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Abstract
We consider revenue maximization in online auction/pricing problems. A seller sells an
identical item in each period to a new buyer, or a new set of buyers. For the online pricing
problem, both when the arriving buyer bids or only responds to the posted price, we design
algorithms whose regret bounds scale with the best fixed price in-hindsight, rather than the
range of the values. Under the bidding model, we further show our algorithms achieve
a revenue convergence rate that matches the offline sample complexity of the single-item
single-buyer auction. We also show regret bounds that are scale free, and match the offline
sample complexity, when comparing to a benchmark that requires a lower bound on the
market share. We further expand our results beyond pricing to multi-buyer auctions, and
obtain online learning algorithms for auctions, with convergence rates matching the known
sample complexity upper bound of online single-item multi-buyer auctions.

These results are obtained by generalizing the classical learning from experts and multi-
armed bandit problems to their multi-scale versions. In this version, the reward of each
action is in a different range, and the regret with respect to a given action scales with its
own range, rather than the maximum range. We obtain almost optimal multi-scale regret
bounds by introducing a new Online Mirror Descent (OMD) algorithm whose mirror map
is the multi-scale version of the negative entropy function. We further generalize to the
bandit setting by introducing the stochastic variant of this OMD algorithm.
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sample complexity. †
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1. Introduction

Consider the following revenue maximization problem in a repeated setting, called the online
posted pricing problem. In each period, the seller has a single item to sell, and a new
prospective buyer. The seller offers to sell the item to the buyer at a given price; the buyer
buys the item if and only if the price is below his private valuation for the item. The private
valuation of the buyer itself is never revealed to the seller. How should a monopolistic seller
iteratively set the prices if he wishes to maximize his revenue? What if he also cares about
the market share, i.e., the fraction of time periods at which the item is sold?1

Estimating price sensitivities and demand models in order to optimize revenue and mar-
ket share is one of the bedrock of revenue management. The emergence of online market-
places has enabled sellers to costlessly change prices, as well as collect huge amounts of data.
This has renewed the interest in understanding best practices for data driven pricing. The
extreme case of this when the price is updated for each buyer is the online pricing problem
described above; one can always use this for less frequent price updates. Moreover this
problem is intimately related to the classical experimentation and estimation procedures.

This problem has been studied from an online learning perspective, as a variant of
the multi-armed bandit problem. In this variant, there is an arm for each possible price
(presumably after an appropriate discretization). The revenue of each arm p is either p or
zero, depending on whether the value of the arriving buyer is at least equal to the price p
or smaller than the price p, respectively. The total revenue of a pricing algorithm is then
compared to the total revenue of the best fixed posted price in hindsight. The difference
between the two, called the regret, is then bounded from above. No assumption is made on
the distribution of values; the regret bounds are required to hold for the worst case sequence
of values. Blum et al. (2004) assume that the buyer valuations are in [1, h], and show the
following multiplicative plus additive bound on the regret: for any ε ∈ (0, 1), the regret is
at most ε times the revenue of the optimal price, plus O(ε−2h log h log log h). Blum and
Hartline (2005) show that the additive factor can be made to be O(ε−3h log log h), trading
off a log h factor for an extra ε−1 factor.

An undesirable aspect of these bounds is that they scale linearly with h; this is particu-
larly problematic when h is an estimate and we might set it to be a generous upper bound
on the range of prices we wish to consider. A typical use case is when the same algorithm
is used for many different products, with widely varying price ranges. We may not be able
to manually tune the range for each product separately.

One might wonder if this dependence on h is unavoidable, as it seems to be reflected by
the existing lower bounds for this problem in the literature (lower bounds are discussed later
in the introduction with more details). Interestingly, in all of these lower-bound instances
the best fixed price is equal to h itself; Therefore, it is not clear whether this dependency
on h is required for instances where h is only a pessimistic upper-bound on the best fixed
price. We now ask the following question:

Question: do online learning algorithms exist for the online posted pricing prob-
lem, such that their regrets are proportional to the best fixed price instead of the
highest value?

1. As we will see later in the paper, we consider designing pricing algorithms that have vanishing revenue
regret with respect to all prices, or only prices with a given minimum market share.
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Standard off-the-shelf bounds, e.g., those obtained by using classic results on full in-
formation online learning (Arora et al., 2012) or bandit information online learning (Auer
et al., 1995; Bubeck, 2011), allow regret to depend on the loss of the best arm instead of the
worst case loss. However, even such bounds still depend linearly on the maximum range of
all the losses, and thus they would not allow to replace h by the best fixed price.

Fortunately, in the online pricing problem the reward function of the arms is well struc-
tured. In particular, as a neat observation, the reward of the arm p is upper-bounded by p
(and not only the maximum value). Can we use this structure in our favor to improve the
standard regret bounds? We answer this question in the affirmative by the means of reducing
the problem to a pure learning problem termed as mutli-scale online learning. Notably, this
structural observation is the same structural observation that enabled the improved bounds
of Blum and Hartline (2005) over the prior work at the time.

1.1. Multi-scale online learning

The main technical ingredients in our results are variants of the classical problems of learning
from expert advice and multi-armed bandit. We introduce the multi-scale versions of these
problems, where each action has its reward bounded in a different range. We assume these
ranges are known in advance by any online algorithm. Here, we seek to design online learning
algorithms that guarantee multi-scale regret bounds, i.e. their regrets with respect to each
certain action scales with the range of that particular action, instead of the maximum
possible range. These guarantees are in contrast with the regret bounds of the standard
versions, which scale with the maximum range.

Main result (informal): we give algorithms for the full information and bandit
information versions of the multi-scale online learning problem with information
theoretically optimal (or almost optimal) multi-scale regret guarantees.

While we use these bounds mostly for designing online auctions and pricing mechanisms,
we expect such bounds to be of independent interest.

The main idea behind our algorithms is to use a tailored variant of online (stochastic)
mirror descent (OSMD) (Bubeck, 2011). In this tailored version, the algorithm uses a
weighted negative entropy as the Legendre function (also known as the mirror map), where
the weight of each term i (corresponding to arm i) is actually equal to the range of that
arm. More formally, assuming the range of arm i is equal to ci (i.e., reward of arm i is in
[0, ci]), our mirror descent algorithms (Algorithm 1 for full information, and Algorithm 3 for
the bandit information) use the following mirror map:

F (x) =
∑

arms i

ci · xi ln(xi)

Intuitively speaking, these algorithms take into account different ranges for different
arms by first normalizing the reward of each arm by its range (i.e. divide the reward of arm
i by its corresponding range ci), and then projecting the updated weights by performing a
smooth multi-scale projection into the simplex. This projection is an instance of the more
general Bregman projection (Bubeck, 2011) for the special case of weighted negative entropy
as the mirror map. The mirror descent framework then gives regret bounds in terms of a
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“local norm” as well as an “initial divergence”, which we then bound differently for each
version of the problem. In the technical sections we highlight how the subtle variations arise
as a result of different techniques used to bound these two terms.

While our algorithms have the style of the multiplicative weights update (up to a normal-
ization of the rewards), the smooth projection step at each iteration makes them drastically
different. To shed some insight on this projection step, which plays an important role in
our analysis, consider a very special case of the problem where the reward of each arm i is
deterministically equal to ci. The multiplicative weights algorithm picks arm i with a prob-
ability proportional to exp (ci). However, as it is clear from the description of Algorithm 1,
our algorithm uniformly scales the weight of each arm first. Then, in the projection step the
weight of each arm i is multiplied by exp (−λ∗

ci
) for some parameter λ∗. Hence, arm i will

be sampled with a probability proportional to exp (−λ∗

ci
) (which is a smooth approximation

to i∗ = argmax ci, but in a different way compared to the vanilla multiplicative weights).
The multi-scale versions exhibit subtle variations that do not appear in the standard

versions. First of all, our applications to auctions and pricing have non-negative rewards, and
this actually makes a difference. For both the expert and the bandit versions, the minimax
regret bounds for non-negative rewards are provably better than those when rewards could
be negative. Further, for the bandit version with non-negative rewards, we can prove a
better bound (in terms of the dependency on time horizon T ) if we only require the bound
to hold with respect to the best action, rather than all actions (which was the requirement
of the vanilla version of our definition for a multi-scale regret bound). The various regret
bounds and comparison to standard bounds are summarized in Tables 1.

Standard
regret bound O(·)

Multi-scale bound (this paper)

Upper bound O(·) Lower bound Ω(·)

Experts/non-negative cmax

√
T log(k) ∗ ci

√
T log(kT ) ci

√
T log(k)

Bandits/non-negative cmax

√
Tk † ciT

2
3 (k log(kT ))

1
3 ci

√
TK

ci∗
√
Tk log(k), i∗ is the best action -

Experts/symmetric cmax

√
T log(k) ∗ ci

√
T log(k · cmax

cmin
) ci

√
T log(k)

Bandits/symmetric cmax

√
Tk † ci

√
Tk · cmax

cmin
log(kT · cmax

cmin
) ci

√
Tk · cmax

cmin

∗ Freund and Schapire (1995); † Audibert and Bubeck (2009).

Table 1: Pure-additive regret bounds for non-negative rewards, i.e. when reward of any
action i at any time is in [0, ci], and symmetric range rewards, i.e. when reward
of any action i at any time is in [−ci, ci] (suppose T is the time horizon, A is the
action set, and k is the number of actions).

1.2. The implications for online auctions and pricing

As a direct application of our multi-scale online learning framework, somewhat surprisingly,

4



Multi-scale Online Learning: Theory and Applications to Online Auctions and Pricing

Second contribution: we show that we can get regret proportional to the best
fixed price instead of the highest value for the online posted pricing problem.

(i.e., we can replace h by the best fixed price, which is used in the definition of the bench-
mark). In particular, we show that the additive bound can be made to be O(ε−2p∗ log h),
where p∗ is the best fixed price in hindsight. This allows us to use a very generous estimate
for h and let the algorithm adapt to the actual range of prices; we only lose a log h factor.
The algorithm balances exploration probabilities of different prices carefully and automati-
cally zooms in on the relevant price range. This does not violate known lower bounds, since
in those instances p∗ is close to h.

Bar-Yossef et al. (2002), Blum et al. (2004), and Blum and Hartline (2005) also consider
the “full information” version of the problem, or what we call the online (single buyer)
auction problem, where the valuations of the buyers are revealed to the algorithm after the
buyer has made a decision. Such information may be available in a context where the buyers
have to bid for the items, and are awarded the item if their bid is above a hidden price.
In this case, the additive term can be improved to O(ε−1h log(ε−1)), which is tight. Once
again, by a reduction to multi-scale online learning, we show that h can be replaced with p∗;
in particular, we show that the additive term can be made to be O(ε−1p∗ log(hε−1)).

1.3. Purely multiplicative bounds and sample complexity

The regret bounds mentioned above can be turned into a purely multiplicative factor in the
following way: for any ε > 0, the algorithm is guaranteed to get a 1 − O(ε) fraction of the
best fixed price revenue, provided the number of periods T ≥ E/ε, where E is the additive
term in the regret bounds above. This follows from the observation that a revenue of T is a
lower bound on the best fixed price revenue. Define the number of periods required to get
a 1 − ε multiplicative approximation (as a function of ε) to be the convergence rate of the
algorithm.

A 1− ε multiplicative factor is also the target in the recent line of work, on the sample
complexity of auctions, started by Balcan et al. (2008); Elkind (2007); Dhangwatnotai et al.
(2014); Cole and Roughgarden (2014). (We give a more comprehensive discussion of this
line of work in Section 1.4.) Here, i.i.d. samples of the valuations are given from a fixed
but unknown distribution, and the goal is to find a price such that its revenue with respect
to the hidden distribution is a 1 − ε fraction of the optimum revenue for this distribution.
The sample complexity is the minimum number of samples needed to guarantee this (as a
function of ε).

The sample complexity and the convergence rate (for the full information setting) are
closely related to each other. The sample complexity is always smaller than the convergence
rate: the problem is easier because of the following.

1. The valuations are i.i.d. in the case of sample complexity, whereas they can be arbi-
trary (worst case) in the case of convergence rate.

2. Sample complexity corresponds to an offline problem: you get all the samples at once.
Convergence rate corresponds to an online problem: you need to decide what to do on
a given valuation without knowing what valuations arrive in the future.
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This is formalized in terms of an online to offline reduction [folklore] which shows that
a convergence rate upper bound can be automatically translated to a sample complexity
upper bound. This lets us convert sample complexity lower bounds into lower bounds on
the convergence rate, and in turn into lower bounds on the additive error E in an additive
plus multiplicative regret bound. For example, the additive error for the online auction
problem (and hence also for the posted pricing problem2) cannot be o(hε−1) (Huang et al.,
2015b). Moreover, it is insightful to compare convergence rates we show with the best known
sample complexity upper bound; proving better convergence rates would mean improving these
bounds as well.

A natural target convergence rate for a problem is therefore the corresponding sample
complexity, but achieving this is not always trivial. In particular, we consider an interesting
version of the sample complexity bound for auctions, for which no analogous convergence
rate bound is known in the literature. This version takes into account both revenue and
market share, and gets sample complexity bounds that are scale free; there is no dependence
on h, which means it works for unbounded valuations! For any δ ∈ (0, 1), the best fixed
price benchmark is relaxed to ignore those prices whose market share (which is equivalent
to the probability of sale) is below a δ fraction; as δ increases the benchmark is lower. This
is a meaningful benchmark since in many cases revenue is not the only goal, even if you are
a monopolist. A more reasonable goal is to maximize revenue subject to the constraint that
the market share is above a certain threshold. What is more, this gives a sample complexity
of O(ε−2δ−1 log(δ−1ε−1)) (Huang et al., 2015b). In fact δ can be set to h−1 without loss
of generality, when the values are in [1, h],3 and the above bound then matches the sample
complexity with respect to the best fixed price revenue. In addition, this bound gives a
precise interpolation: as the target market share δ increase, the number of samples needed
decreases almost linearly.

Third contribution: we show an average revenue convergence rate that almost
matches the above sample complexity, for the full information setting, i.e. number
of rounds required for this convergence matches the number of i.i.d. samples
required for an offline algorithm to attain the same near-optimality guarantee.

We have a mild dependence on h; the rate is proportional to log log h. Further, we also show
a near optimal convergence rate for the online posted pricing problem.4

Multiple buyers: All of our results in the full information (online auction) setting ex-
tend to the multiple buyer model. In this model, in each time period, a new set of n buyers
competes for a single item. The seller runs a truthful auction that determines the winning
buyer and his payment. The benchmark here is the set of all “Myerson-type” mechanisms.
These are mechanisms that are optimal when each period has n buyers of potentially dif-
ferent types, and the value of each buyer is drawn independently from a type dependent

2. We conjecture that the lower bound for the posted pricing problem should be worse by a factor of ε−1,
since one needs to explore about ε−1 different prices.

3. When the values are in [1, h], we can guarantee a revenue of T by posting a price of 1, and to beat this,
any other price (and in particular a price of h) would have to sell at least T/h times.

4. Unfortunately, we cannot yet guarantee that our online algorithm itself gets a market share of δ,
although we strongly believe that it does. Showing such bounds on the market share of the algorithm is
an important avenue for future research.
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distribution. In fact, our convergence rates also imply new sample complexity bounds for
these problems (except that they are not computationally efficient).

The various bounds and comparisons to previous work are summarized in Tables 2 & 3.

Lower bound
Upper bound

Best known
(Sample complexity)

Best known
(Convergence rate)

This paper
(Thm. 16)

Online single buyer auction Ω
(
h
ε2

) ∗ Õ
(
h
ε2

) † Õ
(
h
ε2

) † Õ
(
p∗

ε2

)
Online posted pricing Ω

(
max{ hε2 ,

1
ε3 }
) ∗§ - Õ

(
h
ε3

) † Õ
(
p∗

ε3

)
Online multi buyer auction Ω( hε2 ) ∗ O(nhε3 ) ‡ - Õ

(
nh
ε3

)
∗ Huang et al. (2015b); † Blum et al. (2004); ‡ Devanur et al. (2016); Gonczarowski and Nisan (2017);
Elkind (2007); § Kleinberg and Leighton (2003).

Table 2: Number of rounds/samples needed to get a 1− ε approximation to the best offline
price/mechanism. Sample complexity is for the offline case with i.i.d. samples
from an unknown distribution. Convergence rate is for the online case with a
worst case sequence. Sample complexity is always no larger than the convergence
rate. Lower bounds hold for sample complexity too, except for the online posted
pricing problem for which there is no sample complexity version. The additive
plus multiplicative regret bounds are converted to convergence rates by dividing
the additive error by ε. In the last row, n is the number of buyers. In the last
column, p∗ denotes the optimal price.

Lower bound
(Sample complexity)

Upper bound
Best known

(Sample complexity)
This paper
(Thm. 17)

Online single buyer auction Ω
(

1
ε2δ

) ∗ Õ
(

1
ε2δ

) ∗ Õ
(

1
ε2δ

)
Online posted pricing Ω

(
max{ 1

ε2δ ,
1
ε3 }
) ∗† - Õ

(
1
ε4δ

)
Online multi buyer auction Ω

(
1
ε2δ

) ∗ - Õ
(
n
ε3δ

)
∗ Huang et al. (2015b); † Kleinberg and Leighton (2003).

Table 3: Sample complexity & convergence rate w.r.t. the opt mechanism/price with market
share ≥ δ.

1.4. Other related work

The online pricing problem, also called dynamic pricing, is a much studied topic, across
disciplines such as operations research and management science (Talluri and Van Ryzin,
2006), economics (Segal, 2003), marketing, and of course computer science. The multi-
armed bandit approach to pricing is particularly popular. See den Boer (2015) for a recent
survey on various approaches to the problem.
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Kleinberg and Leighton (2003) consider the online pricing problem, under the assumption
that the values are in [0, 1], and considered purely additive factors. They showed that the
minimax additive regret is Θ̃(T 2/3), where T is the number of periods. This is similar in
spirit to regret bounds that scale with h, since one has to normalize the values so that they
are in [0, 1]. The finer distinction about the magnitude of the best fixed price is absent in
this work. Recently, Syrgkanis (2017) also consider the online auction problem, with an
emphasis on a notion of “oracle based” computational efficiency. He assume the values are
all in [0, 1] and do not consider the scaling issue that we do; this makes their contribution
orthogonal to ours.

Starting with Dhangwatnotai et al. (2014); Elkind (2007), there has been a spate of
recent results analyzing the sample complexity of pricing and auction problems. Cole and
Roughgarden (2014) and Devanur et al. (2016) consider multiple buyer auctions with regular
distributions (with unbounded valuations) and give sample complexity bounds that are
polynomial in n and ε−1, where n is the number of buyers. Morgenstern and Roughgarden
(2015) consider arbitrary distributions with values bounded by h, and gave bounds that
are polynomial in n, h, and ε−1. Roughgarden and Schrijvers (2016); Huang et al. (2015b)
give further improvements on the single- and multi-buyer versions respectively; Tables 2 and
3 give a comparison of these results with our bounds, for the problems we consider. The
dynamic pricing problem has also been studied when there are a given number of copies
of the item to sell (limited supply) (Agrawal and Devanur, 2014; Babaioff et al., 2015;
Badanidiyuru et al., 2013; Besbes and Zeevi, 2009). There are also variants where the seller
interacts with the same buyer repeatedly, and the buyer can strategize to influence his utility
in the future periods (Amin et al., 2013).

Foster et al. (2017) also consider the multi-scale online learning problem motivated by
a model selection problem. They consider additive bounds, for the symmetric case, for full
information, but not bandit feedback. Their regret bounds are not comparable to ours in
general; our bounds are better for the pricing/auction applications we consider, and their
bounds are better for their application.

Organization We start in Section 2 by showing regret upper bounds for the multi-scale
experts problem with non-negative rewards (Theorem 1). The corresponding upper bounds
for the bandit version are in section 3 (Theorem 12). In Section 4 we show how the multi-scale
regret bounds (Theorems 1 and 12) imply the corresponding bounds for the auction/pricing
problems (Theorems 16 and 17). Finally, the regret (upper and lower) bounds for the
symmetric range are discussed in Section 5 (Theorems 18, 20, 21, and 23).

2. Full Information Multi-scale Online Learning

We consider a variety of online algorithmic problems that are all parts of the multiscale
online learning framework. We start by defining this framework, in which different actions
have different ranges. We exploit this structure and express our results in terms of action-
specific regret bounds for this general problem. To obtain these results, we use a variant of
online mirror descent and propose a multiplicative-weight update style learning algorithm
for our problem, termed as Multi-Scale Multiplicative-Weight (MSMW) algorithm.

Next, we investigate the single buyer auction problem (or equivalently the full-information
single buyer dynamic pricing problem) as a canonical application, and show how to get mul-
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tiplicative cum additive approximations here by the help of the multi-scale online learning
framework. To show the tightness of our bounds, we compare the convergence rate of our
dynamic pricing with the sample complexity of a closely related offline problem, i.e. the
near optimal Bayesian revenue maximization from samples (Cole and Roughgarden, 2014).

2.1. The framework

Our full-information multi-scale online learning framework is basically the classical learning
from expert advice problem. The main difference is that the range of rewards of different
experts could be different. More formally, suppose there is a set of actions A.5 The online
problem proceeds in T rounds, where in each round t ∈ [T ] :6

• The adversary picks a reward function g(t), where gi(t) is the reward of action i.

• The algorithm picks an action it ∈ A simultaneously.

• Then the algorithm gets the reward git(t) and observes the entire reward function g(t).

The total reward of the algorithm is denoted by

Galg :=
∑T

t=1 git(t).

The standard “best fixed action” benchmark is

Gmax := maxi∈A
∑T

t=1 gi(t).

We further assume that the action set is countable, either finite or infinite (will discuss this
later). Without loss of generality, if the action set is of size k, we identify A = [k]. The
reward g(t) is such that for all i ∈ A, gi(t) ∈ [0, ci], where ci ∈ R+ is the range of action i.

2.2. Multi-scale regret bounds

We prove action-specific regret bounds, which we call also multi-scale regret guarantees.
Towards this end, we define the following quantities.

Gi :=
∑

t∈[T ] gi(t) , (1)

regreti := Gi −Galg . (2)

The regret bound w.r.t. action i, i.e., an upper bound on E [regreti], depends on the
range ci, as well as any prior distribution π over the action set A; this way, we can handle
countably many actions. Let cmin = infi∈A ci and cmax = supi∈A ci (if applicable) be the
minimum and the maximum range. We first state a version of the regret bound which is
parameterized by ε > 0; such bounds are stronger than

√
T type bounds which are more

standard.

5. We use the terms experts, arms and actions interchangeably in this paper.
6. We use the notation [n] := {1, 2, . . . , n}, for any n ∈ N.
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Theorem 1 (Main Result) There exists an algorithm for the full-information multi-scale
online learning problem that takes as input any distribution π over A, the ranges ci, ∀ i ∈ A
and a parameter 0 < ε ≤ 1, and satisfies:

∀i ∈ A : E [regreti] ≤ ε ·Gi +O

(
1

ε
log
( 1

επi

)
· ci
)

(3)

Compare this to what you get by using the standard analysis for the experts problem (Arora
et al., 2012), where the second term in the regret bound is O

(
1
ε log(k) · cmax

)
. Choosing π

to be the uniform distribution in the above theorem gives O
(

1
ε log

(
k
ε

)
· ci
)
. Also, one can

compare the pure-additive version of this bound with the classic pure-additive regret bound

O
(
cmax ·

√
T log(k)

)
for the experts problem by setting ε =

√
log(kT )

T (Corollary 2).

Corollary 2 There exists an algorithm for the full-information multi-scale online learning
problem that takes as input the ranges ci, ∀ i ∈ A, and satisfies:

∀i ∈ A : E [regreti] ≤ O
(
ci ·
√
T log(kT )

)
(4)

Remark 3 We should assert that in a multi-scale regret guarantee, we provide a separate
regret bound for each action, where the bound on the regret of action i only scales linearly
with ci. This type of guarantee should “not” be mistaken as a bound on the worst action.

Here is the map of the rest of this section. In Section 2.3 we propose an algorithm that
exploits the reward structure, and later in Section 2.4 we show how this algorithm is an
online mirror descent with weighted negative entropy as its mirror map. For reward-only
instances, we prove the regret bound in Section 2.5. We finally turn our attention to the
single buyer online auction problem in Section 2.6.

2.3. Multi-Scale Multiplicative-Weight (MSMW) algorithm

We achieve our regret bound in Theorem 1 by using the MSMW algorithm (Algorithm 1).
The main idea behind this algorithm is to take into account different ranges for different
experts, and therefore:

1. We normalize the reward of each expert accordingly, i.e. divide the reward of expert
i by its corresponding range ci;

2. We project the updated weights by performing a smooth multi-scale projection into
the simplex: the algorithm finds a λ∗ such that multiplying the current weight of each
expert i by exp (−λ∗

ci
) makes a probability distribution over the experts. It then uses

this resulting probability distribution for sampling the next expert.

2.4. Equivalence to online mirror descent with weighted negative entropy

While it is possible to analyze the regret of the MSMW algorithm (Algorithm 1) by using
first principles, we take a different approach (the elementary analysis can still be found
in the appendix, Section A.2). We show how this algorithm is indeed an instance of the
Online Mirror Descent (OMD) algorithm for a particular choice of the Legendre function
(also known as the mirror map).

10
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Algorithm 1 MSMW
1: input initial distribution µ over A, learning rate 0 < η ≤ 1.
2: initialize p(1) such that pi(1) = µi for all i ∈ A.
3: for t = 1, . . . , T do
4: Randomly pick an action drawn from p(t), and observe g(t).
5: ∀i ∈ A : wi(t+ 1)← pi(t) · exp(η · gi(t)ci

).
6: Find λ∗ (e.g., binary search) s.t.

∑
i∈Awi(t+ 1) · exp(−λ∗

ci
) = 1.

7: ∀i ∈ A : pi(t+ 1)← wi(t+ 1) · exp(−λ∗

ci
).

8: end for

2.4.1. Preliminaries on online mirror descent.

Fix an open convex set D and its closure D̄, which in our case are (0,+∞)A and [0,+∞)A

respectively, and a closed-convex action set A ⊂ D̄, which in our case is ∆A, i.e. the set
of all probability distributions over experts in A. At the heart of an OMD algorithm there
is a Legendre function F : D̄ → R, i.e. a strictly convex function that admits continuous
first order partial derivatives on D and limx→D̄\D‖∇F (x)‖ = +∞, where ∇F (.) denotes
the gradient map of F . One can think of OMD as a member of projected gradient descent
algorithms, where the gradient update happens in the dual space ∇F (D) rather than in
primal D, and the projection is defined by using the Bregman divergence associated with F
rather than `2-distance (see Figure 2.4.1).

Figure 1: Online Mirror Descent (OMD): moving to the dual space by gradient map (blue),
gradient update in the dual space (red), applying the inverse gradient map (green),
and finally projecting back to the simplex using Bregman projection (purple).

Definition 4 (Bregman Divergence (Bubeck, 2011)) Given a Legendre function F over
∆A, the Bregman divergence associated with F , denoted as DF : ∆A ×∆A → R, is defined

11
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by
DF (x, y) = F (x)− F (y)− (x− y)T∇F (y)

Definition 5 (Online Mirror Descent (Bubeck, 2011)) Suppose F is a Legendre func-
tion. At every time t ∈ [T ], the online mirror descent algorithm with Legendre function F
selects an expert drawn from distribution p(t), and then updates w(t) and p(t) given rewards
g(t) by:

Gradient update:

∇F (w(t+ 1)) = ∇F (p(t)) + η · g(t)⇒ w(t+ 1) = (∇F )−1 (∇F (p(t)) + η · g(t)) (5)
Bregman projection:

p(t+ 1) = argmin
p∈∆A

(DF (p,w(t+ 1))) (6)

where η > 0 is called the learning rate of OMD.

We use the following standard regret bound of OMD (Refer to Bubeck (2011) for a
thorough discussion on OMD. For completeness, a proof is also provided in the appendix,
Section A.3). Roughly speaking, this lemma upper-bounds the regret by the summation of
two separate terms: “local norm” (the first term), which captures the total deviation between
p(t) and w(t+ 1), and “initial divergence” (the second term), which captures how much the
initial distribution is far from the target distribution.

Lemma 6 For any learning rate parameter 0 < η ≤ 1 and any benchmark distribution q
over A, the OMD algorithm with Legendre function F (.) admits the following:∑

t∈[T ] g(t) ·
(
q− p(t)

)
≤ 1

η

∑
t∈[T ]DF (p(t),w(t+ 1)) + 1

ηDF (q,p(1)) (7)

2.4.2. MSMW algorithm as an OMD

For our application, we focus on a particular choice of Legendre function that captures differ-
ent learning rates proportional to c−1

i for different experts, as we saw earlier in Algorithm 1.
We start by defining the weighted negative entropy function.

Definition 7 Given expert-ranges {ci}i∈A, the weighted negative entropy is defined by

F (x) =
∑

i∈A ci · xi ln(xi) (8)

Corollary 8 It is straightforward to see F (x) =
∑

i∈A ci·xi ln(xi) is a non-negative Legendre
function over RA+. Moreover, ∇F (x)i = ci(1 + ln(xi)) and DF (x, y) =

∑
i∈A ci · (xi ln(xiyi )−

xi + yi).

We now have the following lemma that shows Algorithm 1 is indeed an OMD algorithm.

Lemma 9 The MSMW algorithm, i.e. Algorithm 1, is equivalent to an OMD algorithm
associated with the weighted negative entropy F (x) =

∑
i∈A ci · xi ln(xi) as its Legendre

function.

12
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Proof Look at the gradient update step of OMD, as in Equation (5), with Legendre function
F (x) =

∑
i∈A ci · xi ln(xi). By using Corollary 8 we have

∇F (w(t+ 1)) = ∇F (p(t)) + η · g(t)⇒ ci(1 + ln(wi(t+ 1))) = ci(1 + ln(pi(t))) + η · gi(t) ,

and therefore, wi(t + 1) = pi(t) · exp(η · gi(t)ci
). Moreover, for the Bregman projection step

we have

p(t+ 1) = argmin
p∈∆A

(DF (p,w(t+ 1))) = argmin
p∈∆A

(∑
i∈A

ci · (pi ln(
pi

wi(t+ 1)
)− pi + wi(t+ 1))

)
(9)

This is a convex minimization over a convex set. To find a closed form solution, we look at the
Lagrangian dual function L(p, λ) ,

∑
i∈A ci · (pi ln( pi

wi(t+1))− pi + wi(t+ 1)) +λ(
∑

i∈A pi−
1) and the Karush-Kuhn-Tucker (KKT) conditions ∇L(p∗, λ∗) = 0. We have

ci · ln(
p∗i

wi(t+ 1)
) + λ∗ = 0⇒ p∗i = wi(t+ 1) · exp(−λ

∗

ci
) (10)

As
∑

i∈A p
∗
i = 1, λ∗ should be the unique number s.t.

∑
i∈Awi(t + 1) · exp(−λ∗

ci
) = 1, and

then pi(t+ 1) = wi(t+ 1) · exp(−λ∗

ci
). So, Algorithm 1 is equivalent to OMD with weighted

negative entropy as its Legendre function.

By combining Lemma 6, Corollary 8 and finally Lemma 9 we prove the following regret
bound for the MSMW algorithm. We encourage the reader to also look at the appendix,
Section A.2, for an extra proof using first principles.

Proposition 10 For any initial distribution µ over A, and any learning rate parameter
0 < η ≤ 1, and any benchmark distribution q over A, the MSMW algorithm satisfies:∑

i∈A
qi ·Gi − E [Galg] ≤ η

∑
t∈[T ]

∑
i∈A

pi(t)
(gi(t))

2

ci
+

1

η
·
∑
i∈A

ci

(
qi ln

( qi
µi

)
− qi + µi

)
.

Proof We have:

∑
i∈A

qi ·Gi − E [Galg] =
∑
t∈[T ]

q · g(t)−
∑
t∈[T ]

p(t) · g(t) =
∑
t∈[T ]

g(t) ·
(
q− p(t)

)
(11)

By applying the regret bound of OMD (Lemma 6) to upper-bound the RHS, we have∑
i∈A

qi ·Gi − E [Galg] ≤ 1

η

∑
t∈[T ]

DF (p(t),w(t+ 1)) +
1

η
DF (q,p(1)) (12)

To bound the first term in regret, a.k.a local norm, we have:

DF (p(t),w(t+ 1)) =
∑
i∈A

ci · (pi(t) ln(
pi(t)

wi(t+ 1)
)− pi(t) + wi(t+ 1))

=
∑
i∈A

ci · pi(t)(−η ·
gi(t)

ci
− 1 + exp(η · gi(t)

ci
)) (13)

13
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Note that η · gi(t)ci
∈ [−1, 1] because gi(t) ∈ [−ci, ci] and 0 < η ≤ 1. By exp(x)−x−1 ≤ x2 for

−1 ≤ x ≤ 1 and that ηgi(t) ∈ [−ci, ci], the above is upper bounded by η2
∑

i∈A pi(t)
(gi(t))

2

ci
.

We can also rewrite the second term in regret. In fact, if we set p(1) = µ, then

1

η
·DF (q,p(1)) =

1

η
·
∑
i∈A

ci

(
qi ln

( qi
µi

)
− qi + µi

)

By summing the upper-bounds η2
∑

i∈A pi(t)
(gi(t))

2

ci
on each term of local norm in (13) for

t ∈ [T ] and putting all the pieces together, we get the desired bound.

2.5. Regret analysis for non-negative rewards

Theorem 1 There exists an algorithm for the full-information multi-scale online learning
problem that takes as input any distribution π over A, the ranges ci, ∀ i ∈ A and a parameter
0 < ε ≤ 1, and satisfies:

∀i ∈ A : E [regreti] ≤ ε ·Gi +O

(
1

ε
log
( 1

επi

)
· ci
)

(14)

Proof Suppose imin is an action with the minimum ci. Let µ = (1− η) · 1imin + η · π, and
let q = (1− η) · 1i + η · π in Proposition 10. If i 6= imin, we get that (note that µj = qj for
any j 6= i, imin):

(1− η) ·Gi + η ·
∑
j∈A

πj ·Gj − E [Galg] ≤ η · E [Galg] +
1

η
· ci ·

(
qi ln

( qi
µi

)
− qi + µi

)

+
1

η
· cimin ·

(
qimin ln

( qimin

µimin

)
− qimin + µimin

)
By 1 ≥ qi > µi ≥ ηπi, the second term on the RHS is upper bounded as:

1

η
· ci ·

(
qi ln

( qi
µi

)
− qi + µi

)
≤ 1

η
· ci · ln

( 1

ηπi

)
Similarly, by 1 ≥ µimin > qimin ≥ 0, the third term on the RHS is upper bounded as

1

η
· cimin ·

(
qimin ln

( qimin

µimin

)
− qimin + µimin

)
≤ 1

η
· cimin ≤

1

η
· ci

Finally, note that Gj ≥ 0 for all j ∈ A in reward-only instances. So the LHS is lower
bounded by

(1− η) ·Gi − E [Galg] = (1− η) · regreti − η · E [Galg] .

Putting all this together, we get that

E [regreti] ≤
2η

1− η
· E [Galg] +O

(
1

η
ln
( 1

ηπi

)
· ci
)
≤ 3η · E [Galg] +O

(
1

η
ln
( 1

ηπi

)
· ci
)
.

The theorem then follows by choosing η = ε
3 and rearranging terms.
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2.6. A canonical application: online single buyer auction

The setup. The simple auction design problem that we consider is as follows. There is
a seller with infinite identical copies of an item. Buyers arrive over time. At each round,
the seller picks a price and the arriving buyer reports her value. If the value is no less than
the price, the trade happens; money goes to the seller and the copy of the item goes to the
arriving buyer. The goal is to maximize the revenue of the seller.

Formally, we look at this problem as an instance of the full information multi-scale online
learning framework; The action set is A = [1, h]. 7 The reward function is such that at round
t the adversary (i.e. the arriving buyer) picks a value v(t) ∈ [1, h] and for any price p ∈ A
picked by the seller (i.e. the algorithm), the reward is gp(t) := p · 1(v(t) ≥ p). This is a full
information setting, because the value v(t) is revealed to the algorithm after each round t.

The additive/multiplicative approximation. In order to obtain a (1−ε)-approximation
of the optimal revenue, i.e. the revenue of the best fixed price p∗ in hindsight, it suffices
to consider prices of the form (1 + ε)j for 0 ≤ j ≤ blog1+ε hc = O( log h

ε ). As a result, we
reduce the online single buyer auction problem to the multi-scale online learning with full
information and finite actions. The action set has k = O( log h

ε ) actions whose ranges form a
geometric sequence (1 + ε)j , 0 ≤ j < k.

Recall the definition of Gmax in Section 2.1, and let p∗ be the best fixed price in hindsight,
which is the price that achieves Gmax. We now show how to get a multiplicative cum additive
approximation for this problem with Gmax as the benchmark, à la Blum et al. (2004); Blum
and Hartline (2005). The main improvement over these results is that the additive term
scales with the best price rather than h.

Theorem 11 There is an algorithm for the online single buyer auction problem that takes
as input a parameter ε > 0, and satsify Galg ≥ (1− ε)Gmax −O(E), where:

E =
p∗ log(log h/ε)

ε
.

Also, even if h is not known up front, there is an (slightly modified) algorithm that achieves
a similar approximation guarantee for online single buyer auction with:

E =
p∗ log(p∗/ε)

ε
.

Proof
[Part 1: known h] Recall the above formulation of the problem as an online learning prob-
lem with full information. The proof then follows by Theorem 1, letting π to be the uniform
distribution over the k = O(log h/ε) actions, i.e., discretized prices.

[Part 2: unknown h] When h is not known up front, we consider a variant of our algorithm
(Algorithm 2) that picks the next price in each round t from the set of relevant prices
(denoted by P), updates this set if necessary, and then updates the weights of prices in this
set as in Algorithm 1. The main new idea here is to update the set of prices P so that it
only includes prices that are at most the highest value we have seen so far (let the highest

7. Here, we allow an infinite action set. Later, we show how to discretize to get around this issue.
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seen value be 1 at the beginning). Now, for the sake of analysis, consider a hypothetical
algorithm (called ALGH) that considers a countably infinite action space comprising all prices
of the form (1 + ε)j , for j ≥ 0. We first show this hypothetical algorithm ALGH satisfies the
required approximation guarantee in Theorem 11. We then show the expected revenue of
Algorithm 2 is at least the expected revenue of ALGH (minus a constant that is negligible in
our bound), and hence the final proof.

The proof of the regret bound of Theorem 1 works when we have countably many actions
(although we cannot implement such algorithms directly). Now, consider simulating ALGH

and let the prior distribution π be such that for any price p = (1 + ε)j , πp = ε(ε + 2)(1 +

ε)−2(j+1) = ε(ε+2)
(1+ε)2

· 1
p2

(this choice will become more clear later in the proof; in short we need
πp to be proportional to 1

p2
). The approximation guarantee in Theorem 11 then follows by

Theorem 1. We now argue the followings:

• For any round t, unless the value in that round is a new highest value, Algorithm 2 gets
weakly higher revenue than ALGH . This is because the probability that Algorithm 2
plays any relevant price in P (that has a non-zero gain in this round) is weakly higher
than that in ALGH .

• For any price p = (1 + ε)j , consider the first time a value at least p shows up. Algo-
rithm 2 suffers a loss of at most p · πp compared to ALGH , due to ALGH ’s probability
of playing p in that round, where πp is the probability of playing p in the initial dis-
tribution. This is because the probability that ALGH plays p in this round is at most
πp as p has not got any positive gains before this round.

• Then, by choosing πp to be inversely proportional to p2, we can show that Algorithm 2

has an additive loss of
∑

p
β
p = ε+2

ε+1 = O(1) compared toALGH , where β =
(∑

p
1
p2

)−1
=

ε(2+ε)
(1+ε)2

is the normalization constant of the initial distribution πππ. This finishes the proof.

Algorithm 2 Online single buyer auction (for unknown h)
1: input learning rate 0 < η ≤ 1, price discretization parameter 0 < ε ≤ 1.
2: initialize the set of relevant prices P = {1}. Let α1(1) = 1.
3: for t = 1, . . . , T do
4: Randomly pick a price in P drawn from ααα(t), and observe g(t).
5: Update P to be all the prices (1 + ε)j that are at most the highest value until time t.
6: ∀p ∈ P : wp(t+ 1)← αp(t) · exp(η · gp(t)

p ).
7: Find λ∗ (e.g., binary search) s.t.

∑
p∈P wp(t+ 1) · exp(−λ∗

p ) = 1.
8: ∀p ∈ P : αp(t+ 1)← wp(t+ 1) · exp(−λ∗

p ).
9: end for

Bounds on the sample complexity of auctions for single buyer problem (Huang et al.,
2015a) imply that the first bound in this theorem is tight up to log factors: the lower bound
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is hε−1 in an instance where p∗ is actually equal to h. Also, the best upper bound known is
by Blum et al. (2004); Blum and Hartline (2005), which is

E =
h log(1/ε)

ε
.

We conclude that Theorem 11 generalizes the known tight sample complexity upper-bound
for the offline single buyer Bayesian revenue maximization to the online adversarial setting.

3. Multi-Scale Online Learning with Bandit Feedback

In this section, we look at the bandit feedback version of multi-scale online learning frame-
work proposed in Section 2.1. Essentially, the only difference here is that after the algorithm
picks an arm it at time t, it only observes the obtained reward, i.e. git(t), and does not ob-
serve the entire reward function g(t).

Inspired by the online stochastic mirror descent algorithm (Bubeck, 2011) we introduce
Bandit-MSMW algorithm. Our algorithm follows the standard bandit route of using unbi-
ased estimators for the rewards in a full information strategy (in this case MSMW). We also
mix the MSMW distribution with an extra uniform exploration, and use a tailored initial
distribution to obtain the desired mutli-scale regret bounds.

3.1. Bandit multi-scale regret bounds

For the bandit version, we can get similar regret guarantees as in Section 2.2 for the full-
information variant, but only for the best action. If we require the regret bound to hold for
all actions, then we can only get a weaker bound, where the second term has ε−2 instead of
ε−1. The difference between the bounds for the bandit and the full information setting is
essentially a factor of k, which is unavoidable.

Theorem 12 There exists an algorithm for the online multi-scale problem with bandit feed-
back that takes as input the ranges ci, ∀ i ∈ A, and a parameter 0 < ε ≤ 1, and satisfies,

• for i∗ = arg maxi∈AGi,

E [regreti∗ ] ≤ ε ·Gi∗ +O
(

1
εk log

(
k
ε

)
· ci∗

)
. (15)

• for all i ∈ A,
E [regreti] ≤ ε ·Gi +O

(
1
ε2
k log

(
k
ε

)
· ci
)
. (16)

Also, one can compute the pure-additive versions of the bounds in Theorems 12 by

setting ε =

√
k log(kT )

T and ε = (k log(kT )
T )

1
3 resepctively (Corollary 13), and compare with

the pure-additive regret bound O
(
cmax ·

√
Tk
)
for the adversarial multi-armed bandit prob-

lem (Audibert and Bubeck, 2009; Auer et al., 1995).

Corollary 13 There exist algorithms for the online multi-scale bandits problem that satis-
fies,
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• For i∗ = arg maxi∈AGi,

E [regreti∗ ] ≤ O
(
ci∗ ·

√
Tk log(kT )

)
(17)

• For all i ∈ A,
E [regreti] ≤ O

(
ci · T

2
3 (k log(kT ))

1
3

)
(18)

Here is a map of this section. In Section 3.2 we propose our bandit algorithm and prove
its general regret guarantee for non-negative rewards. Then in Section 3.3 we show how to
get a multi-scale style regret guarantee for the best arm ci∗ , and a weaker guarantee for all
arms {ci}i∈A.

3.2. Bandit Multi-Scale Multiplicative Weight (Bandit-MSMW) algorithm

We present our Bandit algorithm (Algorithm 3) when the set of actions A is finite (with
|A| = k). Let η be the learning rate and γ be the exploration probability. We show the
following regret bound.

Algorithm 3 Bandit-MSMW
1: input exploration parameter γ > 0, learning rate η > 0.
2: initialize p(1) = (1− γ)1imin + γ

k1, where imin is the arm with minimum range cimin .
3: for t = 1, . . . , T do
4: Let p̃(t) = (1− γ)p(t) + γ

k1.
5: Randomly pick an expert it drawn from p̃(t), and observe git(t).
6: Let g̃(t) be such that

g̃i(t) =


gi(t)
p̃i(t)

if i = it;

0 otherwise.

7: ∀i ∈ A : wi(t+ 1)← pi(t) · exp( ηci · g̃i(t)).
8: Find λ∗ (e.g., binary search) s.t.

∑
i∈Awi(t+ 1) · exp(−λ∗

ci
) = 1.

9: ∀i ∈ A : pi(t+ 1)← wi(t+ 1) · exp(−λ∗

ci
).

10: end for

Lemma 14 For any exploration probability 0 < γ ≤ 1
2 and any learning rate parameter

0 < η ≤ γ
k , the Bandit-MSMW algorithm achieves the following regret bound when the gains

are non-negative :

∀i ∈ A : E [regreti] ≤ O
(

1
η log

(
k
γ

)
· ci + η

∑
j∈AGj + γ ·Gi

)
Proof We further define:

G̃alg ,
∑

t∈[T ] git(t) =
∑

t∈[T ] p̃(t) · g̃(t) ,

G̃j ,
∑

t∈[T ] g̃j(t) .

In expectation over the randomness of the algorithm, we have:
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1. E [Galg] = E
[
G̃alg

]
; and

2. Gj = E
[
G̃j

]
for any j ∈ A.

Hence, to upper bound E [regreti] = Gi−E [Galg], it suffices to upper bound E
[
G̃i − G̃alg

]
.

By the definition of the probability that the algorithm picks each arm, i.e., p̃(t), we have:

E
[
G̃alg

]
≥ (1− γ)

∑
t∈[T ] p(t) · g̃(t) .

Hence, we have for any initial distribution q over A:∑
j∈A

qj · E
[
G̃j

]
− E

[
G̃alg

]
≤ E

[∑
j∈A qj · G̃j −

∑
t∈[T ] p(t) · g̃(t)

]
+ γ

1−γE
[
G̃alg

]
≤ E

[∑
j∈A qj · G̃j −

∑
t∈[T ] p(t) · g̃(t)

]
+ 2γE

[
G̃alg

]
. (19)

Next, we upper bound the 1st term on the RHS. Note that p(t)’s are the probabilities
of choosing experts by MSMW when the experts have rewards g̃(t)’s. By Proposition 10,
we have for any benchmark distribution q over S, the Bandit-MSMW algorithm satisfies:

∑
j∈A

qj ·G̃j−
∑
t∈[T ]

p(t)·g̃(t) ≤ η
∑
t∈[T ]

∑
j∈A

pj(t)

cj
·
(
g̃j(t)

)2
+

1

η

∑
j∈A

cj

(
qj ln

( qj
pj(1)

)
− qj + pj(1)

)
.

(20)
For any t ∈ [T ] and any j ∈ A, by the definition of g̃j(t), it equals

gj(t)
p̃j(t) with probability

p̃j(t), and equals 0 otherwise. Thus, if we fix the random coin flips in the first t− 1 rounds
and, thus, fix p̃(t), and take expectation over the randomness in round t, we have:

E
[
pj(t)

cj
·
(
g̃j(t)

)2]
=
pj(t)

cj
· p̃j(t) ·

(
gj(t)

p̃j(t)

)2

=
pj(t)

p̃j(t)

(gj(t))
2

cj
.

Further note that since p̃j(t) ≥ (1− γ)pj(t), and gj(t) ≤ cj , the above is upper bounded
by 1

1−γ gj(t) ≤ 2gj(t). By putting all together with (20), we have for any 0 < η ≤ γ
n :

E

∑
j∈A

qj · G̃j −
∑
t∈[T ]

p(t) · g̃(t)

 ≤ η
∑
t∈[T ]

∑
j∈A

2gj(t) +
1

η

∑
j∈A

cj

(
qj ln

( qj
pj(1)

)
− qj + pj(1)

)

= 2η
∑
j∈A

Gj +
1

η

∑
j∈A

cj

(
qj ln

( qj
pj(1)

)
− qj + pj(1)

)

Combining with (19), we have:

∑
j∈A

qj ·E
[
G̃j

]
−E

[
G̃alg

]
≤ 2η

∑
j∈A

Gj +
1

η

∑
j∈A

cj

(
qj ln

( qj
pj(1)

)
− qj + pj(1)

)
+ 2γE

[
G̃alg

]

19



Bubeck, Devanur, Huang and Niazadeh

Let q = (1−γ)1i +
γ
k1. Recall that p(1) = (1−γ)1imin + γ

k1 (recall imin is the arm with
minimum range cimin). Similar to the discussion for the expert problem in Section 2.5, the
2nd term on the RHS is upper bounded by O

(
1
η log

(
k
γ

)
· ci
)
. Hence, we have:

∑
j∈A

qj · E
[
G̃j

]
− E

[
G̃alg

]
≤ 2η

∑
j∈A

Gj +O

(
1

η
log
(k
γ

)
· ci
)

+ 2γE
[
G̃alg

]
. (21)

Further, the LHS is lower bounded as:

(1− γ)E
[
G̃i

]
+
γ

k

∑
j∈A

E
[
G̃j

]
− E

[
G̃alg

]
≥ (1− γ)E

[
G̃i

]
− E

[
G̃alg

]
.

The lemma then follows by putting this lower-bound of LHS of (21) back to the equation
and rearranging terms.

3.3. Regret bounds for non-negative rewards - proof of Theorem 12

Letting γ = ε and η = γ
k = ε

k in Lemma 14, we get that the expected regret w.r.t. an action
i ∈ A is bounded by:

O
(
ε ·Gi + ε

k

∑
j∈AGj + ci · kε ln

(
k
ε

))
.

When i = i∗ (best arm), regret is bounded by O
(
ε ·Gi∗ + c∗i · kε ln

(
k
ε

))
, as desired.

For the regret w.r.t. an arbitrary action, note that E [Galg] ≥ γ
k

∑
j∈AGj . Thus, the

regret bound w.r.t. an action i ∈ A in Lemma 14 is further upper bounded by:

O
(

1
η log

(
k
γ

)
· ci +

(
ηk
γ + γ

)
· E
[
G̃alg

])
The theorem then follows by letting γ = ε and η = γ2

k = ε2

k .

4. More Applications of Multi-scale Learning for Auctions and Pricing

In this section, we consider applying the multi-scale online learning framework, developed
in Section 2 and Section 3, to design several other online auctions and pricings be the single
buyer auction (discussed in Section 2.6). Besides the single buyer auction, the problems
that we consider are as follows.

• Online posted pricing: The same as the online single buyer auction of Section 2.6,
but in the bandit setting. The algorithm only learns the indicator function 1(v(t) ≥ pt)
where pt is the price it picks in round t.

• Online multi buyer auction: The action set is the set of all “Myerson-type” mech-
anisms for n buyers, for some n ∈ N. (See Definition 15.) The adversary picks a
valuation vector v(t) ∈ [1, h]n and the reward of a mechanism M is its revenue when
the valuation of the buyers is given by v(t); this is denoted by revM (v(t)). The
algorithm sees the full vector of valuations v(t).
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4.1. Auctions and pricing as multi-scale online learning problems

We now show how to reduce the above problems to special cases of multi-scale online learning.

Online multi buyer auction In multi buyer auctions, we consider the set of all dis-
cretized Myerson-type auctions as the action space. We start by defining Myerson-type
auctions:

Definition 15 (Myerson-type auctions) A Myerson-type auction is defined by n non-
decreasing virtual value mappings φ1, . . . , φn : [1, h] 7→ [−∞, h]. Given a value profile
v1, . . . , vn, the item is given to the bidder j with the largest non-negative virtual value φj(vj).
Then, bidder j pays the minimum value that would keep him as the the winner.

Myerson (1981) shows that when the bidders’ values are drawn from independent (but not
necessarily identical) distributions, the revenue-optimal auction is a Myerson-type auction.
Devanur et al. (2016, Lemma 5) observe that to obtain a 1 − ε approximation, it suffices
to consider the set of discretized Myerson-type auctions that treat each bidder’s value as if
it is equal to the closest power of 1 + ε from below. As a result, it suffices to consider the
set of discretized Myerson-type auctions, each of which is defined by the virtual values of
(1 + ε)j ’s, i.e., by O(n log h/ε) real numbers φ`((1 + ε)j), for ` ∈ [n], and 0 ≤ j ≤ blog1+ε hc.
Furthermore, first Elkind (2007) and later on Devanur et al. (2016); Gonczarowski and Nisan
(2017) note that a discretized Myerson-type auction is in fact completely characterized by
the total ordering of φ`((1 + ε)j)’s;8 their actual values do not matter. Indeed, both the
allocation rule and the payment rule are determined by the ordering of virtual values. As
a result, our action space is a finite set with at most O((n log h/ε)!) actions. The range
of an action, i.e., a discretized Myerson-type auction, is the largest price ever charged by
the auction, i.e., the largest value v of the form (1 + ε)j such that there exists ` ∈ [n],
φ`(v) > φ`((1 + ε)−1v).

4.2. Multiplicative/additive approximations

Similar to Section 2.6, we show how to get a multiplicative cum additive approximations for
these problems with Gmax as the benchmark. Recall the definition of Gmax in Section 2.1
and let p∗ be the best fixed price on hindsight, which is the price that achieves Gmax.

Theorem 16 There are algorithms for the online posted pricing and the online multi buyer
auction problems that take as input a parameter ε > 0, and satsify Galg ≥ (1 − ε)Gmax −
O(E), where respectively (for the two problems mentioned above)

E =
p∗ log h log(log h/ε)

ε2
, and

hn log h log(n log h/ε)

ε2
.

Even if h is not known up front, we can still get the similar approximation guarantee for the
online multi buyer auction with:

E =
hn log h log(n log h/ε)

ε2
.

8. Cai et al. (2012) also generalizes this observation to multi-dimensional types.

21



Bubeck, Devanur, Huang and Niazadeh

We conjecture that our bound for the online posted pricing problem is tight up to
logarithmic factors, and leave resolving this as an open problem. The second bound is
not comparable to the best sample complexity for the multi buyer auction problem by
Roughgarden and Schrijvers (2016); it is better than theirs for large ε (when 1/ε ≤ o(nh)),
and is worse for smaller ε (when 1/ε ≥ ω(nh)). Also, compare the first bound to the
corresponding upper bound for the pricing problem by Blum and Hartline (2005), which is

min

{
h log h log log h

ε2
,
h log log h

ε3

}
.

Essentially, the main improvement over this result is that the additive term scales with the
best price rather than h.
Proof [ of Theorem 16]
Online posted pricing. Recall the formulation of the problem as an online learning problem
with bandit feedback in Section 4.1. This part then follows by Theorem 12 with k =
O(log h/ε) actions.

Online multiple buyer auction. Recall the formulation of the problem as an online learning
problem with full information in Section 4.1. The proof then follows by Theorem 1, where
we let π be the uniform distribution over the k = O((n log h/ε)!) actions, i.e., Myerson-type
auctions.

When h is not known up front, similar to the proof of Theorem 11, we consider a
hypothetical algorithm with countably infinite action space A as follows. For any p = (1+ε)j ,
j ≥ 0, let the kp = O((n log p/ε)!) Myerson-type auctions for values in [1, p] be in A; we
assume these auctions treat any values greater than p as if they were p. Further, we choose
the prior distribution π such that the probability mass of each auction for range [1, p] is
equal to ε(ε+2)

(1+ε)2
· 1
p2
· 1
kp
. The approximation guarantee then follows by Theorem 1. To

implement this algorithm, we use the same trick as in the proof Theorem 11 by running a
modified algorithm that only considers auctions for all ranges [1, p] where p is no larger than
the highest value seen so far among all the buyers (i.e. a multi-buyer auction version of
Algorithm 2). The rest of the proof that shows the revenue loss of this algorithm compared
to the hypothetical algorithm is negligible is similar to the proof of Theorem 11 (and hence
omitted for brevity).

4.3. Competing with δ-guarded benchmarks

For the single buyer auction/pricing problem, we define a δ-guarded benchmark, for any
δ ∈ [0, 1]. This benchmark is restricted to only those prices that sell the item in at least a
δ fraction of the rounds.

Gmax(δ) := max
{∑T

t=1 gp(t) : p ∈ A,
∑T

t=1 1(vt ≥ p) ≥ δT
}
.

As observed in Footnote 3, one can replace δ with 1/h and get the corresponding guarantees
for Gmax rather than Gmax(δ). However, the main point of these results is to show a graceful
improvement of the bounds as δ is chosen to be larger.
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Multiple buyers: For the multi buyer auction problem, we define the δ-guarded bench-
mark as follows. For any sequence of value vectors v(1),v(2), . . . ,v(T ), let V̄ denote the
largest value such that there are at least δT distinct t ∈ [T ] with maxi∈[n] vi(t) ≥ V̄ . Define
the δ-guarded benchmark to be

Gmax(δ) = maxM
∑T

t=1RevM

(
min(V̄ ~1,v(t)))

)
,

where the “min” is taken coordinate-wise, and the “max” is over all Myerson-type mech-
anisms. In other words, here is how we can describe the δ-guarded benchmark: for each
Myerson-type auction M , after identifying the value cap V̄ , we cut all the values that are
above V̄ by this quantity, and then run M . The benchmark is then the revenue of the best
Myerson-type auction under these modified values.

We focus on purely multiplicative approximation factors when competing with Gmax(δ).
In particular, for any given ε > 0, we are interested in a 1− ε approximation. We state our
results in terms of the convergence rate. We say that T (ε, δ) is the convergence rate of an
algorithm if for all time horizon T ≥ T (ε, δ), we are guaranteed that Galg ≥ (1− ε)Gmax(δ).
Our main results are as follows.

Theorem 17 There are algorithms for the online single buyer auction, online posted pric-
ing, and the online multi buyer auction problems with convergence rates respectively of

O

(
log(log h/ε)

ε2δ

)
, O

(
log h

ε4δ

)
, and O

(
n log (1/εδ) log(n log(1/εδ)/ε)

ε3δ
+

log (log h/ε)

ε2δ

)
.

Even if h is not known upfront, we can still get the following similar convergence rates for
online single buyer auction and online multi buyer auction respectively:

O

(
log(p∗/ε)

ε2δ

)
, and O

(
n log (1/εδ) log(n log(1/εδ)/ε)

ε3δ
+

log (h/ε)

ε2δ

)
.

Once again, we compare to the sample compexity bounds: our first is within a log log h factor
of the best sample complexity upper bound in Huang et al. (2015b). The lower bound for
the online single buyer auction is Ω(δ−1ε−2), which is also the best lower bound known for
the pricing and the multi-buyer problem.9

For the online posted pricing problem, we conjecture that the right dependence on ε
should be ε−3. No sample complexity bounds for the multi-buyer problem were known
before; in fact we introduce the definition of a δ-guarded benchmark for this problem.
Proof [of Theorem 17] Online single buyer auction. By Theorem 1, letting π be the
uniform distribution over the k = O(log h/ε) actions, i.e., discretized prices, we have that
for any price p (recall that cp = p):

Galg ≥ (1− ε) ·Gp −O
(

log(log h/ε)
ε · p

)
.

For the δ-guarded optimal price p∗ (i.e., subject to selling in at least δT rounds), we have
Gp∗ ≥ δT · p∗. Therefore, when T ≥ O

(
log(log h/ε)/ε2δ

)
, the additive term of the above

approximation guarantee is at most ε ·Gp∗ . So the theorem holds.

9. Cole and Roughgarden (2014) show that at least a linear dependence on n is necessary when the values
are drawn from a regular distribution, but as is, their lower bound needs unbounded valuations. The
lower bound probably holds for “large enough h” but it is not clear if it holds for all h.
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The treatment for the case when h is not known up front is essentially the same as in
Theorem 16 and Theorem 11. As a hypothetical algorithm useful for analysis, we consider
an algorithm (similar to Algorithm 1) with a countably infinite action space comprising all
prices of the form (1 + ε)j , for j ≥ 0. Then, let the prior distribution π be such that for any
price p = (1 + ε)j , πp = ε(ε+ 2)(1 + ε)−2(j+1) = ε(eps+2))

(1+ε)2
· 1
p2
. The rest of the proof and how

to implement is the same as in the proof of Theorem 11 (i.e. Algorithm 2).

Online posted pricing. Recall the above formulation of the problem as an online learning
problem with bandit feedback. By Theorem 12 with k = O(log h/ε) actions, we have that
for any price p:

Galg ≥ (1− ε) ·Gp −O
(

log h log(log h/ε)
ε3

· p
)
.

Again, for the δ-guarded optimal price p∗ (i.e., subject to selling in at least δT rounds), we
have Gp∗ ≥ δT · p∗. Therefore, when T ≥ O

(
log h log

(
log h/ε

)
/ε4δ

)
, the additive term of

the above approximation guarantee is at most ε ·Gp∗ . So the theorem holds.

Online multi buyer auction. Suppose i∗ is the δ-guarded best Myerson-type auction.
Recall that V̄ is the largest value such that there are at least δT distinct v(t)’s with
max`∈[n] v`(t) ≥ V̄ . So we may assume without loss of generality that i∗ does not dis-
tinguish values greater than V̄ . Hence:

ci∗ ≤ V̄ . (22)

Further, note that running a second-price auction with anonymous reserve V̄ is a Myerson-
type auction (e.g., mapping values less than V̄ to virtual value −∞ and values greater than
or equal to V̄ to virtual value V̄ ), and it gets revenue at least δT · V̄ . So we have that:

Gp∗ ≥ δT · V̄ . (23)

Finally, the above implies that to obtain a 1 − ε approximation, it suffices to consider
prices that are at least εδV̄ . Hence, it suffices to consider Myerson-type auctions that, for
a given V̄ , do not distinguish among values greater than V̄ , and do not distinguish among
values smaller than εδV̄ . There are O(log h/ε) different values of V̄ . Further, given V̄ ,
there are only O(log(1/εδ)/ε) distinct values to be considered and, thus, there are at most
O((n log(1/εδ)/ε)!) distinct Myerson-type auctions of this kind. Hence, the total number of
distinct Myerson-type actions that we need to consider is at most:

k = O

(
log h

ε
·
(
n log(1/εδ)

ε

)
!

)
.

Letting π be the uniform distribution over the k actions in Theorem 1, we have that
(recall Eqn. (22)):

Galg ≥ (1− ε) ·Gi∗ −O
(
n log (1/εδ) log(n log(1/εδ)/ε)

ε2
+

log (log h/ε)

ε

)
· V̄ .

When T ≥ O
(
n log (1/εδ) log(n log(1/εδ)/ε)

ε3δ
+ log (log h/ε)

ε2δ

)
, the additive term of the above

approximation guarantee is at most ε ·Gi∗ due to Eqn. (23). So the theorem holds.
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Again, the treatment for the case when h is not known up front is similar to that
in Theorem 16. When h is not known up front, we consider a hypothetical algorithm
with a countably infinite action space A as follows. For any V̄ = (1 + ε)j , j ≥ 0, let the
k′ = O((n log(1/εδ)/ε)!) Myerson-type auctions that do not distinguish among values greater
than V̄ , and do not distinguish among values smaller than εδV̄ be in A. Further, we choose
the prior distribution π such that the probability mass of each Myerson-type auction for a
given V̄ is equal to ε

1+ε ·
1
V̄
· 1
k′ . The approximation guarantee then follows by Theorem 1 and

essentially the same argument as the known h case. Implementation is similar to the proof
of Theorem 16 and Theorem 11 (i.e. a multi-buyer auction version of Algorithm 2). The
rest of the proof that shows the revenue loss of this algorithm compared to the hypothetical
algorithm is negligible is similar to the proof of Theorem 16 (and hence omitted for brevity).

Remark Devanur et al. (2016) show that when the values are drawn from independent
regular distributions, the ε-guarded optimal price is a 1− ε approximation of the unguarded
optimal price. So our convergence rate for the online multi buyer auction problem in Theo-
rem 1 implies a Õ(nε−4) sample complexity modulo a mild log log h dependency on the range,
almost matching the best known sample complexity upper bound for regular distributions.

5. Multi-scale Online Learning with Symmetric Range

In this section, we consider multi-scale online learning when the rewards are in a symmetric
range, i.e. for all i ∈ A and t ∈ [T ], gi(t) ∈ [−ci, ci]. The standard analysis for the
experts and the bandit problems holds even if the range of gi(t) is [−ci, ci], instead of [0, ci].
In contrast, there are subtle differences on the best achievable multi-scale regret bounds
between the non-negative and the symmetric range, which we explore in this section. We
look at both the full information and bandit setting, and prove action-specific regret upper
bounds. We then prove a tight lower-bound in Section 5.3 for the full information case, and
an almost tight lower-bound in Section 5.5 for the bandit setting.

5.1. Multi-scale regret bounds for symmetric ranges

We first show the following upper bound for the full information setting when the range
is symmetric. This bound follows the same style of action-specific regret bounds as in
Theorem 1. More detailed discussion on how the choice of initial distribution π affects the
bound is deferred to the appendix, Section A.1 (recall that the initial distribution π is the
distribution over actions that is used in the first round of Algorithm 1).

Theorem 18 There exists an algorithm for the multi-scale experts problem with symmetric
range that takes as input any distribution π over A, the ranges ci, ∀ i ∈ A, and a parameter
0 < ε ≤ 1, and satisfies:

∀i ∈ A : E [regreti] ≤ ε · E
[∑

t∈[T ]

∣∣gt(i)∣∣]+O

(
1
ε log

(
1
πi
· ci
cmin

)
· ci
)
. (24)

Similar to Section 2.1, we can compute the pure-additive version of the bound in Theo-

rem 18 by setting ε =

√
log(k· cmax

cmin
)

T , as in Corollary 2.

25



Bubeck, Devanur, Huang and Niazadeh

Corollary 19 There exists an algorithm for the online multi-scale experts problem with
symmetric range that takes as input the ranges ci, ∀ i ∈ A, and satisfies:

∀i ∈ A : E [regreti] ≤ O
(
ci ·
√
T log(k · cmax

cmin
)
)

(25)

If we compare the above regret bound with the standard O(cmax
√
T log k) regret bound

for the experts problem, we see that we replace the dependency on cmax in the standard
bound with ci

√
log( cmax

cmin
). It is natural to ask whether we could get rid of the dependence on

log(ci/cmin) and show a regret bound of O(ci
√
T log k), like we did for non-negative rewards.

However, the next theorem shows that this dependence on log(ci/cmin) in the above bound is
necessary, in a weak sense: where the constant in the O(·) is universal and does not depend
on the ranges ci. This is because the lower bound only holds for “small” values of the horizon
T , which nonetheless grows with the {ci}s.10

Theorem 20 There exists an action set of size k, and ranges ci,∀i ∈ [k], and time horizon
T , such that for all algorithms for the online multi-scale experts problem with symmetric
range, there is a sequence of T gain vectors such that

∃i ∈ A : E [regreti] > ci
4 ·
√
T log(k · cmax

cmin
)

We then show the following upper bound for the bandit setting when the range is symmet-
ric. This bound also follows the same style of action-specific regret bounds as in Theorem 12.

Theorem 21 There exists an algorithm for the multi-scale bandits problem with symmetric
range that takes as input the ranges ci, ∀ i ∈ A, and a parameter 0 < ε ≤ 1/2, and satisfies:

∀i ∈ A : E [regreti] ≤ O
(
εT + k

ε
cmax
cmin

log
(
k
ε
cmax
cmin

))
· ci. (26)

Also, similar to Section 2.1, we can compute the pure-additive version of the bound in

Theorem 21 by setting ε =

√
k cmax

cmin
log(kT · cmax

cmin
)

T , as in Corollary 2. This bound is comparable
to the standard regret bound of O(cmax

√
kT log k) (Auer et al., 1995) for the adversarial

multi-armed bandits problem.

Corollary 22 There exists an algorithm for the online multi-scale bandits problem with
symmetric range that satisfies:

∀i ∈ A : E [regreti] ≤ O
(
ci ·
√
Tk · cmax

cmin
log(kT · cmax

cmin
)
)
. (27)

Once again, for the bandit problem, the following theorem shows that this bound cannot
be improved beyond logarithmic factors (to get a guarantee like that of Theorem 12, for
instance).

Theorem 23 There exists an action set of size k, and ranges ci,∀i ∈ [k], such that for all
algorithms for the online multi-scale bandit problem with symmetric range, for all sufficiently
large time horizon T , there is a sequence of T gain vectors such that

∃i ∈ A : E [regreti] >
ci

8
√

2
·
√
Tk · cmax

cmin
.

10. For this reason we chose not to include this bound in Table 1.
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5.2. Upper bound for experts with symmetric range - Proof of Theorem 18

Recall the proof of Proposition 10. The proof only requires gi(t) ∈ [−ci, ci] for all i ∈ A, t ∈
[T ]. Choosing q to be 1i, a vector with a 1-entry in ith coordinate and 0-entries elsewhere
for an action i ∈ A, and noting that∑

t∈[T ]

∑
i∈A pi(t)

(gi(t))
2

ci
≤
∑

t∈[T ]

∑
i∈A pi(t) ·

∣∣gi(t)∣∣ ,
we get the following regret bound as a corollary of Proposition 10.

Corollary 24 For any initial distribution µ over A, and any learning rate parameter 0 <
η ≤ 1, the MSMW algorithm achieves the following regret bound:

∀i ∈ A : E [regreti] ≤ η · E
[∑

t∈[T ]

∣∣gi(t)∣∣]+ 1
η ci · log

(
1
µi

)
+ 1

η

∑
j∈A µjcj (28)

Now, we can prove the multi-scale regret upper-bound in Theorem 18 using Corollary 24.
Proof [ of Theorem 18] The proof follows by choosing an appropriate initial distribution
µ in Corollary 24. By Corollary 24, we have:

E [regreti] ≤ η · E
[∑

t∈[T ]

∣∣gi(t)∣∣]+ 1
η ci · log( 1

µi
) + 1

η

∑
j∈A µjcj

Let imin be an action with the minimum range cimin = cmin. Consider an initial distri-
bution µj = πj

cmin
cj

for all j 6= imin, and µimin = 1 −
∑

j 6=imin
µj , i.e., putting all remaining

probability mass on action imin. Then, the third term on the RHS is upper bounded by:∑
j∈A µjcj =

∑
j 6=imin

µjcj + µimincimin =
∑

j 6=imin
πjcmin + µimincmin ≤ 2cmin ≤ 2ci .

For i 6= imin, by the definition of µi, we have:

E [regreti] ≤ η · E
[∑

t∈[T ]

∣∣gi(t)∣∣]+ 1
η ci · log( 1

πi
· ci
cmin

) + 1
η · 2cmin

= η · E
[∑

t∈[T ]

∣∣gi(t)∣∣]+O

(
1
η log

(
1
πi
· ci
cmin

)
· ci
)
.

So the theorem follows by choosing η = ε. For i = imin, note that µj ≤ πj for all j 6= imin

and, thus, µimin = 1−
∑

j 6=imin
µj ≥ 1−

∑
j 6=imin

πj = πimin = πimin

cmin
cimin

. The theorem then
holds following the same calculation as in the j 6= imin case.

5.3. Lower bound for experts with symmetric range - proof of Theorem 20

We first show that for any online learning algorithm, and any sufficiently large h > 1, there
is an instance that has two experts with c1 = 1 and c2 = h with T = Θ(log h) rounds, such
that either

E [regret1] > 1
2T +

√
h , or E [regret2] > 1

2Th+ 1
5h log2 h .

We will construct this instance with T = 1
2 log2 h − 1 rounds adaptively that always has

gain 0 for action 1 and gain either h or −h for action 2. The proof of the theorem then
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follows as cmin = 1, cmax = h, T = 1
2 log2 h − 1, and k = 2 in this instance. Let qt denote

the probability that the algorithm picks action 2 in round t after having the same rewards
1 and h for the two actions respectively in the first t− 1 rounds. We will first show that (1)
if the algorithm has small regret with respect to action 1, then qt must be upper bounded
since the adversary may let action 2 have cost −h in any round t in which qt is too large.
Then, we will show that (2) since qt is upper bounded for any 1 ≤ t ≤ T , the algorithm
must have large regret with respect to action 2.

We proceed with the upper bounding qt’s. Concretely, we will show the following lemma.

Lemma 25 Suppose E [regret1] ≤ 1
2T +

√
h. Then, for any 1 ≤ t ≤ T , we have qt ≤ 2t√

h
.

Proof We will prove by induction on t. Consider the base case t = 1. Suppose for
contradiction that q1 >

2√
h
. Then, consider an instance in which action 2 always has gain.

In this case, the expected gain of the algorithm (even if it always correctly picks action 1
in the remaining instance) is at most q1 · (−h) < −2

√
h. This is a contradiction to the

assumption that E [regret1] ≤ 1
2T +

√
h < 2

√
h.

Next, suppose the lemma holds for all rounds prior to round t. Then, the expected gain
of algorithm in the first t− 1 rounds if arm 2 has gain H is

t−1∑
`=1

q` · h ≤
t−1∑
`=1

2`
√
h =

(
2t − 2

)√
h .

Suppose for contradiction that qt > 2t√
h
. Then, consider an instance in which action 2 has

gain H in the first t− 1 rounds and −H afterwards. In this case, the expected gain of the
algorithm (even if it always correctly picks action 1 after round t) is at most(

2t − 2
)√
h+ qt(−h) <

(
2t − 2

)√
h+ 2t

√
h < −2

√
h .

This is a contradiction to the assumption that E [regret1] ≤ 1
2T +

√
h < 2

√
h.

Consider an instance in which action 2 always has gain H. Suppose that E [regret1] ≤
1
2T +

√
h. As an immediate implication of the above lemma, the algorithm is that the

expected gain of the algorithm is upper bounded by:

T∑
t=1

qth ≤
T∑
t=1

2t
√
h < 2T+1

√
h = h .

Note that in this instance E [G2] = T · h. Thus, the regret w.r.t. action 2 is at least
(T − 1)h, which is greater than 1

2 · E [G2] + 1
5h log2 h for sufficiently large h.

5.4. Upper bound for bandits with symmetric range - Proof of Theorem 21

We start by presenting the following regret bound, whose proof is an alteration of that for
Lemma 14 under symmetric range. Next, we prove Theorem 21.
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Lemma 26 For any exploration rate 0 < γ ≤ min{1
2 ,

cmin
cmax
} and any learning rate 0 < η ≤

γ
k , the Bandit-MSMW algorithm (Algorithm 3) achieves the following regret bound:

∀i ∈ A : E [regreti] ≤ O
(

1

η
log
(k
γ

)
· ci + γT · cmax

)
Proof We further define:

G̃alg ,
∑

t∈[T ] git(t) =
∑

t∈[T ] p̃(t) · g̃(t) ,

G̃j ,
∑

t∈[T ] g̃j(t) .

In expectation over the randomness of the algorithm, we have:

1. E [Galg] = E
[
G̃alg

]
; and

2. Gj = E
[
G̃j

]
for any j ∈ A.

Hence, to upper bound E [regreti] = Gi−E [Galg], it suffices to upper bound E
[
G̃i − G̃alg

]
.

By the definition of the probability that the algorithm picks each arm, i.e., p̃(t), and
that reward of each round is at least −cmax, we have that:

E
[
G̃alg

]
≥ (1− γ)

∑
t∈[T ]

p(t) · g̃(t)− γTcmax .

Hence, for any benchmark distribution q over A, we have that:∑
j∈A qj · E

[
G̃j

]
− E

[
G̃alg

]
≤ E

[∑
j∈A qj · G̃j −

∑
t∈[T ] p(t) · g̃(t)

]
+ γ

1−γE
[
G̃alg

]
+ γ

1−γTcmax

≤ E
[∑

j∈A qj · G̃j −
∑

t∈[T ] p(t) · g̃(t)
]

+ 2γE
[
G̃alg

]
+ 2γTcmax

≤ E
[∑

j∈A qj · G̃j −
∑

t∈[T ] p(t) · g̃(t)
]

+ 4γTcmax . (29)

where the 2nd inequality is due to γ ≤ 1
2 , and the 3rd inequality follows by that cmax is the

largest possible reward per round.
Next, we upper bound the 1st term on the RHS of (29). Note that p(t)’s are the probabil-

ity of choosing experts by MSMW when the experts have rewards g̃(t)’s. By Proposition 10,
we have that for any benchmark distribution q over S, the Bandit-MSMW algorithm satisfies
that:∑
j∈A

qj ·G̃j−
∑
t∈[T ]

p(t)·g̃(t) ≤ η
∑
t∈[T ]

∑
j∈A

pj(t)

cj
·
(
g̃j(t)

)2
+

1

η

∑
j∈A

cj

(
qj ln

( qj
pj(1)

)
− qj + pj(1)

)
.

(30)
For any t ∈ [T ] and any j ∈ A, by the definition of g̃j(t), it equals

gj(t)
p̃j(t) with probability

p̃j(t), and equals 0 otherwise. Thus, if we fix the random coin flips in the first t− 1 rounds
and, thus, fix p̃(t), and take expectation over the randomness in round t, we have that:

E
[
pj(t)

cj
·
(
g̃j(t)

)2]
=
pj(t)

cj
· p̃j(t) ·

(
gj(t)

p̃j(t)

)2

=
pj(t)

p̃j(t)

(gj(t))
2

cj
.
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Further note that p̃j(t) ≥ (1− γ)pj(t), and |gj(t)| ≤ cj , the above is upper bounded by
1

1−γ |gj(t)| ≤ 2|gj(t)| ≤ 2cmax. Putting together with (30), we have that for any 0 < η ≤ γ
n :

E

∑
j∈A

qj · G̃j −
∑
t∈[T ]

p(t) · g̃(t)

 ≤ η
∑
t∈[T ]

∑
j∈A

2cmax +
1

η

∑
j∈A

cj

(
qj ln

( qj
pj(1)

)
− qj + pj(1)

)

= 2ηTkcmax +
1

η

∑
j∈A

cj

(
qj ln

( qj
pj(1)

)
− qj + pj(1)

)

Combining with (29), we have (recall that η ≤ γ
k ):∑

j∈A
qj · E

[
G̃j

]
− E

[
G̃alg

]
≤ 2ηTkcmax +

1

η

∑
j∈A

cj

(
qj ln

( qj
pj(1)

)
− qj + pj(1)

)
+ 4γTcmax

≤ 1

η

∑
j∈A

cj

(
qj ln

( qj
pj(1)

)
− qj + pj(1)

)
+ 6γTcmax

Let q = (1−γ)1i +
γ
k1. Recall that p(1) = (1−γ)1imin + γ

k1 (recall imin is the arm with
minimum range cimin). Similar to the discussion for the expert problem in Section 2.5, the
1st term on the RHS is upper bounded by O

(
1
η log

(
k
γ

)
· ci
)
. Hence, we have:

∑
j∈A

qj · E
[
G̃j

]
− E

[
G̃alg

]
≤ O

(
1

η
log
(k
γ

)
· ci
)

+ 6γTcmax . (31)

Further, the LHS is lower bounded as:

(1− γ)E
[
G̃i

]
+
γ

k

∑
j∈A

E
[
G̃j

]
− E

[
G̃alg

]
≥ (1− γ)E

[
G̃i

]
− γTcmax − E

[
G̃alg

]
.

The lemma then follows by putting it back to (31) and rearranging terms.

Proof [of Theorem 21] Let γ = ε cmin
cmax

and η = γ
k in Lemma 26. Theorem follows noting

that γcmax = εcmin ≤ εci.

5.5. Lower-bound for bandits with symmetric range - Proof of Theorem 23

We first show that for any online multi-scale bandits algorithm problem, and there is an
instance that has two arms with c1 = 1 and c2 = h for some sufficiently large h, a sufficiently
large T , and ε =

√
h

256T , such that either

E [regret1] > εT + 1
256εh , or E [regret2] > εTh+ 1

256εh
2

We will prove the existence of this instance by looking at the stochastic setting, i.e., the
gain vectors g(t)’s are i.i.d. for 1 ≤ t ≤ T . We consider two instances, both of which admit
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a fixed gain of 0 for action 1. In the first instance, the gain of action 2 is h with probability
1
2 − 2ε, and −h otherwise. Hence, the expected gain of playing action 2 is −4εh per round
in instance 1. In the second instance, the gain of action 2 is h with probability 1

2 + 2ε, and
−h otherwise. Hence, the expected gain of playing action two is 4εh per round in instance
2. Note this proves the theorem, as cmin = 1, cmax = h, k = 2 and and T = h

256ε2
.

Suppose for contradiction that the algorithm satisfies:

E [regret1] ≤ εT + 1
256εh = 1

128εh , E [regret2] ≤ εhT + 1
256εh

2 = 1
128εh

2 .

Let N1 denote the expected number of times that the algorithm plays action 2 in instance
1. Then, the expected regret with respect to action 1 in instance 1 is N1 · 4εh. By the
assumption that E [regret1] ≤ 1

128εh, we have N1 ≤ 1
512ε2

.
Next, by standard calculation, we get that the Kullback-Leibler (KL) divergence of the

observed rewards in a single round in the two instances is 0 if action 1 is played and is at
most 64ε2 (for 0 < ε < 0.1) if action 2 is played. So the KL divergence of the observed
reward sequences in the two instances is at most 64ε2 ·N1 ≤ 1

8 .
Then, we use a standard inequality about KL divergences. For any measurable function

ψ : X 7→ {1, 2}, we have PrX∼ρ1
(
ψ(X) = 2

)
+PrX∼ρ2

(
ψ(X) = 1

)
≥ 1

2 exp
(
−KL(ρ1, ρ2)

)
.

For any 1 ≤ t ≤ T , let ρ1 and ρ2 be the distribution of observed rewards up to a round t in the
two instances, and let ψ(X) be the action played by the algorithm. By this inequality and
the above bound on the KL divergence between the observed rewards in the two instances,
we get that in each round, the probability that the algorithm plays action 2 in instance 1,
plus the probability that the algorithm plays action 1 in instance 2, is at least 1

2 exp (−1
8) > 2

5
in any round t. Thus, the expected number of times that the algorithm plays action 1 in
instance 2 from round 1 to T , denoted as N2, is at least N2 ≥ 2

5 · T −N1 ≥ 1
3 · T , where the

second inequality holds for sufficiently large h. Therefore, the expected regret w.r.t. action
2 in instance 2 is at least: 4εh · 1

3 · T = 4
3εhT > 1

128εh
2. This is a contradiction to our

assumption that E [regret2] ≤ 1
128εh

2.

6. Conclusion

Revenue management has emerged as a competitive toolbox of strategies for increasing the
profit of web-based markets. In particular, dynamic pricing, and dynamic auction design as
its less mature relative, have become prevalent market mechanisms in nearly all industries.
In this paper, we studied these problems from the perspective of online learning. For the
online auction for single buyer, we showed regret bounds that scale with the best fixed price,
rather than the range of the values (with a generalization to learning auctions). Moreover, we
demonstrated a connection between the optimal regret bounds for this problem and offline
sample complexity lower-bounds of approximating optimal revenue, studied in Cole and
Roughgarden (2014); Huang et al. (2015a). Using this connection, we showed our regret
bounds are almost optimal as they match these information theoretic lower-bounds. We
further generalized our result to online pricing (bandit feedback) and online auction with
multiple-buyers.

The key to our development and improved regret bounds for online auction design is
generalizing the classical learning from experts and multi-armed bandit problems to their
“multi-scale versions”, where the reward of each action is in a different range. Here the
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objective is to design online learning algorithms whose regret with respect to a given action
scales with its own range, rather than the maximum range. We showed how a variant of
online mirror descent solves this learning problem.
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Appendix A. Other Deferred Proofs and Discussions

A.1. Discussion on choice of π for bandit symmetric range

We now describe how the choice of initial distribution π affects the bound given in Theo-
rem 18.

• When the action set is finite, we can choose π to be the uniform distribution to get
the term

O
(1

ε
log(kci/cmin) · ci

)
This recovers the standard bound by setting ci = cmax for all i ∈ A.

• We can choose πi = ci∑
j∈A cj

to get O
(

1
ε log(

∑
j∈A cj/cmin) ·ci

)
. In particular, if the ci’s

form an arithmetic progression with a constant difference then this is just O
( log k

ε · ci
)
.

A.2. Elementary proof of Proposition 10 from first principles

Based on the update rule of Algorithm 1, we have gi(t) = ci
η log(wi(t+1)

pi(t)
) for any i ∈ A.

Therefore:

g(t) ·
(
q− p(t)

)
=
∑
i∈A

gi(t)
(
qi − pi(t)

)
=
∑
i∈A

ci
η
· log

(wi(t+ 1)

pi(t)

)
·
(
qi − pi(t)

)
=

1

η

(∑
i∈S

ci · qi · log
(wk(t+ 1)

pk(t)

)
+
∑
i∈A

ci · pi(t) · log
( pi(t)

wi(t+ 1)

))

=
1

η

(∑
i∈S

ci · qi · log
(wk(t+ 1)

pk(t+ 1)

)
+
∑
i∈S

ci · qi · log
(pk(t+ 1)

pk(t)

)
+
∑
i∈A

ci · pi(t) · log
( pi(t)

wi(t+ 1)

))
(32)

Now, note that due to the normalization step of Algorithm 1, for any i ∈ S we have:

ci · log(
wi(t+ 1)

pi(t+ 1)
) = λ =

∑
j∈A

cj · pj(t+ 1) · λ
cj

=
∑
j∈A

cj · pj(t+ 1) · log(
wj(t+ 1)

pj(t+ 1)
)

So the first summation in (32) is equal to:∑
i∈S

ci · qi · log
(wk(t+ 1)

pk(t+ 1)

)
=
∑
i∈S

qi ·
∑
j∈A

cj · pj(t+ 1) · log(
wj(t+ 1)

pj(t+ 1)
)

=
∑
j∈A

cj · pj(t+ 1) · log(
wj(t+ 1)

pj(t+ 1)
)

=
∑
i∈A

ci · pi(t+ 1) · log(
wi(t+ 1)

pi(t+ 1)
) (33)
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Combining Eqn. (32) and (33), we have:

g(t) ·
(
q− p(t)

)
=

1

η

∑
i∈A

ci ·
(
pi(t) · log(

pi(t)

wi(t+ 1)
) + pi(t+ 1) · log(

wi(t+ 1)

pi(t+ 1)
)

)
+

1

η

∑
i∈S

ci · qi · log
(pi(t+ 1)

pi(t)

)
The 2nd part is a telescopic sum when we sum over t. We will upper bound the 1st part

as follows. By log(x) ≤ (x− 1), we get that:

∑
i∈A

ci ·
(
pi(t) · log(

pi(t)

wi(t+ 1)
) + pi(t+ 1) · log(

wi(t+ 1)

pi(t+ 1)
)

)
≤
∑
i∈A

ci ·
(
pi(t) · log(

pi(t)

wi(t+ 1)
)− pi(t+ 1) + wi(t+ 1)

)
=
∑
i∈A

ci ·
(
pi(t)− pi(t+ 1)

)
+
∑
i∈A

ci ·
(
pi(t) · log(

pi(t)

wi(t+ 1)
)− pi(t) + wi(t+ 1)

)

Again, the 1st part is a telescopic sum when we sum over t. We will further work on the
2nd part. By the relation between wi(t+ 1) and pi(t), we get that:

∑
i∈A

ci·
(
pi(t) · log(

pi(t)

wi(t+ 1)
)− pi(t) + wi(t+ 1)

)
=
∑
i∈A

ci·pi(t)
(
−η · gi(t)

ci
− 1 + exp(η · gi(t)

ci
)

)

Note that η · gi(t)ci
∈ [−1, 1] because gi(t) ∈ [−ci, ci] and 0 < η ≤ 1. By exp(x) −

x − 1 ≤ x2 for −1 ≤ x ≤ 1 and that ηgi(t) ∈ [−ci, ci], the above is upper bounded by
η2
∑

i∈A pi(t)
(gi(t))

2

ci
. Putting together, we get that:

g(t) ·
(
q− p(t)

)
≤ 1

η

∑
i∈S

ci ·
(
qi · log

(pi(t+ 1)

pi(t)

)
+ pi(t)− pi(t+ 1)

)
+ η

∑
i∈A

pi(t)
(gi(t))

2

ci

Summing over t, we have:

g(t) ·
(
q−p(t)

)
≤ 1

η

∑
i∈S

ci ·
(
qi · log

(pi(T + 1)

pi(1)

)
+pi(1)−pi(T +1)

)
+η

∑
t∈[T ]

∑
i∈A

pi(t)
(gi(t))

2

ci

Finally, by log(x) ≤ (x − 1), we get that qi log
(pi(T+1)

qi

)
≤ pi(T + 1) − qi. Hence, we

have:

g(t) ·
(
q− p(t)

)
≤ 1

η

∑
i∈S

ci ·
(
qi · log

( qi
pi(1)

)
+ pi(1)− qi

)
+ η

∑
t∈[T ]

∑
i∈A

pi(t)
(gi(t))

2

ci

The proposition then follows by our choice of the initial distribution.
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A.3. Proof of OMD regret bound

In order to prove the OMD regret bound, we need some properties of Bregman divergence.

Lemma 27 (Properties of Bregman divergence (Bubeck, 2011)) Suppose F (·) is a
Legendre function and DF (·, ·) is its associated Bregman divergence as defined in Defini-
tion 4. Then:

• DF (x, y) > 0 if x 6= y as F is strictly convex, and DF (x, x) = 0.

• DF (., y) is a convex function for any choice of y.

• (Pythagorean theorem) If A is a convex set, a ∈ A, b /∈ A and c = argmin
x∈A

(DF (x, b)),

then
DF (a, c) +DF (c, b) ≤ DF (a, b)

Given Lemma 27, we are now ready to prove Lemma 6.
Proof [Proof of Lemma 6] To obtain the OMD regret bound, we have:

q · g(t)− p(t) · g(t) =
1

η
(q− p(t)) · (∇F (w(t+ 1))−∇F (p(t)))

=
1

η
(DF (qb,p(t)) +DF (p(t),w(t+ 1))−DF (qb,w(t+ 1)))

(1)

≤ 1

η
DF (p(t),w(t+ 1)) +

1

η
(DF (q,p(t))−DF (q,p(t+ 1))) (34)

where in (1) we useDF (p(t+ 1),w(t+ 1)) ≥ 0 andDF (q,p(t+ 1))+DF (p(t+ 1),w(t+ 1)) ≤
DF (q,w(t+ 1)) due to Pythagorean theorem (Lemma 27). By summing up both hand sides
of (34) for t = 1, · · · , T we have:∑

t∈[T ]

g(t) ·
(
q− p(t)

)
≤ 1

η

∑
t∈[T ]

DF (p(t),w(t+ 1)) +
1

η
DF (q,p(1)) (35)
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