 = O

(√
p
)

and ‖βpop‖2 = O (1). Results presented below can be easily generalized
to the setting in Corollary 4 as well.

In order to precisely describe the performance of β̂ sls, we first need bounds on the OLS
estimator. The OLS estimator has been studied extensively in the literature; however, for
our purposes, we find it convenient to derive a new bound on its accuracy. While we have
not seen this exact bound elsewhere, it is very similar to Theorem 5 of Dhillon et al. (2013).

Proposition 7 Assume that E [xi] = 0, E
[
xix

T
i

]
= Σ, and that Σ−

1/2xi and yi are sub-
Gaussian with norms κ and γ, respectively. For λmin denoting the smallest eigenvalue of
Σ, and |S| > ηp, ∥∥∥β̂ols − βols∥∥∥

2
≤ ηλ −

1/2

min

√
p

|S|
, (17)

with probability at least 1− 3e−p, where η depends only on γ and κ.

Proposition 7 is proved in Section 10. Our main result on the performance of β̂ sls is
given next.

Theorem 8 Let the assumptions of Theorem 3, Corollary 5, and Proposition 7 hold. Fur-
ther assume that

∣∣Ψ(2)
∣∣ ≤ b and for some c̄ and ε the function f(z) = zE

[
Ψ(2)(〈x, βols〉z)

]
satisfies f(c̄) > 1 + ε, and the derivative of f in the interval [0, c̄] does not change sign, i.e.,
its absolute value is lower bounded by υ > 0. Then, for n and |S| sufficiently large, with
probability at least 1− 4e−p, we have∥∥∥β̂ sls − βpop

∥∥∥
∞
≤ η1

‖βpop‖∞√
p

+ η2

√
p

|S|
, (18)

where the constants η1 and η2 are defined by

η1 =ηkc̄ρ∞(τ/r)‖Σ1/2‖∞ (19)

η2 =ηc̄
(
λ
−1/2
min + kυ−1 max

{
(‖Σ1/2βols‖2 + 1)‖Σ‖2 + b/k, c̄

})
, (20)

and η > 0 is a constant depending on κ and γ.

11
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Note that the convergence rate of the upper bound in (18) depends on the sum of the
two terms, both of which are functions of the data dimensions n and p. The first term on
the right in (18) comes from Theorem 3 and Corollary 5, which bounds the discrepancy
between cΨ × βols and βpop. This term is small when p is large, and it does not depend on
the number of observations n. If n and p grow together, then p has to grow at a smaller
rate to achieve convergence. We note that the actual decay of this term is O (1/p) (since
‖βpop‖∞ = O

(
1/
√
p
)
), but we state the relative decay which is O

(
1/
√
p
)
.

The second term in the upper bound (18) comes from estimating βols and cΨ. This
term is increasing in p, which reflects the fact that estimating βpop is more challenging
when p is large. As expected, this term is decreasing in n and |S|, i.e. larger sample size
yields better estimates. When the full OLS solution is used (|S| = n), the second term
becomes O(

√
p/n), which suggests that the sample size should be at least of order p for

good performance. We note that in the case of Gaussian covariates,
√
n-consistency follows

since we don not have a bias term.
In certain loss functions, the uniform boundedness assumption on Ψ(2) may be too strict.

However, this assumption can be removed by making an additional assumption that the

covariates have bounded support. This yields the same decay rate O
(√

p/n
)

in the second

term. However, if one needs to preserve the sub-Gaussian assumption on the covariates,
then the above analysis – when carried out without the uniform bound assumption on Ψ(2)

– yields the following result. We note that we still require the uniform Lipschitz assumption
but one can always utilize the local Lipschitz properties of the function Ψ(2).

Theorem 9 Let the assumptions of Theorem 3, Corollary 5, and Proposition 7 hold with
E[‖Σ−1/2x‖2] = µ̃

√
p. Further assume that supβ:‖β−Σ1/2βols‖2≤1 ‖Ψ(2)(〈xi, β〉)‖ψ2 ≤ κg and

for some c̄ and ε the function f(z) = zE
[
Ψ(2)(〈x, βols〉z)

]
satisfies f(c̄) > 1 + ε, and the

derivative of f in the interval [0, c̄] does not change sign, i.e., its absolute value is lower
bounded by υ > 0. Then, for n and |S| sufficiently large, with probability at least 1− 5e−p,
we have ∥∥∥β̂ sls − βpop

∥∥∥
∞
≤ η1

‖βpop‖∞√
p

+ η2

√
p

min {n/ log(n), |S|}
, (21)

where the constants η1 and η2 are defined by

η1 =ηkc̄ρ∞(τ/r)‖Σ1/2‖∞ (22)

η2 =ηc̄
(
λ

1/2
min + υ−1‖βols‖∞max {(κg + k/µ̃), kc̄κx}

)
, (23)

and η > 0 is a constant depending on κx and γ.

We observe that this time when the full OLS solution is used (|S| = n), the second term
becomes O(

√
p log(n)/n), which is worse than the rate given in Theorem 8 by a logarithmic

factor. In this setting, we require that n/ log(n) should be at least of order p for good
performance. Also, note that there is a theoretical threshold for the sub-sampling size |S|,
namely O (n/ log(n)), beyond which further sub-sampling provides no improvement.

When the covariates are Gaussian, the Lipschitz assumption on the function Ψ(2) is
enough the guarantee the sub-Gaussianity of Ψ(2)(〈xi, β〉). However, we note that the
condition given in the Theorem is more general.

12
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5.1. Convergence in `2-norm

In the sequel, we assume that the full OLS solution is used (|S| = n). Using Proposition 7
and Lemma 16, we can show that the `2-distance between the estimator β̂ sls and the pop-
ulation parameter cΨβ

ols converges to 0 with rate
√
n when p is fixed. It is straightforward

to see that under Gaussian design, this leads to consistency in `2-norm with convergence
rate

√
n. However, the quantity cΨβ

ols is in general different from βpop under general sub-
Gaussian design; thus, in such cases consistency cannot be achieved in the classical setting
where p is fixed (see i.e. Claim 1 in Chen and Banerjee (2017)). In such a scenario, Theo-
rem 3 can be used to obtain an upper bound on the suboptimality resulting from general
sub-Gaussian design.

In order to talk about consistency when n, p → ∞ under `2-norm, a normalization by
one of the growing dimensions is required, see e.g. Bayati and Montanari (2012); Bayati
et al. (2013). Hence, in this regime, we focus on the quantity 1√

p‖β̂
sls − βpop‖2 under the

assumptions of Corollary 4 with Σ = I. Since we have
√
n-convergence of our estimator

to the population parameter cΨβ
ols, consistency reduces to showing that the suboptimality

term 1√
p

∥∥cΨβ
ols − βpop

∥∥
2

converges to 0. This term can be controlled with additional

sparsity-type structural assumptions on the problem. Below, we discuss two scenarios that
may lead to such a setting.

Sparsity. Assume that βpop has s non-zero terms, i.e., ‖βpop‖0 = s. Following the same
proof technique of Theorem 3, we can show that

1
√
p

∥∥∥cΨβ
ols − βpop

∥∥∥
2
≤ C

√
s

p
‖βpop‖∞, (24)

for some constant C > 0. As long as the non-sparsity level satisfies s = O (p), we can
attain consistency in `2-norm. The rate of convergence will be determined by the growing
rates of n, p(n) and s(n). For example, to attain

√
n-convergence, one needs s = O (1)

and p = O (n), but milder growth conditions can still lead to consistency at the expense of
slower convergence.

Normality. Similarly, one can assume that a subset of features with size s follow a
non-Gaussian distribution, and the remaining p− s features are normally distributed. The
same argument above can also provides consistency in `2-norm – again in this case and the
convergence rate will be determined by the ratio

√
s/p.

5.2. Verifying the key assumptions

The assumption on f(z) = zE
[
Ψ(2)(〈x, βols〉, z)

]
appears in both theorems and depends

both on the function Ψ and the underlying covariate distribution. Therefore, in order to
verify this assumption rigorously, one needs to know the distribution of the covariates which
is not always available. However, a straightforward way to verify this assumption is to use
the sample mean estimate f̂(z) = z 1

n

∑n
i=1 Ψ(2)(〈xi, β̂ols〉z) using the dataset at hand to

estimate f(z). In Figure 2, we use this technique to verify that our assumptions are valid
for two commonly used loss functions, namely, boosting and logistic regression when the
covariates are normally distributed x ∼ N(0, 1

pI) and ‖βols‖2 =
√
p/4. We observe through

the figure that for both loss functions, one can easily verify that the conditions are satisfied.
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Figure 2: We demonstrate how to validate our assumption on f(z) = zE
[
Ψ(2)(〈x, βols〉z)

]
on two commonly used loss functions. Left plot shows f(z), whereas right plots shows its
derivative. In these plots, covariates are generated from x ∼ N(0, I/p), and ‖βols‖2 =

√
p/4.

The assumption on f(z) can be verified by a more rigorous treatment. For simplicity,
we again consider the compressed sensing setting where we assume x ∼ N(0, 1

pI), and this

time we let ‖βpop‖2 = cΨ

∥∥βols∥∥
2
≈ √p. In order to obtain a scaling constant cΨ ≤ 20,

assume that we have
∥∥βols∥∥

2
=
√
p/20.

Boosting loss: In this case, we have Ψ(z) = z/2 +
√

1 + z2/4 which yields

Ψ(2)(z) =
1

4
(1 + z2/4)−3/2 and Ψ(4)(z) =

3

64

5z2(1 + z2/4)−2 − 4

(1 + z2/4)5/2
. (25)

We notice that both of these functions are even, i.e., Ψ(2)(z) = Ψ(2)(−z), and Ψ(4)(z) =
Ψ(4)(−z). We use the local convexity for z ≥ 0 around z = 2, and obtain Ψ(2)(z) ≥ a− bz
where a = Ψ(2)(2) − 2Ψ(3)(2) and b = −Ψ(3)(2). For W ∼ N(0, 1) and φ denoting the
standard normal density, we write

f(z) =zE
[
Ψ(2)(〈x, βols〉z)

]
= zE

[
Ψ(2)(Wz/20)

]
, (26)

=2z

∫ ∞
0

Ψ(2)(wz/20)φ(w)dw ≥ 2z

∫ 20a/bz

0
(a− bwz/20)φ(w)dw,

= 2z

{
aΦ(20a/bz)− a

2
− bz

20
√

2π
(1− e−200a2/b2z2)

}
.

Using the above bound, we observe that for c̄ = 6 and δ = .23, we have f(c̄) > 1 + δ.
Next, we verify the derivative condition on f , that is, f (1) does not change sign in the

interval [0, c̄]. By the Stein’s lemma, we write

f (1)(z) = E
[
Ψ(2)(Wz/20)

]
+ (z/20)2E

[
Ψ(4)(Wz/20)

]
. (27)

Using the previous inequalities together with the above expression, we have

f (1)(z) ≥E
[
Ψ(2)(Wz/20)

]
− 9

100

∣∣∣Ψ(4)
∣∣∣ (28)

≥2

{
aΦ(20a/bz)− a

2
− bz

20
√

2π
(1− e−200a2/b2z2)

}
− 27

1600
≥ 0.188,
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which verifies the derivative assumption on f(z).
Logistic regression: In this case, we have Ψ(z) = log(1 + ez) which yields

Ψ(2)(z) =
ez

(1 + ez)2
and Ψ(4)(z) =

ez(1− 4ez + e2z)

(1 + ez)4
. (29)

As before, both Ψ(2) and Ψ(4) are even functions. Again, appealing to the local convexity
properties, for z ≥ 0 around z = 2.5, we obtain Ψ(2)(z) ≥ a − bz where a = Ψ(2)(2.5) −
2.5Ψ(3)(2.5) and b = −Ψ(3)(2.5). Using (26), we obtain

f(z) ≥2z

{
aΦ(20a/bz)− a

2
− bz

20
√

2π
(1− e−200a2/b2z2)

}
. (30)

Using the above bound, we see that for c̄ = 6, and δ = .22 we have f(c̄) > 1 + δ.
For the derivative bound, we again use (27), and obtain that for z ∈ [0, c̄],

f (1)(z) ≥E
[
Ψ(2)(Wz/20)

]
− 9

100

∣∣∣Ψ(4)
∣∣∣ ≥ E

[
Ψ(2)(Wz/20)

]
− 9

800
≥ 0.19, (31)

which verifies the assumption.

6. Converting One GLM to Another

In this section, we assume that one has already obtained a set of coefficients by minimizing
a certain GLM loss, but wants to minimize another GLM loss using the same dataset. It is
often the case that a practitioner would like to change the loss function (or equivalently the
model) based on its performance. However, when the dataset is large, training a new model
from scratch is extremely time consuming. In the following, we will use the proportionality
relation to transition between different loss functions.

Assume that a practitioner fitted a GLM using the loss function (or cumulant generating
function) Ψ1, but they would like to train a new model based on the second loss function
Ψ2. Instead of minimizing the new loss based on Ψ2, one can exploit the proportionality
relation and obtain the coefficients for the new GLM problem. Denote by βpop1 and βpop2

the GLM coefficients corresponding to the loss functions Ψ1 and Ψ2, respectively. Using
the results in the previous sections, we have

1

cΨ1

βpop1 =
1

cΨ2

βpop2 = βols,

for the normal case, that is, both coefficients are proportional to the OLS coefficients which
does not depend on the loss function. Therefore, these coefficients βpop1 and βpop2 are also
proportional to each other and we can write

βpop2 =
cΨ2

cΨ1

βpop1 := ρ βpop1 , (32)

where the proportionality constant between two different GLM types turns out to be the
ratio between cΨ1 and cΨ2 , i.e. ρ = cΨ2/cΨ1 . Using the definition of cΨ2 , we write

1 = cΨ2 E
[
Ψ

(2)
2 (〈x, βpop2 〉)

]
,

= cΨ1ρ E
[
Ψ

(2)
2 (〈x, βpop1 〉ρ)

]
.
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Algorithm 2 Conversion from one GLM to another

Input: Data (yi, xi)
n
i=1, and β̂glm

1

Step 1. Compute ŷ = Xβ̂glm
1 , and κ = 1

n

∑n
i=1 Ψ

(2)
1 (ŷi).

Step 2. Solve the following equation for ρ ∈ R: κ = ρ
n

∑n
i=1 Ψ

(2)
2 (ŷiρ)

Use Newton’s root-finding method:
Initialize ρ = 1;
Repeat until convergence:

ρ← ρ−
ρ 1
n

∑n
i=1 Ψ

(2)
2 (ρ ŷi)− κ

1
n

∑n
i=1

{
Ψ

(2)
2 (ρ ŷi) + ρ ŷiΨ

(3)
2 (ρ ŷi)

}.

Output: β̂glm
2 = ρ× β̂glm

1 .

Dividing the both sides by cΨ1 and using the equality c−1
Ψ1

= E
[
Ψ

(2)
1 (〈x, βpop1 〉)

]
, we obtain

E
[
Ψ

(2)
1 (〈x, βpop1 〉)

]
= ρ E

[
Ψ

(2)
2 (〈x, βpop1 〉ρ)

]
.

The above equation only involves βpop1 as the coefficients (which is assumed to be already
known/obtained by the practitioner). Therefore, if we solve it for the ratio ρ, we can
estimate βpop2 by simply using the proportionality relation given in (32).

The procedure described above is summarized as Algorithm 2. We emphasize that this
procedure does not require the computation of the OLS estimator which was the main cost
of SLS, and it only requires a per-iteration cost of O (n). In other words, conversion from
one GLM type to another is easier compared to obtaining the GLM coefficients from scratch.

7. Binary Classification with Proper Scoring Rules

In this section, we assume that for i ∈ [n], the response is binary yi ∈ {0, 1}. The binary
classification problem can be described by the following minimization of an empirical risk

minimize
β∈Rp

1

n

n∑
i=1

`(yi; q(〈xi, β〉)), (33)

where ` and q are referred to as the loss and the link functions, respectively. There are
various loss functions that are used in practice. Examples include log-loss, boosting loss,
square loss etc (See Table 1). As before, we constrain our analysis on the canonical links.
The concept of canonical links for binary classification is introduced by Buja et al. (2005),
and it is quite similar to the generalized linear problems.

For any given loss function, we define the partial losses `k(·) = `(y = k; ·) for k ∈ {0, 1}.
Since we have a binary response variable, we can write any loss in the following format

`(y; q) =y`1(q) + (1− y)`0(q),

=y (`1(q)− `0(q)) + `0(q).
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Table 1: Common loss functions and their inverse canonical links

Name Loss function: `(y; q) Weight: w(q) Inverse Canonical link: q

Log-loss −y log(q)− (1− y) log(1− q) 1
q(1−q)

1
1+exp(−z)

Boosting loss y(q−1−1)1/2 + (1− y)(q−1−1)−1/2 1

[q(1−q)]3/2
1
2
+ z/4

2(z2/4+1)1/2

Square loss y(1− q)2 + (1− y)q2 1 1+z
2

The above formulation is of the form of a generalized linear problem. Before moving forward,
we recall the concept of proper scoring in binary classification, which is sometimes referred
to as Fisher consistency.

Definition 10 (Proper scoring rules) Assume that y ∼ Bernoulli(η). If the expected
loss E [`(y, q)] is minimized by q = η for all η ∈ (0, 1), we call the loss function a proper
scoring rule.

The following theorem by Schervish (1989) provides a methodology for constructing a
loss function for the proper scoring rules.

Theorem 11 (Schervish (1989)) Let w(dt) be a positive measure on (0, 1) that is finite
on interval (ε, 1− ε) ∀ε > 0. Then the following defines a proper scoring rule

`1(q) =

∫ 1

q
(1− t)w(dt), and `0(q) =

∫ q

0
tw(dt).

The measure w(dt) uniquely defines the loss function (generally referred to as the weight
function, since all losses can be written as weighted average of cost weighted misclassification
error (Buja et al., 2005; Reid and Williamson, 2010)). Examples of weight functions is given
in Table 1. The above theorem has many interesting interpretations; one that is most useful

to us is that `
(1)
0 (q) = qw(q).

The notion of canonical links for proper scoring rules are introduced by Buja et al.
(2005), which corresponds to the notion of matching loss (Helmbold et al., 1999; Reid
and Williamson, 2010). The derivation of canonical links stems from the Hessian of the
above minimization, which remedies two potential problems: non-convexity and asymptotic
variance inflation. It turns out that by setting w(q)q(1) as constant, one can remedy both
problems (Buja et al., 2005). We will skip the derivation and, without loss of generality,
assume that the canonical link-loss pair satisfies w(q)q(1) = 1. Note that any loss function
has a natural canonical link. The following Theorem summarizes this concept.

Theorem 12 (Buja et al. (2005)) For proper scoring rules with w > 0, there exists a
canonical link function which is unique up to addition and multiplication by constants.
Conversely, any link function is canonical for a unique proper scoring rule.

The canonical link for a given loss function can be explicitly derived from the equation
w(q)q(1) = 1. We have provided some examples in Table 1. Using the definition of canonical
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link for proper scoring rules, we write the normal equations d
dβE [`(y, q(〈x, β〉))] = 0 as

E
[
xq(1)(〈x, β〉)`(1)

0 (q(〈x, β〉))
]

= E
[
yxq(1)(〈x, β〉)

(
`
(1)
0 (q(〈x, β〉))− `(1)

1 (q(〈x, β〉))
)]
,

=⇒ E
[
xq(1)(〈x, β〉)q(〈x, β〉)w(q(〈x, β〉))

]
= E

[
yxq(1)(〈x, β〉)w(q(〈x, β〉))

]
,

=⇒ E [xq(〈x, β〉)] = E [yx] ,

=⇒ ΣβE
[
q(1)(〈x, β〉)

]
= E [yx] .

The last equation provides us with the analog of the proportionality relation we observed
in generalized linear problems. In this case, we observe that the proportionality constant
becomes 1/E

[
q(1)(〈x, β〉)

]
. Therefore, our algorithm can be used to obtain a fast training

procedure for the binary classification problems under canonical links as well.

7.1. Canonicalization of the Square Loss

Consider a minimization problem of the following form

minimize
β

1

n

n∑
i=1

[yi − f(〈xi, β〉)]2. (34)

The above problem is commonly encountered in many machine learning tasks – specifically,
in the context of neural networks, the function f is called the activation function. Here, we
consider a toy example to demonstrate how our methodology can be useful in a minimization
problem of the above form.

We first use Taylor series expansion around a point θ (which should be close to 〈x, β〉),
in order to approximate the function f(z) with a linear function around f(θ). We write

min
β

E
[
(y − f(〈x, β〉))2

]
≈ min

β
E
[
f(〈x, β〉)2 − 2y〈x, β〉f ′(θ)

]
. (35)

The above approximation yields

Ψ(z) =
f(z)2

2f ′(θ)
, (36)

and the proportionality relation given in previous sections would hold for the approximation,
which will be accurate when the activation function is smooth around the user-specified
point θ. This method can be used to derive proportionality relations for GLMs with non-
canonical links (conditional on the link being nice), and also may be of interest in non-convex
optimization, e.g., reliable initialization.

8. Experiments

8.1. Numerical Analysis of Convergence

This section contains the results of numerical studies that demonstrate the convergence
results presented in Section 5. We first demonstrate the convergence of the population
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Figure 3: Logistic regression with iid Bernoulli ±1 design. The left plot shows the relative error
between the population parameters. The middle plot shows the computational cost (time) for finding
the MLE and SLS as n grows and p = 200. The right plot depict the accuracy of the estimators
in log scale. In the regime where the MLE is expensive to compute, the SLS is found much more
rapidly and has the same accuracy. R’s built-in functions are used to find the MLE.

parameters with respect to the dimension. In this experiment, we estimate the relative error∥∥βpop − cΨβ
ols
∥∥
∞ / ‖β

pop‖∞ using a Monte-Carlo simulation. The dimension takes values
from p ∈ {5, 10, 15, ..., 100}, and for each fixed p, we choose the sample size n(p) = Kp where
K = 10, 000. βpop = (1, 1, ..., 1)/

√
p is fixed throughout this experiment. Covariates are

generated from a Bernoulli distribution P (xij = ±1) = 0.5, and the response is generated
from the logistic model. We estimate βols using coordinatewise average of the ordinary least
squares estimator over the whole dataset. The scaling constant is estimated by the inverse
of 1

n

∑n
i=1 Ψ(2)(〈xi, βpop〉). We repeat this experiment 100 times for each p, and the results

are reported in left plot in Figure 3. We observe that the relative error decreases with
increasing dimension.

The second experiment demonstrates the effect of sample size. In this experiment, we
fix p = 200, and the sample size varies n ∈ 103 × {2, 3, 5, 15, 25, 50, 100, 200, 500, 1000}.
Covariates are again generated from Bernoulli distribution P (xij = ±1) = 0.5, and the
response is generated from the logistic model. Maximum likelihood estimator is obtained
through R’s built-in function glm. We report the computation time of these estimators as
well as their estimation error in the middle and the right plots in Figure 3, respectively. We
observe that MLE performs consistently better in terms of test error, yet it is significantly
expensive to compute when n gets larger. In the large-scale regime, the difference between
the achieved test errors becomes negligible as seen in the right plot. This is the regime that
SLS provides significant advantage. We also emphasize that MLE and SLS has the same
convergence rate as can be observed in the right plot.

8.2. Comparisons With Other Optimization Methods

This section contains the results of a variety of numerical studies, which show that the Scaled
Least Squares estimator reaches its minimum achievable test error substantially faster than
commonly used batch algorithms for finding the MLE. Both logistic and Poisson regression
models (two types of GLMs) are utilized in our analyses, which are based on several synthetic
and real datasets.

Below, we briefly describe the optimization algorithms for the MLE that were used in
the experiments.

19



Erdogdu, Bayati, Dicker

Ra
nd

om
	st
ar
t	

O
LS
	st
ar
t	

Logis0c	Regression	

(a)	

(b)	

(c)	

(d)	

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r
SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x {Exp(1)−1}

0.22

0.24

0.26

0.28

0.30

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Higgs dataset

0.23

0.24

0.25

0 10 20 30 40
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Higgs dataset

0.18

0.20

0.22

0.24

0 5 10 15 20
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x {Exp(1)−1}

Figure 4: We compared the performance of SLS to that of MLE for the logistic regres-
sion problem on several datasets. MLE optimization is solved by various optimization
algorithms. SLS is represented with red straight line. The details are provided in Table 2.

1. Newton-Raphson (NR) achieves locally quadratic convergence by scaling the gra-
dient by the inverse of the Hessian evaluated at the current iterate. Computing the
Hessian has a per-iteration cost of O

(
np2
)
, which makes it impractical for large-scale

datasets.

2. Newton-Stein (NS) is a recently proposed second-order batch algorithm specifically
designed for GLMs (Erdogdu, 2015, 2016). The algorithm uses Stein’s lemma and
sub-sampling to efficiently estimate the Hessian with a cost of O (np) per-iteration,
achieving near quadratic rates.

3. Broyden-Fletcher-Goldfarb-Shanno (BFGS) is the most popular and stable
quasi-Newton method (Nesterov, 2004). At each iteration, the gradient is scaled
by a matrix that is formed by accumulating information from previous iterations and
gradient computations. The convergence is locally super-linear with a per-iteration
cost of O (np).
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Figure 5: We compared the performance of SLS to that of MLE for the Poisson regres-
sion problem on several datasets. MLE optimization is solved by various optimization
algorithms. SLS is represented with red straight line. Details are given in Table 2.

4. Limited memory BFGS (LBFGS) is a variant of BFGS, which uses only the recent
iterates and gradients to approximate the Hessian, providing significant improvement
in terms of memory usage. LBFGS has many variants; we use the formulation given
in Bishop (1995).

5. Gradient descent (GD) takes a step in the opposite direction of the gradient,
evaluated at the current iterate. Its performance strongly depends on the condition
number of the design matrix. Under certain assumptions, the convergence is linear
with O (np) per-iteration cost.

6. Accelerated gradient descent (AGD) is a modified version of gradient descent
with an additional “momentum” term (Nesterov, 1983). Its per iteration cost isO (np)
and its performance strongly depends on the smoothness of the objective function.

For all the algorithms for computing the MLE, the step size at each iteration is chosen via
the backtracking line search (Boyd and Vandenberghe, 2004).
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Table 2: Details of the experiments shown in Figures 4 and 5 with simulated and real datasets
HIGGS (Baldi et al., 2014), and Covertype (Blackard and Dean, 1999)

Model Logistic regression Poisson regression

Dataset Σ×{Exp(1)-1} Higgs Σ×Ber(±1) Covertype

Size n = 6.0× 105, p = 300 n = 1.1×107, p = 29 n = 6.0×105, p = 300 n = 5.8×105, p = 53

Initial Rnd Ols Rnd Ols Rnd Ols Rnd Ols

Plot (a) (b) (c) (d) (e) (f) (g) (h)

Method↓ Time in seconds / number of iterations (to reach min test error)

Sls 8.34/4 2.94/3 13.18/3 9.57/3 5.42/5 3.96/5 2.71/6 1.66/20

Nr 301.06/6 82.57/3 37.77/3 36.37/3 170.28/5 130.1/4 16.7/8 32.48/18

Ns 51.69/8 7.8/3 27.11/4 26.69/4 32.71/5 36.82/4 21.17/10 282.1/216

Bfgs 148.43/31 24.79/8 660.92/68 701.9/68 67.24/29 72.42/26 5.12/7 22.74/59

Lbfgs 125.33/39 24.61/8 6368.1/651 6946.1/670 224.6/106 357.1/88 10.01/14 10.05/17

Gd 669/138 134.91/25 100871/10101 141736/13808 1711/513 1364/374 14.35/25 33.58/87

Agd 218.1/61 35.97/12 2405.5/251 2879.69/277 103.3/51 102.74/40 11.28/15 11.95/25

Recall that the proposed Algorithm 1 is composed of two steps; the first finds an estimate
of the OLS coefficients. This up-front computation is not needed for any of the MLE
algorithms described above. On the other hand, each of the MLE algorithms requires
some initial value for β, but no such initialization is needed to find the OLS estimator in
Algorithm 1. This raises the question of how the MLE algorithms should be initialized, in
order to compare them fairly with the proposed method. We consider two scenarios in our
experiments: first, we use the OLS estimator computed for Algorithm 1 to initialize the
MLE algorithms; second, we use a random initial value.

On each dataset, the main criterion for assessing the performance of the estimators is
how rapidly the minimum test error is achieved. The test error is measured as the mean
squared error of the estimated mean using the current parameters at each iteration on a
test dataset, which is a randomly selected (and set-aside) 10% portion of the entire dataset.
As noted previously, the MLE is more accurate for small n (see Figure 1). However, in the
regime considered here (n� p� 1), the MLE and the SLS perform very similarly in terms
of their error rates; for instance, on the Higgs dataset, the SLS and MLE have test error rates
of 22.40% and 22.38%, respectively. For each dataset, the minimum achievable test error is
set to be the maximum of the final test errors, where the maximum is taken over all of the
estimation methods. Let Σ(1) and Σ(2) be two randomly generated covariance matrices.
The datasets we analyzed were: (i) a synthetic dataset generated from a logistic regression
model with iid {exponential(1)−1} predictors scaled by Σ(1); (ii) the Higgs dataset (logistic
regression) Baldi et al. (2014); (iii) a synthetic dataset generated from a Poisson regression
model with iid binary(±1) predictors scaled by Σ(2); (iv) the Covertype dataset (Poisson
regression) Blackard and Dean (1999).

In all cases, the SLS outperformed the alternative algorithms for finding the MLE by a
large margin, in terms of computation. Detailed results may be found in Figures 4 and 5,
and Table 2. We provide additional experiments with different datasets in Section 12.
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9. Discussion

In this paper, we showed that the true minimizer of a generalized linear problem and the OLS
estimator are approximately proportional under the general random design setting. Using
this relation, we proposed a computationally efficient algorithm for large-scale problems
that achieves the same accuracy as the empirical risk minimizer by first estimating the OLS
coefficients and then estimating the proportionality constant through iterations that can
attain quadratic or cubic convergence rate, with only O (n) per-iteration cost.

We briefly mentioned that the proportionality between the coefficients holds even when
there is regularization in Section 3.1. Further pursuing this idea may be interesting for
large-scale problems where regularization is crucial. Another interesting line of research is
to find similar proportionality relations between the parameters in other large-scale opti-
mization problems such as support vector machines. Such relations may reduce the problem
complexity significantly.

10. Proof of Main Results

In this section, we provide the details and the proofs of our technical results. For conve-
nience, we briefly state the following definitions.

Definition 13 (Sub-Gaussian) For a given constant κ, a random variable x ∈ R is said

to be sub-Gaussian if it satisfies supm≥1m
−1/2E [|x|m]1/m ≤ κ. Smallest such κ is the sub-

Gaussian norm of x and it is denoted by ‖x‖ψ2. Similarly, a random vector y ∈ Rp is a
sub-Gaussian vector if there exists a constant κ′ such that supv∈Sp−1 ‖〈y, v〉‖ψ2 ≤ κ′.

Definition 14 (Sub-exponential) For a given constant κ, a random variable x ∈ R is

called sub-exponential if it satisfies supm≥1m
−1E [|x|m]1/m ≤ κ. Smallest such κ is the

sub-exponential norm of x and it is denoted by ‖x‖ψ1. Similarly, a random vector y ∈ Rp
is a sub-exponential vector if there exists a constant κ′ such that supv∈Sp−1 ‖〈y, v〉‖ψ1 ≤ κ′.

The proof of Theorem 3 is given next.
Proof [of Theorem 3] For simplicity, we denote the whitened covariate by w = Σ−1/2x.
Since w is sub-Gaussian with norm κ, its j-th entry wj has bounded third moment. That
is,

κ = sup
‖u‖2=1

‖〈u,w〉‖ψ2
≥ ‖wj‖ψ2

= sup
m≥1

m−1/2E [|wj |m]1/m ≥ 1√
3
E
[
|wj |3

]1/3
, (37)

where in the first step, we used u = ej , the j-th standard basis vector. Hence, we obtain a
bound on the third moment, i.e,

max
j

E
[
|wj |3

]
≤ 33/2κ3. (38)

Using the normal equations, we write

E [yx] = E
[
xΨ(1)(〈x, β〉)

]
=Σ1/2E

[
wΨ(1)(〈w,Σ1/2β〉)

]
, (39)

=Σ1/2E
[
wΨ(1)(〈w, β̃〉)

]
,
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where we defined β̃ = Σ1/2β. By multiplying both sides with Σ−1, we obtain

βols = Σ−1/2E
[
wΨ(1)(〈w, β̃〉)

]
. (40)

Now we define the partial sums W−i =
∑

j 6=i β̃jwj = 〈β̃, w〉− β̃iwi. We will focus on the
i-th entry of the above expectation given in (40). Denoting the zero biased transformation
of wi conditioned on W−i by w∗i , we have

E
[
wiΨ

(1)(〈w, β̃〉)
]

=E
[
E
[
wiΨ

(1)
(
β̃iwi +W−i

) ∣∣W−i]] , (41)

=β̃iE
[
Ψ(2)(β̃iw

∗
i +W−i)

]
,

=β̃iE
[
Ψ(2)(β̃i(w

∗
i − wi) + 〈w, β̃〉)

]
,

where in the second step, we used the assumption on conditional moments. Let D be a

diagonal matrix with diagonal entries Dii = E
[
Ψ(2)(β̃i(w

∗
i − wi) + 〈w, β̃〉)

]
. Using (40)

together with (41), we obtain the equality

βols =Σ−1/2Dβ̃ = Σ−1/2DΣ1/2β. (42)

Now, using the Lipschitz continuity assumption of the variance function, we have∣∣∣E [Ψ(2)(β̃i(w
∗
i − wi) + 〈w, β̃〉)

]
− E

[
Ψ(2)(〈w, β̃〉)

]∣∣∣ ≤ k|β̃i|E [|w∗i − wi|] . (43)

In the following, we will use the properties of zero-biased transformations. Consider the
quantity

r = sup
E
[
|w∗i − wi|

∣∣W−i]
E
[
|wi|3

∣∣W−i] (44)

where w∗i has wi-zero biased distribution (conditioned on W−i) and the supremum is taken
with respect to all random variables with mean 0, standard deviation 1 and finite third
moment, and w∗i is achieving the minimal `1 coupling to wi conditioned on W−i. It is
shown in Goldstein (2007) that the above bound holds for r = 1.5 for the unconditional
zero-bias transformations. Here, we take a similar approach to show that the same bound
holds for the conditional case as well. By using the triangle inequality, we have

E
[
|w∗i − wi|

∣∣W−i] ≤E [|w∗i |∣∣W−i]+ E
[
|wi|
∣∣W−i] (45)

≤1

2
E
[
|wi|3

∣∣W−i]+ E
[
|wi|3

∣∣W−i]1/3 .
Since E

[
|wi|2

∣∣W−i] is constant, it is equal to E
[
|wi|2

]
= 1. This yields that the second term

in the last line is upper bounded by E
[
|wi|3

∣∣W−i]. Consequently, by taking expectations
over both hand sides we obtain that

E [|w∗i − wi|] ≤ 1.5 E
[
|wi|3

]
. (46)
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Then the right hand side of (43) can be upper bounded by

k|β̃i|E [|w∗i − wi|] ≤ rkmax
i

{
|β̃i|E

[
|wi|3

]}
≤ 8kκ3‖Σ1/2β‖∞, (47)

where in the second step we used the bound on the third moment given in (38). The last
inequality provides us with the following result,

max
i

∣∣∣∣Dii −
1

cΨ

∣∣∣∣ ≤ 8kκ3‖Σ1/2β‖∞. (48)

Finally, combining this with (40) and (42), we obtain∥∥∥∥βols − 1

cΨ
β

∥∥∥∥
∞

=

∥∥∥∥Σ−1/2DΣ1/2β − 1

cΨ
β

∥∥∥∥
∞

(49)

=

∥∥∥∥Σ−1/2

(
D− 1

cΨ
I

)
Σ1/2β

∥∥∥∥
∞
,

≤max
i

∣∣∣∣Dii −
1

cΨ

∣∣∣∣ ∥∥∥Σ1/2
∥∥∥
∞

∥∥∥Σ−1/2
∥∥∥
∞
‖β‖∞ ,

≤8kκ3ρ∞‖Σ1/2‖∞ ‖βpop‖2∞ ,

which completes the proof.

Proof [of Corollary 4] Due to diagonal dominance property, we have

‖Σ1/2‖∞ = max
i

p∑
j=1

∣∣∣Σ1/2
ij

∣∣∣ ≤ 2 max
i

Σ
1/2
ii ≤ 2 ‖Σ‖1/22 . (50)

Since we have ‖x‖2 ≤ r, we write

r2 ≥ E
[
‖x‖22

]
= Tr (Σ) ≥ p ‖Σ‖2 /ρ2. (51)

Combining this with the previous inequality we obtain

‖Σ1/2‖∞ ≤ 2r
√
ρ2/p. (52)

Finally, the result follows from using the last bound in Theorem 3.

Proof [of Corollary 5] The result directly follows from using the r-well-spreadness assump-
tion in Theorem 3.

Proof [of Proposition 7] For convenience, we denote the whitened covariates by wi =
Σ−1/2xi. We have E [wi] = 0, E

[
wiw

T
i

]
= I, and ‖wi‖ψ2

≤ κ. Also denote the sub-sampled

covariance matrix with Σ̂ = 1
|S|
∑

i∈S xix
T
i , and its whitened version as Σ̃ = 1

|S|
∑

i∈S wiw
T
i .

Further, define ζ̂ = 1
n

∑n
i=1wiyi and ζ = E [wy]. Then, we have

β̂ols = Σ̂
−1

Σ1/2ζ̂ and βols = Σ−1/2ζ.
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For now, we work on the event that Σ̂ is invertible. We will see that this event holds
with very high probability. We write∥∥∥Σ1/2(β̂ols − βols)

∥∥∥
2

=
∥∥∥Σ1/2Σ̂

−1
Σ1/2ζ̂ −Σ−1/2ζ

∥∥∥
2
, (53)

=
∥∥∥Σ̃−1

{
ζ̂ − ζ +

(
I−Σ−1/2Σ̂Σ−1/2

)
ζ
}∥∥∥

2
,

≤
∥∥∥Σ̃−1

∥∥∥
2

{∥∥∥ζ̂ − ζ∥∥∥
2

+
∥∥∥I− Σ̃

∥∥∥
2
‖ζ‖2

}
,

where we used the triangle inequality and the properties of the operator norm.

For the first term on the right hand side of (53), we write∥∥∥Σ̃−1
∥∥∥

2
=

1

λmin(Σ̃)
≤ 1

1− δ
,

where we assumed that such a δ > 0 exists. In fact, when δ < 0.5, we obtain a bound
of 2 on the right hand side, which also justifies the invertibility assumption of Σ̂. By
Corollary 5.50 of Vershynin (2010) and the following remark, we have with probability at
least 1− 2 exp {−p}, ∥∥∥Σ̃− I

∥∥∥
2
≤ c
√

p

|S|
,

where c is a constant depending only on κ. When |S| > 4c2p, we obtain∣∣∣λmin(Σ̃)− 1
∣∣∣ ≤ ∥∥∥Σ̃− I

∥∥∥
2
≤ 0.5,

where the first inequality follows from the Lipschitz property of the eigenvalues.

Next, we bound the difference between ζ̂ and its expectation ζ. We write the bounds
on the sub-exponential norm

‖wy‖ψ1
= sup
‖v‖2=1

sup
m≥1

m−1E [|〈v, w〉y|m]1/m , (54)

≤ sup
‖v‖2=1

sup
m≥1

m−1E
[
|〈v, w〉|2m

]1/2m E
[
|y|2m

]1/2m
,

≤ sup
‖v‖2=1

sup
m≥1

m−1/2E
[
|〈v, w〉|2m

]1/2m
sup
m≥1

m−1/2E
[
|y|2m

]1/2m
,

≤2 ‖w‖ψ2
‖y‖ψ2

= 2γκ.

Hence, we have maxi ‖wiyi − E [wiyi]‖ψ1
≤ 4γκ. Further, let ej denote the j-th standard

basis, and notice that each entry of w is also sub-Gaussian with norm upper bounded by κ,
i.e.,

κ = ‖w‖ψ2
= sup
‖u‖2=1

‖〈u,w〉‖ψ2
≥ ‖〈ej , w〉‖ψ2

= ‖wj‖ψ2
.
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Also, we can write

2γκ ≥ ‖wy‖ψ1
= sup
‖u‖2=1

sup
m≥1

m−1E [|〈u,w〉y|m]1/m , (55)

≥ sup
‖u‖2=1

E [|〈u,w〉y|] ,

≥ sup
‖u‖2=1

E [〈u,w〉y] = sup
‖u‖2=1

〈u, ζ〉 = ‖ζ‖2 ,

where in the last step, we used the fact that dual norm of `2 norm is itself.

Next, we apply Lemma 17 to ζ̂ − ζ, and obtain with probability at least 1− exp {−p}∥∥∥ζ̂ − ζ∥∥∥
2
≤ cγκ

√
p

n
,

whenever n > c2p for an absolute constant c.

Combining the above results in (53), we obtain with probability at least 1− 3 exp {−p}∥∥∥Σ1/2(β̂ols − βols)
∥∥∥

2
≤ 2

{
c1γκ

√
p

n
+ c2γκ

√
p

|S|

}
≤ η

√
p

|S|
(56)

where η depends only on κ and γ, and |S| > ηp. Finally, we write∥∥∥β̂ols − βols∥∥∥
2
≤λ−1/2

min

∥∥∥Σ1/2(β̂ols − βols)
∥∥∥

2
,

≤ηλ−1/2
min

√
p

|S|
,

with probability at least 1− 3 exp {−p}, whenever |S| > ηp.

The following lemma – combined with the Proposition 7 – provides the necessary tools
to prove Theorem 9.

Lemma 15 For a given function Ψ(2) that is Lipschitz continuous with constant k, we
define the function f : R × Rp → R as f(c, β) = c E

[
Ψ(2)(〈x, β〉c)

]
, and its empirical

counterpart as

f̂(c, β) = c
1

n

n∑
i=1

Ψ(2)(〈xi, β〉c).

For the ball centered around βols with radius δ,

Bδ(β̃ols) =
{
β :
∥∥β − β̃ols∥∥

2
≤ δ
}
, with β̃ols = Σ1/2βols,

assume that supβ∈Bδ(β̃ols)

∥∥Ψ(2)(〈x, β〉)
∥∥
ψ2
≤ κg, and

∥∥Σ−1/2xi
∥∥
ψ2
≤ κx. Further, for some

ε, c̄ > 0, assume that f(c̄, βols) ≥ 1+ε. Then, ∃cΨ > 0 satisfying the equation 1 = f(cΨ, β
ols).
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Further, assume that for some ε̃ > 0, we have ε = ε̃
√
p, and n and |S| sufficiently large,

i.e.,

min

{
n

log(n)
, |S|

}
> K2/ε̃2

for K = ηc̄max {b+ κ/µ̃, kc̄κ}. Then, with probability 1−5 exp {−p}, there exists a constant
ĉΨ ∈ (0, c̄) satisfying the equation

1 = ĉΨ
1

n

n∑
i=1

Ψ(2)(〈xi, β̂ols〉ĉΨ).

Moreover, if the derivative of z → f(z, βols) is bounded below in absolute value (i.e. does
not change sign) by υ > 0 in the interval z ∈ [0, c̄], then with probability 1− 5 exp {−p}, we
have

|ĉΨ − cΨ| ≤ C
√

p

min {n/ log (n) , |S|}
,

where C = K/υ.

Proof [of Lemma 15] First statement is obvious. We notice that f(c, βols) is a continuous
function in its first argument with f(0, βols) = 0 and f(c̄, βols) ≥ 1 + δ. Hence, there exists
cΨ > 0 such that f(cΨ, β

ols) = 1. If there are many solutions to the above equation, we
choose the one that is closest to zero. The condition on the derivative will guarantee the
uniqueness of the solution.

Next, we will show the existence of ĉΨ using a uniform concentration given by Lemma 18.

Define the event E that β̂ols falls into BδΣ(βols), i.e., E =
{
β̂ols ∈ BδΣ(βols)

}
. By Proposition

7 and the inequality given in (56), whenever |S| > ηp, we obtain

P
(
EC
)
≤ 3 exp {−p} ,

where EC denotes the complement of the event E , and η is a constant depending only on
κx and γ, and δ = η

√
p/|S|. For any c ∈ [0, c̄], on the event E , we have∣∣∣f̂(c, β̂ols)− f(c, β̂ols)

∣∣∣ ≤ sup
β∈BδΣ(βols)

∣∣∣f̂(c, β)− f(c, β)
∣∣∣ .

Hence, we obtain the following inequality

P

(
sup
c∈[0,c̄]

∣∣∣f̂(c, β̂ols)− f(c, β̂ols)
∣∣∣ > ε

)

≤ P

(
sup
c∈[0,c̄]

∣∣∣f̂(c, β̂ols)− f(c, β̂ols)
∣∣∣ > ε; E

)
+ P

(
EC
)
,

≤ P

(
sup
c∈[0,c̄]

sup
β∈BδΣ(βols)

∣∣∣f̂(c, β)− f(c, β)
∣∣∣ > ε

)
+ 3 exp {−p} .
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In the following, we will use Lemma 18 for the first term in the last line above. Denoting
by w, the whitened covariates, we have 〈x, β〉 = 〈w,Σ1/2β〉. Therefore,

sup
c∈[0,c̄]

sup
β∈BδΣ(βols)

∣∣∣f̂(c, β)− f(c, β)
∣∣∣

≤ c̄ sup
c∈[0,c̄]

sup
β∈BδΣ(βols)

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈wi,Σ1/2β〉c)− E
[
Ψ(2)(〈w,Σ1/2β〉c)

]∣∣∣∣∣ .
Next, define the ball centered around β̃ols = Σ1/2βols, with radius δ as Bδ(β̃ols) = Σ1/2BδΣ(βols).

We have β ∈ BδΣ(βols) if and only if Σ1/2β ∈ Bδ(β̃ols). Then, the right hand side of the
above inequality can be written as

c̄ sup
c∈[0,c̄]

sup
β∈Bδ(β̃ols)

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈wi, β〉c)− E
[
Ψ(2)(〈w, β〉c)

]∣∣∣∣∣ ,
= c̄ sup

β∈Bc̄δ(β̃ols)

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈wi, β〉)− E
[
Ψ(2)(〈w, β〉)

]∣∣∣∣∣ .
Then, by Lemma 18, we obtain

P

(
sup
c∈[0,c̄]

∣∣∣f̂(c, β̂ols)− f(c, β̂ols)
∣∣∣ > c′c̄(κg + κx/µ̃)

√
p

n/ log (n)

)
≤ 5 exp {−p} (57)

whenever np > 51 max
{
χ, χ−1

}
where χ = (κg + κx/µ̃)2/(c′δ2k2c̄2µ̃2).

Also, by the Lipschitz condition for Ψ(2), we have for any c ∈ [0, c̄], and β1, β2,

|f(c, β1)− f(c, β2)| ≤kc2E
[∣∣∣〈w,Σ1/2(β1 − β2)〉

∣∣∣]
≤kc̄2κx

∥∥∥Σ1/2(β1 − β2)
∥∥∥

2
.

Applying the above bound for β1 = β̂ols and β2 = βols, we obtain with probability 1 −
3 exp {−p} ∣∣∣f(c, β̂ols)− f(c, βols)

∣∣∣ ≤ ηkc̄2κx

√
p

|S|
, (58)

where the last step follows from Proposition 7 and the inequality given in (56).
Combining this with the previous bound, and taking into account that µ = µ̃

√
p, for

any c ∈ [0, c̄], with probability 1− 5 exp {−p}, we obtain∣∣∣f̂(c, β̂ols)− f(c, βols)
∣∣∣ ≤c′c̄(κg + κx/µ̃)

√
p

n/ log (n)
+ ηkc̄2κx

√
p

|S|

≤K
√

p

min {n/ log (n) , |S|}

where K = ηc̄max {κg + κx/µ̃, kc̄κx}. Here, η depends only on κx and γ.
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In particular, for c = c̄ we observe that

f̂(c̄, β̂ols) ≥f(c̄, βols)−K
√

p

min {n/ log (n) , |S|}

≥1 + ε−K
√

p

min {n/ log (n) , |S|}
.

Therefore, for sufficiently large n and |S| satisfying min
{

n
log(n) , |S|

}
> K2/ε̃2 we obtain

f̂(c̄, β̂ols) > 1. Since this function is continuous and f̂(0, β̂ols) = 0, we obtain the existence
of ĉΨ ∈ [0, c̄] with probability at least 1− 5 exp {−p}.

Now, since ĉΨ and cΨ satisfy the equations f̂(ĉΨ, β̂
ols) = f(cΨ, β

ols) = 1 (with high
probability), by the inequality given in (57), with probability at least 1 − 5 exp {−p}, we
obtain ∣∣∣1− f(ĉΨ, β̂

ols)
∣∣∣ =
∣∣∣f̂(ĉΨ, β̂

ols)− f(ĉΨ, β̂
ols)
∣∣∣ ≤ c′c̄(κg + κx/µ̃)

√
p

n/ log(n)
.

Also, by the same argument in (60), and Proposition 7, we get∣∣∣f(ĉΨ, β̂
ols)− f(ĉΨ, β

ols)
∣∣∣ ≤kc̄2κ

∥∥∥Σ(β̂ols − βols)
∥∥∥

2
≤ ηkc̄2κx

√
p

|S|
.

Now, using the Taylor’s series expansion of c→ f(c, βols) around cΨ, and the assumption
on the derivative of f with respect to its first argument, we obtain

υ |ĉΨ − cΨ| ≤
∣∣∣f(ĉΨ, β

ols)− f(cΨ, β
ols)
∣∣∣

≤
∣∣∣f(ĉΨ, β

ols)− f(ĉΨ, β̂
ols)
∣∣∣+
∣∣∣f(ĉΨ, β̂

ols)− 1
∣∣∣

≤ηkc̄2κx

√
p

|S|
+ c′c̄(κg + κx/µ̃)

√
p

n/ log(n)

≤K
√

p

min {n/ log (n) , |S|}

with probability at least 1 − 5 exp {−p}. Here, the constant K is the same as before K =
ηc̄max {κg + κx/µ̃, kc̄κx} .

Lemma 16 For a given function Ψ(2) that is Lipschitz continuous with constant k, and
uniformly bounded by b, we define the functions f , f̂ , and the constants ε, cΨ, c̄ as in
Lemma 15. Assume that xi’s are i.i.d. sub-Gaussian with ‖xi‖ψ2

≤ κx. Then, with proba-
bility 1− 4 exp {−p}, there exists a constant ĉΨ ∈ (0, c̄) satisfying the equation

1 = ĉΨ
1

n

n∑
i=1

Ψ(2)(〈xi, β̂ols〉ĉΨ).
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Moreover, if the derivative of z → f(z, βols) is bounded below in absolute value (i.e. does
not change sign) by υ > 0 in the interval z ∈ [0, c̄], then with probability 1− 4 exp {−p}, we
have

|ĉΨ − cΨ| ≤ K
√

p

|S|
,

where K = ηυ−1c̄kmax
{

(1 + ‖β̃‖2) ‖Σ‖2 + b/k, c̄
}

, η depends only on γ and κx, and |S| is

sufficiently large.

Proof [of Lemma 16] The proof follows from the same steps in Lemma 15. First statement
is obvious.

Next, we will show the existence of ĉΨ using a uniform concentration given by Lemma
19. Let the ellipsoids BδΣ(βols) and Bδ(β̃ols), and the event E be as in Lemma 15. By
Proposition 7 and the inequality given in (56), whenever |S| > ηp, we obtain

P
(
EC
)
≤ 3 exp {−p} ,

where EC denotes the complement of the event E , and η is a constant depending only on
κx and γ. For any c ∈ [0, c̄], on the event E , we have∣∣∣f̂(c, β̂ols)− f(c, β̂ols)

∣∣∣ ≤ sup
β∈BδΣ(βols)

∣∣∣f̂(c, β)− f(c, β)
∣∣∣ .

Using the same arguments as in the previous lemma that led to (57), we obtain the following
inequality

P

(
sup
c∈[0,c̄]

∣∣∣f̂(c, β̂ols)− f(c, β̂ols)
∣∣∣ > ε

)

≤ P

(
sup
c∈[0,c̄]

sup
β∈BδΣ(βols)

∣∣∣f̂(c, β)− f(c, β)
∣∣∣ > ε

)
+ 3 exp {−p} ,

≤ P

(
sup

β∈Bc̄δ(β̃ols)

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈wi, β〉)− E
[
Ψ(2)(〈w, β〉)

]∣∣∣∣∣ > ε/c̄

)
+ 3 exp {−p}

where Bc̄δ(β̃ols) is the ball centered around β̃ols = Σ1/2βols with radius δ = η
√
p/|S|.

Then, using Lemma 19, we obtain

P

(
sup
c∈[0,c̄]

∣∣∣f̂(c, β̂ols)− f(c, β̂ols)
∣∣∣ > 2c̄

(
k

{
‖β̃‖2 + η

√
p

|S|

}
‖Σ‖2 + b

)√
p

n

)
≤ 4 exp {−p} .

(59)

By the Lipschitz property of Ψ(2) as well as sub-Gaussian property of x, we have for any
c ∈ [0, c̄], and β1, β2,

|f(c, β1)− f(c, β2)| ≤kc2E
[∣∣∣〈w,Σ1/2(β1 − β2)〉

∣∣∣]
≤kc̄2κx

∥∥∥Σ1/2(β1 − β2)
∥∥∥

2
.
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Applying the above bound for β1 = β̂ols and β2 = βols, we obtain with probability 1 −
3 exp {−p} ∣∣∣f(c, β̂ols)− f(c, βols)

∣∣∣ ≤ ηkc̄2κx

√
p

|S|
, (60)

where the last step follows from Proposition 7 and the inequality given in (56).
Combining this with the previous bound, for any c ∈ [0, c̄], with probability 1 −

4 exp {−p}, we obtain∣∣∣f̂(c, β̂ols)− f(c, βols)
∣∣∣ ≤2c̄

(
k‖β̃‖2 ‖Σ‖2 + ηk ‖Σ‖2

√
p

|S|
+ b

)√
p

n
+ ηkc̄2κx

√
p

|S|

=2c̄k

{
‖β̃‖2 ‖Σ‖2

√
p

n
+ η ‖Σ‖2

p√
|S|n

+ b

√
p

n
+ ηc̄κx

√
p

|S|

}

≤ηc̄kmax
{

(1 + ‖β̃‖2) ‖Σ‖2 + b/k, c̄
}√ p

|S|
= K

√
p

|S|

where K = ηc̄kmax
{

(1 + ‖β̃‖2) ‖Σ‖2 + b/k, c̄
}

, and |S| > ηp. Here, η depends only on the

constants κx and γ. In particular, for c = c̄ we observe that

f̂(c̄, β̂ols) ≥f(c̄, βols)−K
√

p

|S|

≥1 + ε−K
√

p

|S|
.

Therefore, for sufficiently large |S| satisfying |S| > K2p, we obtain f̂(c̄, β̂ols) > 1. Since
this function is continuous and f̂(0, β̂ols) = 0, we obtain the existence of ĉΨ ∈ [0, c̄] with
probability at least 1− 4 exp {−p}.

Now, since ĉΨ and cΨ satisfy the equations f̂(ĉΨ, β̂
ols) = f(cΨ, β

ols) = 1 (with high
probability), by the inequality given in (59), with probability at least 1 − 4 exp {−p}, we
obtain∣∣∣1− f(ĉΨ, β̂

ols)
∣∣∣ =
∣∣∣f̂(ĉΨ, β̂

ols)− f(ĉΨ, β̂
ols)
∣∣∣ ≤ 2c̄

(
k

{
‖β̃‖2 + η

√
p

|S|

}
‖Σ‖2 + b

)√
p

n
.

Now, using the Taylor’s series expansion of c→ f(c, βols) around cΨ, and the assumption
on the derivative of f with respect to its first argument, we obtain

υ |ĉΨ − cΨ| ≤
∣∣∣f(ĉΨ, β

ols)− f(cΨ, β
ols)
∣∣∣

≤
∣∣∣f(ĉΨ, β

ols)− f(ĉΨ, β̂
ols)
∣∣∣+
∣∣∣f(ĉΨ, β̂

ols)− 1
∣∣∣

≤ηkc̄2κx

√
p

|S|
+ 2c̄

(
k

{
‖β̃‖2 + η

√
p

|S|

}
‖Σ‖2 + b

)√
p

n

≤K
√

p

|S|

32



Scalable Approximations for Generalized Linear Problems

with probability at least 1 − 4 exp {−p}. Here, the constant K is the same as before K =

ηc̄kmax
{

(1 + ‖β̃‖2) ‖Σ‖2 + b/k, c̄
}

.

Proof [of Theorem 8] We have∥∥∥β̂ sls − βpop
∥∥∥
∞
≤
∥∥∥cΨβ

ols − βpop
∥∥∥
∞

+
∥∥∥ĉΨβ̂

ols − cΨβ
ols
∥∥∥
∞
, (61)

where we used the triangle inequality for the `∞ norm. The first term on the right hand
side can be bounded using Theorem 3 and Corollary 5. We write∥∥∥cΨβ

ols − βpop
∥∥∥
∞
≤ η1

‖βpop‖∞√
p

, (62)

for η1 = 8kc̄κ3ρ∞‖Σ1/2‖∞(τ/r).
For the second term, we write∥∥∥ĉΨβ̂

ols − cΨβ
ols
∥∥∥
∞

=
∥∥∥ĉΨβ̂

ols ± ĉΨβ
ols − cΨβ

ols
∥∥∥
∞
, (63)

≤ |ĉΨ|
∥∥∥β̂ols − βols∥∥∥

∞
+ |ĉΨ − cΨ|

∥∥∥βols∥∥∥
∞
,

where the first step follows from triangle inequality. By Lemma 16, for sufficiently large
n and |S|, with probability 1 − 4 exp {−p}, the constant ĉΨ exists and it is in the interval
(0, c̄]. By the same lemma, with probability 1− 4 exp {−p}, we have

|ĉΨ − cΨ| ≤ η4

√
p

|S|
, (64)

where η4 = η′υ−1c̄kmax
{

(‖Σ1/2βols‖2 + 1)‖Σ‖2 + b/k, c̄
}

for some constant η′ depending
on the sub-Gaussian norms κ and γ.

Also, by the norm equivalence and Proposition 7, we have with probability 1−4 exp {−p}∥∥∥β̂ols − βols∥∥∥
∞
≤η3

√
p

|S|
, (65)

for η3 = η′′λ
−1/2
min , where η′′ is constant depending only on γ and κ.

Finally, combining all these inequalities with the last line of (61), we have with proba-
bility 1− 4 exp {−p},∥∥∥β̂ sls − βpop

∥∥∥
∞
≤ η1

‖βpop‖∞√
p

+ η3c̄

√
p

|S|
+ η4

∥∥∥βols∥∥∥
∞

√
p

|S|
, (66)

≤ η1
‖βpop‖∞√

p
+
(
η3c̄+ η4

∥∥∥βols∥∥∥
∞

)√ p

|S|
,

= η1
‖βpop‖∞√

p
+ η2

√
p

|S|
,
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where

η1 =ηkc̄ρ∞(τ/r)‖Σ1/2‖∞ (67)

η2 =η3c̄+ η4

∥∥∥βols∥∥∥
∞

= ηc̄
(
λ
−1/2
min + kυ−1 max

{
(‖Σ1/2βols‖2 + 1)‖Σ‖2 + b/k, c̄

})

Proof [of Theorem 9] Proof is essentially the same as that of Theorem 8, where this time
we use Lemma 16 instead of Lemma 15.

Proof [of Corollary 6] The normal equations for the lasso minimization yields

E
[
xxT

]
βlassoλ − βols + λs = 0,

where s ∈ ∂
∥∥βlassoλ

∥∥
1
. It is well-known that under the orthogonal design where the covariates

have i.i.d. entries, the above equation reduces to soft(βols;λ) = βlassoλ , where soft( · ;λ)
denotes the soft thresholding operator at level λ. For any β ∈ Rp, let supp(β) denote the
support of β, i.e., the set {i ∈ [p] : βi 6= 0}. We have

supp(βlassoλ ) = {i ∈ [p] : βlassoλ,i 6= 0} = {i ∈ [p] : |βolsi | > λ}

By Theorem 3, we have |βolsi | ≤ 1
cΨ
|βpopi |+ δ, which implies that

supp(βlassoλ ) ⊂
{
i ∈ [p] :

1

cΨ
|βpopi |+ δ ≥ λ

}
.

Hence, whenever λ ≥ δ, we have supp(βlassoλ ) ⊂ supp(βpop). Further, we have by Theorem 3

1

cΨ
|βpopi | ≤ |β

ols
i |+ δ.

Hence, whenever |βpopi | > cΨ (λ+ δ), we get |βolsi | > λ. If this condition is satisfied for any
entry in the support of βpop, the corresponding lasso coefficient will be non-zero. Therefore,
we get supp(βpop) ⊂ supp(βlassoλ ) under this assumption. Combining this with the previous
result, we conclude the proof.

11. Auxiliary Lemmas

Lemma 17 (Sub-exponential vector concentration) Let x1, x2, ..., xn be independent
centered sub-exponential random vectors with maxi ‖xi‖ψ1 = κ. Then we have

P

(∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥
2

> cκ

√
p

n

)
≤ exp {−p} . (68)

whenever n > 4c2p for an absolute constant c.

34



Scalable Approximations for Generalized Linear Problems

Proof [of Lemma 17] For a vector z ∈ Rp, we have ‖z‖2 = sup‖u‖2=1 〈u, z〉 since the dual
of `2 norm is itself. Therefore, we write

P

(∥∥∥∥∥ 1

n

n∑
i=1

xi

∥∥∥∥∥
2

> t

)
=P

(
sup
‖u‖2=1

1

n

n∑
i=1

〈u, xi〉 > t

)
.

Now, let Nε be an ε-net over Sp−1 = {u ∈ Rp : ‖u‖2 = 1}, and observe that

max
u∈Nε

〈u, x〉 ≥ (1− ε) sup
‖u‖2=1

〈u, x〉 = (1− ε)‖x‖2,

with |Nε| ≤ (1 + 2/ε)p. Hence, we may write

P

(
sup
‖u‖2=1

1

n

n∑
i=1

〈u, xi〉 > t

)
≤P

(
max
u∈Nε

1

n

n∑
i=1

〈u, xi〉 > t(1− ε)

)
,

≤ |Nε|P

(
1

n

n∑
i=1

〈u, xi〉 > t(1− ε)

)
.

For any u ∈ Sp−1, we have ‖〈u, xi〉‖ψ1
≤ κ. Then, by the Bernstein-type inequality for

sub-exponential random variables (Vershynin, 2010), we have

P

(
1

n

n∑
i=1

〈u, xi〉 > t(1− ε)

)
≤ exp

{
−cnmin

{
t2(1− ε)2

κ2
,
t(1− ε)

κ

}}
,

for an absolute constant c. Therefore, the probability on the left hand side of (68) can be
bounded by(

1 +
2

ε

)p
exp

{
−cnt

2(1− ε)2

κ2

}
= exp

{
−cnt

2(1− ε)2

κ2
+ p log

(
1 +

2

ε

)}
,

whenever t < κ/(1 − ε). Choosing ε = 0.5 and for an absolute constant c′ > 3.24/c and

letting t = c′κ
√

p
n , we conclude the proof.

Lemma 18 Let B(β̃) denote the ball centered around β̃ with radius δ, i.e.,

B(β̃) =
{
β :
∥∥β − β̃∥∥

2
≤ δ
}
.

For i = 1, ..., n, let xi ∈ Rp be i.i.d. sub-Gaussian random vectors with ‖xi‖ψ2
≤

κx. Given a function g : R → R that is Lipschitz continuous with k, and satisfying
supβ∈B(β̃) ‖g(〈xi, β〉)‖ψ2

≤ κg, we have

P

(
sup
β∈B

∣∣∣∣∣ 1n
n∑
i=1

g(〈xi, β〉)− E [g(〈x, β〉)]

∣∣∣∣∣ > c(κg + κx/µ̃)

√
p

n/ log(n)

)
≤ 2 exp {−p} ,

whenever np > 51 max{χ, χ−1} for χ = (κg + κx/µ̃)2/(cδ2k2µ̃2). Above, c is an absolute
constant.
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Proof [of Lemma 18] Let E [‖x‖2] = µ = µ̃
√
p and for ε > 0, β ∈ B(β̃) and w ∈ Rp define

the bounding functions

lβ(w) = g(〈w, β〉)− ε‖w‖2/4µ, uβ(w) = g(〈w, β〉) + ε‖w‖2/4µ.

Let N∆ be a net over B(β̃) in the sense that for any β1 ∈ B(β̃), ∃β2 ∈ N∆ such that
‖β1 − β2‖2 ≤ ∆. We fix ∆∗ = ε/(4kµ) and write ∀β1 ∈ B, ∃β2 ∈ N∆∗ ,

1. an upper bound of the form:

g(〈w, β1〉) ≤g(〈w, β2〉) + k |〈w, β1 − β2〉| ,
≤g(〈w, β2〉) + k ‖w‖2 ∆∗ = uβ2(w),

2. and a lower bound of the form:

g(〈w, β1〉) ≥g(〈w, β2〉)− k |〈w, β1 − β2〉| ,
≥g(〈w, β2〉)− k ‖w‖2 ∆∗ = lβ2(w),

where the second steps in the above inequalities follow from the Cauchy-Schwarz inequality.
These functions are called bracketing functions in the context of empirical process theory.

Hence, we can write that ∀β1 ∈ B(β̃), ∃β2 ∈ N∆∗ such that

1

n

n∑
i=1

lβ2(xi)− E [lβ2(x)]− ε/2 ≤ 1

n

n∑
i=1

g(〈xi, β1〉)− E [g(〈x, β1〉)] ,

≤ 1

n

n∑
i=1

uβ2(xi)− E [uβ2(x)] + ε/2.

The above inequalities translate to the following conclusion: Whenever the following
event happens, {∣∣∣∣∣ 1n

n∑
i=1

g(〈xi, β1〉)− E [g(〈x, β1〉)]

∣∣∣∣∣ > ε

}
,

at least one of the following events happens{
1

n

n∑
i=1

uβ2(xi)− E [uβ2(x)] > ε/2

}
or

{
1

n

n∑
i=1

lβ2(xi)− E [lβ2(x)] < −ε/2

}
.

Therefore, using the union bound on the above events, we may obtain

P

(
sup

β∈B(β̃)

∣∣∣∣∣ 1n
n∑
i=1

g(〈xi, β〉)− E [g(〈x, β〉)]

∣∣∣∣∣ > ε

)
(69)

≤ P

(
max
β∈N∆∗

1

n

n∑
i=1

uβ(xi)− E [uβ(x)] > ε/2

)

+ P

(
max
β∈N∆∗

1

n

n∑
i=1

lβ(xi)− E [lβ(x)] < −ε/2

)
.
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Note that the right hand side of the above inequality has two terms both of which are
of the same form. For simplicity, we bound only the first one. The bound for the second
one follows from the exact same steps.

The relation between sub-Gaussian and sub-exponential norms (Vershynin, 2010) allows
us to write

‖‖x‖2‖2ψ2
≤ ‖‖x‖22‖ψ1 ≤

p∑
i=1

‖x2
i ‖ψ1 ≤ 2

p∑
i=1

‖xi‖2ψ2
≤ 2κ2

xp, (70)

where the second step follows from the triangle inequality. Hence, we conclude that ‖x‖2−
E [‖x‖2] is a centered sub-Gaussian random variable with norm upper bounded by 3κx

√
p.

For ε < 4/3, we notice that the random variable uβ(x) = g(〈x, β〉) + ε‖x‖2/4µ is also
sub-Gaussian with norm

‖uβ(x)‖ψ2 ≤ κg +
ε

4µ̃
3κx ≤ κg + κx/µ̃,

and consequently, the centered random variable uβ(x) − E [uβ(x)] has the sub-Gaussian
norm upper bounded by 2κg + 2κx/µ̃.

Then, by the Hoeffding-type inequality for the sub-Gaussian random variables, we obtain

P

(
1

n

n∑
i=1

uβ(xi)− E [uβ(x)] > ε/2

)
≤ exp

{
−cn ε2

(κg + κx/µ̃)2

}
for an absolute constant c > 0.

By the same argument above, one can obtain the same result for the function lβ(x).
Using Hoeffding bounds in (69) along with the union bound over the net, we immediately
obtain

P

(
sup

β∈B(β̃)

∣∣∣∣∣ 1n
n∑
i=1

g(〈xi, β〉)− E [g(〈x, β〉)]

∣∣∣∣∣ > ε

)
≤ 2 |N∆∗ | exp

{
−cn ε2

(κg + κx/µ̃)2

}
for some absolute constant c.

Using a standard covering argument over the net N∆∗ as given in Erdogdu (2015), we
have

|N∆∗ | ≤
(
δ
√
p

∆∗

)p
=

(
4δkµ̃p

ε

)p
.

Combining this with the previous bound, and choosing

ε2 =
p

n

(κg + κx/µ̃)2

2c
log

(
32cδ2k2µ̃2pn

(κg + κx/µ̃)2

)
we get

2

(
4δkµ̃p

ε

)p
exp

{
−cn ε2

(κg + κx/µ̃)2

}
= 2 exp

{
−p

2
log log

(
32cδ2k2µ̃2pn

(κg + κx/µ̃)2

)}
≤ 2 exp {−p} ,
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whenever np > 51 max{χ, χ−1} for χ = (κg + κx/µ̃)2/(cδ2k2µ̃2).

Lemma 19 Let B(β̃) denote the ball centered around β̃ with radius δ, i.e.,

B(β̃) =
{
β :
∥∥β − β̃∥∥

2
≤ δ
}
.

For i = 1, ..., n, let xi ∈ Rp be i.i.d. random vectors with a covariance matrix Σ. Given
a function g : R→ R that is uniformly bounded by b > 0, and Lipschitz continuous with k,

P

(
sup

β∈B(β̃)

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈xi, β〉)− E
[
Ψ(2)(〈x, β〉)

]∣∣∣∣∣ ≥ 2
{
k(‖β̃‖2 + δ) ‖Σ‖2 + b

}√ p

n

)
≤ e−p.

(71)

Proof [of Lemma 19] This is a standard result in the theory of Rademacher complexity –
see for example Bartlett and Mendelson (2002). Define the following empirical process

G(x1, ..., xn) = sup
β∈B(β̃)

∣∣∣∣∣ 1n
n∑
i=1

g(〈xi, β〉)− E [g(〈x, β〉)]

∣∣∣∣∣ . (72)

We notice that for any i, we have

∣∣G(.., xi, ..)−G(.., x′i, ..)
∣∣ ≤ 2b

n
, (73)

due to boundedness of the function g. By the McDiarmid’s inequality (Azuma), we have

P (G > ε) ≤ exp

{
−(ε− E [G])2n

2b2

}
. (74)

The above inequality – when stated differently – reads that with probability at least 1 −
exp {−p}, we have

G < E [G] + b

√
2p

n
. (75)

For σ1, ..., σn i.i.d. random variables with P (σi = ±1) = 0.5, we have

E [G] ≤ 2

n
E

[
sup

β∈B(β̃)

n∑
i=1

σig(〈xi, β〉)

]
= R(g ◦ B(β̃)), (76)

whereR denoting the Rademacher complexity. Since g is Lipschitz continuous with constant
k, we have R(g ◦ B(β̃)) ≤ kR(B(β̃)) by the Ledoux-Talagrand contraction inequality. We
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write

R(B(β̃)) =
2

n
E

[
sup

β∈B(β̃)

n∑
i=1

σi〈xi, β〉

]
≤ 2

n
E

[
sup

β∈B(β̃)

∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥
2

‖β‖2

]
, (77)

≤(‖β̃‖2 + δ)
2

n
E

[∥∥∥ n∑
i=1

σixi

∥∥∥2

2

]1/2

= (‖β̃‖2 + δ)
2

n

(
n∑
i=1

E
[
‖xi‖22

])1/2

,

≤2(‖β̃‖2 + δ) ‖Σ‖2

√
p

n
.

Combining this with the previous results, we obtain

P

(
sup

β∈B(β̃)

∣∣∣∣∣ 1n
n∑
i=1

Ψ(2)(〈xi, β〉)− E
[
Ψ(2)(〈x, β〉)

]∣∣∣∣∣ ≥ 2
{
k(‖β̃‖2 + δ) ‖Σ‖2 + b

}√ p

n

)
≤ e−p.

12. Additional Experiments

In this section, we provide additional experiments. The overall setting is the same as Section
8. The only difference is that we change the sampling distribution of the datasets, which are
stated in the title of each plot. As in Section 8, SLS estimator outperforms its competitors
by a large margin in terms of the computation time.

The results are provided in Figures 7 and 6, and Table 3.
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Figure 6: Additional experiments comparing the performance of SLS to that of MLE
obtained with various optimization algorithms on several datasets. SLS is represented with
red straight line. The details are provided in Table 3
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Table 3: Details of the experiments shown in Figures 7 and 6.

Model Logistic Regression Poisson Regression

Dataset Σ×Ber(±1) Σ×Norm(0,1) Σ×{Exp(1)-1} Σ×Norm(0,1)

Size n = 6.0×105, p=300 n = 6.0×105, p=300 n = 6.0×105, p=300 n = 6.0×105, p=300

Init Rnd Ols Rnd Ols Rnd Ols Rnd Ols

Plot (a) (b) (c) (d) (e) (f) (g) (h)

Method↓ Time in Seconds / Number of Iterations (to reach min test error)

Sls 6.61/3 2.97/3 9.38/5 4.25/4 14.68/4 2.99/4 6.66/10 4.13/10

Nr 222.21/6 84.08/3 186.33/6 115.76/4 218.1/6 218.9/4 364.63/9 363.4/9

Ns 40.68/10 11.57/3 53.06/9 19.52/4 39.22/6 59.61/4 51.48/10 39.8/10

Bfgs 125.83/33 35.41/9 155.3/48 24.78/8 46.61/20 48.71/12 92.84/36 74.22/38

LBfgs 142.09/38 44.41/12 444.62/143 21.79/7 96.53/39 50.56/12 296.4/111 228.1/117

Gd 409.9/134 79.45/22 1773.1/509 135.62/44 569.1/211 124.31/48 792.3/344 1041.1/366

Agd 177.3/159 43.76/12 359.56/95 53.73/18 157.9/57 63.16/16 74.74/32 62.21/32
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Figure 7: Additional experiments comparing the performance of SLS to that of MLE
obtained with various optimization algorithms on several datasets. SLS is represented with
red straight line. The details are provided in Table 3
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