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Abstract

The higher order singular value decomposition (HOSVD) of tensors is a generalization of
matrix SVD. The perturbation analysis of HOSVD under random noise is more delicate
than its matrix counterpart. Recently, polynomial time algorithms have been proposed
where statistically optimal estimates of the singular subspaces and the low rank tensors are
attainable in the Euclidean norm. In this article, we analyze the sup-norm perturbation
bounds of HOSVD and introduce estimators of the singular subspaces with sharp deviation
bounds in the sup-norm. We also investigate a low rank tensor denoising estimator and
demonstrate its fast convergence rate with respect to the entry-wise errors. The sup-
norm perturbation bounds reveal unconventional phase transitions for statistical learning
applications such as the exact clustering in high dimensional Gaussian mixture model and
the exact support recovery in sub-tensor localizations. In addition, the bounds established
for HOSVD also elaborate the one-sided sup-norm perturbation bounds for the singular
subspaces of unbalanced (or fat) matrices.

Keywords: HOSVD, Entry-wise perturbation, Gaussian noise, High dimensional clus-
tering.

1. Introduction

A tensor is a multi-array of more than 2 dimensions, which can be viewed as a higher
order generalization of matrices. Data of tensor types has been widely available in many
fields, such as image and video processing (see Liu et al. (2013), Westin et al. (2002),
Hildebrand and Rüegsegger (1997), Li and Li (2010), Vasilescu and Terzopoulos (2002));
latent variable modelling (see Anandkumar et al. (2014), Cichocki et al. (2015), Chaganty
and Liang (2013)); genomic signal processing (Omberg et al. (2007), Muralidhara et al.
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(2011) and Ponnapalli et al. (2011)) and references therein. It is demanding to handle
these datasets in order to take the most advantages of the tensor structures. The task is
challenging due to the highly non-convexity of tensor related optimization problems. For
instance, computing the tensor operator norm is generally NP-hard (see, e.g., Hillar and
Lim (2013)) while it can be implemented fast for matrices.

The higher order singular value decomposition (HOSVD) is one machinery to deal with
tensors which generalizes the matrix SVD to higher order tensors, see Zheng and Tomioka
(2015), De Lathauwer et al. (2000b), Bergqvist and Larsson (2010), Chen and Saad (2009)
and Kolda and Bader (2009). The conceptual simplicity and computational efficiency make
HOSVD popular. It has been successfully applied to various statistical learning tasks, for
instance, face recognition (see Vasilescu and Terzopoulos (2002)), genomic signal processing
(see Muralidhara et al. (2011)) and more examples in a survey paper (Acar and Yener
(2009)). Basically, the HOSVD unfolds a higher order tensor into matrices and treat it with
standard matrix techniques to obtain the principal singular subspaces in each dimension
(see more details in Section 2). Although the HOSVD shows appealing effectiveness, there
are several fundamental theoretic mysteries yet to be uncovered.

One particularly important question is related to the perturbation of HOSVD when
a low rank tensor is contaminated by stochastic noise. The difficulty comes from both
methodological and theoretical aspects. The computation of HOSVD is essentially reduced
to matrix SVD which can be implemented efficiently. This naive estimator is actually statis-
tically sub-optimal. It is well-known that further power iterations can ameliorate the naive
spectral initializations and thus deliver statistically optimal estimators, see more details in
Richard and Montanari (2014), Zhang and Xia (2018), Hopkins et al. (2015), Liu et al.
(2017) and references therein. Another intriguing phenomenon is on the phase transitions
of the signal-to-noise ratio (SNR). Actually, the SNR exhibits distinct computational and
statistical phase transitions, while the differences do not exist for matrix SVD. In partic-
ular, there is a gap on SNR between statistical optimality and computational optimality
for HOSVD, see Zhang and Xia (2018). For introductory simplicity 1, we focus on the
third-order tensors. Suppose that an unknown tensor A ∈ Rd×d×d with multilinear ranks
(r, r, r) is planted in a noisy observation Y with

Y = A + Z ∈ Rd×d×d. (1)

The noise tensor Z has i.i.d. entries with Z(i, j, k) ∼ N (0, σ2) for i, j, k ∈ [d] and noise
variance σ2 > 0. Here, we denote by [d] := {1, . . . , d}. The signal strength Λ(A) is defined
as the smallest nonzero singular values of the matrices unfolded from A (see definitions in
Section 3.3). Let U,V,W ∈ Rd×r denote the singular vectors of A in the corresponding
dimensions. It was proved (see Zheng and Tomioka (2015), Zhang and Xia (2018) and
Liu et al. (2017)) that if the signal strength Λ(A) ≥ D1σd

3/4 for a large enough constant

1. More general results where A is d1×d2×d3 with multilinear ranks (r1, r2, r3) can be found in Section 3.
The results of this article can be easily generalized to higher order tensors.
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Higher Order Singular Value Decomposition

D1 > 0, the following bound holds

r−1/2 max
{∥∥ÛÛ> −UU>

∥∥
`2
,
∥∥V̂V̂> −VV>

∥∥
`2
,
∥∥ŴŴ> −WW>∥∥

`2

}
= Op

(
σd1/2

Λ(A)
+

σd3/2

Λ2(A)

)
,

where Û, V̂,Ŵ represent the naive SVD obtained from noisy tensor Y and ‖ · ‖`2 denotes
the Euclidean norm. Power iterations (also called higher order orthogonal iterations, see

De Lathauwer et al. (2000a)) can improve the estimate (denoted by Ũ, Ṽ,W̃) to

r−1/2 max
{∥∥ŨŨ> −UU>

∥∥
`2
,
∥∥ṼṼ> −VV>

∥∥
`2
,
∥∥W̃W̃>−WW>∥∥

`2

}
= Op

(
σd1/2

Λ(A)

)
, (2)

which is statistically optimal (see Zhang and Xia (2018)). Moreover, it is demonstrated in
Zhang and Xia (2018), built on a hardness conjecture of the hyper-graphical planted clique
detection problem, that if Λ(A) = o

(
σd3/4

)
, then all polynomial time algorithms deliver

trivial estimates of U,V,W in general.
One focus of this article is on estimating the linear forms of tensor singular vectors

in model (1). More specifically, let U =
(
u1, . . . ,ur

)
∈ Rd×r be A’s singular vectors in

certain mode, our goal is to estimate 〈uj ,x〉 for fixed x ∈ Rd and j = 1, . . . , r. Through
choosing x all over the canonical basis vectors in Rd, we end up with an estimate of uj
whose component-wise perturbation bound can be attained. Unlike the `2-norm perturba-
tion bound, the `∞ bound can characterize the entry-wise sign consistency and entry-wise
significance (i.e. entry-wise magnitude) of singular vectors. The component-wise signs of
singular vectors are critical in numerous applications such as community detection (see
Florescu and Perkins (2015), Newman (2004), Mitra (2009) and Jin (2015)). The entry-
wise significance is advantageous in sub-matrix localizations, see Cai et al. (2015), Ma and
Wu (2015) and references therein. In Section 4, we show that the sup-norm perturbation
bounds reveal unconventional phase transitions for the exact clustering in high dimensional
Gaussian mixture model. Put it simply, algorithms based on the sup-norm bounds require
weaker SNR conditions than algorithms driven by the `2-norm bounds to guarantee exact
clustering. Furthermore, it enables us to construct a low rank denoising estimator of A so
that entry-wise denoising is fulfilled. To the best of our knowledge, ours is the first result
concerning the low rank tensor denoising with sharp entry-wise deviation bounds. In Sec-
tion 4, we show that a simple algorithm based on the `∞ bounds can exactly recover the
supports for sub-tensor localizations (see Remark 13).

To better highlight our contributions, suppose that A is an orthogonally decomposable
third order tensor with (in particular, the CP decomposition of orthogonally decomposable
tensors)

A =

r∑
k=1

λk
(
uk ⊗ vk ⊗wk

)
, λ1 ≥ . . . ≥ λr > 0 (3)

where U = (u1, . . . ,ur),V = (v1, . . . ,vr) and W = (w1, . . . ,wr) are d × r matrices con-
taining orthonormal columns. The k-th eigengap is written as ḡk

(
M1(A)

)
= ḡk

(
M2(A)

)
=
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ḡk
(
M3(A)

)
= min

(
λk−1 − λk, λk − λk+1

)
where Mj(A) represents the matrices from un-

foldings of A (see Section 2). We preset λ0 = +∞ and λr+1 = 0 for notational consistency.
We show that, if ḡk

(
M1(A)M>1 (A)

)
≥ D1

(
σλ1d

1/2 + σ2d3/2
)

for a large enough absolute
constant D1 > 0, then the following bound holds for any x ∈ Rd,∣∣∣〈ûk,x〉 − (1 + bk)

1/2〈uk,x〉
∣∣∣ = Op

(
‖x‖`2

λ1σ + dσ2

ḡk
(
M1(A)M>1 (A)

)) = Op

(
‖x‖`2
d1/2

)
. (4)

where bk ∈ [−1/2, 0] is a constant which does not depend on x. The d × r matrix Û =
(û1, · · · , ûk) represent the empirical left singular vectors of mode-1 unfolding of Y satisfying
model (1).

In the special case that r = 1 (rank one spiked tensor PCA model, see Richard and
Montanari (2014)) such that Λ(A) = ḡ1

(
M1(A)

)
= λ1, we get from (4) that∣∣∣〈û1,x〉 − (1 + b1)1/2〈u1,x〉

∣∣∣ = Op

(
σ

Λ(A)
+

σ2d

Λ2(A)

)
‖x‖`2 . (5)

By taking x over the canonical basis vectors in Rd, the bounds in (5) imply that

∥∥û1 − (1 + b1)1/2u1

∥∥
`∞

= Op

(( log d

d

)1/2
)

(6)

under the eigen-gap condition Λ(A) = λ1 � σd3/4. It is the standard requirement in tensor
PCA. 2 Based on (6), we propose a low rank tensor estimator (denoted by Â) under the
same SNR requirements such that

‖Â−A‖`∞ = Op

((σ2d

λ1
+ σ

)(
‖u1‖`∞‖v1‖`∞ + ‖u1‖`∞‖w1‖`∞ + ‖v1‖`∞‖w1‖`∞

))
. (7)

Equation (7) shows that the entry-wise denoising bound of the novel estimator Â is deter-
mined by the coherences of the singular vectors u1,v1 and w1. In particular, if u1,v1,w1

are incoherent so that max{‖u1‖`∞ , ‖v1‖`∞ , ‖w1‖∞} = O
(

1√
d

)
, then equation (7) implies

that

‖Â−A‖`∞ = Op

(σ2

λ1
+
σ

d

)
.

Our main contribution is on the theoretical front. The HOSVD is essentially the stan-
dard SVD computed on an unbalanced matrix where the column size is much larger than
the row size. The perturbation tools, such as Wedin’s sin Θ theorem (Wedin (1972)), char-
acterize the `2 bounds through the larger dimension, even when the left singular space lies
in a low dimensional space. At the high level, the HOSVD is connected to the one-sided
spectral analysis (see, e.g.,Zheng and Tomioka (2015), Wang (2015), Cai and Zhang (2016)
and references therein) which provide sharp perturbation bounds in `2-norm. There are
recent bounds (see Fan et al. (2016) and Cape et al. (2017)) in `∞-norm developed under

2. We shall point out that a similar result on matrix SVD has appeared in Koltchinskii and Xia (2016)
which is sub-optimal for tensors or unbalanced matrices. Indeed, the result in Koltchinskii and Xia
(2016) is established under the eigengap condition λ1 ≥ D1σd.
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Higher Order Singular Value Decomposition

additional constraint (incoherent singular subspaces) and structural noise (sparse noise).
To obtain a sharp `∞-norm bound, we borrow the instruments invented by Koltchinskii
and Lounici (2016) and extensively applied in Koltchinskii and Xia (2016). Our framework
starts from a second order method of estimating the singular subspaces, which improves the
eigengap condition than the first order method. Similar techniques have been proposed for
tensor completion (Xia and Yuan (2019)) and tensor PCA (Zheng and Tomioka (2015) and
Liu et al. (2017)). The success of this seemingly natural treatment hinges upon delicate
dealing with the correlations among higher order terms. We benefit from these `∞-norm
perturbation bounds by proposing a low rank estimator for tensor denoising where the
entry-wise deviation error is guaranteed by the tensor incoherence conditions.

We organize our paper as follows. Tensor notations and preliminaries on HOSVD are
explained in Section 2. Our main theoretical contributions are presented in Section 3
which includes the `∞-norm bound of the singular subspace perturbation and the entry-wise
accuracy of a low rank tensor denoising estimator. In Section 4, we apply our theoretical
results on applications including high dimensional clustering and sub-tensor localizations to
manifest the advantages of utilizing `∞ bounds, where algorithms driven by the `∞-norm
bounds are designed. Results of numerical experiments are displayed in Section 4.3. The
proofs are provided in Section 6.

2. Preliminaries on Tensor and HOSVD

2.1. Notations

We first review some notations that will be used through the paper. We use boldfaced
upper-case letters to denote tensors or matrices, and use the same letter in normal font
with indices to denote its entries. We use boldfaced lower-case letters to represent vectors,
and the same letter in normal font with indices to represent its entries. For notationally
simplicity, our main context is focused on third-order tensors, while our results can be easily
generalized to higher order tensors.

Given a third-order tensor A ∈ Rd1×d2×d3 , define a linear mapping M1 : Rd1×d2×d3 7→
Rd1×(d2d3) such that

M1(A)
(
i1, (i2 − 1)d3 + i3

)
= A(i1, i2, i3), i1 ∈ [d1], i2 ∈ [d3], i3 ∈ [d3]

which is conventionally called the unfolding (or matricization) of tensor A. It is also called
the mode-1 unfolding of A. The columns of matrix M1(A) are called the mode-1 fibers
of A. The corresponding matricizations M2(A) and M3(A) can be defined in a similar
fashion. The multilinear ranks of A are then defined by:

r1(A) := rank
(
M1(A)

)
, r2(A) := rank

(
M2(A)

)
, r3(A) := rank

(
M3(A)

)
Note that r1(A), r2(A), r3(A) are unnecessarily equal with each other in general. We write
r(A) :=

(
r1(A), r2(A), r3(A)

)
which are also called the Tucker ranks of A.

The marginal product ×1 : Rr1×r2×r3 × Rd1×r1 7→ Rd1×r2×r3 is given by

C×1 U =

( r1∑
j1=1

C(j1, j2, j3)U(i1, j1)

)
i1∈[d1],j2∈[r2],j3∈[r3]

,
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and ×2 and ×3 are defined similarly. Therefore, we write the multilinear product of tensors
C ∈ Rr1×r2×r3 ,U ∈ Rd1×r1 ,V ∈ Rd2×r2 and W ∈ Rd3×r3 as

C · (U,V,W) = C×1 U×2 V ×3 W ∈ Rd1×d2×d3 .

We use ‖ · ‖ to denote the operator norm of matrices and ‖ · ‖`2 and ‖ · ‖`∞ to denote `2 and
`∞ norms of vectors, or vectorized matrices and tensors.

2.2. HOSVD and Eigengaps

For a tensor A ∈ Rd1×d2×d3 with multilinear ranks r(A) =
(
r1(A), r2(A), r3(A)

)
, let U ∈

Rd1×r1(A),V ∈ Rd2×r2(A) and W ∈ Rd3×r3(A) be the left singular vectors ofM1(A),M2(A)
and M3(A) respectively, which can be computed efficiently via matricization followed by
thin singular value decomposition. The higher order singular value decomposition (HOSVD)
refers to the decomposition

A = C×1 U×2 V ×3 W (8)

where the r1(A)×r2(A)×r3(A) core tensor C is obtained by C := A×1 U>×2 V>×3 W>.
Suppose that a noisy version of A is observed as in model (1) so that

Y = A + Z

where Z ∈ Rd1×d2×d3 is an unknown noise tensor with i.i.d. entries satisfying Z(i, j, k) ∼
N (0, σ2). By observing Y, our goal is to estimate U,V and W. An immediate approach
is to compute HOSVD of Y. To this end, let Û ∈ Rd1×r1 , V̂ ∈ Rd2×r2 ,Ŵ ∈ Rd3×r3 be
the corresponding top singular vectors of M1(Y),M2(Y) and M3(Y). The key factor
characterizing the perturbation bounds of Û, V̂ and Ŵ is the so-called eigengap.

Since the computing of Û is essentially via the matrix SVD on M1(A), it suffices to
consider the eigengaps of matrices. Given a rank r matrix M ∈ Rm1×m2 with SVD:

M =
r∑

k=1

λk
(
gk ⊗ hk

)
where M’s singular values are λ1 ≥ λ2 ≥ . . . ≥ λr > 0 and {g1, . . . ,gr} are the correspond-
ing left singular vectors and {h1, . . . ,hr} are M’s corresponding right singular vectors. We
further introduce λ0 = +∞ and λr+1 = 0. The k-th eigengap of matrix M is then defined
by

ḡk(M) := min
(
λk − λk+1, λk−1 − λk

)
, ∀ 1 ≤ k ≤ r.

Recall that U, Û ∈ Rd1×r1 are the top-r1 left singular vectors of M1(A) and M1(Y)
respectively. By Davis-Kahan Theorem (Davis and Kahan (1970)) or Wedin’s sin Θ theorem
(Wedin (1972)), we get

‖ÛÛ> −UU>‖ = O

(
‖M1(Z)‖

ḡr1
(
M1(A)M>1 (A)

)), (9)

which is generally sub-optimal especially whenM1(Z) ∈ Rd1×(d2d3) is unbalanced such that
d2d3 � d1. Sharper bounds in `2-norm concerning one sided perturbation have been derived
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in Zheng and Tomioka (2015), Wang (2015) and Cai and Zhang (2016). In this paper, we
derive sharp perturbation bounds of Û, V̂,Ŵ in `∞-norm which illustrate unconventional
phase transitions for various statistical learning applications. More generally, we will inves-
tigate the perturbation bounds of linear forms 〈ûk,x〉 for any fixed vector x ∈ Rd1 . Similar
results can be obtained for singular vectors V̂ and Ŵ.

3. Main Results

3.1. Second Order Method for One-sided Spectral Analysis

The `∞-norm perturbation bounds for singular subspaces of balanced matrices has been
developed in Koltchinskii and Xia (2016). Recall that uk denotes the k-th left singular
vector of M1(A) and ûk denotes the k-th left singular vector of M1(Y) where M1(A)
is of size d1 × (d2d3). The operator norm ‖M1(Z)‖ is generally determined by the larger
dimension (d1∨d2d3), see Section 6. It turns out that the machinery in Koltchinskii and Xia
(2016) is sub-optimal concerning the SNR requirement. Indeed, the eigengap requirement

in Koltchinskii and Xia (2016) becomes ḡk
(
M1(A)M>1 (A)

)
� σ

(
d1∨d2d3

)1/2
, which shall

is unnecessarily strong in view of the recent results in Zheng and Tomioka (2015), Cai and
Zhang (2016), Zhang and Xia (2018) and Liu et al. (2017).

To bridge such gaps, we conduct a second order spectral analysis for Û. The key
observation is that the top left singular vectors of M1(Y) are also the top eigenvec-
tors of M1(Y)M>1 (Y). The second order method seeks the eigenspace perturbation on
M1(Y)M>1 (Y) instead of singular space perturbation on M1(Y). Clearly, we have

M1(Y)M>1 (Y) =M1(A)M>1 (A) + Γ ∈ Rd1×d1

where Γ = M1(A)M>1 (Z) +M1(Z)M>1 (A) +M1(Z)M>1 (Z). Note that U are the lead-
ing eigenvectors of M1(A)M>1 (A) and Û are the top-r1 eigenvectors of M1(Y)M>1 (Y).
Moreover, the following relation on eigengaps is obvious:

ḡr1

(
M1(A)M>1 (A)

)
≥ ḡ2

r1

(
M1(A)

)
.

The advantage of second order method comes from the observation that even though
E
∥∥M1(Z)M>1 (Z)

∥∥ is of the order σ2(d1 ∨ d2d3), the symmetric matrix M1(Z)M>1 (Z) is
concentrated at d2d3σ

2Id1 such that (see more details in Section 6)∥∥M1(Z)M>1 (Z)− σ2d2d3Id1
∥∥ = Op

(
σ2
(
d1d2d3

)1/2)
.

Note that subtracting by an identity matrix does not affect the eigen-structure. The sec-
ond order method introduces the additional term M1(A)M>1 (Z) whose operator norm
is bounded by Op

(
σ
√
d1

∥∥M1(A)
∥∥), which creates a constraint on the condition number

of M1(A). However, in order to characterize sharp perturbation bounds of linear forms
〈ûk,x〉, we need to pay more attention to dealing with correlations among the higher order
terms than the first order method in Koltchinskii and Xia (2016). We note that the idea
of second order method is already existing in the literature (see, e.g., Zheng and Tomioka
(2015) for the `2-norm perturbation bounds). The second order moment method is only the
starting point of our technical analysis which significantly reduces the SNR requirements.
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Our most fundamental contribution is about the sup-norm characterization of the empirical
singular vectors. Basically, we observe that the empirical singular vectors are biased and
the bias is nicely aligned with the true singular vectors. After subtracting the bias, the
empirical singular vectors exhibit the so-called delocalization property where all the entry-
wise perturbations have comparable magnitudes. Such delocalization property is universal
meaning that no conditions on the true singular vectors are needed. In Section 4, we show
that the sup-norm perturbation bounds indeed reveal unconventional phase transitions in
statistical learning applications such as the exact clustering in high dimensional Gaussian
mixture models and the exact support recovery in sub-tensor localizations.

3.2. Perturbation of Linear Forms of Singular Vectors

In this section, we present our main theorem characterizing the perturbation of linear forms
〈ûk,x〉 for any x ∈ Rd1 , where ûk is the k-th left singular vector of M1(Y). Our results
have similar implications as the previous work Koltchinskii and Xia (2016), meaning that
the bias Eûkû

>
k −uku

>
k is well aligned with uku

>
k . Therefore, after correcting the bias term,

we are able to obtain a sharper estimation of linear forms 〈uk,x〉. To this end, we denote
the condition number of the matrix M1(A) by

κ
(
M1(A)

)
=
λmax

(
M1(A)

)
λmin

(
M1(A)

)
where λmax(·) and λmin(·) return the largest and smallest nonzero singular values, respec-
tively. Since ûk is up to the switch of signs, we choose ûk in the following theorems, remarks
and corollaries so that

〈
ûk,uk

〉
> 0.

Theorem 1 Let3 M :=M1(A) and δ(d1, d2, d3) := σd
1/2
1 ‖M‖+σ2(d1d2d3)1/2 and suppose

d2d3e
−d1/2 ≤ 1. There exist absolute constants D1, D2 > 0 such that the following fact holds.

Let uk be M’s k-th left singular vector with multiplicity 1. If ḡk
(
MM>) ≥ D1δ(d1, d2, d3),

there exist a constant bk ∈ [−1/2, 0] with |bk| ≤
√

2δ(d1,d2,d3)
ḡk(MM>)

such that for any x, the

following bound holds with probability at least 1− e−t,∣∣〈ûk,x〉 − (1 + bk)
1/2〈uk,x〉

∣∣
≤D2

(
t1/2

σ‖M‖+ σ2(d2d3)1/2

ḡk(MM>)
+

σ2d1

ḡk(MM>)

(δ(d1, d2, d3)

ḡk(MM>)

))
‖x‖`2 (10)

for all log 8 ≤ t ≤ d1. In particular, if x = ±uk, then with the same probability,∣∣|〈ûk,uk〉| − 1
∣∣ ≤ ∣∣√1 + bk − 1

∣∣
+D2

(
t1/2

σ‖M‖+ σ2(d2d3)1/2

ḡk(MM>)
+

σ2d1

ḡk(MM>)

(δ(d1, d2, d3)

ḡk(MM>)

))
.

By Theorem 1, it is easy to check that the condition ḡk
(
M1(A)M>1 (A)

)
≥ D1δ(d1, d2, d3)

holds whenever

ḡk
(
M1(A)

)
≥ D1

(
σ(d1d2d3)1/4 + σd

1/2
1 κ

(
M1(A)

))
.

3. Observe that if we set d3 = 1 and consider the case with d1 � d2, then Theorem 1 elaborates the
one-sided perturbation bounds in `∞-norm for singular vectors of unbalanced (or fat) matrices.
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If κ
(
M1(A)

)
≤
(
d2d3
d1

)1/4
, the above bound becomes ḡk

(
M1(A)

)
� σ(d1d2d3)1/4 which is

a standard requirement in tensor SVD or PCA, see Zheng and Tomioka (2015), Zhang and
Xia (2018), Hopkins et al. (2015) and Richard and Montanari (2014). By taking x over
the standard basis vectors in Rd1 and choosing t ≥ D3 log d1, we end up with a `∞-norm
perturbation bound for empirical singular vector ûk.

Corollary 2 Under the conditions in Theorem 1, there exists a universal constant D1 > 0
such that the following bound holds with probability at least 1− 1

d1
,

∥∥ûk − (1 + bk)
1/2uk

∥∥
`∞
≤ D1

(( log d1

d1

)1/2
+
( d1

d2d3

)1/2
)
.

If d1 � d2 � d3 � d, we obtain

P
(∥∥ûk − (1 + bk)

1/2uk
∥∥
`∞
≥ D1

( log d

d

)1/2)
≤ 1

d

which has an analogous form to the perturbation bound in Koltchinskii and Xia (2016)
implying a famous delocalization phenomenon in random matrix theory, see Rudelson and
Vershynin (2015) and Vu and Wang (2015) and references therein.

Remark 3 Let’s compare with the `2-norm bound in Zheng and Tomioka (2015) in the
case that rank r = 1, d1 = d2 = d3 = d and signal strength ḡ1(MM>) = λ2. By (Zheng and
Tomioka, 2015, Theorem 1), if λ� σd3/4, then

‖û1 − u1‖`2 = Op

(d1/2σ

λ
+
σ2d3/2

λ2

)
. (11)

By Theorem 1, if λ� σd3/4, then we get

∥∥û1 − (1 + b1)1/2u1

∥∥
`∞

= Op

(σ log1/2 d

λ
+
σ2d log1/2 d

λ2

)
(12)

for a constant b1 ∈ [−1/2, 0] depending on u1 and λ only. By (12) and (11), we observe
that, after subtracting the bias, the entry-wise deviation of the empirical left singular vector

û1 is about
√

log d
d of the `2-norm perturbation bound of û1. It means that, after subtracting

the bias, the deviations of all û1’s entries have comparable magnitudes, namely the so-
called delocalization property. Interestingly, if |u1(j)| � 1√

d
, then eq. (12) implies that

û1(j) has the same sign as u1(j) as long as λ � σd3/4. This sign consistency is crucial
for guaranteeing the exact clustering of high dimensional mixture model, see more details
in Section 4.

The bias bk is usually unknown and we borrow the idea in Koltchinskii and Xia (2016)
to estimate bk based on two independent samples. It happens in the application of ten-
sor decomposition for gene expression data where usually multiple independent copies are
available, see more details in Hore et al. (2016).

Suppose that two independent noisy version of A ∈ Rd1×d2×d3 are observed with Y(1) =
A+Z(1) and Y(2) = A+Z(2) where Z(1) and Z(2) have i.i.d. centered Gaussian entries with

9
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variance σ2 as in (1). Let û
(1)
k and û

(2)
k denote the k-th left singular vector of M1

(
Y(1)

)
andM1

(
Y(2)

)
, respectively. The signs of û

(1)
k and û

(2)
k are chosen such that 〈û(1)

k , û
(2)
k 〉 ≥ 0.

Define the estimator of bk by

b̂k := 〈û(1)
k , û

(2)
k 〉 − 1.

Define the scaled version of empirical singular vector ũk := ûk

(1+b̂k)1/2
, which is not neces-

sarily a unit vector.

Theorem 4 Under the assumptions in Theorem 1, there exists an absolute constant D1 > 0
such that for any x ∈ Rd1, the follow bound holds with probability at least 1 − e−t for all
log 8 ≤ t ≤ d1,

∣∣b̂k − bk∣∣ ≤ D1

(
t1/2

σ‖M‖+ σ2(d2d3)1/2

ḡk(MM>)
+

σ2d1

ḡk(MM>)

(δ(d1, d2, d3)

ḡk(MM>)

))
and

∣∣〈ũk − uk,x
〉∣∣ ≤ D1

(
t1/2

σ‖M‖+ σ2(d2d3)1/2

ḡk(MM>)
+

σ2d1

ḡk(MM>)

(δ(d1, d2, d3)

ḡk(MM>)

))
‖x‖`2

where M =M1(A).

Remark 5 By Theorem 4, if d/2 ≤ mink dk ≤ maxk dk ≤ 2d, we get

P
(
‖ũk − uk‖`∞ ≥ D1

( log d

d

)1/2)
≤ 1

d
.

3.3. Low Rank Tensor Denoising and Entry-wise Deviation Bound

In this section, we study a low rank estimate of A through the projection of Y. Let
Ũ = (ũ1, . . . , ũr1) ∈ Rd1×r1 be scaled singular vectors each of which is computed as in

Theorem 4. Similarly, let Ṽ ∈ Rd2×r2 and W̃ ∈ Rd3×r3 be the corresponding scaled singular
vectors computed from M2(Y) and M3(Y). Define the low rank estimate

Ã := Y ×1 P
Ũ
×2 P

Ṽ
×3 P

W̃

where P
Ũ

represents the scaled projector P
Ũ

:= ŨŨ>. Clearly, rank(Ã) = (r1, r2, r3)

which serves as a low rank estimate of A. We characterize the entry-wise accuracy of Ã,
namely, the upper bound of ‖Ã − A‖`∞ in terms of the coherence of U,V and W. Our
‖Ã −A‖`∞ bound relies on the simultaneous `∞-norm perturbation bounds of {ũk1}

r1
k1=1,

{ṽk2}
r2
k2=1 and {w̃k3}

r3
k3=1. We impose the following conditions on the eigengaps: for a large

enough constant D1 > 0,

ḡk1
(
M1(A)M>1 (A)

)
≥ D1

(
σd

1/2
1 Λ(A) + σ2(d1d2d3)1/2

)
, 1 ≤ k1 ≤ r1, (13)

ḡk2
(
M2(A)M>2 (A)

)
≥ D1

(
σd

1/2
2 Λ(A) + σ2(d1d2d3)1/2

)
, 1 ≤ k2 ≤ r2, (14)

10
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ḡk3
(
M3(A)M>3 (A)

)
≥ D1

(
σd

1/2
3 Λ(A) + σ2(d1d2d3)1/2

)
, 1 ≤ k3 ≤ r3, (15)

where we denote by

Λ(A) := max
{
λmax

(
M1(A)

)
, λmax

(
M2(A)

)
, λmax

(
M3(A)

)}
.

Similarly, we define

Λ(A) := min
{
λmin

(
M1(A)

)
, λmin

(
M2(A)

)
, λmin

(
M3(A)

)}
and the overall eigengap

ḡmin

(
A
)

:= min

{
ḡ

1/2
k1

(
M1(A)M>1 (A)

)
, ḡ

1/2
k2

(
M2(A)M>2 (A)

)
, ḡ

1/2
k3

(
M3(A)M>3 (A)

)
, 1 ≤ k1 ≤ r1, 1 ≤ k2 ≤ r2, 1 ≤ k3 ≤ r3

}
.

By definition, it is clear that Λ(A) ≥ ḡmin(A).

Theorem 6 Suppose conditions (13) (14) (15) hold and assume that for all i ∈ [d1], j ∈
[d2], k ∈ [d3],

‖U>ei‖`2 ≤ µU

√
r1

d1
, ‖V>ej‖`2 ≤ µV

√
r2

d2
, ‖W>ek‖`2 ≤ µW

√
r3

d3

for some constants µU, µV, µW ≥ 0. Suppose that d
2 ≤ min1≤k≤3 dk ≤ max1≤k≤3 dk ≤ 2d

and r
2 ≤ min1≤k≤3 rk ≤ max1≤k≤3 rk ≤ 2r. Then, there exists an absolute constant D2 > 0

such that, with probability at least 1− 1
d ,∥∥Ã−A

∥∥
`∞

≤ D2σr
3

(
κ̃(A)σ

ḡmin(A)
+
κ̃2(A)

d

)(
µUµV + µUµW + µVµW

)
log3/2 d

where κ̃(A) = Λ(A)/ḡmin(A).

Remark 7 To highlight the contribution of Theorem 6, let r = O(1) and κ̃(A) = O(1).

Note that if the coherence constants µU, µV, µW = d( 3
4
−ε)/2 for ε ∈ (0, 3/4), i.e., U,V,W

can be almost spiked, under the minimal eigengap ḡmin(A)� σd3/4, we obtain

‖Ã−A‖`∞ = Op

( σ
dε

log3/2 d
)
.

It worths to point out that the minimax optimal bound of estimating A in `2-norm is
O
(
σd1/2

)
, see Zhang and Xia (2018). Theorem 6 is more interesting when A is incoherent

such that µU, µV, µW = O(1) where we can conclude that

‖Ã−A‖`∞ = Op

(( σ2

ḡmin(A)
+
σ

d

)
log3/2 d

)
= Op

( σ

d3/4
log3/2 d

)
. (16)

By (16), if the entry |A(j1, j2, j3)| � σ log3/2 d
d3/4

, then the entry Ã(j1, j2, j3) maintains the
same sign as A(j1, j2, j3). In Section 4 and Remark 13, we show that the sup-norm bound
of Ã−A is useful for the exact support recovery of sub-tensor localizations, under minimal
signal strength requirements (that is the support size).

11
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4. Applications

In this section, we review two applications of `∞-norm perturbation bound. In these appli-
cations, we note that it is unnecessary to estimate the bias bk. We show that the sup-norm
perturbation bounds reveal unconventional phase transitions in these statistical learning
applications. Meanwhile, novel yet simple statistical algorithms can be designed based on
the sup-norm perturbation bounds.

4.1. High Dimensional Clustering

Many statistical and machine learning tasks are associated with clustering high dimensional
data, see McCallum et al. (2000), Parsons et al. (2004), Fan and Fan (2008), Hastie et al.
(2009), Friedman (1989) and references therein. We consider a two-class Gaussian mixture
model such that each data point yi ∈ Rp can be represented by

yi = −`iβ + (1− `i)β + εi ∈ Rp (17)

where the associated label `i ∈ {0, 1} for i = 1, 2, . . . , n is unknown and the noise vector
εi ∼ N (0, Ip). The vector β ∈ Rp is unknown with p� n. We denote the true clusters by

N0 := {1 ≤ i ≤ n : `i = 0} and N1 := {1 ≤ i ≤ n : `i = 1}.

Given the data matrix

Y =
(
y1, . . . ,yn

)> ∈ Rn×p

, our goal is to cluster the n data points into two disjoint groups. Let nk+1 := Card
(
Nk
)

for k = 0, 1 such that n1 +n2 = n. Observe that EY has rank 1 and its leading left singular
vector u ∈ Rn with

u(i) =
1− `i
n1/2

− `i

n1/2
, 1 ≤ i ≤ n.

The signs of u immediately suggest the cluster memberships of each data points. Moreover,
the leading singular value of EY is n1/2‖β‖`2 . Let û denote the leading left singular vector
of Y. By Corollary 2, if ‖β‖`2 ≥ D1

(
1 ∨ (p/n)1/4

)
such that |(1 + bk)

−1/2 − 1| ≤ 1/2, then
there exists an event E with P(E) ≥ 1− 1

n so that on event E ,

∥∥û− (1 + bk)
1/2u

∥∥
`∞
≤ D2

( 1

‖β‖`2
+

(p/n)1/2

‖β‖2`2

)( 1

‖β‖2`2
+

√
log n

n

)
.

On event E , if ‖β‖`2 ≥ D1

(
n1/6 ∨ p1/8 ∨

(
p log(n)/n

)1/4)
, then we get

‖û− u‖`∞ ≤ ‖û− (1 + bk)
1/2u‖`∞ +

∣∣(1 + bk)
−1/2 − 1

∣∣‖u‖`∞
≤ ‖û− (1 + bk)

1/2u‖`∞ +
1

2n1/2
≤ 3

4n1/2
(18)

implying that if `i = `j , then sign
(
û(i)

)
= sign

(
û(j)

)
for all 1 ≤ i, j ≤ n. Therefore, we

propose a simple clustering algorithm by entry-wise signs of û in Algorithm 1.

By the bound (18), Algorithm 1 can guarantee exact clustering as follows.

12
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Algorithm 1 High dimensional bi-clustering by entry-wise signs.

Input: Data matrix Y ∈ Rn×p
2: Calculate the leading left singular vector of Y, denoted by û ∈ Rn

Initiate N̂0 = {} and N̂1 = {}
4: for i = 1, · · · , n do

if û(i) ≥ 0 then
6: N̂0 ← N̂0 ∪ {i}

else
8: N̂1 ← N̂1 ∪ {i}

end if
10: end for

Output: N̂0 and N̂1.

Theorem 8 Suppose model (17) holds with noise vector ε ∼ N (0, Ip). Let N̂0 and N̂1 be
the output of Algorithm 1. There exists an absolute constant D1 > 0 such that if ‖β‖`2 ≥
D1

(
n1/6 ∨ p1/8 ∨

(
p log(n)/n

)1/4)
, then with probability at least 1− 1

n ,

N̂0 = N0 or N̂0 = N1.

The proof of Theorem 8 is straightforward based on eq. (18). We note that eq. (18) also
implies that it is unnecessary to estimate bk in this application, since scaling switch the
entry-wise signs simultaneously and thus maintains the clustering outputs.

Remark 9 Theorem 8 reveal unconventional phase transition thresholds for the exact clus-
tering of Gaussian mixture model (17). Indeed, by Theorem 8, the sup-norm based clustering
algorithm (Algorithm 1) will exactly recover the memberships with high probability when the
signal strength satisfies

‖β‖`2 �
(
n1/6 ∨ p1/8 ∨

(
p log(n)/n

)1/4)
.

In comparison, the `2-norm based clustering algorithm in Cai and Zhang (2016) and Zheng
and Tomioka (2015) requires

‖β‖`2 �
(
n1/2 ∨ p1/4

)
for exact clustering. Clearly, with respect to exact recovery, the sup-norm based clustering
algorithm requires much weaker SNR conditions.

Remark 10 The above framework can be directly generalized to Gaussian mixture model
with k-clusters. Suppose that the j-th cluster has mean vector βj and size nj, then without
loss of generality, the data matrix Y = M + Z

M =
(
β1, · · · ,β1︸ ︷︷ ︸

n1

, · · · ,βj , · · · ,βj︸ ︷︷ ︸
nj

, · · · ,βk, · · · ,βk︸ ︷︷ ︸
nk

)> ∈ RN×p

with N =
∑k

j=1 nj and Z ∈ RN×p having i.i.d. standard Gaussian entries. Observe that
rank(M) ≤ k, it suffices to consider the top-k left singular vectors of M. However, it
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requires nontrivial effort to investigate the eigengaps of M without further assumptions on
{βj}kj=1. In the case that nj = n and β1, . . . ,βk are mutually orthogonal such that ‖β1‖`2 ≥
. . . ≥ ‖βk‖`2, then M’s top-k singular values are λj =

√
nj‖βj‖`2 , 1 ≤ j ≤ k. Clearly, the

non-zero entries of M’s top-k left singular vectors provide the cluster membership of each
data points. By Theorem 1, if ∆j ≥ C1

√
k‖β1‖`2 +C2(kp/n)1/2 where ∆j = min{

(
‖βj‖2`2−

‖βj+1‖2`2
)
,
(
‖βj−1‖2`2 − ‖βj‖

2
`2

)
}, then

‖ûj −
√

1 + bjuj‖`∞ = Op

((‖β1‖`2
∆j

+
(p/n)1/2

∆j

)(k3/2

∆j
+

√
k log n

n

))
for all 1 ≤ j ≤ k.

4.2. Sub-tensor Localization

In gene expression association analysis (see Hore et al. (2016), Xiong et al. (2012), Kolar
et al. (2011) and Ben-Dor et al. (2003)) and planted clique detection (see Brubaker and
Vempala (2009), Anandkumar et al. (2013) and Gauvin et al. (2014)), the goal is equivalent
to locating a sub-tensor whose entries are statistically more significant than the others. One
simple model characterizing this type of tensor data is as

Y = λ1C1 ⊗ 1C2 ⊗ 1C3 + Z ∈ Rd1×d2×d3 (19)

with Ck = ∪skj=1C
(j)
k ⊂ [dk] where

{
C

(1)
k , . . . , C

(sk)
k

}
are disjoint subsets of [dk] for k = 1, 2, 3,

i.e., there are sk ≥ 1 dense blocks in the k-th direction. Then, in total, there are s1s2s3

dense blocks in EY. The vector 1Ck
∈ Rdk is a zero-or-one vector whose entry equals

1 only when the index belongs to Ck. The noise tensor Z has i.i.d. entries such that
Z(i, j, k) ∼ N (0, 1). Given the noisy observation Y, the goal is to locate the unknown

subsets {C(j)
1 }

s1
j=1, {C

(j)
2 }

s2
j=1 and {C(j)

3 }
s3
j=1. The appealing scenario is λ = O(1), since

otherwise the signal is so strong that the problem can be easily solved by just looking at
each entry. The tensor EY has rank 1 with leading singular value λ|C1|1/2|C2|1/2|C3|1/2
and corresponding singular vectors

u =
1

|C1|1/2
1C1 , v =

1

|C2|1/2
1C2 and w =

1

|C3|1/2
1C3 ,

where |C| denotes the cardinality of C. By Theorem 1, if λ ≥ D1
(d1d2d3)1/4

|C1|1/2|C2|1/2|C3|1/2
for a

large enough constant D1 > 0 and dmax ≤ (d1d2d3)1/2 where dmax := (d1 ∨ d2 ∨ d3), then
with probability at least 1− 1

dmax
, we obtain

‖û− (1 + b1)1/2u‖`∞

≤ D1 log1/2 dmax

λ|C1|1/2|C2|1/2|C3|1/2
+
D1(d2d3 log dmax)1/2

λ2|C1||C2||C3|
+

D1d1

λ2|C1||C2||C3|

(
(d1d2d3)1/2

λ2|C1||C2||C3|

)
,

(20)

where b1 ∈ [−0.5, 0] is a constant depending on u,v,w and λ only. Similar bounds can be
also derived for v̂ and ŵ. By eq. (20), we propose a simple algorithm (Algorithm 2) for the
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Algorithm 2 Sub-tensor localizations by entry-wise magnitudes.

Input: Data matrix Y ∈ Rd1×d2×d3
2: Calculate the leading left singular vectors of {Mk(Y)}3k=1, denoted by û ∈ Rd1 , v̂ ∈ Rd2

and ŵ ∈ Rd3 , respectively.
Take entry-wise magnitudes {|û(j1)|}d1j1=1 and arrange them in a non-increasing order,

4: Record the top-|C1| locations and denote them by Ĉ1;
Take entry-wise magnitudes {|v̂(j2)|}d2j2=1 and arrange them in a non-increasing order,

6: Record the top-|C2| locations and denote them by Ĉ2;
Take entry-wise magnitudes {|ŵ(j3)|}d3j3=1 and arrange them in a non-increasing order,

8: Record the top-|C3| locations and denote them by Ĉ3;
Output: Ĉ1, Ĉ2 and Ĉ3.

support recovery of sub-tensor model (19). By bound (20), we can immediately guarantee
the exact support recovery by Algorithm 2. The proof is straightforward and is omitted
here.

Theorem 11 Suppose model (19) holds and (d1 + d2 + d3) ≤ 2(d1d2d3)1/2. There exist

absolute constants D1, D2 > 0 such that if λ ≥ D1
(d1d2d3)1/4

(|C1||C2||C3|)1/2
and

max

{√
|C1|
d1

,

√
|C2|
d2

,

√
|C3|
d3

}
· (d1d2d3 log dmax)1/2

λ2|C1||C2||C3|
≤ 1

D2
,

then, with probability at least 1− 1
d1+d2+d3

, we get

Ĉ1 = C1 and Ĉ2 = C2 and Ĉ3 = C3

where {Ĉk}3k=1 are the output of Algorithm 2.

Note that in Algorithm 2 and Theorem 11, it is also unnecessary to estimate the bias b1
because we are interested in the top-|C1| largest entries of |û| and scaling does not affect
the ordering of the entry-wise magnitudes.

Remark 12 The phase transition of Algorithm 2 and model (19) is intriguing. Note that
the support localizations are trivial when λ� 1. Therefore, we only focus on the case λ = 1.
Now, let |C1| � |C2| � |C3| = K and d1 � d2 � d3 = d. By Theorem 11, we conclude that
Algorithm 2 can exactly recover the supports C1, C2, C3 with high probability if the support
size K � d

1
2 . Meanwhile, by the lower bound arguments in Zhang and Xia (2018), we

know that if K � d
1
2 , then there exist no polynomial time algorithms which can recover C1

consistently. Put it differently, phase transition occurs at the threshold O(d
1
2 ) such that if

K � d
1
2 , the problem is unsolvable by polynomial time algorithms; if K � d

1
2 , the problem

can be perfectly solved by Algorithm 2. In comparison, the `2-norm based algorithms can
only guarantee the consistency of support recovery when K � d

1
2 , rather than the exact

recovery.
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Remark 13 We could also investigate the entry-wise denoising of model (19). Suppose
that |C1| � |C2| � |C3| = K and d1 � d2 � d3 = d. We denote by A = 1C1 ⊗ 1C2 ⊗ 1C3

where we fix λ = 1 and we focus only on the support sizes {|Ck|}3k=1. Let û, v̂ and ŵ be the
empirical singular vectors as in Algorithm 2. Define the projection estimator

Â = Y ×1 (ûû>)×2 (v̂v̂>)×3 (ŵŵ>).

Similarly as in Theorem 6, we can show that there exists a constant b ∈ [
√

2/4, 1] such that
with probability at least 1− 1

d ,

‖Â− b ·A‖`∞ ≤ D1 ·
( 1

K
+

d

K5/2

)
log3/2 d (21)

for some absolute constant D1 > 0. Recall from model (19) that A(j1, j2, j3) = 1 if
(j1, j2, j3) ∈ C1 × C2 × C3. From eq. (21), we conclude that if K ≥ D2

(√
d + d0.4 log0.6 d

)
for a large enough absolute constant D2 > 0 (note that the threshold

√
d comes from SNR

requirement as in eq. (20)), then∣∣Â(j1, j2, j3)
∣∣ > |Â(j′1, j

′
2, j
′
3)|

for all (j1, j2, j3) ∈ C1 × C2 × C3 and (j′1, j
′
2, j
′
3) /∈ C1 × C2 × C3. As a result, we can

choose the locations of Â’s entries with the largest-|C1||C2||C3| magnitudes and recover A’s
supports exactly.

4.3. Numerical Experiments

We present simulation results of experiments for the applications in Section 4. For high
dimensional clustering in model (17), we randomly sample a vector β ∈ Rp with p = 3200.
For a fixed β, we sample n1 = n/2 = 800 random vectors from distribution N (β, Ip) and
n2 = n/2 = 800 random vectors from distribution N (−β, Ip). Then, we calculate the top
left singular vector of Y as in (17) and apply Algorithm 1 to cluster the 1600 points into
two disjoint groups. For each β, we repeat the experiments for 50 times and the average
mis-clustering rate is recorded. The signal strengths are chosen so that ‖β‖`2 = nα with
α = 0.06 ∗ k − 0.5 for 1 ≤ k ≤ 20. The average mis-clustering rates with respect to signal
strengths are displayed in Figure (1a). Moreover, in Figure (1a), we also compare the
average mis-clustering rates when two clusters have different sizes such as 3n1 = n2 = 1200
and 9n1 = n2 = 1440. As shown in Figure (1a), there exists a threshold around α = 0.18
such that the mis-clustering rates by Algorithm 1 decreases extremely fast when the signal
strength exceeds the threshold. Meanwhile, Figure (1a) also shows that the size balances
of two clusters does not affect the threshold. Both these numerical observations from
Figure (1a) are consistent with the theoretic guarantees from Theorem 8.

For sub-tensor localizations in model (19), we fix λ = 1 because the support localization
task is trivial if λ� 1. Similarly as in Remark 12, it then suffices to investigate the efficiency
of Algorithm 2 with respect to the support sizes. For simplicity, we choose d1 = d2 = d3

and C1 = C2 = C3 = [|C1|], that is, the sub-tensor is in the bottom-left-front corner of EY.
For each d1 = 150, d1 = 200 and d1 = 300, we show the average mis-localization rates by
Algorithm 2 with respect to the support size |C1|. The average mis-localization rates are
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(b) Mis-localization rates of Algorithm 2

Figure 1: Simulation results for the performances of Algorithm 1 and Algorithm 2. In Figure (1a),
the phase transition happens around the signal strength ‖β‖`2 ≈ n0.18 which coincides
with Theorem 8. Figure (1a) shows that Algorithm 1 can exactly recover the true clusters
when signal strength exceeds the aforementioned threshold. Figure (1a) also shows that
the efficiency of Algorithm 1 is unaffected when two clusters have unbalanced sizes. In
Figure (1b), the phase transition happens when the support C1 has size around d0.61 . It
shows that Algorithm 2 can exactly locate the sub-tensor when the support size exceeds
the aforementioned threshold.

calculated from 50 independent experiments. The support sizes are chosen as |C1| = ddα1 e
with 0.06 ≤ α ≤ 1. The results of mis-localization rates are displayed in Figure (1b).
Indeed, Figure (1b) shows that the mis-localization rates by Algorithm 2 starts to decrease
extremely fast when the support size is around |C1| � d0.6

1 . The exponent 0.6 is somewhat
larger than the threshold 0.5 claimed in Remark 12. Note that the dimension size d is
moderately large (only 300) in our simulations due to the heavy computational cost.
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6. Proofs

For notational brevity, we write A . B if there exists an absolute constant D1 such that
A ≤ D1B. A similar notation would be & and A � B means that A . B and A & B
simultaneously. If the constant D1 depends on some parameter γ, we shall write .γ ,&γ

and �γ .

Recall that the HOSVD is translated directly from SVD on M1(A) and the matrix
perturbation model M1(Y) = M1(A) +M1(Z). Without loss of generality, it suffices to
focus on matrices with unbalanced sizes. In the remaining context, we write A,Z,Y ∈
Rm1×m2 instead ofM1(A),M1(Z),M1(Y) ∈ Rm1×m2 , where m1 = d1 and m2 = d2d3 such
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that m1 � m2. The second order spectral analysis begins with

YY> = AA> + Γ, where Γ = AZ> + ZA> + ZZ>.

Suppose that A has the thin singular value decomposition

A =

r1∑
k=1

λk
(
uk ⊗ hk

)
∈ Rm1×m2

where {h1, . . . ,hr1} ⊂ span
{
vj ⊗ w>k : j ∈ [r2], k ∈ [r3]

}
are the right singular vectors of

A. Moreover, AA> admits the eigen-decomposition:

AA> =

r1∑
k=1

λ2
k

(
uk ⊗ uk

)
.

In an identical fashion, denote the eigen-decomposition of YY> by

YY> =

m1∑
k=1

λ̂2
k

(
ûk ⊗ ûk

)
.

Even though Theorem 1 and Theorem 4 are stated when the singular value λk has mul-
tiplicity 1, we present more general results in this section. Note that when there are
repeated singular values, the singular vectors are not uniquely defined. In this case,
let µ1 > µ2 > . . . > µs > 0 be distinct singular values of A with s ≤ r1. Denote
∆k := {j : λj = µk} for 1 ≤ k ≤ s and νk := Card(∆k) the multiplicity of µk. Let
µs+1 = 0 which is a trivial eigenvalue of AA> with multiplicity m1− r1. Then, the spectral
decomposition of AA> can be represented as

AA> =

s+1∑
k=1

µ2
kP

uu
k

where the spectral projector Puu
k :=

∑
j∈∆k

uj ⊗uj which is uniquely defined. Correspond-

ingly, define the empirical spectral projector based on eigen-decomposition of YY>,

P̂uu
k :=

∑
j∈∆k

ûj ⊗ ûj .

We develop a sharp concentration bound for bilinear forms
〈
P̂uu
k x,y

〉
for x,y ∈ Rm1 .

Observe that YY> has an identical eigen-space as YY>−m2σ
2Im1 . Let Γ̂ := Γ−m2σ

2Im1

and the spectral analysis shall be realized on AA> + Γ̂.
Several preliminary facts are introduced as follows. It is clear that the k-th eigengap is

ḡk
(
AA>

)
:= min

(
µ2
k−1 − µ2

k, µ
2
k − µ2

k+1

)
for 1 ≤ k ≤ s, where we set µ0 = +∞. The proof

of Lemma 14 is provided in the Appendix.

Lemma 14 For any deterministic matrix B ∈ Rm3×m2, the following bounds hold

E‖BZ>‖ . σ‖B‖
(
m

1/2
1 +m

1/2
3 + (m1m3)1/4

)
(22)∥∥EZZ> −m2σ

2Im1

∥∥ . σ2(m1m2)1/2.
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For any t > 0, the following inequalities hold with probability at least 1− e−t,

‖BZ>‖ . σ‖B‖
(
m

1/2
1 +m

1/2
3 + (m1m3)1/4 + t1/2 + (m1t)

1/4
)

(23)∥∥ZZ> −m2σ
2Im1

∥∥ . σ2m
1/2
2

(
m

1/2
1 + t1/2

)
.

6.1. Proof of Theorem 1

To this end, define

Cuu
k :=

∑
s 6=k

1

µ2
s − µ2

k

Puu
s

and
Phh
k :=

∑
j∈∆k

hj ⊗ hj .

Theorem 1 is decomposed into two separate parts. Theorem 15 provides the concentration
bound for

∣∣〈Pkx,y〉 − E〈Pkx,y〉
∣∣ by Gaussian isoperimetric inequality and the proof is

postponed to the Appendix. In Theorem 17, we characterize the bias EP̂uu
k −Puu

k .

Theorem 15 Let δ(m1,m2) := µ1σm
1/2
1 + σ2(m1m2)1/2 and suppose that ḡk

(
AA>

)
≥

D1δ(m1,m2) for a large enough constant D1 > 0. Then, for any x,y ∈ Rm1, there exists
an absolute constant D2 > 0 such that for all log 8 ≤ t . m1, the following bound holds with
probability at least 1− e−t,

∣∣〈P̂uu
k x,y〉 − E〈P̂uu

k x,y〉
∣∣ ≤ D2t

1/2

(
σµ1 + σ2m

1/2
2

ḡk
(
AA>

) )
‖x‖`2‖y‖`2 .

The following spectral representation formula is needed whose proof can be found in Koltchin-
skii and Lounici (2016).

Lemma 16 The following bound holds

‖P̂uu
k −Puu

k ‖ ≤
4‖Γ̂‖

ḡk(AA>)
.

Moreover, P̂uu
k can be represented as

P̂uu
k −Puu

k = Lk(Γ̂) + Sk(Γ̂)

where Lk(Γ̂) = Puu
k Γ̂Cuu

k + Cuu
k Γ̂Puu

k and

‖Sk(Γ̂)‖ ≤ 14

(
‖Γ̂‖

ḡk(AA>)

)2

.

Theorem 17 Let δ(m1,m2) := µ1σm
1/2
1 + σ2(m1m2)1/2 and suppose that ḡk

(
AA>

)
≥

D1δ(m1,m2) for a large enough constant D1 > 0 and m2e
−m1/2 ≤ 1. Then there exists an

absolute constant D2 > 0 such that

∥∥EP̂uu
k −Puu

k −Puu
k

(
EP̂uu

k −Puu
k

)
Puu
k

∥∥ ≤ D2νk
σ2m1 + σ2m

1/2
2 + σµ1

ḡk
(
AA>

) (
δ(m1,m2)

ḡk
(
AA>

)).
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Proof [Proof of Theorem 1] Combining Theorem 15 and Theorem 17, we conclude that for
any x,y ∈ Rm1 with probability at least 1− e−t for all log 8 ≤ t ≤ m1,∣∣〈P̂uu

k x,y
〉
−
〈
Puu
k x,y

〉
−
〈
Puu
k (EP̂uu

k −Puu
k )Puu

k x,y
〉∣∣

.

(
t1/2

σµ1 + σ2m
1/2
2

ḡk(AA>)
+
σ2m1δ(m1,m2)

ḡ2
k(AA>)

)
‖x‖`2‖y‖`2

where we used the fact δ(m1,m2)
ḡk(AA>)

≤ 1 and νk = 1 (since ḡk(MM>) > 0). Since νk = 1 such

that Puu
k = uk ⊗ uk and P̂uu

k = ûk ⊗ ûk, we can write

Puu
k (EP̂uu

k −Puu
k )Puu

k = bkP
uu
k

where
bk = E〈ûk,uk〉2 − 1 ∈ [−1, 0].

Moreover, a simple fact is bk ≤ E‖P̂uu
k −Puu

k ‖ .
δ(m1,m2)
ḡk(AA>)

by Wedin’s sinΘ theorem (Wedin

(1972)). If ḡk(AA>) ≥ Dδ(m1,m2) for a large enough constant D > 0, we can ensure
bk ∈ [−1/2, 0]. Then, with probability at least 1− e−t,

∣∣〈(P̂uu
k − (1 + bk)P

uu
k

)
x,y

〉∣∣ . (t1/2σµ1 + σ2m
1/2
2

ḡk(AA>)
+
σ2m1δ(m1,m2)

ḡ2
k(AA>)

)
‖x‖`2‖y‖`2 .

By choosing x = y = uk, we obtain for all log 8 ≤ t ≤ m1,

P
(∣∣〈ûk,uk〉2 − (1 + bk)

∣∣ & t1/2
σµ1 + σ2m

1/2
2

ḡk(AA>)
+
σ2m1δ(m1,m2)

ḡ2
k(AA>)

)
≤ e−t.

Denote this event by E1. Observe that if the constant D > 0 is large enough and m1 � m2,
we conclude that on event E1, 〈ûk,uk〉2 ≥ 1

4 . Then, on event E1,∣∣〈ûk,x〉−√1 + bk〈uk,x〉
∣∣

≤
∣∣∣ 1 + bk
〈ûk,uk〉

−
√

1 + bk

∣∣∣|〈uk,x〉|
+

1

|〈ûk,uk〉|

∣∣∣〈ûk,uk〉〈ûk,x〉 − (1 + bk)〈uk,x〉
∣∣∣

=

√
1 + bk

∣∣1 + bk − 〈ûk,uk〉2
∣∣|〈uk,x〉|

|〈ûk,uk〉|
(√

1 + bk + 〈ûk,uk〉
) +

1

|〈ûk,uk〉|
∣∣〈(P̂uu

k − (1 + bk)P
uu
k

)
uk,x

〉∣∣
.t1/2

σµ1 + σ2m
1/2
2

ḡk(AA>)
‖x‖`2 +

σ2m1

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
‖x‖`2 ,

which concludes the proof after replacing A with M1(A) and µ1 with ‖M1(A)‖.

Proof [Proof of Theorem 17] Recall the representation formula of P̂uu
k in Lemma 16 that

EP̂uu
k = Puu

k + ESk(Γ̂)
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where Γ̂ := AZ> + ZA> + ZZ> −m2σ
2Im1 . To this end, define

Γ̃ := Γ̂−
(
ZPhh

k Z> − νkσ2Im1

)
such that we can write EP̂uu

k = Puu
k + ESk(Γ̃) +

(
ESk(Γ̂)− ESk(Γ̃)

)
. We derive an upper

bound on
∥∥ESk(Γ̃) − ESk(Γ̂)

∥∥ and the proof can be found in the Appendix. Lemma 18

implies that our analysis can be proceeded by replacing Γ̂ with Γ̃.

Lemma 18 There exists a universal constant D1 > 0 such that if m2e
−m1/2 ≤ 1, then∥∥ESk(Γ̃)− ESk(Γ̂)

∥∥ ≤ D1
σµ1 + σ2m1

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
.

Let δt = E‖Γ̂‖+D1σµ1t
1/2 +D2σ

2m
1/2
2 t1/2 for 0 < t ≤ m1 to be determined later and large

enough constants D1, D2 > 0 such that P
(
‖Γ̂‖ ≥ δt

)
≤ e−t. We write

EP̂uu
k −Puu

k −Puu
k ESk(Γ̃)Puu

k

=ESk(Γ̂)− ESk(Γ̃)

+E
(
Puu
k Sk(Γ̃)(Puu

k )⊥ + (Puu
k )⊥Sk(Γ̃)Puu

k + (Puu
k )⊥Sk(Γ̃)(Puu

k )⊥
)
1
(
‖Γ̃‖ ≤ δt

)
+E
(
Puu
k Sk(Γ̃)(Puu

k )⊥ + (Puu
k )⊥Sk(Γ̃)Puu

k + (Puu
k )⊥Sk(Γ̃)(Puu

k )⊥
)
1
(
‖Γ̃‖ > δt

)
. (24)

We prove an upper bound for E
〈
x, (Puu

k )⊥Sk(Γ̃)Puu
k y
〉
1
(
‖Γ̃‖ ≤ δt

)
for x,y ∈ Rm1 . Similar

to the approach in Koltchinskii and Xia (2016), under the assumption ‖Γ̃‖ ≤ δt, Sk(Γ̃) is
represented in the following analytic form,

Sk(Γ̃) = − 1

2πi

∮
γk

∑
r≥2

(−1)r
(
RAA>(η)Γ̃

)r
RAA>(η)dη

where γk is a circle on the complex plane with center µ2
k and radius ḡk(AA>)

2 , and RAA>(η)
is the resolvent of the operator AA> with RAA>(η) = (AA> − ηIm1)−1 which can be
explicitly written as

RAA>(η) := (AA> − ηIm1)−1 =
∑
s

1

µ2
s − η

Puu
s .

We also denote

R̃AA>(η) := RAA>(η)− 1

µ2
k − η

Puu
k =

∑
s 6=k

1

µ2
s − η

Puu
s .

It is easy to check that

(Puu
k )⊥

(
RAA>(η)Γ̃

)r
RAA>(η)Puu

k

=(Puu
k )⊥

(
RAA>(η)Γ̃

)r 1

µ2
k − η

Puu
k

=

(
1

(µ2
k − η)2

r∑
s=2

(
R̃AA>(η)Γ̃

)s−1(
Puu
k Γ̃

)(
RAA>(η)Γ̃

)r−s
Puu
k

)
+

1

µ2
k − η

(
R̃AA>(η)Γ̃

)r
Puu
k ,
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where we used the formula (a+ b)r = br +
∑r

s=1 b
s−1a(a+ b)r−s. As a result,

(Puu
k )⊥Sk(Γ̃)Puu

k

= −
∑
r≥2

(−1)r
1

2πi

∮
γk

(
1

(µ2
k − η)2

r∑
s=2

(
R̃AA>(η)Γ̃

)s−1(
Puu
k Γ̃

)(
RAA>(η)Γ̃

)r−s
Puu
k

+
1

µ2
k − η

(
R̃AA>(η)Γ̃

)r
Puu
k

)
dη. (25)

For any x,y ∈ Rm1 , we shall derive an upper bound for

E
〈
x,
(
R̃AA>(η)Γ̃

)s−1(
Puu
k Γ̃

)(
RAA>(η)Γ̃

)r−s
Puu
k y
〉
1
(
‖Γ̃‖ ≤ δt

)
, s = 2, . . . , r.

Recall that rank(Puu
k ) = νk and Puu

k =
∑

j∈∆k
uj ⊗ uj . Then,〈

x,
(
R̃AA>(η)Γ̃

)s−1(
Puu
k Γ̃

)(
RAA>(η)Γ̃

)r−s
Puu
k y
〉

=
∑
j∈∆k

〈
x,
(
R̃AA>(η)Γ̃

)s−1(
uj ⊗ ujΓ̃

)(
RAA>(η)Γ̃

)r−s
Puu
k y
〉

=
∑
j∈∆k

〈
Γ̃
(
RAA>(η)Γ̃

)r−s
Puu
k y,uj

〉〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Γ̃uj ,x

〉
.

Observe that∣∣〈Γ̃(RAA>(η)Γ̃
)r−s

Puu
k y,uj

〉∣∣ ≤‖RAA>(η)‖r−s‖Γ̃‖r−s+1‖y‖`2

≤
( 2

ḡk(AA>)

)(r−s)
‖Γ̃‖r−s+1‖y‖`2 .

Therefore,

E
〈
x,
(
R̃AA>(η)Γ̃

)s−1(
Puu
k Γ̃

)(
RAA>(η)Γ̃

)r−s
Puu
k y
〉
1
(
‖Γ̃‖ ≤ δt

)
=
∑
j∈∆k

E
〈
Γ̃
(
RAA>(η)Γ̃

)r−s
Puu
k y,uj

〉〈(
R̃AA>(η)Γ̃

)s−1
uj ,x

〉
1
(
‖Γ̃‖ ≤ δt

)
≤
∑
j∈∆k

E1/2
∣∣∣〈Γ̃(RAA>(η)Γ̃

)r−s
Puu
k y,uj

〉
1
(
‖Γ̃‖ ≤ δt

)∣∣∣2
× E1/2

∣∣∣〈(R̃AA>(η)Γ̃
)s−1

uj ,x
〉
1
(
‖Γ̃‖ ≤ δt

)∣∣∣2
≤
( 2δt
ḡk(AA>)

)r−s
δt‖y‖`2

∑
j∈∆k

E1/2
∣∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Γ̃uj ,x

〉
1
(
‖Γ̃‖ ≤ δt

)∣∣∣2.
(26)

It then remains to bound, for each j ∈ ∆k,

E1/2
∣∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Γ̃uj ,x

〉∣∣∣21(‖Γ̃‖ ≤ δt).
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Recall that we can write

Γ̃ = AZ> + ZA> + Z
∑
k′ 6=k

Phh
k′ Z

> − σ2(m2 − νk)Im1

and correspondingly

Γ̃uj = AZ>uj + ZA>uj + Z
∑
k′ 6=k

Phh
k′ Z

>uj − σ2(m2 − νk)uj .

We write〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Γ̃uj ,x

〉
=
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)ZA>uj ,x
〉

(27)

+
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)AZ>uj ,x
〉

(28)

+
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)
(
Z
∑
k′ 6=k

Phh
k′ Z

>uj − σ2(m2 − νk)uj
)
,x
〉
. (29)

The upper bounds of (27), (28), and (29) shall be obtained separately via different repre-
sentations.

Bound of E1/2
∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ZA>uj ,x

〉∣∣21(‖Γ̃‖ ≤ δt). Observe that A>uj =

µkhj ∈ Rm2 for j ∈ ∆k such that

ZA>uj = µkZhj = µk

m1∑
i=1

〈zi,hj〉ei

where {e1, . . . , em1} denote the canonical basis vectors in Rm1 and {z>1 , . . . , z>m1
} denote

the rows of Z. Therefore,〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ZA>uj ,x

〉
=µk

m1∑
i=1

〈zi,hj〉
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)ei,x
〉
.

It is clear that 〈zi,hj〉, i = 1, . . . ,m1 are i.i.d. and 〈zi,hj〉 ∼ N (0, σ2). Recall that

R̃AA>(η) =
∑

k′ 6=k
Puu

k′
µ2
k′−η

, implying that
(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η) can be viewed as a linear

combination of operators

(Puu
t1 Γ̃Puu

t2 )(Puu
t2 Γ̃Puu

t3 ) . . . (Puu
ts−2

Γ̃Puu
ts−1

)

where t1, . . . , ts−1 6= k. For each Puu
t1 Γ̃Puu

t2 , we have

Puu
t1 Γ̃Puu

t2 = Puu
t1 AZ>Puu

t2 + Puu
t1 ZA>Puu

t2 + Puu
t1

(
Z
∑
k′ 6=k

Phh
k′ Z

>)Puu
t2 − σ

2(m2 − νk)Puu
t1 Puu

t2 .
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Clearly, Puu
t1 AZ> is a function of random vectors Puu

t1 Azi, i = 1, . . . ,m1; ZA>Puu
t2 is a

function of random vectors Puu
t2 Azi, i = 1, . . . ,m1; Z

∑
k′ 6=k Phh

k′ Z
> = Z

∑
k′ 6=k(P

hh
k′ )2Z> is

a function of random vectors Phh
k′ zi, i = 1, . . . ,m1. The following facts are obvious

E〈zi,hj〉Puu
t1 Azi = Puu

t1 A(Ezi ⊗ zi)hj = σ2Puu
t1 Ahj = σ2µkP

uu
t1 uj = 0, ∀t1 6= k

and
E〈zi,hj〉Phh

k′ zi = Phh
k′ (Ezi ⊗ zi)hj = σ2Phh

k′ hj = 0, ∀k′ 6= k.

Since
{
〈zi,hj〉, i = 1, . . . ,m1

}
are Gaussian random variables and

{
Puu
t1 Azi,P

hh
k′ zi, i =

1, . . . ,m1

}
are (complex) Gaussian random vectors, uncorrelations indicate that

{
〈zi,hj〉 :

i = 1, . . . ,m1

}
are independent with

{
Puu
t1 Azi,P

hh
k′ zi : t1 6= k, k′ 6= k, i = 1, . . . ,m1

}
. We

conclude that
{
〈zi,hj〉 : i = 1, . . . ,m1

}
are independent with{〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)ei,x
〉
, i = 1, . . . ,m1

}
.

To this end, define the complex random variables

ωi(x) =
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)ei,x
〉

= ω
(1)
i (x) + ω

(2)
i (x)Im ∈ C, i = 1, . . . ,m1

where Im denotes the imaginary number. Then,〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ZA>uj ,x

〉
= µk

m1∑
i=1

〈zi,hj〉ω(1)
i (x) +

(
µk

m1∑
i=1

〈zi,hj〉ω(2)
i (x)

)
Im

=: κ1(x) + κ2(x)Im ∈ C.

Conditioned on
{
Puu
t1 Azi,P

hh
k′ zi : t1 6= k, k′ 6= k, i = 1, . . . ,m1

}
, we get

Eκ2
1(x) = µ2

kσ
2
m1∑
i=1

(
ω

(1)
i (x)

)2

and

Eκ1(x)κ2(x) = µ2
kσ

2
m1∑
i=1

ω
(1)
i (x)ω

(2)
i (x)

implying that the centered Gaussian random vector (κ1(x), κ2(x)) has covariance matrix:(
µ2
kσ

2
m1∑
i=1

ω
(k1)
i (x)ω

(k2)
i (x)

)
k1,k2=1,2

.

Finally,

E1/2
∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ZA>uj ,x

〉∣∣21(‖Γ̃‖ ≤ δt)
=E1/2

(
κ2

1(x) + κ2
2(x)

)
1
(
‖Γ̃‖ ≤ δt

)
= σµkE1/2

( m1∑
i=1

(
ω

(1)
i (x)

)2
+
(
ω

(2)
i (x)

)2)
1
(
‖Γ̃‖ ≤ δt

)
= σµkE1/2

m1∑
i=1

∣∣ωi(x)
∣∣21(‖Γ̃‖ ≤ δt).
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Moreover,

m1∑
i=1

∣∣ωi(x)
∣∣2 =

m1∑
i=1

∣∣〈R̃AA>(η)
(
R̃AA>(η)Γ̃

)s−2
x, ej

〉∣∣2 ≤ ∥∥R̃AA>(η)
(
R̃AA>(η)Γ̃

)s−2
x
∥∥2

`2

≤ ‖R̃AA>(η)‖2(s−1)‖Γ̃‖2(s−2)‖x‖2`2 ≤
( 2

ḡk(AA>)

)2(s−1)
‖Γ̃‖2(s−2)‖x‖2`2 .

As a result,

E1/2
∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)ZA>uj ,x

〉∣∣21(‖Γ̃‖ ≤ δt)
≤ σµkE1/2

( 2

ḡk(AA>)

)2(s−1)
‖Γ̃‖2(s−2)‖x‖2`21

(
‖Γ̃‖ ≤ δt

)
≤ σµk
ḡk(AA>)

( 2δt
ḡk(AA>)

)s−2
‖x‖`2 .

Bound of E1/2
∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)AZ>uj ,x

〉∣∣21(‖Γ̃‖ ≤ δt). With a little abuse
on the notations, we denote by z1, . . . , zm2 ∈ Rm1 the corresponding columns of Z in this
paragraph. Then,

〈(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)AZ>uj ,x

〉
=

m2∑
i=1

〈zi,uj〉
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)Aei,x
〉
.

Similarly,
(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η) can be represented as linear combination of operators

(
Puu
t1 Γ̃Puu

t2

)(
Puu
t2 Γ̃Puu

t3

)
. . .
(
Puu
ts−2

Γ̃Puu
ts−1

)
, t1, . . . , ts−1 6= k.

To this end, we write

Puu
t1 Γ̃Puu

t2 = Puu
t1 AZ>Puu

t2 + Puu
t1 ZA>Puu

t2 + Puu
t1

(
Z
∑
k′ 6=k

Phh
k′ Z

>)Puu
t2 − σ

2(m2 − νk)Puu
t1 Puu

t2 .

Observe that Puu
t1 AZ>Puu

t2 , Puu
t1 ZA>Puu

t2 and Puu
t1

(
Z
∑

k′ 6=k Phh
k′ Z

>)Puu
t2 are functions of

random vectors {Puu
t1 zi,P

uu
t2 zi : t1, t2 6= k, i = 1, . . . ,m2}. Moreover,

E〈zi,uj〉Puu
t1 zi = Puu

t1

(
Ezi ⊗ zi

)
uj = σ2Puu

t1 uj = 0, ∀ t1 6= k

which implies that {〈zi,uj〉 : i = 1, . . . ,m2} and
{〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)Aei,x
〉

: i =

1, . . . ,m2

}
are independent. Following an identical analysis as above, we get

E1/2
∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)AZ>uj ,x

〉∣∣21(‖Γ̃‖ ≤ δt) ≤ σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)s−2
‖x‖`2 .
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Bound of E1/2
∣∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)

(
Z
∑

k′ 6=k Phh
k′ Z

>)uj ,x〉∣∣∣21(‖Γ̃‖ ≤ δt
)
. Note

that we used the fact R̃AA>(η)uj = 0 in (29). Again, let {z1, . . . , zm2} ⊂ Rm1 denote the
corresponding columns of Z. We write〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)
(
Z
∑
k′ 6=k

Phh
k′ Z

>)uj ,x〉
=

m2∑
i=1

〈zi,uj〉
〈(

R̃AA>(η)Γ̃
)s−2

R̃AA>(η)Z
( ∑
k′ 6=k

Phh
k′
)
ei,x

〉
.

In a similar fashion, we show that
(
R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Z is a function of random

vectors
{
Puu
t zi : t 6= k, i = 1, . . . ,m2

}
which are independent with

{
〈zi,uj〉 : i = 1, . . . ,m2

}
.

Then,

E1/2
∣∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)

(
Z
∑
k′ 6=k

Phh
k′ Z

>)uj ,x〉∣∣∣21(‖Γ̃‖ ≤ δ)
≤E1/2σ2‖R̃AA>(η)‖2(s−1)‖Γ̃‖2(s−2)‖Z

∑
k′ 6=k

Phh
k′ ‖2‖x‖2`21

(
‖Γ̃‖ ≤ δt

)
.

σ2m
1/2
2

ḡk(AA>)

( δt
ḡk(AA>)

)s−2
‖x‖`2 .

where we used the fact E1/2
∥∥(
∑

k′ 6=k Phh
k′ )Z>

∥∥2
. σm

1/2
2 from Lemma 14.

Finalize the proof of Theorem. Combining the above bounds into (28), (27) and (29),
we conclude that

E1/2
∣∣∣〈(R̃AA>(η)Γ̃

)s−2
R̃AA>(η)Γ̃uj ,x

〉∣∣∣21(‖Γ̃‖ ≤ δt)
.
σ2m

1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)s−2
‖x‖`2 .

Continue from (26) and we end up with

E
〈
x,
(
R̃AA>(η)Γ̃

)s−1
(Puu

k Γ̃)
(
RAA>(η)Γ̃

)r−s
Puu
k y
〉
1
(
‖Γ̃‖ ≤ δt

)
.νkδt

σ2m
1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)r−2
‖x‖`2‖y‖`2 .

Plug the bounds into (25),∣∣E〈(Puu
k )⊥Sk(Γ̃)Puu

k y,x
〉
1
(
‖Γ̃ ≤ δt‖

)∣∣
.
∑
r≥2

πḡk(AA>)

2π

( 2

ḡk(AA>)

)2
(r − 1)νkδt

σ2m
1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)r−2
‖x‖`2‖y‖`2

≤ D1νk
σ2m

1/2
2 + σµ1

ḡk(AA>)
‖x‖`2‖y‖`2

∑
r≥2

(r − 1)
( 2δt
ḡk(AA>)

)r−1
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where we used the fact
∮
γk

(
R̃AA>(η)Γ̃

)r
Puu
k dη = 0. By the inequality

∑
r≥1 rq

r =
q

(1−q)2 ,∀q < 1 and the fact D1δt ≤ ḡk(AA>) for some large constant D1 > 0 and t ≤ m1,

we conclude with∣∣E〈(Puu
k )⊥Sk(Γ̃)Puu

k y,x
〉
1
(
‖Γ̃ ≤ δt‖

)∣∣
. νk

σ2m
1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)
‖x‖`2‖y‖`2 , ∀x,y ∈ Rm1

implying that∥∥∥E(Puu
k )⊥Sk(Γ̃)Puu

k 1
(
‖Γ̃‖ ≤ δt

)∥∥∥ . νk
σ2m

1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)
.

The same bound holds for∥∥EPuu
k Sk(Γ̃)(Puu

k )⊥1
(
‖Γ̃‖ ≤ δt

)∥∥ and
∥∥E(Puu

k )⊥Sk(Γ̃)(Puu
k )⊥1

(
‖Γ̃‖ ≤ δt

)∥∥,
following the same arguments. As a result,∥∥∥E((Puu

k )⊥Sk(Γ̃)Puu
k + Puu

k Sk(Γ̃)(Puu
k )⊥ + (Puu

k )⊥Sk(Γ̃)(Puu
k )⊥

)
1
(
‖Γ̃‖ ≤ δt

)∥∥∥
. νk

σ2m
1/2
2 + σµ1

ḡk(AA>)

( 2δt
ḡk(AA>)

)
. (30)

By choosing t = m1 such that P(‖Γ̃‖ ≥ δm1) ≤ e−m1/2, we get∥∥∥E((Puu
k )⊥Sk(Γ̃)Puu

k + Puu
k Sk(Γ̃)(Puu

k )⊥ + (Puu
k )⊥Sk(Γ̃)(Puu

k )⊥
)
1
(
‖Γ̃‖ > δm1

)∥∥∥
≤ E

∥∥∥((Puu
k )⊥Sk(Γ̃)Puu

k + Puu
k Sk(Γ̃)(Puu

k )⊥ + (Puu
k )⊥Sk(Γ̃)(Puu

k )⊥
)∥∥∥1(‖Γ̃‖ > δm1

)
≤ E‖Sk(Γ̃)‖1

(
‖Γ̃‖ > δm1

)
≤ E1/2‖Sk(Γ̃)‖2P1/2

(
‖Γ̃‖ > δm1

)
.
( δm1

ḡk(AA>)

)2
P1/2

(
‖Γ̃‖ > δm1

)
.
( δm1

ḡk(AA>)

)2
e−m1/2,

which is clearly dominated by (30). Substitute the above bounds into (24) and we get∥∥∥EP̂uu
k −Puu

k −Puu
k Sk(Γ̃)Puu

k

∥∥∥ ≤ ‖ESk(Γ̃)− Sk(Γ̂)‖+D1νk
σ2m

1/2
2 + σµ1

ḡk(AA>)

(2δ(m1,m2)

ḡk(AA>)

)
≤ D2νk

σ2m
1/2
2 + σ2m1 + σµ1

ḡk(AA>)

(2δ(m1,m2)

ḡk(AA>)

)
.

6.2. Proof of Theorem 4

The proof of Theorem 4 is identical to the proof of Corollary 1.5 in Koltchinskii and Xia
(2016) and will be skipped here.
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6.3. Proof of Theorem 6

It suffices to prove the upper bound of
∣∣Ã(i, j, k) − A(i, j, k)

∣∣ for i ∈ [d1], j ∈ [d2], k ∈ [d3].
To this end, denote by ei the i-th canonical basis vectors. Observe that〈

Ã−A, ei ⊗ ej ⊗ ek
〉

=
〈
A×1 P

Ũ
×2 P

Ṽ
×3 P

W̃
−A, ei ⊗ ej ⊗ ek

〉
+
〈
Z×1 P

Ũ
×2 P

Ṽ
×3 P

W̃
, ei ⊗ ej ⊗ ek

〉
.

Some preliminary facts shall be concluded from Theorem 1. By Theorem 4, there exists an
event E2 with P

(
E2

)
≥ 1− 1

d2
on which

∥∥e>i (Ũ−U
)∥∥
`2
≤ r1/2

∥∥e>i (Ũ−U
)∥∥
`∞

.
σΛ(A)r1/2 + σ2dr1/2

ḡ2
min(A)

log1/2 d

and ∥∥Ũ>U− Ir1
∥∥ ≤ ‖Ũ>U− Ir1‖F . r‖Ũ>U− Ir1‖`∞ .

σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d.

The following decomposition is straightforward,

A ·
(
P

Ũ
,P

Ṽ
,P

W̃

)
−A

=A ·
(
P

Ũ
−PU,PV,PW

)
+ A ·

(
PU,PṼ

−PV,PW

)
+A ·

(
PU,PV,PW̃

−PW

)
+ A ·

(
P

Ũ
−PU,PṼ

−PV,PW

)
+A ·

(
P

Ũ
−PU,PV,PW̃

−PW

)
+ A ·

(
PU,PṼ

−PV,PW̃
−PW

)
+A ·

(
P

Ũ
−PU,PṼ

−PV,PW̃
−PW

)
Recall that A = C · (U,V,W) and we get〈

A ·
(
P

Ũ
−PU,PV,PW

)
, ei ⊗ ej ⊗ ek

〉
=e>i

(
Ũ
(
Ũ>U

)
−U

)
M1(C)

(
V ⊗W

)>
(ej ⊗ ek).

Observe that

e>i

(
Ũ
(
Ũ>U

)
−U

)
= e>i

(
Ũ−U

)(
Ũ>U

)
+ e>i U

(
Ũ>U− Ir1

)
implying that on event E2,∥∥∥e>i (Ũ

(
Ũ>U

)
−U

)∥∥∥
`2

≤
∥∥(Ũ−U)>ei

∥∥
`2
‖Ũ>U‖+

∥∥Ũ>U− Ir1
∥∥‖U>ei‖`2

.
σΛ(A)r1/2 + σ2dr1/2

ḡ2
min(A)

log1/2 d+ ‖U>ei‖`2
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

.
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d,
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where we used the facts ‖Ũ>U‖ ≤ ‖Ũ‖‖U‖ ≤ (1 + bk)
−1/2 = O(1) and

‖U>ei‖`2 =
〈
UU>, ei ⊗ ei

〉1/2 ≤ 1.

Therefore, on event E2,∣∣〈A · (P
Ũ
−PU,PV,PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
.Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)
‖V>ej‖`2‖W>ek‖`2 .

Similar bounds hold for∣∣〈A · (PU,PṼ
−PV,PW

)
, ei⊗ ej ⊗ ek

〉∣∣ and
∣∣〈A · (PU,PV,PW̃

−PW

)
, ei⊗ ej ⊗ ek

〉∣∣.
Following the same method, we can show that on event E2,∣∣〈A · (P

Ũ
−PU,PṼ

−PV,PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
.Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)2

‖W>ek‖`2

and ∣∣〈A · (P
Ũ
−PU,PṼ

−PV,PW̃
−PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
.Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)3

.

We conclude that on event E2,∣∣〈A · (P
Ũ
,P

Ṽ
,P

W̃

)
−A, ei ⊗ ej ⊗ ek

〉∣∣
.Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)(
‖V>ej‖`2‖W>ek‖`2

+ ‖U>ei‖`2‖W>ek‖`2 + ‖U>ei‖`2‖V>ej‖`2
)

+ Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)2(
‖V>ej‖`2 + ‖U>ei‖`2 + ‖W>ek‖`2

)
+ Λ(A)

(
σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d

)3

.

Recall that for all i ∈ [d1], j ∈ [d2], k ∈ [d3]

‖U>ei‖`2 ≤ µU

√
r

d
, ‖V>ej‖`2 ≤ µV

√
r

d
, ‖W>ek‖`2 ≤ µW

√
r

d

and conditions (13) (14) (15) imply

σΛ(A)r + σ2dr

ḡ2
min(A)

log1/2 d . r
( log d

d

)1/2
.
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We end up with a simpler bound on event E2,∣∣〈A · (P
Ũ
,P

Ṽ
,P

W̃

)
−A, ei ⊗ ej ⊗ ek

〉∣∣ (31)

.σr3

(
σκ̃(A)

ḡmin(A)
+
κ̃2(A)

d

)
(µUµV + µUµW + µVµW) log3/2 d

where κ̃(A) = Λ(A)/ḡmin(A).
Next, we prove the upper bound of

∣∣〈Z · (P
Ũ
,P

Ṽ
,P

W̃
), ei ⊗ ej ⊗ ek

〉∣∣ and we proceed
with the same decomposition. Observe that〈

Z · (PU,PV,PW), ei ⊗ ej ⊗ ek
〉

=
〈
Z, (PUei)⊗ (PVej)⊗ (PWek)

〉
∼N

(
0, σ2

∥∥PUei
∥∥2

`2

∥∥PVej
∥∥2

`2

∥∥PWek
∥∥2

`2

)
The standard concentration inequality of Gaussian random variables yields that with prob-
ability at least 1− 1

d2
,∣∣〈Z · (PU,PV,PW), ei ⊗ ej ⊗ ek

〉∣∣ .σ‖U>ei‖`2‖V>ej‖`2‖W>ek‖`2 log1/2 d

.σ
(r
d

)3/2
µUµVµW log1/2 d.

Similarly, with probability at least 1− 1
d2

,∣∣〈Z · (P
Ũ
−PU,PV,PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
=
∣∣e>i (PŨ

−PU

)
M1(Z)

(
V ⊗W

)(
(V>ej)⊗ (W>ek)

)∣∣
≤‖(P

Ũ
−PU)ei‖`2

∥∥M1(Z)(V ⊗W)
∥∥‖V>ej‖`2‖W>ek‖`2

.σd1/2‖(P
Ũ
−PU)ei‖`2

∣∣‖V>ej‖`2‖W>ek‖`2

where we used Lemma 14 for the upper bound of
∥∥M1(Z)(V ⊗W)

∥∥. Moreover, since
µU ≥ 1, ∥∥(P

Ũ
−PU

)
ei
∥∥
`2
≤‖(Ũ−U)ei‖`2 + ‖Ũ−U‖`2‖U>ei‖`2

.
σΛ(A)r + σ2dr

ḡ2
min(A)

µU log1/2 d.

Denote the above event by E3. On E2 ∩ E3,∣∣〈Z · (P
Ũ
−PU,PV,PW

)
, ei ⊗ ej ⊗ ek

〉∣∣ . σr

d1/2

(
σΛ(A)r + σ2dr

ḡ2
min(A)

)
µUµVµW log1/2 d.

Similar bounds can be attained for∣∣〈Z · (PU,PṼ
−PV,PW

)
, ei⊗ ej ⊗ ek

〉∣∣ and
∣∣〈Z · (PU,PV,PW̃

−PW

)
, ei⊗ ej ⊗ ek

〉∣∣.
In an identical fashion, on event E2 ∩ E3,∣∣〈Z · (P

Ũ
−PU,PṼ

−PV,PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
.σr1/2

(
σΛ(A)r + σ2dr

ḡ2
min(A)

)2

µUµVµW log d.
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and ∣∣〈Z · (P
Ũ
−PU,PṼ

−PV,PW̃
−PW

)
, ei ⊗ ej ⊗ ek

〉∣∣
.σd1/2

(
σΛ(A)r + σ2dr

ḡ2
min(A)

)3

µUµVµW log3/2 d.

Observe by conditions (13) (14) (15) that

σΛ(A)r + σ2dr

ḡ2
min(A)

.
r

d1/2
.

We conclude on event E2 ∩ E3 with∣∣〈Z · (P
Ũ
,P

Ṽ
,P

W̃

)
, ei ⊗ ej ⊗ ek

〉∣∣ . σr2

d1/2

(
σΛ(A)r + σ2dr

ḡ2
min(A)

)
µUµVµW log3/2 d. (32)

By combining (31) and (32), we get on event E2 ∩ E3,∣∣〈Ã−A, ei ⊗ ej ⊗ ek
〉∣∣

.σr3

(
σκ̃(A)

ḡmin(A)
+
κ̃2(A)

d

)
(µUµV + µUµW + µVµW) log3/2 d

+
σr2

d1/2

(
σΛ(A)r + σ2dr

ḡ2
min(A)

)
µUµVµW log3/2 d

.σr3

(
σκ̃(A)

ḡmin(A)
+
κ̃2(A)

d

)
(µUµV + µUµW + µVµW) log3/2 d,

where the last inequality is due to fact ḡmin(A) & σd3/4 and max
{
µU, µV, µW

}
.
√
d.
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Appendix A. Proof of Lemma 14

Let zi ∈ Rm1 , i = 1, . . . ,m2 denote the columns of Z. Then, we write

ZZ> − σ2m2Im1 =

m2∑
i=1

(
zi ⊗ zi − σ2Im1

)
.

Similarly, let z̃>j ∈ Rm2 , j = 1, . . . ,m1 denote the rows of Z and observe that ‖BZ>‖ =

‖BZ>ZB>‖1/2 and

BZ>ZB> =

m1∑
j=1

((
Bz̃j

)
⊗
(
Bz̃j

)
− σ2BB>

)
.

The inequalities (28) and (23) are on the concentration of sample covariance operator, where
a sharp bound has been derived in Koltchinskii and Lounici (2017) and will be skipped here.

Appendix B. Proof of Theorem 15

Since EΓ̂ = 0, we immediately get ELk(Γ̂) = 0. Then,〈
x, P̂uu

k y
〉
− E

〈
x, P̂uu

k y
〉

=
〈
x,Lk(Γ̂)y

〉
+
〈
x,Sk(Γ̂)y

〉
− E

〈
x,Sk(Γ̂)y

〉
.

Lemma 19 For any x,y ∈ Rm1, there exists an absolute constant D1 > 0 such that for all
0 ≤ t ≤ m1, with probability at least 1− e−t,

∣∣〈x,Lk(Γ̂)y〉
∣∣ ≤ D1t

1/2

(
σµ1 + σ2m

1/2
2

ḡk(AA>)

)
‖x‖`2‖y‖`2 .
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Proof Recall that
Γ̂ = AZ> + ZA> + ZZ> −m2σ

2Im1 .

Then, we write
〈
x,Lk(Γ̂)y

〉
as

〈x,Lk(Γ̂)y〉 =〈Γ̂Puu
k x,Cuu

k y〉+ 〈Γ̂Cuu
k x,Puu

k y〉
=〈(AZ> + ZA> + ZZ> −m2σ

2Im1)Puu
k x,Cuu

k y〉
+〈(AZ> + ZA> + ZZ> −m2σ

2Im1)Cuu
k x,Puu

k y〉.

It suffices to consider the following terms separately for x,y ∈ Rm1 :

〈ZA>x,y〉, 〈AZ>x,y〉,
〈(

ZZ> −m2σ
2Im1

)
x,y

〉
.

It is straightforward to check that 〈ZA>x,y〉 is a normal random variable with zero mean
and variance

E〈ZA>x,y〉2 = E〈Z,y ⊗ (A>x)〉2 = σ2‖y ⊗ (A>x)‖2`2 = σ2‖y‖2`2‖A
>x‖2`2 ,

where we used the fact that Z is a m1 ×m2 matrix with i.i.d. N (0, σ2) entries. Therefore,

E〈ZA>Puu
k x,Cuu

k y〉2 ≤
σ2µ2

k

ḡ2
k(AA>)

‖x‖2`2‖y‖
2
`2 ,

where we used the facts ‖Ck‖ ≤ 1
ḡk(AA>)

and ‖A>Puu
k ‖ ≤ µk. By the standard concentra-

tion inequality of Gaussian random variables, we get for all t ≥ 0,

P
(∣∣〈ZA>Puu

k x,Cuu
k y
〉∣∣ ≥ 2t1/2

σµk
ḡk(AA>)

‖x‖`2‖y‖`2
)
≤ e−t.

Similarly, for all t ≥ 0,

P
(∣∣〈ZA>Cuu

k x,Puu
k y
〉∣∣ ≥ 2t1/2

σµ1

ḡk(AA>)
‖x‖`2‖y‖`2

)
≤ e−t.

We next turn to the bound of
∣∣〈(ZZ> −m2σ

2Im1

)
Puu
k x,Cuu

k y
〉∣∣. Recall that Puu

k Cuu
k = 0

implying that it suffices to consider
〈
ZZ>Puu

k x,Cuu
k y
〉
. Let z1, . . . , zm2 ∈ Rm1 denote the

columns of Z such that zi ∈ N
(
0, σ2Im1

)
for 1 ≤ i ≤ m2. Write

〈
ZZ>(Puu

k x),Cuu
k y
〉

=

m2∑
i=1

〈
zi,P

uu
k x
〉〈

zi,C
uu
k y
〉
.

Observe that E
(
Puu
k zi

)
⊗
(
Cuu
k zi

)
= 0 implying that

〈
zi,P

uu
k x
〉

is independent of
〈
zi,C

uu
k y
〉
.

By concentration inequalities of Gaussian random variables, for all t ≥ 0,

P
(∣∣〈ZZ>(Puu

k x),Cuu
k y
〉∣∣ ≥ 2t1/2‖y‖`2

σ
(∑m2

i=1〈zi,Puu
k x〉2

)1/2
ḡk(AA>)∣∣∣{〈zi,Puu
k x〉 : i = 1, . . . ,m2

})
≤ e−t.
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By (Vershynin, 2010, Prop 5.16), the following bound holds with probability at least 1−e−t,

∣∣ m2∑
i=1

〈zi,Puu
k x〉2 − σ2m2‖x‖2`2

∣∣ . σ
(
m

1/2
2 t1/2 + t

)
‖x‖`2 .

If t . m1 ≤ m2, we conclude that there exists an absolute constant D1 > 0 such that

P
(∣∣〈ZZ>(Puu

k x),Cuu
k y
〉∣∣ ≥ D1

σ2m
1/2
2 t1/2

ḡk(AA>)
‖x‖`2‖y‖`2

)
≤ e−t.

To sum up, for all 0 ≤ t . m1, the following bound holds with probability at least 1− e−t,

∣∣〈x,Lk(Γ̂)y
〉∣∣ . t1/2

(
σµ1 + σ2m

1/2
2

ḡk(AA>)

)
‖x‖`2‖y‖`2

which concludes the proof.

It remains to derive the upper bound of
∣∣〈x,Sk(Γ̂)y〉 − E〈x,Sk(Γ̂)y〉

∣∣.The following
lemma is due to Koltchinskii and Lounici (2016).

Lemma 20 Let δ(m1,m2) := σµ1m
1/2
1 + σ2(m1m2)1/2 and suppose that δ(m1,m2) ≤

1−γ
2(1+γ) ḡk(AA>) for some γ ∈ (0, 1). There exists a constant Dγ > 0 such that, for all

symmetric Γ̂1, Γ̂2 ∈ Rm1×m1 satisfying the condition max
{
‖Γ̂1‖, ‖Γ̂2‖

}
≤ (1+γ)δ(m1,m2),

‖Sk(Γ̂1)− Sk(Γ̂2)‖ ≤ Dγ
δ(m1,m2)

ḡ2
k(AA>)

‖Γ̂1 − Γ̂2‖.

Define function ϕ(·) : R+ 7→ [0, 1] such that ϕ(t) = 1 for 0 ≤ t ≤ 1 and ϕ(t) = 0 for
t ≥ (1 + γ) and ϕ is linear in between. Then, function ϕ is Lipschitz on R+ with constant
1
γ . To illustrate the dependence of Γ̂ on Z, we write Γ̂(Z) instead of Γ̂. To this end, fix
x,y ∈ Rm1 and constants δ1, δ2 > 0 and define the function

Fδ1,δ2,x,y(Z) :=
〈
x,Sk

(
Γ̂(Z)

)
y
〉
ϕ
(‖Γ̂(Z)‖

δ1

)
ϕ
(‖Z‖
δ2

)
.

where we view Z as a point in Rm1×m2 rather than a random matrix.

Lemma 21 For any δ1 ≤ 1−γ
2(1+γ) ḡk(AA>) for some γ ∈ (0, 1) and δ2 > 0, there exists an

absolute constant Cγ > 0 such that∣∣Fδ1,δ2,x,y(Z1)− Fδ1,δ2,x,y(Z2)
∣∣ ≤ Cγ δ1

ḡ2
k(AA>)

(
µ1 + δ2 +

δ1

δ2

)
‖Z1 − Z2‖‖x‖`2‖y‖`2

Proof [Proof of Lemma 21] Since ϕ(‖Γ̂(Z)‖
δ1

)ϕ(‖Z‖δ2 ) 6= 0 only if ‖Γ̂(Z)‖ ≤ (1 + γ)δ1 and
‖Z‖ ≤ (1 + γ)δ2, Lemma 16 implies that

∣∣Fδ1,δ2,x,y(Z)
∣∣ =

∣∣∣〈x,Sk
(
Γ̂(Z)

)
y
〉
ϕ
(‖Γ̂(Z)‖

δ1

)
ϕ
(‖Z‖
δ2

)∣∣∣ ≤ 14(1 + γ)2 δ2
1

ḡ2
k(AA>)

.
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Case 1. If max
{∥∥Γ̂(Z1)

∥∥, ∥∥Γ̂(Z2)
∥∥} ≤ (1 + γ)δ1 and max

{
‖Z1‖, ‖Z2‖

}
≤ (1 + γ)δ2.

By the Lipschitzity of function ϕ, Lemma 20 and definition of Γ̂(Z), it is easy to check

|Fδ1,δ2,x,y(Z1)− Fδ1,δ2,x,y(Z2)|
≤‖Sk

(
Γ̂(Z1)

)
− Sk

(
Γ̂(Z2)

)
‖‖x‖`2‖y‖`2

+
14(1 + γ)2δ1

γḡ2
k(AA>)

∥∥Γ̂(Z1)− Γ̂(Z2)
∥∥‖x‖`2‖y‖`2 +

14(1 + γ)2δ2
1

δ2γḡ2
k(AA>)

‖Z1 − Z2‖‖x‖`2‖y‖`2

≤Dγ
δ1

ḡ2
k(AA>)

‖Γ̂(Z1)− Γ̂(Z2)‖‖x‖`2‖y‖`2 +
14(1 + γ)2δ2

1

δ2γḡ2
k(AA>)

‖Z1 − Z2‖‖x‖`2‖y‖`2

≤Dγ
δ1

ḡ2
k(AA>)

(
µ1 + δ2 +

δ1

δ2

)
‖Z1 − Z2‖‖x‖`2‖y‖`2 .

Case 2. If ‖Γ̂(Z1)‖ ≤ (1 + γ)δ1, ‖Γ̂(Z2)‖ ≥ (1 + γ)δ1 and max
{
‖Z1‖, ‖Z2‖

}
≤

(1 + γ)δ2. Since ‖Γ̂(Z2)‖ ≥ (1 + γ)δ1, we have ϕ
(‖Γ̂(Z2)‖

δ1

)
= 0 and Fδ1,δ2,x,y(Z2) = 0. Then,∣∣Fδ1,δ2,x,y(Z1)− Fδ1,δ2,x,y(Z2)

∣∣
=
∣∣∣〈x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z1)‖

δ1

)
ϕ
(‖Z1‖

δ2

)∣∣∣
=
∣∣∣〈x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z1)‖

δ1

)
ϕ
(‖Z1‖

δ2

)
−
〈
x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z2)‖

δ1

)
ϕ
(‖Z1‖

δ2

)∣∣∣
≤
∥∥Sk(Γ̂(Z1)

)∥∥ 1

δ1γ
‖Γ̂(Z1)− Γ̂(Z2)‖‖x‖`2‖y‖`2

≤ (1 + γ)2δ2
1

ḡ2
k(AA>)δ1γ

(
2µ1 + 2(1 + γ)δ2

)
‖Z1 − Z2‖‖x‖`2‖y‖`2

≤Dγ
δ1

ḡ2
k(AA>)

(µ1 + δ2)‖Z1 − Z2‖‖x‖`2‖y‖`2 .

Case 3. If ‖Γ̂(Z1)‖ ≤ (1 + γ)δ1, ‖Γ̂(Z2)‖ ≥ (1 + γ)δ1, ‖Z1‖ ≤ (1 + γ)δ2, ‖Z2‖ ≥
(1 + γ)δ2. It can be proved similarly as Case 2.

Case 4. If ‖Γ̂(Z1)‖ ≤ (1 + γ)δ1, ‖Γ̂(Z2)‖ ≥ (1 + γ)δ1, ‖Z1‖ ≥ (1 + γ)δ2, ‖Z2‖ ≥
(1 + γ)δ2. It is a trivial case since Fδ1,δ2,x,y(Z1) = Fδ1,δ2,x,y(Z2) = 0.

Case 5. If max
{
‖Γ̂(Z1)‖, ‖Γ̂(Z2)‖

}
≤ (1 + γ)δ1, ‖Z1‖ ≤ (1 + γ)δ2, ‖Z2‖ ≥ (1 + γ)δ2.

Again, we have Fδ1,δ2,x,y(Z2) = 0. Then,∣∣Fδ1,δ2,x,y(Z1)− Fδ1,δ2,x,y(Z2)
∣∣

=
∣∣∣〈x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z1)‖

δ1

)
ϕ
(‖Z1‖

δ2

)∣∣∣
=
∣∣∣〈x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z1)‖

δ1

)
ϕ
(‖Z1‖

δ2

)
−
〈
x,Sk

(
Γ̂(Z1)

)
y
〉
ϕ
(‖Γ̂(Z1)‖

δ1

)
ϕ
(‖Z2‖

δ2

)∣∣∣
≤
∥∥Sk(Γ̂(Z1)

)∥∥ 1

δ2γ
‖Z1 − Z2‖‖x‖`2‖y‖`2 ≤

(1 + γ)2δ2
1

ḡ2
k(AA>)δ2γ

‖Z1 − Z2‖‖x‖`2‖y‖`2

≤Dγ
δ1

ḡ2
k(AA>)

δ1

δ2
‖Z1 − Z2‖‖x‖`2‖y‖`2 .
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All the other cases shall be handled similarly and we conclude the proof.

Note that ‖Z1 − Z2‖ ≤ ‖Z1 − Z2‖`2 , Lemma 21 indicates that Fδ1,δ2,x,y(Z) is Lipschitz
with constant

Dγ
δ1

ḡ2
k(AA>)

(
µ1 + δ2 +

δ1

δ2

)
‖x‖`2‖y‖`2 .

Lemma 22 Let δ(m1,m2) := σµ1m
1/2
1 +σ2(m1m2)1/2 and suppose that E‖Γ̂‖ ≤ 1−γ

2 ḡk(AA>)
for some γ ∈ (0, 1). There exists some constant Dγ such that for any x,y ∈ Rm1 and all
log 8 ≤ t ≤ m1, the following inequality holds with probability at least 1− e−t,

∣∣〈x,Sk(Γ̂)y〉 − E〈x,Sk(Γ̂)y〉
∣∣ ≤ Dγt

1/2σµ1 + σ2m
1/2
2

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
‖x‖`2‖y‖`2 .

Proof [Proof of Lemma 22] Choose δ1 = δ1(m1,m2) and δ2 = δ2(m1,m2) as follows where
log 8 ≤ t ≤ m1 is to be determined:

δ1(m1,m2) : = δ1(m1,m2, t) := E‖Γ̃‖+D1t
1/2(σµ1 + σ2m

1/2
2 )

δ2(m1,m2) : = δ2(m1,m2, t) := E‖Z‖+D2σt
1/2

and the constants D1, D2 > 0 are chosen such that P
(
‖Γ̂‖ ≥ δ1(m1,m2, t)

)
≤ e−t and

P
(
‖Z‖ ≥ δ2(m1,m2, t)

)
≤ e−t. Let M := Med(〈x,Sk(Γ̂)y〉) denote its median.

Case 1. IfD1t
1/2(µ1σ+σ2m

1/2
2 ) ≤ γ

4 ḡk(AA>). Then, δ1 ≤ (1−γ
2 ) ḡk(AA>)

2 = 1−2γ′

1+2γ′
ḡk(AA>)

2

for some γ′ ∈ (0, 1/2). By Lemma 21, Fδ1,δ2,x,y(·) satisfies the Lipschitz condition. By

definition of Fδ1,δ2,x,y(Z), we have Fδ1,δ2,x,y(Z) = 〈x,Sk(Γ̂)y〉 on the event {‖Γ̂‖ ≤ δ1, ‖Z‖ ≤
δ2}. By Lemma 14 and t ≥ log 8,

P
{
Fδ1,δ2,x,y(Z) ≥M

}
≥P
{
Fδ1,δ2,x,y(Z) ≥M, ‖Γ̂‖ ≤ δ1, ‖Z‖ ≤ δ2

}
≥P
{
〈x,Sk(Γ̂)y〉 ≥M

}
− P{‖Γ̂‖ ≤ δ1, ‖Z‖ ≤ δ2}

≥P
{
〈x,Sk(Γ̂)y〉 ≥M

}
− P

{
‖Γ̂‖ ≤ δ1

}
− P

{
‖Z‖ ≤ δ2

}
≥1

2
− 1

8
− 1

8
= 1/4,

and similarly,

P
{
Fδ1,δ2,x,y(Z) ≤M)

}
≥ 1/4.

It follows from Gaussian isoperimetric inequality (see (Koltchinskii and Xia, 2016, Lemma 2.6))
and Lemma 21 that with some constant Dγ > 0, for all t ≥ log 8 with probability at least
1− e−t, ∣∣Fδ1,δ2,x,y(Z)−M

∣∣ ≤ Dγ
σδ1t

1/2

ḡ2
k(AA>)

(
µ1 + δ2 +

δ1

δ2

)
‖x‖`2‖y‖`2 .
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Since t ≤ m1 ≤ m2, it is easy to check by Lemma 14 that δ1 � σµ1m
1/2
1 +σ2(m1m2)1/2 and

δ2 � σm1/2
2 . Moreover, P

{
‖Γ̂‖ ≤ δ1, ‖Z‖ ≤ δ2

}
≥ 1− 2e−t. As a result, with probability at

least 1− e−3t,

∣∣〈x,Sk(Γ̂)y〉 −M
∣∣ ≤ Dγ

σµ1t
1/2 + σ2m

1/2
2 t1/2

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
‖x‖`2‖y‖`2 . (33)

Case 2. If D1t
1/2(σµ1 + σ2m

1/2
2 ) > γ

4 ḡk(AA>). It implies that

E‖Γ̂‖ ≤ D1
(1− γ)

γ
t1/2(σµ1 + σ2m

1/2
2 ),

and δ1 ≤ Dγt
1/2(σµ1 + σ2m

1/2
2 ). By Lemma 14 and Lemma 16, with probability at least

1− e−t,

|〈x,Sk(Γ̂)y〉| ≤ ‖Sk(Γ̂)‖ ≤ Dγt
(σµ1 + σ2m

1/2
2 )2

ḡ2
k(AA>)

‖x‖`2‖y‖`2 ,

which immediately yields that

M ≤ Dγ
(σµ1 + σ2m

1/2
2 )2

ḡ2
k(AA>)

‖x‖`2‖y‖`2 .

The above inequalities imply that with probability at least 1− e−t for log 8 ≤ t ≤ m1,

|〈x,Sk(Γ̂)y〉 −M | ≤Dγt
(σµ1 + σ2m

1/2
2 )2

ḡ2
k(AA>)

‖x‖`2‖y‖`2

≤Dγ
σµ1t

1/2 + σ2m
1/2
2 t1/2

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
‖x‖`2‖y‖`2 . (34)

Therefore, bounds (33) and (34) hold in both cases. The rest of the proof is quite stan-
dard by integrating the exponential tails and will be skipped here, see Koltchinskii and Xia
(2016).

Proof [Proof of Theorem 15] By Lemma 19 and Lemma 22, if D1δ(m1,m2) ≤ ḡk(AA>) for
a large enough constant D1 > 0 such that γ ≤ 1/2, we conclude that for all log 8 ≤ t ≤ m1,
with probability at least 1− 2e−t,

∣∣〈x, P̂ky
〉∣∣ ≤ Dt1/2σµ1 + σ2m

1/2
2

ḡk(AA>)
‖x‖`2‖y‖`2

which concludes the proof after adjusting the constant D accordingly.
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Appendix C. Proof of Lemma 18

Observe that for any x,y ∈ Rm1 with ‖x‖`2 = ‖y‖`2 = 1 and δt = E‖Γ̂‖ + D1σµ1t
1/2 +

D2σ
2m

1/2
2 t1/2 with t ≤ m1 and some γ ∈ (0, 1/2],

∣∣∣E〈x, (Sk(Γ̃)− Sk(Γ̂)
)
y
〉∣∣∣ ≤ E

∥∥∥Sk(Γ̃)− Sk(Γ̂)
∥∥∥

= E
∥∥∥Sk(Γ̃)− Sk(Γ̂)

∥∥∥1(‖Γ̃‖ ≤ (1 + γ)δt

)
1
(
‖Γ̂‖ ≤ (1 + γ)δt

)
+ E

∥∥∥Sk(Γ̃)− Sk(Γ̂)
∥∥∥1(‖Γ̃‖ ≤ (1 + γ)δt

)
1
(
‖Γ̂‖ > (1 + γ)δt

)
+ E

∥∥∥Sk(Γ̃)− Sk(Γ̂)
∥∥∥1(‖Γ̃‖ > (1 + γ)δt

)
1
(
‖Γ̂‖ ≤ (1 + γ)δt

)
+ E

∥∥∥Sk(Γ̃)− Sk(Γ̂)
∥∥∥1(‖Γ̃‖ > (1 + γ)δt

)
1
(
‖Γ̂‖ > (1 + γ)δt

)
where the constants D1, D2 > 0 are chosen such that max

{
P
(
‖Γ̃‖ ≥ δt

)
,P
(
‖Γ̂‖ ≥ δt

)}
≤

e−t. By Lemma 20,

E
∥∥∥Sk(Γ̃)−Sk(Γ̂)

∥∥∥1(‖Γ̃‖ ≤ (1 + γ)δt

)
1
(
‖Γ̂‖ ≤ (1 + γ)δt

)
≤Dγ

δt
ḡ2
k(AA>)

E‖Γ̃− Γ̂‖ ≤ Dγ
δt

ḡ2
k(AA>)

E‖ZPhh
k Z> − νkσ2Im1‖.

By writing Phh
k :=

∑
j∈∆k

hj ⊗ hj , we obtain

ZPhh
k Z> − σ2νkIm1 =

∑
j∈∆k

(Zhj)⊗ (Zhj)− σ2νkIm1

=νk

( 1

νk

∑
j∈∆k

(Zhj)⊗ (Zhj)− σ2Im1

)
.

where νk = Card(∆k). The vectors Zhj ∼ N (0, σ2Im1) and {Zhj : . . . , j ∈ ∆k} are
independent. By Koltchinskii and Lounici (2017),

E
∥∥∥ 1

νk

∑
j∈∆k

(Zhj)⊗ (Zhj)− σ2Im1

∥∥∥ . σ2
(√m1

νk
∨ m1

νk

)
.

Since νk ≤ m1, we conclude with

E
∥∥∥Sk(Γ̃)− Sk(Γ̂)

∥∥∥1(‖Γ̃‖ ≤ (1 + γ)δt

)
1
(
‖Γ̂‖ ≤ (1 + γ)δt

)
(35)

.γ
δt

ḡk(AA>)

(
m1σ

2

ḡk(AA>)

)
.

41



Xia and Zhou

Choose t = m1, by Lemma 16 and Lemma 14,

E
∥∥∥Sk(Γ̃)−Sk(Γ̂)

∥∥∥1(‖Γ̂‖ ≤ (1 + γ)δm1

)
1
(
‖Γ̃‖ > (1 + γ)δm1

)
≤ Dγ

δ2
m1

ḡ2
k(AA>)

E
‖Γ̃‖2

ḡ2
k(AA>)

1
(
‖Γ̃‖ > (1 + γ)δm1

)
.γ

δ2
m1

ḡ4
k(AA>)

e−m1/2E1/2‖Γ̃‖4 .
δ4
m1

ḡ4
k(AA>)

e−m1/2

.
δ(m1,m2)

ḡk(AA>)

(
σµ1 + σ2m1

ḡk(AA>)

)
which is clearly dominated by (35) for t = m1 and m2e

−m1/2 ≤ 1. The other terms are
bounded in a similar fashion. To sum up, we obtain

‖ESk(Γ̃)− ESk(Γ̂)‖ . σµ1 + σ2m1

ḡk(AA>)

(
δ(m1,m2)

ḡk(AA>)

)
.
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