
Journal of Machine Learning Research 20 (2019) 1-37 Submitted 5/17; Revised 12/18; Published 2/19

A New Approach to Laplacian Solvers and Flow Problems

Patrick Rebeschini patrick.rebeschini@stats.ox.ac.uk
Department of Statistics
University of Oxford
Oxford, OX1 3LB, UK

Sekhar Tatikonda sekhar.tatikonda@yale.edu

Department of Statistics and Data Science

Yale University

New Haven, CT 06511, USA

Editor: Francis Bach

Abstract

This paper investigates the behavior of the Min-Sum message passing scheme to solve
systems of linear equations in the Laplacian matrices of graphs and to compute electric
flows. Voltage and flow problems involve the minimization of quadratic functions and are
fundamental primitives that arise in several domains. Algorithms that have been proposed
are typically centralized and involve multiple graph-theoretic constructions or sampling
mechanisms that make them difficult to implement and analyze. On the other hand,
message passing routines are distributed, simple, and easy to implement. In this paper
we establish a framework to analyze Min-Sum to solve voltage and flow problems. We
characterize the error committed by the algorithm on general weighted graphs in terms of
hitting times of random walks defined on the computation trees that support the operations
of the algorithms with time. For d-regular graphs with equal weights, we show that the
convergence of the algorithms is controlled by the total variation distance between the
distributions of non-backtracking random walks defined on the original graph that start
from neighboring nodes. The framework that we introduce extends the analysis of Min-
Sum to settings where the contraction arguments previously considered in the literature
(based on the assumption of walk summability or scaled diagonal dominance) can not be
used, possibly in the presence of constraints.

Keywords: Min-Sum, message passing, decentralized algorithms, Laplacian solver, net-
work flows.

1. Introduction

Voltage and flow problems. Laplacian matrices of graphs are fundamental. Solving linear
systems of equations in these matrices constitutes the back-bone of many algorithms with
applications to a wide variety of fields. See Spielman (2011); Vishnoi (2013). When a
weighted graph is viewed as an electric circuit, where weighted edges represent resistors and
vertices represent nodes to which some external current is applied, solving linear systems
of equations in the Laplacian matrix of the graph corresponds to computing the voltages
induced to each node by the external currents. For this reason, we refer to the Laplacian
problem as the “voltage problem.” Along with the problem of computing the voltages is
the problem of computing the current induced across each resistor, which we refer to as the
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“flow problem.” The two problems are related by Ohm’s law—which says that electric flows
are induced by voltage differences across the nodes—and they both can be cast in the form
of quadratic optimization problems. The voltage problem is an unconstrained problem to
find the voltage assignment that maximizes the quadratic Laplacian form. The flow problem
is a constrained problem to find the flow assignment that minimizes the circuit energy and
satisfies Kirchhoff’s law. The voltage problem is the dual of the flow problem.

Previous literature on Laplacian solvers. The extensive literature on approximately solv-
ing the voltage and flow problems typically involves algorithms that rely on multiple graph-
theoretic constructions or sampling mechanisms which make them difficult to implement
and analyze. The first quasi-linear time solver was given in Spielman and Teng (2004,
2014), and it achieves a running time of Õ(m logc n log 1/ε) in the Laplacian-modified `2
norm. Here, n and m are, respectively, the number of vertices and edges in the graph, c is
a constant close to 100, and the Õ notation hides log log n factors. Since this result, many
algorithms have been proposed and showed to yield smaller values of c. The work in Koutis
et al. (2011) has reduced the constant c to 1. Currently, the best running time is in Cohen
et al. (2014) where c = 1/2. These algorithms all rely on the same general architecture,
which combines the Chebyshev method or the conjugate gradient algorithm with the use
of recursive preconditioning, spectral sparsifiers, low-stretch spanning trees, and expander
graphs. Despite their theoretical guarantees, these algorithms present noticeable difficulties
to practitioners due to the involved machinery they rely upon. Lately, new algorithms have
been proposed that depart from this framework and use fewer graph-theoretic constructions.
The method in Kelner et al. (2013), for instance, which operates in the flow domain and
yields a fast solver with c = 2, using very little of the previous machinery—although it still
requires low-stretch spanning trees. More recently, the work in Kyng and Sachdeva (2016),
which relies on sparse Gaussian elimination for Laplacian matrices to yield a fast solver with
c = 3, without the use of any graph-theoretic construction. While more appealing, these
new algorithms still rely on random sampling so the convergence analysis is only performed
in expectation, or with high probability. Moreover, all these algorithms are centralized.
There has also been some work in parallelizing these solvers, with the first parallel solver
with near linear work and poly-logarithmic depth presented in Peng and Spielman (2014).
These solvers work in the shared memory model and are not completely distributed.

Min-Sum algorithm. The aforementioned limitations prompted us to investigate the be-
havior of the Min-Sum algorithm to solve both the voltage and the flow problem. Min-Sum
is a distributed, deterministic (i.e., not randomized), general-purpose message passing al-
gorithm that is used to optimize objective functions that are sums of component functions
supported on a given graph. Min-Sum has emerged as a canonical procedure to address large
scale problems in a variety of domains. Its success comes from the fact that the algorithm is
simple and easy to implement, require minimal data structures and low communication per
iteration, and in many applications it has been shown to converge to the problem solution.
Interest in Min-Sum has been triggered by its success in solving certain classes of challenging
combinatorial optimization problems, such as decoding low-density parity-check codes, see
Berrou et al. (1993); Richardson and Urbanke (2001) for instance, and solving certain type
of satisfiability problems, see Mezard et al. (2002); Braunstein et al. (2005), for instance.

Despite its successes, the convergence analysis of the Min-Sum algorithm remains lim-
ited. For quadratic optimization problems and, more generally, convex optimization prob-
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lems, the Min-Sum algorithm has been shown to converge to the problem solution for
any graph topology under the assumption that the objective function is walk-summable
(Malioutov et al., 2006), or, equivalently, scaled diagonal dominant (Moallemi and Van Roy,
2010). These conditions allow the use of contraction arguments to establish exponential con-
vergence rates. These conditions do not apply to quadratic objective functions in Laplacian
matrices, hence to the voltage problem, and they do not apply to constrained optimization
problems, hence to the flow problem. At the same time, on the one hand quadratic approx-
imations of the Min-Sum algorithm leading to the Approximate Message Passing (AMP)
algorithm are becoming increasingly popular in high-dimensional statistics and machine
learning (Donoho et al., 2009; Montanari, 2012; Barbier et al., 2018). The AMP algorithm
is typically analysed from an asymptotical point of view and this analysis is not based on
contraction arguments. The recent success of the AMP algorithm prompts for improving
the understanding of the convergence and correctness of the Min-Sum algorithm directly
applied to quadratic models, where previously-considered contraction-based assumptions do
not hold. On the other hand, while some work has been done to study the behavior of Min-
Sum in constrained settings, this work seems to have focused on linear objective functions
and a general theory is missing. See Gamarnik et al. (2012) and references therein.

Results. This paper investigates the convergence behavior of the Min-Sum algorithm
applied to the voltage and flow problems and establishes a general framework for the
analysis of message-passing algorithms that can accommodate for non contraction-based
assumptions and for constrained-based optimization problems. The algorithms that we
analyze—Algorithm 3 for the voltage problem and Algorithm 5 for the flow problem—are
easy to implement, with a pseudo-code that fits two lines. We investigate the behavior of
these algorithms on general weighted graphs, and we show that the error they incur can be
characterized in terms of hitting times of ordinary diffusion random walks defined on the
computation trees that are obtained by unraveling the operations of the algorithms with
time (Weiss and Freeman, 2001). We specialize the analysis to the case of d-regular graphs.
When d = 2, we show that the flow algorithm converges to the true solution in the `∞ norm
with rate O(1/t), where t is the iteration time, independently of the graph dimensions n and
m, yielding a ε-approximate solution with a running time O(m/ε), linear in m (Corollary
16). On the other hand, when d = 2, we show that the voltage algorithm does not converge,
as it keeps oscillating (Corollary 10). For graphs with equal weights, when d ≥ 3, we show
that the error both algorithms commit is characterized by quantities involving the difference
of non-backtracking random walks on the original graph that originate from neighbor nodes
(Lemma 9). We show that the convergence rate of the algorithms (with respect to various
norms) can be controlled by uniform bounds on the total variation distance between the
distributions of these walks. For graphs where these bounds decay exponentially O(e−t)
(such as complete graphs, as we show numerically) or polynomially O(1/tβ) with β > 0
(such as cycles and tori, where β = 1/2 as we show numerically), possibly under additional
assumptions on the problem instance (depending on the norm chosen for the analysis), the
Min-Sum algorithm yield ε-approximate solutions for both voltage and flow problem with
time O(m log 1/ε) or O(m/ε1/β), respectively, linear in m (Theorem 15 for voltages, and
Theorem 18 for flows).

Novelty in the analysis of message passing. Our analysis of the Min-Sum algorithm presents
two key contributions that go beyond the specifics of the problems here addressed.
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1. Beyond contraction arguments. Typically, the convergence analysis of the Min-Sum
scheme exploits a decay of correlation property in the computation tree established
upon imposing local assumptions on the original problem, such as the assumption of
scaled diagonal dominance. These conditions essentially yield a bound on the local
interactions in the computation tree by a quantity strictly less than one. In this case,
a contraction argument can be performed at each level of the tree to establish an expo-
nential decay of correlation from root to leaves, which translates into an exponential
convergence for the algorithm. On the other hand, the analysis of message passing
that we present in this paper is based on a global analysis of the problem supported on
the computation tree, via the analogy with electric circuits and the characterization
with hitting times of random walks, which is not captured by contraction arguments
based on worst-case bounds for local interactions. In fact, as mentioned above, for
some graphs this analysis yields a convergence polynomial in time, not exponential.

2. Beyond unconstrained optimization. Typically, the convergence analysis of the Min-
Sum algorithm relies on finding the fix point(s) of the message updates. For uncon-
strained optimization problems, the key insight to find fix point(s) is that the first
order optimality conditions for the original problem are respected by the problem sup-
ported on the computation tree, for every node that is not a leaf (Weiss and Freeman,
2001; Moallemi and Van Roy, 2010). The convergence analysis that we present for the
flow problem—a constrained problem—is based on the observation that the Karush-
Kuhn-Tucker (KKT) optimality conditions for constrained problems are respected on
the computation tree, for every non-leaf node. This insight allows to extend the anal-
ysis of the Min-Sum algorithm to more general constrained optimization problems.

Structure of the paper. The structure of the paper is as follows. In Section 2 we de-
fine the voltage and flow problems as optimization routines. In Section 3 we introduce the
general-purpose Min-Sum algorithm, and we specialize it to the voltage and flow problem,
respectively. In Section 4 we present the error characterization for the Min-Sum algorithms
for d-regular graphs, and we present the main results on their convergence. In Section 5 we
develop the general framework to investigate the Min-Sum algorithm, yielding the charac-
terization of the error in terms of hitting times of random walks on the computation trees,
and we present the proofs of the results given in the previous section. In Appendix A we
establish a general connection between the inverse of restricted Laplacian matrices and hit-
ting times of ordinary diffusion random walks on graphs—which is the main computational
tool used in our analysis. Technical results are in Appendix B.

Remark 1 (Notation) Given a matrix M , we denote by MT its transpose, by M−1 its
inverse, and by M+ its Moore-Penrose pseudoinverse. Given a set I and i ∈ I, we denote
by i both the element i ∈ I and the subset {i} ⊆ I (e.g., we write I\i to mean I\{i}). Given
a function f : RI → R, i ∈ I, we write f(xI\i ·) to mean the function z ∈ R → f(xI\iz).
We adopt the following taxonomy of notation:

• the arrow notation ~· is used to either refer to quantities related to directed graphs or
to refer to probability distributions related to non-backtracking random walks;

• the hat notation ·̂ is used to refer to the output of algorithms;

• the bar notation ·̄ is for quantities related to graphs where a node has been removed;

• the double-struck notation is for quantities related to computation trees, cf. Section 5.
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2. Voltage and Flow Problems

Throughout, let us consider a simple (i.e., no self-loops, and no multiple edges), undirected,
weighted graph G given by the triple (V,E,W ), where V is a set of n vertices, E is a set of
m edges, and W ∈ RV×V is a symmetric matrix that assigns a positive weight to every edge,
namely, Wvw > 0 if {v, w} ∈ E, and Wvw = 0 if {v, w} 6∈ E. The matrix W is called the
weighted adjacency matrix of the weighed graph G. Define the weighted degree of a vertex
v by dv :=

∑
w∈V Wvw, and let D ∈ RV×V be the diagonal matrix defined by Dvv := dv.

The Laplacian L of the graph G is the matrix defined as L := D −W . Without loss of
generality, in what follows we assume that the graph G is connected, otherwise we can treat
each connected component on its own. It can be verified that in this case the null space of
the Laplacian matrix L is spanned by the all-ones vector 1 ∈ RV , so that the range of L is
spanned by the vectors orthogonal to 1.

Voltage problem. We are interested in solving linear equations in the Laplacian matrix

L. That is, given b in the range of L, i.e., 1T b = 0, our goal is to find ν that satisfies

Lν = b. (1)

As it can immediately be checked from first order optimality conditions, the set of solutions
to (1) coincides with the set of solutions to the “voltage problem,” namely:

maximize − 1

2
νTLν + bT ν. (2)

We are interested in the unique solution that is orthogonal to the all one vector, namely,
ν? = L+b, where L+ is the Moore-Penrose pseudoinverse of L. Given an accuracy parameter
ε > 0, the fast solvers mentioned in the introduction achieve a quasi-linear running time
Õ(m logc n log 1/ε) to return an estimate ν̂ that satisfies ‖ν?− ν̂‖L ≤ ε‖ν?‖L, where ‖ν‖L :=√
νTLν is the Laplacian-modified `2 norm, also known as L-norm. It can be seen that ‖ · ‖L

is a pseudo-norm, as ‖ν‖L = 0 for any vector ν orthogonal to the all one vector. In many
applications where Laplacian solvers are needed, the L-norm is the natural norm to run the
analysis. See Vishnoi (2013), for instance. The L-norm is related to the Euclidean norm as
follow: ‖ν‖L ≤ κ‖ν‖2 and ‖ν‖2 ≤ κ‖ν‖L, where κ is the ratio between the the maximum
and minimum non-zero eigenvalues of L.

Flow problem. To introduce the flow problem, let us fix an arbitrary orientation of the

edges in E. Denote this set of directed edges by ~E, and let ~G = (V, ~E) be the corresponding

directed graph. Let A ∈ RV× ~E be the signed vertex-edge incidence matrix of the graph ~G,
defined as Ave := 1 if edge e leaves node v, Ave := −1 if edge e enters node v, Ave := 0

otherwise. To each directed edge e = (v, w) let R ∈ R ~E× ~E be the diagonal matrix defined
by Ree := 1/Wvw. It is easy to verify that the Laplacian L of the undirected graph G can
be expressed as L = AR−1AT . Note that while A depends on the choice of the direction of
the edges in ~E, L does not. The “flow problem” is defined as follows:

minimize
1

2
xTRx

subject to Ax = b.
(3)
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This problem can be interpreted as a minimal-energy electrical network problem. To each
directed edge e ∈ ~E is associated a resistor of value Ree (analogously, a conductor of value
1/Ree) through which a current xe flows, with the convention that xe > 0 if the current
is in the direction of the edge, xe < 0 if the current is in the direction opposite the edge.
The energy of having current xe on edge e is given by the 1

2Reex
2
e. For each node v ∈ V ,

bv represents a given external current: bv > 0 represents a source where the current enters
node v, whereas bv < 0 represents a sink where the current exits node v. The constraint
equations Ax = b embody Kirchhoff’s conservation law, by which at each vertex the net
sum of the incoming and outgoing internal flows equals the external flow.

Connection between voltage and flow problems. From the KKT optimality conditions it
can be shown (see Proposition 31 in Appendix B) that the unique solution of problem (3)
reads x? = R−1ATL+b = R−1AT ν?. That is, if e = (v, w) ∈ ~E, we have x?e = Wvw(ν?v − ν?w)
which represents Ohm’s law. Finally, notice that problem (2) is the dual of (3). Recall that

the Lagrangian of (3) is the function L from R ~E × RV to R defined as

L(x, ν) :=
1

2
xTRx+ νT (b−Ax). (4)

The dual function is q(ν) = min
x∈R~E L(x, ν) = −1

2ν
TLν + bT ν, and the dual problem reads

maxν∈RV q(ν), which is problem (2).

3. Min-Sum Algorithm

The Min-Sum algorithm is a distributed routine to optimize a cost function that has a graph
structure. Let V and F be two finite sets, whose elements are respectively referred to as
variables and factors, to be interpreted as two groups of vertices in a certain undirected
bipartite graph with edge set E , where each edge in E connects an element of V with an
element of F . For any variable node i ∈ V, we use the notation ∂i to denote the set of
neighbors of vertex i in the factor graph. Analogously, for any factor node a ∈ F , we use
the notation ∂a to denote the set of neighbors of vertex a in the factor graph. Consider the
following optimization problem over x ∈ RV :

minimize g(x) :=
∑
i∈V

gi(xi) +
∑
a∈F

ga(x∂a), (5)

for a given set of functions gi : R→ R ∪ {∞}, for each i ∈ V, and ga : R∂a → R ∪ {∞}, for
each a ∈ F . The Min-Sum algorithm is an iterative algorithm that proceeds by updating
a set of messages associated to each edge in the underlying factor graph. Messages are
functions of the optimization variables xi, for i ∈ V, and each edge in the factor graph is
associated with two messages at any given iteration of the algorithm. For any time s ≥ 0,
and i ∈ V, a ∈ F so that {i, a} ∈ E , µsi→a : R→ R∪{∞} represents a message from variable
to factor, and µsa→i : R→ R ∪ {∞} represents a message from factor to variable.

In this work we consider the synchronous implementation of the Min-Sum algorithm,
where at each iteration all messages are updated. For a given iteration step t ≥ 1, the
algorithm reads as in Algorithm 1.

The iterations of the Min-Sum algorithm correspond to the dynamic programming iter-
ations to solve (5) when the underlying graph is a tree. In general, the Min-Sum algorithm
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Algorithm 1: Min-Sum

Input: Initial messages {µ0
a→i}, for each {i, a} ∈ E ;

for s ∈ {1, . . . , t} do
Compute, for each {i, a} ∈ E ,
µsi→a = gi +

∑
b∈∂i\a µ

s−1
b→i, µsa→i = minx∈RV{ga(x∂a\i ·) +

∑
j∈∂a\i µ

s
j→a(xj)};

Compute µti = gi +
∑

a∈∂i µ
t
a→i, for each i ∈ V;

Output: x̂ti := arg minz∈R µ
t
i(z), for each i ∈ V.

is not guaranteed to converge, and even when it converges it is not guaranteed that it con-
verges to an optimal point of problem (5). The Min-Sum algorithm is suited for cooperative
distributed multi-agents optimization. In this framework, to each variable i ∈ V is associ-
ated an agent who has access only to the local objective functions gi and ga, for each a ∈ ∂i.
At each time step, each agent can only exchange information with his near-neighbors in the
factor graph, i.e., the agents who share at least one factor with him. Agents’ goal is to
cooperate over time to solve problem (5). The Min-Sum algorithm is a mean to achieve this
goal: iteratively, each agent i updates a set of messages {µsi→a}, a ∈ ∂i, using the messages
that he has received from his neighbors at the previous time step, i.e., {µs−1

j→a}, a ∈ ∂j, for
each neighbor j of i, and using the locally known functions gi and ga, for each a ∈ ∂i.

Remark 2 (Belief Propagation) The Min-Sum algorithm alternates minimizations and
summations to compute the minimum of a sum of functions of the form in (5). The main
property that is used to derive the local updates of this algorithm (on a tree, where the
algorithm computes the correct solution) is the fact that the minimum distributes over the
summation. Closely related to the Min-Sum algorithm is the Sum-Product algorithm, where
the goal is to compute the sum (or integral) of a product of functions of the following form:∏

i∈V
gi(xi)

∏
a∈F

ga(x∂a). (6)

As the sum (or integral) distributes over the product, the Sum-Product algorithm takes the
exact same form as Algorithm 1 with minima replaced by sums and sums replaced by prod-
ucts. In the machine learning community, the Sum-Product algorithm is usually referred to
as Belief Propagation, and a classical application involves the computation of the normaliza-
tion function of graphical models, where random variables {Xv}v∈V have a joint density that
factorizes as in (6). While Min-Sum and Sum-Product are formally related, they are known
to produce results that are qualitatively different. In particular, while there are sufficient
conditions that guarantee the convergence and correctness of Min-Sum in graphs of arbi-
trary topology, the Sum-Product algorithm is known to yield correct results only on locally
tree-like graphs (Weiss and Freeman, 2001).

We now specialize the Min-Sum algorithm to the voltage and flow problem, respectively.

3.1. Min-Sum for the Voltage Problem

In order to apply the Min-Sum algorithm to solve the voltage problem (2), throughout the
rest of this paper we consider the equivalent minimization form: minimize 1

2ν
TLν−bT ν. We
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rewrite this problem in the form (5).1 To this end, let us identify V ↔ V and F ↔ E. In this
context, the notation ∂v indicates the set of edges in E are connected to v ∈ V ; analogously,
the notation ∂e indicates the pair of vertices that are connected by edge e. For each v ∈ V ,
define the function gv(νv) = −bvνv, and for each e ∈ E define the function ge(ν∂e) :=
1
2Wvw(νv − νw)2, where ∂e = {v, w}. Recalling that νTLν =

∑
{v,w}∈EWvw(νv − νw)2,

the problem above is equivalent to the problem of minimizing the function
∑

v∈V gv(νv) +∑
e∈E ge(ν∂e), which is of the form (5). As in the factor graph interpretation each factor

node (i.e., edge in E) is adjacent to exactly two variable nodes (i.e., vertices in V ), it is
convenient to rewrite the Min-Sum algorithm in terms of updates of messages from factors
to variables only. At each time step t ≥ 1, to each edge e = {v, w} ∈ E are associated
two messages: µte→v and µte→w. It is easy to verify that in the present setting Algorithm 1
becomes Algorithm 2.

Algorithm 2: Min-Sum, voltage problem

Input: Initial messages {µ0
e→v}, for e ∈ E, v ∈ ∂e;

for s ∈ {1, . . . , t} do
Compute, for each e ∈ E, v ∈ ∂e, with w = ∂e \ v
µse→v = minνw∈R{gw(νw) + ge(νw ·) +

∑
f∈∂w\e µ

s−1
f→w(νw)};

Compute µtv = gv +
∑

e∈∂v µ
t
e→v, for each v ∈ V ;

Output: ν̂tv := arg minz∈R µ
t
v(z), for each v ∈ V .

Algorithm 2 applies for any choice of the initial messages {µ0
e→v}, for e ∈ E, v ∈ ∂e.

If we choose initial messages that are quadratic functions, then the messages computed by
the algorithm remain quadratic. The following Proposition presents the quadratic updates,
without stating formulas for the constant terms as these terms do not influence the output
of the Min-Sum algorithm, as we will show next.

Proposition 3 For a given s ≥ 1, for each e ∈ E, v ∈ ∂e let µs−1
e→v(z) = 1

2W
s−1
e→vz

2 +
ws−1
e→vz+ cs−1

e→v. Then, for each e ∈ E, v ∈ ∂e, we have µse→v(z) = 1
2W

s
e→vz

2 +wse→vz+ cse→v,
where {cse→v} is a certain set of constants, and (here w = ∂e \ v)

W s
e→v = Wvw

∑
f∈∂w\eW

s−1
f→w

Wvw +
∑

f∈∂w\eW
s−1
f→w

, wse→v = Wvw

∑
f∈∂w\ew

s−1
f→w − bw

Wvw +
∑

f∈∂w\eW
s−1
f→w

.

Proof Fix s ≥ 1, e ∈ E, v ∈ ∂e, and let w = ∂e \ v. The Min-Sum update rule reads
µse→v(νv) = minz∈R{−bwz + 1

2Wvw(νv − z)2 + 1
2z

2
∑

f∈∂w\eW
s−1
f→w + z

∑
f∈∂w\ew

s−1
f→w +∑

f∈∂w\e c
s−1
f→w}. The solution is z? = (Wvwνv+bw−

∑
f∈∂w\ew

s−1
f→w)/(Wvw+

∑
f∈∂w\eW

s−1
f→w),

and the proof is immediately concluded by substitution.

From Proposition 3 it follows that if we initialize Algorithm 2 with quadratic messages of
the form µ0

e→v(z) = 1
2W

0
e→vz

2 +w0
e→vz, then, modulo the constant terms, we can track the

evolution of the quadratic messages computed by the algorithm by evaluating recursively

1. It is well known that different ways of mapping the original optimization problem to the form (5) yield
different convergence results. See Moallemi and Roy (2009), for instance.
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the set of parameters {W s
e→v}, {wse→v} as prescribed by Proposition 3. The belief function

associated to vertex v at time t then reads µtv(z) = −bvz+
∑

e∈∂v(
1
2W

t
e→vz

2+wte→vz+cte→v),
so that ν̂tv = arg minz∈R µ

t
v(z) = (bv−

∑
e∈∂v w

t
e→v)/(

∑
e∈∂vW

t
e→v), independent of {cte→v}.

The final procedure, in the case of quadratic initial messages, yields Algorithm 3.

Algorithm 3: Min-Sum, voltage problem, quadratic messages

Input: Initial messages {W 0
e→v}, {w0

e→v}, e ∈ E,v ∈ ∂e;
for s ∈ {1, . . . , t} do

Compute, for each e ∈ E, v ∈ ∂e, with w = ∂e \ v
W s
e→v = Wvw

∑
f∈∂w\eW

s−1
f→w

Wvw+
∑
f∈∂w\eW

s−1
f→w

, wse→v = −Wvw
bw−

∑
f∈∂w\e w

s−1
f→w

Wvw+
∑
f∈∂w\eW

s−1
f→w

;

Output: ν̂tv =
bv−

∑
e∈∂v w

t
e→v∑

e∈∂vW
t
e→v

, for each v ∈ V .

Algorithm 3, with the choice of initial conditions W 0
e→v = Wvw and w0

e→v = 0, for each
e = {v, w} ∈ E, v ∈ ∂e, will be the focus of our investigation for the voltage problem. The
convergence analysis will rely on the general formulation of Algorithm 2.

Remark 4 (Gaussian Belief Propagation) When applied to quadratic objective func-
tions, the Min-Sum algorithm (e.g., Algorithm 3) corresponds to the computation of the
mean performed by the Belief Propagation algorithm applied to Gaussian graphical models
(Weiss and Freeman, 2001). This connection is due to the fact that in the Gaussian case
the mode of a distribution coincides with its mean. Min-Sum can be seen as computing
the maximum a posteriori (MAP) estimate of the graphical model (i.e., the mode), which
corresponds to the mean computed by Belief Propagation. Typically, the convergence and
correctness of the mean of Gaussian Belief Propagation is investigated within the framework
of walk-summability (Malioutov et al., 2006), or, equivalently, scaled diagonal dominance
(Moallemi and Van Roy, 2010). As the Laplacian L is not positive definite, the existing
framework can not be applied to investigate the convergence behavior of Algorithm 3. In this
paper, we overcome this limitation by using a different approach based on the global analysis
of the computation tree that supports the operations of the algorithm with time.

3.2. Min-Sum for the Flow Problem

To apply the Min-Sum algorithm to solve the flow problem (3), we first rewrite this problem
in the unconstrained form (5). To this end, let us identify V ↔ ~E and F ↔ V . In this
context, the notation ∂v indicates the set of edges in ~E that either enter or leave node
v ∈ V ; analogously, the notation ∂e indicates the pair of vertices that are connected by
edge e. For each e ∈ ~E, define the function ge(xe) = 1

2Reex
2
e, and for each v ∈ V define the

function gv(x∂v) := 0 if
∑

e∈ ~E Avexe = bv, and gv(x∂v) := ∞ otherwise. Clearly, problem
(3) is equivalent to the problem of minimizing the function

∑
e∈ ~E ge(xe) +

∑
v∈V gv(x∂v),

which is of the form (5). As in the factor graph interpretation each variable node (i.e., edge
in ~E) is adjacent to exactly two factor nodes (i.e., vertices in V ), it is convenient to rewrite
the Min-Sum algorithm in terms of updates of messages from variables to factors only. At
each time step t ≥ 1, to each edge e ∈ ~E such that ∂e = {v, w} (that is, either e = (v, w)
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or e = (w, v)) are associated two messages: µte→v and µte→w. It can be verified that in the
present setting Algorithm 1 becomes Algorithm 4.2

Algorithm 4: Min-Sum, flow problem

Input: Initial messages {µ0
e→v}, for e ∈ ~E, v ∈ ∂e;

for s ∈ {1, . . . , t} do

Compute, for each e ∈ ~E, v ∈ ∂e, with w = ∂e \ v

µse→v = ge + min
x∈R~E

{
gw(x∂w\e ·) +

∑
f∈∂w\e µ

s−1
f→w(xf )

}
;

Compute µte = µte→v + µte→w − ge, for e = (v, w) ∈ ~E;
Output: x̂te := arg minz∈R µ

t
e(z), for each e ∈ ~E.

Note that if ∂w \e = ∅, then the message µse→v in Algorithm 4 reads µse→v(z) = 1
2Reeb

2
w

if z = Awebw, and µse→v(z) = ∞ otherwise, for any s ≥ 1, irrespective of the choice of the
initial messages. This is a consequence of the fact that if node w ∈ V is a leaf of G (i.e., w
has degree 1), then by Kirchhoff’s law the value xe of the flow on the unique edge e that is
associated to w is xe = Awebw. Without loss of generality, in what follows we assume that
the graph G has no leaves. Otherwise, by removing one leaf at a time as described above,
we can reduce the original problem to a new problem supported on a graph with no leaves
(if G is a tree we can exactly compute all the components of the solution x? in this way).

Algorithm 4 applies for any choice of the initial messages {µ0
e→v}, for e ∈ ~E, v ∈ ∂e. If

we choose initial messages that are quadratic functions, then also the following messages
computed by the algorithm remain quadratic. The next Lemma presents the quadratic
updates, without stating formulas for the constant terms as these terms do not influence
the output of the Min-Sum algorithm, as we will show next.

Proposition 5 For a given s ≥ 1, for each e ∈ ~E, v ∈ ∂e let µs−1
e→v(z) = 1

2R
s−1
e→vz

2 +

rs−1
e→vz + cs−1

e→v. Then, if the graph G has no leaves, for each e ∈ ~E, v ∈ ∂e, we have
µse→v(z) = 1

2R
s
e→vz

2+rse→vz+cse→v, where {cse→v} is a set of constants, and (here w = ∂e\v)

Rse→v = Ree +
1∑

f∈∂w\e 1/Rs−1
f→w

, rse→v = −Awe

∑
f∈∂w\eAwfr

s−1
f→w/R

s−1
f→w + bw∑

f∈∂w\e 1/Rs−1
f→w

.

Proof Fix s ≥ 1, e ∈ ~E, v ∈ ∂e, and let w ∈ ∂e \ v. As we assume that the graph G
has no leaves, then ∂w \ e 6= ∅ and the Min-Sum update rule reads µse→v(z) = ge(z) +
minx∈R∂w\e:Ãx=bw−Awez

∑
f∈∂w\e µ

s−1
f→w(xf ), where Ã := Aw,∂w\e is the submatrix of A given

by the w-th row and the columns indexed by the elements in ∂w \ e. The minimization in
the definition of µse→v can be written as

minimize
1

2
xT R̃x+ r̃Tx+ 1T c̃

subject to Ãx = bw −Awez
(7)

2. For convenience of notation, we present Algorithm 4 with initial messages indexed by time 0. Messages
are indexed by a time parameter that is shifted by one unit compared to Algorithm 1.

10



A New Approach to Laplacian Solvers and Flow Problems

over x ∈ R∂w\e, with R̃ ∈ R(∂w\e)×(∂w\e) diagonal with R̃ff := Rs−1
f→w, r̃ ∈ R∂w\e with

r̃f := rs−1
f→w, and c̃ ∈ R∂w\e with c̃f := cs−1

f→w. By Proposition 31 in Appendix B the solu-

tion of (7) reads x? = h − Awezy, with h := bwy − (I − yÃ)R̃−1r̃, y := R̃−1ÃT L̃−1, and
L̃ := ÃR̃−1ÃT ∈ R. Substituting x? in (7) we get µse→v(z) = 1

2R
s
e→vz

2 + rse→vz + cse→v,

with Rse→v := Ree + yT R̃y, and rse→v := −Awe(yT R̃h + r̃T y). The proof follows as L̃ =∑
f∈∂w\e 1/Rs−1

f→w, y
T R̃y = L̃−1, yT R̃h = L̃−1bw, r̃

T y = L̃−1
∑

f∈∂w\eAwfr
s−1
f→w/R

s−1
f→w.

From Proposition 5 it follows that if we initialize Algorithm 4 with quadratic messages
µ0
e→v(z) = 1

2R
0
e→vz

2 + r0
e→vz, then, modulo the constant terms, we can track the evolution

of the quadratic messages computed by the algorithm by evaluating recursively the set of
parameters {Rse→v}, {rse→v} as prescribed by Proposition 5. The belief function associated
to edge e at time t then reads µte(z) = 1

2(Rte→v +Rte→w−Ree)z2 +(rte→v + rte→w)z+ cte, for a
certain constant cte, so that x̂te = arg minz∈R µ

t
e(z) = −(rte→v+rte→w)/(Rte→v+Rte→w−Ree),

independent of cte. The final procedure so obtained, in the case of quadratic initial messages,
for a graph G with no leaves, is given in Algorithm 5.

Algorithm 5: Min-Sum, flow problem, quadratic messages, no leaves

Input: Initial messages {R0
e→v}, {r0

e→v}, e ∈ ~E,v ∈ ∂e;
for s ∈ {1, . . . , t} do

Compute, for each e ∈ ~E, v ∈ ∂e, with w = ∂e \ v
Rse→v = Ree + 1∑

f∈∂w\e 1/Rs−1
f→w

, rse→v = −Awe
∑
f∈∂w\e Awf r

s−1
f→w/R

s−1
f→w+bw∑

f∈∂w\e 1/Rs−1
f→w

;

Output: x̂te = − rte→v+rte→w
Rte→v+Rte→w−Ree

, for e = (v, w) ∈ ~E.

Algorithm 5, with the choice of initial conditions R0
e→v = Ree, r

0
e→v = 0, for each

e ∈ ~E, v ∈ ∂e, will be the focus of our investigation for the flow problem. The convergence
analysis will rely on the general formulation of Algorithm 4.

4. Results for d-Regular Graphs

A d-regular graph is a graph where each node has d neighbors. In this section, we first
characterize the error committed by the Min-Sum algorithm to solve the voltage and flow
problems on connected d-regular graphs in terms of the solution ν? = L+b of the voltage
problem. Then, we develop convergence results with respect to various norms.

The proofs of the main results here presented—Lemma 6 and Lemma 9—are given in
Section 5, where we develop the general machinery to analyze the behavior of the Min-Sum
scheme to solve constrained optimization problems, and we present the characterization of
the error committed by the voltage and flow algorithms on general weighted graphs in terms
of hitting times of random walks on the computation tree (for the sake of simplicity, we
postpone the results on general graphs to Section 5, as these results require the notion of
computation tree). The proofs of the technical results used here are given in Appendix B.

Henceforth, let ν̂t be the outcome of Algorithm 3 at time t with the choice of initial
conditions W 0

e→v = Wvw and w0
e→v = 0, for each e = {v, w} ∈ E, v ∈ ∂e. Analogously, let x̂t

11
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be the outcome of Algorithm 5 at time t with the choice of initial conditions R0
e→v = Ree,

r0
e→v = 0, for each e ∈ ~E, v ∈ ∂e. Throughout, given a weighted directed graph ~G =

(V, ~E,W ) with no bi-directed edges (i.e., either (v, w) ∈ ~E or (w, v) ∈ ~E), let G = (V,E,W )
be the weighted undirected graph naturally associated to ~G, i.e., edges in E are obtained
by removing the orientation of the edges in ~E. Let n := |V | and m := |E| be the number
of nodes and edges, respectively.

4.1. Error Characterization

We characterize the error committed by the Min-Sum algorithm as a function of time and
as a function of the voltage solution ν? = L+b.

The case d = 2, i.e., a cycle graph, allows a characterization for general weighted graphs.

Lemma 6 (Regular graphs, d = 2) Let ~G = (V = {0, . . . , n − 1}, ~E,W ) be a weighted
directed cycle, and let G = (V,E,W ) be the corresponding undirected graph. Define the
function i ∈ N→ ρ(i) := i mod n. For v ∈ V , e = {ρ(v), ρ(v + 1)} ∈ E, t ≥ 2, we have

ν?v − ν̂tv = αv,t ν
?
ρ(v−t−1) + (1− αv,t) ν?ρ(v+t+1), αv,t :=

∑v+t
k=v 1/Wρ(k)ρ(k+1)∑v+t

k=v−t−1 1/Wρ(k)ρ(k+1)

,

x?e − x̂te = Ave βe,t (ν?ρ(v−t) − ν
?
ρ(v+t+1)), βe,t :=

1∑v+t
k=v−t 1/Wρ(k)ρ(k+1)

.

If each edge has the same weight ω, then αv,t = 1/2 and βe,t = ω/(2t+ 1).

In the case of constant weights, this result shows that Min-Sum displays a non-convergent
(oscillatory) behavior in the voltage setting (as αv,t does not decay with time), while Min-
Sum displays a convergent behavior in the flow setting (as βv,t decays with time). We will
discuss this behavior more extensively in the following sections.

Remark 7 The fact that the Min-Sum algorithm does not converge is not surprising. Gaus-
sian BP, see Remark 4, is known to suffer from divergent behaviors even in the absence of
degeneracy, i.e., even when the quadratic form of interest is defined by a positive definite
matrix, as observed numerically in Rusmevichientong and Roy (2001).

For d ≥ 3 we can provide a characterization of the error in the case of graphs with equal
weights. We begin by defining and bounding some quantities of interest that we will need
to state our results. The proof of the following proposition is given in Appendix B.

Proposition 8 Fix d ≥ 3. For s ≥ 1 let hs := 1
(d−1)s−1 , and let δ0 := 1

d , δ1 := 1
d−1 + d− 1,

and δs := 1
d−1(2 + (d−2)2

d−1 (1 + hs+2))δs−1 − 1
(d−1)2

δs−2 for s ≥ 2. For any t ≥ 3 define

bd,t :=
1

(d− 1)2

(
1 + (d− 2)(1 + ht+1)

)
δt−2 −

(d− 2)(1 + ht+1)

(d− 1)3
δt−3,

cd,t :=
1

d− 1

(
1 +

1

(d− 2)(1 + ht)

)
δt−2 −

1

(d− 1)2
δt−3.

Then we have 1
2 ≤

d−2
d−1 ≤ bd,t ≤ cd,t ≤ 1 + εd < 4 and cd,t ≥ 1, where εd is a positive

decreasing function of d ≥ 3 so that εd → 0 as d→∞ and ε3 < 3.

12
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For each v ∈ V , let ~Pv be the law of a time-homogeneous non-backtracking random walk
Y0, Y1, Y2, . . . on the nodes ofG with initial state Y0 = v, which is defined by ~Pv(Y0 = w) := 1
if w = v and equal to 0 otherwise, by ~Pv(Y1 = w) := 1/d if {w, v} ∈ E and equal to 0,
and, for any {z, z′} ∈ E, by ~Pv(Yt+1 = w|Yt = z, Yt−1 = z′) := 1

d−1 if {w, z} ∈ E,w 6= z′

and equal to 0 otherwise. For ease of notation, for t ≥ 0, w ∈ V , define the row-stochastic
matrices P (t) and P (t,w) as

P (t)
vz := ~Pv(Yt = z), P (t,w)

vz := ~Pv(Yt = z|Y1 6= w), v, z ∈ V. (8)

We can now state the main result for d-regular graphs with d ≥ 3 and equal weights,
namely, Wvw = ω for any {v, w} ∈ E, for some ω > 0.

Lemma 9 (Regular graphs, d ≥ 3, equal weights) Let ~G = (V, ~E,W ) be a connected
directed d-regular graph, with d ≥ 3, where each edge has the same weight ω > 0, and let
G = (V,E,W ) be the corresponding undirected graph. For v ∈ V , e = (v, w) ∈ ~E, t ≥ 3,

ν?v − ν̂tv =
1

bd,t
(P (t+1)ν?)v, x?e − x̂te =

ω

cd,t

d− 1

d
((P (t,w)ν?)v − (P (t,v)ν?)w),

where bd,t and cd,t are defined and bounded as in Proposition 8.

This result characterizes the error committed by the Min-Sum algorithm in terms of the
distribution of properly-defined non-backtracking random walks. Several papers have previ-
ously related the convergence properties of message-passing algorithms to non-backtracking
random walks. For instance, we refer to Moallemi and Roy (2006) for an application to
consensus optimization (this paper also analyzes d-regular graphs), and to Abbe (2018) for
a more recent application to the Stochastic Block Model.

Given the error characterizations provided by Lemma 6 and Lemma 9, we now investi-
gate and discuss the convergence properties of the Min-Sum algorithm.

4.2. Convergence Results for the Voltage Problem

We first analyze the convergence behavior of the Min-Sum algorithm when applied to the
voltage problem: Algorithm 3. Following the literature on Laplacian solvers, as already
noticed in Section 2, we perform the analysis in the L-norm, which is defined as ‖ν‖L :=√
νTLν for any ν ∈ RV , where νTLν =

∑
{v,w}∈EWvw(νv − νw)2.

In the case d = 2, as previously discussed, the results of Lemma 6 attest that the output
ν̂t of Algorithm 3 does not converge, as it keeps oscillating as a function of t. This is
particularly evident in the case of equal weights, as the following corollary attests.

Corollary 10 (Regular graphs, d = 2) Consider the setting of Lemma 6 with equal weights
Wvw = ω. For t ≥ 2, ‖ν?−ν̂t‖2L = 1

2‖ν
?‖2L+ ω

2

∑n−1
v=0 ν

?
v (2ν?ρ(v+2t+2)−ν

?
ρ(v+2t+3)−ν

?
ρ(v+2t+1)).

Proof The proof follows immediately from Lemma 6 noticing that ‖ν? − ν̂t‖2L equals
ω
∑n−1

v=0(ν?v+1 − ν̂tv+1 − (ν?v − ν̂tv))2 = ω
4

∑n−1
v=0(ν?ρ(v−t) − ν

?
ρ(v−t−1) + ν?ρ(v+t+2) − ν

?
ρ(v+t+1))

2,

which reads 1
2‖ν

?‖2L + ω
2

∑n−1
v=0(ν?ρ(v−t)− ν

?
ρ(v−t−1))(ν

?
ρ(v+t+2)− ν

?
ρ(v+t+1)). The result follows

by grouping and relabeling the terms in the sum.
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The oscillatory behavior of the Min-Sum algorithm on cycle graphs in the voltage prob-
lem marks a clear difference with what happens in the flow problem where, as we will see in
Corollary 16 below, the algorithm does converge to the problem solution on cycle graphs.

Let us now consider the case d ≥ 3. In this case, as Corollary 13 below attests, the con-
vergence of the Min-Sum algorithm in the L-norm can be controlled by the total variation
(TV) distance between the probability distributions of non-backtracking random walks that
originate from neighbor nodes. In this framework, it is natural to also consider a modifica-
tion of the L-norm normalized by the probability mass that is left out by the overlap of the
above-mentioned random walks, which coincides with the TV distance between the walks.
We give a general definition of this norm, and then present some of its properties.

Definition 11 (TV-normalized L-norm) Given a row-stochastic matrix M ∈ RV×V ,

define the pseudo-norm ‖ · ‖L,M as ‖ν‖2L,M :=
∑
{v,w}∈EWvw

( (Mν)v−(Mν)w
‖Mv−Mw‖TV

)2
, for any ν ∈

RV , where ‖Mv−Mw‖TV := 1
2

∑
z∈V |Mvz−Mwz| is the TV distance between the probability

mass functions defined by the v-th and w-th rows of the matrix M , respectively.

The fact that ‖ · ‖L,M is a pseudo-norm follows from the fact that ‖ · ‖L itself is a pseudo-
norm. Indeed, note that ‖ν‖L,M = ‖Mν‖L′ , where L′ is the Laplacian of the weighted graph
(V,E,W ′), with W ′vw := Wvw/‖Mv −Mw‖2TV . By a well-known result (see Proposition 4.3
in Levin et al. (2009), for instance), we have ‖Mv − Mw‖TV =

∑
z∈V :Mvz>Mwz

(Mvz −
Mwz) =

∑
z∈V :Mvz<Mwz

(Mvz −Mwz), which shows how the TV-normalized L-norm takes
into account the overlap of the distributions defined by the rows of the matrix M .

Proposition 12 For any row-stochastic matrix M ∈ RV×V and ν ∈ RV we have:

(i) ‖ν‖L,I = ‖ν‖L, where I is the identity matrix;

(ii) ‖Mν‖L ≤ max{v,w}∈E ‖Mv −Mw‖TV ‖ν‖L,M ;

(iii) ‖ν‖L ≤ (
∑
{v,w}∈EWvw)1/2 max{v,w}∈E |νv − νw| ≤ (

∑
{v,w}∈EWvw)1/2 osc(ν);

(iv) ‖ν‖L,M ≤ (
∑
{v,w}∈EWvw)1/2 osc(ν);

where the oscillation of ν is defined as osc(ν) := maxv,w∈V |νv − νw|.

Proof Properties (i), (ii) and (iii) are straightforward to verify. Property (iv) follows from
|(Mν)v − (Mν)w| ≤ ‖Mv −Mw‖TV osc(ν). See Georgii (2011), Chapter 8, for instance.

We now state a convergence result for the Min-Sum algorithm ν̂t for the voltage problem,
in the case of d-regular graphs, d ≥ 3, with the same edge weights. As the L-norm involves a
sum over neighbour nodes, and as Lemma 9 shows that the error of Min-Sum is characterized
by the distribution of a (non-overlapping) random walk, we immediately see that Min-Sum
for the voltage problem does not converge on bipartite graphs as in this case random walks
that start at two neighbor locations never overlap. For this reason, we also consider an
averaged version of the Min-Sum algorithm where the output of two consecutive iterations
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is properly averaged: ν̂tave :=
bd,t−1

bd,t−1+bd,t
ν̂t−1 +

bd,t
bd,t−1+bd,t

ν̂t. Let Q(t) := (P (t−1) +P (t))/2 and

define

γ(t) := max
{v,w}∈E

‖P (t)
v − P (t)

w ‖TV , γave(t) := max
{v,w}∈E

‖Q(t)
v −Q(t)

w ‖TV .

Corollary 13 (Regular graphs, d ≥ 3, equal weights) Setting of Lemma 9. For t ≥ 4,

‖ν? − ν̂t‖L ≤ 2 γ(t+ 1) ‖ν?‖L,P (t+1) ≤ 2 γ(t+ 1)
√
m osc(ν?),

‖ν? − ν̂tave‖L ≤ 2 γave(t+ 1) ‖ν?‖L,Q(t+1) ≤ 2 γave(t+ 1)
√
m osc(ν?).

Proof From Lemma 9, ν?− ν̂t = P (t+1)ν?/bd,t. Using property (ii) in Proposition 12 with
M = P (t+1) we get ‖ν? − ν̂t‖2L = ‖P (t+1)ν?‖2L/b2d,t ≤ 4 γ(t + 1)2 ‖ν?‖2

L,P (t+1) , as bd,t ≥ 1/2

by Proposition 8. As for t ≥ 4 Lemma 9 yields (bd,t−1 + bd,t)(ν
? − ν̂tave) = bd,t−1(ν? −

ν̂t−1) + bd,t(ν
? − ν̂t) = 2Q(t+1)ν?, we get ‖ν? − ν̂tave‖2L = 4‖Q(t+1)ν?‖2L/(bd,t−1 + bd,t)

2 ≤
4 γave(t+ 1)2 ‖ν?‖2

L,Q(t+1) . The proof is concluded using Property (iv) in Proposition 12.

Corollary 13 shows that the convergence in the L-norm of the Min-Sum estimate ν̂t

and its averaged version ν̂tave is controlled by the behavior with time of the quantities
γ(t + 1) and γave(t + 1), respectively, which represent uniform bounds on the TV distance
between probability distributions of non-backtracking random walks that make t+ 1 steps
originating from neighbor nodes. Proposition 32 in Appendix B yields a recursive formula to
compute the matrices P (t)’s in terms of the adjacency matrix of the undirected unweighted
graph (V,E). This formula can then be used to compute the quantities γ(t) and γave(t).
Here we present numerical results for a few classes of d-regular graphs (for convenience of
presentation, we include also the numerical results related to the quantities γ̃(t) and γ̃ave(t)
that control the convergence behavior of the Min-Sum algorithm in the flow problem and
that will be defined later on in Section 4.3).

Example 1 (Complete graphs) A n-complete graph is a graph with n nodes where every
pair of nodes is connected by an edge. A n-complete graph is d-regular with degree d =
n − 1. Figure 1 (left). The quantity γ(t) is seen to decay (albeit not monotonically) like
an exponential function α(d) exp(−β(d)t), where α(d) > 0 is a decreasing function of d and
β(d) > 0 is an increasing function of d. Figure 1 (center).

Example 2 (Connected cycles) A d/2-connected cycle, for d ≥ 4 even, is a cycle graph
where each node is connected to its d nearest nodes. Figure 2 (left). The quantity γ(t) is
seen to decay like a polynomial function α(d)/

√
t, where α(d) > 0 is an increasing function

of d. The decay of γ(t) is independent3 of n and m. Figure 2 (center).

Example 3 (Tori) A d/2-dimensional torus, for d ≥ 4 even, is a d/2-dimensional grid
with periodic boundary conditions. Figure 3 (left). The quantity γave(t) is seen to decay like
a polynomial function α(d)/

√
t, where α(d) > 0 is an increasing function of d. The decay of

γave(t) is independent of n and m (the same considerations as in Example 2 hold). Figure
3 (center).

3. It is implied that the decay with time is independent of n and m as long as time t satisfies t . D/d,
where D is the diameter of the graph. Once the random walks reach the periodic boundary conditions
the decay is faster (exponential instead of polynomial) due to the extra overlaps of the walks.
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Figure 1: A 6-complete graph (left). Plot of log(γ(t)) (center) and of log(γ̃(t)) (right) versus
time t for various (d+ 1)-complete graphs.
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Figure 2: A 2-connected cycle (left). Plot in logarithmic scale of γ(t) (center) and of γ̃(t)
(right) versus time t for various d/2-connected cycles.
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Figure 3: A 2-dimensional torus (left). Plot in logarithmic scale of γave(t) (center) and of
γ̃ave(t) (right) versus time t for various d/2-dimensional tori.

Remark 14 (Dobrushin’s ergodicity coefficient) For Markov chains with transition
kernel P , there is a large literature investigating the contraction coefficient maxv,w∈V ‖P tv −
P tw‖TV (a.k.a. Dobrushin’s ergodicity coefficient), where t here represents the minimal time
so that the coefficient is strictly less than 1. The Dobrushin’s coefficient is fundamentally
different from γ(t). The former involves a worst-case bound over all nodes in the graph,
while the latter involves a worst-case bound only over nearest-neighbors nodes. As a result,
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the Dobrushin’s ergodicity coefficient typically depends on n and m, even when γ(t) does
not, such as in the examples above.

The fast solvers analyzed in the literature (see Introduction, Section 1, and Section 2)
achieve a quasi-linear running time Õ(m logc n log 1/ε) to return an estimate ν̂ that satisfies
‖ν? − ν̂‖L ≤ ε‖ν?‖L. As per the results in Corollary 13, to compare the performance
of the Min-Sum algorithm to these solvers we need to relate the TV -normalized L-norm
to the ordinary L-norm. It is easy to construct examples where ‖ν?‖L < ‖ν?‖L,M or
where ‖ν?‖L > ‖ν?‖L,M , for a certain row-stochastic matrix M , while both norms satisfy
‖ν?‖L ≤

√
m osc(ν) (property (iii) in Proposition 12) and ‖ν?‖L,M ≤

√
m osc(ν) (property

(iv) in Proposition 12). The following theorem summarizes the algorithmic complexity
of the Min-Sum algorithm νt in the L-norm, under the assumption that the two norms
of interest can be compared, and under the assumption that γ(t) decays exponentially or
polynomially, as attested numerically in the examples above (an analogous statement holds
for the averaged Min-Sum algorithm νtave, replacing P (t) with Q(t), and γ(t) with γave(t)).

Theorem 15 (Min-Sum voltage, running time, L-norm) Setting of Lemma 9.
Let α > 0, β > 0, δ > 1 independent of n, m. Assume that ‖ν?‖L,P (t) ≤ δ‖ν?‖L for t ≥ 0.

1. If γ(t) ≤ α exp(−βt) for t ≥ 0, then the Min-Sum algorithm yields an estimate ν̂ such
that ‖ν? − ν̂‖L ≤ ε‖ν?‖L with running time O(m log 1/ε).

2. If γ(t) ≤ α/tβ for t ≥ 0, then the Min-Sum algorithm yields an estimate ν̂ such that
‖ν? − ν̂‖L ≤ ε‖ν?‖L with running time O(m/ε1/β).

Proof The proof follows immediately from Corollary 13, recalling that each iteration
of the Min-Sum algorithm requires a complexity that is linear in the number of edges,
i.e., O(m). If 1. holds, then ‖ν? − ν̂t‖L ≤ ε‖ν?‖L is guaranteed by choosing t such that
2αδ exp(−β(t + 1)) ≤ ε; we can choose the smallest value t = dlog(2αδ/ε)/β − 1e ∼
O(log 1/ε). If 2. holds, then ‖ν? − ν̂t‖L ≤ ε‖ν?‖L is guaranteed by choosing t such that
2αδ/(t+ 1)β ≤ ε; we can choose the smallest value t = d(2αδ/ε)1/β − 1e ∼ O(1/ε1/β).

Theorem 15 shows that for certain classes of d-regular graphs, as characterized by the
decaying properties of γ(t), under the assumption that the TV-normalized L-norm of ν?

is bounded by the L-norm of ν?, the Min-Sum algorithm yields linear time solvers for the
voltage problem, with respect to the L-norm.

4.3. Convergence Results for the Flow Problem

We now analyze the convergence behavior of the Min-Sum algorithm when applied to the
flow problem: Algorithm 5. We present the results for the `∞ norm, defined as ‖x‖∞ :=

maxe∈ ~E xe for any x ∈ R ~E . The results for the `2 norm, defined as ‖x‖2 :=
√
xTx, are

analogous to the results in the L-norm for the voltage case, as we describe in Remark 19.
For the case d = 2, Lemma 6 immediately yields the following result.

Corollary 16 (Regular graphs, d = 2) Consider the setting of Lemma 6. Let ωM :=
max{v,w}∈EWvw. Then, ‖x? − x̂t‖∞ ≤ 2ωM

2t+1‖ν
?‖∞. If ωM is independent of n and m, then

the Min-Sum algorithm yields x̂ such that ‖x?− x̂‖∞ ≤ ε‖ν?‖∞ with running time O(m/ε).
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Proof From Lemma 6, by the triangle inequality, we have |x?e − x̂te| ≤ ωM
2t+1(|ν?ρ(v−t)| +

|ν?ρ(v+t+1)|), and the first bound follows by the triangle inequality for norms. The running

time is immediate, as each iteration of the algorithm requires a complexity O(m).

Corollary 16 shows that the flow Min-Sum algorithm on cycles converges in linear time
to the problem solution, as opposed to the divergent behavior observed in the voltage case.

Let us now consider the case d ≥ 3. As in the voltage problem, also in this case the
convergence of the Min-Sum algorithm can be controlled by the TV distance between the
probability distributions of properly-defined non-backtracking random walks that originate
from neighbor nodes. As before, we also consider an averaged version of the Min-Sum
algorithm where the output of two consecutive iterations is properly averaged: x̂tave :=
cd,t−1

cd,t−1+cd,t
x̂t−1 +

cd,t
cd,t−1+cd,t

x̂t. Analogously to the voltage case, let Q(t,w) := (P (t−1,w) +

P (t,w))/2 and

γ̃(t) := max
{v,w}∈E

‖P (t,w)
v − P (t,v)

w ‖TV , γ̃ave(t) := max
{v,w}∈E

‖Q(t,w)
v −Q(t,v)

w ‖TV .

Corollary 17 (Regular graphs, d ≥ 3, equal weights) Setting of Lemma 9. For t ≥ 4,

‖x? − x̂t‖∞ ≤ 2ω
d− 1

d
γ̃(t) ‖ν?‖∞, ‖x? − x̂tave‖∞ ≤ 2ω

d− 1

d
γ̃ave(t) ‖ν?‖∞.

Proof For any t ≥ 1, define the matrix ∆̃(t) ∈ R ~E×V as ∆̃
(t)
ez := P

(t,w)
vz − P

(t,v)
wz , e =

(v, w) ∈ ~E, z ∈ V. From Lemma 9 we have x? − x̂t = ω
cd,t

d−1
d ∆̃(t)ν?, and the first bound

follows from the sub-multiplicative property of the induced `∞ matrix norm, noticing that
γ̃(t) = ‖∆̃(t)‖∞/2, and using that cd,t ≥ 1 from Proposition 8. The second bound follows
analogously, as for any t ≥ 4 we have (cd,t−1 + cd,t)(x

?− x̂tave) = cd,t−1(x?− x̂t−1) + cd,t(x
?−

x̂t) = ω d−1
d (∆̃(t−1) + ∆̃(t))ν?, and γ̃ave(t) = ‖(∆̃(t−1) + ∆̃(t))/2‖∞/2.

Corollary 17 shows that the convergence in the `∞ norm of the Min-Sum estimate x̂t

and its averaged version x̂tave is controlled by the behavior with time of the quantities
γ̃(t) and γ̃ave(t), respectively, which represent uniform bounds on the TV distance between
probability distributions of non-backtracking random walks that make t steps originating
from neighbor nodes, conditioned on the event that the two walks avoid each others at the
first step. Proposition 32 in Appendix B yields a recursive formula to compute the matrices
P (t,w)’s in terms of the adjacency matrix of the undirected unweighted graph (V,E). This
formula can then be used to compute the quantities γ̃(t) and γ̃ave(t). Numerical results for
a few classes of d-regular graphs have been presented in the previous section. See Figure
1 (right)4, Figure 2 (right), and Figure 3 (right). The following theorem summarizes the
algorithmic complexity of the Min-Sum algorithm xt in the `∞ norm, under the assumption
that γ̃(t) decays exponentially or polynomially, as attested numerically in the examples
above (an analogous statement holds for the output xtave, replacing γ̃(t) with γ̃ave(t)).

Theorem 18 (Min-Sum flow, running time, `∞ norm) Setting of Lemma 9. Let α >
0, β > 0, and ω be independent of n and m.

4. It is easy to see that γ̃(1) = 0 for complete graphs, which explains the points at t = 1 in Figure 1 (right).
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1. If γ̃(t) ≤ α exp(−βt) for t ≥ 0, then the Min-Sum algorithm yields an estimate x̂ such
that ‖x? − x̂‖∞ ≤ ε‖ν?‖∞ with running time O(m log 1/ε).

2. If γ̃(t) ≤ α/tβ for t ≥ 0, then the Min-Sum algorithm yields an estimate x̂ such that
‖x? − x̂‖∞ ≤ ε‖ν?‖∞ with running time O(m/ε1/β).

Proof It follows from Corollary 17, analogously to the proof of Theorem 15.

Theorem 18 shows that for certain classes of d-regular graphs, as characterized by the
decaying properties of γ̃(t), the Min-Sum algorithm yields linear time solvers for the flow
problem, with respect to the `∞ norm. The following remark shows that an analogous result
to Theorem 18 can be derived with respect to the `2 norm, with an additional assumption
in the spirit of the one used in Theorem 15 for the voltage case.

Remark 19 (Analysis in `2 norm) For d-regular graphs with d ≥ 3, the analysis in the
`2 norm for the flow problem follows the same steps as the analysis in the L-norm for

the voltage problem. In fact, if one defines the matrices ∆(t) and ∆̃(t) ∈ R ~E×V respec-

tively as ∆
(t)
ez := P

(t)
vz − P (t)

wz and ∆̃
(t)
ez := P

(t,w)
vz − P (t,v)

wz , for any e = (v, w) ∈ ~E, z ∈ V ,
then ‖x? − x̂t‖2 = ω

cd,t
d−1
d ‖∆̃

(t)ν?‖2, while ‖ν? − ν̂t‖L = 1
bd,t
‖∆(t)ν?‖2. In analogy with

Theorem 15, the results of Theorem 18 hold when replacing ‖x? − x̂‖∞ ≤ ε‖ν?‖∞ with
‖x? − x̂‖2 ≤ ε‖ν?‖L, upon assuming that there exists δ > 1 independent of n and m such

that
∑
{v,w}∈EWvw

( (P (t,w)ν)v−(P (t,v)ν)w

‖P (t,w)
v −P (t,v)

w ‖TV

)2 ≤ δ2‖ν?‖2L, for t ≥ 0, which corresponds to the

assumption ‖ν?‖L,P (t) ≤ δ‖ν?‖L in Theorem 15.

5. Results for General Weighted Graphs

This section develops the characterization of the error committed by the voltage and flow
algorithms on general weighted graphs in terms of hitting times of ordinary diffusion random
walks defined on the computation trees that are obtained by unraveling the operations of
the algorithms with time (Theorem 23 and Lemma 24 for the flow case, and Theorem 28
for the voltage case). As applications, we specialize the general results here developed to
prove the error characterization lemmas given in Section 4, i.e., Lemma 6 and Lemma 9.

While the main architecture of the results for the voltage problem (Algorithm 3) and
the flow problem (Algorithm 5) is similar, there are some key differences that need to be
taken into account. First, as the voltage algorithm updates functions (i.e., messages) on the
vertices while the flow algorithm updates functions on the edges, the two algorithms give
rise to different topologies for the computation tree. Second, as the voltage problem is an
unconstrained optimization problem while the flow problem is an optimization problem with
constraints, a different mechanism to find the fix point(s) of the algorithm is needed. As in
the literature, to the best of our knowledge, previous analyses of the Min-Sum algorithm for
quadratic and, more generally, convex problems only focused on the unconstrained case, we
first present the full details of the results for the flow problem. Then, we give an overview
of the results for the voltage problem, outlining in details only the parts where the analysis
differs significantly from the one done for the flow problem.
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5.1. Flow Problem, Algorithm 3

Our framework builds on the general scheme presented in Moallemi and Van Roy (2010)
for unconstrained optimization problems, as we investigate the evolution of the Min-Sum
algorithm under a set of linear perturbations. Henceforth, we consider Algorithm 5 when
the initial messages are parametrized by {R0

e→v = Ree}, {r0
e→v = pe→v}, for a certain set

of real numbers p = {pe→v}. As far as the analysis is concerned, it is convenient (and
more amenable to generalizations) to consider the form of Algorithm 4. For a given choice
of perturbation parameters p = {pe→v}, define the initial messages as µ0

e→v( · , p) : z ∈
R −→ µ0

e→v(z, p) = 1
2Reez

2 + pe→vz, and denote by {µse→v( · , p)}, s ≥ 1, the corresponding
sequence of messages generated by the Min-Sum algorithm. Denote the estimates at time t
as x̂t(p)e := arg minz∈R µ

t
e(z, p), where µte( · , p) is the corresponding belief function. We use

the notation N (v) := {w ∈ V : {v, w} ∈ E} to denote the neighborhood of vertex v in G.

5.1.1. Computation Tree (Flow Problem)

To investigate the convergence behavior of the Min-Sum algorithm, we recall the concept of
the computation tree, which is the graph obtained by unraveling the operations of the algo-
rithm with time (Gallager, 1963; Weiss and Freeman, 2001; Tatikonda and Jordan, 2002).
Given an edge ẽ = (ṽ, w̃) ∈ ~E, the computation tree rooted at ẽ of depth t supports the opti-
mization problem that is obtained by unfolding the computations involved in the Min-Sum
estimate x̂t(p)ẽ. Formally, the computation tree is a directed tree ~T = (V, ~E) (throughout,
we use the double-struck notation to refer to quantities related to the computation tree)
where each vertex in V is mapped to a vertex in V through a map σ : V→ V that preserves
the edge structure, namely, if e = (v,w) ∈ ~E then (σ(v), σ(w)) ∈ ~E. Henceforth, we use the
notation σ(e) := (σ(v), σ(w)). The tree ~T is defined iteratively. Initially, at level 0, the tree
corresponds to a single root edge ẽ = (ṽ, w̃) ∈ ~E corresponding to ẽ, i.e., σ(ẽ) = ẽ. At this
stage, ṽ and w̃ are the leaves of the tree. For the remaining t levels, the following procedure
is repeated. The leaves in the tree are examined. Given a leaf v with σ(v) = v that is
connected to a vertex w with σ(w) = w, for any z ∈ N (v) \w, a vertex z with σ(z) = z and
a directed edge (v, z) (resp. (z, v)) are added to the next level of the tree if (v, z) ∈ ~E (resp.
(z, v) ∈ ~E). Figure 4 gives an example. We denote the set of vertices and edges in the k-th
level of the tree respectively by Vk ⊂ V and Ek ⊂ E. In what follows we also extend the
usual neighborhood notation to vertices and edges in the graph T, namely, ∂v is the set of
edges in T that are connected to node v, and ∂e is the set of vertices in T that are connected
to edge e.

The t-th (last) level of the tree ~T is of particular relevance, as it supports the initial

conditions of the Min-Sum algorithm, as we are now about to describe. Let R ∈ R~E×~E be
the diagonal matrix defined by Ree := Rσ(e)σ(e). For a given choice of the perturbation

parameters p = {pe→v}, define p(p) ∈ R~E by p(p)e := pσ(e)→σ(v) if e ∈ ~Et, v = ∂e ∩ Vt−1,
and equals to 0 otherwise. Let V̄ := V \ Vt (throughout, we use the bar notation to denote

quantities related to a graph in which a node has been removed). Define the matrix Ā ∈ RV̄×~E

as Āve := Aσ(v)σ(e) if e ∈ ∂v and Āve := 0 otherwise. Define the vector b̄ ∈ RV̄ as b̄v := bσ(v).
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Figure 4: Graph ~G = (V = {1, 2, 3, 4}, ~E) (left) and computation tree ~T = (V, ~E) of depth
t = 3 with root edge corresponding to (1, 2) ∈ ~E (right). Vertices in ~T are labeled by the
corresponding vertices in ~G.

Consider the following problem supported on the tree ~T, over x ∈ R~E:

minimize
1

2
xTRx + p(p)T x

subject to Āx = b̄.
(9)

Let x?(p) denote the unique optimal solution of this problem, as a function of the
perturbation p. The relationship between the Min-Sum algorithm and the computation
tree is made explicit by the following lemma, which can be easily established by inductively
examining the operations of Algorithm 4.

Lemma 20 Given the setting of this section, x̂t(p)ẽ = x?(p)ẽ.

We now introduce a few quantities related to the computation tree ~T and the problem (9)

that will play a key role in our analysis. The signed vertex-edge incidence matrix A ∈ RV×~E

associated to the directed graph ~T is defined for each v ∈ V, e ∈ ~E as Ave := 1 if edge
e leaves node v, Ave := −1 if edge e enters node v, and Ave := 0 otherwise. It is easy
to verify that Ā is the submatrix of A that corresponds to the rows associated to V̄. Let
W ∈ RV×V be a symmetric matrix that assigns a positive weight to every edge in ~E, defined
as Wvw := Wσ(v)σ(w) if either (v,w) ∈ ~E or (w, v) ∈ ~E, and Wvw := 0 otherwise. Henceforth,

we think of ~T = (V, ~E,W) as the corresponding weighted graph, and T = (V,E,W) as the
undirected graph naturally associated to ~T, where the edge set E is obtained by removing
the orientation from the edges in ~E. As T is connected by assumption, it is easy to show that
the range of A is spanned by the vectors orthogonal to the all-ones vector. It follows that
the matrix Ā has full row rank. Define the weighted degree of a vertex v by dv :=

∑
w∈V Wvw,

and let D ∈ RV×V be the diagonal matrix defined by Dvv := dv. The Laplacian L of the
graph ~T is the matrix defined as L := D−W. Let L̄ ∈ RV̄×V̄ denote the submatrix of L that
corresponds to the rows and columns associated to V̄. Note that Ree := 1/Wvw. It is easy
to verify that the following equalities holds: L = AR−1AT and L̄ = ĀR−1ĀT . We also define
the transition matrix of the ordinary diffusion random walk on T as the matrix P := D−1W.

5.1.2. Fix Point (Flow Problem)

Clearly, the choice p = 0 for the linear perturbation parameters yields the original (un-
perturbed) algorithm. The next theorem below shows that for a particular choice of p the
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Min-Sum algorithm yields the optimal solution at any time t ≥ 1. The optimal choice of
p is a function of the optimal Lagrangian multipliers for problem (3). Recall from (4) that
the Lagrangian of this optimization problem is given by L(x, ν) := 1

2x
TRx + νT (b − Ax),

where ν = (νv)v∈V is the vector formed by the Lagrangian multipliers. Define the function

Ψ from R ~E×RV to R ~E×RV as Ψ(x, ν) := (∇xL(x, ν), Ax− b) = (Rx−AT ν,Ax− b). Recall
that x? denotes the unique optimal solution of problem (3). As the constraints are linear,
by the Lagrange multiplier theorem there exists ν? ∈ RV so that Ψ(x?, ν?) = 0, i.e.,{

Reex
?
e − (AT ν?)e = 0 for e ∈ ~E,∑

e∈ ~E Avex
?
e = bv for v ∈ V.

(10)

Note that the first line in (10) represents Ohm’s law, and the second line represents
Kirchhoff’s law. Given the pair (x?, ν?), we are now ready to define the set of parameters
p? = {p?e→v} so that the Min-Sum algorithm yields the optimal solution at any time step.

Theorem 21 For each e ∈ ~E, v ∈ ∂e, let w = ∂e \ v and define p?e→v := −Aweν?w. Then,
for any ẽ ∈ ~E, t ≥ 1, we have x̂t(p?)ẽ = x?ẽ.

Proof Fix ẽ ∈ ~E, t ≥ 1. Consider the setting in Section 5.1.1, and let ~T be the computation
tree of depth t rooted at ẽ. The Lagrangian of the problem (9) corresponding to the choice

p = p? is the function L from R~E×RV̄ to R defined by L(x, �) := 1
2x
TRx+p(p?)T x+�T (b̄−Āx),

where � = (�v)v∈V̄. Let 	 from R~E×RV̄ to R~E×RV̄ be defined as 	(x, �) := (∇xL(x, �), Āx−
b̄) = (Rx + p(p?) − ĀT �, Āx − b̄). The Lagrangian multiplier theorem says for the unique

minimizer x? ≡ x?(p?) ∈ R~E of (9) there exists �? ∈ RV̄ so that 	(x?, �?) = 0, namely,
Reex?e − (ĀT �?)e = 0, e ∈ ~E \ ~Et,
Reex?e + p?σ(e)→σ(v)−(ĀT �?)e = 0, e ∈ ~Et, v = ∂e ∩ Vt−1,∑

e∈~E Āvex?e = b̄v, v ∈ V̄.

Using (10) it is easy to check that the choice x?e = x?σ(e) and �?v = ν?σ(v) satisfies the above
system of equations. The proof is concluded by Lemma 20.

5.1.3. Error Characterization (Flow Problem)

The next lemma characterizes the sensitivity of the ẽ-th component (root edge of ~T) of
the optimal solution of the optimization problem (9) with respect to perturbations of the
parameters pe→v’s, which are supported on ~Et.

Lemma 22 Consider the setting in Section 5.1.1. Fix ẽ = (ṽ, w̃) ∈ ~E, t ≥ 1, and let ~T
be the computation tree of depth t rooted at ẽ, with root edge ẽ = (ṽ, w̃) ∈ ~E. For any
p = {pe→v}, e ∈ ~E and v ∈ ∂e, we have

∂

∂pe→v
x?(p)ẽ =

1

Rẽẽ

∑
v∈Vt−1

(L̄−1
ṽv − L̄−1

w̃v )(ye→v)v,

where ye→v ∈ RVt−1
is defined, for each v ∈ Vt−1, as (ye→v)v := Ave

Ree
1σ(v)=v1σ(∂v∩~Et)=e, where

1S is the indicator function defined as 1S = 1 if statement S is true, 1S = 0 otherwise.
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Proof By Proposition 31 in Appendix B, the solution of problem (9) reads x?(p) =

R−1ĀT L̄−1b̄ + (R−1ĀT L̄−1Ā − I)R−1p(p), where I ∈ R~E×~E is the identity matrix. As p(p)
is supported on the edges of T that are connected to its leaves and ẽ is the root edge, we
have ∂

∂pe→v
x?(p)ẽ =

(
R−1ĀT L̄−1ĀR−1 ∂

∂pe→v
p(p)

)
ẽ = 1

Rẽẽ

∑
v∈Vt−1(L̄−1

ṽv − L̄−1
w̃v )(ye→v)v, where

(ye→v)v = (ĀR−1 ∂
∂pe→v

p(p))v = Ave
Ree

1σ(v)=v1σ(∂v∩~Et)=e for each v ∈ Vt−1.

As a consequence of Lemma 22, we immediately have the following characterization of
the error committed by Algorithm 5 with initial conditions {R0

e→v = Ree}, {r0
e→v = 0}.

Theorem 23 Consider the setting in Section 5.1.1. Fix ẽ = (ṽ, w̃) ∈ ~E, t ≥ 1, and let ~T
be the computation tree of depth t rooted at ẽ, with root edge ẽ = (ṽ, w̃) ∈ ~E. We have

x?ẽ − x̂tẽ = Wṽw̃

∑
v∈Vt−1

(L̄−1
ṽv − L̄−1

w̃v )
∑
w∈Vt

Wvwν
?
σ(w).

Proof From Theorem 21 and Lemma 22, by the fundamental theorem of calculus and
the chain rule of differentiation, we get x?ẽ − x̂tẽ = x̂t(p?)ẽ − x̂t(0)ẽ =

∫ 1
0 dθ

d
dθx

?(θp?)ẽ =∫ 1
0 dθ

∑
e∈ ~E,v∈∂e

∂
∂pe→v

x?(θp?)ẽ p
?
e→v = Wṽw̃

∑
v∈Vt−1(L̄−1

ṽv − L̄−1
w̃v )

∑
e∈ ~E,v∈∂e(ye→v)v p

?
e→v. By

Theorem 21 p?e→v = −Aweν?w, w = ∂e \ v, and
∑

e∈ ~E
v∈∂e

(ye→v)v p
?
e→v =

∑
w∈Vt Wvwν

?
σ(w).

We now use the error characterization provided by Theorem 23 and the general connec-
tion between restricted Laplacians and random walks developed in Appendix A to prove the
results in Section 4. Henceforth, for each v ∈ V, let Pv be the law of a time homogeneous
Markov chain X0, X1, X2, . . . on V with transition matrix P := D−1W and initial condition
X0 = v. Analogously, denote by Ev the expectation with respect to this law. The hitting
time to a set Z ⊆ V is defined as TZ := inf{k ≥ 0 : Xk ∈ Z}. We also extend the notation
N (v) := {w ∈ V : {v,w} ∈ E} to denote the vertex-neighborhood of vertex v in T.

The next lemma, which builds on the results developed in Appendix A, gives an expres-
sion for the restricted Laplacian in terms of hitting probabilities of random walks. This
result represents the computational device that we will use repeatedly in what follows.

Lemma 24 Consider the setting in Section 5.1.1. Fix ẽ = (ṽ, w̃) ∈ ~E, t ≥ 1, and let ~T be
the computation tree of depth t rooted at ẽ, with root edge ẽ = (ṽ, w̃) ∈ ~E. For each v ∈ V̄,
w ∈ Vt−1, with z = N (w) \ Vt, we have

L̄−1
vw =

Pv(Tw < TVt)

[1−Pz(Tw < TVt) Pw(X1 = z)] dw
.

Proof Fix v ∈ V̄, w ∈ Vt−1, and let z = N (w) \ Vt. Define the random variable

A :=
∑TVt

k=0 1Xk=w. From Proposition 30 we have L̄−1
vw = 1

dw
Ew[A] Pv(Tw < TVt). By the

Markov property, performing a first step analysis for the random walk, we get Ew[A] =
1 +

∑
z̃∈N (w)Ez̃[A]Pw(X1 = z̃) = 1 + Ez[A]Pw(X1 = z), where we used that Ez̃[A] = 0

for any z̃ ∈ Vt. Conditioning on the event {Tw < TVt} and its complementary, using
that Ez[A|Tw > TVt ] = 0, we also get Ez[A] = Ez[A|Tw < TVt ] Pz(Tw < TVt). By the
strong Markov property Ez[A|Tw < TVt ] = Ew[A], so that Ew[A] = 1 + Ew[A] Pz(Tw <
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TVt) Pw(X1 = z) and Ew[A] = 1/(1−Pz(Tw < TVt) Pw(X1 = z)).

5.1.4. Proofs of Results for d-Regular Graphs (Flow Problem)

We can now present the proofs of the results concerning the flow problem contained in
Lemma 6 and Lemma 9 on the characterization of the error committed by the Min-Sum
algorithm as a function of time and as a function of the voltage solution ν? = L+b.

Proof [Proof of Lemma 6, flow problem] Let ~G = (V = {0, . . . , n−1}, ~E,W ) be a weighted
directed cycle. Consider the setting in Section 5.1.1. Fix v ∈ V and assume that ẽ = (ṽ =
ρ(v), w̃ = ρ(v + 1)) ∈ ~E (the case e = (w̃ = ρ(v + 1), ṽ = ρ(v)) yields to the same result
with a minus sign in front). Fix t ≥ 2, and let ~T be the computation tree of depth t rooted
at ẽ, with root edge ẽ = (ṽ, w̃) ∈ ~E. Label the tree vertices as V = {0, 1, . . . , 2t + 1}, as in
Figure 5. Clearly, ṽ = t, w̃ = t+ 1, Vt−1 = {1, 2t}, and Vt = {0, 2t+ 1}.

0

1 2

3

4

5
6

7

8

tṽ

t−1

1

0

t+1 w̃

t+2

2t

2t+1

Figure 5: Cycle G = (V,E) (left) and computation tree T = (V,E) of depth t with root edge
{ṽ = t, w̃ = t+ 1} ∈ E (right).

We will apply Lemma 24 to compute the quantities L̄−1
ṽv − L̄−1

w̃v , for each v ∈ Vt−1. We
write the computations for v = 1, as the case v = 2t follows immediately by symmetry.
For convenience of notation, we write Ws to indicate Ws,s+1. For each s ∈ V, define fs :=
Ps(T1 < TVt), ps := Ps(X1 = s+ 1) = Ws/ds, ds := Ws−1 +Ws, and qs := Ps(X1 = s−1) =
1− ps. By a first step analysis of the random walk and the Markov property, we have

fs = fs−1qs + fs+1ps, s ∈ {2, . . . , 2t}, (11)

with boundary conditions f1 = 1, f2t+1 = 0. The above system of equations corresponds to
the classical Gambler Ruin’s problem, with final states 1 and 2t+ 1, see Figure 6.

1 2 · · · s · · · 2t 2t+1

p1

q2

p2

q3

ps−1

qs

ps

qs+1

p2t−1

q2t

p2t

q2t+1

Figure 6: Gambler’s Ruin.

To solve these equations, using that 1 = ps + qs, we first rewrite them as fs+1 − fs =
qs
ps

(fs − fs−1), for s ∈ {2, . . . , 2t}. Using that qs/ps = Ws−1/Ws we get fs+1 − fs =
W1
Ws

(f2 − f1). Summing these equations side by side, using that f1 = 1, we get fs =
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1 + (f2 − 1)W1(1/W1 + 1/W2 + · · ·+ 1/Ws−1). Using that f2t+1 = 0 we can solve for f2 and

finally obtain fs = 1/Ws+1/Ws+1+···+1/W2t

1/W1+1/W2+···+1/W2t
for any s ∈ {1, . . . , 2t}. From Lemma 24, noticing

that z = 2 in this case, we have L̄−1
ṽ1 − L̄−1

w̃1 = (ft − ft+1)/((1 − f2p1)d1), which equals

L̄−1
ṽ1 − L̄−1

w̃1 = 1/Wt

W0(1/W0+···+1/W2t)
. By symmetry, we have L̄−1

ṽ,2t − L̄−1
w̃,2t = −1/Wt

W2t(1/W0+···+1/W2t)
.

By Theorem 23, as Ws = Wσ(s),σ(s+1), we finally get x?ẽ − x̂tẽ =
ν?
σ(0)
−ν?

σ(2t+1)

1/Wσ(0)σ(1)+···+1/Wσ(2t)σ(2t+1)
.

The proof follows as the map σ : V→ V reads σ(s) = ρ(s− t+ v).

Proof [Proof of Lemma 9, flow problem] Let ~G = (V, ~E,W ) be a connected d-regular graph,
with d ≥ 3, where each edge has the same weight ω. Consider the setting in Section 5.1.1.
Fix ẽ = (ṽ, w̃) ∈ ~E, t ≥ 3, and let ~T be the computation tree of depth t rooted at ẽ, with
root edge ẽ = (ṽ, w̃) ∈ ~E. Fix v ∈ Vt−1, and assume that v is contained in the subtree
with root vertex ṽ. For what follows, it is convenient to label some of the vertices in V. Let
v = 0, 1 = N (v)\Vt, 2 = N (1)\Vt−1, . . . , k+1 = N (k)\Vt−k, until we reach ṽ = t−1. Label
w̃ = t. See Figure 7. We will apply Lemma 24 to compute the quantity L̄−1

ṽv − L̄−1
w̃v . To this

t−1ṽ

1

0v

t w̃

Figure 7: Computation tree T = (V,E) of depth t = 3 associated to any 3-regular graph.

end, we need to compute the hitting probabilities fw := Pw(Tv < TVt) for w ∈ {1, t− 1, t}.
To do this, it is convenient to first reduce the network topology by invoking the equivalence
between random walks and electrical circuits. See Peter G. Doyle (1984). The electrical
circuit associated to the random walk X on T is constructed by assigning to each edge
e = {v,w} ∈ T a conductor ω, which corresponds to a resistor 1/ω. Then, the quantities
fw, w ∈ V, correspond to the voltages induced on V \ {v ∪ Vt} when a voltage of intensity 1
is applied to v (fv = 1), and a voltage of intensity 0 is applied to the sites in Vt (fw = 0,
w ∈ Vt). By repeatedly applying the standard network reduction operations for conductors
in parallel and in series, it is easy to verify that, as long as the quantities f1, f2, . . . , ft are
concerned, the original network is equivalent to the one represented in Figure 8.

0 1 · · · s · · · t−1 t

t+1

ω ω ω ω ω ω

C0 C1Cs−1 Cs Cs+1Ct−1Ct

Figure 8: Reduced network.

In the reduced network, the conductance between the pairs of nodes s and s + 1, for
s ∈ {0, . . . , t − 1}, remain ω as in the unreduced network, i.e., the computation tree. The
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effect of all the nodes different from 0, . . . , t in the original graph is summarized in the
reduced network by node t+ 1. For any s ∈ {0, . . . , t}, between node s and node t+ 1 there
is a new conductor Cs, which is obtained by reducing the subtree having root vertex s in
the original graph. It is easy to verify that

C0 = ω(d− 1), Cs = ω
(d− 2)2

d− 1
(1 + hs+1), s ∈ {1, . . . , t− 1}, Ct = ω(d− 2)(1 + ht),

with hs := 1
(d−1)s−1 . Let p0 := ω

ω+C0
, q0 := 1 − p0, ps = qs := ω

2ω+Cs
for s ∈ {1, . . . , t − 1},

pt := Ct
ω+Ct

, qt := 1− pt. By the Markov property we have

fs = fs−1qs + fs+1ps, s ∈ {1, . . . , t}, (12)

with f0 = 1, ft+1 = 0. This system of equations corresponds to a modification of the
classical Gambler Ruin’s problem, where states 0 and t + 1 are the final states, and each
intermediate state s has a probability rs := 1− ps − qs to reach state t+ 1. See Figure 9.

0 1 · · · s · · · t−1 t t+1

p0

q1

p1

q2

ps−1

qs

ps

qs+1

pt−2

qt−1

pt−1

qt

pt

q0

r1

rs−1

rs
rs+1

rt−1

Figure 9: Gambler’s Ruin on the reduced network.

Without loss of generality, we set rt = 0. We can easily write the solution of this system
of equations in a compact form. Define α1 = α2 := 1, αs := αs−1 − ps−2qs−1αs−2 for s ≥ 3.
Define β1 = β2 := 1, βs := βs−1 − ps−1qsβs−2 for s ≥ 3. Then, as a function of f1, we
can write the solution of (12) as fs = 1

p1···ps−1
(αsf1 − βs−1q1), for s ∈ {2, . . . , t + 1}. In

fact, it is easy to verify that this expression satisfies system (12). Using ft+1 = 0 we find
f1 = q1βt/αt+1 and fs = p0q1

p0···ps−1
(αsβtαt+1

− βs−1) for s ∈ {1, . . . , t+ 1}, with β0 := 0. Lemma
24 yields the following, using that dv = ωd,

L̄−1
ṽv =

ft−1

(1− f1p0)dv
=

1

ωd

q1

p1 · · · pt−2(αt+1 − p0q1βt)
(αt−1βt − αt+1βt−2),

L̄−1
w̃v =

ft
(1− f1p0)dv

=
1

ωd

q1

p1 · · · pt−2(αt+1 − p0q1βt)

1

pt−1
(αtβt − αt+1βt−1).

Using the recursive formulas for αt+1 and βt, and the fact that pt + qt = 1, we get
L̄−1

ṽv − L̄−1
w̃v = 1

ωd
q1

p1···pt−2(αt+1−p0q1βt) pt (αt−1βt−1 − αtβt−2), which, as αsβs − αs+1βs−1 =

ps−1qs(αs−1βs−1 − αsβs−2), becomes

L̄−1
ṽv − L̄−1

w̃v =
pt
qt

L̄−1
w̃v =

1

ωd(d− 1)t−1

1

ξt−1
, (13)
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where ξt−1 := 1
(d−1)t−1

αt+1−p0q1βt
q1···qt−1pt

is defined by ξs = ps
qsps+1(d−1)ξs−1− ps−1psqs+1

qs−1qsps+1(d−1)2
ξs−2 for

s ∈ {2, . . . , t − 1}, with ξ0 := p0q1
p1

and ξ1 = 1
d−1

1−p0q1−p1q2
q1p2

. Plugging in the definitions of
the transition probabilities, recalling the quantities defined in Proposition 8, it is immediate
to verify that δs ≡ ξs for s ∈ {0, . . . , t − 2} and cd,t ≡ ξt−1. By symmetry, it is clear that
L̄−1

ṽv − L̄−1
w̃v = 1

ωd(d−1)t−1
1
cd,t

holds for any v ∈ Vt−1 that is contained in the subtree of T with

root vertex ṽ. On the other hand, again by symmetry, for any v ∈ Vt−1 contained in the
subtree of T with root vertex w̃ we have L̄−1

ṽv − L̄−1
w̃v = − 1

ωd(d−1)t−1
1
cd,t

. Theorem 23 yields

x?ẽ − x̂tẽ = ω2
∑

v∈Vt−1

(L̄−1
ṽv − L̄−1

w̃v )
∑
w∈Vt

ν?σ(w) =
ω

d(d− 1)t−1

1

cd,t

∑
v∈V

ν?v (#t
ṽ→v,w̃ −#t

w̃→v,ṽ),

where #t
ṽ→v,w̃ is the number of non-backtracking paths in the original undirected graph

G = (V,E) that connect node ṽ to node v in t time steps, where the first step is different
from w̃. As the total number of non-backtracking paths after t steps is d(d− 1)t−1, we have
~Pṽ(Y1 6= w̃, Yt = v) = #t

ṽ→v,w̃/(d(d − 1)t−1). The proof follows as ~Pṽ(Y1 6= w̃, Yt = v) =
~Pṽ(Yt = v|Y1 6= w̃)~Pṽ(Y1 6= w̃), and ~Pṽ(Y1 6= w̃) = (d− 1)/d.

5.2. Voltage Problem, Algorithm 5

We now give an overview of the results in the voltage case. The main framework for these
results is the same as the one used in the previous section to investigate the behavior of
the Min-Sum algorithm applied to the flow problem. For this reason, as outlined at the
beginning of Section 5, here we only discuss in details the parts of the proofs that present
major differences compared to the flow problem.

Henceforth we consider Algorithm 3 when the initial messages are parametrized by
{W 0

e→v = Wvw, e = {v, w}}, {h0
e→v = pe→v}, for a certain set of real numbers p = {pe→v}.

Also in this case, as far as the analysis is concerned, it is convenient to consider the form of
Algorithm 2. For a given choice of perturbation parameters p = {pe→v}, define the initial
messages as µ0

e→v( · , p) : z ∈ R −→ µ0
e→v(z, p) = 1

2Wvwz
2 + pe→vz, where e = {v, w}, and

denote by {µse→v( · , p)}, s ≥ 1, the corresponding sequence of messages generated by the
Min-Sum algorithm. Denote the estimates at time t as ν̂tv = arg minz∈R µ

t
v(z, p), where

µtv( · , p) is the corresponding belief function.

5.2.1. Computation Tree (Voltage Problem)

The computation tree for the voltage problem differs from the one in the flow problem due
to the fact that the Min-Sum algorithms for the voltage problem propagates messages that
are supported on vertices, not on edges. For this reason, the computation tree that we will
now define is rooted at a vertex, not at an edge as the one defined in Section 5.1.1.

Given a vertex ṽ ∈ V , the computation tree rooted at ṽ of depth t supports the opti-
mization problem that is obtained by unfolding the computations involved in the Min-Sum
estimate ν̂t(p)ṽ. Formally, the computation tree is an undirected tree T = (V,E) where
each vertex in V is mapped to a vertex in V through a map σ : V → V that preserves
the edge structure, namely, if e = {v,w} ∈ E then σ(e) := {σ(v), σ(w)} ∈ E. The tree T
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is defined iteratively. Initially, at level −1, the tree is made by a single root vertex ṽ ∈ V
corresponding to ṽ, i.e., σ(ṽ) = ṽ. Consecutively, for any z ∈ N (ṽ), a vertex z with σ(z) = z
and an edge {ṽ, z} are added to the level 0 of the tree. For the remaining t − 1 levels, the
following procedure is repeated. The leaves in the tree are examined. Given a leaf v with
σ(v) = v that is connected to a vertex w with σ(w) = w, for any z ∈ N (v) \ w, a vertex z
with σ(z) = z and an edge {v, z} are added to the next level of the tree. Figure 10 gives an
example. We denote the set of vertices and edges in the k-th level of the tree respectively
by Vk ⊂ V and Ek ⊂ E. In what follows we also extend the usual neighborhood notation to
vertices and edges in the graph T, namely, ∂v is the set of edges in T that are connected to
node v, and ∂e is the set of vertices in T that are connected to edge e.

1 2

34

1

2

3

1 4

3

2

1

4

1

4

3

1 2

Figure 10: Graph G = (V = {1, 2, 3, 4}, E) (left) and computation tree T = (V,E) of depth
t = 2 with root edge corresponding to 1 ∈ V (right). Vertices in T are labeled by the
corresponding vertices in G.

The t-th (last) level of the tree is of particular relevance as it supports the initial con-
ditions of the Min-Sum algorithm, as we are now about to describe. Let W ∈ RV×V be the
diagonal matrix defined by Wvw := Wσ(v)σ(w) if {v,w} ∈ E and Wvw := 0 otherwise. Let

V̄ := V \Vt. Define the weighted degree of a vertex v by dv :=
∑

w∈V Wvw, and let D ∈ RV×V

be the diagonal matrix defined by Dvv := dv. The Laplacian L of the graph T is the matrix
defined as L := D − W. Let L̄ ∈ RV̄×V̄ denote the submatrix of L that corresponds to
the rows and columns associated to V̄. For a given choice of the perturbation parameters
p = {pe→v}, define p̄(p) ∈ RV̄ by

p̄(p)v :=

{∑
f∈∂v\e pσ(f)→σ(v) if v ∈ Vt−1, e = ∂v \ Et,

0 otherwise,
(14)

and let b̄ ∈ RV̄ defined by b̄v := bσ(v) for each v ∈ V̄.

Consider the following problem supported on the computation tree T, over �̄ ∈ RV̄:

minimize
1

2
�̄T L̄�̄ + (p̄(p)− b̄)T �̄. (15)

While the Laplacian L is positive semi-definite, the restricted Laplacian L̄ is positive
definite (Spielman, 2010). Hence, for any choice of the perturbation p the objective function
in problem (15) is strictly convex and it admits a unique solution �̄?(p). The relationship
between the Min-Sum algorithm and the tree is made explicit by the following lemma, which
can be established by inductively examining the operations of Algorithm 2.

Lemma 25 Given the setting of this section, ν̂t(p)ṽ = �̄?(p)ṽ.
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5.2.2. Fix Point (Voltage Problem)

The choice p = 0 for the linear perturbation parameters yields the original (unperturbed)
algorithm. The next theorem below shows that for a particular choice of p the Min-Sum
algorithm yields the optimal solution at any time t ≥ 1. The optimal choice of p is a
function of the optimal solution ν? for problem (2). Recall that, by definition, ν? is the
unique vector that satisfy Lν? = b and 1T ν? = 0. Hence, component-wise, for each v ∈ V ,

dvν
?
v −

∑
w∈∂v

Wvwν
?
w − bv = 0, (16)

where recall that dv :=
∑

w∈∂vWvw. Given ν?, we are now ready to define the set of
parameters p? = {p?e→v} so that the Min-Sum algorithm yields the optimal solution at any
time step.

Theorem 26 For each e ∈ E, v ∈ ∂e, let w = ∂e \ v and define p?e→v := −Wvwν
?
w. Then,

for any ṽ ∈ V , t ≥ 1, we have ν̂t(p?)ṽ = ν?ṽ .

Proof Fix ṽ ∈ V , t ≥ 1. Consider the setting in Section 5.2.1, and let T be the computation
tree of depth t rooted at ṽ. From the first order optimality conditions for problem (15)
corresponding to the choice p = p?, we know that �̄? ≡ �̄?(p?) is the unique vector so that{

dv�̄?v −
∑

w∈∂v Wvw�̄?w − b̄v = 0, v ∈ V̄ \ Vt−1,

dv�̄?v −Wvw�̄?w + p̄(p?)v − b̄v = 0, v ∈ Vt−1, {v,w} = ∂v \ Et.

Using (16) it is easy to check that the choice �̄?v = ν?σ(v) satisfies the above system of equa-
tions. The proof is concluded by Lemma 25.

5.2.3. Error Characterization (Voltage Problem)

The next lemma characterizes the sensitivity of the ṽ-th component (root vertex of T) of
the optimal solution of the optimization problem (15) with respect to perturbations of the
parameters pe→v’s, which are supported on Vt−1.

Lemma 27 Consider the setting in Section 5.2.1. Fix ṽ ∈ V , t ≥ 1, and let T be the
computation tree of depth t rooted at ṽ, with root edge ṽ. For any p = {pe→v}, e ∈ E and
v ∈ ∂e, we have

∂

∂pe→v
�̄?(p)ṽ = −

∑
v∈Vt−1

L̄−1
ṽv (ye→v)v,

where ye→v ∈ RVt−1
is defined, for each v ∈ Vt−1, as (ye→v)v := 1σ(v)=v1σ(∂v∩~Et)=e.

Proof From the first order optimality conditions, we know that the unique solution of
problem (15) reads �̄?(p) = L̄−1(b̄− p̄(p)) so that ∂

∂pe→v
�̄?(p) = −L̄−1 ∂

∂pe→v
p̄(p). Using (14)

it is easy to check that (ye→v)v = ( ∂
∂pe→v

p̄(p))v.

As a consequence of Lemma 27, we immediately have the following characterization of
the error committed by Algorithm 3 with {W 0

e→v = Wvw, e = {v, w}}, {h0
e→v = 0}.
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Theorem 28 Consider the setting in Section 5.2.1. Fix ṽ ∈ V , t ≥ 1, and let T be the
computation tree of depth t rooted at ṽ, with root vertex ṽ ∈ V. We have

ν?ṽ − ν̂tṽ =
∑

v∈Vt−1

L̄−1
ṽv

∑
w∈Vt

Wvwν
?
σ(w).

Proof From Theorem 26 and Lemma 27, ν?ṽ − ν̂tṽ = ν̂t(p?)ṽ − ν̂t(0)ṽ =
∫ 1

0 dθ
d
dθ �̄

?(θp?)ṽ =∫ 1
0 dθ

∑
e∈E,v∈∂e

∂
∂pe→v

�̄?(θp?)ṽ p
?
e→v = −

∑
v∈Vt−1 L̄−1

ṽv

∑
e∈E,v∈∂e(ye→v)v p

?
e→v, by the fun-

damental theorem of calculus and the chain rule of differentiation. From Theorem 26 we
get p?e→v := −Wvwν

?
w for e = {v, w}, and

∑
e∈E,v∈∂e(ye→v)v p

?
e→v = −

∑
w∈Vt Wvwν

?
σ(w).

Lemma 24 for the flow case holds also in the present case, upon referring the notation
Pv, Ev, etc. to the Markov chain defined on the computation tree for the voltage case.

5.2.4. Proofs of Results for d-Regular Graphs (Voltage Problem)

We can now present the outline of the proofs for the results concerting the voltage problem
in Lemma 6 and Lemma 9 in Section 4. Here we assume that the reader is already familiar
with the proofs for the flow case.

Proof [Proof of Lemma 6, voltage problem] Let G = (V = {0, . . . , n − 1}, E,W ) be a
weighted cycle. Consider the setting in Section 5.2.1. Fix v ∈ V , t ≥ 2, and let T be
the computation tree of depth t rooted at ṽ, with root vertex ṽ, i.e., σ(ṽ) = ṽ. Label the
vertices of the computation tree as V = {0, 1, . . . , 2t+2}, as in Figure 11. Clearly, ṽ = t+1,
Vt−1 = {1, 2t+ 1}, and Vt = {0, 2t+ 2}.

0

1 2

3

4

5
6

7

8

t+1

ṽ
t

1

0

t+2

2t+1

2t+2

Figure 11: Ring G = (V,E) (left) and computation tree T = (V,E) of depth t with root
vertex ṽ = t+ 1 ∈ V (right).

Given this set up for the computation tree, the remaining of the proof follows exactly
the steps of the proof in the flow case. Using the analogue of Lemma 24 for the voltage
case, we can compute the quantities L̄−1

ṽv , for each v ∈ Vt−1, by solving a system of equa-

tions like (11). If we write Ws to indicate Ws,s+1, we find that L̄−1
ṽ1 = 1/Wt+1+···+1/W2t+1

W0(1/W0+···+1/W2t+1) ,

and, by symmetry, L̄−1
ṽ,2t+1 = 1/W0+···+1/Wt

W2t+1(1/W0+···+1/W2t+1) . By Theorem 28 we get ν?ṽ − ν̂tṽ =∑
v∈Vt−1 L̄−1

ṽv

∑
w∈Vt Wvwν

?
σ(w) = 1/Wt+1+···+1/W2t+1

1/W0+···+1/W2t+1
ν?σ(0) + 1/W0+···+1/Wt

1/W0+···+1/W2t+1
ν?σ(2t+2), and the

proof follows using Ws = Wσ(s),σ(s+1) and that σ : V→ V reads σ(v) = ρ(s− t− 1 + ṽ).
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Proof [Proof of Lemma 9, voltage problem] Let G = (V,E,W ) be a connected d-regular
graph, with d ≥ 3, where each edge has the same weight ω. Consider the setting in Section
5.2.1. Fix w̃ ∈ V , t ≥ 3, and let T be the computation tree of depth t rooted at w̃, with
root vertex w̃ ∈ V. Fix v ∈ Vt−1. For what follows, it is convenient to label some of the
vertices in V. Let v = 0, 1 = N (v) \ Vt, 2 = N (1) \ Vt−1, . . . , k + 1 = N (k) \ Vt−k, until
we reach w̃ = t. See Figure 12. Given this set up for the computation tree, the remaining

tw̃

1

0v

Figure 12: Computation tree T = (V,E) of depth t = 2 associated to any given d-regular
graph, with d = 3.

of the proof follows exactly the steps of the proof in the flow case. Using the analogue of
Lemma 24 for the voltage case, we can compute L̄−1

w̃v by solving a system of equations of the
form (12) supported on the a reduced network that is exactly like the one in Figure 8. The
only difference is that now Ct = ω(d − 2)(1 + ht+1), while all other effective conductances
Cs, for s ∈ {0, . . . , t − 1}, read exactly as for the flow problem. Rearranging (13) we get

L̄−1
w̃v = 1

ωd(d−1)t−1
qt
pt

1
ξt−1

, where ξt−1 := 1
(d−1)t−1

αt+1−p0q1βt
q1···qt−1pt

is defined as in the flow case

by ξs = ps
qsps+1(d−1)ξs−1 − ps−1psqs+1

qs−1qsps+1(d−1)2
ξs−2 for s ∈ {2, . . . , t − 1}, with ξ0 := p0q1

p1
and

ξ1 = 1
d−1

1−p0q1−p1q2
q1p2

. Plugging in the definitions of the transition probabilities, noticing
that pt and qt differ from the analogous quantities defined in the flow case due to the
new definition of Ct, recalling Proposition 8, it is immediate to verify that δs ≡ ξs for
s ∈ {0, . . . , t−2} and d−1

(d−2)(1+ht+1)bd,t ≡ ξt−1, so that L̄−1
w̃v = 1

ωd(d−1)t
1
bd,t

. Theorem 28 yields

ν?w̃ − ν̂tw̃ =
∑

v∈Vt−1

L̄−1
w̃v

∑
w∈Vt

Wvwν
?
σ(w) =

1

d(d− 1)t
1

bd,t

∑
v∈V

ν?v #t+1
w̃→v.

where #t+1
w̃→v is the number of non-backtracking paths in the original undirected graph

G = (V,E) that connect node w̃ to node v in t+1 time steps. The proof is easily concluded
noticing that the total number of non-backtracking paths after t + 1 steps is d(d − 1)t, so
that ~Pw̃(Yt+1 = v) = #t+1

w̃→v/(d(d− 1)t).
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Appendix A. Inverse of Restricted Laplacians and Hitting Times

In this appendix we establish a standalone general connection between the inverse of re-
stricted Laplacian matrices—which are obtained by removing certain rows and columns
from Laplacians matrices—and hitting times of random walks on graphs. This connection
(Proposition 30 below) is used repeatedly in Section 5 to prove the error characterization
of the min-sum algorithm.

Let G = (V,E,W ) be a simple (i.e., no self-loops, and no multiple edges), connected,
undirected, weighted graph, where to each edge {v, w} ∈ E is associated a positive weight
Wvw = Wwv > 0, and Wvw = 0 if {v, w} 6∈ E. Let D be a diagonal matrix with entries
dv = Dvv =

∑
w∈V Wvw for each v ∈ V . Let L := D −W be the Laplacian matrix for

G. Henceforth, for each v ∈ V , let Pv be the law of a time homogeneous Markov chain
X0, X1, X2, . . . on V with transition matrix P = D−1W and initial condition X0 = v.
Analogously, denote by Ev the expectation with respect to this law. The hitting time to a
set Z ⊆ V is defined as TZ := inf{k ≥ 0 : Xk ∈ Z}. Let Z ⊆ V be fixed, and define W̄ and
D̄ as the matrix obtained by removing the rows and columns associated to Z from W and
D, respectively. Let V̄ := V \ Z, Ē := E \ {{u, v} ∈ E : u ∈ Z or v ∈ Z} and consider the
graph Ḡ := (V̄ , Ē). The quantity L̄ := D̄−W̄ represents a restricted Laplacian—sometimes
also called grounded Laplacian. Let P̄ := D̄−1W̄ be the transition matrix of the transient
part of the killed random walk that is obtained from X by adding cemeteries at the sites
in Z. Creating cemeteries at the sites in Z means modifying the walk X so that each site
in Z becomes a recurrent state, i.e., once the walk is in state z̄ ∈ Z it will go back to z̄
with probably 1. This is clearly done by replacing the z̄-th row of P by a row with zeros
everywhere but in the z̄-th coordinate, where the entry is equal to 1.

The relation between the transition matrix P̄ of the killed random walk and the law of
the random walk X itself is made explicit in the next proposition.

Proposition 29 For any v, w ∈ V̄ , k ≥ 0, we have P̄ kvw = Pv(Xk = w, TZ > k).

Proof Proof is by induction. Clearly, for any v, w ∈ V̄ , we have Pv(X0 = w, TZ > 0) =
Pv(X0 = w) = 1v=w = P̄ 0

vw, which proves the statement for k = 0 (1S is the indicator
function defined as 1S = 1 if statement S is true, 1S = 0 otherwise). Assume that the
statement holds for any time i ≥ 0 up to k > 0. By the properties of conditional expecta-
tion, as {TZ > k + 1} = {X0 6∈ Z, . . . ,Xk+1 6∈ Z}, we have Pv(Xk+1 = w, TZ > k + 1) =
Ev[Pv(Xk+1 = w, TZ > k + 1|X0, . . . , Xk)] = Ev[1{X0 6∈Z,...,Xk 6∈Z}Pv(Xk+1 = w,Xk+1 6∈
Z|X0, . . . , Xk)] for any v, w ∈ V̄ . By the Markov property, on the event {Xk 6∈ Z}, we
have Pv(Xk+1 = w,Xk+1 6∈ Z|X0, . . . , Xk) = PXk(X1 = w,X1 6∈ Z) = P̄Xkw, so that
by the induction hypothesis we have Pv(Xk+1 = w, TZ > k + 1) = Ev[1{TZ>k}P̄Xkw] =∑

u∈V \Z Pv(Xk = u, TZ > k)P̄uw = P̄ k+1
vw , which proves the statement for k + 1.

We can now relate the inverse of the reduced Laplacian L̄ with the hitting times of the
original random walk X. The following result represents the main computational tool used
in Section 5 to establish decay of correlation in the computation tree that supports the
operations of the min-sum algorithm over time.

Proposition 30 For v, w ∈ V̄ , L̄−1
vw= L̄−1

wwPv(Tw < TZ), and L̄−1
ww= 1

dw
Ew

[∑TZ
k=0 1Xk=w

]
.
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Proof Let us first assume that Ḡ is connected. The matrix P̄ is clearly sub-stochastic.
Then P̄ is irreducible (in the sense of Markov chains, i.e., for each v, w ∈ V̄ there exists t to
that P̄ kvw 6= 0) and the spectral radius of P̄ is strictly less than 1 (see Corollary 6.2.28 in Horn
and Johnson (1986), for instance), so that the Neumann series

∑∞
k=0 P̄

k converges. The
Neumann series expansion for L̄−1 yields L̄−1 =

∑∞
k=0(I − D̄−1L̄)kD̄−1 =

∑∞
k=0 P̄

kD̄−1,
or, L̄−1

vw = 1
dw

∑∞
k=0 P̄

k
vw. As P̄ kvw = Pv(Xk = w, TZ > k) by Proposition 29, by the

Monotone convergence theorem we can take the summation inside the expectation and get∑∞
k=0 P̄

k
vw =

∑∞
k=0 Ev[1Xk=w1TZ>k] = Ev[

∑TZ−1
k=0 1Xk=w], which equals Ev[

∑TZ
k=0 1Xk=w]

as XTZ ∈ Z, and w 6∈ Z. Recall that if S is a stopping time for the Markov chain
X := X0, X1, X2, . . ., then by the strong Markov property we know that, conditionally
on {S < ∞} and {XS = w}, the chain XS , XS+1, XS+2, . . . has the same law as the
Markov chain Y := Y0, Y1, Y2, . . . with transition matrix P and initial condition Y0 = w,
and Y is independent of X0, . . . , XS . The hitting times Tw and TZ are two stopping
times for X, and so is their minimum S := Tw ∧ TZ . As either XS = w or XS ∈ Z,
we have Ev[

∑TZ
k=0 1Xk=w] = Ev[

∑TZ
k=0 1Xk=w|XS = w]Pv(XS = w), where we used that,

conditionally on {XS ∈ Z} = {Tw > kZ}, clearly
∑TZ

k=0 1Xk=w = 0. Conditionally on
{XS = w} = {Tw < TZ} = {S = Tw}, we have TZ = S + inf{k ≥ 0 : XS+k ∈ Z},
and the strong Markov property yields (note that the event {S < ∞} has probability one
from any starting point, as the graph G is connected by assumption so that the Markov
chain will almost surely eventually hit either w or a site in Z) Ev[

∑TZ
k=0 1Xk=w|XS =

w] = Ev[
∑inf{k≥0:XS+k∈Z}

k=0 1XS+k=w|XS = w] = Ew[
∑TZ

k=0 1Xk=w]. Putting everything to-

gether we have L̄−1
vw = 1

dw
Ew[

∑TZ
k=0 1Xk=w]Pv(Tw < TZ). As Pw(Tw < TZ) = 1, clearly

L̄−1
ww = 1

dw
Ew[

∑TZ
k=0 1Xk=w] so that L̄−1

vw = L̄−1
wwPv(Tw < TZ). The argument just presented

extends easily to the case when Ḡ is not connected. In this case the matrix P̄ has a block
structure, where each block corresponds to a connected component and to a sub-stochastic
submatrix, so the argument above can be applied to each block.

Appendix B. Technical Results

This appendix contains technical results that are used in the paper. The following result
on quadratic optimization has been used repeatedly in the main text (see Section 2 and the
proofs of Proposition 5 and Lemma 22).

Proposition 31 Given R ∈ Rm×m symmetric positive definite, r ∈ Rm, A ∈ Rn×m, b ∈ Rn

in the range of A, the unique solution of the optimization problem

minimize
1

2
xTRx+ rTx

subject to Ax = b

over x ∈ Rm reads x? = R−1ATL+b+ (R−1ATL+A− I)R−1r with L := AR−1AT .

Proof The KKT optimality equations for this problem read(
R −AT
A 0

)(
x
ν

)
=

(
−r
b

)
.
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Solving the first equation for x we have x = R−1(AT ν − r), which, upon substitution into
the second equation Ax = b yields a solution ν = L+(AR−1r+ b), and the proof follows.

We now present the proof of Proposition 8 in Section 4.

Proof [Proof of Proposition 8] Fix d ≥ 3, t ≥ 3. As s → hs monotonically converges
to 0 exponentially fast, we expect that the function s → δs, hence the values of both
bd,t and cd,t, can be controlled by the system that is obtained by replacing hs with 0

for any s ≥ 0. Thus, we define δ̂0 := δ0, δ̂1 := δ1, and δ̂s := 1
d−1(2 + (d−2)2

d−1 )δ̂s−1 −
1

(d−1)2
δ̂s−2, s ≥ 2. The characteristic equation of the dynamical system δ̂s, s ≥ 0, reads

(d−1)2λ2−(d2−2d+2)λ+1 = 0. This equation has two distinct real solutions: λ+ = 1 and
λ− = 1/(d−1)2 < 1. Imposing the initial conditions for δ̂0 and δ̂1, we find δ̂s = c++c−λ

s
− ≥ 0

with c+ = d(d−1)((d−1)2+1)−1
d((d−1)2−1)

> 0 and c− = 1/d− c+ < 0.

We begin by analyzing cd,t. To this end, define ĉd,t := 1
d−1(1 + 1

(d−2)(1+ht)
)δ̂t−2 −

1
(d−1)2

δ̂t−3. First, we prove that cd,t ≥ 1. By induction it is easy to show that (d−1)(δs−δ̂s) ≥
δs−1 − δ̂s−1 ≥ 0 for any s ≥ 1, so we have cd,t ≥ ĉd,t. As δ̂s ≥ c+ + c−λ− for any s ≥ 1 and

δ̂s ≤ c+ for any s ≥ 0, we get ĉd,t ≥ 1
d−1(1+ 1

(d−2)(1+h1))(c+ +c−λ−)− 1
(d−1)2

c+ ≥ 1. Second,

we prove that cd,t ≤ 1 + εd. Given α := 1 + 1
(d−1)2

, we first show that (d − 1)(αδ̂s − δs) ≥
αδ̂s−1 − δs−1 ≥ 0 for any s ≥ 1, so that cd,t ≤ αĉd,t. Define ξs := αδ̂s − δs. We proceed by
induction. Note that (d − 1)ξ1 ≥ ξ0 ≥ 0. For a given s ≥ 3, assume that (d − 1)ξr ≥ ξr−1

for all r ≤ s − 1. We will prove that (d − 1)ξs ≥ ξs−1. We have (d − 1)ξs − ξs−1 =
(d−1)ξs−1−ξs−2

d−1 + (d−2)2

d−1 ((1 +hs+2)ξs−1−αhs+2δ̂s−1). As δ̂s−1 ≤ c+ and (d− 1)s−1hs+2 ≤ h3,

with c+h3 < 1, by the induction hypothesis we have ξs−1 ≥ ξ1
(d−1)s−2 = (α−1)δ1

(d−1)s−2 and

(d − 1)ξs − ξs−1 ≥ (d−2)2

(d−1)s ((d − 1)(α − 1)δ1 − α) = 0, which proves the induction step. As
1
d = c+ + c− ≤ δ̂s ≤ c+, we get cd,t ≤ αĉd,t ≤ ᾱ := α( c+

d−1(1 + 1
d−2)− 1

d(d−1)2
)). The function

d ≥ 3→ εd := ᾱ− 1 is decreasing, with εd → 0 as d→∞, and ε3 < 3.

By induction it is immediate to show that (d − 1)δs ≥ δs−1 ≥ 0 for any s ≥ 1, so
that a direct comparison yields bd,t ≤ cd,t. Finally, we prove that bd,t ≥ d−2

d−1 . Define

b̂d,t := 1
(d−1)2

(1+(d−2)(1+ht+1))δ̂t−2− (d−2)(1+ht+1)
(d−1)3

δ̂t−3. As (d−1)(δs−δ̂s) ≥ δs−1−δ̂s−1 ≥ 0

for s ≥ 1, we have bd,t ≥ b̂d,t. As δ̂s ≥ δ̂3 = c+ + c−λ
3
− for s ≥ 3 and δ̂s ≤ c+ for s ≥ 0,

by the monotonicity of hs we get b̂d,t ≥ 1
(d−1)2

(1+(d−2))(c++c−λ
3
−)− (d−2)(1+h1)

(d−1)3
c+ ≥ d−2

d−1 .

The next proposition yields a recursive formula to compute, in the case of d-regular

graphs, the probability distributions P
(t)
v and P

(t,w)
v (interpreted as row vectors) given by

the v-th row of the matrices P (t) and P (t,w) defined in (8), respectively. For any v ∈ V , let
1v ∈ RV be defined as (1v)z := 1 if v = z, (1v)z := 0 otherwise.

Proposition 32 Let (V,E) be a connected d-regular graph with d ≥ 2, and let B ∈ RV×V

be its adjacency matrix, that is, the symmetric matrix defined by Bvw := 1 if {v, w} ∈ E,
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Bvw := 0 otherwise. For any v ∈ V we have

P (1)
v =

1TvB

d
, P (2)

v =
P

(1)
v B − 1Tv
d− 1

, P (t)
v =

P
(t−1)
v B − P (t−2)

v

d− 1
t ≥ 3,

Given w ∈ V such that {v, w} ∈ E, we have that P
(t,w)
v satisfies the same recursion as above

with initial condition P
(1,w)
v = (1TvB − 1Tw)/(d− 1).

Proof We first prove the recursion for P
(t,w)
v . Fix {v, w} ∈ E, and let #̃t

z be the number
of non-backtracking paths that connect node v to node z in t steps, where the first step
is different from w. By definition, Bvz equals the number of paths that connect node v to
node z in a single step. Clearly, #̃1

z = Bvz− (1w)z, i.e., in row-vector form, #̃1 = 1TvB−1Tw.
It is immediate to verify that #̃2 = #̃1B − (d − 1)1Tv , as there are d − 1 paths that can
backtrack to v at time t = 2. For t ≥ 3 we have #̃t = #̃t−1B − (d − 1)#̃t−2. In fact,
(#̃t−1B)z equals the number of paths that go from v to z in t steps such that the first
move is different from w and the first t− 1 steps are non-backtracking. To count only the
paths that are non-backtracking for all t steps, we need to subtract from (#̃t−1B)z the
number of paths that backtrack at the t-th step, which are the ones that are at z both at
step t − 2 ant t. There are (d − 1)#̃t−2

z of these paths, as vertex z has d neighbors but
only d − 1 moves are allowed at the (t − 1)-th step due to the non-backtracking nature
of the paths up to step t − 1. The proof follows noticing that the total number of non-
backtracking after t steps is d(d − 1)t−1, so that ~Pv(Y1 6= w, Yt = z) = #̃t

z/(d(d − 1)t−1)

and P
(t,w)
vz = ~Pv(Yt = z|Y1 6= w) = ~Pv(Y1 6= w, Yt = z)/~Pv(Y1 6= w) = #̃t

z/(d − 1)t,
~Pv(Y1 6= w) = (d − 1)/d. The recursion for P

(t)
v is proved analogously. Let #t

z be the
number of non-backtracking paths that connect node v to node z in t steps. Clearly,
#1 = 1TvB, #2 = #1B − d1Tv , and #t = #t−1B − (d − 1)#t−2. The proof follows as

P
(t)
vz = ~Pv(Yt = z) = #t

z/(d(d− 1)t−1).
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