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Abstract

Many machine learning problems can be characterized by mutual contamination models. In
these problems, one observes several random samples from different convex combinations
of a set of unknown base distributions and the goal is to infer these base distributions. This
paper considers the general setting where the base distributions are defined on arbitrary
probability spaces. We examine three popular machine learning problems that arise in this
general setting: multiclass classification with label noise, demixing of mixed membership
models, and classification with partial labels. In each case, we give sufficient conditions
for identifiability and present algorithms for the infinite and finite sample settings, with
associated performance guarantees.

Keywords: multiclass classification with label noise, classification with partial labels,
mixed membership models, topic modeling, mutual contamination models

1. Introduction

In many machine learning problems, the learner observes several random samples from
different mixtures of unknown base distributions, with unknown mixing weights, and the
goal is to infer these base distributions. Examples include binary classification with label
noise, multiclass classification with label noise, classification with partial labels, and topic
modeling. The goal of this paper is to develop a unified framework and set of tools to study
statistical properties of these problems in a very general setting.

To this end, we use the general framework of mutual contamination models (Blanchard
and Scott, 2014). In a mutual contamination model, there are L distributions P1, . . . , PL
called base distributions. The learner observes M random samples

Xi
1, . . . , X

i
ni

i.i.d.
„ P̃i “

L
ÿ

j“1

πi,jPj (1)
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where i “ 1, . . . ,M , πi,j ě 0, and
ř

j πi,j “ 1. Here πi,j is the probability that an instance of

the contaminated distribution P̃i is a realization of Pj . The πi,js and Pjs are unknown and
the P̃is are observed through data. In this work, we avoid parametric models and assume
that the sample space is arbitrary. The model can be stated concisely as

P̃ “ ΠP (2)

where P “ pP1, . . . , PLq
T , P̃ “ pP̃1, . . . , P̃M q

T , and Π “
`

πi,j
˘

is an M ˆL matrix that we
call the mixing matrix.

In this paper we study decontamination of mutual contamination models, which is the
problem of recovering, or estimating, the base distributions P from the contaminated dis-
tributions P̃ from which data are observed, without knowledge of the mixing matrix Π.
We focus our attention on three specific types of mutual contamination models, all of which
describe modern problems in machine learning: multiclass classification with label noise,
demixing of mixed membership models and classification with partial labels. We will demon-
strate that these three decontamination problems can be addressed using a common set of
concepts and techniques. Before elaborating our contributions in detail, we first offer an
overview of the three specific mutual contamination models, and associated decontamina-
tion problems, that we study.

Multiclass Classification with Label Noise: In multiclass classification with label
noise, M “ L and the goal is to recover P . Each Pi represents the distribution of a class
of examples. The learner observes training examples with noisy labels, that is, realizations
from the P̃js. This problem arises in nuclear particle classification (Scott et al., 2013).
When one draws samples of a specific particle, it is impossible to remove other types of
particles from the background. Thus, each example is drawn from a mixture of the different
types of particles.

Demixing of Mixed Membership Models: We consider the following decontamina-
tion problem in mixed membership models: given a sample from each P̃i, recover P up to a
permutation. We refer to this decontamination problem as demixing of mixed membership
models. This problem arises in the task of automatically uncovering the thematic topics
of a corpus of documents. Under the mixed membership model approach, the words of
each document are thought of as being drawn from a document-specific mixture of topics.
Specifically, documents correspond to the P̃is and the topics to the Pis. This approach is
also referred to as topic modeling. As we discuss in the next section, our theory significantly
generalizes existing topic modeling theoretical guarantees.

Classification with Partial Labels:1 In classification with partial labels, each data
point is labeled with a partial label Y Ă t1, . . . , Lu; the true label is in Y , but it is not known
which label is the true one. In our setup, we view the ith random sample as having partial
label Yi – tj : πi,j ą 0u and being distributed according to P̃i “

ř

jPYi
πi,jPj . Thus, the

learner observes training examples from the contaminated distributions P̃ and the partial
label matrix Π` “ p1tΠi,ją0uq, and the goal is to recover P .

There are many applications of classification with partial labels because often abundant
sources of data are naturally associated with information that can be interpreted as partial

1. Classification with partial labels has also been referred to as the “superset learning problem” or the
“multiple label problem” (Liu and Dietterich, 2014).
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labels. For example, consider the task of face recognition. On the internet, there are many
images with captions that indicate who is in the picture but do not indicate which face
belongs to which person. A partial label could be formed by associating each face with the
names of the individuals appearing in the same image (Cour et al., 2011).

Although our work emphasizes recovery of P , it is also possible to think of decontami-
nation of mutual contamination models as concerned with estimation of the mixing matrix
Π. This estimate of Π could be used as a plug-in for recently developed debiased losses for
multiclass classification with label noise and classification with partial labels, which require
knowledge of Π (Cid-Sueiro, 2012; Menon et al., 2015b; van Rooyen and Williamson, 2015;
Patrini et al., 2017).

In this paper, we make the following contributions: (i) We give sufficient conditions on
P , Π, and Π` for identifiability of the three problems. (ii) We establish necessary conditions
that in some cases match or are similar to the sufficient conditions. (iii) We introduce novel
algorithms for the infinite and finite sample settings. These algorithms are nonparametric
in the sense that they do not model Pi as a probability vector or other parametric model.
Our algorithmic contributions show that while all three problems can be described in a
unified way, the special structure of multiclass classification with label noise allows for a
substantially simpler algorithm. (iv) We develop novel estimators for distributions obtained
by iteratively applying the κ˚ operator (defined below). (v) Finally, our framework gives
rise to several novel geometric insights about each of these three problems and leverages
concepts from affine geometry, multilinear algebra, and probability.

1.1. Notation

Let Z` denote the positive integers. For n P Z`, let rns “ t1, . . . , nu. If x P RK , let xi
denote the ith entry of x. If xj P RK , then xj,i denotes the ith entry of xj . Let ei denote
the length L vector with 1 in the ith position and zeros elsewhere. Let πi P ∆L Ă RL
be the transpose of the ith row of Π where ∆L denotes the pL ´ 1q-dimensional simplex,
i.e., ∆L “ tµ “ pµ1, . . . , µLq

T P RL |
řL
i“1 µi “ 1 and @i : µi ě 0u. Let ∆M

L denote the
product of M pL´ 1q-dimensional simplices, viewed as the space of M ˆ L row-stochastic
matrices. Let P denote the space of probability distributions on a measurable space pX , Cq.
Let supppF q denote the support of a distribution F on a Borel space.

2. Related Work

Our work makes various contributions to the statistical understanding of multiclass clas-
sification with label noise, demixing of mixed membership models, and classification with
partial labels. In the following subsections, we discuss how our results improve upon and
relate to previous results in the literature.

2.1. Multiclass Classification with Label Noise

There has not been much work on classification with multiclass label noise. By contrast,
label noise in the binary setting has received a fair amount of attention. For a review of
work prior to 2013, see Scott et al. (2013). More recently, Natarajan et al. (2013) considered
the binary label noise case where the label noise rates are known (in our case, the label noise

3



Katz-Samuels, Blanchard, and Scott

rates are unknown). van Rooyen and Williamson (2015) generalized the work of Natarajan
et al. (2013) to the multiclass case, but again assumed that the mixing proportions are
known. Recent work has proposed various algorithms for the binary setting where the label
noise rates are unknown (Scott, 2015; van Rooyen et al., 2015; Menon et al., 2015a), but
these algorithms have not been generalized to the multiclass case. Menon et al. (2016)
consider the binary setting with instance-dependent corruption, but they assume that the
class probability functions take the form of a single-index model, whereas we make no
parametric assumptions on the Pis. Ghosh et al. (2017) consider multiclass label noise, but
they make two restrictive assumptions: (i) in the infinite sample setting, they assume that
there exists some function belonging to the chosen hypothesis class that attains 0 risk and
(ii) in the finite sample setting, they assume that the label noise is symmetric, i.e., there
exists a constant c P p0, 1q such that πi,j “

c
L´1 for all i ‰ j. Patrini et al. (2017) also

study the multiclass setting, but they assume that if their neural network has access to
sufficiently many samples, it can perfectly model PrpỸ “ k |xq where x is a given feature
vector and Ỹ is a corrupted label. Unlike most previous work that aims to learn a classifier,
our focus is on estimating the base distributions. Given these estimates, one could then
design a classifier to optimize some performance measure. See, for example, Section 4.3 of
our initial work on this subject (Blanchard and Scott, 2014).

Another approach for modeling random label noise, in addition to the mutual contam-
ination model, is the label flipping model. Indeed, several of the above-cited papers adopt
this setting. In this model, the label Y of a data point is flipped independently of its features
X and

µl,k – PrpỸ “ k |Y “ lq

gives the probability that a data point with true label Y “ l is corrupted to have an observed
label Ỹ “ k. Under the assumption that Y and X are jointly distributed, the µl,ks can be
related to the πi,js via Bayes’ rule. We choose to study the mutual contamination model
because we find it more convenient to study the question of identifiability.

In this paper, we extend Scott et al. (2013), which examined binary classification with
label noise (the case where M “ L “ 2). The multiclass setting is significantly more
challenging and, as such, requires novel sufficient conditions and mathematical notions. In
particular, Scott et al. (2013) use the notion of irreducibility of distributions as one of their
sufficient conditions.

Definition 1 For distributions G and H, we say that G is irreducible with respect to H if
it is not possible to write G “ γH ` p1´ γqF where F is a distribution and 0 ă γ ď 1.

Definition 2 For distributions G and H, we say that G and H are mutually irreducible if
G is irreducible with respect to H and H is irreducible with respect to G. We denote

IR “ tpG,Hq : G and H are mutually irreducible distributionsu.

Scott et al. (2013) require that P1 and P2 are mutually irreducible. To treat the multiclass
setting, we introduce a generalization of mutual irreducibility, namely joint irreducibility.

The work presented below on multiclass label noise originally appeared in a conference
paper (Blanchard and Scott, 2014). The purpose of the present paper is to demonstrate that
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the framework developed in that paper can be extended to the other two decontamination
problems, and to provide a unified presentation of the three settings. In particular, the
joint irreducibility assumption plays a pivotal role in all three settings, as does the task
of mixture proportion estimation. However, the decontamination procedures for the latter
two problems are substantially more complicated than for multiclass classification with label
noise.

2.2. Demixing Mixed Membership Models

Mixed membership models have become a powerful modeling tool for data where data points
are associated with multiple distributions. Applications have appeared in a wide range of
fields including image processing (Li and Perona, 2005), population genetics (Pritchard
et al., 2000), document analysis (Blei et al., 2003), and surveys (Berkman et al., 1989).
One particularly popular application is topic modeling on a corpus of documents, such as
the articles published in the journal Science. Topic modeling is closely related to demixing
of mixed membership models and our work may be viewed as studying topic modeling on
general domains.

In topic modeling, the base distributions Pi correspond to topics and the contaminated
distributions P̃i to documents, which are regarded as mixtures of topics. In most cases, the
Pis are assumed to have a finite sample space. A variety of approaches have been proposed
for topic modeling. The most common approach assumes a generative model for a corpus of
documents and determines the maximum likelihood fit of the model given data. However,
because maximum likelihood is NP-hard, these approaches must rely on heuristics that can
get stuck in local minima (Arora et al., 2012).

Recently, a trend towards algorithms for topic modeling with provable guarantees has
emerged. Most of these methods rely on the separability assumption (SEP) and its vari-
ants (Donoho and Stodden, 2003; Arora et al., 2012, 2013; Ding et al., 2013, 2014; Recht
et al., 2012; Huang et al., 2016). According to (SEP), P1, . . . , PL are distributions on a
finite sample space and for every i P t1, . . . , Lu, there exists a word x P supppPiq such
that x R Yj‰i supppPjq. Our requirement that P1, . . . , PL are jointly irreducible is a nat-
ural generalization of separability of P1, . . . , PL, as we will argue below. Specifically, if
P1, . . . , PL have discrete sample spaces, separability and joint irreducibility coincide; how-
ever, if P1, . . . , PL are continuous, under joint irreducibility, P1, . . . , PL can have the same
support.

A key ingredient in these algorithms is to use the assumption of a finite sample space
to view the distributions as probability vectors in Euclidean space; this leads to approaches
based on non-negative matrix factorization (NMF), linear programs, and random projec-
tions (Donoho and Stodden, 2003; Arora et al., 2012, 2013; Ding et al., 2013, 2014; Recht
et al., 2012; Huang et al., 2016). However, more general distributions cannot be viewed
as finite-dimensional vectors. Therefore, topic modeling on general domains requires new
techniques. Our work seeks to provide such techniques.

Topic modeling on general domains has several applications, including in high-energy
physics (Metodiev and Thaler, 2018a,b). In collider data, quantum chromodynamics causes
data samples to be a mixture of different types of particles, where the underlying fraction of
the particle type is unknown. In this setting, it is of interest to recover information about
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each of the particles. Recently, Metodiev and Thaler (2018b) applied the Demix algorithm,
Algorithm 4 in the current paper, to this problem in the case M “ L “ 2.

Topic modeling on general domains is also relevant to recent empirical research on topic
modeling with word embeddings, e.g., (Das et al., 2015; Li et al., 2016b,a; Xun et al., 2017;
Zhao et al., 2018). Word embeddings map words to vectors in Rd in a semantically and
syntactically meaningful way. Their use has been pivotal to the state-of-art performance
of many algorithms in NLP (Luong et al., 2013). Several algorithms for topic modeling
with word embeddings model the topics as multivariate Gaussian distributions in order to
handle words that do not belong to the vocabulary of the training dataset (Das et al., 2015;
Xun et al., 2017). Whereas current topic modeling algorithms with theoretical guarantees
do not cover such a modeling approach, the generality of our algorithms does.

2.3. Classification with Partial Labels

Classification with partial labels has had two main formulations in previous work (Liu
and Dietterich, 2014). In one formulation (PL-1), instances from each class are drawn
independently and the partial label for each instance is drawn independently from a set-
valued distribution. In another formulation (PL-2), training data are in the form of bags
where each bag is a set of instances and the bag has a set of labels. Each instance belongs
to a single class, and the set of labels associated with the bag is given by the union of the
labels of the instances in the bag. Our framework is similar to (PL-2), although it does
not assume a joint distribution on the features of instances and the partial labels.

Most work takes an empirical risk minimization approach to classification with partial
labels (Jin and Ghahramani, 2002; Nyugen and Caruana, 2008; Cour et al., 2011; Liu and
Dietterich, 2012). Typically, these algorithms aim to pick a classifier that minimizes the
partial label error : the probability that a given classifier assigns a label to a training instance
that is not contained in the partial label associated with the training instance. By contrast,
our approach is to estimate the base distributions. One could then use these estimates to
train a classifier under some performance measure.

There has not been much theoretical work on developing a statistical understanding of
classification with partial labels. Cid-Sueiro (2012) and van Rooyen and Williamson (2015)
develop methods for classification with partial labels that require knowledge of the mixing
proportions, e.g., the probability that a label is in a partial label, given the true label. In
this work, we make the more realistic assumption that the mixing proportions are unknown.

Liu and Dietterich (2014) consider the question of learnability where the mixing pro-
portions are unknown. They consider two main sufficient conditions for learnability of a
partial label problem. First, they require that for every label l P rLs, the probability that
l occurs with any particular distinct label l1 is less than 1. Our condition on the partial
label (described in the next Section) is considerably weaker. For example, it permits the
case where there are two labels l ‰ l1 such that whenever l occurs in a partial label, l1 also
occurs.

The second sufficient condition of Liu and Dietterich (2014) is based on the class dis-
tributions, partial label distributions and the hypothesis class of choice. It requires that
every hypothesis that attains zero partial label error also attains zero true error. While
this condition may be useful for the selection of a suitable hypothesis class for an ERM

6



Decontamination of Mutual Contamination Models

approach, it is important to develop interpretable sufficient conditions that only depend on
the characteristics of a partial label problem. Our work provides such conditions.

We also note that Liu and Dietterich (2014) consider the realizable case, that is, the case
where the supports of P1, . . . , PL do not overlap. By contrast, we make the significantly
weaker assumption that P1, . . . , PL are jointly irreducible, which allows P1, . . . , PL to have
the same support. Thus, our work addresses the agnostic case in classification with partial
labels.

3. Sufficient Conditions for Identifiability

We can think of each problem as requiring a specific factorization of P̃ in terms of P and
Π. We say P̃ is factorizable if there exists pΠ,P q P ∆M

L ˆ PL such that P̃ “ ΠP ; we
call pΠ,P q a factorization of P̃ . Multiclass classification with label noise requires a specific
ordering of the elements of P ; classification with partial labels requires that Π is consistent
with Π` and a specific ordering of the elements of P .

A factorization is not guaranteed to exist. For example, there is no factorization in the
case where M “ 3, L “ 2, and P̃1, P̃2, P̃3 are linearly independent. When a factorization ex-
ists, in general it is not unique. For instance, consider the case where L “M , pΠ,P q solves
(2), and Π is not a permutation matrix. Then, another solution is P̃ “ IP̃ . Furthermore,
there are infinitely many solutions in the following general case.

Proposition 1 Suppose that P̃ has at least two distinct P̃js and has a factorization pΠ,P q.
If there is some P̃i in the interior of convpP1, . . . , PLq, then there are infinitely many distinct
non-trivial factorizations of P̃ .

Proof Without loss of generality, suppose that i “ 1 and P̃1 ‰ P̃2. Then, since P̃1 is
in the interior of convpP1, . . . , PLq, there is some δ ą 0 such that for any α P p1, 1 ` δq,
Qα “ αP̃1`p1´αqP̃2 is a distribution. Then, convpP̃1, . . . , P̃Lq Ď convpQα, P̃2, . . . , P̃Lq and,
consequently, there is some Π1 P ∆L

L such that pΠ1, pQα, P̃2, . . . , P̃Lq
T q solves (2). Clearly,

by varying α, there are infinitely many solutions to (2).

Identifiability of each problem is equivalent to the existence of a unique factorization
for that problem. Therefore, to establish identifiability for the three problems, we must
impose conditions on pΠ,P q and Π`. To this end, we use the notion of joint irreducibility
of distributions.

Definition 3 The distributions tPiu1ďiďL are jointly irreducible iff the following equivalent
conditions hold

(a) For all I Ă rLs such that 1 ď |I| ă L, and εi such that εi ě 0 and
ř

iPI εi “
ř

iRI εi “ 1,

p
ÿ

iPI

εiPi,
ÿ

iRI

εiPiq P IR.

(b)
řL
i“1 γiPi is a distribution implies that γi ě 0@i.
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Conditions (a) and (b), whose equivalence was established by Blanchard and Scott (2014),
give two ways to think about joint irreducibility. Condition (a) says that every convex
combination of a subset of the Pis is irreducible (see Section 2.1) with respect to every
convex combination of the other Pis. Condition (b) says that if a distribution is in the span
of P1, . . . , PL, it is in their convex hull. Joint irreducibility holds when each Pi has a region
of positive probability that does not belong to the support of any of the other Pis; thus,
separability (see Section 2.2) of the Pis entails joint irreducibility of P1, . . . , PL. However,
the converse is not true: the Pis can have the same support and still be jointly irreducible
(e.g., Pis Gaussian with a common variance and distinct means (Scott et al., 2013)).

For all three problems, we assume that

(A) P1, . . . , PL are jointly irreducible.

Henceforth, unless we say otherwise, P1, . . . , PL are assumed to be jointly irreducible. In
Appendix G, we provide experiments on real-world datasets that suggest that this assump-
tion is reasonable.

We make different assumptions on Π for each of the three problems. For multiclass
classification with label noise, we assume that

(B1) Π is invertible and Π´1 is a matrix with strictly positive diagonal entries and non-
positive off-diagonal entries.

According to Lemma 1 below, this assumption essentially says that the problem has low
noise in the sense that for each i, P̃i mostly comes from Pi. In particular, each Pi can
be recovered by subtracting small multiples of P̃j , j ‰ i from P̃i. For example, consider
the following case where Π satisfies (B1). Suppose that there is a “common background
noise” c P ∆L that appears in different proportions in each of the distributions; formally,
we have πi “ γic` p1´ γiqei with γi P r0, 1q. In other words, we shift each of the vertices
ei towards a common point c (see panel (iii) of Figure 1). See Blanchard and Scott (2014)
for a proof that this setup satisfies (B1). In the binary case where M “ L “ 2, (B1) is
equivalent to the simple condition that π1,1 ` π2,2 ă 1. This assumption roughly says that
in expectation the majority of labels are correct. In Section 4.3, we present Lemma 1, which
gives a geometric interpretation of (B1).

For the demixing problem, we assume that

(B2) Π has full column rank.

We note that (B2) is considerably weaker than (B1), e.g., it allows M ą L. Of course,
it is natural to demand a weaker sufficient condition for demixing the mixed membership
problem than muliticlass classification with label noise because the goal of the former prob-
lem is to recover any permutation of P while the goal of the latter is to recover P exactly.
Nevertheless, the identifiability analysis to establish (B2) as a sufficient condition is also
significantly more involved than the analysis of (B1).

For classification with partial labels, we assume that

(B3) Π has full column rank and the columns of Π` are unique.

The assumption that the columns of Π` are unique says that there are no two classes that
always appear together in the partial labels. In Appendix C, we argue that several of the
above conditions are also necessary, or are not much stronger than what is necessary.
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4. Algorithms for the Population Case

In this section, to establish that the above conditions are indeed sufficient for identifiability,
we give a population case analysis of the three problems. The results on multiclass classi-
fication with label noise appeared in a conference paper (Blanchard and Scott, 2014); we
refer the reader to that paper for the proofs.

4.1. Background

This paper relies on the following quantity from Blanchard et al. (2010).

Definition 4 Given probability distributions F0, F1, define

κ˚pF0 |F1q “ maxtκ P r0, 1s| D a distribution G s.t. F0 “ p1´ κqG` κF1u.

The following Proposition from Blanchard et al. (2010) establishes some useful properties
of κ˚.

Proposition 2 Given probability distributions F0, F1 on a measurable space pX , Cq, if F0 ‰

F1, then κ˚pF0 |F1q ă 1 and the above maximum is attained for a unique distribution G
(which we refer to as the residue of F0 wrt. F1). Furthermore, the following equivalent
characterization holds:

κ˚pF0 |F1q “ inf
CPC,F1pCqą0

F0pCq

F1pCq
.

Note that κ˚pF0 |F1q “ 0 iff F0 is irreducible wrt F1. κ˚pF0 |F1q can be thought of as the
maximum possible proportion of F1 in F0. We can think of 1 ´ κ˚pF0 |F1q as a statistical
distance since it is non-negative and equal to zero if and only if F0 “ F1. We refer to
κ˚ as the two-sample κ˚ operator. To obtain the residue of F0 wrt F1, one computes
Residue(F0 |F1) (see Algorithm 1); this is well-defined under Proposition 2 when F0 ‰ F1.

In order to gain intuition about κ˚, we briefly discuss how it can be used to recover Π´1

in the case L “ 2. Under conditions discussed above (Scott et al., 2013), it holds that

P̃1 “ p1´ κ1qP1 ` κ1P̃2, and

P̃2 “ p1´ κ2qP2 ` κ2P̃1.

and κ1 “ κ˚pP̃1 | P̃2q and κ2 “ κ˚pP̃2 | P̃1q. By rearranging this system of equations, we can
write

P “ Π´1P̃ “

ˆ 1
1´κ1

´ κ1
1´κ1

´ κ2
1´κ2

1
1´κ2

˙

P̃ .

Next, we turn to the multi-sample generalization of κ˚, which we call the multi-sample
κ˚ operator.

Definition 5 Given distributions F0, . . . , FK , define

κ˚pF0 |F1, . . . , FKq “ max
µP∆K

κ˚pF0 |

K
ÿ

i“1

µiFiq

“max
´

K
ÿ

i“1

νi : νi ě 0,
K
ÿ

i“1

νi ď 1, D distribution G s.t. F0 “ p1´
K
ÿ

i“1

νiqG`
K
ÿ

i“1

νiFi

¯

. (3)
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Algorithm 1 Residue(F0 |F1)

1: κÐÝ κ˚pF0 |F1q

2: return F0´κF1
1´κ

Algorithm 2 MultiResidue(F0 | tF1, . . . , FKu)

1: pν1, . . . , νKq
T ÐÝ pν 11, . . . , ν

1
Kq

T achieving the maximum in κ˚pF0 |F1, . . . , FKq

2: return
F0´

řK
i“1 νiFi

1´
řK

i“1 νi

Blanchard and Scott (2014) establish the equivalence in line (3), as well as Lemma 15,
which shows that the outer maximum is always attained at some µ P ∆K , i.e., κ˚ is well-
defined. Although there is always a G achieving the max, it is not necessarily unique.
Any G attaining the maximum is called a maximizer of κ˚pF0 |F1, . . . , FKq. The algorithm
MultiResidue(F0 | tF1, . . . , FKu) returns one of these G (see Algorithm 2). If G is unique,
we call G the multi-sample residue of F0 with respect to tF1, . . . , FKu. Under our proposed
sufficient conditions, certain residues are shown to exist, and our decontamination methods
compute such residues via Algorithm 2. In Section 4.3, we discuss Lemma 1, which estab-
lishes useful conditions under which a multi-sample residue exists and is equal to one of the
vertices of ∆L.

In general, one cannot express the multi-sample version of κ˚ in terms of the two-sample
version. However, it is possible in some special cases. For example, if one had access to
feasible ν1, . . . , νK that attain the optimum in (3), then it holds that κ˚pF0 |F1, . . . , FKq “

κ˚pF0 |

řK
i“1 νiFi
řK

i“1 νi
q. Further, it is possible to replace the multi-sample κ˚ with several calls

of the two-sample κ˚ when K “ L ´ 1, Fi “ Pi for all i ‰ 0 and F0 “
řL
i“1 αiPi where

ř

i αi “ 1 and @i αi ą 0 (see Lemmas 6 and 13).

We remark that in previous work that assumes Pi are probability vectors, distributions
are compared using lp distances. By contrast, in our setting of general probability spaces,
we use κ˚ to compare different distributions.

4.2. Mixture Proportions

Recall that we assume that P1, . . . , PL are jointly irreducible. If η P RL and Q “ ηTP ,
we say that η is the mixture proportion of Q. Since by Lemma 16, joint irreducibility of
P1, . . . , PL implies linear independence of P1, . . . , PL, mixture proportions are well-defined,
i.e., the mixture proportions are unique.

An important feature of our decontamination strategy is recovering various mixture
proportions in the simplex ∆L. To make this precise, we introduce the following definitions.
If i P rLs, we say that convptej : j ‰ iuq is a face of the simplex ∆L; if A Ă rLs and |A| “ k,
we also say that convptej : j P Auq is a k-face of ∆L. If η P RL, Q is a distribution, and
Q “ ηTP , we say that N pQq “ N pηq “ tj : ηj ą 0u is the support set of η or the support
set of Q. Note that by joint irreducibity, N pηq consists of the indices of all the nonzero
entries in the mixture proportion η. Finally, for ηi P ∆L, and Qi “ η

T
i P for i “ 1, 2, we

10
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Algorithm 3 Multiclass(P̃1, . . . , P̃L)

1: for i “ 1, . . . , L do
2: Qi ÐÝ MultiResiduepP̃i | tP̃j : j ‰ iuq
3: end for
4: return pQ1, . . . , QLq

T

say that the distributions Q1 and Q2 (or the mixture proportions η1 and η2) are on the
same face of the simplex ∆L if there exists j P rLs such that η1,η2 P convptek : k ‰ juq.

The heart of our approach is that under joint irreducibility, one can interchange distri-
butions Q1, . . . , QK and their mixture proportions η1, . . . ,ηK , as indicated by the following
Proposition. We note that it is valid to to apply the κ˚ operator to η1, . . . ,ηK since they
can be viewed as discrete probability distributions over rLs.

Proposition 3 Let Qi “ ηTi P for i P rLs and ηi P ∆L. Suppose η1, . . . ,ηL are linearly
independent and P1, . . . , PL are jointly irreducible. Then,

1. for any i P rLs and A Ď rLsztiu, κ˚pQi | tQj : j P Auq “ κ˚pηi | tηj : j P Auq ă 1,

2. for any i P rLs and A Ď rLsztiu, a maximizer of κ˚pQi | tQj : j P Auq exists, and

3. γ P ∆L is a maximizer to κ˚pηi | tηj : j P Auq if and only if G “ γTP is a maximizer
to κ˚pQi | tQj : j P Auq.

In words, this proposition says that the optimization problem given by κ˚pQi | tQj : j P
Auq is equivalent to the optimization problem given by κ˚pηi | tηj : j P Auq. Thus, joint
irreducibility of P1, . . . , PL and linear independence of the mixture proportions enable a
reduction of each of the three problems to a geometric problem where the goal is to recover
the vertices of a simplex by applying κ˚ to points (i.e., the mixture proportions) in the
simplex. This makes the figures below valid for general distributions (see Figures 1, 2, 3,
and 4).

4.3. Multiclass Classification with Label Noise

Our algorithm for multiclass classification with label noise is by far the simplest of the three.
It simply computes a maximizer of κ˚pP̃i | tP̃j : j ‰ iuq for every i P rLs.

Theorem 1 Let P1, . . . , PL be jointly irreducible and Π satisfy (B1). Then,
Multiclass(P̃1, . . . , P̃L) returns Q P PL such that Q “ P .

The proof of this result has two main ideas. First, it applies the one-to-one correspon-
dence established in Proposition 3 between the maximizers of κ˚pP̃i | tP̃j : j ‰ iuq and the
maximizers of κ˚pπi | tπj : j ‰ iuq.

Second, the proof shows that κ˚pπi | tπj : j ‰ iuq is well-behaved in the sense that the
residue of πi wrt tπj : j ‰ iu is ei. The key idea is encapsulated in the following Lemma
from Blanchard and Scott (2014).

Lemma 1 (Blanchard and Scott, 2014) The following conditions on π1, . . . ,πL are
equivalent:

11
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(i) (ii) (iii)

Figure 1: Illustration of the (B1) when there are L “ 3 classes where ei denotes the ith
unit vector. Panel (i): Low noise, Π recoverable. Each πl can be written as a
convex combination of el and the other two πj (with a positive weight on el),
depicted here for l “ 1. Panel (ii): High noise, Π not recoverable. Panel (iii):
The setting of “common background noise” described in the text.

1. For each i, the residue of πi with respect to tπj , j ‰ iu is ei.

2. For every i there exists a decomposition πi “ κiei ` p1 ´ κiqπ
1
i where κi ą 0 and π1i

is a convex combination of πj for j ‰ i.

3. Π is invertible and Π´1 is a matrix with strictly positive diagonal entries and non-
positive off-diagonal entries.

This lemma establishes that under (B1), for each i, the residue of πi with respect to
tπj , j ‰ iu is ei. The main step in the proof of this Lemma is establishing that 3 implies
1. The argument identifies the residue of πi with respect to tπjuj‰i by reformulating the
linear program in κ˚pπi | tπjuj‰iq such that the objective is to maximize etiΠ

´1γ subject to
some appropriately defined constraint. By the structure of Π´1 assumed in (B1), it follows
that the γ P ∆L that maximizes this objective is ei, and it can further be shown that this
maximizer satisfies the other constraints.

Thus, combining the above two ideas yields the result. In addition, Lemma 1 provides
geometric intuition as to when (B1) is satisfied through condition 2. Figure 1 illustrates
the case L “ 3. See Panel (i) for an example where condition (b) is satisfied and Panel (ii)
for an example where (b) is not satisfied.

4.4. Demixing Mixed Membership Models

In this section, we assume that M “ L; we consider the nonsquare case in the appendix.
For certain simple cases of mixture proportions, a straightforward resampling strategy can
be used to reduce the problem of demixing mixed membership models to multiclass classi-

12
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fication with label noise. For example, suppose that there are L “ 3 classes and

Π “

¨

˝

1
2

1
2 0

1
2 0 1

2
0 1

2
1
2

˛

‚. (4)

Inspection shows that the inverse of Π does not satisfy the condition in (B1) and, therefore,
one cannot simply apply Algorithm 3. A simple procedure to circumvent this issue is to
resample from the contaminated distributions to obtain the following distributions:

Q̃1 “
1

2
P̃1 `

1

2
P̃2, Q̃2 “

1

2
P̃1 `

1

2
P̃3, and Q̃3 “

1

2
P̃2 `

1

2
P̃3.

Then, it can be shown that the resulting mixing matrix

Π̃ “

¨

˝

1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

˛

‚

associated with the Q̃is satisfies the conditions of Lemma 1 so that Multiclass(Q̃1, Q̃2, Q̃3)
gives the desired solution. However, this approach breaks down for most possible mixing
matrices. Thus, the challenge is to develop an algorithm that works for a large class of
mixture proportions and does not rely on knowledge of the mixture proportions. To meet
this challenge, we propose the Demix algorithm.

The Demix algorithm is recursive. Let S1, . . . , SK denote K contaminated distributions.
In the base case, the algorithm takes as its input two contaminated distributions S1 and
S2. It returns Residue(S1 |S2) and Residue(S2 |S1), which are a permutation of the two
base distributions (see Figure 2). When K ą 2, Demix uses a subroutine FindFace (see
Algorithm 5) to find K ´ 1 distributions R2, . . . , RK on the same pK ´ 1q-face. FindFace
iteratively generates candidates for distributions on the same pK ´ 1q-face, which it tests
using FaceTest (see Algorithm 6). FaceTestpS1, . . . , SK´1q determines whether a set of
distributions S1, . . . , SK´1 are on the interior of the same face by using the two-sample κ˚

operator; equivalently, it tests whether there exists a pair of distributions Si and Sj such
that Si is irreducible with respect to Sj . Once Demix finds K ´ 1 distributions R2, . . . , RK
on the same pK´1q-face, it recursively applies Demix to R2, . . . , RK to obtain distributions
Q1, . . . , QK´1 that are a permutation of K ´ 1 of the base distributions. Subsequently, the
algorithm computes a maximizer QK of κ˚p 1

K

řK
i“1 Si |Q1, . . . , QK´1q. Since Q1, . . . , QK´1

are a permutation of K ´ 1 of the base distributions, the maximizer QK is guaranteed to
be unique and to be the remaining base distribution (see Figure 3 for an execution of the
algorithm).

A number of remarks are in order regarding the Demix algorithm. First, although we
compute the residue of 1

nSi `
n´1
n Q wrt S1 for each i ‰ 1, there is nothing special about

the distribution S1. We could replace S1 with any Sj where j P rKs, provided that we
adjust the rest of the algorithm accordingly. Second, we can replace the sequence tn´1

n u
8
n“1

with any sequence αn Õ 1. Finally, we could replace line 7 with the following sequence of
steps: for i “ 1, . . . ,K ´ 1, compute QK ÐÝ ResiduepQK |Qiq (see Lemma 13). Then, the
algorithm would only use the two-sample κ˚ operator. We use such an algorithm in the
finite-sample setting.
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Algorithm 4 Demix(S1, . . . , SK)

Input: S1, . . . , SK are distributions

1: if K “ 2 then
2: return pResiduepS1 |S2q,ResiduepS2 |S1qq

T

3: else
4: pR2, . . . , RKq

T ÐÝ FindFacepS1, . . . , SKq
5: pQ1, . . . , QK´1q

T ÐÝ DemixpR2, . . . , RKq
6: QK ÐÝ

1
K

řK
i“1 Si

7: QK ÐÝ MultiResiduepQK |Q1, . . . , QK´1q

8: return pQ1, . . . , QKq
T

9: end if

Algorithm 5 FindFace(S1, . . . , SK)

Input: S1, . . . , SK are distributions

1: QÐÝ uniformly distributed element in convpS2, . . . , SKq
2: for n “ 1, 2, . . . do
3: Set Ri ÐÝ Residuep 1

nSi `
n´1
n Q |S1q for all i P t2, . . . ,Ku

4: if FaceTestpR2, . . . , RKq then
5: return pR2, . . . , RKq

T

6: end if
7: end for

We also remark that a simplified version of Demix solves the demixing mixed member-
ship models problem if we assume (B1) from the multiclass label noise setting. In that
case, finding L´1 distributions on the same face can be accomplished by simply computing
Qi ÐÝ MultiResidue(P̃i | tP̃juj‰i) for i “ 2, . . . , L. Indeed, then, each Qi is equal to Pi and
P1 can be obtained by computing MultiResiduepP̃1 | tQjuj“2,...,Lq.

We establish the following theorem.

Theorem 2 Let P1, . . . , PL be jointly irreducible and Π have full column rank. Then, with
probability 1, DemixpP̃ q returns a permutation of P .

We briefly sketch three key aspects of the proof. First, in the FindFace subroutine, sampling
Q uniformly at random from convpS2, . . . , SKq ensures that w.p. 1 ResiduepQ |S1q is on
the interior of a face of the simplex. Then, conditional on this event, we show that by
a continuity property of Residuep¨ |S1q there is a large enough n such that R2, . . . , RK
are on the same face of the simplex ∆K´1 (see panels (c) and (d) of Figure 3). Second,
Proposition 8 in Appendix D establishes that the subroutine FaceTestpR2, . . . , RKq returns
1 if and only if R2, . . . , RK are on the same face of the simplex. Combining the above
two observations implies that eventually FindFace(S1, . . . , SK) terminates at which point
tRkukPrKszt1u Ă tPkukPrKsztlu for some l P rKs. The final key observation is that tRkukPrKszt1u
and tPkukPrKsztlu form an instance of the demixing problem that satisfies the sufficient
conditions (A) and (B2) (see Figure 2). Therefore, this instance can be solved recursively.
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Algorithm 6 FaceTest(S1, . . . , SK)

1: Set Zi,j – 1tκ˚pSi |Sjq ą 0u for all i and j
2: if Z has a zero off-diagonal entry then
3: return 0
4: else
5: return 1
6: end if

Figure 2: In (a), we consider a demixing problem where there are two classes and M “ L
(the base case of Algorithm 4). The diamonds represent the mixture proportions
of P̃1 and P̃2. The circles represent the base distributions. In (b), the residue of a
contaminated distribution wrt the other contaminated distribution is computed
(line 3), yielding a base distribution. In (c), the residue is computed again switch-
ing the roles of the contaminated distributions (line 4); this yields the remaining
base distribution.

4.5. Classification with Partial Labels

As in the case of demixing mixed membership models, a simple resampling strategy works in
certain nice settings of classification with partial labels. For example, consider an instance of
classification with partial labels with the mixing matrix from equation (4). The resampling
procedure that yields Q̃1, Q̃2, Q̃3 (described in Section 4.4) also works here. Nevertheless,
as in demixing mixed membership models, this approach does not meet our goal of an
algorithm that solves a broad class of mixing matrices and partial labels.

Indeed, we observe that the partial labels do not provide enough information for choosing
the resampling weights. Consider another instance of the problem with the same partial
label matrix:

Π “

¨

˝

1
10

9
10 0

9
10 0 1

10
0 1

10
9
10

˛

‚. (5)

Applying the resampling approach to (5) can be shown to fail by observing that the inverse
of the resampled mixing matrix does not satisfy condition 3 of Lemma 1. Thus, although the
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Figure 3: In (a), we consider a demixing problem where there are three classes and M “ L.
The diamonds represent the mixture proportions of P̃1, P̃2 and P̃3. In (b), the blue
circle is a random distribution chosen in the convex hull of two of the distributions
(line 7). In (c), two of the distributions are resampled so that their residues
wrt the other distribution are on the same face of the simplex (lines 12-15).
In (d), these particular residues are computed (lines 12-15). In (e), two of the
distributions are demixed (lines 3-5). In (f), the residue of the final distribution
wrt the final two demixed distributions is computed to obtain the final demixing
(line 18-21).

Algorithm 7 PartialLabel(Π`, pP̃1, . . . , P̃M q
T )

1: for i “ 1, . . . , L do
2: Qi ÐÝ uniformly random distribution in convpP̃1, . . . , P̃M q
3: end for
4: for k “ 2, 3, . . . do
5: pW1, . . . ,WLq

T ÐÝ GenerateCandidatespk, pQ1, . . . , QLq
T q

6: pFoundVertices, Cq ÐÝ VertexTestpΠ`, P̃1, . . . , P̃M ,W1, . . . ,WLq

7: if FoundVertices then
8: return CpW1, . . . ,WLq

T

9: end if
10: end for

problem instances (4) and (5) have the same partial label matrix, the resampling procedure
only works for one of these.

Next, we turn to presenting an algorithm that solves classification with partial labels for
a wide class of mixing matrices and partial labels. We propose the PartialLabel algorithm
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Algorithm 8 GenerateCandidates(k, pQ1, . . . , QLq
T )

1: Set Wi ÐÝ Qi for all i P rKs
2: for i “ 1, . . . , L do
3: Q̄i ÐÝ

1
L´1 r

ř

jąiQj `
ř

jăiWjs

4: Wi ÐÝ MultiResiduep 1
kQi ` p1´

1
k qQ̄i | tQjująi Y tWjujăiq

5: end for
6: return pW1, . . . ,WLq

T

Algorithm 9 VertexTestpΠ`, pP̃1, . . . , P̃M q
T , pQ1, . . . , QLq

T q

1: Form the matrix Yi,j – 1tκ˚pQi |Qjq ą 0u
2: if Y has a non-zero off-diagonal entry then
3: return p0,0q
4: end if
5: Form the matrix Zi,j – 1tκ˚pP̃i |Qjq ą 0u
6: Use any algorithm that finds a permutation matrix C such that ZC “ Π` (if it exists)

7: if such a permutation matrix C exists then
8: return p1,CT q

9: else
10: return p0,0q
11: end if

(see Algorithm 7). PartialLabel proceeds by iteratively creating sets of candidate distribu-
tions W – pW1, . . . ,WLq

T via the subroutine CreateCandidates (see Algorithm 8). Given
each W , it runs an algorithm VertexTest (see Algorithm 9) that uses P̃ and the partial
label matrix Π` to determine whether W is a permutation of the base distributions P .
If W is a permutation of P , VertexTest constructs the corresponding permutation matrix
for relating these distributions. If not, it reports failure and the PartialLabel algorithm
increments k and finds another set of candidate distributions.

The VertexTest algorithm proceeds as follows on a vector of candidate distributionsQ–

pQ1, . . . , QLq
T . First, it determines whether there are two distinct distributions Qi, Qj such

that Qi is not irreducible wrt Qj , in which case Q cannot be a permutation of P . If there
is such a pair, it reports failure. Otherwise, it forms the matrix Zi,j – 1tκ˚pP̃i |Qjq ą 0u
and uses any algorithm that finds a permutation C (if it exists) of the columns of Z to
match the columns of Π`. If such a permutation C exists, it returns CT and, as we show
in Lemma 7, CTQ “ P ; otherwise, VertexTest reports failure.

We remark that finding the permutation in line 6 of Algorithm 9 is not NP-hard. One
algorithm (but most likely not the most efficient) proceeds as follows: define a total ordering
on the columns of binary matrices. Sort the columns of Z and Π` according to this total
ordering. Check whether the resulting matrices are equal.

The following theorem gives our identification result for classification with partial labels.
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Theorem 3 Suppose that P1, . . . , PL are jointly irreducible, Π has full column rank, and
the columns of Π` are unique. Then, PartialLabelpΠ`, pP̃ qT q returns R P PL such that
R “ P .

There are two key ideas to the proof of Theorem 3. First, the randomization in line 2 of
Algorithm 7 ensures through a linear independence argument that with probability 1, the
operation MultiResiduep 1

kQi`p1´
1
k qQ̄i | tQjująiYtWjujăiq in line 4 of Algorithm 8 is well-

defined. Second, in the GenerateCandidates algorithm, let Qj “ τ
T
j P and Wj “ γ

T
j P . We

make the simple observation that the affine hyperplane given by γ1, . . . ,γi´1, τi`1, . . . , τL
bisects ∆L such that τi and a nonempty subset of te1, . . . , eLuztγ1, . . . ,γi´1u are in the
same halfspace. Using this observation, we show that for large enough k, Wi is one of the
base distributions and is distinct from all Wj with j ă i.

The VertexTest algorithm connects the demixing problem and classification with partial
labels by showing that any algorithm that solves the demixing problem can be used as a
subroutine to solve classification with partial labels. For example, consider the following
algorithm for classification with partial labels. First, use the Demix algorithm to obtain a
permutation Q of the base distributions P . Second, use VertexTest to find the permutation
matrix relatingQ and P . This alternate algorithm is the basis of our finite sample algorithm
for classification with partial labels (see Section 5.3 for a more thorough discussion).

5. Estimators for the Finite Sample Setting

In this section, we develop the estimation theory to treat the three problems in the finite
sample setting. Let X “ Rd be equipped with the standard Borel σ-algebra C and P̃1, . . . , P̃L
be probability distributions on this space. Suppose that we observe for i “ 1, . . . , L,

Xi
1, . . . , X

i
ni

i.i.d.
„ P̃i.

Let E be any Vapnik-Chervonenkis (VC) class with VC-dimension V ă 8, containing the
set of all open balls, all open rectangles, or some other collection of sets that generates the
Borel σ-algebra C. For example, E could be the set of all open balls wrt the Euclidean

distance, in which case V “ d ` 1. Define εipδiq ” 3
b

V logpni`1q´logpδi{2q
ni

for i “ 1, . . . , L.

Our estimators are based on the VC inequality (Devroye et al., 1996). This inequality says
that for each i P rLs, and δ ą 0, the following holds with probability at least 1´ δ:

sup
EPE

|P̃ipEq ´ P̃
:

i pEq| ď εipδq

where the empirical distribution is given by P̃ :i pEq “
1
ni

řni
j“1 1tXi

jPEu
.

5.1. Multiclass Classification with Label Noise

Let F :0 , . . . , F
:

M denote the empirical distributions based on i.i.d. random samples from
respective distributions F0, . . . , FM . We introduce the following estimator of the multi-
sample κ˚:

pκpF :0 |F
:
1 , . . . , F

:

M q “ max
µP∆M

inf
EPE

F :0 pEq ` ε0p
1
n0
q

p
řM
i“1 µiF

:

i pEq ´
ř

i µiεip
1
ni
qq`

(6)
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Figure 4: (a) depicts an instance of the partial label problem where there are L “ 3 classes,
M “ 3 partial labels, and each partial label only contains two of the classes.
In (a), the red diamonds represent the mixture proportions of the distributions
P̃1, P̃2, P̃3. In (b), three distributions Q1, Q2, Q3 are sampled uniformly randomly
from the convex hull of P̃1, P̃2, P̃3; the blue circle, black triangle, and green square
represent their mixture proportions. Figures (c)-(h) show how the algorithm

generates a set of candidate distributions pW
p2q
1 ,W

p2q
2 ,W

p2q
3 qT with k “ 2. In

(h), PartialLabel runs VertexTest on pW
p2q
1 ,W

p2q
2 ,W

p2q
3 qT and determines that

pW
p2q
1 ,W

p2q
2 ,W

p2q
3 qT is not a permutation of pP1, P2, P3q

T . In (i)-(o), PartialLabel
begins again with Q1, Q2, Q3 and executes the same series of steps with k “ 3,

generating pW
p3q
1 ,W

p3q
2 ,W

p3q
3 qT . In (o), it runs VertexTest on pW

p3q
1 ,W

p3q
2 ,W

p3q
3 qT

and determines that pW
p3q
1 ,W

p3q
2 ,W

p3q
3 qT is a permutation of pP1, P2, P3q

T .

where the ratio is defined to be 8 when the denominator is zero. This estimator arises from
applying the VC inequality to the following expression:

κ˚pF0 |F1, . . . , FM q “ max
µP∆M

κ˚pF0 |

M
ÿ

i“1

µiFiq “ max
µP∆M

inf
EPE,

řM
i“1 µiFipEqą0

F0pEq
řM
i“1 µiFipEq

,

where the last equality uses Proposition 2. Let pµ denote a point where the maximum is
achieved in (6). Then, pν – pκpµ estimates the vector pν1, . . . , νM q attaining the maximum

19



Katz-Samuels, Blanchard, and Scott

in (3). See Proposition 2 of Blanchard and Scott (2014) to find a proof that the proposed
estimator is consistent.

Based on this estimator, we introduce estimators that under the assumptions of Theorem
1 converge to the base distributions uniformly in probability. Let n ” pn1, . . . , nLq; we write
n ÝÑ 8 to indicate that mini ni ÝÑ 8.

Theorem 4 Let ppνi,jqj‰i be a vector attaining the maximum in the definition of pκi –

pκpP̃ :i | tP̃
:

j : j ‰ iuq and

pQi “
P̃ :i ´

ř

j‰i pνi,jP̃
:

j

1´ pκi
.

Then, under the assumptions of Theorem 1, @i “ 1, . . . , L, supEPE | pQipEq ´ PipEq|
i.p.
ÝÑ 0

as n ÝÑ 8.

5.2. Demixing Mixed Membership Models

In this section, we develop a novel estimator that can be used to extend the Demix algorithm
to the finite sample case. Uniform convergence results typically assume access to i.i.d.
samples. The challenge of developing an estimator for Demix is that because of the recursive
nature of the Demix algorithm, we cannot assume access to i.i.d. samples to estimate every
distribution that arises. Nonetheless, we show that uniform convergence of distributions
propagates through the algorithm if we employ an estimator of κ˚ with a known rate of
convergence.

Let pF and pH be estimates of distributions F and H, respectively. We introduce the
following estimator:

pκp pF | pHq “ inf
EPE

pF pEq ` γn

p pHpEq ´ γnq`

where γn “
řL
i“1 εip

1
ni
q. Our estimator is closely related to the estimator from Blanchard

et al. (2010): if pF and pH are empirical distributions, e.g., pF “ P̃ :i and pH “ P̃ :j , then their

estimator for κ˚pF |Hq is infEPE
pF pEq`εip

1
ni
q

p pHpEq´εjp
1
nj
qq`

. Note that our proofs only require that γn

include the terms εip
1
ni
q corresponding to P̃i that the estimators pF and pH use samples from;

to simplify presentation, however, we include all the terms, which leads to bounds that are
looser by only a constant factor.

Based on the estimator pκ, we introduce the following estimator of the residue of F wrt
H.

Definition 6 Let pF and pH be estimators of F and H, respectively, where F ‰ H and let
GÐÝ ResiduepF |Hq and pGÐÝ ResidueHatp pF | pHq. We call pG a ResidueHat estimator of
order k ě 1 if (i) F,H P convpP1, . . . , PLq, and (ii) at least one of pF and pH is a ResidueHat
estimator of order k ´ 1 and the other is either an empirical distribution or a ResidueHat
estimator of order less than or equal to k ´ 1. We call pG a ResidueHat estimator of order
0 if (i) holds, and pF and pH are empirical distributions.
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Algorithm 10 ResidueHat( pF | pH)

Input: pF , pH are estimates of F,H

1: pκÐÝ pκp pF | pHq

2: return
pF´pκp1´ pHq

1´pκ

Algorithm 11 DemixHat(pS1, . . . , pSK | ε)

Input: pS1, . . . , pSK are ResidueHat estimates

1: if K “ 2 then
2: return pResidueHatppS1 | pS2q,ResidueHatppS2 | pS1qq

T

3: else
4: pR2, . . . , RKq

T ÐÝ FindFaceHatppS1, . . . , pSK | εq
5: p pQ1, ¨ ¨ ¨ , pQK´1q

T ÐÝ DemixHatp pR2, ¨ ¨ ¨ , pRKq
6: pQK ÐÝ

1
K

řK
i“1

pSi
7: for i “ 1, . . . ,K ´ 1 do
8: pQK ÐÝ ResidueHatp pQK | pQiq
9: end for

10: return p pQ1, ¨ ¨ ¨ , pQKq
T

11: end if

Note that the above definition is recursive and matches the recursive structure of the Demix
algorithm. We suppress the qualifier “of order k” when it is not relevant.

To use ResidueHat estimators to estimate the Pis, we build on the rate of convergence
result from Scott (2015). In Scott (2015), a rate of convergence was established for an
estimator of κ˚ using empirical distributions; we extend these results to our setting of
recursive estimators and achieve the same rate of convergence. To ensure that this rate of
convergence holds for every estimate in our algorithm, we introduce the following condition.

(A2) P1, . . . , PL are such that @i supppPiq Ę Yj‰i supppPjq.

Note that this assumption implies joint irreducibility and is a natural generalization of the
separability assumption.

The following result establishes sufficient conditions under which ResidueHat estimates
converge uniformly.

Proposition 4 If P1, . . . , PL satisfy (A2) and pG is a ResidueHat estimator of a distribution

G P convpP1, . . . , PLq, then supEPE | pGpEq ´GpEq|
i.p.
ÝÑ 0 as n ÝÑ 8.

Based on the ResidueHat estimators, we introduce an empirical version of the Demix
algorithm—DemixHat (see Algorithm 11). The main differences are that (i) we replace
the Residue function with the ResidueHat function, (ii) we replace line 7 in the Demix
algorithm with a sequence of applications of the two-sample κ˚ operator, as mentioned just
before Theorem 2, and (iii) DemixHat requires specification of a hyperparameter ε P p0, 1q.
We replace the multi-sample κ˚ with the two-sample κ˚ because there is no known esti-
mator with a rate of convergence for the multi-sample κ˚, and the rate of convergence is
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Algorithm 12 FindFaceHat(pS1, . . . , pSK | ε)

Input: pS1, . . . , pSK are ResidueHat estimates

1: pQÐÝ uniformly distributed random element from convppS2, . . . , pSKq
2: for n “ 2, 3, . . . do
3: Set pRi ÐÝ ResidueHatp 1

n
pSi `

n´1
n

pQq | pS1q for all i P t2, . . . ,Ku

4: if FaceTestHatp pR2, ¨ ¨ ¨ , pRK | εq then
5: return p pR2, ¨ ¨ ¨ , pQKq

T

6: end if
7: end for

Algorithm 13 FaceTestHat( pQ1, ¨ ¨ ¨ , pQK | ε)

1: Set Zi,j – 1tpκp pQi | pQjq ą εu for i ‰ j
2: if Z has a zero off-diagonal entry then
3: return 0
4: else
5: return 1
6: end if

essential to our consistency proof. The hyperparameter ε gives a tradeoff between runtime
and accuracy. The runtime increases with increasing ε, but the amount of uncertainty about
whether DemixHat executes successfully decreases with increasing ε.

We now state our main estimation result.

Theorem 5 Let δ ą 0 and ε P p0, 1q. Suppose that P1, . . . , PL satisfy (A2) and Π has
full rank. Then, with probability tending to 1 as n ÝÑ 8, DemixHat(P̃ :1 , . . . , P̃

:

L | ε) returns

p pQ1, . . . , pQLq for which there exists a permutation σ : rLs ÝÑ rLs such that for every i P rLs,

sup
EPE

| pQipEq ´ PσpiqpEq| ă δ.

5.3. Classification with Partial Labels

In this section, we present a finite sample algorithm for the decontamination of a partial
label model (see Algorithm 14). This algorithm is based on a different approach from Par-
tialLabel (Algorithm 7): it combines DemixHat with an empirical version of the VertexTest
algorithm (see Algorithm 17). The reason for this is that we have an estimator with a rate
of convergence for the two-sample κ˚, whereas there is no known estimator with a rate of
convergence for the multi-sample κ˚. We leverage this rate of convergence to prove the
consistency of our algorithm.

We make an assumption that simplifies our algorithm: Π` satisfies

(D) there does not exist i, j P rLs such that Π`
i,: “ e

T
j .

In words, this says that there is no contaminated distribution P̃i and base distribution
Pj such that P̃i “ Pj . We emphasize that we make this assumption only to simplify the
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Algorithm 14 PartialLabelHatpΠ`, pP̃ :1 , . . . , P̃
:

M q
T | εq

1: p pQ1, . . . , pQLq
T ÐÝ DemixHatpP̃ :1 , . . . , P̃

:

M | εq

2: pFoundVertices,Cq ÐÝ VertexTestHatpΠ`, pP̃ :1 , . . . , P̃
:

M q
T , p pQ1, . . . , pQLq

T q

3: return Cp pQ1, . . . , pQLq
T

presentation and development of the algorithm; one can reduce any instance of a partial
label model satisfying (B3) and (A) to an instance of a partial label model that also
satisfies (D). We defer the sketch of this reduction to Section E.3.

We now state our main estimation result for classification with partial labels.

Theorem 6 Let δ ą 0 and ε P p0, 1q. Suppose that P1, . . . , PL satisfy (A2), Π has full
rank, the columns of Π` are unique and Π` satisfies (D). Then, with probability tending
to 1 as n ÝÑ 8, PartialLabelHat(Π`, pP̃ :1 , . . . , P̃

:

M q
T | ε) returns p pQ1, . . . , pQLq

T such that
for every i P rLs,

sup
EPE

| pQipEq ´ PipEq| ă δ.

5.4. Sieve Estimators

In the preceding, we have assumed a fixed VC class to simplify the presentation. However,
these results easily extend to the setting where E “ Ek and k ÝÑ 8 at a suitable rate
depending on the growth of the VC dimensions Vk. This allows for the Pis to be estimated
uniformly on arbitrarily complex events, e.g., Ek is the set of unions of k open balls.

6. Discussion

In this paper, we have studied the problem of how to recover the base distributions P from
the contaminated distributions P̃ without knowledge of the mixing matrix Π. We used a
common set of concepts and techniques to solve three popular machine learning problems
that arise in this setting: multiclass classification with label noise, demixing of mixed mem-
bership models, and classification with partial labels. Our technical contributions include:
(i) We provide sufficient and sometimes necessary conditions for identifiability for all three
problems. (ii) We give nonparametric algorithms for the infinite and finite sample settings.
(iii) We provide a new estimator for iterative applications of κ˚ that is of independent in-
terest. (iv) Finally, our work provides a novel geometric perspective on each of the three
problems.

Our results improve on what was previously known for all three problems. For multiclass
classification with label noise and unknown Π, previous work had only considered the case
M “ L “ 2. Our work achieves a generalization to arbitrarily many distributions. For
demixing of mixed membership models, previous algorithms with theoretical guarantees
required a finite sample space. Our work allows for a much more general set of distributions.
Finally, for classification with partial labels, previous work on learnability assumed the
realizable case (non-overlapping P1, . . . , PL) and assumed strong conditions on label co-
occurence in partial labels. Our analysis covers the agnostic case and a much wider set of
partial labels.
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Our work has also highlighted the advantages and disadvantages associated with the
two-sample κ˚ operator and multi-sample κ˚ operator, respectively. Algorithms that only
use the two-sample κ˚ operator have the following two advantages: (i) the geometry of the
two-sample κ˚ operator is simpler than the geometry of the multi-sample κ˚ operator and,
as such, can be more tractable. Indeed, in recent years, several practical algorithms for
estimating the two-sample κ˚ have been developed (see Jain et al. (2016) and references
therein). (ii) We have estimators with established rates of convergence for the two-sample
κ˚ operator, but not for the multi-sample κ˚ operator. On the other hand, algorithms that
use the multi-sample κ˚ operator have fewer steps.

The aims of this work are mainly theoretical, but we believe that our work can inform
practical algorithms. First, we note that while we have emphasized recovery of P , another
interpretation is that our work deals with estimating Π. One can then plug our estimate
of Π into corrected losses for multiclass classification with label noise and classification
with partial labels that require knowledge of Π (Cid-Sueiro, 2012; Menon et al., 2015b;
van Rooyen and Williamson, 2015; Patrini et al., 2017). Thus, in general, our work can be
applied in this two-stage approach. Second, when L or M are small, the Demix algorithm is
practical. For example, Metodiev and Thaler (2018b) apply the Demix algorithm to a high-
energy physics application where L “ M “ 2. It is of interest to examine more generally
whether variants of Demix work when M or L are small. Third, we conjecture that our
analysis suggests novel principles for designing algorithms. For example, an alternative
approach to the three problems in question is to embed the contaminated distributions
in a reproducing kernel Hilbert Space and to estimate the Π matrix by setting up an
optimization problem (e.g., see Ramaswamy et al. (2016) for the setting where there are
two distributions). One of our necessary conditions, maximality (see Appendix C), suggests
formulating the optimization problem to search for base distributions that (i) explain the
observed contaminated distributions and (ii) whose convex hull is as large as possible. In
this way, we believe that our general treatment of these three problems that arise in mutual
contamination models provides intuitions that could be useful for designing new algorithms.

Although our experiments in Appendix G suggest that joint irreducibility of the base
distributions is a reasonable assumption, it is nevertheless worthwhile to consider what
questions arise if the base distributions are not exactly jointly irreducible. We see two
possible research directions. First, one could perform a stability analysis: when the base
distributions are not jointly irreducible, but are nearly jointly irreducible (in some sense
that would need to be defined precisely), does the estimate of Π remain close to the true Π?
A second research question is to reinterpret the problem of demixing of mixed membership
models as a dimensionality reduction problem. That is, given a large set of distributions,
one could seek to represent them as convex combinations of a small set of irreducible base
distributions. Then, the challenge would be to define an appropriate measure of approx-
imation quality and to determine whether our approach could be useful for designing a
consistent algorithm for the best approximation.
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Appendix A. Outline of Appendices

To begin, we introduce additional notation for the appendices. In Section C, we discuss
how strong our sufficient conditions are and present factorization results that suggest that
they are reasonable. In Section D, we give our identifiability analysis of demixing mixed
membership models and classification with partial labels. In Section E, we prove our results
on the ResidueHat estimator, as well as the finite sample algorithms for demixing mixed
membership models and classification with partial labels. In Section F, we state some
lemmas from related papers that we use in our arguments.

Appendix B. Notation for Appendices

Let A Ă Rd be a set. Let affA denote the affine hull of A, i.e., affA “

t
řK
i“1 θixi|x1, . . . ,xK P A,

řK
i“1 θi “ 1u. A˝ denotes the relative interior of A, i.e.,

A˝ “ tx P A|Bpx, rq X affA Ď A for some r ą 0u. Then, BA denotes the relative boundary
of A, i.e., BA “ AzA˝. In addition, let }¨} denote an arbitrary finite-dimensional norm on
RL. For two vectors, x,y P RK , define

minpxT ,yT q “ pminpx1, y1q, . . . ,minpxK , yKqq.

x ě y means xi ě yi @i P rKs.

For distributions Q1, . . . , Qk, we use convpQ1, . . . , QKq
˝ to denote the relative interior

of their convex hull and have that

convpQ1, . . . , QKq
˝ “ t

K
ÿ

i“1

αiQi : αi ą 0,
K
ÿ

i“1

αi “ 1u.

Note that when Q1, . . . , QK are discrete distributions, this definition coincides with the
definition of the relative interior of a set of Euclidean vectors.

We use the following affine mapping throughout the paper: mνpx,yq “ p1 ´ νqx ` νy
where x,y P RL and ν P r0, 1s. Overloading notation, when Q1 and Q2 are distributions,
we define mνpQ1, Q2q “ p1 ´ νqQ1 ` νQ2. Note that if η1,η2 P ∆L and Q1 “ ηT1 P and
Q2 “ η

T
2 P , then mνpη1,η2q is the mixture proportion for the distribution mνpQ1, Q2q.

Appendix C. Factorization Results

In this section, we discuss whether our sufficient conditions are necessary. For the problems
of demixing mixed membership models and classification with partial labels, we provide
factorization results that suggest that our sufficient conditions are not much stronger than
what is necessary.
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C.1. Multiclass Classification with Label Noise

Our sufficient condition (B1) for multiclass classification with label noise is not necessary.
Rather, (B1) is one of several possible sufficient conditions, and one that reflects a low
noise assumption as illustrated in Figure 1. Consider the case L “ M “ 2 where (B1) is
equivalent to π1,2`π2,1 ă 1. Recovery is still possible if π1,2`π2,1 ą 1 since one can simply
swap P̃1 and P̃2 in a decontamination procedure. π1,2 ` π2,1 ă 1 is only necessary if one
assumes that most of the training labels are correct, which is what π1,2`π2,1 ă 1 essentially
says. For larger L “ M , (B1) says in a sense that most of the data from P̃i come from
Pi for every i. Other sufficient conditions are possible (as in the binary case), but these
would require at least one P̃i to contain a significant portion of some Pj , j ‰ i. Regarding
(A), Blanchard et al. (2016) study the question of necessity for joint irreducibility in the
case L “M “ 2 and show that under mild assumptions on the decontamination procedure,
joint irreducibility is necesssary.

C.2. Demixing Mixed Membership Models

Recall the definition of a factorization: P̃ is factorizable if there exists pΠ,P q P ∆M
L ˆ PL

such that P̃ “ ΠP ; we call pΠ,P q a factorization of P̃ .

Our sufficient conditions are not much stronger than what is required by factorizations
that satisfy the two forthcoming desirable properties.

Definition 7 We say a factorization pΠ,P q of P̃ is maximal (M) iff for all factorizations
pΠ1,P 1q of P̃ with P 1 “ pP 11, . . . , P

1
Lq
T P PL, it holds that tP 11, . . . , P

1
Lu Ď convpP1, . . . , PLq.

In words, P “ pP1, . . . , PLq
T is a maximal collection of base distributions if it is not possible

to move any of the Pis outside of convpP1, . . . , PLq and represent P̃ .

Definition 8 We say a factorization pΠ,P q of P̃ is linear (L) iff tP1, . . . , PLu Ď

spanpP̃1, . . . , P̃M q.

We believe that (L) is a reasonable requirement because it holds in the common situation
in which there exist πi1 , . . . ,πiL that are linearly independent. Then for I “ ti1, . . . , iLu,
we can write P̃I “ ΠIP where ΠI is the submatrix of Π containing only the rows indexed
by I and P̃I is similarly defined. Then, ΠI is invertible and P “ Π´1

I P̃I .

Factorizations that satisfy (A) and (B2) are maximal and linear.

Proposition 5 Let pΠ,P q be a factorization of P̃ . If pΠ,P q satisfies (A) and (B2), then
pΠ,P q satisfies (M) and (L).

Proof We first show that pΠ,P q satisfies (L). By hypothesis, P1, . . . , PL are jointly ir-
reducible. By Lemma 16, P1, . . . , PL are linearly independent. Since by hypothesis Π
has full rank, there exist L rows in Π, πi1 , . . . ,πiL , that are linearly independent. By
Lemma 16, P̃i1 , . . . , P̃iL are linearly independent. Since ΠP “ P̃ , spanpP̃1, . . . , P̃M q Ď
spanpP1, . . . , PLq. Since dim spanpP̃1, . . . , P̃M q ě L, we have spanpP̃1, . . . , P̃M q “

spanpP1, . . . , PLq. Therefore, pΠ,P q satisfies (L).

Now, we show that pΠ,P q satisfies (M). Suppose that there is another solution
pΠ1,P 1q with P 1 “ pP 11, . . . , P

1
Lq
T such that Π1P 1 “ P̃ and with some P 1i such that
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P 1i R convpP1, . . . , PLq. We claim that P 1i R spanpP1, . . . , PLq. Towards a contradic-
tion, suppose that P 1i P spanpP1, . . . , PLq so that we can write P 1i “

řL
i“1 aiPi. Then,

at least one of the ai is negative since, by assumption, P 1i R convpP1, . . . , PLq. But,
by joint irreducibility of P1, . . . , PL, P 1i is not a distribution, which is a contradiction.
So, the claim follows. But, then, since spanpP1, . . . , PLq “ spanpP̃1, . . . , P̃M q, we must
have that spanpP̃1, . . . , P̃M q Ď spanpP 11, . . . , P

1
i´1, P

1
i`1, . . . , PLq, which is impossible since

dim spanpP̃1, . . . , P̃M q “ L.

Maximal and linear factorizations imply conditions that are not much weaker than our
sufficient conditions.

Theorem 7 Let pΠ,P q be a factorization of P̃ . If pΠ,P q satisfies (M), then

(A1) @i, Pi is irreducible with respect to every distribution in convptPj : j ‰ iuq.

If pΠ,P q satisfies (L), then

(B1) rankpΠq ě dim spanpP1, . . . , PLq.

Proof

(A1) We prove the contrapositive. Suppose that there is some Pi and Q P convptPj : j ‰ iuq
with Q “

ř

j‰i βjPj such that Pi is not irreducible wrt Q. Then, there is some
distribution G and γ P p0, 1s such that Pi “ γQ` p1´ γqG.

Suppose γ “ 1. Then, Pi “ Q P convptPk : k ‰ iuq. But, then P̃1, . . . , P̃M P

convptPj : j ‰ iu Y tRuq for any distribution R R convpP1, . . . , PLq. This shows that
pΠ,P q does not satisfy (M).

Therefore, assume that γ P p0, 1q. Either G P convpP1, . . . , PLq or G R

convpP1, . . . , PLq. Suppose that G P convpP1, . . . , PLq. Then, there exist α1, . . . , αL
all nonnegative and summing to 1 such that

Pi “ γQ` p1´ γqpα1P1 ` . . .` αLPLq.

Therefore, Pi P convptPk : k ‰ iuq. Then, by the argument in the previous paragraph,
pΠ,P q does not satisfy (M).

Now, suppose that G R convpP1, . . . , PLq. Since Pi P convpG,Qq and Q P convptPj :
j ‰ iuq, we have that convptPj : j ‰ iuYtGuq Ą convpP1, . . . , PLq. Then, P̃1, . . . , P̃M P

convptPj : j ‰ iu Y tGuq. This shows that pΠ,P q does not satisfy (M). The result
follows.

(B1) Clearly, dim spanpP̃1, . . . , P̃M q ď dim spanpP1, . . . , PLq since P̃i “ π
T
i P for all i P rM s.

Since pΠ,P q satisfies (L), spanpP1, . . . , PLq Ă spanpP̃1, . . . , P̃Lq, which implies that

dim spanpP1, . . . , PLq ď dim spanpP̃1, . . . , P̃M q.

Therefore, dim spanpP̃1, . . . , P̃M q “ dim spanpP1, . . . , PLq. Then, since P̃1, . . . , P̃M P

rangepΠq, dim spanpP1, . . . , PLq ď dim range Π. By Result 3.117 of Axler (2015),

rankpΠq “ dim range Π ě dim spanpP1, . . . , PLq.
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As a corollary, Theorem 7 implies that if there is a linear factorization pΠ,P q of P̃ and
P1, . . . , PL are linearly independent, then there must be at least as many contaminated
distributions as base distributions, i.e., M ě L. Also, note that (A1) appears as a sufficient
condition in Sanderson and Scott (2014).

By comparing (A) with (A1) and (B2) with (B1), we see that the proposed sufficient
conditions are not much stronger than (M) and (L) require. Since joint irreducibility of
P1, . . . , PL entails their linear independence by Lemma 16, under (A), (B2) and (B1) are the
same. (A) differs from (A1) in that it requires that a slightly larger set of distributions are
irreducible with respect to convex combinations of the remaining distributions. Specifically,
under (A), every convex combination of a subset of the Pis is irreducible with respect to
every convex combination of the other Pis whereas (A1) only requires that every Pi be
irreducible with respect to every convex combination of the other Pis.

C.3. Classification with Partial Labels

Most of our definitions and results for classification with partial labels parallel those of
demixing mixed membership models. We say that P̃ is Π`-factorizable if there exists a
pair pΠ,P q P ∆M

L ˆ PL that solves (2) such that Π is consistent with Π`; we call pΠ,P q
an Π`-factorization of P̃ . We say a partial label model is identifiable if given pP̃ ,Π`q, P̃
has a unique Π`-factorization pΠ,P q.

Our definitions of maximal and linear Π`-factorizations resemble definitions 7 and 8.

Definition 9 We say a Π`-factorization pΠ,P q of P̃ is maximal (M) iff for all Π`-
factorizations pΠ1,P 1q of P̃ with P 1 “ pP 11, . . . , P

1
Lq
T P PL, it holds that tP 11, . . . , P

1
Lu Ď

convpP1, . . . , PLq.

Definition 10 We say a Π`-factorization pΠ,P q of P̃ is linear (L) iff tP1, . . . , PLu Ď
spanpP̃1, . . . , P̃M q.

Similarly, Π`-factorizations that satisfy (A) and (B3) are maximal and linear. The
proof is identical and, accordingly, omitted.

Proposition 6 Let pΠ,P q be a Π`-factorization of P̃ . If pΠ,P q satisfies (A) and (B3),
then pΠ,P q satisfies (M) and (L).

Linear Π`-factorizations must satisfy (B1); indeed, the proof is identical to the proof for
linear factorizations. However, maximal Π`-factorizations need not satisfy (A1). Consider
the following counterexample. Let Q1 „ unifp0, 2q and Q2 „ unifp1, 3q. Let P1 “

2
3Q1`

1
3Q2,

P2 “
1
3Q1 `

2
3Q2, P̃1 “ P1, and P̃2 “ P2. Then, Π` “ I2—the identity matrix. Then,

any pΠ1,P 1q that satisfies (2) and is consistent with Π` must be such that pP1, P2q
T “ P 1.

Therefore, (M1) is satisfied. But, clearly, (A1) is not satisfied.
In summary, we are unable to offer a necessary condition that is close to (A). On the

other hand, (B3) is necessary.

Proposition 7 Let pΠ,P q be an Π`-factorization of P̃ . If pP̃ ,Π`q is identifiable, then
the columns of Π` are distinct.
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Proof First, suppose pP̃ ,Π`q is identifiable. Then, we can write P̃ “ ΠP where Π is
consistent with Π`. We claim that for all i ‰ j, Pi ‰ Pj . To the contrary, suppose that
there exists i ‰ j such that Pi “ Pj . Without loss of generality, suppose i “ 1, j “ 2. Then,
we can write

P̃ “
`

2Π:,1 Π:,3 . . . Π:,L

˘

¨

˚

˚

˚

˝

P1

P3
...
PL

˛

‹

‹

‹

‚

,

which contradicts the uniqueness of P and Π.
Next, we give a proof by contraposition. Suppose that there exists i ‰ j such that

Π`
:,i “ Π`

:,j . Without loss of generality, let i “ 1 and j “ 2. Suppose that pΠ,P q is

consistent with Π` and solves P̃ “ ΠP . Then, the pair pΠ1,P 1q given by

Π1 “
`

Π:,2 Π:,1 Π:,3 . . . Π:,L

˘

P 1 “

¨

˚

˚

˚

˚

˚

˝

P2

P1

P3
...
PL

˛

‹

‹

‹

‹

‹

‚

solves P̃ “ Π1P 1 and is consistent with Π`. If P1 “ P2, then pP̃ ,Π`q is not identifiable,
so we may rule out this case. Therefore, P 1 ‰ P , yielding the result.

Appendix D. Identification

In this section, we establish our identification results, i.e., Theorems 2 and 3. We begin
by proving Proposition 3. Second, we prove a set of useful lemmas in Section D.2. Third,
we present our results on demixing mixed membership models in Section D.3. Finally, we
present our results on classification with partial labels in Section D.4.

D.1. Proof of Proposition 3

Proof We prove the claims in order.

1. Without loss of generality, suppose i “ 1 and let A “ rLszt1u. There is at least one
point attaining the maximum in the optimization problem κ˚pη1 | tηj : j ‰ 1uq by
Lemma 15. Take a G that achieves the maximum in κ˚pQ1 | tQj : j ‰ 1uq, which
exists also by Lemma 15. Then, we can write:

Q1 “ p1´
ÿ

jě2

µjqG`
ÿ

jě2

µjQj . (7)

Note that since η1, . . . ,ηL are linearly independent and P1, . . . , PL are jointly irre-
ducible, Q1, . . . , QL are linearly independent by Lemma 16. Therefore, κ˚pQ1 | tQj :
j ‰ 1uq “

ř

jě2 µj ă 1 because, if not, Q1 “
ř

jě2 µjQj .
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Further, any G that satisfies (7) has the form
řL
i“1 γiPi because (7) implies that

G P spanpQ1, . . . , QLq and each Qi P convpP1, . . . , PLq by hypothesis. The γi must
sum to one, and we have that they are nonnegative by joint irreducibility. That is,

γ ”
`

γ1, . . . , γL
˘T

is a discrete distribution. Then, the above equation is equivalent
to

ηT1 P “ p1´
ÿ

jě2

µjqγ
TP `

ÿ

jě2

µjη
T
j P . (8)

Since P1, . . . , PL are jointly irreducible, P1, . . . , PL are linearly independent by Lemma
16. By linear independence of P1, . . . , PL, we obtain

η1 “ p1´
ÿ

jě2

µjqγ `
ÿ

jě2

µjηj . (9)

Consequently, κ˚pQ1 | tQj : j ‰ 1uq “ κ˚pη1 | tηj : j ‰ 1uq ă 1. This completes the
proof of statement 1.

2. This result follows immediately from Lemma 15.

3. By equations (8) and (9), there is a one-to-one correspondence between the maximizer
G to κ˚pQ1 | tQj : j ‰ 1uq and the maximizer γ to κ˚pη1 | tηj : j ‰ 1uq. The one-to-
one correspondence is given by G “ γTP .

D.2. Lemmas for Identification

We present some technical results that are used repeatedly for our identification results.
Lemma 2 gives us some useful properties of the two-sample κ˚ that we exploit in the
PartialLabel and Demix algorithms. Statement 1 gives an alternative form of κ˚. Statement
2 gives the intuitive result that the residues lie on the boundary of the simplex. Statement
3 gives a useful relation for determining whether two mixture proportions are on the same
face; we use this relation extensively in our algorithms.

Lemma 2 Let F1, . . . , FK be jointly irreducible distributions with F “ pF1, . . . , FKq
T ,

Q1, Q2 be two distributions such that Qi “ η
T
i F where ηi P ∆K for i “ 1, 2 and η1 ‰ η2.

Let R be the residue of Q1 wrt Q2 and R “ µTF .

1. There is a one-to-one correspondence between the optimization problem in κ˚pQ1 |Q2q

and the optimization problem

maxpα ě 1|D a distribution G s.t G “ Q2 ` αpQ1 ´Q2qq

via α “ p1´ κq´1.

2. µ P B∆K .

3. N pη2q Ę N pη1q if and only if R “ Q1 if and only if κ˚pQ1 |Q2q “ 0.
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Proof We note that we may assume that R “ µTF since by definition of the residue,
R P spanpQ1, Q2q and Q1, Q2 P convpF1, . . . , FKq.

1. Consider the linear relation: Q1 “ p1´ κqG` κQ2 where κ P r0, 1s. Since F1, . . . , FK
are jointly irreducible and η1 and η2 are linearly independent, Q1 and Q2 are linearly
independent by Lemma 16. Therefore, κ ă 1. We can rewrite the relation as

G “
1

1´ κ
Q1 ´

κ

1´ κ
Q2 “ αQ1 ` p1´ αqQ2

where α “ 1
1´κ . The equivalence follows.

2. Since R is the residue of Q1 wrt Q2, by Proposition 3, µ is the residue of η1 wrt η2

and µ P ∆K . Therefore, by statement 1 in Lemma 2, µ is such that α˚ is maximized
subject to the following constraints:

µ “ p1´ α˚qη2 ` α
˚η1

α˚ ě 1

µ P ∆K .

Suppose that mini µi ą 0. Then,

µ “ p1´ α˚qη2 ` α
˚η1 “ η2 ` αpη1 ´ η2q ą 0

so that there is some ε ą 0 such that

µ1 “ p1´ α˚ ´ εqη2 ` pα
˚ ` εqη1

α˚ ` ε ě 1

µ1 P ∆K .

But, this contradicts the definition of α˚ and µ. Therefore, mini µi “ 0. Consequently,
µ P B∆K .

3. By definition of κ˚, it is clear that R “ Q1 if and only if κ˚pQ1 |Q2q “ 0. Therefore,
it suffices to show that N pη2q Ę N pη1q if and only if κ˚pQ1 |Q2q “ 0. Suppose
N pη2q Ę N pη1q. Then, there must be i P rKs such that η2,i ą 0 and η1,i “ 0. For
any α ą 1,

min
iPrKs

p1´ αqη2,i ` αη1,i ă 0;

but, this violates the constraint of the optimization problem. Therefore, α “ 1.
By statement 1 in Lemma 2, κ˚pη1 |η2q “ 0. By statement 1 of Proposition 3,
κ˚pQ1 |Q2q “ κ˚pη1 |η2q “ 0.

Now, suppose N pη2q Ď N pη1q. Then, for any i P rKs, if η2,i ą 0, then η1,i ą 0. Then,
there is α ą 1 sufficiently close to 1 such that

min
iPrKs

η2,i ` αpη1,i ´ η2,iq ě 0.

By statement 1 in this Lemma, κ˚pη1 |η2q ą 0. By statement 1 of proposition 3,
κ˚pQ1 |Q2q “ κ˚pη1 |η2q ą 0.

31



Katz-Samuels, Blanchard, and Scott

Lemma 3 Let 0 ď k ă L. If v1, . . . ,vk P ∆L are linearly independent and wk`1, . . . ,wL P

∆L are random vectors drawn independently from the uniform distribution on a set A Ă

∆L with positive pL´ 1q-dimensional Lebesgue measure, then v1, . . . ,vk,wk`1, . . . ,wL are
linearly independent with probability 1.

Proof We prove the result inductively. To begin, we prove the base case, i.e.
v1, . . . ,vk,wk`1 are linearly independent w.p. 1. It suffices to show that wk`1 R

spanpv1, . . . ,vkq w.p. 1. Thus, it is enough to show that spanpv1, . . . ,vkq XA has pL´ 1q-
dimensional Lebesgue measure 0. Since

spanpv1, . . . ,vkq XA Ă spanpv1, . . . ,vkq X∆L,

it suffices to show that spanpv1, . . . ,vkqX∆L has pL´ 1q-dimensional Lebesgue measure 0.

Next, we claim that spanpv1, . . . ,vkqX∆L Ď affpv1, . . . ,vkq. Let
řk
i“1 αivi P ∆L. Since

vi P ∆L for all i P rks, we can write vi “
řL
j“1 βi,jei where βi,j ě 0 and

řL
j“1 βi,j “ 1.

Then, since
řk
i“1 αivi “

řk
i“1 αi

řL
j“1 βi,jej P ∆L, it holds that

1 “
k
ÿ

i“1

αi

L
ÿ

j“1

βi,j “
k
ÿ

i“1

αi.

Thus,
řk
i“1 αivi P affpv1, . . . ,vkq, establishing the claim.

Thus, it suffices to show that affpv1, . . . ,vkq has pL´ 1q-dimensional Lebesgue measure
0. affpv1, . . . ,vkq has affine dimension at most k´ 1. Since it is not possible to fit a pL´ 1q
dimensional ball in an affine subspace of affine dimension k´ 1 ă L´ 1, affpv1, . . . ,vkq has
pL´1q-dimensional Lebesgue measure 0. Thus, with probability 1, wk`1 R spanpv1, . . . ,vkq.
This establishes the base case.

The inductive step follows by a union bound and a similar argument to the base case.
Thus, the result follows.

D.3. Demixing Mixed Membership Models

In this section, we prove our identification result for demixing mixed membership models,
i.e., Theorem 2. First, we present technical lemmas in Section D.3.1. Second, in Section
D.3.2, we present the key subroutine FaceTest and prove that it behaves as desired. Third,
we prove Theorem 2 in Section D.3.3. Finally, in Section D.3.4, we extend our results to
the nonsquare case (where M ą L).

D.3.1. Lemmas

Lemma 4 establishes an intuitive continuity property of the two-sample version of κ˚ and
the residue. Recall that }¨} denotes an arbitrary finite-dimensional norm on RL.
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Lemma 4 Let η1,η2 P ∆L be distinct vectors and let µ be the residue of η2 wrt η1. Let
γn P ∆L be a sequence such that }γn ´ η2} ÝÑ 0 as n ÝÑ 8, and let τn be the residue of
γn wrt η1. Then,

1. limnÝÑ8 κ
˚pγn |η1q “ κ˚pη2 |η1q, and

2. limnÝÑ8 }τn ´ µ} “ 0.

3. If, in addition, ρn P ∆L is a sequence such that }ρn ´ η2} ÝÑ 0 as n ÝÑ 8 and
N pη2q “ N pγnq “ N pρnq for all n. Then, limnÝÑ8 κ

˚pγn |ρnq “ 1.

Proof

1. In order to apply the residue operator κ˚ to η1,η2,γn we think of η1,η2,γn as discrete
probability distributions. By Proposition 2,

κ˚pη2 |η1q “ min
i, η1,ią0

η2,i

η1,i
.

Clearly, there is a constant δ ą 0 such that mini,η1,ią0 η1,i ą δ. Let ε ą 0. By
the equivalence of norms on finite-dimensional vector spaces, there exists a constant
C ą 0 such that }¨}8 ď C }¨} where }¨}8 denotes the supremum norm. Thus, since
}γn ´ η2} ÝÑ 0 as n ÝÑ 8, we can let n large enough such that |γn,i ´ η2,i| ď ε for
all i P rLs. Then,

κ˚pγn |η1q “ min
i,η1,ią0

γn,i
η1,i

ď min
i,η1,ią0

η2,i ` ε

η1,i

ď κ˚pη2 |η1q `
ε

δ
.

Similarly,

κ˚pγn |η1q “ min
i,η1,ią0

γn,i
η1,i

ě
η2,i ´ ε

η1,i

ě κ˚pη2 |η1q ´
ε

δ
.

Since ε ą 0 was arbitrary, statement 1 follows.

2. Write µ “ κη2 ` p1 ´ κqη1 and τn “ κnγn ` p1 ´ κnqη1 where κ “ κ˚pη2 |η1q and
κn “ κ˚pγn |η1q. Then, by the triangle inequality,

}µ´ τn} ď }κη2 ´ κnγn} ` }p1´ κqη1 ´ p1´ κnqη1}

ď |κ´ κn| }η2} ` |κn| }η2 ´ γn} ` |κ´ κn| }η1} ÝÑ 0

as n ÝÑ 8.
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3. W.l.o.g., suppose that rKs “ N pη2q “ N pγnq “ N pρnq where K ď L. Observe that

κ˚pγn |ρnq “ min
i, ρn,ią0

γn,i
ρn,i

“ min
iPrKs

γn,i
ρn,i

There exists a constant δ ą 0 such that miniPrKs η2,i ě δ. Let δ ą ε ą 0. By the
equivalence of norms on finite-dimensional vector spaces, we can let n large enough
such that |γn,i ´ η2,i| ď ε and |ρn,i ´ η2,i| ď ε for all i P rLs. Then,

κ˚pγn |ρnq “ min
iPrKs

γn,i
ρn,i

ď min
iPrKs

η2,i ` ε

η2,i ´ ε

ď
η2,i ` ε

η2,i ´ ε

for any i P rKs, which goes to 1 as ε ÝÑ 0. Similarly,

κ˚pγn |ρnq “ min
iPrKs

γn,i
ρn,i

ě min
iPrKs

η2,i ´ ε

η2,i ` ε

Since for any i P rKs,

η2,i ´ ε

η2,i ` ε
ÝÑ 1

as ε ÝÑ 0, the above lower bound goes to 1 as ε ÝÑ 0. Thus, statement 3 follows.

Lemma 5 guarantees that certain operations in the Demix algorithm preserve linear inde-
pendence of the mixture proportions. The proof uses tools from multilinear algebra.

Lemma 5 Let τ1, . . . , τK P ∆K be linearly independent and P1, . . . , PK be jointly irre-
ducible. Let Qi “ τ

T
i P for i P rKs. Then for any i, j P rKs such that i ‰ j,

1. If η “
řK
k“1 akτk with aj ‰ 0, then τ1, . . . , τj´1,η, τj`1, . . . , τK are linearly indepen-

dent.

2. Let Rk be the residue of Qk with respect to Qj for all k P rKsztju. Then, Rk “ η
T
k P

where ηk P ∆L and η1, . . . ,ηj´1, τj ,ηj`1, . . . ,ηK are linearly independent.

3. Let τ ˚ P convpτ1, . . . , τkq
˝ and ηi P convpτi, τ

˚q˝ for i P rks where k ď K. Then,

η1,η2, . . . ,ηk, τk`1, . . . , τK

are linearly independent.
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Proof We use the multilinear expansion and usual properties of determinants.

1. Viewing each τi as a column vector,

detpτ1, . . . , τj´1,
ÿ

k

akτk, τj`1, . . . , τKq “ aj detpτ1, . . . , τKq ‰ 0.

2. Linear independence of τ1, . . . , τK implies that the Q1, . . . , QK are distinct. Hence,
by Proposition 2, we can write ηk “ p1 ´ αkqτj ` αkτk where αk ‰ 0@k ‰ j. Then,
it holds that

detpη1, . . . ,ηj´1, τj ,ηj`1, . . . ,ηKq “

˜

ź

i‰j

αi

¸

detpτ1, . . . , τKq ‰ 0.

3. Since ηj “ p1´αjqτ
˚`αjτj where αj P p0, 1q for all j ď k, and τ ˚ “

ř

i βiτi, it holds

detpη1, . . . ,ηk´1, τk, . . . , τKq “

˜

1`
k
ÿ

j“1

p1´ αjq

αj
βj

¸˜

k
ź

i“1

αi

¸

detpτ1, . . . , τKq ‰ 0.

Lemma 6 gives a condition on the mixture proportions under which the multi-sample residue
is unique. Lemma 2 in Blanchard and Scott (2014) is very similar and is proved in a very
similar way. We give a useful generalization here that reproduces many of the same details.

Lemma 6 Let l, k P rLs. Let τ1, . . . , τL P ∆L be linearly independent. We have that
condition 1 implies condition 2 and condition 2 implies condition 3.

1. There exists a decomposition

τl “ κek ` p1´ κqτ
1
l

where κ ą 0 and τ 1l P convptτj : j ‰ luq. Further, for every ei such that i ‰ k, there
exists a decomposition

ei “
L
ÿ

j“1

ajτj

such that al ă
1
κ .

2. Let

T “

¨

˚

˝

τT1
...
τTL

˛

‹

‚

;

the matrix T is invertible and T´1 is such that pT´1ql,k ą 0 and pT´1ql,i ď 0 for
i ‰ k and pT´1ql,k ą pT´1qj,k for j ‰ l. In words, the pl, kqth entry in T´1 is
positive, every other entry in the lth row of T´1 is nonpositive and every other entry
in the kth column of T´1 is strictly less than the pl, kqth entry. 2

2. pT´1
qi,j is the iˆ j entry in the matrix T´1.
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3. The residue of τl with respect to tτj , j ‰ lu is ek.

Proof Without loss of generality, let l “ 1 and k “ 2. By relabeling the vectors e1, . . . , eL,
we can assume without loss of generality that k “ 1. First, we show that condition 1 implies
condition 2. Suppose that condition 1 holds. Then, there exists κ ą 0 such that

τ1 “ κe1 ` p1´ κq
L
ÿ

i“2

µiτi

with µi ě 0 for i P rLszt1u. Then,

e1 “
1

κ
pτ1 ´

ÿ

iě2

p1´ κqµiτiq.

Hence, the first row of T´1 is given by 1
κp1,´p1´ κqµ2, ¨ ¨ ¨ ,´p1´ κqµLq. This shows that

the first row is such that pT´1q1,1 ą 0 and pT´1q1,i ď 0 for i ‰ 1.

Consider ei such that i ‰ 1. Then, we have the relation: ei “
řL
j“1 ajτj , which gives

the ith row of T´1. By assumption, a1 ă
1
κ , so the pi, 1qth entry is strictly less than the

p1, 1qth entry. Hence, 2 follows.
Now, we prove that condition 2 implies condition 3. Suppose condition 2 is true.

Consider the optimization problem

max
ν,γ

L
ÿ

i“2

νi s.t. τ1 “ p1´
ÿ

iě2

νiqγ `
L
ÿ

i“2

νiτi

over γ P ∆L and ν “ pν2, ¨ ¨ ¨ , νLq P CL´1 “ tpν2, ¨ ¨ ¨ , νLq : νi ě 0;
řL
i“2 ν ď 1u.

By the same argument given in the proof of Lemma 2 of Blanchard and Scott (2014),
this optimization problem is equivalent to the program

max
γP∆L

eT1 pT
T q´1γ s.t. νppT T q´1γq P CL´1

where νpηq – η´1
1 p´η2, ¨ ¨ ¨ ,´ηLq. The above objective is of the form aTγ where a is the

first column of T´1. Since l “ 1, by assumption, for every i ‰ 1, T´1
1,1 ą T

´1
i,1 . Therefore,

the unconstrained maximum over γ P ∆L is attained uniquely by γ “ e1. Notice that
pT T q´1e1 is the first row of T´1. Denote this vector b “ pb1, ¨ ¨ ¨ , bLq. We show that
νpbq “ b´1

1 p´b2, ¨ ¨ ¨ ,´bLq P CL´1. By assumption, b has its first coordinate positive
and the other coordinates are nonpositive. Therefore, all of the components of νpbq are
nonnegative. Furthermore, the sum of the components of νpbq is

L
ÿ

i“2

´bi
b1

“ 1´

řL
i“1 bi
b1

“ 1´
1

b1
ď 1.

The last equality follows because the rows of T´1 sum to 1 since T is a stochastic
matrix. Then, we have νppT T q´1e1q P CL´1. Consequently, the unique maximum of the
optimization problem is attained for γ “ e1. This establishes 3.
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D.3.2. The FaceTest Algorithm

Next, we consider the main subroutine in the Demix algorithm: the FaceTest algorithm (see
Algorithm 6). Proposition 8 establishes that FaceTest(Q1, . . . , QK) returns 1 if and only if
Q1, . . . , QK are in the relative interior of the same face of the simplex.

Proposition 8 Let Qj “ ηTj P for ηj P ∆K and all j P rKs. Let P1, . . . , PK be jointly
irreducible, Q1, . . . , QK P convpP1, . . . , PKq be distinct, and for each i P rKs, let ηi lie in
the relative interior of one of the faces of ∆K . FaceTest(Q1, . . . , QK) returns 1 if and only
if η1, . . . ,ηK lie in the relative interior of the same face of ∆K .

Proof Suppose that η1, . . . ,ηK lie on the relative interior of the same face of ∆K . Then,
N pQ1q “ . . . “ N pQKq. By statement 3 of Lemma 2, κ˚pQi |Qjq ą 0 for all i ‰ j. Hence,
FaceTest(Q1, . . . , QK) returns 1.

Suppose that Q1, . . . , QK do not all lie on the relative interior of the same face. Then,
there exists Qi, Qj (i ‰ j) that do not lie on the relative interior of the same face. Without
loss of generality, suppose that N pQjq Ę N pQiq. Then, by statement 3 of Lemma 2,
κ˚pQi |Qjq “ 0. Hence, FaceTest(Q1, . . . , QK) returns 0.

D.3.3. The Demix Algorithm

Proof [Proof of Theorem 2]

Let K ď L, γi P ∆L for all i P rKs, Si “ γ
T
i P for all i P rKs, and

Γ “

¨

˚

˝

γT1
...
γTK

˛

‹

‚

.

We claim that for any ti1, . . . , iKu Ă rLs and tS1, . . . , SKu Ă convpPi1 , . . . , PiK q, if
P1, . . . , PL are jointly irreducible, and Γ has full row rank, then w.p. 1 Demix(S1, . . . , SK)
returns a permutation of pPi1 , . . . , PiK q. If the claim holds, then setting K “ L and putting
P̃i “ Si yields the result. We prove the claim by induction on K.

Consider the base case: K “ 2. Suppose that tS1, S2u Ă convpP1, P2q (the other
cases are similar). Note that γ1 ‰ γ2 by linear independence of γ1 and γ2. Either γ1 P

convpe1,γ2q or γ1 P convpe2,γ2q. Suppose γ1 P convpe1,γ2q. Condition 2 of Lemma 1 is
satisfied so that e1 is the residue of γ1 with respect to γ2 and e2 is the residue of γ2 with
respect to γ1. Thus, by statement 3 of Proposition 3, P1 is the residue of S1 with respect
to S2 and P2 is the residue of S2 with respect to S1. If γ1 P convpe2,γ2q, then similar
reasoning establishes that P2 is the residue of S1 with respect to S2 and P1 is the residue
of S2 with respect to S1. Thus, the base case follows.

Suppose L ě K ą 2. The inductive hypothesis is:

Inductive Hypothesis: for any ti1, . . . , iK´1u Ă rLs and tS1, . . . , SK´1u Ă

convpPi1 , . . . , PiK´1q, if P1, . . . , PL are jointly irreducible and Γ has full row rank,
then w.p. 1 Demix(S1, . . . , SK´1) returns a permutation of pPi1 , . . . , PiK´1q.
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Suppose that tS1, . . . , SKu Ă convpP1, . . . , PKq (the other cases are similar). Set Ξ “

convpe1, . . . , eKq. With probability 1, Q P convpS2, . . . , SKq
˝. We can write Q “ ηTP

where η is a uniformly distributed random vector in convpγ2, . . . ,γKq. Let R be the residue
of Q with respect to S1. By statement 3 of Proposition 3, we can write R “ λTP where λ
is the residue of η with respect to γ1. By statement 2 of Lemma 2, λ P BΞ.

Step 1: We claim that with probability 1, there is l P rKs such that λ P convptej : j P
rKsztluuq˝. Let Bi,j “ convptγ1u Y tek : k P rKszti, juuq where i, j P rKs and i ‰ j
and let C “ convpγ2, . . . ,γKq. First, we argue that C X Bi,j has affine dimension
at most K ´ 3.3 Since γ2, . . . ,γK are linearly independent, C has affine dimension
K ´ 2. Since tek : k P rKszti, juu are linearly independent, Bi,j has affine dimension
K´ 2 or K´ 3. If Bi,j has affine dimension K´ 3, then CXBi,j has affine dimension
at most K ´ 3. So, suppose that Bi,j has affine dimension K ´ 2. If C X Bi,j has
affine dimension K ´ 2, then affC “ affBi,j . Then, in particular, γ1 P affC. But,
this contradicts the linear independence of γ1, . . . ,γK . Therefore, C XBi,j has affine
dimension at most K ´ 3.

Because C has affine dimension K´2 and η is a uniformly distributed random vector
in C, with probability 1, η R Yi,jPrKs,i‰jBi,j . Since γ1 P Bi,j for all i, j P rKs and
η P convpλ,γ1q by definition, the convexity of Bi,j implies that λ R Yi,jPrKs,i‰jBi,j .
Since λ P BΞ, the claim follows.

Step 2: Let R
pnq
i be the residue of mn´1

n
pSi, Qq with respect to S1. We claim that there is

some finite integer N ě 2 such that for all n ě N ,

FaceTestpR
pnq
2 , . . . , R

pnq
K q

returns 1. By Proposition 8, this is equivalent to the statement that there exists

N ě 2 such that for all n ě N , the mixture proportions of R
pnq
2 , . . . , R

pnq
K are on the

relative interior of the same face. Let mn´1
n
pSi, Qq “ pτ

pnq
i qTP for i P rKszt1u; note

that τ
pnq
i “ 1

nγi`
n´1
n η and, consequently, τ

pnq
i P Ξ. Since η P convpγ2, . . . ,γKq

˝ with

probability 1, τ
pnq
i P convpγi,ηq

˝ for all i P rKszt1u and n P N, and γ1, . . . ,γK are

linearly independent, it follows that for all n P N with probability 1, γ1, τ
pnq
2 , . . . , τ

pnq
K

are linearly independent by statement 3 in Lemma 5. Fix i P rKszt1u. It suffices to
show that there is large enough N such that for n ě N , Residuepmn´1

n
pSi, Qq |S1q “

R
pnq
i is on the same face as R. Let R

pnq
i “ pµ

pnq
i qTP ; by statement 3 of Proposition 3,

µ
pnq
i is the residue of τ

pnq
i with respect to γ1 and by statement 2 of Lemma 2 µ

pnq
i P Ξ.

It suffices to show that N pµpnqi q “ N pλq, i.e., every µ
pnq
i is on the same face as λ.

As n ÝÑ 8, τ
pnq
i “ p1 ´ n´1

n qγi `
n´1
n η ÝÑ η, hence by statement 2 in Lemma 4,

›

›

›
µ
pnq
i ´ λ

›

›

›
ÝÑ 0. Since with probability 1, λ P convptej : j P rKsztluuq˝ for some l

(step 1), it follows that for large enough n, µ
pnq
i P convptej : j P rKsztluuq˝.

3. Note that if v1, . . . ,vn P RL are linearly independent and n ď L, then affpv1, . . . ,vnq has affine dimension
n´ 1.
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Algorithm 15 NonSquareDemix(P̃1, . . . , P̃M )

1: R1, . . . , RL ÐÝ independently uniformly distributed elements in convpP̃1, . . . , P̃M q
2: pQ1, . . . , QLq

T ÐÝ Demix(R1, . . . , RL)
3: return pQ1, . . . , QLq

T

Step 3: Assume that n is sufficiently large such that R
pnq
2 , . . . , R

pnq
K are on the same face.

The algorithm recurses on R
pnq
2 , . . . , R

pnq
K . Since γ1, τ

pnq
2 , . . . , τ

pnq
K are linearly indepen-

dent, it follows by statement 2 in Lemma 5 that µ
pnq
2 , . . . ,µ

pnq
K are linearly indepen-

dent. Suppose wlog that tR
pnq
2 , . . . , R

pnq
K u Ă tP1, . . . , PK´1u. Then, by the inductive

hypothesis, if pQ1, . . . , QK´1q ÐÝ DemixpR
pnq
2 , . . . , R

pnq
K q, then pQ1, . . . , QK´1q is a

permutation of pP1, . . . , PK´1q. Note that 1
K

řK
i“1 Si P convpP1, . . . , PKq

˝ since Γ has
full rank by assumption.

Write Qi “ ρTi P for i P rKs. Then, there exists of a permutation σ : rK ´ 1s ÝÑ
rK´1s such that ρi “ eσpiq. Since ρK P Ξ˝ and ρi “ eσpiq for i ď K´1, the conditions
in statement 1 of Lemma 6 are satisfied. Therefore, by Lemma 6, the residue of ρK
with respect to tρ1, . . . ,ρK´1u is eK . Then, by statement 3 of Proposition 3, the
residue of QK with respect to tQ1, . . . , QK´1u is PK . This completes the inductive
step.

D.3.4. The Non-Square Demix Algorithm

Now, we examine the non-square case of the demixing problem (M ą L). Note that
knowledge of L is needed since one must resample exactly L distributions in order to run
the square Demix algorithm.

Corollary 1 Suppose M ą L. Let P1, . . . , PL be jointly irreducible and Π have full
rank. Then, with probability 1, NonSquareDemixpP̃1, . . . , P̃M q returns pQ1, . . . , QLq such
that pQ1, . . . , QLq is a permutation of pP1, . . . , PLq.

Proof We can write Ri “ τTi P where τi P ∆L and i “ 1, . . . , L. τ1, . . . , τL are drawn
uniformly independently from a set with positive pL ´ 1q-dimensional Lebesgue measure
since Π has full rank by hypothesis. By Lemma 3, τ1, . . . , τL are linearly independent
with probability 1. Then, by Theorem 2, with probability 1, Demix(R1, . . . , RL) returns a
permutation of pP1, . . . , PLq.

D.4. Classification with Partial Labels

In this section, we present our identification result for classification with partial labels,
i.e., Theorem 3. To begin, in Section D.4.1, we prove an important lemma for the main
subroutine of the algorithm PartialLabel: VertexTest (algorithm 9). Second, in Section
D.4.2, we present the proof of Theorem 3.
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D.4.1. VertexTest Algorithm

Lemma 7 establishes that the VertexTest algorithm determines whether one vector of dis-
tributions is a permutation of another vector of distributions.

Lemma 7 Let η1, . . . ,ηL P ∆L and Qi “ η
T
i P for i P rLs and Q “ pQ1, . . . , QLq

T . Suppose
that P1, . . . , PL are jointly irreducible, Π has full column rank, and the columns of Π` are
unique. Then, VertexTestpΠ`, P̃ ,Qq returns p1,CT q with C a permutation matrix if and
only if Q is a permutation of P . Further, if VertexTestpΠ`, P̃ ,Qq returns p1,CT q, then
CTQ “ P .

Proof If Q “ pQ1, . . . , QLq
T is such that DTQ “ P where D is a permutation matrix,

then it is clear that VertexTestpΠ`, pP̃1, . . . , P̃M q
T , pQ1, . . . , QLq

T q returns p1,CT q for some
permutation matrix C since the entries of Π` are Π`

i,j “ 1
tκ˚pP̃i |Pjqą0u. Since DTQ “ P ,

clearly, ZD “ Π`. But since the columns of Π` are unique, there is a unique permutation
of the columns of Z to obtain the columns of Π`. Therefore, D “ C.

Consider the “only if” direction. We use the notation from Algorithm 9. Suppose
Algorithm 9 has returned p1,CT q where C is a permutation matrix. W.l.o.g. (reordering
the Qi) we can assume that C is the identity and thus Z “ Π`.

In the sequel denote φpxq :“ 1txą0u and φpMq the entry-wise application of φ to the
matrix or vector M . We denote v ĺ w when all entries of v are less than or equal to the
corresponding entries of w (where v and w are vectors). This is a partial order, which
will be used only for 0´ 1 vectors below (essentially to denote support inclusion). W.l.o.g.
(reordering the Pi) we can assume that the columns of Π` are reordered in some sequence
compatible with ĺ in decreasing order, i.e. such that if Π`

:,j ĺ Π`
:,i, then i ď j.

Introduce the following additional notation: let Λ be the matrix with rows Λi,: “

φpηTi q. Observe that by statement 3 of Lemma 2, for any i, j, k, κ˚pP̃i|Qjq ą 0 and
κ˚pQj |Pkq ą 0 implies κ˚pP̃i|Pkq ą 0. Note that we can write Λj,k “ 1tκ˚pQj |Pkqą0u

and Π`
j,k “ 1

tκ˚pP̃j |Pkqą0u. Thus, we must have φpZΛq ĺ Π`.

We now argue that this implies that Λ is sub-diagonal, i.e., Λij “ 0 for i ă j. Let i ă j.
If Λij ą 0, then Z:,i ĺ Π`

:,j by the above relation. Since Z “ Π`, this implies Π`
:,i ĺ Π`

:,j ,
which implies j ď i by the assumed ordering of the columns of Π`, a contradiction. Hence
Λij “ 0 for i ă j.

Now, since the matrix Y (line 1 of Algorithm 9) is diagonal, Statement 3 of Lemma 1
gives that for any i ‰ j we have Λi,: ł Λj,:. One can conclude by a straightforward recursion
that since Λ is sub-diagonal, this implies that Λ is in fact diagonal. Start with the first
row Λ1,: which must be p1, 0, . . . , 0qT (by sub-diagonality). Since Λ1,: ł Λj,: for j ą 1, this
implies the first column Λ:,1 is also p1, 0, . . . , 0q. The subsequent columns/rows are handled
in the same way.

Hence Λ is the identity, which implies that Q “ P .

D.4.2. Proof of Theorem 3

Proof We adopt the notation from the description of Algorithm 7 with the exception that

we make explicit the dependence on k by writing W
pkq
i instead of Wi and Q̄

pkq
i instead of
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Q̄i. We show that there is a K such that for all k ě K, pW
pkq
1 , . . . ,W

pkq
L qT is a permutation

of pP1, . . . , PLq
T . Then, the result will follow from Lemma 7.

Let Qi “ τTi P , Q̄
pkq
i “ τ̄

pkqT

i P , and W
pkq
i “ γ

pkqT

i P . Further, let 0 ď n ă L,
ti1, . . . , inu Ă rLs, l ‰ j P rLs, and define the following events wrt the randomness of
τ1, . . . , τL:

Ei1,...,in “ tei1 , . . . , ein , τn`1, . . . , τL are linearly independentu

E “ Xti1,...,inuĂrLs,0ďnăLEi1,...,in

Fl,j “ tel ´ ej , τ2, . . . , τL are linearly independentu

F “ Xl‰jPrLsFl,j

Gl,ji1,...,in´1
“ tel ´ ej , ei1 , . . . , ein´1 , τn`1, . . . , τL are linearly independentu

G “ Xti1,...,in´1uĂrLs,0ďnăL,l‰jPrLszti1,...,in´1uG
l,j
i1,...,in´1

.

By Lemma 3, for any 0 ď n ă L, ti1, . . . , inu Ă rLs, the event Ei1,...,in occurs with
probability 1. Similarly, by Lemma 3, for any l ‰ j P rLs, the event Fl,j occurs with
probability 1. Finally, by Lemma 3, for any 0 ď n ă L, ti1, . . . , in´1u Ă rLs and any

l ‰ j P rLszti1, . . . , in´1u, the event Gl,ji1,...,in´1
occurs with probability 1. Hence, the event

EXFXG occurs with probability 1. For the remainder of the proof, assume event EXFXG
occurs.

We prove the claim inductively. We show that for all n ď L there exists Kn such that

if k ě Kn, then W
pkq
1 , . . . ,W

pkq
n are distinct base distributions.

Base Case: n “ 1. We will apply Lemma 6. By event E, τ1, . . . , τL are linearly indepen-
dent. Therefore, affpτ2, . . . , τLq gives a hyperplane with an associated open halfspace H

that contains τ1 and at least one ej . Inspection of Line 3 of Algorithm 8 shows that τ̄
pkq
1 is

simply the average of τ2, . . . , τL and does not depend on k. Thus, there exists K1 such that

for all k ě K1, if ej P H, then λk – 1
kτ1 `

k´1
k τ̄

pkq
1 P convpej , τ2, . . . , τLq

˝. Fix k ě K1.
Then, by event E, for all ej PH, there exists a unique κj ą 0 and unique aj,2, . . . , aj,L such
that

λk “ κjej `
L
ÿ

i“2

aj,iτi

“ κjej ` p1´ κjqτ̃j

where τ̃j P convpτ2, . . . , τLq is unique. We claim that for all i ‰ j and tei, eju ĂH, κi ‰ κj .
Suppose to the contrary that there is i ‰ j such that tei, eju ĂH and κi “ κj “ κ. Then,

λk “ κei ` p1´ κqτ̃i

λk “ κej ` p1´ κqτ̃j .

Then, p1´κqpτ̃j´ τ̃iq´κpei´ejq “ 0, from which it follows that ei´ej P spanpτ2, . . . , τLq.
But, by event F , ei ´ ej , τ2, . . . , τL are linearly independent and, hence, we have a contra-
diction. Thus, the claim follows.

Consequently, there is a unique j that minimizes κj . Note that for all ei R H, if we
write ei “

ř

lě2 alτl ` a1λk, then a1 ď 0. Then, by Lemma 6, ej is the residue of λk with
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respect to τ2, . . . , τL. Therefore, by Proposition 3, MultiResiduep 1
kQ1`p1´

1
k qQ̄1 | tQjują1q

is well-defined and if W
pkq
1 ÐÝ MultiResiduep 1

kQ1`p1´
1
k qQ̄1 | tQjują1q, W

pkq
1 is one of the

base distributions. This establishes the base case.

The Inductive Step: The proof is similar to the base case. Suppose that there ex-

ists Kn´1 such that for all k ě Kn´1, W
pkq
1 , . . . ,W

pkq
n´1 are distinct base distributions.

Let ti1, . . . , in´1u Ă rLs denote the indices of the base distributions that are equal to

W
pkq
1 , . . . ,W

pkq
n´1 under the inductive hypothesis. By the event E, ei1 , . . . , ein´1 , τn, . . . , τL

are linearly independent. Hence, affpei1 , . . . , ein´1 , τn`1, . . . , τLq gives a hyperplane with
an associated open halfspace Hi1,...,in´1 such that τn P Hi1,...,in´1 . We claim that there is
ej R tei1 , . . . , ein´1u such that ej P Hi1,...,in´1 . Suppose not. Then, e1, . . . , eL P H

c
i1,...,in´1

and τn P Hi1,...,in´1 , which implies that τn R ∆L´1. This is a contradiction, so the claim
follows.

Define

λ
pi1,...,in´1q

k –
1

k
τn ` r

k ´ 1

k
s

1

L´ 1
p
ÿ

sąn

τs `
ÿ

săn

eisq.

There exists an integer K
pi1,...,in´1q
n such that if k ě K

pi1,...,in´1q
n , then for all ej PHi1,...,in´1 ,

λ
pi1,...,in´1q

k P convpej , ei1 , . . . , ein´1 , τn`1, . . . , τLq
˝. Set

Kn – maxp max
ti1,...,in´1uĂrLs

pKpi1,...,in´1q
n q,Kn´1q.

Fix k ě Kn. Define

λk –
1

k
τn ` r

k ´ 1

k
sτ̄ pkqn

“
1

k
τn ` r

k ´ 1

k
s

1

L´ 1
p
ÿ

sąn

τs `
ÿ

săn

γpkqs q.

By the inductive hypothesis, k ě Kn´1, and Proposition 3, there exists ti1, . . . , in´1u Ă rLs

such that γ
pkq
j “ eij for all j P rn ´ 1s. For the sake of abbreviation, let H “ Hi1,...,in´1 .

Thus, τn PH and there exists ej PH such that ej R tei1 , . . . , ein´1u. Hence, by our choice
of Kn, for every ej PH

λk “ λ
pi1,...,in´1q

k P convpej , ei1 , . . . , ein´1 , τn`1, . . . , τLq
˝.

By event E for all ej P H, there is a unique κj ą 0 and unique
aj,1, . . . , aj,n´1, aj,n`1, . . . , aj,L ą 0 such that

λk “ κjej `
ÿ

lăn

aj,ieil `
ÿ

ląn

aj,lτl

“ κjej ` p1´ κjqτ̃j

where τ̃j P convpei1 , . . . , ein´1 , τn`1, . . . , τLq is unique.
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We claim that for all l ‰ j such that tel, eju Ă H, κl ‰ κj . Suppose to the contrary
that there exists l ‰ j such that tel, eju ĂH and κl “ κj “ κ. Then,

λk “ κel ` p1´ κqτ̃i “ κej ` p1´ κqτ̃j .

This implies that el ´ ej P spanpei1 , . . . , ein´1 , τn`1, . . . , τLq. Observe that tel, eju Ă H
implies that el R tei1 , . . . , ein´1u and ej R tei1 , . . . , ein´1u. Thus, event G implies that el ´
ej , ei1 , . . . , ein´1 , τn`1, . . . , τL are linearly independent. Therefore, we have a contradiction,
establishing the claim.

Consequently, there is a unique j that minimizes κj . Note that for all el R H, if we
write el “

ř

măn ameim `
ř

mąn amτm ` anλk, then an ď 0. Then, by Lemma 6, ej is

the residue of λk with respect to γ
pkq
1 , . . . ,γ

pkq
n´1, τn`1, . . . , τL. Therefore, by Proposition

3, MultiResiduep 1
kQn ` p1 ´

1
k qQ̄n | tQjująn Y tW

pkq
j ujănq is well-defined and if Wn ÐÝ

MultiResiduep 1
kQn`p1´

1
k qQ̄n | tQjująnYtW

pkq
j ujănq, W

pkq
n is one of the base distributions.

Since ej P H implies that ej R tei1 , . . . , ein´1u, it follows that W
pkq
1 , . . . ,W

pkq
n are distinct

base distributions. This establishes the inductive step.
The result follows from applying Lemma 7.

Appendix E. Estimation

In this section, we present the estimation results of our paper. To begin, in Section E.1,
we present the proof of sufficient conditions under which ResidueHat estimators converge
uniformly in probability (Proposition 4). Second, in Section E.2, we prove our main esti-
mation result for demixing mixed membership models (Theorem 5). Finally, in Section E.3,
we prove our main estimation result for classification with partial labels (Theorem 6).

E.1. ResidueHat Results

Let A1, A2, . . . denote positive constants whose values may change from line to line. We
introduce the following definitions.

Definition 11 Let pF and pH be ResidueHat estimators of F and H, respectively, where
F ‰ H and let G ÐÝ ResiduepF |Hq and pG ÐÝ ResidueHatp pF | pHq. If pG is a
ResidueHat estimator of order 0, we say its distributional ancestors are tF,Hu and de-
fine ancestorsp pGq– tF,Hu. If pG is a ResidueHat estimator of the kth order, we define its
distributional ancestors to be ancestorsp pGq “ ancestorsp pF q Y ancestorsp pHq.

The constants in our bounds depend on the distributional ancestors.

Definition 12 We say that the distribution F satisfies the support condition (SC) with
respect to H if there exists a distribution G and γ P r0, 1q such that supppHq Ę supppGq
and F “ p1´ γqG` γH.

Definition 13 If

sup
EPE

| pF pEq ´ F pEq|
i.p.
ÝÑ 0
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as n ÝÑ 8, we say that pF ÝÑ F uniformly (or pF converges uniformly to F ) with respect
to E.

Definition 14 Let pF be a ResidueHat estimator of a distribution F . We say that pF satisfies
a Uniform Deviation Inequality (UDI) with respect to E if for all ε ą 0, there exist constants
A1,ε, A2,ε ą 0 and N depending on ancestorsp pF q such that if n ěN , then for all E P E

| pF pEq ´ F pEq| ă A1,εγn ` ε

with probability at least 1´A2,ε
ř

iPrLs
1
ni

Henceforth, for the purposes of abbreviation, we will only say that a ResidueHat estimator
satisfies a Uniform Deviation Inequality (UDI) and omit “with respect to E” because the
context makes this clear.

Definition 15 Let pF and pH be ResidueHat estimators. We say that pκp pF | pHq satisfies
a Rate of Convergence (RC) with respect to E if for all ε ą 0, there exists constants
A1,ε, A2,ε ą 0 and N depending on ancestorsp pF q Y ancestorsp pHq such that for n ěN ,

|pκp pF | pHq ´ κ˚pF |Hq| ď A1,εγn ` ε

with probability at least 1´A2,ε
ř

iPrLs
1
ni

.

Lemma 8 gives sufficient conditions under which F satisfies (SC) with respect to H.

Lemma 8 Let P1, . . . , PL satisfy (A2) and let F,H P convpP1, . . . , PLq such that F ‰ H.
Then, F satisfies (SC) with respect to H.

Proof Let A “ arg minp|B| : B Ď tP1, . . . , PLu, F,H P convpBqq. Without loss of gener-
ality, suppose that A “ tP1, . . . , PKu. F either lies on the boundary of convpP1, . . . , PKq
or doesn’t. If F lies on the boundary of convpP1, . . . , PKq, then H P convpP1, . . . , PKq

˝ by
minimality of A. Then, we pick G “ F and γ “ 0 to obtain F “ p1 ´ γqF ` γH. Since
P1, . . . , PL satisfy (A2), supppHq Ę supppF q.

Now, suppose that F P convpP1, . . . , PKq
˝. Let G ÐÝ ResiduepF |Hq; we can write

F “ p1 ´ γqG ` γH for γ P r0, 1q since F ‰ H. Then, by Statement 2 of Lemma 2
and statement 3 of Proposition 3, G is on the boundary of convpP1, . . . , PKq. Without
loss of generality, suppose that G P convpP1, . . . , PK´1q. Since F “ p1 ´ γqG ` γH P

convpP1, . . . , PKq
˝, and G P convpP1, . . . , PK´1q, H R convpP1, . . . , PK´1q. Since P1, . . . , PL

satisfy (A2), supppHq Ę supppGq. This completes the proof.

Lemma 9 gives sufficient conditions under which an estimator pG satisfies a (UDI).

Lemma 9 Let

1. F and H be distributions such that F ‰ H,

2. GÐÝ ResiduepF |Hq, and

3. pGÐÝ ResidueHatp pF | pHq.
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If pκp pF | pHq satisfies a (RC), pH satisfies a (UDI), and pF satisfies a (UDI), then pG satisfies
a (UDI).

Proof For the sake of abbreviation, let pκ “ pκp pF | pHq, κ˚ “ κ˚pF |Hq, pα “ 1
1´pκ and

α˚ “ 1
1´κ˚ . Let ε ą 0. We claim that there are constants A1,ε, A2,ε ą 0 such that for

sufficiently large n,

Prp|pα´ α˚| ă A1,εγn ` εq ě 1´A2,ε

ÿ

iPrLs

1

ni
. (10)

Let δ “ εp1´κ˚q2

2 . Since pκ satisfies a (RC), there exists constants A1,δ, A2,δ ą 0 such that
for large enough n,

|pκ´ κ˚| ď A1,δγn ` δ

with probability at least 1 ´ A2,δ
ř

iPrLs
1
ni

. Since F ‰ H, κ˚ ă 1 by Proposition 2, so we
can let n large enough so that

1

p1´ κ˚qp1´ pκq
ď 2

1

p1´ κ˚q2

with high probability. Then, on this same event, for large enough n,

|
1

1´ κ˚
´

1

1´ pκ
| ď

A1,δγn ` δ

p1´ κ˚qp1´ pκq

ď 2
A1,δγn ` δ

p1´ κ˚q2

ď 2
A1,δγn
p1´ κ˚q2

` ε.

Thus, we obtain the claim.
We can write G “ αF ` p1´ αqH with α ě 1. Then, by the triangle inequality,

| pG´G| “ |pα pF ` p1´ pαq pH ´ αF ´ p1´ αqH|

ď |pα pF ´ αF | ` |p1´ pαq pH ´ p1´ αqH|

“ |pα pF ´ pαF ` pαF ´ αF | ` |p1´ pαq pH ´ p1´ pαqH ` p1´ pαqH ´ p1´ αqH|

ď |pα|| pF ´ F | ` |pα´ α| ` |1´ pα|| pH ´H| ` |pα´ α|.

Since pF satisfies a (UDI), pH satisfies a (UDI), inequality (10) holds, and |pα| and |1´ pα|
are bounded in probability, the result follows by an application of a union bound and
picking the εs in the uniform deviation inequalities appropriately for each term.

Lemma 10 gives sufficient conditions under which pκ satisfies (RC).

Lemma 10 Let F and H be distributions such that F ‰ H. If

• F satisfies (SC) with respect to H,
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• pF satisfies (UDI), and

• pH satisfies (UDI),

then pκp pF | pHq satisfies (RC).

Proof For abbreviation, let κ˚ “ κpF |Hq and pκ “ pκp pF | pHq.
We first prove the upper bound. F satisfies (SC) with respect to H, so there exists a

distribution G such that F “ p1 ´ γqG ` γH for some γ P r0, 1q and supppHq Ę supppGq.
Therefore, we have that G is irreducible with respect to H and, by Proposition 2, κ˚ “ γ.

Let δ ą 0 (to be chosen later). Since by hypothesis pF and pH satisfy (UDI), there
exist constants A1,δ, A2,δ ą 0 such that for large enough n, with probability at least 1 ´
A1,δr

ř

iPrLs
1
ni
s, for all E P E ,

| pF pEq ´ F pEq| ă A2,δγn ` δ (11)

| pHpEq ´HpEq| ă A2,δγn ` δ. (12)

Without loss of generality, let A1,δ, A2,δ ą 1.
Pick R P E such that HpRq ą 0. By inequality (12), there exists N1 such that n ěN1

implies that pHpRq´γn ą 0 with high probability. This implies that for n ěN1, pκ is finite.
Let ε ą 0. By definition of pκ, there exists E P E such that

ε

2
` pκ ě

pF pEq ` γn

p pHpEq ´ γnq`
.

Since pκ is finite, we have that pHpEq ą γn and HpEq ą 0. Then,

ε

2
` pκ ě

pF pEq ` γn
pHpEq ´ γn

ě
F pEq ´ pA2,δ ´ 1qγn ´ δ

HpEq ` pA2,δ ´ 1qγn ` δ

ě
γHpEq

HpEq ` pA2,δ ´ 1qγn ` δ
´

pA2,δ ´ 1qγn
HpEq ` pA2,δ ´ 1qγn ` δ

´
δ

HpEq ` pA2,δ ´ 1qγn ` δ

ě
γHpEq

HpEq
´
pA2,δ ´ 1qγn ` δ

HpEq
´

pA2,δ ´ 1qγn
HpEq ` pA2,δ ´ 1qγn ` δ

´
δ

HpEq ` pA2,δ ´ 1qγn ` δ

ě κ˚ ´ 2
pA2,δ ´ 1qγn

HpEq
´ 2

δ

HpEq

where in the second to last inequality we used the elementary fact that if a, b, c ą 0 and
a ď b, then a

b`c ě
a
b ´

c
b . Picking δ “ HpEqε

4 , we obtain the upper bound.
The proof of the other direction of the inequality is very similar to the proof of Theorem 2

in Scott (2015). By hypothesis, F satisfies (SC) with respect to H, so there exists a distribu-
tion G such that F “ p1´γqG`γH for some γ P r0, 1q and supppHq Ę supppGq. Therefore,
we have that G is irreducible with respect to H and, by Proposition 2, κ˚pF |Hq “ γ. For

46



Decontamination of Mutual Contamination Models

abbreviation, let κ˚ “ κ˚pF |Hq and pκ “ pκp pF | pHq. Since supppHq Ę supppGq, there exists
an open set O such that

F pOq

HpOq
“ p1´ γq

GpOq

HpOq
` γ “ κ˚.

Then, since E contains a generating set for the standard topology on Rd, there exists E P E
such that

F pEq

HpEq
“ κ˚.

Let δ ą 0 such that δ ď 1
4HpEq. Since by hypothesis pF and pH satisfy (UDI), there

exist constants A3,δ, A4,δ ą 0 such that for large enough n, with probability at least 1 ´
A3,δr

ř

iPrLs
1
ni
s,

pκ ď
F pEq `A4,δγn ` δ

pHpEq ´A4,δγn ´ δq`

ď
F pEq ` ε

pHpEq ´ εq`

where ε “ 2A4,δγn ` δ. The rest of the proof is identical to the proof of Theorem 2 from
Scott (2015) and, therefore, we omit it.

The following theorem gives sufficient conditions under which a ResidueHat estimator sat-
isfies (UDI). It is the basis of Proposition 4.

Lemma 11 If P1, . . . , PL satisfy (A2) and pG is a ResidueHat estimator of order k of a
distribution G P convpP1, . . . , PLq, then pG satisfies (UDI).

Proof Let pG ÐÝ ResidueHatp pF | pHq where G ÐÝ ResidueHatpF |Hq, F ‰ H, F,H P

convpP1, . . . , PLq and pF , pH are ResidueHat estimators of F and H respectively. We use
induction on k. Suppose k “ 0. Then, pF and pH are empirical distributions. Therefore,
the VC inequality applies to pF and pH. Consequently, pF and pH satisfy (UDI). Since
P1, . . . , PL satisfy (A2), F,H P convpP1, . . . , PLq and F ‰ H, by Lemma 8, F satisfies
(SC) with respect to H. Then, by Lemma 10, pκp pF | pHq satisfies (RC). Then, all of the
assumptions of Lemma 9 are satisfied, so pG satisfies (UDI). Note that G P convpP1, . . . , PLq
by Proposition 3.

The inductive step pk ą 0q follows by similar reasoning. The difference is that instead
of applying the VC inequality to pF and pH, we use the fact that pF and pH are ResidueHat
estimators of order k ´ 1 and, therefore, satisfy (UDI) by the inductive hypothesis.

Proof [Proof of Proposition 4] Let 0 ă δ ă ε. By Lemma 11, pG satisfies (UDI). Conse-
quently, there exist constants A1,δ, A2,δ ą 0 such that for large enough n with probability

at least 1´A1,δ
ř

iPrLs
1
ni

, pG satisfies for every E P E ,

| pGpEq ´GpEq| ď A2,δγn ` δ “ A2,δ

ÿ

iPrLs

εip
1

ni
q ` δ ÝÑ δ ă ε.
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E.2. Demixing Mixed Membership Models

In this section, we prove our main estimation result for demixing mixed membership models,
i.e., Theorem 5. First, in Section E.2.1, we present an important lemma for FaceTestHat.
Second, in Section E.2.2, we present an empirical version of Demix and prove Theorem 5.

E.2.1. The FaceTestHat Algorithm

The following establishes that FaceTestHat behaves as desired.

Lemma 12 Let ε P p0, 1q. For all j P rKs, let Qj “ ηTj P and ηj P ∆K such that every
ηj lies in the relative interior of the same face of ∆K . Let P1, . . . , PK satisfy (A2), and

Q1, . . . , QK P convpP1, . . . , PKq be distinct. Let pQi be a ResidueHat estimate of Qi @i P rKs.

1. With probability tending to 1 as n ÝÑ 8, if FaceTestHat( pQ1, ¨ ¨ ¨ , pQK | ε) returns 1,
then η1, . . . ,ηK are in the relative interior of the same face.

2. Let κ˚i,j “ κ˚pQi |Qjq. If η1, . . . ,ηK are in the relative interior of the same
face and mini,j κ

˚
i,j ą ε, then with probability tending to 1 as n ÝÑ 8,

FaceTestHat( pQ1, ¨ ¨ ¨ , pQK | ε) returns 1.

Proof Let ε ą 0, κ˚i,j “ κ˚pQi |Qjq and pκi,j “ pκp pQi | pQjq. Since P1, . . . , PK satisfy (A2)

and Qi ‰ Qj , by Lemma 8, Qi satisfies (SC) wrt Qj . Since pQi and xQj are ResidueHat

estimators, pQi and pQj satisfy (UDI) (Lemma 11). Then, by Lemma 10 pκi,j satisfies (RC).

1. We prove the contrapositive. Suppose that Q1, . . . , QK are not in the relative interior
of the same face. Then, by Proposition 8, FaceTestpQ1, . . . , QKq returns 0, which
occurs if and only if there exist i ‰ j such that κ˚i,j “ 0. Since pκi,j satisfies (RC), as
n ÝÑ 8, with probability tending to 1, pκi,j ÝÑ 0. This completes the proof.

2. If mini,j κ
˚
i,j ą ε, then as n ÝÑ 8, with probability tending to 1, mini,j pκi,j ą ε.

E.2.2. The DemixHat Algorithm

The DemixHat algorithm (see Algorithm 11) differs from the Demix algorithm in that (i)
it requires the specification of a constant ε P p0, 1q and (ii) it only uses the two-sample
κ˚ operator. In the interest of clarity, we state the population version of the algorithm
DemixHat, which we call Demix2. The only difference between Demix and Demix2 is that
line 7 in Demix has been replaced with lines 6-8 in Demix2.

Lemma 13 establishes that it is possible to replace line 7 of the Algorithm 4 with the
sequence of applications of the two-sample κ˚ in lines 6-8 of Algorithm 16, without changing
the conclusion of Theorem 2.

Lemma 13 Let ti1, . . . , iKu Ă rLs be distinct indices. Let P1, . . . , PL be jointly irreducible,
pQ1, . . . , QK´1q be a permutation of pPi1 , . . . , PiK´1q and Q1

K P convpPi1 , . . . , PiK q
˝. Define
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Algorithm 16 Demix2(S1, . . . , SK)

Input: S1, . . . , SK are distributions

1: if K “ 2 then
2: return pResiduepS1 |S2q,ResiduepS2 |S1qq

T

3: else
4: pR2, . . . , RKq

T ÐÝ FindFacepS1, . . . , SKq
5: pQ1, . . . , QK´1q

T ÐÝ Demix2pR2, . . . , RKq
6: for i “ 1, . . . ,K ´ 1 do
7: QK ÐÝ ResiduepQK |Qiq
8: end for
9: return pQ1, . . . , QKq

T

10: end if

the sequence

QiK ÐÝ ResiduepQi´1
K |Qi´1q;

then, QKK “ PiK .

Proof Relabel the distributions so that Qj “ Pj . Let µi denote the mixture proportion

of QiK and ej the mixture proportion of Pj . Write µ1 “
řK
i“1 αiei. We claim that µk “

ř

iěk αiei
ř

iěk αi
for all k ď K. We prove this inductively. The base case k “ 1 follows since

ř

iě1 αi “ 1. Next, we prove the inductive step. Suppose that µk´1 “

ř

iěk´1 αiei
ř

iěk´1 αi
. By

Proposition 3, the mixture proportion of QkK , µk, is the residue of µk´1 with respect to
ek´1. By statement 1 of Lemma 2, we can write

µk “ ek´1 ` α
˚pµk´1 ´ ek´1q

“
r
ř

iěk´1 αip1´ α
˚q ` α˚αk´1sek´1 ` α

˚
ř

iěk αiei
ř

iěk´1 αi

where

α˚ “
1

1´ κ˚pµk´1 | ek´1q

and we have used the inductive hypothesis µk´1 “

ř

iěk´1 αiei
ř

iěk´1 αi
. α˚ is the value of the

following optimization problem (in statement 1 of Lemma 2):

maxpα ě 1 | DG,G “ µk´1 ` αpek´1 ´ µk´1qq.

Inspection of the above optimization problem reveals that α˚ “
ř

iěk´1 αi
ř

iěk αi
. Plugging this

into the above equation gives µk “
ř

iěk αiei
ř

iěk αi
. This establishes the claim.

Setting k “ K, it follows that µK “
αKeK
αK

“ eK .
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Corollary 2 Let P1, . . . , PL be jointly irreducible and Π have full column rank. Then, with
probability 1, Demix2pP̃ q returns a permutation of P .

Proof [Proof of Theorem 5] Note that every estimator of a distribution in the DemixHat
algorithm is a ResidueHat estimator since (i) the Demix2 algorithm 16 only considers
distributions that are in convpP1, . . . , PLq and (ii) only computes Residue(F |H) if F ‰ H.
To see why (ii) is true, consider: the Demix2 algorithm computes Residue(¨ | ¨) at lines 2 and
7 in Demix2 and line 3 in FindFace. In the proof of Theorem 2, we showed that S1, . . . , SK
are always linearly independent and therefore distinct. This implies that in lines 2 and 7
in Demix2 and line 3 in FindFace, the residue function is called on distinct distributions.
Thus, every estimator of a distribution of the DemixHat algorithm satisfies the assumptions
of Lemma 11.

First, we argue that the order of the ResidueHat estimators is bounded; this implies
that the constants in the uniform deviation inequalities associated with the ResidueHat
estimators are bounded. We give a very loose bound. DemixHat calls itself at most L´ 1
times and in each call recurses on at most L ´ 1 ResidueHat estimators and calculates at
most L ´ 1 more ResidueHat estimators. Therefore, each ResidueHat estimator has order
at most pL´ 1q3.

Second, let Ai denote the event that DemixHat recurses on i distributions lying in the
relative interior of an i-face in the pL´ iqth recursive call. We show that the event XL´1

i“2 Ai

occurs with probability tending to 1 as n ÝÑ 8. Consider AL´1. Let pR
pnq
i denote the

estimate of the ith distribution in line 3 in the nth iteration of the for loop in Algorithm

12 and let R
pnq
i denote the corresponding distribution. Let κ˚i,j,n “ κ˚pR

pnq
i |R

pnq
j q. From

the proof of Theorem 2, there exists an integer N1 ě 0 such that for n ě N1, R
pnq
i lies in

the relative interior of the same face for all i “ 2, . . . , L. Further, using the notation from

the proof of Theorem 2, we have that the mixture proportions of the R
pnq
i s, i.e., the µ

pnq
i s,

converge to a common λ on this face, i.e., for all i “ 2, . . . , L,
›

›

›
µ
pnq
i ´ λ

›

›

›
ÝÑ 0. Thus, by

statement 3 of Lemma 4, for all i ‰ j P rLszt1u κ˚pµ
pnq
i |µ

pnq
j q ÝÑ 1. Hence, there exists

N2 ě N1 such that κ˚pµ
pN2q

i |µ
pN2q

j q ą ε for all i ‰ j. By statement 1 of Lemma 12 and

a union bound argument, with probability increasing to 1, FaceTestHatp pR
pnq
2 , . . . , pR

pnq
L | εq

returns 0 for all n ă N1 since R
pnq
2 , . . . , R

pnq
L are not on the relative interior of the same face.

Thus, with probability tending to 1, FaceTest does not make the mistake to return 1 before

the distributions R
pnq
2 , . . . , R

pnq
L are on the relative interior of the same face. By statement

2 of Lemma 12, with probability tending to 1 as n ÝÑ 8, FaceTestHatp pR
pN2q

2 , . . . , pR
pN2q

L | εq
returns 1. Hence, with probability increasing to 1, the event AL´1 occurs. Applying the
same argument to Ai for i ă L´ 1 and taking the union bound shows that XL´1

i“2 Ai occurs
with probability tending to 1 as n ÝÑ 8.

Now, we can complete the proof. Under the assumptions of Theorem 2, there is
a permutation σ such that for each distribution Qi estimated by pQi, Pσpiq “ Qi. By

Proposition 4, as n ÝÑ 8, pQi converges uniformly to Qi. The result follows.
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Algorithm 17 VertexTestHatpΠ`, pP̃ :1 , . . . , P̃
:

M q
T , p pQ1, . . . , pQLq

T q

1: Form the matrix xMi,j – pκpP̃ :i |
pQjq

2: Let |Π`| denote the number of nonzero entries in Π`

3: Form the matrix pZ by making the |Π`| largest entries of xM equal to 1 and the rest of
its entries equal to 0

4: Use any algorithm that finds a permutation matrix C such that pZC “ Π` (if it exists)

5: if such a permutation matrix C exists then
6: return p1,CT q

7: else
8: return p0,0q
9: end if

E.3. Classification with Partial Labels

In this section, we prove Theorem 6. To begin, we briefly sketch an argument that one
can reduce any instance of a partial label model satisfying (B3) and (A) to an instance
of a partial label model that also satisfies (D). Let J “ ti : Π`

i,: “ e
T
j for some j P rLsu “

tj1, . . . , jku, the set of indices of contaminated distributions that are equal to some base
distribution. Compute ResiduepP̃i | P̃j1q for i P rLszJ if there is l such that Π`

i,l “ Π`
j1,l
“ 1.

Replace P̃i with ResiduepP̃i | P̃j1q (and call it P̃i for simplicity of presentation). Update Π`

and remove j1 from J . Repeat this procedure until J is empty. Then, there will be pL´|J |q
P̃i lying in a pL ´ |J |q-face of ∆L that are not equal to any of the base distributions and
the other contaminated distributions will be equal to base distributions. Then, it suffices
to solve the instance of the partial label model on the pL´ |J |q-face, which satisfies (D).

Next, we introduce VertexTestHat (Algorithm 17), an empirical version of VertexTest,
and prove that it satisfies a useful consistency property.

Lemma 14 Suppose that P1, . . . , PL satisfy (A2), Π has full column rank, the columns
of Π` are unique and Π` satisfies (D). Let pQ1, . . . , pQL be ResidueHat estimators of
Q1, . . . , QL, respectively. Suppose that pQ1, . . . , QLq is a permutation of pP1, . . . , PLq. Then,
with probability tending to 1 as n ÝÑ 8, VertexTestHatpΠ`, pP̃ :1 , . . . , P̃

:

M q
T , p pQ1, . . . , pQLq

T q

returns a permutation matrix C such that @i, Ci,:p pQ1, . . . , pQLq
T is a ResidueHat estimator

of Pi.

Proof Define pκi,j – pκpP̃ :i |
pQjq and κ˚i,j – κ˚pP̃i |Qjq. We claim that pκi,j satisfies a (RC).

Since P1, . . . , PL satisfy (A2) and by assumption (D) Qj ‰ P̃i, by Lemma 8, P̃i satisfies

(SC) wrt Qj . Since P̃ :i is an empirical distribution, P̃ :i satisfies a (UDI). Since pQj is a

ResidueHat estimator, pQj satisfies a (UDI) by Lemma 11. Therefore, the hypotheses of
Lemma 10 are satisfied and pκi,j satisfies a (RC).

Form the matrix Zi,j “ 1
tκ˚pP̃i |Qjqą0u as in Algorithm 9. Since Q1, . . . , QL are

a permutation of P1, . . . , PL, Z is formed by permuting the columns of Π` appro-
priately. Thus, there are |Π`| pi, jq pairs such that κi,j ą 0 and the rest are such
that κi,j “ 0. Then, using Lemma 10 and a union bound, with probability tend-
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ing to 1 as n ÝÑ 8, pκi,j is among the |S| largest values in the matrix xM if and

only if κi,j ą 0. On this event, VertexTestHatpΠ`, pP̃ :1 , . . . , P̃
:

M q
T , p pQ1, . . . , pQLq

T q

and VertexTestpΠ`, pP̃1, . . . , P̃M q
T , pQ1, . . . , QLq

T q return the same output.
Since pQ1, . . . , QLq is a permutation of pP1, . . . , PLq by hypothesis, by Lemma
7 VertexTestpΠ`, pP̃1, . . . , P̃M q

T , pQ1, . . . , QLq
T q returns p1,CT q such that

CT pQ1, . . . , QLq
T “ P . The result follows.

Proof [Proof of Theorem 6] Let p pQ1, . . . , pQLq ÐÝ DemixHatpP̃ :1 , . . . , P̃
:

M | εq. By Theorem
5, w.p. tending towards 1 as n ÝÑ 8, there exists a permutation σ : rLs ÝÑ rLs such that
for every i P rLs,

sup
EPE

| pQipEq ´ PσpiqpEq| ă δ.

From the proof of Theorem 5, each pQi is a ResidueHat estimator. The assumptions of
Lemma 14 are satisfied. The result follows immediately from Lemma 14.

Appendix F. Previous Results

Lemma 15 (Lemma A.1 (Blanchard and Scott, 2014)) The maximum operation in
the definition of κ˚ and pκ (lines (3) and (6), respectively) is well-defined, that is, the outside
supremum is attained at at least one point.

Lemma 16 (Lemma B.1 (Blanchard and Scott, 2014)) If Π satisfies (B1), then
π1, . . . ,πL are linearly independent. If P1, . . . , PL are jointly irreducible, then they are
linearly independent. If π1, . . . ,πL are linearly independent and P1, . . . , PL are linearly
independent, then P̃1, . . . , P̃L are linearly independent.

Appendix G. Experiments

In this Section, we perform experiments that suggest that joint irreducibility of P1, . . . , PL
is a reasonable assumption. In particular, our experiments suggest that on the datasets
in question, (A2) holds (which is a strictly stronger condition than joint irreducibility).
We consider three datasets: classes 1, 2, and 3 of MNIST (LeCun et al., 1998), the Iris
dataset (Fisher, 1936), and the Breast Cancer Wisconsin (Diagnostic) Data Set (Dheeru and
K. Taniskidou, 2017). We use the Spectral Support Estimation algorithm (De Vito et al.,
2010; Rudi et al., 2014) to estimate the support of each class in each dataset. We split each
dataset into training, validation, and test sets, applying the algorithm to the training set,
using the validation set to pick the hyperparameters, and evaluating the performance on
the test set. We average our results over 60 trials where in each trial we randomly permute
the dataset, thus altering the training, validation, and test sets. Let pSi denote an estimate
of the support of class i. Tables 1, 3, and 5 display an estimate of the probability that a
point sampled from Pi belongs to the estimate of the support pSi. They indicate that the
Spectral Support Estimation has reasonably good performance in producing pSis containing
the support of the associated class. Tables 2, 4, and 6 use the pSi to estimate the quantity
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Prx„Pipx P Yj‰i supppPjqq, which must be strictly less than 1 for (A2) to hold. We find
that our estimates are considerably less than 1, which suggests that joint irreducibility holds
on these datasets.
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i “ 1 i “ 2
xPrx„Pipx P

pSiq 0.87 0.89

Table 1: Cancer Support Results.

i “ 1 i “ 2
xPrx„Pipx P Yj‰i

pSjq 0.18 0.38

Table 2: Cancer Separability Results.

i “ 1 i “ 2 i “ 3
xPrx„Pipx P

pSiq 0.86 0.84 0.84

Table 3: Iris Support Results.

i “ 1 i “ 2 i “ 3
xPrx„Pipx P Yj‰i

pSjq 0.0 0.17 0.19

Table 4: Iris Separability Results.

i “ 1 i “ 2 i “ 3
xPrx„Pipx P

pSiq 0.98 0.87 0.83

Table 5: MNIST Support Results.

i “ 1 i “ 2 i “ 3
xPrx„Pipx P Yj‰i

pSjq 0.08 0.17 0.14

Table 6: MNIST Separability Results.
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