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Abstract

We develop a set of scalable Bayesian inference procedures for a general class of nonparametric
regression models. Specifically, nonparametric Bayesian inferences are separately performed
on each subset randomly split from a massive dataset, and then the obtained local results
are aggregated into global counterparts. This aggregation step is explicit without involving
any additional computation cost. By a careful partition, we show that our aggregated
inference results obtain an oracle rule in the sense that they are equivalent to those obtained
directly from the entire data (which are computationally prohibitive). For example, an
aggregated credible ball achieves desirable credibility level and also frequentist coverage
while possessing the same radius as the oracle ball.

Keywords: Credible region, divide-and-conquer, Gaussian process prior, linear functional,
nonparametric Bayesian inference

1. Introduction

With rapid development in modern technology, massive data sets are becoming more and
more common. An important feature of massive data is their large volume which hinders
applications of traditional statistical methods. For example, due to huge data amount and
limited CPU memory, it is often impossible to process the entire data in a single machine.
In the parallel computing environment, a common practice is to distribute massive data to
multiple processors, and then aggregate local results in an efficient way. A series of frequentist
methods such as Kleiner et al. (2011); McDonald et al. (2010); Zhang et al. (2015a); Zhao
et al. (2016) have been proposed in this Divide-and-Conquer (D&C) framework.

In Bayesian community, there are quite a few computational or methodological works
developed for massive data such as scalable algorithms for Bayesian variable selection Boom
et al. (2015); Wang et al. (2014) and scalable posterior sampling in parametric models Wang
and Dunson (2013); Wang et al. (2015). Theoretical guarantees of D&C methods have been

©2019 Zuofeng Shang, Botao Hao, Guang Cheng.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/17-641.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/17-641.html


Shang, Hao, Cheng

recently obtained in robust estimation Minsker et al. (2017), posterior interval estimation
Srivastava et al. (2018), credible sets of signal in Gaussian white noise Szabó and van Zanten
(2019); Szabo and van Zanten (2018). Rather, the present paper puts focus on uncertainty
quantification of the model parameter in general nonparametric regression, primarily in
theoretical aspects. For instance, how to aggregate individual posterior means into a global
one that maintains frequentist optimality? How to aggregate individual credible balls into a
global one with a minimal possible radius? And how many divisions and what kind of priors
should be chosen to guarantee Bayesian and frequentist validity of the aggregated ball? We
attempt to address these questions in a univariate nonparametric regression setup.

Specifically, we develop a set of aggregation procedures in Bayesian nonparametric
regression. As a first step, nonparametric Bayesian regression is separately fitted based
on each subsample randomly split from a massive dataset. A variety of finite sample
valid credible balls (credible intervals) for regression functions (their linear functionals
Rivoirard et al. (2012), e.g., local values) are then constructed from each individual posterior
distribution based on MCMC. In the second step, we aggregate these credible balls (credible
intervals) into global counterparts analytically without involving any additional computation.
For example, the center of an aggregated ball is obtained by weighted averaging Fourier
coefficients of all individual (approximate) posterior modes, while the radius is given through
an explicit formula on individual radii. A notable advantage of this distributed strategy
is its dramatically faster computational speed, and this computational advantage becomes
more obvious as data size grows.

Our aggregation procedures are proven to obtain an oracle rule in the sense that they are
equivalent to those obtained directly from the entire data, i.e., called as oracle results which
are computationally prohibitive in practice. For example, our aggregated posterior means
are proven to achieve optimal estimation rate, and our aggregated credible ball achieves
desirable credibility level and also frequentist coverage while possessing asymptotically the
same radius as the oracle ball. These oracle results hold when the assigned Gaussian process
priors in each subset are properly chosen and the number of subsets does not grow too fast.
A fundamental theory underlying Bayesian aggregation is a uniform version of nonparametric
Gaussian approximation theorem, also called as Bernstein-von Mises theorem. Developed
based on our recent work Shang and Cheng (2017), this theory states that a sequence of
individual posterior distributions converge to Gaussian processes uniformly over the number
of subsets.

The rest of this paper is organized as follows. Section 3 describes our Bayesian nonpara-
metric model with a Gaussian process prior, based on which our main results are developed
in Section 4. Specifically, a uniform nonparametric Gaussian approximation theorem is
established in Section 4.1, and all the Bayesian aggregation procedures together with their
theoretical guarantee are provided in Sections 4.2–4.6. Section 5 provides a simulation study
to justify our methods. Section 6 applies the proposed procedures to a real dataset of large
size. Main proofs are provided in Appendix. Other results and additional plots are given in
a supplementary document Shang and Cheng.
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2. Nonparametric Bayesian Aggregation: An Illustration

In this section, we provide a concrete example to demonstrate the intuition of our non-
parametric Bayesian aggregation procedure. Our example is based on the special uniform
design and periodic Sobolev space which makes our aggregation procedure explicit and easy
to understand. Section 2.1 describes our nonparametric Bayesian model, and Section 2.2
demonstrates our algorithm and its numeric performance. General aggregation procedures
will be proposed in Sections 3 and 4 with asymptotic properties investigated as well.

2.1. Nonparametric Bayesian model

Suppose that we observe the data Zi = (Yi,Xi), i = 1, . . . ,N , generated from the following
Gaussian regression model with uniform design

Yi∣f,Xi ∼ N(f(Xi),1), X1, . . . ,XN
iid∼ Unif[0,1]. (1)

Randomly split {1,2, . . . ,N} into s subsets I1, I2, . . . , Is with ∣I1∣ = ⋯ = ∣Is∣ = n (so N = ns).
Denote Dj = {Zi∣i ∈ Ij} the j-th subsample for j = 1, . . . , s and D = ∪sj=1Dj the entire sample.

Suppose that f belongs to an m-order periodic Sobolev space Sm0 [0, 1] where Sm0 [0, 1] is
the collection of all functions on [0,1] of the form

f(x) =
√

2
∞
∑
k=1

fk cos(2πkx) +
√

2
∞
∑
k=1

gk sin(2πkx) (2)

with real coefficients fk, gk satisfying

∞
∑
k=1

(f2
k + g

2
k)(2πk)

2m <∞. (3)

Here, m > 1/2 is a constant describing the smoothness of the functions. Wahba (1990)
Wahba (1990) introduced a Gaussian process (GP) prior on f which has an interesting
smoothing spline interpretation. Specifically, she assumed that the coefficients fk, gk in (2)
are independent and normally distributed as follows:

fk, gk ∼ N (0, [(2πk)2m+β + nλ(2πk)2m]−1) , k = 1,2, . . . , (4)

where β > 1 and λ ≥ 0 are predecided constants. In particular, β represents the “relative
smoothness” of the prior to the parameter space and λ represents the amount of rescaling.
Rescaling priors are also considered by Szabó and van Zanten (2019); Szabo and van Zanten
(2018) for constructing credible sets of signals in Gaussian white noise. It can be examined
that if f satisfies (2) and (4), then f is a Gaussian process with mean zero and isotropic
covariance function

K0(x,x′) = 2
∞
∑
k=1

cos(2πk(x − x′))
(2πk)2m+β + nλ(2πk)2m

, x, x′ ∈ [0,1]. (5)

Wahba Wahba (1990) showed that the above GP prior (4) generates a posterior distribution
corresponding to a penalized likelihood function (with λ the penalty parameter). This
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provides a Bayesian interpretation for smoothing splines. Below we provide some details to
justify this argument.

Let Πλ denote the probability distribution of f under (4). To derive the posterior
distribution, we need to find the “prior density” of f . Unlike the parametric settings where
the prior densities are Radon-Nikodym (RN) derivatives w.r.t. Lebesgue measure, in the
current infinite-dimensional setting it is impossible to do so since there is no Lebesgue
measure on Sm0 [0,1] (see Hunt et al. (1992)). Instead, we need to characterize the prior
density of f as an RN derivative w.r.t. other kinds of measures such as Gaussian measure.
Following Wahba Wahba (1990), Πλ and Π ≡ Π0 (corresponding to λ = 0) are equivalent
probability measures, and the RN derivative of Πλ w.r.t. Π is

dΠλ

dΠ
(f) =

∞
∏
k=1

(1 + nλ(2πk)−β)−1 × exp(−nλ
2

∞
∑
k=1

(f2
k + g

2
k)(2πk)

2m)

=
∞
∏
k=1

(1 + nλ(2πk)−β)−1 × exp(−nλ
2
∫

1

0
f (m)(x)2dx)

=
∞
∏
k=1

(1 + nλ(2πk)−β)−1 × exp(−nλ
2
J(f)) , (6)

where J(f) = ∫
1

0 f
(m)(x)2dx. Note that ∏∞

k=1 (1 + nλ(2πk)−β)−1
converges thanks to β > 1

so that (6) is a valid expression. (6) provides an expression for the prior density of f , which
induces the following posterior distribution for f given subsample j:

dP (f ∣Dj) ∝ P (Dj ∣f)dΠλ(f)

∝ exp
⎛
⎝
−1

2
∑
i∈Ij

(Yi − f(Xi))2 − nλ
2
J(f)

⎞
⎠
dΠ(f), j = 1, . . . , s. (7)

Recall that Ij indexes the j-th subsample. The right hand-side of (7) corresponds to
penalized likelihood function `j(f) = − 1

2n ∑i∈Ij(Yi − f(Xi))2 − λ
2J(f) which has been well

studied in smoothing spline literature (Wahba (1990)). Theoretically, we recommend to

choose λ ≍ N− 2m
2m+β which will be proven to yield optimal Bayesian inference; see Sections 3

and 4. The duality between the posterior and smoothing spline, i.e., (7), enables us to easily
choose λ for practical use, e.g., GCV considered by Wahba (1990).

2.2. Nonparamtric Bayesian Aggregation

First of all, we calculate f̆j,n = E{f ∣Dj}, j = 1, . . . , s, the posterior means based on individual

posterior distributions (7). Then we construct a (1−α)-th credible ball centering at f̆j,n with

radius rj,n(α). That is, rj,n(α) > 0 such that P (f ∈ Sm0 [0,1] ∶ ∥f − f̆j,n∥L2 ≤ rj,n(α)∣Dj) =
1 − α, where ∥ ⋅ ∥L2 is the usual L2-norm, i.e., ∥f∥L2 =

√
∫

1
0 f(x)2dx. In practice, f̆j,n

and rj,n(α) can be both estimated by the posterior samples. For instance, generate M

independent samples fj1, . . . , fjM from (7); estimate f̆j,n by their average and estimate

rj,n(α) by the (1 − α)-th percentile of ∥fjl − f̆j,n∥L2 for 1 ≤ l ≤ M . We postpone the
computational details of the sampling procedure to Section 8.5.

We next present a concrete aggregation scheme (procedures (1)–(3) below) to construct a
credible ball based on these individual results {f̆j,n, rj,n(α)}sj=1. Specifically, an aggregated
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credible ball for f , denoted RN(α), is constructed with its center/radius obtained through
weighted averaging the individual centers/radii. Unlike simple averaging commonly used in
frequentist setting (see Zhang et al. (2015a)), our procedures for posterior mean aggregation
and radius aggregation are weighted averaging with weights ws,N,λ,k defined in (10). These
weights are used to calibrate the prior effect such that the aggregation procedure can have
satisfactory asymptotic property. The details of our procedure are demonstrated as follows:

1. Posterior mean aggregation. For j-th subsample and k ≥ 1, find

f̆j,n,k =
√

2∫
1

0
f̆j,n(x) cos(2πkx)dx, ğj,n,k =

√
2∫

1

0
f̆j,n(x) sin(2πkx)dx, (8)

where f̆j,n is the posterior mean based on subsample j. Then we aggregate these
quantities through the following formulas:

f̆N,λ,k =
s

∑
j=1

f̆j,n,k/s, ğN,λ,k =
s

∑
j=1

ğj,n,k/s. (9)

In the end, we let

f̆N,λ(x) =
∞
∑
k=1

ws,N,λ,k {f̆N,λ,k
√

2 cos(2πkx) + ğN,λ,k
√

2 sin(2πkx)} , (10)

where ws,N,λ,k = s(2πk)2m+β+N(1+λ(2πk)2m)
(2πk)2m+β+N(1+λ(2πk)2m) for k ≥ 1.

2. Posterior radius aggregation. Aggregate the radii rj,n(α) through the following formula:

rN(α) =

¿
ÁÁÁÀAN,s

⎛
⎝

1

s

s

∑
j=1

rj,n(α)2
⎞
⎠
+BN,s, (11)

where

AN,s =
√
C2/D2s

− 4m+2β−1
2(2m+β) ,

BN,s = (2C1 − 2D1

√
C2/D2s

− 1
2(2m+β))N− 2m+β−1

2m+β ,

Ck = ∫
∞

0
(1 + (2πx)2m + (2πx)2m+β)−kdx, k = 1,2,

Dk = ∫
∞

0
(1 + (2πx)2m)−kdx, k = 1,2.

(12)

3. Aggregated credible ball :

RN(α) = {f ∈ Sm0 [0,1] ∶ ∥f − f̆N,λ∥L2 ≤ rN(α)}. (13)

Algorithms based on weighted averaging have been proposed in numerous computational
aspects. For instance, Huang and Gelman (2005); Neiswanger et al. (2013); Scott et al. (2016)
proposed computational procedures for efficiently aggregating local MCMC samples in which
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the aggregation steps involve proper weight averaging. Such algorithms are particularly
useful to produce MCMC samples from the oracle posterior which can be used for various
inferential purposes, e.g., estimation and testing. The present paper focuses on inferences,
e.g., construction of credible balls, in a special class of nonparametric regression models,
and has more extensive theoretical guarantees.

In practice, one can approximate the integral (8) through discretization; see Section
8.5. Theorem 3 will show that RN(α) given in (13) asymptotically covers 1 − α mass of
the posterior based on the full data set and includes the true function with probability
approaching one. More theoretical study on RN(α) such as its center and radius can be
found in Sections 4.2 and 4.3. Note that these sections present an aggregation procedure in
a more general context, which covers (13) as a special case.

A toy simulation study was carried out to examine the proposed procedures (1)–(3).
Specifically, we examine the computing time and coverage probability (CP) of RN(α) for
various choices of s. The CP is defined as the relative frequency of the sets that cover the
truth. We choose m = β = 2 in our GP prior (4). Results are summarized in Figure 1. Plot
(a) displays the true function f0 under which data were generated. Plot (b) displays how the
CP varies as γ ∶= log(s)/ log(N). Plot (c) displays that the computing time decreases when
γ increases. There seems to be a transition for CP vs. γ, i.e., CP is uniformly close to one
when 0 ≤ γ < 0.3 and approaches zero when γ > 0.4. In conclusion, RN(α) possesses both
satisfactory frequentist coverage and computational efficiency when γ ≈ 0.2. Other choices
of γ either lower CP or slow down the computing. Thus, under a proper choice of s, our
aggregation procedure can maintain good statistical properties and reduce computing burden
at the same time. Careful readers may have noticed that the CP approaches one rather
than the credibility level (1 − α). This issue can be addressed by a modified aggregated set
proposed in Section 4.4. More comprehensive simulation results are provided in Section 5 to
examine various aggregation procedures such as the pointwise credible intervals.
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Figure 1. Examination of our aggregation procedures (1)–(3). Results are based on N = 1200 observations

generated from (1) and a GP prior (4) with m = β = 2 and λ = N−2/3. (a) True regression function

f0(x) = 2.4β30,17(x) + 1.6β3,11(x), where βa,b is the probability density function for Beta(a, b). (b) Coverage

probability (CP) of RN(0.95) vs. γ. (c) Computing time (in seconds) of RN(0.95) vs. γ.
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3. A Nonparametric Bayesian Framework Based on General Design and
Space

In this section, we introduce a more general Bayesian nonparametric framework based on
general design and function space under which the aggregation results will be obtained.
Suppose that the data {Yi,Xi}Ni=1 follow a nonparametric regression model:

Yi∣f,Xi
ind.∼ N(f(Xi), σ2), X1, . . . ,XN

iid∼ π(x), (14)

where π(⋅) is a probability density on I = (0, 1), and f belongs to an m-order Sobolev space
Sm(I):

Sm(I) = {f ∈ L2(I)∣f (0), f (1), . . . , f (m−1)are abs. cont. and f (m) ∈ L2(I)}. (15)

In particular, Sm0 [0,1] is a proper subset of Sm(I). Throughout, we let m > 1/2 such that
Sm(I) is a reproducing kernel Hilbert space (RKHS). For technical convenience, assume
σ2 = 1 and 0 < infx∈I π(x) ≤ supx∈I π(x) <∞. When σ2 is unknown, our approach can still
be applied with σ2 replaced by its consistent estimate.

For any f, g ∈ Sm(I), define V (f, g) = E{f(X)g(X)} and J(f, g) = ∫
1

0 f
(m)(x)g(m)(x)dx.

Following Shang et al. (2013), there exists a sequence of eigenfunctions ϕ1, ϕ2, . . . ∈ Sm(I)
and a sequence of eigenvalues 0 = ρ1 = ρ2 = ⋯ = ρm < ρm+1 ≤ ρm+2 ≤ ⋯ such that ρν ≍ ν2m

and

V (ϕν , ϕµ) = δνµ, J(ϕν , ϕµ) = ρνδνµ, ν, µ ≥ 1, (16)

where δνµ is the Kronecker’s delta.

We next place a prior distribution Πλ on f , where Πλ is a probability measure on Sm(I)
and λ ≥ 0 is a hyperparameter. Similar to Section 2, we will characterize Πλ through its
Radon-Nikodym (RN) derivative w.r.t. Π, with Π a pre-given probability measure Π on
Sm(I). Specifically, assume that the RN derivative of Πλ w.r.t. Π satisfies

dΠλ

dΠ
(f)∝ exp(−nλ

2
J(f)) , (17)

where J(f) is defined in (3). Interestingly, it is possible to explicitly construct Πλ and Π
such that (17) holds. To see this, let

Gλ(⋅) =
∞
∑

ν=m+1

wνϕν(⋅), (18)

where wν ’s are independent of the observations satisfying wν ∼ N(0, 1/(ρ1+β/(2m)
ν +nλρν)), ν >

m. Let G(⋅) = Gλ=0(⋅). Suppose Πλ and Π are probability measures induced by Gλ and G,
i.e., Πλ(S) = P (Gλ ∈ S) and Π(S) = P (G ∈ S) for any measurable S ⊆ Sm(I). It follows by
Hájek’s lemma (see Shang and Cheng (2017)) that (17) holds. In (18), λ ≥ 0 and β > 1 are
both hyper-parameters characterizing the smoothness of the prior. It is easy to check that
the sample path of Gλ belongs to Sm(I) for any β > 1 almost surely. As demonstrated in a
simulation study, the GCV-selected λ is sufficient to provide satisfactory results.
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4. Main Results

In this section, we present a series of main results that are built upon a uniform Gaussian
approximation theorem (Section 4.1). Three classes of aggregation procedures are then
proposed: aggregated credible balls in both strong and weak topology, and aggregated
credible intervals for linear functionals. These results can be classified into two types: finite
sample construction (Sections 4.3, 4.4 and 4.5) and asymptotic construction (Section 4.6).
The former construction is often time-consuming since its radius (interval length) is obtained
through s posterior sampling, while the latter employs a large-sample limit of the radius
given by an explicit formula. The computational gain will be illustrated by the simulations
in Section 5. Similar to Section 2, let I1, I2, . . . , Is be a random partition of {1,2, . . . ,N}
such that ∪sj=1Ij = {1,2, . . . ,N} with ∣Ij ∣ = n for j = 1, . . . , s and N = ns.

4.1. A Uniform Gaussian Approximation Theorem

A fundamental theory underlying Bayesian aggregation is developed in this section. It is a
uniform version of Gaussian approximation theorem that characterizes the limit shapes of a
sequence of individual posterior distributions. This uniform validity holds if the number
of posterior distributions does not grow too fast. Also, Bayesian aggregation procedures
possess frequentist validity if λ is chosen properly.

Similar to (7), we note that each sub-posterior distribution can be written as

dP (f ∣Dj)∝ exp(n`jn(f))dΠ(f),

where `jn(f) = n−1∑i∈Ij(Yi − f(Xi))2 − (λ/2)J(f). Define

f̂j,n = arg max
f∈Sm(I)

`jn(f), j = 1, . . . , s. (19)

Suppose that f̂j,n admits the following Fourier expansion:

f̂j,n(⋅) =
∞
∑
ν=1

f̂ (j)ν ϕν(⋅), 1 ≤ j ≤ s. (20)

Define h = λ1/(2m) with h∗ ∶= N− 1
2m+β . We remark that h∗ is an optimal choice for our

aggregation procedure as will be shown later.

Theorem 1 (Uniform Gaussian Approximation) Suppose that f0 admits a Fourier expansion
f0(⋅) = ∑∞ν=1 f

0
νϕν(⋅) which further satisfies

Condition (S) ∶
∞
∑
ν=1

∣f0
ν ∣2ρ

1+β−1
2m

ν <∞

If the following holds

m > 1 +
√

3

2
≈ 1.866,1 < β < 2m + 1

2m
− 1, s = o(N

β−1
2m+β ) and h ≍ h∗, (21)

then we have as N →∞,

sup
S∈S

max
1≤j≤s

∣P (S∣Dj) − P0j(S)∣ = OPf0 (
√
sN

− 4m2+2mβ−10m+1
4m(2m+β) (logN)

5
2) , (22)
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where S is the Borel σ-algebra on Sm(I) with respect to Π, and P0j’s are GPs defined by

P0j(S) =
∫S exp (−n2 ∥f − f̂j,n∥

2)dΠ(f)

∫Sm(I) exp (−n2 ∥f − f̂j,n∥2)dΠ(f)
, S ∈ S. (23)

Proof of Theorem 1 is rooted in Shang and Cheng (2017) who essentially considered s = 1.
Substantial efforts have been made here to quantify a range of partition size s such that
local posteriors can be uniformly approximated by GPs. The explicit structure of the GPs
provides a guideline for our aggregation procedures which will be introduced in subsequent
sections. It should be emphasized that our aggregation of GPs is weighted-averaging which
is different from product-based ones such as Cao and Fleet (2014).

Condition (S) amounts to requiring known regularity of the truth f0 ∈ Sm+
β−1
2 (I). This

can be seen from the inequality ∑∞ν=1 ∣f0
ν ∣2ν2m+β−1 < ∞ since ρν ≍ ν2m. This condition

essentially means that f0 has derivatives up to order m + β−1
2 (when this order is integer-

valued). Combined with (21) this means that the regularity of f0 belongs to (m, 2m+ 1
4m −1),

i.e., the truth function is jointly confined by both functional space and the prior. The ∥⋅∥-norm
used in (23) is defined as follows. For any g, g̃ ∈ Sm(I), define

⟨g, g̃⟩ = V (g, g̃) + λJ(g, g̃) (24)

and its squared norm ∥g∥2 = ⟨g, g⟩. Clearly, ⟨⋅, ⋅⟩ is a valid inner product on Sm(I).

Remark 1 We remark that (21) can be replaced by a more general rate condition:

nh2m+1 ≥ 1, an = O(r̃n), bn ≤ 1, r2
nbn ≤ r̃2

n, nr̃
2
nbn = o(1),

where rn = (nh)−1/2 + hm, r̃n = (nh/ log 2s)−1/2 + hm+
β−1
2 , an = n−1/2h−

6m−1
4m rn logN, bn =

n−1/2h−
6m−1
4m (logN)3/2. Here, we provide a technical explanation for the terms rn, r̃n, an, bn.

Specifically, rn can be viewed as the rate of convergence of local ordinary penalized MLE (19),
r̃n can be viewed as the posterior contraction rate of the local Bayesian mode, an, bn are error
bounds of the higher-order remainders in the Taylor expansions of the individual penalized
likelihood functions. Uniform Gaussian approximation for general h (not necessarily h ≍ h∗)
can be established under such condition.

Theorem 3.5 in Shang and Cheng (2017) shows that P0j (conditional on Dj) is induced
by a Gaussian process, denoted as W j , in the sense that P0j(S) = P (W j ∈ S∣Dj) for any
S ∈ S. Define

τ2
ν = ρ

1+ β
2m

ν , ν ≥ 1. (25)

Then we have

W j(⋅) =
∞
∑
ν=1

(an,ν f̂ (j)ν + bn,ντνvν)ϕν(⋅), j = 1,2, . . . , s,

where an,ν = n(1 + λρν)(τ2
ν + n(1 + λρν))−1, bn,ν = (τ2

ν + n(1 + λρν))−1/2 and vν ∼ N(0, τ−2
ν ).

For convenience, define the mean functions of W j as

f̃j,n(⋅) ∶=
∞
∑
ν=1

an,ν f̂
(j)
ν ϕν(⋅), j = 1, . . . , s, (26)

9
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such that we can re-express W j as

W j = f̃j,n +Wn, j = 1, . . . , s,

where Wn(⋅) ∶= ∑∞ν=1 bn,ντνvνϕν(⋅) is a zero-mean GP. Note that the posterior mode f̃j,n is
very close to f̂j,n since ∥f̃j,n− f̂j,n∥ = oPf0 (1) uniformly for 1 ≤ j ≤ s; see the proof of Theorem

3. The above characterization of W j is useful for the subsequent Bayesian aggregation
procedures.

4.2. Aggregated posterior means

In this section, we propose a method to aggregate the posterior means f̆j,n ∶= E{f ∣Dj},

for j = 1, . . . , s. The aggregated mean function, denoted as f̆N,λ(⋅), can be viewed as a
nonparametric Bayesian estimate of f , and will be used to construct aggregated credible
balls/intervals to be introduced later.

Our aggregation procedure is

f̆N,λ(⋅) =
∞
∑
ν=1

aN,ν

an,ν
V

⎛
⎝

1

s

s

∑
j=1

f̆j,n, ϕν
⎞
⎠
ϕν(⋅). (27)

Note that when the model is Gaussian and f ∈ Sm0 (0,1), (27) becomes (10). Next we
will show that the aggregation procedure (27) yields minimax optimality in the following
theorem.

Theorem 2 Under conditions of Theorem 1, the following result holds:

max
1≤j≤s

∥f̆j,n − f̃j,n∥ = OPf0 (r̃n
√
sN

− 4m2+2mβ−10m+1
4m(2m+β) (logN)

5
2) , (28)

If, in addition, 3/2 < β < 2m + 1/(2m) − 3/2 and s satisfies

s = o(N
4m2+2mβ−11m+1

8m(2m+β) (logN)−
3
2) , (29)

then it holds that

∥f̆N,λ − f0∥2 = OPf0 (N− 2m+β−1
2(2m+β)) , (30)

where ∥f∥2 =
√
V (f) denotes the V -norm.

According to van der Vaart et al. (2008b), the rate in (30) is minimax optimal given Condition
(S).

4.3. Aggregated credible region in strong topology

In this section, we construct an aggregated credible region based on s individual credible
regions (w.r.t. a weighted `2-norm). Specifically, s radii are combined in an explicit manner.
This aggregated region possesses nominal posterior mass asymptotically, and is further
proven to cover the true function with probability tending to one. This nice frequentist

10
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property is achieved as long as s is not diverging fast and the assigned GP prior in each
subset is chosen by setting h ≍ h∗, i.e., λ ≍ N−2m/(2m+β). The conservative frequentist
coverage can be improved to the nominal level if we use a weaker norm in defining credible
region; see Section 4.4.

Based on each subset Dj , the individual credible ball is constructed as follows:

Rj,n(α) = {f ∈ Sm(I) ∶ ∥f − f̆j,n∥2 ≤ rj,n(α)}.

The credible ball centers around the posterior mean f̆j,n, while its radius rj,n(α) is directly
sampled from MCMC such that P (Rj,n(α)∣Dj) = 1 − α for any α ∈ (0, 1). We will construct

an “aggregated” region centering at f̆N,λ with radius explicitly constructed as follows:

rN(α) =

¿
ÁÁÁÀ 1

N

⎡⎢⎢⎢⎢⎣
ζ1,N +

¿
ÁÁÀζ2,N

ζ2,n

⎛
⎝
n

s

s

∑
j=1

r2
j,n(α) − ζ1,n

⎞
⎠

⎤⎥⎥⎥⎥⎦
, (31)

where

ζk,n =
∞
∑
ν=1

( n

τ2
ν + n(1 + λρν)

)
k

for k = 1,2.

The final aggregated credible region is obtained as

RN(α) ∶= {f ∈ Sm(I) ∶ ∥f − f̆N,λ∥2 ≤ rN(α)}. (32)

Our theorem below confirms that RN(α) indeed possesses (asymptotic) posterior mass
(1 − α), and more importantly, proves that it covers the true function f0 with probability
tending to one.

Theorem 3 Suppose that f0 satisfies Condition (S), m > 1+
√

3
2 , 3/2 < β < 2m+1/(2m)−3/2,

s = o(N
β−1

2m+β ), (29) and h ≍ h∗. Then for any α ∈ (0, 1), P (RN(α)∣D) = 1 − α + oPf0 (1) and
limn→∞ Pf0(f0 ∈ RN(α)) = 1.

From the proof of Theorem 3, we point out that when s = 1, the posterior mass of the
aggregated credible region is exactly 1 − α, consistent with Shang and Cheng (2017). This
remark also applies to other aggregated procedures to be presented later.

Remark 2 When h ≍ h∗, the radius of the aggregated ball rN(α) ≍ N− 2m+β−1
2(2m+β) according to

the discussions in Section 4.6. This is the optimal rate at which a posterior ball contracts
based on the entire sample; see van der Vaart et al. (2008b).

4.4. Aggregated credible region in weak topology

In this section, we invoke a weaker norm (than that used in Section 4.3) to construct an
aggregated credible region. Under this new norm (inspired by Castillo et al. (2013, 2014)),
it is proven that the frequentist coverage exactly matches with the asymptotic credibility
level. The requirement on s and h in this section remains the same as Section 4.3.

We define a weaker norm than ∥ ⋅ ∥2, denoted ∥ ⋅ ∥ω. For any f ∈ Sm(I) with f = ∑ν fνϕν ,
define ∥f∥2

ω = ∑∞ν=1 ωνf
2
ν , where ων = (ν(log 2ν))−τ for some constant τ > 1. Since ων < 1 for

11
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all ν ≥ 1, we have ∥f∥ω ≤ ∥f∥2. Under the new ∥ ⋅ ∥ω-norm, each individual (1 − α) credible
region is constructed as

Rωj,n(α) = {f ∈ Sm(I) ∶ ∥f − f̆j,n∥ω ≤ rω,j,n(α)},

where rω,j,n(α) is directly obtained from posterior sampling such that P (Rωj,n(α)∣Dj) = 1−α.

Under ∥ ⋅ ∥ω-norm, the aggregated credible region is constructed as:

RωN(α) ∶= {f ∈ Sm(I) ∶ ∥f − f̆N,λ∥ω ≤ rω,N(α)}, (33)

where the radius is given as

rω,N(α) =
¿
ÁÁÀ 1

s2

s

∑
j=1

r2
ω,j,n(α). (34)

Interestingly, Section 4.6 illustrates that the aggregated radius rω,N(α) contracts at root-N
rate.

Our theorem below shows that the frequentist covergage of RωN(α) exactly matches with
the asymptotic posterior mass, both of which achieve the nominal level (1 − α).

Theorem 4 Suppose that f0 satisfies Condition (S), m > 1 +
√

3/2, 2 ≤ β < (2m−1)2
2m ,

s = o(N
β−1

2m+β ), s = o(N
4m2+2mβ−12m+1

8m(2m+β) (logN)−
3
2 ), and h ≍ h∗. Then for any α ∈ (0,1),

P (RωN(α)∣D) = 1 − α + oPf0 (1) and limn→∞ Pf0(f0 ∈ RωN(α)) = 1 − α.

4.5. Aggregated credible interval for linear functional

In this section, we construct aggregated credible intervals for a class of linear functionals
of f , denoted as F (f). Examples include the evaluation functional, i.e., F (f) = f(x), and
integral functional, i.e., F (f) = ∫

1
0 f(x)dx. Specifically, the interval is centered at F (f̆N,λ)

with an length aggregated through s lengths obtained from posterior sampling. Posterior
and frequentist coverage properties of this aggregated interval depends on the functional
form F (⋅). Again, our theory holds when s is mildly diverging and h ≍ h∗.

Let F ∶ Sm(I)↦ R be a linear Π-measurable functional satisfying the following Condition
(F): supν≥1 ∣F (ϕν)∣ < ∞, and there exist constants κ > 0 and r ∈ [0,1] such that for any
f ∈ Sm(I),

∣F (f)∣ ≤ κh−r/2∥f∥. (35)

It follows by Shang and Cheng (2017) that the evaluation functional satisfies Condition (F)
with r = 1 and the integral functional satisfies Condition (F) with r = 0.

Based on each Dj , we obtain from posterior samples the following (1 − α) credible
interval:

CIFj,n(α) ∶= {f ∈ Sm(I) ∶ ∣F (f) − F (f̆j,n)∣ ≤ rF,j,n(α)},

where rF,j,n(α) is a radius such that P (CIFj,n(α)∣Dj) = 1 − α. The aggregated credible
interval is constructed as

CIFN(α) ∶= {f ∈ Sm(I) ∶ ∣F (f) − F (f̆N,λ)∣ ≤ r̄F,N(α)} (36)

12
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where

rF,N(α) =
θ1,N

θ1,n

¿
ÁÁÀ1

s

s

∑
j=1

rF,j,n(α)2 and θ2
k,n =

∞
∑
ν=1

F (ϕν)2

(τ2
ν + n(1 + λρν))k

for k = 1,2. (37)

The shrinking rate of r̄F,N(α) depends on the functional form F ; see Section 4.6.
Our theorem below investigates the asymptotic properties of CINF (α) in terms of both

posterior and frequentist coverage.

Theorem 5 Suppose that f0 = ∑∞ν=1 f
0
νϕν satisfies Condition (S′): ∑∞ν=1 ∣f0

ν ∣2ν2m+β < ∞,

Ef0{ε4∣X} ≤ M4 a.s. for some constant M4 > 0, Nkθ2
k,N ≳ h−r for k = 1,2, m > 1 +

√
3

2 ,

2 ≤ β < (2m−1)2
2m , s = o(N

β−1
2m+β ), s = o(N

4m2+2mβ−12m+1
8m(2m+β) (logN)−

3
2 ), (29) and h ≍ h∗. Then for

any α ∈ (0,1), P (CIFN(α)∣D) = 1 − α + oPf0 (1), and lim infN→∞ Pf0(f0 ∈ CIFN(α)) ≥ 1 − α
given that Condition (F) holds. Moreover, if 0 < ∑∞ν=1 F (ϕν)2 <∞, then limN→∞ Pf0(f0 ∈
CIFN(α)) = 1 − α.

Note that Condition (S′) is slightly stronger than Condition (S) required in Theorem 1.
Indeed, this condition essentially means that f0 has derivatives up to order m + β

2 (when
this order is integer-valued). Hence, Theorem 5 requires a more smooth true function f0.

It was shown in Shang and Cheng (2017) that the integral functional Fx(f) ∶= ∫
x

0 f(z)dz
for any x ∈ [0, 1] satisfies (35) with r = 0 and 0 < ∑∞ν=1 Fx(ϕν)2 <∞. Therefore, the (1−α)-th
credible interval of Fx(f) achieves exactly (1 − α) frequentist coverage, while that for the
evaluation functional is more conservative. These theoretical findings will be empirically
verified in Section 5 .

4.6. Asymptotic aggregated inference

In practice, the centers f̆N,λ, F (f̆N,λ) and the radii rj,n(α), rω,j,n(α), rF,j,n(α) in Sections
4.3 – 4.5 are directly obtained from posterior samples. Sometimes posterior sampling is
time consuming and inefficient, particularly as s →∞. This computational consideration
motivates us to propose an asymptotic approach in which one replaces the above centers/radii
by their large sample limits. Our new asymptotic inference procedures dramatically improve
the computing speed, as displayed in simulations; see Section 5.

Define

f̃N,λ(⋅) =
∞
∑
ν=1

aN,ν

an,ν
V

⎛
⎝

1

s

s

∑
j=1

f̃j,n, ϕν
⎞
⎠
ϕν(⋅). (38)

Clearly, f̃N,λ is a counterpart of f̆N,λ (27) with f̆j,n therein replaced by f̃j,n. By a careful
examination of the proofs of Theorems 3 – 5, it can be shown that the following limits hold:

∥f̆N,λ − f̃N,λ∥ = oPf0 (N
−1/2h−1/4),

max
1≤j≤s

∣
nr2

j,n(α) − ζ1,n√
2ζ2,n

− zα∣ = oPf0 (1),

max
1≤j≤s

∣
√
nrω,j,n(α) −

√
cα∣ = oPf0 (1),

max
1≤j≤s

∣rF,j,n(α)/θ1,n − zα/2∣ = oPf0 (1), (39)

13
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where zα = Φ−1(1 − α) with Φ(⋅) being the c.d.f. of standard normal random variable, and
cα > 0 satisfies P (∑∞ν=1 dνη

2
ν ≤ cα) = 1−α with ην being independent standard normal random

variables.

It yields from (39) that the following approximation relationships hold uniformly for
1 ≤ j ≤ s:

rj,n(α) ≈

¿
ÁÁÀζ1,n +

√
2ζ2,nzα

n
, rω,j,n(α) ≈

√
cα
n

and rF,j,n(α) ≈ θ1,nzα/2,

which further implies (by the aggregation formulae (31), (34) and (37))

rN(α) ≈ r†N(α) ∶=

¿
ÁÁÀζ1,N +

√
2ζ2,Nzα

N
,

rω,N(α) ≈ r†ω,N(α) ∶=
√
cα
N
,

rF,N(α) ≈ r†F,N(α) ∶= θ1,Nzα/2.

(40)

Thus, we have the following asymptotic counterparts of RN(α), RωN(α) and CIFN(α):

R†
N(α) ∶= {f ∈ Sm(I) ∶ ∥f − f̃N,λ∥2 ≤ r†N(α)}, (41)

R†ω
N (α) ∶= {f ∈ Sm(I) ∶ ∥f − f̃N,λ∥ω ≤ r†ω,N(α)}, (42)

CI†F
N (α) ∶= {f ∈ Sm(I) ∶ ∣F (f) − F (f̃N,λ)∣ ≤ r†F,N(α)}. (43)

Our theorem below shows that the posterior coverage and frequentist coverage of the
above computationally efficient alternatives remain the same as those for RN(α), RωN(α)
and CIFN(α) under the same set of conditions.

Theorem 6 Suppose that all assumptions in Theorems 3 – 5 hold. Then for any α ∈ (0, 1),
R†
N(α), R†ω

N (α) and CI†F
N (α) possess exactly the same posterior and frequentist properties

as RN(α), RωN(α) and CIFN(α), respectively.

As a byproduct, (40) implies the contraction rate of each aggregated credible ball/interval
in Sections 4.3 – 4.6. It is easy to see that rω,N(α) ≍ N−1/2. As for rF,N(α), it depends
on the functional form F . For example, when F is an evaluation functional, it holds that

θ2
1,N ≍ (Nh)−1, leading to N

− 2m+β−1
2(2m+β) when h ≍ h∗; when F is an integral functional, we

have rF,N(α) ≍ N−1/2 since θ2
1,N ≍ N−1. As for rN(α), it can be shown by a simple fact

ζ1,N , ζ2,N ≍ h−1 that rN(α) ≍ (Nh)−1/2 ≍ N− 2m+β−1
2(2m+β) when h ≍ h∗. This contraction rate turns

out to be optimal based on the entire sample; see van der Vaart et al. (2008b). However, if

we choose h in the scale of subsample size n, e.g., h ≍ n−
1

2m+β , similar arguments show that

rN(α) ≍ N− 2m+β−1
2(2m+β) s

− 1
2(2m+β) . Hence, such a region contracts faster than the optimal rate,

which results in unsatisfactory frequentist coverage.

Table 1 summarizes six aggregated credible regions/intervals from Sections 4.3 – 4.5 in
terms of their centers and radii.
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Table 1. Summary of Aggregated (1 − α) Credible Regions/Intervals

Type Name Notation Center Radius

Finite-sample
strong CR for f RN(α) f̆N,λ rN(α)
weak CR for f RωN(α) f̆N,λ rω,N(α)

CI for F (f) CIFN(α) F (f̆N,λ) rF,N(α)

Asymptotic
strong CR for f R†

N(α) f̃N,λ r†N(α)
weak CR for f R†ω

N (α) f̃N,λ r†ω,N(α)
CI for F (f) CI†F

N (α) F (f̃N,λ) r†F,N(α)

5. Simulation Study

In this section, statistical properties of the proposed aggregated procedures are examined
using a simulation study. We generated samples from the following model

Yij = f0(Xij) + εij , i = 1,2, . . . , n, j = 1,2, . . . , s, (44)

where Xij
iid∼ Unif[0,1], εij

iid∼ N(0,1), and εij are independent of Xij . The true regression
function was chosen to be f0(x) = 2.4β30,17(x) + 1.6β3,11(x), where βa,b is the probability
density function for Beta(a, b).

Consider GP prior f ∼ ∑nν=1wνϕν , where wν are defined in (18). The proposed Bayesian
procedures were examined. Specifically, we computed the frequentist coverage proportions
(CP) of the credible regions (32), (33), (41), (42), and credible intervals (36), (43). In
particular, (32), (33) and (36) were constructed based on posterior samples, as described in
Sections 4.2–4.5; whereas (41), (42) and (43) were constructed based on asymptotic theory
developed in Section 4.6. To ease presentation, we call (32) and (33) as finite-sample credible
regions (FCR), and call (41) and (42) as asymptotic credible regions (ACR).

The calculation of CP was based on 500 independent experiments. Specifically, the CP is
the proportion of the credible regions/intervals containing f0/F (f0) (for a linear functional
F ). Two types of F were considered: (1) the evaluation functional Fx(f) = f(x) for any
x ∈ [0, 1], and (2) the integral functional Fx(f) = ∫

x
0 f(z)dz for any x ∈ [0, 1]. In both cases,

we consider Fx with x being 15 evenly spaced points in [0.05,0.95]. To make the study more
complete, a set of credibility levels were examined, i.e., 1 − α = 0.1,0.3,0.5,0.7,0.9,0.95. In
each experiment, N = 1200 independent samples were generated from the model (44). For
ACR and FCR, we chose the number of divisions s = 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60.
Define γ = log s/ logN . Note that s = 1 (equivalently, γ = 0) means “no division.”

Figure 2 demonstrates the results for FCR and ACR based on strong topology, i.e.,
(32) and (41). The red dotted line indicates the (1 − α) credibility level. It can be seen
that the CP of both FCR and ACR is above the credibility levels when γ is small, while it
suddenly drops to zero as γ is beyond some threshold, say 0.3. This observation supports
our theory that s should not grow too fast, and that the credible regions based on strong
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Figure 2. CP of ACR and FCR based on strong topology. Dotted red lines indicate credibility levels.

topology tends to be more “conservative.” Figure 3 demonstrates the results for FCR and
ACR based on weak topology, i.e., (33) and (42). We observe that the CP of both ACR and
FCR approaches the desired credibility levels when γ ≤ 0.3, but quickly drops to zero when
γ becomes large. This observation also supports our theory that the use of weak topology
leads to a more satisfactory frequentist coverage.

For credible intervals of linear functionals, we chose the number of divisions s = 1, 6, 15, 60.
Figures 4 and 5 display the results for evaluation functional and integral functional, respec-
tively, based on posterior samples. It can be seen that when s = 60, the CP of the credible
intervals for the evaluation functional drops to zero at most of the x points, indicating the
failure in covering the true values of the function. However, when s = 1,6,15, the CP is
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Figure 3. CP of ACR and FCR based on weak topology. Dotted red lines indicate credibility levels.
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above the credibility levels except for the points where the true function f0 has peaks; see
(a) of Figure 1. The observation that the CP stays above (1 − α) coincides with our theory
that the credible interval of the evaluation functional is conservative. On the other hand, it
can be seen that when s = 60, the CP of the credible intervals for the integral functional
becomes far below the credibility levels at most x. However, when s = 1, 6, 15, the CP is close
to the credibility levels at all x. This finding coincides with our theory that the the credible
interval of the integral functional achieves exactly (1 − α) frequentist coverage. The above
results also support our claim that s cannot grow too fast for guaranteeing frequency validity.
Credible intervals based on asymptotic theory, i.e., (43), were summarized in Figures 11
and 12 of the supplement document Shang and Cheng. Interpretations of these results are
similar to those based on finite posterior samples.

The supplement document Shang and Cheng also includes Figures 13 – 16 which
demonstrate how the radii/lengths of the aggregated credible regions/intervals change along
with γ, the size of the subsample. It can be observed that when γ ≤ 0.3, indicating that
the full sample is divided into at most twelve subsamples, the radii of the aggregated
regions/intervals are almost identical to the radii of the regions/intervals directly constructed
from the full sample, i.e., γ = 0. This means that our aggregated procedures, based on a
suitable amount of divisions, indeed mimic the oracle procedures. However, when γ increases
to 0.6, the distinctions between the the aggregated and oracle procedures quickly become
obvious.

We also repeated the above study for N = 1800 and 2400. The plots corresponding to
these studies are given in supplement document; see Section S.8.6 of Shang and Cheng. The
interpretations of these additional results are similar as above.

To the end of this section, computing efficiency is investigated. Figure 6 displays the
results based on a single experiment for various choices of N . Specifically, we look at the
value of the quantity ρ = 1 − (T /T0) versus a collection of γ’s for FCR and ACR, where
T0 (T ) is the computing time without using D&C (based on D&C). We observe that T is
substantially smaller than T0, and this computation efficiency (as reflected by the value of
ρ) becomes more obvious as γ grows for each fixed N . This can also be seen as N grows for
each fixed γ. However, this reduction in computing time does not affect the performances of
the aggregated credible regions when 0 ≤ γ ≤ 0.3, as demonstrated in Figures 2, 3, 13–16.

6. Real Data Analysis

In this section, we apply our methods to Million Song Data (MSD) and Flight Delay Data
(FDD).

6.1. Million Song Data

As a real application, we apply our aggregation procedure to analyze MSD. The MSD
is a perfect example of large dataset, a freely-available collection of audio features and
metadata for a million contemporary popular music tracks. Each observation is a song
track released between the year 1922 and 2011. The response variable Yi is the year when
the song was released and the covariate Xi is the timbre average of the song. The main
purpose is to explore a relationship, denoted as f , between song features and years in a
nonparametric regression model, i.e., year = f(timbre)+error. The above model is useful to
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Figure 4. CP of Fx(f) = f(x) against x based on posterior samples of f . Dotted red lines indicate

credibility levels.
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Figure 6. ρ versus γ based on FCR and ACR for single experiment.

predict production year based on song timbre. Due to enormous sample size, processing
the entire data is infeasible. In frequentist setting, a distributed kernel ridge regression
method was proposed by Zhang et al. (2015a,b) for estimation purposes (without quantifying
uncertainty).

In the Bayesian setup, we applied our aggregation procedure to construct 95% credible
sets for f based on a subset of N = 10,000 songs released from the year 1996 to 2010. We
randomly split the observations to s = 5,10,20 subsets. We also compared our results with
the baseline method in which all ten thousand observations were used. Credible sets are
displayed as gray areas in Figure 7. We find that the shapes of all credible sets are overall
the same when the timbre ranges from -4 to 4, e.g., all display a W-shape, although the
results are a bit sensitive near the endpoints. Therefore, the overall pattern of the sets
appears to be insensitive to the above selections of s.

6.2. Flight Delay Data

We applied our aggregation procedure to one more real data set, the FDD. The data consists
of flight arrival and departure information for all commercial flights within the United States,
from October 1987 to April 2008. The main purpose is to find the key factors that have an
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Figure 7. 95% Credible sets (grey areas) for f based on a subset of 10,000 samples in Million Song Data.

The first plot refers to the baseline method where the whole samples were used. The rest three plots refer to

the aggregation procedure which was applied to 5, 10, 20 random splits.

impact on the flight delay. We considered the relationship (denoted f) between month and
the length of the flight delay, i.e., length of flight delay = f(month)+error. Negative length
of delay implies that the flight arrived earlier. We applied the same Bayesian aggregation
procedure as described in MSD to a randomly selected subset of N = 10, 000 flight information
in the year 2007. We randomly split the observations to s = 10,100,500 subsamples, based
on which the aggregated credible sets for f were constructed. We also compared the results
with the baseline where all the ten thousand samples were used. Credible sets are displayed
as gray areas in Figure 8. Again, the shapes of the four credible sets appear to be almost
the same for all s.

6.3. Computation Efficiency

We compare the overall execute computation time of both MSD and FDD on different
numbers of splits, e.g. computational time per machine × number of machines in Figure
9-10. It can be seen that the computing time dramatically decreases as the number of splits
increases, which reflects the scalability of our proposed algorithm.
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Figure 8. 95% Credible sets (grey areas) for f based on a subset of 10,000 samples in Flight Delay Data.

The first plot refers to the baseline method where the whole samples were used. The rest three plots refer to

the aggregation procedure which was applied to 10, 100, 500 random splits.

7. Conclusions

This paper proposes algorithms for aggregating individual posterior results such as modes,
balls, intervals, into their global counterparts. The algorithms are easy-to-implement which
are particularly useful in big data scenarios. We also experimented the proposed algorithms
through simulated and real data sets. A notable contribution of this article is to provide
rigorously justified theoretical guarantees. The major tool for proving our theoretical results
is a uniform Gaussian approximation theorem which shows that the individual posterior
distributions converge uniformly to Gaussian processes provided that the number of subsets
is not too large.
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Figure 9. Computational time of aggregation procedures for MSD.

Figure 10. Computational time of aggregation procedures for FDD.
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8. APPENDIX

This appendix section contains the proofs of the main results. Section 8.1 contains proof of
Theorem 1 and relevant preliminary results. Section 8.2 includes the proof of Theorem 2.
Sections 8.3 and 4.4 includes the proofs of Theorems 3 and 4, i.e., coverage properties of the
credible sets based on strong and weak topology respectively.

All proofs crucially depend on an eigensystem designed for simultaneous diagonalization
of the two bilinear functionals U,V induced from likelihood and prior, respectively. In fact,
(ϕν , ρν) is a solution of the following ordinary differential system (whose existence and
uniqueness is guaranteed by Birkhoff (1908)):

(−1)mϕ(2m)ν (⋅) = ρνπ(⋅)ϕν(⋅),
ϕ(j)ν (0) = ϕ(j)ν (1) = 0, j =m,m + 1, . . . ,2m − 1, (1)

Properties of this eigen-system are summarized in Proposition 1, whose proof can be found
in (Shang et al., 2013, Proposition 2.2).

Proposition 1 It holds that supν∈N ∥ϕν∥∞ <∞, and that the sequence ρν is nondecreasing
with ρ1 = ⋯ = ρm = 0, and ρν > 0 for µ >m. Moreover, ρν ≍ ν2m and

V (ϕµ, ϕν) = δµν , J(ϕµ, ϕν) = ρµδµν , µ, ν ∈ N, (2)

where δµν is the Kronecker’s delta. In particular, any f ∈ Sm(I) admits a Fourier expansion
f = ∑ν V (f,ϕν)ϕν with convergence held in the ∥ ⋅ ∥-norm.

8.1. Proofs in Section 4.1

The proof of Theorem 1 requires the following technical result which derives a local contraction

rate r̃n uniformly over s: r̃n = (nh/ log 2s)−1/2 + hm+
β−1
2 . The proof can be found in (Shang

and Cheng).

Proposition 1 If f0 satisfies Condition (S) and the following Rate Condition (R) holds:

nh2m+1 ≥ 1, an = O(r̃n), bn ≤ 1, r2
nbn ≤ r̃2

n.

Let a ≥ 0 be a fixed constant. Then for any ε ∈ (0,1), there exist positive constants M ′,N ′

s.t. for any n ≥ N ′,

Pf0 (max
1≤j≤s

{E{∥f − f0∥aI(∥f − f0∥ ≥M ′r̃n)∣Dj} ≥M ′s2 exp(−nr̃2
n/ log(2s))) ≤ ε (3)

We remark that Proposition 1 significantly generalizes the classical results in Ghosal et al.
(2000); van der Vaart et al. (2008a).
Proof [Proof of Theorem 1] Let M1,M2 be large positive constants. For any fixed constant
a ≥ 0, consider three events:

E ′n = {max
1≤j≤s

∥f̂j,n − f0∥ ≤M1r̃n}

E ′′n = {max
1≤j≤s

E{∥f − f0∥aI(∥f − f0∥ ≥M2r̃n)∣Dj} ≤M2s
2 exp(−nr̃2

n/ log(2s))}

E ′′′n = {max
1≤j≤s

E0j{∥f − f0∥aI(∥f − f0∥ ≥M2r̃n)} ≤M2 exp(−nr̃2
n)}
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where E0j means expectation taken under P0j . It follows from Shang and Cheng and
Proposition 1 that we can choose M1 >M2 (both large enough) s.t. Pf0(E ′n ∩ E ′′n ) ≥ 1 − ε1/2
where ε1 > 0 is an arbitrary constant. Meanwhile, by (Shang and Cheng) we have, on E ′n,
for any 1 ≤ j ≤ s,

E0j{∥f − f0∥aI(∥f − f0∥ ≥M2r̃n)}

=
∫∥f−f0∥≥M2r̃n

∥f − f0∥a exp (−n2 ∥f − f̂j,n∥
2)dΠ(f)

∫Sm(I) exp (−n2 ∥f − f̂j,n∥2)dΠ(f)

≤
∫∥f−f0∥≥M2r̃n

∥f − f0∥a exp (−n2 ∥f − f̂j,n∥
2)dΠ(f)

∫∥f−f0∥≤r̃n exp (−n2 ∥f − f̂j,n∥2)dΠ(f)

≤ exp (− ((M2 −M1)2/2 − (M1 + 1)2/2 − c3/4)nr̃2
n)C(a,Π), (4)

where c3 > 0 is a universal constant and C(a,Π) = ∫Sm(I) ∥f − f0∥adΠ(f). We can choose

M2 > C(a,Π) so that the quantity (4) is less than M2 exp(−nr̃2
n). So E ′n implies E ′′′n , so

that Pf0(E ′′′n ) ≥ Pf0(E ′n ∩ E ′′n ) ≥ 1 − ε1/2. Define En = E ′n ∩ E ′′n ∩ E ′′′n , then it can be seen that
Pf0(En) ≥ 1 − ε1.

Let Tj be defined as

Tj2(f) = − 1

2n
∑
i∈Ij

[(∆f)(Xi)2 −EX{(∆f)(X)2}]. (5)

Following Lemma 9, for any 1 ≤ j ≤ s,

`jn(f) − `jn(f̂j,n) +
1

2
∥f − f̂j,n∥2 = Tj(f). (6)

It follows from the proof of Proposition 1 that on En, for any f ∈ Sm(I) satisfying ∥f − f0∥ ≤
M2r̃n and 1 ≤ j ≤ s,

∣Tj(f)∣ ≤D × r̃2
nbn, (7)

where D = D(M1,M2) is a positive constant depending only on M1,M2. Recall that our
assumption says that ε2 ≡ nDr̃2

nbn = o(1).
For 1 ≤ j ≤ s, define

Jnj1 = ∫
Sm(I)

exp (n(`jn(f) − `jn(f̂j,n)))dΠ(f),

Jnj2 = ∫
Sm(I)

exp(−n
2
∥f − f̂j,n∥2)dΠ(f),

J̄nj1 = ∫∥f−f0∥≤M2r̃n
exp (n(`jn(f) − `jn(f̂j,n)))dΠ(f),

J̄nj2 = ∫∥f−f0∥≤M2r̃n
exp(−n

2
∥f − f̂j,n∥2)dΠ(f).

For simplicity, let ε3 =M2s
2 exp(−nr̃2

n/ log(2s)). On En (with a = 0) and for any 1 ≤ j ≤ s,

0 ≤
Jnj1 − J̄nj1

Jnj1
≤M2s

2 exp(−nr̃2
n/ log(2s)) = ε3, 0 ≤

Jnj2 − J̄nj2
Jnj2

≤ exp(−nr̃2
n) ≤ ε3.
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By some algebra, it can be shown that the above inequalities lead to

(1 − ε3) ⋅
J̄nj2

J̄nj1
≤
Jnj2

Jnj1
≤ 1

1 − ε3
⋅
J̄nj2

J̄nj1
. (8)

Meanwhile, on En and for any 1 ≤ j ≤ s, using (7) and the elementary inequality
∣ exp(x) − 1∣ ≤ 2∣x∣ for ∣x∣ ≤ log 2, we get that

∣J̄nj2 − J̄nj1∣ ≤ ∫∥f−f0∥≤M2r̃n
exp(−n

2
∥f − f̂j,n∥2) × ∣ exp(nTj(f)) − 1∣dΠ(f)

≤ 2ε2J̄nj2,

leading to that

1

1 + 2ε2
≤
J̄nj2

J̄nj1
≤ 1

1 − 2ε2
. (9)

Combining (8) and (9), on En and for any 1 ≤ j ≤ s, 1−ε3
1+2ε2

≤ Jnj2
Jnj1

≤ 1
(1−2ε2)(1−ε3) . When n is

large, ε3 ≤ ε2 and both quantities are small, the above inequalities lead to

− 4ε2 ≤
1 − ε3

1 + 2ε2
− 1 ≤

Jnj2

Jnj1
− 1 ≤ 1

(1 − 2ε2)(1 − ε3)
− 1 ≤ 4ε2 (10)

For simplicity, denote Rnj(f) = nTj(f). For any S ∈ S, let S′ = S ∩ {f ∈ Sm(I) ∶ ∥f −
f0∥ ≤M2r̃n}. Then on En, we get that max1≤j≤s ∣P (S∣Dj) − P0j(S)∣ ≤ max1≤j≤s ∣P (S′∣Dj) −
P0j(S′)∣ + 2ε3. Moreover, it follows from (10) that on En and for any 1 ≤ j ≤ s,

∣P (S′∣Dj) − P0j(S′)∣

= ∣∫
S′

⎛
⎝

exp(n(`jn(f) − `jn(f̂j,n)))
Jnj1

−
exp (−n2 ∥f − f̂j,n∥

2)
Jnj2

⎞
⎠
dΠ(f)∣

≤ ∫
S′

exp(−n
2
∥f − f̂j,n∥2) × ∣

exp(Rnj(f))
Jnj1

− 1

Jnj2
∣dΠ(f)

≤ ∫
S′

exp(−n
2
∥f − f̂j,n∥2) ×

∣ exp(Rnj(f)) − 1∣
Jnj2

dΠ(f)

+∫
S′

exp(−n
2
∥f − f̂j,n∥2) × exp(Rnj(f)) × ∣ 1

Jnj1
− 1

Jnj2
∣dΠ(f)

≤ 2ε2
∫S′ exp (−n2 ∥f − f̂j,n∥

2)dΠ(f)
Jnj2

+ exp(ε2) × ∣ 1

Jnj1
− 1

Jnj2
∣ × ∫

S′
exp(−n

2
∥f − f̂j,n∥2)dΠ(f)

≤ 2ε2 + exp(ε2) × ∣
Jnj2

Jnj1
− 1∣ ≤ 2ε2 + 4ε2 exp(ε2) ≤ 14ε2.
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Note that the right hand side is free of S. Then we get that on En, supS∈Smax1≤j≤s ∣P (S∣Dj)−
P0j(S)∣ ≤ 14ε2 + 2ε3 ≤ 16ε2. This implies that for sufficiently large n,

Pf0 (sup
S∈S

max
1≤j≤s

∣P (S∣Dj) − P0j(S)∣ > 16ε2)

≤ Pf0(E
c
n) + Pf0 (En, sup

S∈S
max
1≤j≤s

∣P (S∣Dj) − P0j(S)∣ > 16ε2) = Pf0(E
c
n) ≤ ε1.

The desirable result follows by the simple fact ε2 ≲
√
sN

− 4m2+2mβ−10m+1
4m(2m+β) (logN)

5
2 when h ≍ h∗.

8.2. Proofs in Section 4.2

Proof [Proof of Theorem 2] We first show (28). Let An = {f ∈ Sm(I) ∶ ∥f − f0∥ ≥Mr̃n} and
Bj = {f ∈ Sm(I) ∶ dP (f ∣Dj) ≥ dP0j(f)} for 1 ≤ j ≤ s. By Proposition 1, Theorem 1 and (4)
with a = 1 therein, we can choose M > 0 sufficiently large such that

max
1≤j≤s

∥E(f ∣Dj) −E0j(f)∥

= max
1≤j≤s

∥∫ (f − f0)dP (f ∣Dj) − ∫ (f − f0)dP0j(f)∥

≤ max
1≤j≤s

∥∫
An

(f − f0)dP (f ∣Dj)∥ + max
1≤j≤s

∥∫
An

(f − f0)dP0j(f)∥

+max
1≤j≤s

∥∫
Acn

(f − f0)(dP (f ∣Dj) − dP0j(f))∥

≤ max
1≤j≤s

E{∥f − f0∥I(f ∈ An)∣Dj} + max
1≤j≤s

E0j{∥f − f0∥I(f ∈ An)}

+Mr̃n max
1≤j≤s∫Acn

∣dP (f ∣Dj) − dP0j(f)∣

= OPf0 (s2 exp(−nr̃2
n/ log(2s)) + exp(−nr̃2

n) + r̃n
√
sN

− 4m2+2mβ−10m+1
4m(2m+β) (logN)

5
2)

= OPf0 (r̃n
√
sN

− 4m2+2mβ−10m+1
4m(2m+β) (logN)

5
2) ≡ OPf0 (LN),

where the second last equality uses Theorem 1 and the fact that, uniformly for j,

∫
Acn

∣dP (f ∣Dj) − dP0j(f)∣

= ∣P (Acn ∩Bj ∣Dj) − P0j(Acn ∩Bj)∣ + ∣P (Acn ∩Bc
j ∣Dj) − P0j(Acn ∩Bc

j)∣.

Then (28) follows from the trivial fact that E0j{f} = E(W j ∣Dj) = f̃j,n.
Next we show (30). By direct examinations we can verify the following Rate Conditions

(R):
nr̃2

nbn = o(1),Nr̃2
NbN = o(1),Nh1/2a2

N = o(1),Nh1/2a2
n = o(1).

Define Remj,n = f̂j,n − f0 − Sj,n(f0) for j = 1,2, . . . , s. It follows by Lemma 6 of Shang and
Cheng that max1≤j≤s ∥Remj,n∥ = OPf0 (an).
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It is easy to see that aN,ν/an,ν ≤ s for all ν ≥ 1. Then it holds from (38) that

∥f̆N,λ − f̃N,λ∥2 = ∑
ν≥1

(
aN,ν

an,ν
)

2

V
⎛
⎝

1

s

s

∑
j=1

(f̆j,n − f̃j,n), ϕν
⎞
⎠

2

(1 + λρν)

≤ s2∥1

s

s

∑
j=1

(f̆j,n − f̃j,b)∥2 = OPf0 (s2L2
N) = oPf0 (N

−1h−1/2). (11)

The last equality owes to the condition s4 log(2s) = o(N
4m2+2mβ−11m+1

2m(2m+β) (logN)−5) and β > 3/2.

By direct examinations, we have

f̃N,λ − f0 =
∞
∑
ν=1

⎛
⎝
aN,ν

⎛
⎝

1

s

s

∑
j=1

V (f̂j,n, ϕν)
⎞
⎠
− f0

ν

⎞
⎠
ϕν

=
∞
∑
ν=1

⎛
⎝
aN,ν

⎛
⎝

1

s

s

∑
j=1

V (Remj,n + f0 + Sj,n(f0), ϕν)
⎞
⎠
− f0

ν

⎞
⎠
ϕν

=
∞
∑
ν=1

aN,νV (1

s

s

∑
j=1

Remj,n, ϕν)ϕν +
∞
∑
ν=1

(aN,ν − 1)f0
νϕν

+
∞
∑
ν=1

aN,νV ( 1

N

N

∑
i=1

εiKXi , ϕν)ϕν −
∞
∑
ν=1

aN,νV (Pλf0, ϕν)ϕν . (12)

Denote the four terms in the above equation by T1, T2, T3, T4.
Since aN,ν ≤ 1, it is easy to see that

∥T1∥2
2 =

∞
∑
ν=1

a2
N,ν ∣V (1

s

s

∑
j=1

Remj,n, ϕν)∣2

≤
∞
∑
ν=1

∣V (1

s

s

∑
j=1

Remj,n, ϕν)∣2 = ∥1

s

s

∑
j=1

Remj,n∥2
2 ≤ (max

1≤j≤s
∥Remj,n∥)2 = OPf0 (a

2
n).

(13)

Using h ≍ N−1/(2m+β) and a direct algebra we get that

∥T2∥2
2 =

∞
∑
ν=1

(aN,ν − 1)2∣f0
ν ∣2 ≍

∞
∑
ν=1

( ν2m+β

ν2m+β +N(1 + λν2m)
)

2

∣f0
ν ∣2 = o(N

− 2m+β−1
2m+β ) = o(N−1h−1).

Meanwhile, it follows by Proposition Shang and Cheng that

∥T4∥2
2 =

∞
∑
ν=1

a2
N,ν ∣f0

ν ∣2 (
λρν

1 + λρν
)

2

≤
∞
∑
ν=1

∣f0
ν ∣2 (

λρν
1 + λρν

)
2

≲
∞
∑
ν=1

∣f0
ν ∣2(hν)2m+β−1 (hν)2m−β+1

(1 + (hν)2m)2
= o(N− 2m+β−1

2m+β ) = o(N−1h−1).

Define R(x,x′) = ∑∞ν=1 aN,ν
ϕν(x)ϕν(x′)

1+λρν for any x,x′ ∈ I. Also define Rx(⋅) = R(x, ⋅). It is

easy to see that Rx ∈ Sm(I) for any x ∈ I. Then it can be shown that T3 = 1
N ∑

N
i=1 εiRXi ,
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leading to

∥T3∥2
2 = V (T3, T3) =

1

N2

N

∑
i=1

ε2iV (RXi ,RXi) +
2

N2 ∑
i<k
εiεkV (RXi ,RXk).

Since Ef0{ε2V (RX ,RX)} = O(h−1), we have Ef0{∥T3∥2
2} = O(N−1h−1). Therefore, ∥f̃N,λ −

f0∥2
2 = OPf0 (N

−1h−1) = OPf0 (N− 2m+β−1
2m+β ). This together with (11) leads to (30).

8.3. Proofs in Section 4.3

Before proving Theorem 3, we give some preliminary notation and results. Define an “oracle”
penalized likelihood `N,λ(f) = − 1

2N ∑
N
i=1(Yi−f(Xi))2− λ

2J(f). Applying Theorem 1 to s = 1,
we have

sup
S∈S

∣P (S∣D) − P0(S)∣ = oPf0 (1), (14)

where P0(S) =
∫S exp(−N

2
∥f−f̂orN,λ∥2)dΠ(f)

∫Sm(I) exp(−N
2
∥f−f̂or

N,λ
∥2)dΠ(f)

and f̂orN,λ = arg maxf∈Sm(I) `N,λ(f) is the “oracle”

smoothing spline estimator based on full data. Consider a generalized Fourier expansion
of f̂orN,λ: f̂orN,λ(⋅) = ∑∞ν=1 V (f̂orN,λ, ϕν)ϕν(⋅). By Theorem 5.2 in Shang and Cheng (2017),

we have P0(S) = P (W or ∈ S∣D) for any S ∈ S, where W or(⋅) = ∑∞ν=1(aN,νV (f̂orN,λ, ϕν) +
bN,ντνvν)ϕν(⋅). Here, an,ν bn,ν are analogous to ones in the definition of W j(⋅) in Section
4.1, and vν ∼ N(0, τ−2

ν ) and τ2
ν are given in (25). Define the mean functions of W or as

f̃orN,λ(⋅) ∶= ∑
∞
ν=1 aN,νV (f̂orN,λ, ϕν)ϕν(⋅). So we can re-express W or as W or = f̃orN,λ +WN , where

WN(⋅) ∶= ∑∞ν=1 bN,ντνvνϕν(⋅) is a zero-mean GP.

The following result describes the distribution of Wn and WN .

Lemma 2 As N →∞,
n∥Wn∥22−ζ1,n√

2ζ2,n

dÐ→ N(0,1), and
N∥WN ∥22−ζ1,N√

2ζ2,N

dÐ→ N(0,1).

Proof [Proof of Theorem 3] We can show that Rate Conditions (R) hold by direct calcula-
tions.

It is sufficient to investigate the Pf0-probability of the event {∥f0 − f̆N,λ∥2 ≤ rN(α)}. To
achieve this goal, we first prove the following fact:

max
1≤j≤s

∣zj,n(α) − zα∣ = oPf0 (1), (15)

where zα = Φ−1(1−α) and Φ is the c.d.f. of N(0, 1), and zj,n(α) = (nrj,n(α)2 − ζ1,n)/
√

2ζ2,n.

The proof of the theorem follows by (15) and a careful analysis of f0 − f̆N,λ.

We first show (15). It follows by Theorem 1 that for any j = 1,2, . . . , s,

∣P (Rj,n(α)∣Dj) − P0j(Rj,n(α))∣ ≤ max
1≤k≤s

∣P (Rj,n(α)∣Dk) − P0k(Rj,n(α))∣

≤ sup
S∈S

max
1≤k≤s

∣P (S∣Dk) − P0k(S)∣ = oPf0 (1).
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Together with P (Rj,n(α)∣Dj) = 1 − α, we have max1≤j≤s ∣P0j(Rj,n(α)) − (1 − α)∣ = oPf0 (1).
Let ∆j = f̆j,n − f̃j,n for 1 ≤ j ≤ s. It is clear that

P0j(Rj,n(α)) = P (W j ∈ Rj,n(α)∣Dj) = P (∥Wn +∆j∥2 ≤ rj,n(α)∣Dj)
= P (∥Wn∥2

2 + 2⟨Wn,∆j⟩2 + ∥∆j∥2
2 ≤ rj,n(α)2∣Dj), (16)

and, for any ε ∈ (0,1),

P (∣⟨Wn,∆j⟩2∣2 ≥ ∥∆j∥2
2/(nε)∣Dj) ≤ nεE{∣⟨Wn,∆j⟩2∣2∣Dj}/∥∆j∥2

2

= nε

∥∆j∥2
2

∑
ν≥1

b2n,ν ∣V (∆j , ϕν)∣2 ≤
nε

∥∆j∥2
2

×
∥∆j∥2

2

n
= ε, (17)

and by Theorem 2, max1≤j≤s ∥∆j∥2
2 = OPf0 (L

2
N), where LN = r̃n

√
sN

− 4m2+2mβ−10m+1
4m(2m+β) (logN)

5
2 .

By (29), ζk,n ≍ n1/(2m+β) (Lemma 2), and direct examinations it holds that

max
1≤j≤s

n∥∆j∥2
2√

ζ2,n

= oPf0 (1). (18)

Combining (16) and (17) we get that

P0j(Rj,n(α)) ≥ Φn
⎛
⎝
zj,n(α) −

n∥∆j∥2
2√

ζ2,n

−
2n∥∆j∥2√
nεζ2,n

⎞
⎠
− ε,

P0j(Rj,n(α)) ≤ Φn
⎛
⎝
zj,n(α) −

n∥∆j∥2
2√

ζ2,n

+
2n∥∆j∥2√
nεζ2,n

⎞
⎠
+ ε,

where Φn is the c.d.f. of Un. It follows by Lemma 2 and Polya’s theorem (Chow and
Teicher (2012)) that Φn uniformly converges to Φ(⋅), the c.d.f. of standard normal variable.
Therefore, when n becomes large enough,

∣Φn
⎛
⎝
zj,n(α) −

n∥∆j∥2
2√

ζ2,n

−
2n∥∆j∥2√
nεζ2,n

⎞
⎠
−Φ

⎛
⎝
zj,n(α) −

n∥∆j∥2
2√

ζ2,n

−
2n∥∆j∥2√
nεζ2,n

⎞
⎠
∣ ≤ ε,

∣Φn
⎛
⎝
zj,n(α) −

n∥∆j∥2
2√

ζ2,n

+
2n∥∆j∥2√
nεζ2,n

⎞
⎠
−Φ

⎛
⎝
zj,n(α) −

n∥∆j∥2
2√

ζ2,n

+
2n∥∆j∥2√
nεζ2,n

⎞
⎠
∣ ≤ ε,

where implies that

Φ
⎛
⎝
zj,n(α) −

n∥∆j∥2
2√

ζ2,n

−
2n∥∆j∥2√
nεζ2,n

⎞
⎠
≤ P0j(Rj,n(α)) + 2ε = Φ(zα) + 2ε + oPf0 (1),

Φ
⎛
⎝
zj,n(α) −

n∥∆j∥2
2√

ζ2,n

+
2n∥∆j∥2√
nεζ2,n

⎞
⎠
≥ P0j(Rj,n(α)) − 2ε = Φ(zα) − 2ε + oPf0 (1).

Since (18) implies that
n∥∆j∥22√
ζ2,n

and
2
√
n∥∆j∥2√
ζ2,n

are both oPf0 (1) uniformly for j, so (15) holds.
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Next we prove the theorem. Consider expansion (12). Only focus on T3. Define W (N) =
2∑1≤i<k≤N εiεkV (RXi ,RXk). Let Wik = 2εiεkV (RXi ,RXk), then W (N) = ∑1≤i<k≤NWik.
Note that W (N) is clean in the sense of de Jong (1987). Let σ2(N) = Ef0{W (N)2} and GI ,
GII , GIV be defined as GI = ∑i<j Ef0{W 4

ij}, GII = ∑i<j<k(Ef0{W 2
ijW

2
ik} + Ef0{W

2
jiW

2
jk} +

Ef0{W 2
kiW

2
kj}), and

GIV = ∑
i<j<k<l

(Ef0{WijWikWljWlk} +Ef0{WijWilWkjWkl} +Ef0{WikWilWjkWjl}).

Since ϕν are uniformly bounded, we get that ∥Rx∥2
2 = ∑∞ν=1

∣ϕν(x)∣2
(1+N−1τ2ν+λρν)2

≲ h−1, where “≲”

is free of x. This implies that GI = O(N2h−4) and GII = O(N3h−4).
It can also be shown that for pairwise distinct i, k, t, l,

Ef0{WikWilWtkWtl} = 24Ef0{ε
2
i ε

2
kε

2
t ε

2
l V (RXi ,RXk)V (RXi ,RXl)V (RXt ,RXk)V (RXt ,RXl)}

= 24
∞
∑
ν=1

a8
N,ν

(1 + λρν)8
= O(h−1),

which implies that GIV = O(N4h−1). In the mean time, a straight algebra leads to that

σ2(N) = 4(N
2
)

∞
∑
ν=1

a4
N,ν

(1 + λρν)4
= 4(N

2
)

∞
∑
ν=1

( N

τ2
ν +N(1 + λρν)

)
4

= 2N(N − 1)ζ4,N ≍ N2h−1.

Since Nh2 ≍ N1−2/(2m+β) → ∞, we get that GI ,GII and GIV are all of order o(σ4(N)).
Then it follows by de Jong (1987) that as N →∞,

W (N)
N
√

2ζ4,N

dÐ→ N(0,1). Since ζ4,N ≍ h−1,

the above equation leads to that W (N)/N = OPf0 (h
−1/2).

It follows by direct examination that V arf0{∑Ni=1 ε
2
iV (RXi ,RXi)} ≤ NEf0{ε4i ∥RXi∥4

2} =
O(Nh−2), leading to that ∑Ni=1 ε

2
iV (RXi ,RXi) = Ef0{∑Ni=1 ε

2
iV (RXi ,RXi)}+OPf0 (N

1/2h−1) =
Nζ2,N +OPf0 (N

1/2h−1). Therefore, it follows by Rate Condition (R), i.e., Nha2
n = o(1), and

the analysis on T1, T2, T3, T4 in (12) that

Nh∥f̃N,λ − f0∥2
2 = Nh∥T3∥2

2 +OPf0 (Nha
2
n) + oPf0 (1) = hζ2,N + oPf0 (1). (19)

In the end, note from (15) and ζk,n ≍ nα1 for α1 = 1/(2m + β) (see proof of Lemma 2)
that n

s ∑
s
j=1 rj,n(α)2 = ζ1,n +

√
2ζ2,nzα + oPf0 (

√
ζ2,n), which leads to that

NrN(α)2 = ζ1,N +
√

2ζ2,Nzα + oPf0 (h
−1/2). (20)

Therefore, NhrN(α)2 = hζ1,N(1 + oPf0 (1)). Since lim infN→∞(hζ1,N − hζ2,N) > 0, we get

by (11) that, with Pf0-probability approaching one, ∥f̆N,λ − f0∥2 ≤ rN(α). Meanwhile, it
follows by Shang and Cheng that ∥f̂orN,λ − f0 − SN,λ(f0)∥2 = OPf0 (aN) and ∥1

s ∑
s
j=1 f̂j,n − f0 −

1
s ∑

s
j=1 Sj,n(f0)∥2 = OPf0 (an), where SN,λ(f0) = 1

N ∑
N
i=1 εiKXi −Pλf0. Note that SN,λ(f0) =

1
s ∑

s
j=1 Sj,n(f0), which leads to ∥f̂orN,λ −

1
s ∑

s
j=1 f̂j,n∥2 = OPf0 (an + aN). Since aN,ν ≤ 1, we get
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that

N∥f̃orN,λ − f̃N,λ∥
2 = N

∞
∑
ν=1

a2
N,νV

⎛
⎝
f̂orN,λ −

1

s

s

∑
j=1

f̂j,n, ϕν
⎞
⎠

2

(1 + λρν)

≤ N
∞
∑
ν=1

V
⎛
⎝
f̂orN,λ −

1

s

s

∑
j=1

f̂j,n, ϕν
⎞
⎠

2

(1 + λρν)

= N∥f̂orN,λ −
1

s

s

∑
j=1

f̂j,n∥2 = OPf0 (Na
2
n +Na2

N) (21)

= oPf0 (h
−1/2), (by condition Nh1/2a2

n +Nh1/2a2
N = o(1))

Using (11) we get that N∥f̃orN,λ − f̆N,λ∥
2
2 = oPf0 (h

−1/2). Since E{∣⟨WN , f̃
or
N,λ − f̆N,λ⟩2∣2∣D} =

∑ν≥1 b
2
N,νV (f̃orN,λ − f̆N,λ, ϕν)

2 ≤ ∥f̃orN,λ − f̆N,λ∥
2
2/N = oPf0 (N

−2h−1/2), we have that N∥W or −

f̆N,λ∥2
2 = N∥WN∥2

2 + oPf0 (h
−1/2). It follows by P (N∥WN ∥22−ζ1,N√

2ζ2,N
≤ zα) → 1 − α, (14) and (20)

that P (RN(α)∣D) = 1 − α + oPf0 (1). This completes the proof.

8.4. Proofs in Section 4.4

Before proving Theorem 4, let us present a preliminary lemma.

Lemma 3 As N → ∞, N∥WN∥2
ω

d→ ∑∞ν=1 dνη
2
ν , and n∥Wn∥2

ω
d→ ∑∞ν=1 dνη

2
ν, where ην are

independent standard normal random variables.

Proof [Proof of Theorem 4] By direct examinations, one can show that Rate Conditions
(R′): nr̃2

nbn = o(1), Nr̃2
NbN = o(1), Na2

N = o(1) and Na2
n = o(1) are all satisfied.

We first have the following fact:

max
1≤j≤s

∣
√
nrω,j,n(α) −

√
cα∣ = oPf0 (1), (22)

where cα > 0 satisfies P (∑∞ν=1 dνη
2
ν ≤ cα) = 1 − α with ην being independent standard normal

random variables. It follows from (22) that

Nrω,N(α)2 = cα + oPf0 (1). (23)

By Theorem 2 and the condition s = o(N
4m2+2mβ−12m+1

8m(2m+β) (logN)−
3
2 ) we have the following

max1≤j≤s n∥∆j∥2
ω = max1≤j≤s n∥∆j∥2

2 = OPf0 (nL
2
N) = oPf0 (1). Also, for arbitrarily small

ε ∈ (0,1), P (∣⟨Wn,∆j⟩ω ∣2 ≥ ∥∆j∥2
ω/(nε)∣Dj) ≤ ε. The proof of (22) is then similar to the

proof of (15) and details are omitted.

Let T1, T2, T3, T4 be defined in (12). It follows from the proof of Theorem 3 that
∥T1∥2

ω ≤ ∥T1∥2
2 = OPf0 (a

2
n), so N∥T1∥2

ω = OPf0 (Na
2
n) = oPf0 (1) due to the condition Na2

n =
o(1). It follows by condition h ≍ N−1/(2m+β), dominated convergence theorem and direct
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examinations,

∥T2∥2
ω =

∞
∑
ν=1

dν(aN,ν − 1)2∣f0
ν ∣2 ≍ N−2

∞
∑
ν=1

dν
ν2m+β+1

(1 + (hν)2m + (hν)2m+β)2
× ν2m+β−1∣f0

ν ∣2

≲ N−1
∞
∑
ν=1

(hν)2m+β+1

(1 + (hν)2m + (hν)2m+β)2
× ν2m+β−1∣f0

ν ∣2 = o(N−1),

and

∥T4∥2
ω =

∞
∑
ν=1

dνa
2
N,ν (

λρν
1 + λρν

)
2

∣f0
ν ∣2 ≲

∞
∑
ν=1

dν
(hν)2m−β+1

(1 + (hν)2m + (hν)2m+β)2
× ∣f0

ν ∣2(hν)2m+β−1

≲ h2m+β
∞
∑
ν=1

(hν)2m−β

(1 + (hν)2m + (hν)2m+β)2
× ∣f0

ν ∣2ν2m+β−1 = o(N−1).

By direct examination it can be shown that T3 = 1
N ∑

N
i=1 εi∑∞ν=1

ϕν(Xi)ϕν
1+λρν+N−1τ2ν

. It follows

by Shang and Cheng (2017) that, as N →∞, N∥T3∥2
ω

d→ ∑∞ν=1 dνη
2
ν . By the above analysis on

T1 through T4, and N∥f̆N,λ − f̃N,λ∥2
ω = OPf0 (Ns

2L2
N) = oPf0 (1), we get that N∥f̆N,λ −f0∥2

ω
d→

∑∞ν=1 dνη
2
ν . It follows by (23) that limN→∞ Pf0(f0 ∈ RωN(α)) = 1 − α.

It follows by N∥f̃orN,λ − f̃N,λ∥
2
2 = OPf0 (Na

2
N +Na2

n) = oPf0 (1) (see (21)), P (N∥WN∥2
2 ≤

cα)→ 1 − α, (23) and (14) that P (RωN(α)∣D) = 1 − α + oPf0 (1). Proof is completed.

8.5. Computational Details

In this subsection, we provide some computational details relating to Section 2.2. For
convenience, we rewrite model (2.1) as following:

Yji = f(Xji) + εji, j = 1, . . . , s, i = 1, . . . , n.

Calculation of posterior means. In order to calculate the posterior mean f̆j,n, we have to
generate samples of f from its posterior distribution P (f ∣{Yji,Xji}ni=1). In practice, directly
sampling the function f from P (f ∣{Yji,Xji}ni=1) is impossible. Instead, we generate some
samples from (f(Xj1), . . . , f(Xjn))⊺. As n is large, (f(Xj1), . . . , f(Xjn))⊺ can represent the
whole curve of f . Firstly, let us derive the posterior distribution for (f(Xj1), . . . , f(Xjn))⊺.
For the j-th subsample, the likelihood function is written by

Yj1, . . . , Yjn∣Xj1, . . . ,Xjn ∼ N((f(Xj1), . . . , f(Xjn))⊺, In).

Since f follows a GP prior with mean zero and covariance function K0, where K0 is given in
(5), the prior of (f(Xj1), . . . , f(Xjn))⊺ is multivariate Gaussian:

(f(Xj1), . . . , f(Xjn))⊺ ∼ N(0,Kj),

where Kj is the covariance matrix satisfying

Kj =
⎡⎢⎢⎢⎢⎢⎣

K0(Xj1,Xj1), ⋯ K0(Xj1,Xjn)
⋮ ⋱ ⋮

K0(Xjn,Xj1) ⋯ K0(Xjn,Xjn)

⎤⎥⎥⎥⎥⎥⎦
.
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K0(x,x′) involves an infinite summation which is practically infeasible. Instead, the infinite
sum is approximated by a finite one, i.e.,

K0(x,x′) ≈ 2
M

∑
k=1

cos(2πk(x − x′))
(2πk)2m+β + nλ(2πk)2m

.

In our numerical study, we found that M = 100 can already provide a good approximation.
Due to the conjugacy, the posterior distribution of (f(Xj1), . . . , f(Xjn))⊺ also follows a
multivariate Gaussian distribution

(f(Xj1), . . . , f(Xjn))⊺∣{Yji,Xji}ni=1 ∼ N(Kj(Kj+
1

n
In)−1(Yj1, . . . , Yjn)⊺,Kj(Kj+

1

n
In)−1 1

n
).

Next we generate M independent samples, denoted (f (l)(Xj1), . . . , f (l)(Xjn))⊺, l = 1, . . . ,M,
from above multivariate Gaussian distribution. Therefore, the posterior mean can be
approximated by

(f̆jn(Xj1), . . . , f̆jn(Xjn))
⊺
= ( 1

M

M

∑
l=1

f (l)(Xj1), . . . ,
1

M

M

∑
l=1

f (l)(Xjn))
⊺
.

Calculation of posterior radius. Once we haveM independent samples {(f (l)(Xj1), . . . , f (l)(Xjn))}Ml=1,

we are able to approximate ∥f (l) − f̆j,n∥L2 by

Ll = ( 1

n

n

∑
i=1

(f (l)(Xji) − f̆jn(Xji))2)
1
2
, for l = 1, . . . ,M.

Finally, the radius rj,n(α) is approximated by the upper α-th percentile of {L1, . . . , LM}.
Calculation of the integral. We approximate (8) by

f̆j,n,k ≈
√

2

n

n

∑
i=1

f̆j,n(Xji) cos(2πkXji)dx, ğj,n,k ≈
√

2

n

n

∑
i=1

f̆j,n(Xji) sin(2πkXji)dx.

In (12), Ck and Dk also involve two integrals. Since they are independent of samples, any
numerical method for integral calculation is applicable. We also approximate f̆N,λ(x) in
(10) by

f̆N,λ(x) ≈
M

∑
k=1

ws,N,λ,k {f̆N,λ,k
√

2 cos(2πkx) + ğN,λ,k
√

2 sin(2πkx)} .
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Supplementary document to Nonparametric Bayesian Aggregation for Massive Data

This supplementary document is structured as follows.

• Section S.8.1 contains the proofs of Lemmas 2 and 3.

• Section S.8.2 contains the proofs of the main results in Section 4.5 and 4.6 that were
not included in the main paper.

• Section S.8.3 proves Proposition 1, i.e., a uniform contraction rate result. Preliminary
results relevant to the proof of Proposition 1 are provided in Section S.8.4.

• Section S.8.5 includes a result that characterizes the posterior tail moments of ∥f −f0∥a
for any a ≥ 0.

• Section S.8.6 includes additional simulation results supplementary to Section 5.

S.8.1. Proofs of Lemmas 2 and 3

Proof [Proof of Lemma 2] We only show the first limit distribution since the proof of the
second one is similar.

Let ην = τνvν . Then ην is a sequence of iid standard normals. Note that

∥Wn∥2
2 =

∞
∑
ν=1

η2
ν

τ2
ν + n(1 + λρν)

.

Let Un = (n∥Wn∥2
2 − ζ1,n)/

√
2ζ2,n, then we have

Un =
1√

2ζ2,n

∞
∑
ν=1

n(η2
ν − 1)

τ2
ν + n(1 + λρν)

.

By straightforward calculations and Taylor’s expansion of log(1 − x), it can be shown that
the logarithm of the moment generating function of Un equals

logE{exp(tUn)} = t2/2 +O (t3ζ−3/2
2,n ζ3,n) . (S.1)

Without loss of generality, assume that N = na for some a ≥ 1. Then α1 ∶= min{1/(2m +
β), a/(2m + β)} = 1/(2m + β). It follows by (Shang and Cheng, 2017, Lemma S.1)
that ζ2,n ≍ nα1 and ζ3,n ≍ nα1 , so the remainder term in (S.1) is O(n−α1/2) = o(1). So
limn→∞E{exp(tUn)} = exp(t2/2). Proof is completed.

Proof [Proof of Lemma 3] The proof follows by moment generating function approach and
direct calculations.

S.8.2. Proofs in Sections 4.5 and 4.6

This section contains the proofs in Sections 4.5 and 4.6.
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Proofs in Section 4.5

Proof [Proof of Theorem 5] Recall in the proof of Theorem 4 we showed that Rate Conditions
(R′) are satisfied.

It is easy to see that

F (Wn)
d= N(0, θ2

1,n), and F (WN) d= N(0, θ2
1,N). (S.2)

For 1 ≤ j ≤ s, defineRFj,n(α) = {f ∈ Sm(I) ∶ ∣F (f)−F (f̆j,n)∣ ≤ rF,j,n(α)}. It follows by The-

orem 1 that max1≤j≤s ∣1−α−P0j(RFj,n(α))∣ = oPf0 (1). Since s = o(N
4m2+2mβ−12m+1

8m(2m+β) (logN)−
3
2 ),

it can be examined that NL2
N = o(1). Together with the condition h−r ≲ Nθ2

1,N and the fact

θk,N ≤ θk,n, one can verify that h−r ≲ Nθ2
1,N ≤ Nθ2

1,n = o(L−2
N θ

2
1,n). So we have by (35) and

Theorem 2 that
max
1≤j≤s

∣F (∆j)∣ = OPf0 (h
−r/2LN) = oPf0 (θ1,n).

Combined with (S.2) we get that

P0j(RFj,n(α)) = P (∣F (Wn) − F (∆j)∣ ≤ rF,j,n(α)∣Dj)

= Φ(
rF,j,n(α) + F (∆j)

θ1,n
) +Φ(

rF,j,n(α) − F (∆j)
θ1,n

) − 1

= 2Φ(
rF,j,n(α)
θ1,n

) − 1 + oPf0 (1), uniformly for 1 ≤ j ≤ s.

The above argument leads to Φ(rF,j,n(α)/θ1,n) = 1 − α/2 + oPf0 (1) uniformly for 1 ≤ j ≤ s,
which further leads to the following

max
1≤j≤s

∣rF,j,n(α)/θ1,n − zα/2∣ = oPf0 (1). (S.3)

Consider the decomposition (12) with T1, T2, T3, T4 being defined therein. It follows by
(13) and rate condition Na2

n = o(1) that N∥T1∥2 = OPf0 (Na
2
n) = oPf0 (1). Meanwhile, it

follows by Condition (S′), N−1 ≍ h2m+β and λ = h2m and direct examinations that

N∥T2∥2 = N
∞
∑
ν=1

(aN,ν − 1)2∣f0
ν ∣2(1 + λρν)

≍ N
∞
∑
ν=1

( ν2m+β

ν2m+β +N(1 + λν2m)
)

2

∣f0
ν ∣2(1 + λν2m)

≍
∞
∑
ν=1

(hν)2m+β + (hν)4m+β

(1 + (hν)2m + (hν)2m+β)2
× ∣f0

ν ∣2ν2m+β = o(1),

and

N∥T4∥2 = N
∞
∑
ν=1

a2
N,ν (

λρν
1 + λρν

)
2

∣f0
ν ∣2(1 + λρν)

≍
∞
∑
ν=1

(hν)2m−β

1 + (hν)2m
× ∣f0

ν ∣2ν2m+β = o(1).
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By (11) and Ns2L2
N = o(1) we get ∥f̆N,λ − f̃N,λ∥ = oPf0 (N

−1/2). Therefore, ∥f̆N,λ − f0 − T3∥ ≤
∥f̆N,λ− f̃N,λ∥+∥T1+T2+T4∥ = oPf0 (N

−1/2). If follows from (35) that ∣F (f̆N,λ−f0)−F (T3)∣ =
oPf0 (h

−r/2N−1/2).
Note that F (T3) = 1

N ∑
N
i=1 εiF (RXi), where the kernel R is defined in the proof of Theorem

3. We will derive asymptotic distribution for F (T3). Let s2
N = V arf0(∑Ni=1 εiF (RXi)). It is

easy to show that

s2
N = N3

∞
∑
ν=1

F (ϕν)2

(τ2
ν +N(1 + λρν))2

= N3θ2
2,N .

Clearly, by uniform boundedness of ϕν and F (ϕν), we get

∣F (Rx)∣ = ∣
∞
∑
ν=1

aN,ν
ϕν(x)F (ϕν)

1 + λρν
∣ ≲ h−1,

where the “≲” is free of x ∈ I, and

Ef0{ε
2F (RX)2} = N2

∞
∑
ν=1

F (ϕν)2

(τ2
ν +N(1 + λρν))2

= N2θ2
2,N . (S.4)

Then for any δ > 0, by condition Ef0{ε4∣X} ≤M4 a.s.,

1

s2
N

N

∑
i=1

Ef0{ε
2
iF (RXi)

2I(∣εiF (RXi)∣ ≥ δsN)}

≤ N

s2
N

(δsN)−2Ef0{ε
4F (RX)4}

≲ N

s2
N

(δsN)−2h−2Ef0{ε
2F (RX)2} ≲ δ−2N−1h−2+r = o(1),

where the last o(1)-term follows by h ≍ h∗ and 2 − r < 2m + β. By Lindeberg’s central limit
theorem, as N →∞,

F (T3)√
Nθ2,N

= 1

sN

N

∑
i=1

εiF (RXi)
d→ N(0,1). (S.5)

By condition N2θ2
2,N ≳ h−r, we have

∣
F (f̆N,λ − f0 − T3)√

Nθ2,N

∣ = oPf0 (h
−r/2N−1/2
√
Nθ2,N

) = oPf0 (1).

It follows by (S.3) that

rF,N(α) = θ1,N

¿
ÁÁÀ1

s

s

∑
j=1

rF,j,n(α)2/θ2
1,n = θ1,Nzα/2(1 + oPf0 (1)), (S.6)

leading to that
rF,N(α)
√
Nθ2,N

=
θ1,N√
Nθ2,N

× zα/2(1 + oPf0 (1)).
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It can be shown that

θ2
1,N

Nθ2
2,N

=
∑∞ν=1

F (ϕν)2
1+λρν+N−1τ2ν

∑∞ν=1
F (ϕν)2

(1+λρν+N−1τ2ν )2
≥ 1,

together with (S.5) we get that

Pf0(∣F (f0) − F (f̆N,λ)∣ ≤ rF,N(α))

= Pf0
⎛
⎝
∣
F (f̆N,λ − f0 − T3)√

Nθ2,N

+ F (T3)√
Nθ2,N

∣ ≤
rF,N(α)
√
Nθ2,N

⎞
⎠

≥ Pf0
⎛
⎝
∣
F (f̆N,λ − f0 − T3)√

Nθ2,N

+ F (T3)√
Nθ2,N

∣ ≤ zα/2(1 + oPf0 (1))
⎞
⎠

→ 1 − α. (S.7)

Notice that when 0 < ∑∞ν=1 F (ϕν)2 <∞,
θ21,N
Nθ22,N

→ 1, leading to that the probability in (S.7)

approaches exactly 1 − α.

In the end, we show that P (RFN(α)∣D) = 1 − α + oPf0 (1), where RFN(α) = {f ∈ Sm(I) ∶
∣F (f) − F (f̆N,λ)∣ ≤ rF,N(α)}. By rate condition N(a2

N + a2
n) = o(1), proof of (21) leading to

∥f̃orN,λ − f̃N,λ∥ = OPf0 (aN + an), and (35) we have

F (f̃orN,λ − f̃N,λ)
θ1,N

= OPf0 (h
−r/2(aN + an)

θ1,N
) = oPf0 (1),

where the last o(1)-term follows by condition Nθ2
1,N ≳ h−r and Rate Condition (R′). From

(S.6) we get that

P0(RFN(α)) = P (W or ∈ RFN(α)∣D)
= P (∣F (W or) − F (f̆N,λ)∣ ≤ rF,N(α)∣D)

= P
⎛
⎝
∣
F (f̃orN,λ − f̃N,λ)

θ1,N
+ F (WN)

θ1,N
∣ ≤

rF,N(α)
θ1,N

∣D
⎞
⎠

= 1 − α + oPf0 (1). (S.8)

So it follows from (14) that P (RFN(α)∣D) = 1 − α + oPf0 (1). Proof is completed.

Proofs in Section 4.6

Proof [Proof of Theorem 6] It follows from (20) that rN(α) − r†N(α) = oPf0 (N
−1h−1/2),

which together with (19) leads to that limn→∞ Pf0(f0 ∈ R†
N(α)) = 1. It follow from Lemma

2, (14) and the proof of Theorem 3 that P (R†
N(α)∣D) = 1 − α + oPf0 (1).

It follows from (23) that rω,N(α)2 − r†ω,N(α)2 = oPf0 (N
−1). Then the desired results on

R†ω
N (α) directly follow from the proof of Theorem 4.
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It follows by (S.6) that r†F,N(α) = rF,N(α)(1 + oPf0 (1)). Then the desired results on

CI†F
N (α) follow from (S.7) and (S.8).

S.8.3. Proofs of Proposition 1 and relevant results

The goal of this section is to prove Proposition 1 and relevant results. Before proofs, we
exactly describe the Fréchet derivatives of the likelihood function that will be technically
useful. Suppose that (Y,X) follows model (14) based on f . Let g, gk ∈ Sm(I) for k = 1,2.
For j = 1,2, . . . , s, the Fréchet derivative of `jn can be identified as

D`jn(g)g1 =
1

n
∑
i∈Ij

(Yi − g(Xi))⟨KXi , g1⟩ − ⟨Pλg, g1⟩ ∶= ⟨Sj,n(g), g1⟩.

Define Sλ(g) = E{Sj,n(g)}. We also use DSλ and D2Sλ to represent the second- and
third-order Fréchet derivatives of Sλ. Note that Sj,n(f̂j,n) = 0, and Sj,n(f) can be expressed
as

Sj,n(f) =
1

n
∑
i∈Ij

(Yi − f(Xi))KXi −Pλf. (S.9)

The Fréchet derivative of Sj,n is denoted DSj,n(g)g1g2. These derivatives can be explicitly
written as

D2`jn(g)g1g2 ∶=DSj,n(g)g1g2 = −
1

n
∑
i∈Ij

g1(Xi)g2(Xi) − ⟨Pλg1, g2⟩,

The proof of Proposition 1 requires a series of preliminary lemmas. Define Hm(b) = {f ∈
Sm(I) ∶ J(f) ≤ b2}. We first state a basic lemma about a concentration phenomenon of
smoothing spline estimates in the distributed setup.

Lemma 4 If b, r, h,M are positives satisfying the following Rate Condition (H):

1. h1/2r ≤ 1,

2. c2
KM

1/2rh−1/2B(h) ≤ 1/2, where B(h) = A(h,2) with A(h, ε) given in (S.19),

then, for any 1 ≤ j ≤ s, the following two results hold:

1. supf∈Hm(b) Pf (∥f̂j,n − f∥ ≥ δn) ≤ 2 exp(−Mnhr2), where δn = bhm +2cK(Cε +M)r with

Cε = E{(∣ε∣ + 1)2 exp(∣ε∣ + 1)} an absolute constant;

2. supf∈Hm(b) Pf (∥f̂j,n − f − Sj,n(f)∥ > an) ≤ 2 exp(−Mnhr2), where an = c2
KM

1/2h−1/2rB(h)δn.
Here, Sj,n(f) is the Fréchet derivative of the likelihood function `jn(f); see (S.9) for
its exact expression.

Lemma 5 For any fixed constants M > 1 and b > 0, let

r = (nh/ log 2s)−1/2, δn = bhm + 2cK(Cε +M)r, (S.10)
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an = c2
KM

1/2h−1/2rB(h)δn. (S.11)

Then as n→∞,

Pf0 (max
1≤j≤s

∥f̂j,n − f0∥ ≥ δn) ≤ 6sN−M → 0,

and

Pf0 (max
1≤j≤s

∥f̂j,n − f0 − Sj,n(f0)∥ > an) ≤ 8sN−M → 0.

Proof [Proof of Lemma 5] The result is a straightforward consequence of Lemma 4.

Lemma 6 It holds that

max
1≤j≤s

∥f̂j,n − f0 − Sj,n(f0)∥ = OPf0 (an). (S.12)

Proof [Proof of Lemma 6] The proof follows by Lemma 5, and simple fact thatB(h) ≲ h−
2m−1
4m .

Lemma 7 Under Condition (S), we get max1≤j≤s ∥f̂j,n − f0∥ = OPf0 (r̃n).

Proof [Proof of Lemma 7] Recall that

Sj,n(f0) = −
1

n
∑
i∈Ij

(Yi − f0(Xi))KXi −Pλf0.

It was shown by Shang et al. (2013) that Pλϕν = λϕν
1+λϕνϕν . Since f0 satisfies Condition (S),

∥Pλf0∥2 = ⟨
∞
∑
ν=1

f0
ν

λρν
1 + λρν

ϕν ,
∞
∑
ν=1

f0
ν

λρν
1 + λρν

ϕν⟩

=
∞
∑
ν=1

∣f0
ν ∣2

λ2ρ2
ν

1 + λρν

= λ1+β−1
2m

∞
∑
ν=1

∣f0
ν ∣2ρ

1+β−1
2m

ν
(λρν)1−β−1

2m

1 + λρν
= O(h2m+β−1),

where the last equation follows by λ = h2m, supx≥0
x1−

β−1
2m

1+x <∞, and Condition (S). On the
other side, it follows by the proof of (S.22) that

Pf0
⎛
⎝

max
1≤j≤s

∥∑
i∈Ij

(Yi − f0(Xi))KXi∥ ≥ L(M)n(nh/ log 2s)−1/2⎞
⎠

≤ 2s exp (−Mnh(nh/ log 2s)−1) = (2s)1−M → 0, as M →∞,

where L(M) ∶= cK(Cε +M). This implies that

max
1≤j≤s

∥∑
i∈Ij

(Yi − f0(Xi))KXi∥ = OPf0 (n(nh/ log 2s)−1/2),
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and hence,

max
1≤j≤s

∥Sj,n(f0)∥ = OPf0 ((nh/ log 2s)−1/2 + hm+
β−1
2 ) = OPf0 (r̃n).

Together with (S.12) of Lemma 6 and the rate condition an ≲ r̃n, we get that max1≤j≤s ∥f̂j,n−
f0∥ = OPf0 (r̃n).

Consider a function class

G = {g ∈ Sm(I) ∶ ∥g∥∞ ≤ 1, J(g, g) ≤ c−2
K h

−2m+1}. (S.13)

Lemma 8 For any fixed constant M > 1, as n→∞,

Pf0 (max
1≤j≤s

sup
g∈G

∥Zj,n(g)∥ ≤ B(h)
√
M logN)→ 1,

where Zj,n(g) = 1√
n ∑i∈Ij [ψj,n(Zi; g)KXi −E{ψj,n(Zi; g)KXi}], ψj,n(Zi; g) = c−1

K h
1/2g(Xi).

Proof [Proof of Lemma 8] It is easy to see that ψj,n(Zi; g) satisfies the Lipschitz continuity
condition (S.20). Then the result directly follows by Lemma 12 (see appendix).

Lemma 9 For j = 1, . . . , s,

1. `jn(f) − `jn(f̂j,n) = Ij,n(f), where Ij,n(f) = ∫
1

0 ∫
1

0 sDSj,n(f̂j,n + ss
′(f − f̂j,n))(f −

f̂j,n)(f − f̂j,n)dsds′ for any f ∈ Sm(I);

2. Ij,n(f) = Tj(f) − 1
2∥f − f̂j,n∥

2, where recall that (see 5)

Tj(f) = − 1

2n
∑
i∈Ij

[(f − f̂j,n)(Xi)2 −EX{(f − f̂j,n)(X)2}]. (S.14)

Proof [Proof of Lemma 9] Let ∆f = f − f̂j,n. Therefore,

Ij,n(f) = − 1

n
∫

1

0
∫

1

0
s∑
i∈Ij

(∆f)(Xi)2dsds′ − λJ(∆f,∆f)/2

= − 1

2n
∑
i∈Ij

[(∆f)(Xi)2 −EX{(∆f)(X)2}] − 1

2
∥∆f∥2

= Tj(f) −
1

2
∥∆f∥2.

By Taylor’s expansion in terms of Fréchet derivatives, `jn(f) − `jn(f̂j,n) = Sj,n(f̂j,n)(f −
f̂j,n) + Ij,n(f) = Ij,n(f).
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Lemma 10 There exists a universal constant c3 > 0 s.t.

Π(∥f − f0∥ ≤ r̃n) ≥ exp(−c3r̃
− 2

2m+β−1
n ),

where recall that Π is the probability measure induced by G.

Proof [Proof of Lemma 10] Note that λ ≤ r̃
4m

2m+β−1
n . Then it follows by Lemma 13 (with dn

therein replaced by r̃n) and the proof of Theorem 7 that

Π(∥f − f0∥ ≤ r̃n) = P (∥G − f0∥ ≤ r̃n)
≥ P (V (G − f0) ≤ r̃2

n/2, λJ(G − f0) ≤ r̃2
n/2)

≥ P (V (G − f0) ≤ r̃2
n/2, J(G − f0) ≤ r̃

2(β−1)
2m+β−1
n /2)

= P (Ṽ (G̃ − f̃0) ≤ r̃2
n/2, J̃(G̃ − f̃0) ≤ r̃

2(β−1)
2m+β−1
n /2)

≥ P (Ṽ (G̃ − ω) ≤ (1/
√

2 − 1/2)2r̃2
n, J̃(G̃ − ω) ≤ (1/

√
2 − 1/2)2r̃

2(β−1)
2m+β−1
n )

≥ exp(−∥ω∥2
β/2)

×P (Ṽ (G̃) ≤ (1/
√

2 − 1/2)2r̃2
n, J̃(G̃) ≤ (1/

√
2 − 1/2)2r̃

2(β−1)
2m+β−1
n )

≥ exp(−∥ω∥2
β/2)P (Ṽ (G̃) ≤ (1/

√
2 − 1/2)2r̃2

n/2)

×P (J̃(G̃) ≤ (1/
√

2 − 1/2)2r̃
2(β−1)
2m+β−1
n /2)

≥ exp(−c3r̃
− 2

2m+β−1
n ),

where c3 > 0 is a universal constant.

Proof [Proof of Proposition 1] Fix any ε ∈ (0, 1). Let M1 be a large constant so that (thanks
to Lemma 7) the event

E ′n = {max
1≤j≤s

∥f̂j,n − f0∥ ≤M1r̃n} (S.15)

has probability approaching one. Meanwhile, for a fixed constant M > 1, define

E ′′n = {max
1≤j≤s

sup
g∈G

∥Zj,n(g)∥ ≤ B(h)
√
M logN} . (S.16)

By Lemma 8 we have that E ′′n has Pf0-probability approaching one. Thus, it holds that,
when n becomes large, Pf0(En) ≥ 1 − ε/2, where En ∶= E ′n ∩ E ′′n . In the rest of the proof we
simply assume that En holds.

For some positive constant M0, it follows by Theorem 7 that

max
1≤j≤s

E{∥f − f0∥aI(∥f − f0∥ ≥M0rn)∣Dj} = OPf0 (s
2 exp(−nr2

n)).

Let C ′ >M1 be a constant to be further determined later, then we have that

max
1≤j≤s

E{∥f − f0∥aI(∥f − f0∥ ≥ 2C ′r̃n)∣Dj}

≤ max
1≤j≤s

E{∥f − f0∥aI(∥f − f0∥ ≥M0rn)∣Dj}

+max
1≤j≤s

E{∥f − f0∥aI(2C ′r̃n ≤ ∥f − f0∥ ≤M0rn)∣Dj}.
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The first term is OPf0 (s
2 exp(−nr2

n)). Thus, when n is sufficiently large,

Pf0 (max
1≤j≤s

E{∥f − f0∥aI(∥f − f0∥ ≥M0rn)∣Dj} ≥M ′s2 exp(−nr2
n)/2) ≤ ε/2

for a large constant M ′ > 0.

Next we only need to handle the second term. Let ∆f = f − f̂j,n. It follows by Lemma 9
that Ij,n(f) = Tj(f) − 1

2∥∆f∥
2, and `jn(f) − `jn(f̂j,n) = Ij,n(f). Therefore,

E{∥f − f0∥aI(f ∈ An)∣Dj}

= ∫An ∥f − f0∥a exp(n(`jn(f) − `jn(f̂j,n)))dΠ(f)

∫Sm(I) exp(n(`jn(f) − `jn(f̂j,n)))dΠ(f)
= ∫An

∥f − f0∥a exp(nIj,n(f))dΠ(f)

∫Sm(I) exp(nIj,n(f))dΠ(f)
,

where An = {f ∈ Sm(I) ∶ 2C ′r̃n ≤ ∥f − f0∥ ≤M0rn}.

Let

Jj1 = ∫
Sm(I)

exp(nIj,n(f))dΠ(f), Jj2 = ∫
An

∥f − f0∥a exp(nIj,n(f))dΠ(f).

Then on En and for ∥f − f0∥ ≤ r̃n, we have ∥f − f̂j,n∥ ≤ ∥f − f0∥ + ∥f̂j,n − f0∥ ≤ (M1 + 1)r̃n.

Let dn = cK(M1 + 1)h−1/2r̃n. It follows by similar arguments as above (S.23) that
d−1
n ∆f ∈ G. Note that on En and for ∥f − f0∥ ≤ r̃n, for all 1 ≤ j ≤ s,

∣Tj(f)∣ = 1

2n
∣∑
i∈Ij

[(∆f)(Xi)2 −EX{(∆f)(X)2}]∣

= 1

2n
∣⟨∑
i∈Ij

[(∆f)(Xi)KXi −EX{(∆f)(X)KX}],∆f⟩∣

≤ 1

2n
∥∆f∥ × ∥∑

i∈Ij
[(∆f)(Xi)KXi −EX{(∆f)(X)KX}]∥

= cKh
−1/2dn∥∆f∥

2
√
n

× ∥Zj,n(d−1
n ∆f)∥

≤ cKh
−1/2dn∥∆f∥

2
√
n

B(h)
√
M logN

≤ D(cK ,M,M1) × n−1/2h−
6m−1
4m r̃2

n

√
logN ≤D(cK ,M,M1) × r̃2

nbn, (S.17)

where D(cK ,M,M1) is constant depending only on cK ,M1,M .

It follows that on En and for all 1 ≤ j ≤ s,

Jj1 ≥ ∫∥f−f0∥≤r̃n
exp(nIj,n(f))dΠ(f)

= ∫∥f−f0∥≤r̃n
exp(nTj(f) −

n

2
∥f − f̂j,n∥2)dΠ(f)

≥ exp (−[D(cK ,M,M1)bn + (M1 + 1)2/2]nr̃2
n)Π(∥f − f0∥ ≤ r̃n).
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Since Π(∥f − f0∥ ≤ r̃n) ≥ exp(−c3r̃
− 2

2m+β−1
n ) (Lemma 10), together with r̃n ≥ (nh)−1/2 +

hm+
β−1
2 ≥ 2n

− 2m+β−1
2(2m+β) , we get that nr̃

2+ 2
2m+β−1

n ≥ n(4n−
2m+β−1
2m+β )1+ 1

2m+β−1 = 4. Therefore,

r̃
− 2

2m+β−1
n ≤ nr̃2

n/4, leading to

Π(∥f − f0∥ ≤ r̃n) ≥ exp(−c3

4
nr̃2

n) . (S.18)

This implies by rate conditions bn ≤ 1 that, on En and for any 1 ≤ j ≤ s,

Jj1 ≥ exp (−[D(cK ,M,M1)bn + (M1 + 1)2/2 + c3/4]nr̃2
n)

≥ exp (−[D(cK ,M,M1) + (M1 + 1)2/2 + c3/4]nr̃2
n) .

Next we handle Jj2. The idea is similar to how we handle Jj1 but with technical
difference. Let ∆f = f − f̂j,n. Note that r̃2

n ≤ r2
n log(2s), and hence, on En, for any f ∈ An,

i.e., ∥f − f0∥ ≤M0rn, we get that ∥∆f∥ = ∥f̂j,n − f∥ ≤ ∥f̂j,n − f0∥ + ∥f − f0∥ ≤M1r̃n +M0rn ≤
(M0 +M1)rn

√
log(2s). Let d∗n = cK(M0 +M1)h−1/2rn

√
log(2s). Then d−1

∗n∆f ∈ G. Using
previous similar arguments handling Tj(f), we have that on En, for any f ∈ An and 1 ≤ j ≤ s,

∣Tj(f)∣ ≤ ∥∆f∥
2
√
n
cKh

−1/2d∗n ⋅B(h)
√
M logN

≤ 1

2
c2
K(M0 +M1)2M1/2n−1/2h−1r2

nB(h)(logN)3/2

≤ D(cK ,M,M0,M1) × n−1/2r2
nh

− 6m−1
4m (logN)3/2

= D(cK ,M,M0,M1) × r2
nbn ≤D(cK ,M,M0,M1) × r̃2

n,

where D(cK ,M,M0,M1) is constant only depending on cK ,M,M0,M1 and the last inequality
follows by rate condition r2

nbn ≤ r̃2
n. It is easy to see that on En and for any f ∈ An and

1 ≤ j ≤ s, ∥f̂j,n − f∥ ≥ ∥f − f0∥ − ∥f̂j,n − f0∥ ≥ (2C ′ −M1)r̃n, leading to that

Jj2 ≤ exp(−((2C ′ −M1)2

2
−D(cK ,M,M0,M1))nr̃2

n)C(a,Π),

where C(a,Π) = ∫Sm(I) ∥f − f0∥adΠ(f) is the ath prior moment of ∥f − f0∥ which is finite.

Choose C ′ >M1 to be large such that

(2C ′ −M1)2

2
≥ 1 +D(cK ,M,M1) +D(cK ,M,M0,M1) + (M1 + 1)2/2 + c3/4.

Therefore, on En,

max
1≤j≤s

E{∥f − f0∥aI(f ∈ An)∣Dj} ≤
max1≤j≤s Jj2
min1≤j≤s Jj1

≤ exp(−nr̃2
n)C(a,Π).

So we get that

Pf0 (max
1≤j≤s

E{∥f − f0∥aI(f ∈ An)∣Dj} ≥ exp(−nr̃2
n)C(a,Π)) ≤ Pf0(E

c
n) ≤ ε/2.
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By r̃2
n ≤ r2

n log(2s), the above leads to that

Pf0 (max
1≤j≤s

E{∥f − f0∥aI(∥f − f0∥ ≥ 2C ′r̃n)∣Dj}

≥ (M ′ +C(a,Π))s2 exp(−nr̃2
n/ log(2s))) ≤ ε.

Proof is completed.

S.8.4. Proofs of other results in Section S.8.3

Let N(ε,G, ∥ ⋅ ∥∞) be the ε-packing number in terms of supremum norm, where recall that
the space G is defined in (S.13). The following result can be found in Van De Geer and Van
De Geer (2006).

Lemma 11 There exists a universal constant c0 > 0 s.t. for any ε > 0,

logN(ε,G, ∥ ⋅ ∥∞) ≤ c0(
√

2c−1
K )1/mh−

2m−1
2m ε−1/m.

For r ≥ 0, define Ψ(r) = ∫
r

0

√
log(1 + exp(x−1/m))dx. For arbitrary ε > 0, define

A(h, ε) = 32
√

6

τ

√
2c−1
K c

m
0 h

−(2m−1)/2Ψ( 1

2
√

2
cKc

−m
0 h(2m−1)/2ε)

+10
√

24ε

τ

√
log (1 + exp (2c0((

√
2)−1cKh(2m−1)/2ε)−1/m)), (S.19)

where τ =
√

log 1.5 ≈ 0.6368.
We have the following useful lemma.

Lemma 12 For any 1 ≤ j ≤ s and f ∈ Sm(I), suppose that ψj,n,f(z; g) is a measurable
function defined upon z = (y, x) ∈ Y × I and g ∈ G satisfying ψj,n,f(z; 0) = 0 and the following
Lipschitz continuity condition: for any i ∈ Ij and g1, g2 ∈ G,

∣ψj,n,f(Zi; g1) − ψj,n,f(Zi; g2)∣ ≤ c−1
K h

1/2∥g1 − g2∥∞. (S.20)

Then for any constant t ≥ 0 and n ≥ 1,

sup
f∈Sm(I)

Pf (sup
g∈G

∥Zj,n,f(g)∥f > t) ≤ 2 exp(− t2

B(h)2
) ,

where B(h) = A(h,2) and

Zj,n,f(g) =
1√
n
∑
i∈Ij

[ψj,n,f(Zi; g)KXi −Ef{ψj,n,f(Zi; g)KXi}].

Proof [Proof of Lemma 12] For any f ∈ Sm(I) and n ≥ 1, and any g1, g2 ∈ G, we get that

∥(ψj,n,f(Zi; g1) − ψj,n,f(Zi; g2))KXi∥ ≤ c
−1
K h

1/2∥g1 − g2∥∞cKh−1/2 = ∥g1 − g2∥∞.
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By Theorem 3.5 of Pinelis et al. (1994), for any t > 0, Pf (∥Zj,n,f(g1) −Zj,n,f(g2)∥ ≥ t) ≤
2 exp (− t2

8∥g1−g2∥2∞
). Then by Lemma 8.1 in Kosorok (2008), we have

∥∥Zj,n,f(g1) −Zj,n,f(g2)∥∥ψ2
≤
√

24∥g1 − g2∥∞,

where ∥ ⋅ ∥ψ2 denotes the Orlicz norm associated with ψ2(s) ∶= exp(s2) − 1. Recall τ =√
log 1.5 ≈ 0.6368. Define φ(x) = ψ2(τx). Then it can be shown by elementary calculus that

φ(1) ≤ 1/2, and for any x, y ≥ 1, φ(x)φ(y) ≤ φ(xy). By a careful examination of the proof of
Lemma 8.2, it can be shown that for any random variables ξ1, . . . , ξl,

∥max
1≤i≤l

ξi∥ψ2 ≤
2

τ
ψ−1

2 (l)max
1≤i≤l

∥ξi∥ψ2 . (S.21)

Next we use a “chaining” argument. Let T0 ⊂ T1 ⊂ T2 ⊂ ⋯ ⊂ T∞ ∶= G be a sequence of
finite nested sets satisfying the following properties:

• for any Tq and any s, t ∈ Tq, ∥s − t∥∞ ≥ ε2−q; each Tq is “maximal” in the sense that if
one adds any point in Tq, then the inequality will fail;

• the cardinality of Tq is upper bounded by

log ∣Tq ∣ ≤ logN(ε2−q,G, ∥ ⋅ ∥∞) ≤ c0(
√

2c−1
K )1/mh−(2m−1)/(2m)(ε2−q)−1/m,

where c0 > 0 is absolute constant;

• each element tq+1 ∈ Tq+1 is uniquely linked to an element tq ∈ Tq which satisfies
∥tq − tq+1∥∞ ≤ ε2−q.

For arbitrary sk+1, tk+1 ∈ Tk+1 with ∥sk+1 − tk+1∥∞ ≤ ε, choose two chains (both being of
length k + 2) tq and sq with tq, sq ∈ Tq for 0 ≤ q ≤ k + 1. The ending points s0 and t0 satisfy

∥s0 − t0∥∞ ≤
k

∑
q=0

[∥sq − sq+1∥∞ + ∥tq − tq+1∥∞] + ∥sk+1 − tk+1∥∞

≤ 2
k

∑
q=0

ε2−q + ε ≤ 5ε,
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and hence, ∥∥Zj,n,f(s0) −Zj,n,f(t0)∥f∥ψ2
≤ 5

√
24ε. It follows by the proof of Theorem 8.4 of

Kosorok (2008) and (S.21) that

∥ max
sk+1,tk+1∈Tk+1

∥Zj,n,f(sk+1) −Zj,n,f(tk+1) − (Zj,n,f(s0) −Zj,n,f(t0))∥∥
ψ2

≤ 2
k

∑
q=0

XXXXXXXXXXXXXXX

max
u∈Tq+1,v∈Tq

u, v link each other

∥Zj,n,f(u) −Zj,n,f(v)∥

XXXXXXXXXXXXXXXψ2

≤ 4

τ

k

∑
q=0

ψ−1
2 (N(2−q−1ε,G, ∥ ⋅ ∥∞))

× max
u∈Tq+1,v∈Tq

u, v link each other

∥∥Zj,n,f(u) −Zj,n,f(v)∥∥ψ2

≤ 4
√

24

τ

k

∑
q=0

√
log (1 +N(ε2−q−1,G, ∥ ⋅ ∥∞))ε2−q

≤ 8
√

24

τ

k+1

∑
q=1

√
log (1 + exp (c0c

−1/m
K h−(2m−1)/(2m)(ε2−q)−1/m))ε2−q

≤ 32
√

6

τ
∫

ε/2

0

√
log (1 + exp (c0c

−1/m
K h−(2m−1)/(2m)x−1/m))dx

= 32
√

6

τ
c−1
K c

m
0 h

−(2m−1)/2Ψ(1

2
cKc

−m
0 h(2m−1)/2ε) .

On the other hand,

XXXXXXXXXXXXXXX

max
u,v∈T0

∥u−v∥∞≤5ε

∥Zj,n,f(u) −Zj,n,f(v)∥f

XXXXXXXXXXXXXXXψ2

≤ 2

τ
ψ2(∣T0∣2) max

u,v∈T0
∥u−v∥∞≤5ε

∥∥Zj,n,f(u) −Zj,n,f(v)∥f∥ψ2

≤ 2

τ
ψ−1

2 (N(ε,G, ∥ ⋅ ∥∞)2)(5
√

24ε).

Therefore,

XXXXXXXXXXXXXXX

max
s,t∈Tk+1
∥s−t∥∞≤ε

∥Zj,n,f(s) −Zj,n,f(t)∥

XXXXXXXXXXXXXXXψ2

≤ 32
√

6

τ
c−1
K c

m
0 h

−(2m−1)/2Ψ(1

2
cKc

−m
0 h(2m−1)/2ε)

+2

τ
ψ−1

2 (N(ε,G, ∥ ⋅ ∥∞)2)(5
√

24ε)

≤ 32
√

6

τ
c−1
K c

m
0 h

−(2m−1)/2Ψ(1

2
cKc

−m
0 h(2m−1)/2ε)

+10
√

24ε

τ

√
log (1 + exp (2c0(cKh(2m−1)/2ε)−1/m))

= A(h, ε).

Now for any g1, g2 ∈ G with ∥g1 − g2∥∞ ≤ ε/2. Let k ≥ 2, hence, 21−k ≤ 1 − ∥g1 − g2∥∞/ε.
Since Tk is “maximal”, there exist sk, tk ∈ Tk s.t. max{∥g1 − sk∥∞, ∥g2 − tk∥∞} ≤ ε2−k. It is
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easy to see that ∥sk − tk∥∞ ≤ ε. So

∥Zj,n,f(g1) −Zj,n,f(g2)∥ ≤ ∥Zj,n,f(g1) −Zj,n,f(sk)∥ + ∥Zj,n,f(g2) −Zj,n,f(tk)∥
+∥Zj,n,f(sk) −Zj,n,f(tk)∥

≤ 4
√
nε2−k + max

u,v∈Tk
∥u−v∥∞≤ε

∥Zj,n,f(u) −Zj,n,f(v)∥.

Therefore, letting k →∞ we get that

XXXXXXXXXXXXXXXX

sup
g1,g2∈G

∥g1−g2∥∞≤ε/2

∥Zj,n,f(g1) −Zj,n,f(g2)∥

XXXXXXXXXXXXXXXXψ2

≤ 4
√
nε2−k/

√
log 2 +

XXXXXXXXXXXXXXX

max
u,v∈Tk
∥u−v∥∞≤ε

∥Zj,n,f(u) −Zj,n,f(v)∥

XXXXXXXXXXXXXXXψ2

≤ 4
√
nε2−k/

√
log 2 +A(h, ε)→ A(h, ε).

Taking ε = 2 in the above inequality, we get that

XXXXXXXXXXXXXXXX

sup
g1,g2∈G

∥g1−g2∥∞≤1

∥Zj,n,f(g1) −Zj,n,f(g2)∥

XXXXXXXXXXXXXXXXψ2

≤ A(h,2) = B(h).

By Lemma 8.1 in Kosorok (2008), we have

Pf (sup
g∈G

∥Zj,n,f(g)∥ ≥ t) ≤ 2 exp(− t2

B(h)2
) .

Note that the right hand side in the above does not depend on f . This completes the proof.

Proof [Proof of Lemma 4] Let f ∈ Hm(b) be the parameter based on which the data are
drawn. It is easy to see that DSλ(f)g = −E{g(X)KX} −Pλg, ∀g ∈ Sm(I). Therefore, for
any g, g̃ ∈ Sm(I), ⟨DSλ(f)g, g̃⟩ = −⟨g, g̃⟩, implying DSλ(f) = −id.

The proof of (1) is finished in two parts.
Part I: For any f ∈ Sm(I), define an operator mapping Sm(I) to Sm(I):

T1f(g) = g + Sλ(f + g), g ∈ Sm(I).

First observe that, under Pf with f ∈Hm(b),

∥Sλ(f)∥ = ∥Pλf∥ = sup
∥g∥=1

∣⟨Pλf, g⟩∣ ≤
√
λJ(f) ≤ hmb.

Let r1n = bhm. Let B(r1n) = {g ∈ Sm(I) ∶ ∥g∥ ≤ r1n} be the r1n-ball. For any g ∈ B(r1n),
using DSλ(f) = −id, it is easy to see that ∥T1f(g)∥ = ∥Sλ(f)∥ ≤ bhm = r1n. Therefore, T1f
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maps B(r1n) to itself. For any g1, g2 ∈ B(r1n), by Taylor’s expansion we have

∥T1f(g1) − T1f(g2)∥ = ∥g1 − g2 + Sλ(f + g1) − Sλ(f + g2)∥

= ∥g1 − g2 + ∫
1

0
DSλ(f + g2 + sg)gds∥ = 0.

This shows that T1f is a contraction mapping which maps B(r1n) into B(r1n). By contraction
mapping theorem (see Rudin et al. (1964)), T1f has a unique fixed point g′ ∈ B(r1n) satisfying
T1f(g′) = g′. Let fλ = f + g′. Then Sλ(fλ) = 0 and ∥fλ − f∥ ≤ r1n.

Part II: For any f ∈Hm(b), under (14) with f being the truth, let fλ be the function
obtained in Part I s.t. ∥fλ − f∥ ≤ r1n. Define an operator

T2f(g) = g + Sj,n(fλ + g), g ∈ Sm(I).

Rewrite T2f as

T2f(g) = [DSj,n(fλ)g −DSλ(fλ)g] + Sj,n(fλ).

Denote the above two terms by I1f , I2f , respectively.
For any i ∈ Ij , let Ri = (Yi − fλ(Xi))KXi −Ef{(Y − fλ(X))KX}. Obviously,

∥Ef{(Y − fλ(X))KX}∥ = sup
∥g∥=1

∣⟨Ef{(Y − fλ(X))KX}, g⟩∣

= sup
∥g∥=1

∣Ef{(Y − fλ(X))g(X)}∣ ≤ ∥f − fλ∥ ≤ r1n.

Therefore, ∥Ri∥ ≤ cKh−1/2∣Yi − fλ(Xi)∣ + r1n which leads to that

E {exp( ∥Ri∥
cKh−1/2)} ≤ E (exp(∣εi∣ + 1)) ≤ Cε,

where Cε = E{(∣ε∣ + 1)2 exp(∣ε∣ + 1)}. Let δ = hr/cK . By condition rh1/2 ≤ 1, we have

E{exp(δ∥Ri∥) − 1 − δ∥Ri∥} ≤ E{(δ∥Ri∥)2 exp(δ∥Ri∥)} ≤ c2
KCεδ

2h−1.

It follows by Theorem 3.2 of Pinelis et al. (1994) that, for L(M) ∶= cK(Cε +M),

Pf
⎛
⎝
∥∑
i∈Ij

Ri∥f ≥ L(M)nr
⎞
⎠

≤ 2 exp (−L(M)δnr + c2
KCεnh

−1δ2)

= 2 exp(−Mnhr2). (S.22)

We note that the right hand side in (S.22) does not depend on f . Moreover, it is easy to see
that Sj,n(fλ) = Sj,n(fλ) − Sλ(fλ) = 1

n ∑i∈Ij Ri. Let

En,1 = {∥Sj,n(fλ)∥ ≤ L(M)r},

then supf∈Hm(C) Pf(Ecn,1) ≤ 2 exp(−Mnhr2). Define ψj,n(Xi; g) = c−1
K h

1/2g(Xi), i ∈ Ij , and

Zj,n(g) = 1√
n ∑i∈Ij [ψj,n(Xi; g)KXi−Ef{ψj,n(Xi; g)KXi}]. By Lemma 12, supf∈Hm(b) Pf(Ecn,2) ≤

2 exp(−Mnhr2), where En,2 = {supg∈G ∥Zj,n(g)∥ ≤
√
Mnhr2B(h)}.
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For any g ∈ Sm(I)/{0}, let ḡ = g/d′n, where d′n = cKh−1/2∥g∥. It follows that

∥ḡ∥∞ ≤ cKh−1/2∥ḡ∥ = cKh−1/2∥g∥/d′n = 1, and

J(ḡ, ḡ) = d′−2
n J(g, g) = h−2m λJ(g, g)

c2
Kh

−1∥g∥2
≤ h−2m ∥g∥2

c2
Kh

−1∥g∥2
≤ c−2

K h
−2m+1.

Therefore, ḡ ∈ G. Consequently, on En,2, for any g ∈ Sm(I)/{0}, we get ∥Zj,n(ḡ)∥ ≤√
Mnhr2B(h), which leads to that

∥DSj,n(fλ)g −DSλ(fλ)g∥ = 1

n
∥∑
i∈Ij

[g(Xi)KXi −E{g(Xi)KXi}]∥f

≤ c2
KM

1/2rh−1/2B(h)∥g∥ ≤ ∥g∥/2, (S.23)

where the last inequality follows by condition c2
KM

1/2rh−1/2B(h) ≤ 1/2. Note that the above
inequality also holds for g = 0.

Let r2n = 2L(M)r. Therefore, it follows by (S.23) that, for any f ∈ Hm(b), on En ∶=
En,1 ∩ En,2 and for any g ∈ B(r2n), ∥T2f(g)∥ ≤ ∥g∥/2 + r2n/2 ≤ r2n. Meanwhile, for any
g1, g2 ∈ B(r2n), replacing g by g1 − g2 in (S.23), we get that ∥T2f(g1)−T2f(g2)∥ ≤ ∥g1 − g2∥/2.
Therefore, for any f ∈Hm(b), on En, T2f is a contraction mapping from B(r2n) to itself. By
contraction mapping theorem, there exists uniquely an element g′′ ∈ B(r2n) s.t. T2f(g′′) = g′′.
Let f̂j,n = fλ + g′′. Clearly, Sj,n(f̂j,n) = 0, and hence, f̂j,n is the maximizer of `jn; see (19).
So we get that, on En, ∥f̂j,n − f∥f ≤ ∥fλ − f∥ + ∥f̂j,n − fλ∥ ≤ r1n + r2n = bhm + 2L(M)r. The
desired conclusion follows by the trivial fact: supf∈Hm(b) Pf(Ecn) ≤ 4 exp(−Mnhr2). Proof of
(1) is completed.

Next we show (2).

For any f ∈Hm(b), let f̂j,n be the penalized MLE of f obtained by (19). Let gn = f̂j,n−f ,
δn = bhm + 2L(M)r, d′n = cKh−1/2δn.

On En, we have ∥gn∥f ≤ δn. Let ḡ = gn/d′n. Clearly, ḡ ∈ G. Then we get that

∥Sj,n(f + gn) − Sj,n(f) − (Sλ(f + gn) − Sλ(f))∥

= 1

n
∥∑
i∈Ij

[gn(Xi)KXi −EX{gn(X)KX}]∥

= cKd
′
n√

nh
∥Zj,n(ḡ)∥ ≤ c2

KM
1/2h−1/2rB(h)δn = an. (S.24)

Since Sj,n(f + gn) = 0 and DSλ(f) = −id, from (S.24) we have on En,

an ≥ ∥Sj,n(f) +DSλ(f)gn + ∫
1

0
∫

1

0
sD2Sλ(f + ss′gn)gngndsds′∥ = ∥Sj,n(f) − gn∥

which implies that ∥f̂j,n − f − Sn,λ(f)∥ ≤ an. Since supf∈Hm(bC) Pf(Ecn) ≤ 4 exp(−Mnhr2),
proof of (2) is completed.
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S.8.5. An initial contraction rate

Theorem 7 below states that the s posterior measures uniformly contract at rate rn =
(nh)−1/2 + hm, where recall that h = λ1/(2m). This is an initial rate result that holds
irrespective the diverging rate of s.

Theorem 7 (An Initial Contraction Rate) Suppose f0 = ∑∞ν=1 f
0
νϕν satisfies Condition (S).

Let a ≥ 0 be a fixed constant. If rn = o(h3/2), h1/2 logN = o(1), nh2m+1 ≥ 1, then there exists
a universal constant M > 0 s.t.

max
1≤j≤s

E{∥f − f0∥aI(∥f − f0∥ ≥Mrn)∣Dj} = OPf0 (s
2 exp(−nr2

n))

as n→∞, no matter s is fixed or diverges at any rate.

Before proving Theorem 7, we present a preliminary lemma.

Let {ϕ̃ν ∶ ν ≥ 1} be a bounded orthonormal basis of L2(I) under usual L2 inner product.
For any b ∈ [0, β], define

H̃b = {
∞
∑
ν=1

fνϕ̃ν ∶
∞
∑
ν=1

f2
ν ρ

1+b/(2m)
ν <∞}.

Then H̃b can be viewed as a version of Sobolev space with regularity m + b/2. Define G̃ =
∑∞ν=1 vνϕ̃ν , a centered GP, and f̃0 = ∑∞ν=1 f

0
ν ϕ̃ν . Define Ṽ (f, g) = ⟨f, g⟩L2 = ∫

1
0 f(x)g(x)dx,

the usual L2 inner product, J̃(f) = ∑∞ν=1 ∣Ṽ (f, ϕ̃ν)∣2ρν , a functional on H̃0. For simplicity,
denote Ṽ (f) = Ṽ (f, f). Clearly, f̃0 ∈ H̃β. Since G̃ is a Gaussian process with covariance
function

r̃(s, t) = E{G̃(s)G̃(t)} =
m

∑
ν=1

σ2
νϕ̃ν(s)ϕ̃ν(t) + ∑

ν>m
ρ
−(1+ β

2m
)

ν ϕ̃ν(s)ϕ̃ν(t),

it follows by van der Vaart et al. (2008a) that H̃β is the RKHS of G̃. For any H̃b with
0 ≤ b ≤ β, define inner product

⟨
∞
∑
ν=1

fνϕ̃ν ,
∞
∑
ν=1

gνϕ̃ν⟩b =
m

∑
ν=1

σ−2
ν fνgν + ∑

ν>m
fνgνρ

1+ b
2m

ν .

Let ∥ ⋅ ∥b be the norm corresponding to the above inner product. The following lemma is
used in the proof of Theorem 7. Its proof can be found in Shang and Cheng (2017).

Lemma 13 Let dn be any positive sequence. If Condition (S) holds, then there exists ω ∈ H̃β

such that

1. Ṽ (ω − f̃0) ≤ 1
4d

2
n,

2. J̃(ω − f̃0) ≤ 1
4d

2(β−1)
2m+β−1
n ,

3. ∥ω∥2
β = O(d

− 2
2m+β−1

n ).
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To ease reading, we sketch the proof of Theorem 7. We first show the following result:
for any ε > 0, as n→∞,

max
1≤j≤s∫∥f−f0∥∞≥ε

∥f − f0∥adP (f ∣Dj) = OPf0 (s
2 exp(−nr2

n)) (S.25)

To show (S.25), we can rewrite the posterior density of f by

p(f ∣Dj) =
∏i∈Ij(pf /pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)

∫Sm(I)∏i∈Ij(pf /pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)
, 1 ≤ j ≤ s,

where recall that pf(z) is the probability density of Z = (Y,X) under f . For 1 ≤ j ≤ s, define

Ij1 = ∫
Sm(I)

∏
i∈Ij

(pf /pf0)(Zi) exp(−nλJ(f)/2)dΠ(f), (S.26)

Ij2 = ∫
An

∥f − f0∥a∏
i∈Ij

(pf /pf0)(Zi) exp(−nλ
2
J(f))dΠ(f), (S.27)

I ′j2 = ∫
A′n

∥f − f0∥a∏
i∈Ij

(pf /pf0)(Zi) exp(−nλ
2
J(f))dΠ(f), (S.28)

where An = {f ∈ Sm(I) ∶ ∥f − f0∥ ≥ 2δn} and A′
n = {f ∈ Sm(I) ∶ ∥f − f0∥ ≥

√
2Mrn}, with

the quantities δn,M specified later. Using LeCam’s uniformly consistent test Ghosal et al.
(2000), we will show that max1≤j≤s Ij2/Ij1 is of an exponential order (in the sense of Pf0).
Then (S.25) holds by taking a = 0 in Ij2. The proof of Theorem 7 will be completed by
decomposing I ′j2/Ij1 into three terms based on an auxiliary event {f ∈ Sm(I) ∶ ∥f −f0∥∞ ≤ ε}
with each term of an exponential order.

Proof [Proof of Theorem 7] Note that there exists a universal constant c′ > 0 such that
Ψ(x) ≤ c′x1−1/(2m) for any 0 < x < 1. Therefore, there exists a universal constant c′′ > 0 s.t.
B(h) ≤ c′′h−(2m−1)/(4m).

Define Bn = {f ∈ Sm(I) ∶ V (f − f0) ≤ r2
n, J(f − f0) ≤ r

2(β−1)
2m+β−1
n }. Then

Ij1 ≥ ∫
Bn
∏
i∈Ij

(pf /pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)

= ∫
Bn

exp(∑
i∈Ij

Ri(f, f0)) exp(−nλJ(f)/2)dΠ(f),

where Ri(f, f0) = log (pf(Zi)/pf0(Zi)) = Yi(f(Xi) − f0(Xi)) − f(Xi)2/2 + f0(Xi)2/2 for any
i ∈ Ij . Define dΠ∗(f) = dΠ(f)/Π(Bn), a reduced probability measure on Bn. By Jensen’s
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inequality,

log∫
Bn

exp(∑
i∈Ij

Ri(f, f0)) exp(−nλJ(f)/2)dΠ∗(f)

≥ ∫
Bn

⎛
⎝∑i∈Ij

Ri(f, f0) − nλJ(f)/2
⎞
⎠
dΠ∗(f)

= ∫
Bn
∑
i∈Ij

[Ri(f, f0) −Ef0{Ri(f, f0)}]dΠ∗(f)

+n∫
Bn
Ef0{Ri(f, f0)}dΠ∗(f) − ∫

Bn

nλJ(f)
2

dΠ∗(f)

∶= Jj1 + Jj2 + Jj3.

For any f ∈ Bn, ∥f − f0∥2 = V (f − f0) + λJ(f − f0) ≤ r2
n + λr

2(β−1)
2m+β−1
n . By (Shang and Cheng,

2017, Lemma A.9) and the condition h−3/2rn = o(1), we can choose n to be sufficiently large
so that ∥f − f0∥∞ ≤ ch−1/2∥f − f0∥ ≤ c

√
h−1r2

n + h2m−1 ≤ 1.

It follows by Taylor’s expansion and Ef0{Yi − f0(Xi)∣Xi} = 0, that for any f ∈ Bn,

∣Ef0{Ri(f, f0)}∣ = Ef0{(f(X) − f0(X))2}/2 ≤ r2
n/2.

Therefore, Jj2 ≥ −nr2
n/2 for any 1 ≤ j ≤ s.

Since r2
n = o(1), we can choose n to be large so that ∣Ef0{Ri(f, f0)}∣ ≤ 1. Meanwhile, for

any f ∈ Bn, for some s ∈ [0,1], we have

∣Ri(f, f0)∣ = ∣Yi(f(Xi) − f0(Xi)) − f(Xi)2/2 + f0(Xi)2/2∣

= ∣Yi − f0(Xi) −
1

2
(f − f0)(Xi)∣ × ∣(f − f0)(Xi)∣

≤ ∣Yi − f0(Xi)∣ + 1/2 = ∣εi∣ + 1/2.

We have used ∥f − f0∥∞ ≤ 1 in the above inequalities.

For any 1 ≤ i ≤ N , define Ai = {∣εi∣ ≤ 2 logN}. It is easy to check that Pf0(∪Ni=1A
c
i)→ 0,

as N →∞. Define ξi = ∫Bn Ri(f, f0)dΠ∗(f) × IAi , we get that ∣ξi∣ ≤ 2 logN + 1/2, a.s. It can

also be shown by r2
n ≫ 1/n ≥ 1/N that, as n,N →∞,

∣Ef0{∫
Bn
Ri(f, f0)dΠ∗(f) × IAci }∣ ≤ Ef0{(∣εi∣ + 1/2) × IAci }

≤ Cε(1/N + 1/N2) ≤ r2
n,

where Cε is an absolute constant.

Let δ = 1/(
√
nrn). Note that by the condition h1/2 logN = o(1) we have δ logN =

(logN)/(
√
nrn) ≤ h1/2 logN = o(1), we can let n be large so that δ(2 logN + 1) ≤ 1. Let

di = ξi −Ef0{ξi} for i ∈ Ij , then it is easy to see that

∣di∣ ≤ ∣ξi∣ + ∣Ef0{ξi}∣ ≤ 2 logN + 1, a.s.
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Let ei = Ef0{exp(δ∣di∣)−1−δ∣di∣}. It can be shown using inequality exp(x)−1−x ≤ x2 exp(x)
for x ≥ 0 and Cauchy-Schwartz inequality that

∣ei∣ ≤ Ef0{δ
2d2
i exp(δ∣di∣)}

≤ eδ2Ef0{d
2
i }

≤ eδ2Ef0{ξ
2
i }

≤ eδ2∫
Bn
Ef0{Ri(f, f0)2}dΠ∗(f)

≤ eδ2∫
Bn
Ef0{(∣εi∣ + 1/2)2(f − f0)(Xi)2}dΠ∗(f)

≤ eCεδ
2r2
n,

where the last step follows from V (f − f0) ≤ r2
n for any f ∈ Bn. Therefore, it follows by

(Pinelis et al., 1994, Theorem 3.2) that

Pf0
⎛
⎝

max
1≤j≤s

∣∑
i∈Ij

[ξi −Ef0{ξi}]∣ ≥ 4
√
nrn logN

⎞
⎠

≤ sPf0
⎛
⎝
∣∑
i∈Ij

[ξi −Ef0{ξi}]∣ ≥ 4
√
nrn logN

⎞
⎠

≤ 2s exp(−4
√
nrn(logN)δ + eCεδ2nr2

n)
≤ 2s/N2 → 0, as N →∞. (S.29)

Since
√
nrn ≫ logN , we can let n be large so that 4

√
nrn logN ≤ nr2

n. Since on ∩Ni=1Ai,

Jj1 = ∑
i∈Ij

[ξi −Ef0{ξi}] − nEf0{∫
Bn
Ri(f, f0)dΠ∗(f) × IAci },

we get from (S.29) that with Pf0-probability approaching one, for any 1 ≤ j ≤ s,

Jj1 ≥ −4
√
nrn logN − nr2

n ≥ −2nr2
n.

Meanwhile, for any f ∈ Bn, J(f) ≤ (1 + J(f0)1/2)2. Therefore, Jj3 ≥ − (1+J(f0)
1/2)2

2 nλ. So,
with probability approaching one, for any 1 ≤ j ≤ s,

Ij1 ≥ exp(−5nr2
n/2 −

(1 + J(f0)1/2)2

2
nλ)Π(Bn).

To proceed, we need a lower bound for Π(Bn). It follows by Lemma 13 by replacing
dn therein by rn, by Gaussian correlation inequality (see Theorem 1.1 of Li et al. (1999)),
by Cameron-Martin theorem (see Cameron and Martin (1944) or (Kuelbs et al., 1994, eqn
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(4.18))) and (Hoffmann-Jorgensen et al., 1979, Example 4.5) that

Π(Bn) = P (V (G − f0) ≤ r2
n, J(G − f0) ≤ r

2(β−1)
2m+β−1
n )

= P (Ṽ (G̃ − f̃0) ≤ r2
n, J̃(G̃ − f̃0) ≤ r

2(β−1)
2m+β−1
n )

≥ P (Ṽ (G̃ − ω) ≤ r2
n/4, J̃(G̃ − ω) ≤ r

2(β−1)
2m+β−1
n /4)

≥ exp(−1

2
∥ω∥2

β)P (Ṽ (G̃) ≤ r2
n/4, J̃(G̃) ≤ r

2(β−1)
2m+β−1
n /4)

≥ exp(−1

2
∥ω∥2

β)P (Ṽ (G̃) ≤ r2
n/8)P (J̃(G̃) ≤ r

2(β−1)
2m+β−1
n /8)

≥ exp(−c1r
−2/(2m+β−1)
n ), (S.30)

where c1 > 0 is a universal constant.

Since β > 1 and r2
n = (nh)−1 + λ ≥ n−2m/(2m+1), we get r2

n ≥ λ and nr
2(2m+β)
2m+β−1
n ≥

n
1− 2m(2m+β)
(2m+1)(2m+β−1) > 1, so nr2

n > r
− 2

2m+β−1
n . Consequently, with Pf0-probability approaching one

min
1≤j≤s

Ij1 ≥ exp(−c2nr
2
n), (S.31)

where c2 = 5/2 + (1 + J(f0)1/2)2/2 + c1.

Let b = 2
√
c2 + 1 and C ≥ b2/4. Next we examine Ij2 defined in (S.27) with An =

{f ∈ Sm(I) ∶ ∥f − f0∥ ≥ 2δn}, for δn = bhm + 2cK(Cε + C)r, r = rnh−1/2. By the condition
h−3/2rn = o(1) and B(h) ≲ h−(2m−1)/(4m) it can be easily checked that the Rate Condition
(H): is satisfied (when n becomes large) with M therein replaced by C. For 1 ≤ j ≤ s, define
test φj,n = I(∥f̂j,n − f0∥ ≥ δn). It follows by part (1) of Theorem 4 that for any 1 ≤ j ≤ s,

Ef0{φj,n} = Pf0(∥f̂j,n − f0∥ ≥ δn) ≤ 2 exp(−Cnr2
n),

and

sup
f∈Hm(b)
∥f−f0∥≥2δn

Ef{1 − φj,n} = sup
f∈Hm(b)
∥f−f0∥≥2δn

Pf(∥f̂j,n − f0∥ < δn)

≤ sup
f∈Hm(b)
∥f−f0∥≥2δn

Pf(∥f̂j,n − f∥ ≥ δn) ≤ 2 exp(−Cnr2
n).

An immediate consequence is Ef0{max1≤j≤s φj,n} ≤ 2s exp(−Cnr2
n), which implies max1≤j≤s φj,n =

OPf0 (s exp(−Cnr2
n)).
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Note that for any f ∈ An/Hm(b), J(f) > b2. Since nh2m+1 ≥ 1 leads to r2
n = (nh)−1 + λ ≤

2λ, it then holds that, for any 1 ≤ j ≤ s,

Ef0{Ij2(1 − φj,n)}

= ∫
An

∥f − f0∥aEf{1 − φj,n} exp(−nλJ(f)/2)dΠ(f)

= ∫
An/Hm(b)

∥f − f0∥aEf{1 − φj,n} exp(−nλJ(f)/2)dΠ(f)

+∫
An∩Hm(b)

∥f − f0∥aEf{1 − φj,n} exp(−nλJ(f)/2)dΠ(f)

≤ (exp(−b2nλ/2) + 2 exp(−Cnr2
n))C(a,Π)

≤ 3 exp(−b2nr2
n/4)C(a,Π),

where the last inequality follows by C ≥ b2/4 and λ ≥ r2
n/2. So

Ef0{max
1≤j≤s

Ij2(1 − φj,n)} ≤
s

∑
j=1

Ef0{Ij2(1 − φj,n)} ≤ 3s exp(−b2nr2
n/4)C(a,Π),

which implies max1≤j≤s Ij2(1−φj,n) = OPf0 (s exp(−b2nr2
n/4)). On the other hand, as n→∞,

Ef0{max
1≤j≤s

Ij2} ≤ s∫
Sm(I)

∥f − f0∥2dΠ(f)

which implies that max1≤j≤s Ij2 = oPf0 (s). Therefore,

max
1≤j≤s

Ij2

Ij1
φj,n ≤

max1≤j≤s Ij2 ×max1≤j≤s φj,n
min1≤j≤s Ij1

= OPf0 (s
2 exp(−nr2

n)). (S.32)

By the above arguments and (S.31), we have

max
1≤j≤s∫An

∥f − f0∥adP (f ∣Dj) = max
1≤j≤s

Ij2

Ij1

≤ max
1≤j≤s

Ij2

Ij1
φj,n + max

1≤j≤s

Ij2(1 − φj,n)
Ij1

= OPf0 (s
2 exp(−nr2

n)) +OPf0 (s exp(−b2nr2
n/4) exp(c2nr

2
n))

= OPf0 (s
2 exp(−nr2

n)).

By condition rnh
−3/2 = o(1) and the trivial fact δn ≍ rnh−1/2, we have that h−1/2δn = o(1).

Therefore, eventually ∫∥f−f0∥∞≥ε ∥f − f0∥adP (f ∣Dj) ≤ ∫An ∥f − f0∥adP (f ∣Dj) for all 1 ≤ j ≤ s,
which implies that (S.25) holds.

Now we will prove the theorem. Let I ′j2 be defined as in (S.28) with A′
n = {f ∈ Sm(I) ∶

∥f−f0∥ ≥
√

2Mrn} for a fixed number satisfying M > max{2, J(f0)1/2+
√

2(c2 + 1), 1+∥f0∥∞}
(M will be further described). Let A′

n1 = {f ∈ Sm(I) ∶ V (f −f0) ≥M2r2
n, λJ(f −f0) ≤M2r2

n}
and A′

n2 = {f ∈ Sm(I) ∶ λJ(f − f0) ≥M2r2
n}. For any f ∈ A′

n2, it can be shown that

Mrn ≤
√
λJ(f − f0) ≤

√
λ(J(f)1/2 + J(f0)1/2) ≤ (λJ(f))1/2 + J(f0)1/2rn,
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which leads to λJ(f) ≥ (M − J(f0)1/2)2r2
n. So we have

Ef0{max
1≤j≤s∫A′n2

∥f − f0∥a∏
i∈Ij

(pf /pf0)(Zi) exp(−nλ
2
J(f))dΠ(f)}

≤
s

∑
j=1

Ef0{∫
A′n2

∥f − f0∥a∏
i∈Ij

(pf /pf0)(Zi) exp(−nλ
2
J(f))dΠ(f)}

= s∫
A′n2

∥f − f0∥a exp(−nλ
2
J(f))dΠ(f)}

≤ s exp(−(M − J(f0)1/2)2nr2
n/2)C(a,Π),

which leads to that

max
1≤j≤s∫A′n2

∥f − f0∥a∏
i∈Ij

(pf /pf0)(Zi) exp(−nλ
2
J(f))dΠ(f)

= OPf0 (s exp(−(M − J(f0)1/2)2nr2
n/2)). (S.33)

It follows from (S.31) and (S.33) that

max
1≤j≤s

1

Ij1
∫
A′n2

∥f − f0∥a∏
i∈Ij

(pf /pf0)(Zi) exp(−nλ
2
J(f))dΠ(f)

= OPf0 (s exp(−(M − J(f0)1/2)2nr2
n/2 + c2nr

2
n)) = OPf0 (s exp(−nr2

n)), (S.34)

where the last inequality follows by (M − J(f0)1/2)2 > 2(c2 + 1).
To continue, we need to build uniformly consistent test. Let d2

H(Pf , Pg) = 1
2 ∫ (

√
dPf −√

dPg)2 be the squared Hellinger distance between the two probability measures Pf(z)
and Pg(z). Recall that their corresponding probability density functions are pf and pg,
respectively. Nextwe present a lemma showing the local equivalence of V and d2

H .

Lemma 14 Let ε ∈ (0, 1) satisfy ε2 + 32ε exp(1/2)Cε ≤ 2, where Cε = E{exp(∣ε∣)}. Then for
any f, g ∈ Sm(I) satisfying ∥f − g∥∞ ≤ ε, V (f − g)/16 ≤ d2

H(Pf , Pg) ≤ 3V (f − g)/16.

Let ε satisfy the conditions in Lemma 14. Define Fn = {f ∈ Sm(I) ∶ ∥f−f0∥∞ ≤ ε/2, J(f) ≤
(M + J(f0)1/2)2r2

nλ
−1}. Let Pn = {Pf ∶ f ∈ Fn} and D(δ,Pn, dH) be the δ-packing number

in terms of dH . Since r2
n ≥ λ which leads to (M +J(f0)1/2)rnh−m >M +J(f0)1/2 > ε+∥f0∥∞,

it can be easily checked that Fn ⊂ (M + J(f0)1/2)rnh−mT , where T = {f ∈ Sm(I) ∶ ∥f∥∞ ≤
1, J(f) ≤ 1}.

For any f, g ∈ Fn with ∥f − g∥∞ ≤ ε, it follows by Lemma 14 that D(δ,Pn, dH) ≤
D(4δ/

√
3,Fn, dV ), where dV is the distance induced by V , i.e., dV (f, g) = V 1/2(f − g). And

hence, it follows by (Kosorok, 2008, Theorem 9.21) that

logD(δ,Pn, dH) ≤ logD(4δ/
√

3,Fn, dV )
≤ logD(4δ/

√
3, (M + J(f0)1/2)rnh−mT , dV )

≤ cV ( δ

(M + J(f0)1/2)rnh−m
)
−1/m

,
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where cV is a universal constant only depending on the regularity level m. This implies that
for any δ > 2rn,

logD(δ/2,Pn, dH) ≤ logD(rn,Pn, dH)
≤ cV (M + J(f0)1/2)1/mh−1

≤ cV (M + J(f0)1/2)1/mnr2
n,

where the last inequality follows by the fact r2
n ≥ (nh)−1. Thus, the right side of the above

inequality is constant in δ. By (Ghosal et al., 2000, Theorem 7.1), with δ =Mrn/4, there
exists test φ̃j,n and a universal constant k0 > 0 satisfying

Ef0{φ̃j,n} = Pf0 φ̃j,n

≤ exp(cV (M + J(f0)1/2)1/mnr2
n) exp(−k0nδ

2)
1 − exp(−k0nδ2)

= exp(cV (M + J(f0)1/2)nr2
n − k0M

2nr2
n/16)

1 − exp(−k0M2nr2
n/16)

,

and, combined with Lemma 14,

sup
f∈Fn

dV (f,f0)≥4δ

Ef{1 − φ̃j,n} = sup
f∈Fn

dV (f,f0)≥4δ

Pf{1 − φ̃j,n}

≤ sup
f∈Fn

dH(Pf ,Pf0)≥δ

Pf{1 − φ̃j,n}

≤ exp(−k0nδ
2) = exp(−k0M

2nr2
n/16).

This implies that

Ef0{max
1≤j≤s∫ f∈Fn

dV (f,f0)≥4δ

∥f − f0∥a∏
i∈Ij

(pf /pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)(1 − φ̃j,n)}

≤
s

∑
j=1
∫ f∈Fn
dV (f,f0)≥4δ

∥f − f0∥aEf0{∏
i∈Ij

(pf /pf0)(Zi)(1 − φ̃j,n)}dΠ(f)

=
s

∑
j=1
∫ f∈Fn
dV (f,f0)≥4δ

∥f − f0∥aEf{1 − φ̃j,n}dΠ(f)

≤ s exp(−k0M
2nr2

n/16)C(a,Π).

Therefore,

max
1≤j≤s∫ f∈Fn

dV (f,f0)≥4δ

∥f − f0∥a∏
i∈Ij

(pf /pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)(1 − φ̃j,n)

= OPf0 (s exp(−k0M
2nr2

n/16)) .
(S.35)
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Meanwhile, it follows by (S.31) and (S.35) that

max
1≤j≤s∫A′n1,∥f−f0∥∞≤ε/2

∥f − f0∥adP (f ∣Dj)(1 − φ̃j,n)

≤ max
1≤j≤s∫Fn,dV (f,f0)≥4δ

∥f − f0∥adP (f ∣Dj)(1 − φ̃j,n)

≤
max
1≤j≤s ∫ f∈Fn

dV (f,f0)≥4δ

∥f − f0∥a∏i∈Ij(pf /pf0)(Zi) exp(−nλJ(f)/2)dΠ(f)(1 − φ̃j,n)

min
1≤j≤s

Ij1

= OPf0 (s exp(−k0M
2nr2

n/16 + c2nr
2
n)) = OPf0 (s exp(−nr2

n)) .

Choose the constant M to be even bigger so that cV (M + J(f0)1/2) + 1 + c2 < k0M
2/16.

Similar to (S.32) we get

max
1≤j≤s∫A′n1,∥f−f0∥∞≤ε/2

∥f − f0∥adP (f ∣Dj)φ̃j,n = OPf0 (s
2 exp(−nr2

n)).

Therefore,

max
1≤j≤s∫A′n1,∥f−f0∥∞≤ε/2

∥f − f0∥adP (f ∣Dj) = OPf0 (s
2 exp(−nr2

n)). (S.36)

Together with (S.25), (S.32) and (S.36), we get

max
1≤j≤s∫A′n

∥f − f0∥adP (f ∣Dj)

≤ max
1≤j≤s∫A′n1

∥f − f0∥adP (f ∣Dj) + max
1≤j≤s∫A′n2

∥f − f0∥adP (f ∣Dj)

≤ max
1≤j≤s∫A′n1,∥f−f0∥∞≤ε/2

∥f − f0∥adP (f ∣Dj) + max
1≤j≤s∫∥f−f0∥∞>ε/2

∥f − f0∥adP (f ∣Dj)

+max
1≤j≤s∫A′n2

∥f − f0∥adP (f ∣Dj)

= OPf0 (s
2 exp(−nr2

n)).

This completes the proof.

Proof [Proof of Lemma 14] For any f, g ∈ Sm(I) with ∥f − g∥∞ ≤ ε, define ∆Z(f, g) =
1
2[Y (f(X) − g(X)) − f(X)2/2 + g(X)2/2], where recall and Z = (Y,X). It is easy to see by
direct calculations that d2

H(Pf , Pg) = 1 − Eg{exp(∆Z(f, g))}. By Taylor’s expansion, for
some random t ∈ [0,1],

1 −Eg{exp(∆Z(f, g))}

= −Eg{∆Z(f, g)} −
1

2
Eg{∆Z(f, g)2} − 1

6
Eg{exp(t∆Z(f, g))∆Z(f, g)3}.

We will analyze the terms on the right side of the equation.
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Define ξ = Y − Ȧ(g(X)). By Morris et al. (1983) we get Eg{ξ∣X} = 0 and Eg{ξ2∣X} = 1.
By Taylor’s expansion, ∆Z(f, g) = 1

2[ξ(f(X)− g(X))− 1
2(f(X)− g(X))2. Then we get that

−Eg{∆Z(f, g)} = 1
4V (f − g) and

Eg{∆Z(f, g)2} = Eg{(
1

2
ξ(f(X) − g(X)) − 1

4
(f(X) − g(X))2)}

= 1

4
Eg{ξ2(f(X) − g(X))2} − 1

4
Eg{ξ(f(X) − g(X))3} + 1

16
Eg{(f(X) − g(X))4}

= 1

4
V (f − g) + 1

16
Eg{(f(X) − g(X))4}.

Since ∥f − g∥∞ ≤ ε < 1 and ∣∆Z(f, g)∣ ≤ 1
2(∣ξ∣ + 1/2)∣f(X) − g(X)∣, we get

∣Eg{exp(t∆Z(f, g))∆Z(f, g)3}∣
≤ Eg{exp(∣∆Z(f, g)∣)∣∆Z(f, g)∣3}
≤ Eg{exp(ε∣ξ∣/2 + ε/4)(∣ξ∣/2 + 1/4)3∣f(X) − g(X)∣3}

= 6Eg {exp(ε∣ξ∣/2 + ε/4) × 1

3!
(∣ξ∣/2 + 1/4)3 ∣f(X) − g(X)∣3}

≤ 6Eg{exp(ε∣ξ∣/2 + ε/4) exp(∣ξ∣/2 + 1/4)∣f(X) − g(X)∣3}
≤ 6 exp(ε/4 + /4)Eg{exp(∣ξ∣)∣f(X) − g(X)∣3}
≤ 6ε exp(1/2)CεV (f − g).

It also holds that ∣Eg{(f(X) − g(X))4}∣ ≤ ε2V (f − g). Therefore, for any f, g ∈ Sm(I) with
∥f − g∥∞ ≤ ε,

∣d2
H(Pf , Pg) − V (f − g)/8∣

= ∣ 1

32
Eg{(f(X) − g(X))4} + 1

6
Eg{exp(t∆Z(f, g))∆Z(f, g)3}∣

≤ (εCε exp(1/2) + ε2/32)V (f − g) < V (f − g)/16,

which implies V (f − g)/16 ≤ d2
H(Pf , Pg) ≤ 3V (f − g)/16. This proves Lemma 14.
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S.8.6. Additional Plots in Section 5

Radius of the credible sets/intervals
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Figure 11. CP of Fx(f) = f(x) against x based on asymptotic theory.

Results on larger N

Simulation results about credible regions/intervals in Section 5 are based on N = 1200. This
section repeated the same study for N = 1800,2400. Results are summarized in following
plots.

65



Shang, Hao, Cheng

0.2 0.4 0.6 0.8

−
0.

2
0.

2
0.

6
1.

0

1 − α = 0.95

x

C
P

s=1 s=6 s=15 s=60

0.2 0.4 0.6 0.8

0.
0

0.
4

0.
8

1 − α = 0.90

x

C
P

0.2 0.4 0.6 0.8

0.
0

0.
4

0.
8

1 − α = 0.70

x

C
P

0.2 0.4 0.6 0.8

0.
0

0.
4

0.
8

1 − α = 0.50

x

C
P

0.2 0.4 0.6 0.8

0.
0

0.
4

0.
8

1 − α = 0.30

x

C
P

0.2 0.4 0.6 0.8

0.
0

0.
4

0.
8

1 − α = 0.10

x

C
P

Figure 12. CP of Fx(f) = ∫
x

0 f(z)dz against x based on asymptotic theory.
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Figure 13. Radius of credible region (32) against γ. Legend indicates the credibility levels 1 − α.
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Figure 14. Radius of credible region (33) against γ. Legend indicates the credibility levels 1 − α.
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Figure 15. Radius of credible interval (36) for pointwise functional Fx(f) = f(x) against γ. Legend

indicates the credibility levels 1 − α. Four values of x are considered.
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Figure 16. Radius of credible interval (36) for integral functional Fx(f) = ∫
x

0 f(z)dz against γ. Legend

indicates the credibility levels 1 − α. Four values of x are considered.
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Figure 17. N = 1800: CP of ACR and FCR based on strong topology.
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Figure 18. N = 1800: CP of ACR and FCR based on weak topology.
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Figure 19. N = 1800: CP of Fx(f) = f(x) against x based on posterior samples of f .
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Figure 20. N = 1800: CP of Fx(f) = f(x) against x based on asymptotic theory.
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Figure 21. N = 1800: CP of Fx(f) = ∫
x

0 f(z)dz against x based on posterior samples of f .
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Figure 22. N = 1800: CP of Fx(f) = ∫
x

0 f(z)dz against x based on asymptotic theory.
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Figure 23. N = 2400: CP of ACR and FCR based on strong topology.
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Figure 24. N = 2400: CP of ACR and FCR based on weak topology.
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Figure 25. N = 2400: CP of Fx(f) = f(x) against x based on posterior samples of f .
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Figure 26. N = 2400: CP of Fx(f) = f(x) against x based on asymptotic theory.
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Figure 27. N = 2400: CP of Fx(f) = ∫
x

0 f(z)dz against x based on posterior samples of f .
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Figure 28. N = 2400: CP of Fx(f) = ∫
x

0 f(z)dz against x based on asymptotic theory.
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