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Abstract

Sparse support vector machine (SVM) is a popular classification technique that can si-
multaneously learn a small set of the most interpretable features and identify the support
vectors. It has achieved great successes in many real-world applications. However, for
large-scale problems involving a huge number of samples and ultra-high dimensional features,
solving sparse SVMs remains challenging. By noting that sparse SVMs induce sparsities in
both feature and sample spaces, we propose a novel approach, which is based on accurate
estimations of the primal and dual optima of sparse SVMs, to simultaneously identify the
inactive features and samples that are guaranteed to be irrelevant to the outputs. Thus, we
can remove the identified inactive samples and features from the training phase, leading to
substantial savings in the computational cost without sacrificing the accuracy. Moreover, we
show that our method can be extended to multi-class sparse support vector machines. To the
best of our knowledge, the proposed method is the first static feature and sample reduction
method for sparse SVMs and multi-class sparse SVMs. Experiments on both synthetic
and real data sets demonstrate that our approach significantly outperforms state-of-the-art
methods and the speedup gained by our approach can be orders of magnitude.
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1. Introduction

Sparse support vector machine (SVM) (Bi et al., 2003; Wang et al., 2006) is a powerful
technique that can simultaneously perform classification by margin maximization and variable
selection via `1-norm penalty. The last few years have witnessed many successful applications
of sparse SVMs, such as text mining (Joachims, 1998; Yoshikawa et al., 2014), bioinformatics
(Narasimhan and Agarwal, 2013), and image processing (Mohr and Obermayer, 2004; Kotsia
and Pitas, 2007). Many algorithms (Hastie et al., 2004; Fan et al., 2008; Catanzaro et al.,
2008; Hsieh et al., 2008; Shalev-Shwartz et al., 2011) have been proposed to efficiently solve
sparse SVM problems. However, the applications of sparse SVMs to large-scale learning
problems, which involve a huge number of samples and extremely high-dimensional features,
still remain challenging.

An emerging technique, called screening (El Ghaoui et al., 2012), has been shown to
be promising in accelerating the training processes of large-scale sparse learning models.
The essential idea of screening is to quickly identify the zero coefficients in the sparse
solutions without solving any optimization problems such that the corresponding features or
samples—that are called inactive features or samples—can be removed from the training
phase. Then, we only need to perform optimization on the reduced data sets instead of the
full data sets, leading to a substantial saving in the computational cost. Here, we need to
emphasize that screening differs greatly from feature selection, although they look similar at
the first glance. To be precise, screening is devoted to accelerating the training processes of
many sparse models including Lasso, sparse SVMs, etc., while feature selection is the goal of
these models. In the past few years, many screening methods are proposed for a large set
of sparse learning techniques, such as Lasso (Tibshirani et al., 2012; Xiang and Ramadge,
2012; Wang et al., 2015), group Lasso (Ndiaye et al., 2016), `1-regularized logistic regression
(Wang et al., 2014b), and SVMs (Ogawa et al., 2013). Most of the existing methods are in
the same framework, i.e., estimating the optimum of the dual (resp. primal) problem and
then developing the screening rules based on the estimations to infer which components of
the primal (resp. dual) optimum are zero from the KKT conditions. The main differences
among them are the techniques they use to develop their optima estimations and rules and
the different sparse models they focus on. For example, SAFE (El Ghaoui et al., 2012)
estimates the dual optimum by calculating the optimal value’s lower bound of the dual
problem. The Lasso screening method (Wang et al., 2015) estimates the optimum based on
the non-expensiveness (Bauschke et al., 2011) of the projection operator by noting that its
dual problem boils down to finding the projection of a given point on a convex set. Moreover,
a screening method is called static if it triggers its screening rules before training, and
dynamic if during the training process. Empirical studies indicate that screening methods
can lead to orders of magnitude of speedup in computation time.

However, most existing screening methods study either feature screening or sample
screening individually and their applications have very different scenarios. Specifically, to
achieve better performance (say, in terms of speedup), we favor feature screening methods
when the number of features p is much larger than the sample size n, while sample screening
methods are preferable when n � p. Note that there is another class of sparse learning
techniques, like sparse SVMs, which induce sparsities in both feature and sample spaces.
All these screening methods tend to be helpless in accelerating the training process of these
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models with large n and p. We cannot address this problem by simply combining the existing
feature and sample screening methods either. The reason is that they could mistakenly
discard relevant data as they are specifically designed for different sparse models. Recently,
Shibagaki et al. (2016) considered this issue and proposed a method to simultaneously
identify the inactive features and samples in a dynamic manner, and they trigger their
testing rule when there is a sufficient decrease in the duality gap during the training process.
Thus, the method in Shibagaki et al. 2016 can discard more and more inactive features and
samples as the training proceeds and one has small-scale problems to solve in the late stage
of the training process. Nevertheless, the overall speedup is limited as the problems’ size can
be large in the early stage of the training process. To be specific, the method in Shibagaki
et al. 2016 depends heavily on the duality gap during the training process. The duality
gap in the early stage can always be large, which makes the dual and primal estimations
inaccurate and finally results in ineffective screening rules. Hence, it is essentially solving a
large problem in the early stage. This will be verified in the experimental comparisons in
Section 6 and similar results can also be found in the recent work (Massias et al., 2018),
which merely focuses on Lasso.

In this paper, to address the limitations in the dynamic screening method, we propose a
novel screening method that can Simultaneously identify Inactive Features and Samples
(SIFS) for sparse SVMs in a static manner, and we only need to perform SIFS once before
(instead of during) training. Thus, we only need to run the training algorithm on small-scale
problems. The major technical challenge in developing SIFS is that we need to accurately
estimate the primal and dual optima. The more accurate the estimations are, the more
effective SIFS is in detecting inactive features and samples. Thus, our major technical
contribution is a novel framework, which is based on the strong convexity of the primal
and dual problems of sparse SVMs for deriving accurate estimations of the primal and dual
optima (see Section 3). Another appealing feature of SIFS is the so-called synergistic effect
(Shibagaki et al., 2016). Specifically, the proposed SIFS consists of two parts, i.e., Inactive
Feature Screening (IFS) and Inactive Sample Screening (ISS). We show that discarding
inactive features (resp. samples) identified by IFS (resp. ISS) leads to a more accurate
estimation of the primal (resp. dual) optimum, which in turn dramatically enhances the
capability of ISS (resp. IFS) in detecting inactive samples (resp. features). Thus, SIFS
applies IFS and ISS in an alternating manner until no more inactive features and samples
can be identified, leading to much better performance in scaling up large-scale problems
than the application of ISS or IFS individually. Moreover, SIFS (see Section 4) is safe in the
sense that the detected features and samples are guaranteed to be absent from the sparse
representations. To the best of our knowledge, SIFS is the first static screening rule for sparse
SVMs, which is able to simultaneously detect inactive features and samples. Experiments
(see Section 6) on both synthetic and real data sets demonstrate that SIFS significantly
outperforms the state-of-the-art (Shibagaki et al., 2016) in improving the training efficiency
of sparse SVMs and the speedup can be orders of magnitude.

To demonstrate the flexibility of our proposed method SIFS, we extend its idea to
multi-class sparse support vector machine (see Section 5), which also induces sparsities
in both feature and sample spaces. Although multi-class sparse SVM has a very different
structure and is more complex than sparse SVM, we will see that its dual problem has some
similar properties (especially the strong convexity) with those of sparse SVM. Recall that
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SIFS we developed for sparse SVMs is mainly based on the strong convexity of the primal
and dual problems. Therefore, the idea of SIFS is also applicable for multi-class sparse
SVMs. Experimental results show that the speedup gained by SIFS in multi-class sparse
SVMs can also be orders of magnitude.

For the convenience of presentation, we postpone the detailed proofs of all the theorems
in this paper to the appendix. At last, we should point out that this journal paper is an
extension of our own previous work (Zhang et al., 2017) published at the International
Conference on Machine Learning (ICML) 2017.

Notations: Let ‖ · ‖1, ‖ · ‖, and ‖ · ‖∞ be `1, `2, and `∞ norms, respectively. We denote
the inner product between vectors x and y by 〈x,y〉, and the i-th component of x by [x]i.
Let [p] = {1, 2..., p} for a positive integer p. Given a subset J := {j1, ..., jk} of [p], let |J |
be the cardinality of J . For a vector x, let [x]J = ([x]j1 , ..., [x]jk)>. For a matrix X, let
[X]J = (xj1 , ...,xjk) and J [X] = ((xj1)>, ..., (xjk)>)>, where xi and xj are the ith row and
jth column of X, respectively. For a scalar t, we denote max{0, t} by [t]+. Let ek ∈ RK be
the index vector, that is, [ek]i = 1 if i = k, otherwise [ek]i = 0. At last, we denote the set of
nonnegative real numbers as R+.

2. Basics and Motivations

In this section, we briefly review some basics of sparse SVMs and then motivate SIFS via
the KKT conditions. Specifically, we focus on an `1-regularized SVM with a smoothed hinge
loss, which takes the form of

min
w∈Rp

P (w;α, β) =
1

n

n∑
i=1

`(1− 〈x̄i,w〉) +
α

2
‖w‖2 + β||w||1, (P∗)

where w ∈ Rp is the parameter vector to be estimated, {xi, yi}ni=1 is the training set, xi ∈ Rp,
yi ∈ {−1,+1}, x̄i = yixi, α and β are two positive parameters, and `(·) : R → R+ is the
smoothed hinge loss, i.e.,

`(t) =


0, if t < 0,
t2

2γ , if 0 ≤ t ≤ γ,
t− γ

2 , if t > γ,

(1)

where γ ∈ (0, 1).

Remark 1 We use the smoothed hinge loss instead of the vanilla one in order to make
the objective of the Lagrangian dual problem of (P∗) strongly convex, which is needed in
developing our accurate optima estimations. We should point out that the smoothed hinge
loss is a pretty good approximation to the vanilla one with strong theoretical guarantees. See
Section 5 in Shalev-Shwartz and Zhang 2016 for the details.

We present the Lagrangian dual problem of problem (P∗) and the KKT conditions in the
following theorem, which play a fundamentally important role in developing our screening
rules. We will not provide its proof in the appendix since it follows from Fenchel Duality
(see Corollary 31.2.1 in Rockafellar, 1970) and a similar result can be found in Shibagaki
et al. 2016.
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Theorem 2 (Rockafellar, 1970) Let X̄ = (x̄1, x̄2, ..., x̄n) and Sβ(·) be the soft-thresholding
operator (Hastie et al., 2015), i.e., [Sβ(u)]i = sign([u]i)(|[u]i| − β)+. Then, for problem
(P∗), the followings hold:
(i) the dual problem of (P∗) is

min
θ∈[0,1]n

D(θ;α, β) =
1

2α

∥∥∥∥Sβ ( 1

n
X̄θ

)∥∥∥∥2

+
γ

2n
‖θ‖2 − 1

n
〈1, θ〉, (D∗)

where 1 ∈ Rn is a vector with all components equal to 1;
(ii) denote the optima of (P∗) and (D∗) by w∗(α, β) and θ∗(α, β), respectively, then,

w∗(α, β) =
1

α
Sβ
(

1

n
X̄θ∗(α, β)

)
, (KKT-1)

[θ∗(α, β)]i =


0, if 1− 〈x̄i,w∗(α, β)〉 < 0;

1, if 1− 〈x̄i,w∗(α, β)〉 > γ;
1
γ (1− 〈x̄i,w∗(α, β)〉), otherwise.

(KKT-2)

According to KKT-1 and KKT-2, we define 4 index sets:

F =

{
j ∈ [p] :

1

n
|[X̄θ∗(α, β)]j | ≤ β

}
,

R = {i ∈ [n] : 1− 〈w∗(α, β), x̄i〉 < 0},
E = {i ∈ [n] : 1− 〈w∗(α, β), x̄i〉 ∈ [0, γ]},
L = {i ∈ [n] : 1− 〈w∗(α, β), x̄i〉 > γ},

which imply that

(i) i ∈ F ⇒ [w∗(α, β)]i = 0, (ii)

{
i ∈ R ⇒ [θ∗(α, β)]i = 0,
i ∈ L ⇒ [θ∗(α, β)]i = 1.

(R)

Thus, we call the j-th feature inactive if j ∈ F . The samples in E are the so-called support
vectors and we call the samples in R and L inactive samples.

Suppose that we are given subsets of F , R, and L. Then by the rules in (R), we can see
that many coefficients of w∗(α, β) and θ∗(α, β) are known. Thus, we may have much fewer
unknowns to solve and the problem size can be dramatically reduced. We formalize this
idea in Lemma 3.

Lemma 3 Given index sets F̂ ⊆ F , R̂ ⊆ R, and L̂ ⊆ L, the followings hold:
(i) [w∗(α, β)]F̂ = 0, [θ∗(α, β)]R̂ = 0, [θ∗(α, β)]L̂ = 1;

(ii) let D̂ = R̂ ∪ L̂, Ĝ1 = F̂c [X̄]D̂c , and Ĝ2 = F̂c [X̄]L̂, where F̂c = [p] \ F̂ , D̂c = [n] \ D̂, and

L̂c = [n] \ L̂. Then, [θ∗(α, β)]D̂c solves the following scaled dual problem:

min
θ̂∈[0,1]|D̂c|

{ 1

2α

∥∥∥∥Sβ ( 1

n
Ĝ1θ̂ +

1

n
Ĝ21

)∥∥∥∥2

+
γ

2n
‖θ̂‖2 − 1

n
〈1, θ̂〉

}
; (scaled-D∗)

(iii) suppose that θ∗(α, β) is known, then,

[w∗(α, β)]F̂c =
1

α
Sβ
(

1

n F̂
c [X̄]θ∗(α, β)

)
.

5



Hong, Zhang, Liu, Ye, Cai, He and Wang

Lemma 3 indicates that, if we can identify index sets F̂ and D̂ and the cardinalities of
F̂c and D̂c are much smaller than the feature dimension p and the sample size n, we only
need to solve problem (scaled-D∗) that may be much smaller than problem (D∗) to exactly
recover the optima w∗(α, β) and θ∗(α, β) without sacrificing any accuracy.

However, we cannot directly apply Rules in (R) to identify subsets of F , R, and L, as
they require the knowledge of w∗(α, β) and θ∗(α, β) that are usually unavailable. Inspired
by the idea in El Ghaoui et al. 2012, we can first estimate regions W and Θ that contain
w∗(α, β) and θ∗(α, β), respectively. Then, by denoting

F̂ :=

{
j ∈ [p] : max

θ∈Θ

{∣∣∣∣ 1n [X̄θ]j

∣∣∣∣} ≤ β} , (2)

R̂ :=

{
i ∈ [n] : max

w∈W
{1− 〈w, x̄i〉} < 0

}
, (3)

L̂ :=

{
i ∈ [n] : min

w∈W
{1− 〈w, x̄i〉} > γ

}
, (4)

since it is easy to know that F̂ ⊂ F , R̂ ⊂ R, and L̂ ⊂ L, the rules in (R) can be relaxed as:

(i) j ∈ F̂ ⇒ [w∗(α, β)]j = 0, (R1)

(ii)

{
i ∈ R̂ ⇒ [θ∗(α, β)]i = 0,

i ∈ L̂ ⇒ [θ∗(α, β)]i = 1.
(R2)

In view of Rules R1 and R2, we sketch the development of SIFS as follows.

Step 1: Derive estimations W and Θ such that w∗(α, β) ∈ W and θ∗(α, β) ∈ Θ, respectively.

Step 2: Develop SIFS by deriving the relaxed screening rules R1 and R2, i.e., by solving the
optimization problems in Eqs. (2), (3) and (4).

3. Estimate the Primal and Dual Optima

In this section, we first show that the primal and dual optima admit closed-form solutions for
specific values of α and β (Section 3.1). Then, in Sections 3.2 and 3.3, we present accurate
estimations of the primal and dual optima, respectively. We would like to point out that in
order to extend the optimum estimation results below to multi-class sparse SVM and avoid
redundancy, we consider the optimum estimations for the primal and dual problems in more
general forms.

3.1. Effective Intervals of Parameters α and β

Below we show two things. One is that if the value of β is sufficiently large, no matter what
α is, the primal solution is 0. The other is for any β, if α is large enough, the primal and
dual optima admit closed-form solutions.

Lemma 4 Let βmax = ‖ 1
nX̄1‖∞ and αmax(β) = 1

1−γ maxi∈[n]

{
〈x̄i,Sβ( 1

nX̄1)〉
}

. Then,
(i) for α > 0 and β ≥ βmax, we have

w∗(α, β) = 0, θ∗(α, β) = 1;
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(ii) for all α ∈ [max{αmax(β), 0},∞) ∩ (0,∞), we have

w∗(α, β) =
1

α
Sβ
(

1

n
X̄1

)
, θ∗(α, β) = 1. (5)

By Lemma 4, we only need to consider the cases where β ∈ (0, βmax] and α ∈ (0, αmax(β)].

3.2. Primal Optimum Estimation

In Section 1, we mention that the proposed SIFS consists of IFS and ISS, which can
identify the inactive features and samples, respectively. We also mention that an alternating
application of IFS and ISS can improve the estimation accuracy of the primal and dual
optimum estimations, which can in turn make ISS and IFS more effective in identifying
inactive samples and features, respectively. We would like to show that discarding inactive
features by IFS leads to a more accurate estimation of the primal optimum.

We consider the following general problem (g-P∗):

min
w∈Rp

P (w;α, β) = L(w) +
α

2
‖w‖2 + β||w||1, (g-P∗)

where L(w) : Rp → R+ is smooth and convex. Exploiting the strong convexity of the
objective function, we obtain the optimum estimation in the following lemma.

Lemma 5 Suppose that the optimum w∗(α0, β0) of problem (g-P∗) at (α0, β0) with β0 ∈
(0, βmax] and α0 ∈ (0, αmax(β0)] is known. Consider problem (g-P∗) with parameters α > 0
and β0. Let F̂ be the index set satisfying [w∗(α, β0)]F̂ = 0 and define

c =
α0 + α

2α
[w∗(α0, β0)]F̂c , (6)

r2 =
(α0 − α)2

4α2
‖w∗(α0, β0)‖2 − (α0 + α)2

4α2
‖[w∗(α0, β0)]F̂‖

2. (7)

Then, the following holds:

[w∗(α, β0)]F̂c ∈ {w : ‖w − c‖ ≤ r}.

For problem (P∗), let F̂ be the index set of inactive features identified by previous
IFS steps. We have [w∗(α, β0)]F̂ = 0. Hence, we only need to find an estimation for
[w∗(α, β0)]F̂c . Since problem (P∗) is a special case of problem (g-P∗), given the reference

solution w∗(α0, β0) and the set F̂ , from Lemma 5 we have:

[w∗(α, β0)]F̂c ∈ W := {w : ‖w − c‖ ≤ r}, (8)

where c and r are defined in Eqs. (6) and (7), respectively.
It shows that [w∗(α, β0)]F̂c lies in a ball of radius r centered at c. Note that, before we

perform IFS, the set F̂ is empty and the second term on the right hand side of Eq. (7) is thus
0. If we apply IFS multiple times alternatively with ISS, the set F̂ will be monotonically
increasing. Thus, Eq. (7) implies that the radius will be monotonically decreasing, leading
to a more accurate primal optimum estimation.
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3.3. Dual Optimum Estimation

We consider a general dual problem (g-D∗) below:

min
θ∈[0,1]n

D(θ;α, β) =
1

2α
fβ(θ) +

γ

2n
‖θ‖2 − 1

n
〈v, θ〉, (g-D∗)

where v ∈ Rn and fβ(θ) : Rn → R+ is smooth and convex. It is obvious that problem (g-D∗)

can be reduced to problem (D∗) by letting fβ(θ) =
∥∥Sβ ( 1

nX̄θ
)∥∥2

and v = 1. The lemma
below gives an optimum estimation of problem (g-D∗) based on the strong convexity of its
objective function.

Lemma 6 Suppose that the optimum θ∗(α0, β0) of problem (g-D∗) with β0 ∈ (0, βmax] and
α0 ∈ (0, αmax(β0)] is known. Consider problem (g-D∗) at (α, β0) with α > 0 and let R̂ and
L̂ be two index sets satisfying [θ∗(α, β0)]R̂ = 0 and [θ∗(α, β0)]L̂ = 1, respectively. We denote

D̂ = R̂ ∪ L̂ and define

c =
α− α0

2γα
[v]D̂c +

α0 + α

2α
[θ∗(α0, β0)]D̂c , (9)

r2 =(
α− α0

2α
)2||θ∗(α0, β0)− 1

γ
v||2 − ||1− α− α0

2γα
[v]L̂ −

α0 + α

2α
[θ∗(α0, β0)]L̂||

2

− ||α− α0

2γα
[v]R̂ +

α0 + α

2α
[θ∗(α0, β0)]R̂||

2. (10)

Then, the following holds:

[θ∗(α, β0)]D̂c ∈ {θ : ‖θ − c‖ ≤ r}.

We now turn back to problem (D∗). As it is a special case of problem (g-D∗), given the
reference solution θ∗(α0, β0) at (α0, β0) and the index sets of inactive samples identified by
the previous ISS steps R̂ and L̂, using Lemma 6, we can obtain:

[θ∗(α, β0)]D̂c ∈ Θ := {θ : ‖θ − c‖ ≤ r}, (11)

where c and r are defined by Eqs. (9) and (10) with v = 1, respectively. Therefore,
[θ∗(α, β0)]D̂c lies in the ball Θ. In view of Eq. (10), the index sets L̂ and R̂ monotonically
increase and hence the last two terms on the right hand side of Eq. (10) monotonically
increase when we perform ISS multiple times (alternating with IFS), which implies that the
ISS steps can reduce the radius and thus improve the dual optimum estimation.

In addition, from both Lemmas 5 and 6, we can see that the radii of W and Θ can be
potentially large when α is very small, which may affect our estimation accuracy. We can
sidestep this issue by letting the ratio α/α0 be a constant. That is why we space the values
of α equally at the logarithmic scale on the parameter value path in the experiments.

Remark 7 To estimate the optima w∗(α, β0) and θ∗(α, β0) of problems (P∗) and (D∗)
using Lemmas 5 and 6, we have a free reference solution pair w∗(α0, β0) and θ∗(α0, β0) with
α0 = αmax(β0). The reason is that w∗(α0, β0) and θ∗(α0, β0) admit closed-form solutions in
this setting (see Lemma 4).
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4. The Proposed SIFS Screening Rule

We first present the IFS and ISS rules in Sections 4.1 and 4.2, respectively. Then, in Section
4.3, we develop the SIFS screening rule by an alternating application of IFS and ISS.

4.1. Inactive Feature Screening (IFS)

Suppose that w∗(α0, β0) and θ∗(α0, β0) are known, we derive IFS to identify inactive features
for problem (P∗) at (α, β0) by solving the optimization problem in Eq. (2) (see Section A.5
in the appendix):

si(α, β0) = max
θ∈Θ

{
1

n
|〈[x̄i]D̂c , θ〉+ 〈[x̄i]L̂,1〉|

}
, i ∈ F̂c, (12)

where Θ is given by Eq. (11) and F̂ and D̂ = R̂ ∪ L̂ are the index sets of inactive features
and samples that have been identified in previous screening processes, respectively. The
next result shows the closed-form solution of problem (12).

Lemma 8 Consider problem (12). Let c and r be given by Eq. (9) and Eq. (10) with v = 1.
Then, for all i ∈ F̂c, we have

si(α, β0) =
1

n
(|〈[x̄i]D̂c , c〉+ 〈[x̄i]L̂,1〉|+ ‖[x̄

i]D̂c‖r).

We are now ready to present the IFS rule.

Theorem 9 [Feature screening rule IFS] Consider problem (P∗). We suppose that w∗(α0, β0)
and θ∗(α0, β0) are known. Then:

(1) the feature screening rule IFS takes the form of

si(α, β0) ≤ β0 ⇒ [w∗(α, β0)]i = 0,∀i ∈ F̂c; (IFS)

(2) we can update the index set F̂ by

F̂ ← F̂ ∪∆F̂ with ∆F̂ = {i : si ≤ β0, i ∈ F̂c}. (13)

Recall that (see Lemma 6) previous sample screening results give us a tighter dual
estimation, i.e., a smaller feasible region Θ for problem (12), which results in a smaller
si(α, β0). It finally brings about a more powerful feature screening rule IFS. This is the so
called synergistic effect.

4.2. Inactive Sample Screening (ISS)

Similar to IFS, we derive ISS to identify inactive samples by solving the optimization
problems in Eq. (3) and Eq. (4) (see Section A.7 in the appendix for details):

ui(α, β0) = max
w∈W

{1− 〈[x̄i]F̂c ,w〉}, i ∈ D̂c, (14)

li(α, β0) = min
w∈W

{1− 〈[x̄i]F̂c ,w〉}, i ∈ D̂c, (15)
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whereW is given by Eq. (8) and F̂ and D̂ = R̂∪ L̂ are the index sets of inactive features and
samples that have been identified in previous screening processes. We show that problems
(14) and (15) admit closed-form solutions.

Lemma 10 Consider problems (14) and (15). Let c and r be given by Eq. (6) and Eq. (7).
Then,

ui(α, β0) = 1− 〈[x̄i]F̂c , c〉+ ‖[x̄i]F̂c‖r, i ∈ D̂c,
li(α, β0) = 1− 〈[x̄i]F̂c , c〉 − ‖[x̄i]F̂c‖r, i ∈ D̂c.

We are now ready to present the ISS rule.

Theorem 11 [Sample screening rule ISS] Consider problem (D∗) and suppose that w∗(α0, β0)
and θ∗(α0, β0) are known, then:

(1) the sample screening rule ISS takes the form of

ui(α, β0) < 0⇒ [θ∗(α, β0)]i = 0,
li(α, β0) > γ ⇒ [θ∗(α, β0)]i = 1,

∀i ∈ D̂c; (ISS)

(2) we can update the index sets R̂ and L̂ by

R̂ ← R̂ ∪∆R̂ with ∆R̂ = {i : ui(α, β0) < 0, i ∈ D̂c}, (16)

L̂ ← L̂ ∪∆L̂ with ∆L̂ = {i : li(α, β0) > γ, i ∈ D̂c}. (17)

The synergistic effect also exists here. Recall that (see Lemma 5), previous feature
screening results lead to a smaller feasible region W for problems (14) and (15), which
results in smaller ui(α, β0) and larger li(α, β0). It finally leads us to a more accurate sample
screening rule ISS.

4.3. The Proposed SIFS Rule by An Alternating Application of IFS and ISS

In real applications, the optimal parameter values of α and β are usually unknown. To
determine appropriate parameter values, common approaches, like cross validation and
stability selection, need to solve the model over a grid of parameter values {(αi,j , βj) : i ∈
[M ], j ∈ [N ]} with βmax > β1 > ... > βN > 0 and αmax(βj) > α1,j > ... > αM,j > 0. This
can be very time-consuming. Inspired by Strong Rule (Tibshirani et al., 2012) and SAFE
(El Ghaoui et al., 2012), we develop a sequential version of SIFS in Algorithm 1. Specifically,
given the primal and dual optima w∗(αi−1,j , βj) and θ∗(αi−1,j , βj) at (αi−1,j , βj), we apply
SIFS to identify the inactive features and samples for problem (P∗) at (αi,j , βj). Then, we
perform training on the reduced data set and solve the primal and dual optima at (αi,j , βj).
We repeat this process until we solve problem (P∗) at all pairs of parameter values.

Note that we insert α0,j into every sequence {αi,j : i ∈ [M ]} ( see line 1 in Algorithm 1)
to obtain a closed-form solution as the first reference solution. In this way, we can avoid
solving problem at (α1,j , βj), j ∈ [N ] directly (without screening), which is time consuming.
At last, we would like to point out that the values {(αi,j , βj) : i ∈ [M ], j ∈ [N ]} in SIFS can
be specified by users arbitrarily.

10
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Algorithm 1 SIFS

1: Input: βmax > β1 > ... > βN > 0 and αmax(βj) = α0,j > α1,j > ... > αM,j > 0.
2: for j = 1 to N do
3: Compute the first reference solution w∗(α0,j , βj) and θ∗(α0,j , βj) using the close-form

formulas in Eq. (5).
4: for i = 1 to M do
5: Initialization: F̂ = R̂ = L̂ = ∅.
6: repeat
7: Run sample screening using rule ISS based on w∗(αi−1,j , βj).
8: Update the inactive sample sets R̂ and L̂:

R̂ ← R̂ ∪∆R̂ and L̂ ← L̂ ∪∆L̂.
9: Run feature screening using rule IFS based on θ∗(αi−1,j , βj).

10: Update the inactive feature set F̂ :
F̂ ← F̂ ∪∆F̂ .

11: until No new inactive features or samples are identified
12: Compute w∗(αi,j , βj) and θ∗(αi,j , βj) by solving the scaled problem.
13: end for
14: end for
15: Output:w∗(αi,j , βj) and θ∗(αi,j , βj), i ∈ [M ], j ∈ [N ].

SIFS applies ISS and IFS in an alternating manner to reinforce their capability in
identifying inactive samples and features. In Algorithm 1, we apply ISS first. Of course, we
can also apply IFS first. The theorem below demonstrates that the orders have no impact
on the performance of SIFS.

Theorem 12 Given the optimal solutions w∗(αi−1,j , βj) and θ∗(αi−1,j , βj) at (αi−1,j , βj)
as the reference solution pair at (αi,j , βj) for SIFS, we assume SIFS with ISS first stops after
applying IFS and ISS for s times and denote the identified inactive features and samples as
F̂As , R̂As , and L̂As . Similarly, when we apply IFS first, the results are denoted as F̂Bt , R̂Bt ,
and L̂Bt . Then, the followings hold:
(1) F̂As = F̂Bt , R̂As = R̂Bt , and L̂As = L̂Bt .
(2) with different orders of applying ISS and IFS, the difference between the times of ISS
and IFS we need to apply in SIFS can never be larger than 1, that is, |s− t| ≤ 1.

4.4. Discussion

After developing the proposed method SIFS above, we now turn to the related work discussion
in order to highlight the differences between SIFS and the existing methods and also the
novelty of our method, although we have mentioned some of them in the introduction section.
We divide the previous work into two parts: screening for sparse SVM and for other sparse
learning models.

To the best of our knowledge, the screening method in Shibagaki et al. 2016 is the
only method besides our SIFS, which can simultaneously identify the inactive features
and samples for sparse SVM. There are mainly three big differences between SIFS and
this method. First, the techniques used in the optima estimations of SIFS and Shibagaki

11
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et al. 2016 are quite different. To be specific, the estimations in SIFS are developed by
exploiting the reference solution pair and carefully studying the strong convexity of the
objective functions and the optimum conditions of problems (P∗) and (D∗) at the current
and reference parameter value pairs (see Lemmas 5 and 6 and also their proofs for the
details). In contrast, Shibagaki et al. (2016) estimated the optima heavily based on the
duality gap. As we mentioned in the introduction section, duality gap is usually large in
the early stages and decreases gradually, which weakens its capability in the early stages
and leads to a limited overall speedup. Second, algorithmically, Shibagaki et al. (2016) is
dynamic while our method is static. In other words, Shibagaki et al. (2016) identifies the
inactive features and samples during the training process, and in our method, we do this
before the training process (see steps 6 to 11 in Algorithm 1), which means Shibagaki et al.
(2016) needs to apply its screening rules for many times while we trigger SIFS only once.
These two technical and algorithmic differences make our method outperform Shibagaki
et al. (2016), which will be verified in the experimental section. At last, we theoretically
prove that in the static scenario the orders of applying the feature and sample screening
rules have no impact on the final performance, while Shibagaki et al. (2016) did not give the
theoretical result accordingly in dynamic screening.

There are mainly three big differences between our SIFS and existing methods for
other sparse learning models. First, these existing methods identify either features or
samples individually and would be helpless in real applications involving a huge number
of samples and extremely high-dimensional features, while SIFS identifies features and
samples simultaneously. Second, technically, SIFS can incorporate the feature (resp. sample)
screening results of the previous steps as the prior knowledge into the primal (reps. dual)
optimum estimation to obtain a more accurate estimation. This is verified with a strong
theoretical guarantee (see Lemmas 5 and 6). At last, we give a theoretical proof (see Sections
4.1 and 4.2) to show the existence of the synergistic effect between feature and sample
screening for the first time in the static scenario.

Finally, we would like to point out that although the key ideas used in some of the
screening methods including SIFS seem to be similar, they are developed specifically for the
sparse models they focus on, which makes it nontrivial and even very difficult to reduce one
method to another by simply resetting the loss and regularizer of the model. For example,
SIFS cannot be reduced to Wang et al. (2014b) by setting α = 0 and letting loss be the
logistic loss, although both of their dual optimum estimations are based on the strong
convexity of the objective. The reason is that they use the strong convexity in quite different
ways due to their different dual problems including the feasible regions and the expressions
of the dual objectives (see Theorem 2 in Wang et al., 2014b, Lemma 6 above, and their
proofs for the details). Moreover, we cannot reduce SIFS to the methods (Ogawa et al., 2013;
Wang et al., 2014a) for SVM by setting β to be 0, since they are based on the convexity of
the objective while SIFS exploits the strong convexity.

5. SIFS for Multi-class Sparse SVMs

In this section, we consider extending SIFS to multi-class sparse SVMs. We will briefly
review the basics of multi-class sparse SVMs and then derive a series of theorems as we did
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for sparse SVMs above. Finally, we will present the detailed screening rule for multi-class
sparse SVMs.

5.1. Basics of Multi-class Sparse SVMs

We focus on the `1-regularized multi-class SVM with a smoothed hinge loss, which takes the
form of

min
w∈RKp

P (w;α, β) =
1

n

n∑
i=1

`i(w) +
α

2
‖w‖2 + β||w||1, (m-P∗)

where w = [w1; w2; ...; wK ] ∈ RKp is the parameter vector to be estimated with wk ∈
Rp, k = 1, ...,K. The loss function `i(w) =

∑
k 6=yi `(w

>
k xi −w>yixi + 1), with {xi, yi}ni=1 is

the training data set of K classes, xi ∈ Rp, yi ∈ {1, ...,K}, and `(·) is the smoothed hinge
loss defined in Eq. (1).

The following theorem presents the Lagrangian dual problem of (m-P∗) and the KKT
conditions, which are essential for developing the screening rules.

Theorem 13 For each sample (xi, yi), we define ui = 1−eyi ∈ RK and Xi = [X1
i ,X

2
i , ...,X

K
i ] ∈

RKp×K , where Xk
i = vec(xi(ek − eyi)

>) ∈ RKp. Let u = [u1; ...; un] ∈ RKn and X =
[X1,X2, ...,Xn] ∈ RKp×Kn. Then, for the problem (m-P∗), the followings hold:
(i) the dual problem of (m-P∗) is

min
θ∈[0,1]Kn

D(θ;α, β) =
1

2α

∥∥∥∥Sβ ( 1

n
Xθ

)∥∥∥∥2

+
γ

2n
‖θ‖2 − 1

n
〈u, θ〉, (m-D∗)

where θ = [θ1; ...; θn] with θi ∈ [0, 1]K , i = 1, ..., n;
(ii) denote the optima of problems (m-P∗) and (m-D∗) by w∗(α, β) and θ∗(α, β), respectively,
then,

w∗(α, β) =
1

α
Sβ
(
− 1

n
Xθ∗(α, β)

)
, (m-KKT-1)

[θ∗i (α, β)]k =


0, if 〈Xk

i ,w
∗(α, β)〉+ [ui]k ≤ 0;

1, if 〈Xk
i ,w

∗(α, β)〉+ [ui]k ≥ γ;
1
γ (〈Xk

i ,w
∗(α, β)〉+ [ui]k), otherwise;

k = 1, 2, ...,K. (m-KKT-2)

As we did in Section 2, we can also define 3 index sets here:

F =

{
(k, j) ∈ [K]× [p] :

1

n
|[Xθ∗(α, β)]k,j | ≤ β

}
,

R =
{

(i, k) ∈ [n]× [K] : 〈Xk
i ,w

∗(α, β)〉+ [ui]k ≤ 0
}
,

L =
{

(i, k) ∈ [n]× [K] : 〈Xk
i ,w

∗(α, β)〉+ [ui]k ≥ γ
}
,

which imply that

(i) (k, j) ∈ F ⇒ [w∗k(α, β)]j = 0,

(ii)

{
(i, k) ∈ R ⇒ [θ∗i (α, β)]k = 0,
(i, k) ∈ L ⇒ [θ∗i (α, β)]k = 1.

(m-R)
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Suppose that we are given three subsets of F ,R, and L, then we can infer the values of
many coefficients of w∗(α, β) and θ∗(α, β) via Rule m-R. The lemma below shows that the
rest coefficients of w∗(α, β) and θ∗(α, β) can be recovered by solving a small sized problem.

Lemma 14 Given index sets F̂ ⊆ F , R̂ ⊆ R, and L̂ ⊂ L, the followings hold:
(i) [w∗(α, β)]F̂ = 0, [θ∗(α, β)]R̂ = 0, [θ∗(α, β)]L̂ = 1;

(ii) let D̂ = R̂ ∪ L̂, Ĝ1 = F̂c [X]D̂c, and Ĝ2 = F̂c [X]L̂, where F̂c = [K] × [p] \ F̂ , D̂c =

[n]× [K] \ D̂, L̂c = [n]× [K] \ L̂ and û = [u]D̂c , then, [θ∗(α, β)]D̂c solves the following scaled
dual problem:

min
θ̂∈[0,1]|D̂c|

{ 1

2α

∥∥∥∥Sβ ( 1

n
Ĝ1θ̂ +

1

n
Ĝ21

)∥∥∥∥2

+
γ

2n
‖θ̂‖2 − 1

n
〈û, θ̂〉

}
; (m-scaled-D∗)

(iii) suppose that θ∗(α, β) is known, then,

[w∗(α, β)]F̂c =
1

α
Sβ
(
− 1

n F̂
c [X]θ∗(α, β)

)
.

Given two estimations W and Θ for w∗(α, β) and θ∗(α, β), we can define three subsets
of F ,R, and L below as we did in the binary case to relax Rule m-R into the applicable
version:

F̂ =

{
(k, j) ∈ [K]× [p] : max

θ∈Θ

{
1

n
|[Xθ]k,j |

}
≤ β

}
,

R̂ =

{
(i, k) ∈ [n]× [K] : max

w∈W

{
〈Xk

i ,w〉+ [ui]k

}
≤ 0

}
,

L̂ =

{
(i, k) ∈ [n]× [K] : min

w∈W

{
〈Xk

i ,w
∗(α, β)〉+ [ui]k〉

}
≥ γ

}
.

5.2. Estimate the Primal and Dual Optima

We first derive the effective intervals of the parameters α and β.

Lemma 15 Let βmax = ‖ 1
nXu‖∞ and αmax(β) = 1

1−γ max(i,k)∈[n]×[K]

{
〈Xk

i ,Sβ( 1
nXu)〉

}
.

Then:
(i) for α > 0 and β ≥ βmax, we have

w∗(α, β) = 0, θ∗(α, β) = u;

(ii) for all α ∈ [max{αmax(β), 0},∞) ∩ (0,∞), we have

w∗(α, β) =
1

α
Sβ
(
− 1

n
Xu

)
, θ∗(α, β) = u. (18)

Hence, we only need to consider the cases with β ∈ (0, βmax] and α ∈ (0, αmax(β)].
Since problem (m-P∗) is a special case of problem (g-P∗) with L(w) = 1

m

∑n
i=1 `i(w),

given the reference solution w∗(α0, β0) and the index set F̂ of the inactive features identified
by the previous IFS steps, we can apply Lemma 5 to obtain the estimation for w∗(α, β0)]F̂c :

[w∗(α, β0)]F̂c ∈ W := {w : ‖w − c‖ ≤ r}, (19)
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where c and r are defined in Eqs. (6) and (7), respectively.
Moreover, noting that problem (m-D∗) is also a special case of problem (g-D∗), given the

reference solution θ∗(α0, β0) and the index sets of inactive samples identified by the previous
ISS steps R̂ and L̂, we can obtain an estimation for [θ∗(α, β0)]D̂c from Lemma 6:

[θ∗(α, β0)]D̂c ∈ Θ := {θ : ‖θ − c‖ ≤ r}, (20)

where c and r are defined by Eqs. (9) and (10) with v = u, respectively.

5.3. Screening Rule SIFS

Given the optima w∗(α0, β0) and θ∗(α0, β0), to derive the feature screening rule IFS, we
need to solve the optimization problem below first:

s(k,j)(α, β0) = max
θ∈Θ

{
1

n
|〈[Xk,j ]D̂c , θ〉+ 〈[Xk,j ]L̂,1〉|

}
, (k, j) ∈ F̂c, (21)

where Xk,j is the ((k − 1)p+ j)-th row of X, Θ is given by Eq. (20), and F̂ and D̂ = R̂ ∪ L̂
are the index sets of the inactive features and samples identified in the previous screening
process. We notice that this problem has exactly the same form as problem (12). Hence,
from Lemma 8 we can obtain its closed-form solution directly. Now, from Rule m-R, we can
obtain our IFS rule below.

• The feature screening rule IFS takes the form of

s(k,j)(α, β0) ≤ β0 ⇒ [w∗k(α, β0)]j = 0, ∀(k, j) ∈ F̂c. (IFS)

• The index set F̂ can be updated by

F̂ ← F̂ ∪∆F̂ with ∆F̂ = {(k, j) : s(k,j) ≤ β0, (k, j) ∈ F̂c}. (22)

Similarly, we need to solve the following problems to derive our sample screening rule
ISS:

u(i,k)(α, β0) = max
w∈W

{〈[Xk
i ]F̂c ,w〉+ [ui]k}, (i, k) ∈ D̂c, (23)

l(i,k)(α, β0) = min
w∈W

{〈[Xk
i ]F̂c ,w〉+ [ui]k}, (i, k) ∈ D̂c, (24)

where W is given by Eq. (19). We find that they can be solved by Lemma 10 directly.
Therefore, we can obtain our sample screening rule ISS below.

• The sample screening rule ISS takes the form of

u(i,k)(α, β0) ≤ 0⇒ [θ∗i (α, β0)]k = 0,

l(i,k)(α, β0) ≥ γ ⇒ [θ∗i (α, β0)]k = 1,
∀(i, k) ∈ D̂c. (ISS)

• We can update the index sets R̂ and L̂ by

R̂ ← R̂ ∪∆R̂ with ∆R̂ = {(i, k) : u(i,k)(α, β0) ≤ 0, (i, k) ∈ D̂c}, (25)

L̂ ← L̂ ∪∆L̂ with ∆L̂ = {(i, k) : l(i,k)(α, β0) ≥ γ, (i, k) ∈ D̂c}. (26)
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The same as we did sparse SVM, we can also develop SIFS to reinforce the capabilities
of ISS and IFS by applying them alternatively. The framework of SIFS for solving the model
over a grid of parameter values here is the same as that in the case of sparse SVM, i.e.
Algorithm 1, except for the different rules IFS and ISS, and the updates of R̂, L̂, and F̂ .

In this version of SIFS, the order of applying IFS and ISS also has no impact on the
final performance. Since the form of the theorem and its proof are nearly the same as that
of Theorem 12, to avoid redundancy, we omit them in this section.

6. Experiments

We evaluate SIFS on both synthetic and real data sets in terms of three measurements:
speedup, scaling ratio, and rejection ratio. Speedup is given by the ratio of the running time
of the solver without screening to that with screening.

For sparse SVMs, scaling ratio is defined as 1 − (n−ñ)(p−p̃)
np , where ñ, p̃, n, and p are

the numbers of inactive samples and features identified by SIFS, sample size, and feature
dimension of the data set. From steps 6 to 11 in Algorithm 1, we can see that we trigger the
rules ISS and IFS repetitively until no new features and samples are identified. We adopt
the rejection ratios of the i-th triggering of ISS and IFS defined as ñi

n0
and p̃i

p0
to evaluate

their performances in each triggering, where ñi and p̃i are the numbers of inactive samples
and features identified in the i-th triggering of ISS and IFS. n0 and p0 are the numbers of
inactive samples and features.

For multi-class sparse SVMs, we let scaling ratio be 1− (Kn−ñ)(Kp−p̃)
K2np

, where ñ = |R̂∪ L̂|,
p̃ = |F̂ |, and n and p are the sample size and the feature dimension of the data set. The
rejection ratios of the i-th triggering of ISS and IFS are ñi

n0
and p̃i

p0
, respectively, where

p0 = |F|, n0 = |R ∪ L|, p̃i = |∆F̂ | and ñi = |∆R̂ ∪ ∆L̂| with ∆F̂ ,∆R̂, and ∆L̂ are
the increments of F̂ , R̂ and L̂ in the i-th triggering of the rules IFS and ISS. Please see
Eqs. (22), (25), and (26) for the detailed definitions of ∆F̂ ,∆R̂, and ∆L̂.

Recall that, we can integrate SIFS with any solvers for problem (P∗). In this experiment,
we use Accelerated Proximal Stochastic Dual Coordinate Ascent (AProx-SDCA) (Shalev-
Shwartz and Zhang, 2016) as a baseline, as it is one of the state-of-the-arts. We choose the
state-of-art screening method for sparse SVMs in Shibagaki et al. 2016 as another baseline
only in the experiments of sparse SVMs, since it cannot be applied in multi-class sparse
SVMs. As we mentioned in the introduction section that screening differs greatly from
feature selection methods, it is not appropriate to make comparisons with feature selection
methods.

For each data set, we solve problem (P∗) at a grid of turning parameter values. Specifically,
we first compute βmax by Lemma 4 and then select 10 values of β that are equally spaced
at the logarithmic scale of β/βmax from 1 to 0.05. Then, for each value of β, we first
compute αmax(β) by Lemma 4 and then select 100 values of α that are equally spaced at the
logarithmic scale of α/αmax(β) from 1 to 0.01. Thus, for each data set, we solve problem
(P∗) at 1, 000 pairs of parameter values in total. We write the code in C++ along with
Eigen library for numerical computations. We perform all the computations on a single core
of Intel(R) Core(TM) i7-5930K 3.50GHz, 128GB MEM.
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6.1. Simulation Studies with Spare SVMs

We evaluate SIFS on 3 synthetic data sets named syn1, syn2, and syn3 with sample and
feature size (n, p) ∈ {(10000, 1000), (10000, 10000), (1000, 10000)}. We present each data
point as x = [x1; x2] with x1 ∈ R0.02p and x2 ∈ R0.98p. We use Gaussian distributions
G1 = N(u, 0.75I),G2 = N(−u, 0.75I), and G3 = N(0, 1) to generate the data points, where
u = 1.51 and I ∈ R0.02p×0.02p is the identity matrix. To be precise, x1 for positive and
negative points are sampled from G1 and G2, respectively. For each entry in x2, it has chance
η = 0.02 to be sampled from G3 and chance 1− η to be 0.
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Figure 1: Scaling ratios of ISS, IFS, and SIFS (from left to right).

Fig. 1 shows the scaling ratios by ISS, IFS, and SIFS on the synthetic data sets at 1, 000
parameter values. We can see that IFS is more effective in scaling problem size than ISS,
with scaling ratios roughly 98% against 70− 90%. Moreover, SIFS, which is an alternating
application of IFS and ISS, significantly outperforms ISS and IFS, with scaling ratios roughly
99.9%. This high scaling ratios imply that SIFS can lead to a significant speedup.

Due to the space limitation, we only report the rejection ratios of SIFS on syn2. Other
results can be found in the appendix. Fig. 2 shows that SIFS can identify most of the
inactive features and samples. However, few features and samples are identified in the second
and later triggerings of ISS and IFS. The reason may be that the task here is so simple that
one triggering is enough.

Table 1 reports the running times of solver without and with IFS, ISS and SIFS for
solving problem (P∗) at 1, 000 pairs of parameter values. We can see that SIFS leads to
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significant speedups, that is, up to 76.8 times. Taking syn2 for example, without SIFS, the
solver takes more than two hours to solve problem (P∗) at 1, 000 pairs of parameter values.
However, combined with SIFS, the solver only needs less than three minutes for solving the
same set of problems. From the theoretical analysis in Shalev-Shwartz and Zhang 2016 for
AProx-SDCA, we can see that its computational complexity rises proportionately to the
sample size n and the feature dimension p. From this theoretical result, we can see that the
results in Fig. 1 are roughly consistent with the speedups we achieved shown in Table 1.
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Figure 2: Rejection ratios of SIFS on syn 2 (first row: Feature Screening, second row: Sample
Screening).

Data Solver
ISS+Solver IFS+Solver SIFS+Solver

ISS Solver Speedup IFS Solver Speedup SIFS Solver Speedup

syn1 499.1 4.9 27.8 15.3 2.3 42.6 11.1 8.6 6.0 34.2

syn2 8749.9 24.9 1496.6 5.8 23.0 288.1 28.1 92.6 70.3 53.7

syn3 1279.7 2.0 257.1 4.9 2.2 33.4 36.0 7.2 9.5 76.8

Table 1: Running time (in seconds) for solving problem (P∗) at 1, 000 pairs of parameter
values on three synthetic data sets.

6.2. Experiments with Sparse SVMs on Real Datasets

In this experiment, we evaluate the performance of SIFS on 5 large-scale real data sets:
real-sim, rcv1-train, rcv1-test, url, and kddb, which are all collected from the project page of
LibSVM (Chang and Lin, 2011). See Table 2 for a brief summary. We note that, the kddb
data set has about 20 million samples with 30 million features.

Recall that, SIFS detects the inactive features and samples in a static manner, i.e., we
perform SIFS only once before the training process and hence the size of the problem we
need to perform optimization on is fixed. However, the method in Shibagaki et al. 2016
detects inactive features and samples in a dynamic manner (Bonnefoy et al., 2014), i.e.,
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they perform their method along with the training process and thus the size of the problem
would keep decreasing during the iterations. Thus, comparing SIFS with this baseline in
terms of the rejection ratios is inapplicable. We compare the performance of SIFS with
the method in Shibagaki et al. 2016 in terms of speedup, i.e., the speedup gained by these
two methods in solving problem (P∗) at 1, 000 pairs of parameter values. The code of the
method in Shibagaki et al. 2016 is obtained from (https://github.com/husk214/s3fs).

Dataset Feature size: p Sample size:n Classes

real-sim 20,958 72,309 2

rcv1-train 47,236 20,242 2

rcv1-test 47,236 677, 399 2

url 3,231,961 2,396,130 2

kddb 29,890,095 19,264,097 2

Table 2: Statistics of the binary real data sets.
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Figure 3: Rejection ratios of SIFS on real-sim when it performs ISS first (first row: Feature
Screening, second row: Sample Screening).

Fig. 3 shows the rejection ratios of SIFS on the real-sim data set (other results are in
the appendix). In Fig. 3, we can see that some inactive features and samples are identified
in the 2nd and 3rd triggerings of ISS and IFS, which verifies the necessity of the alternating
application of ISS and IFS. SIFS is efficient since it always stops in 3 times of triggering. In
addition, most of (> 98%) the inactive features can be identified in the 1st triggering of IFS
while identifying inactive samples needs to apply ISS two or more times. It may due to two
reasons: 1) we run ISS first, which reinforces the capability of IFS due to the synergistic
effect (see Sections 4.1 and 4.2), referring to the analysis below for further verification; 2)
feature screening here may be easier than sample screening.

Table 3 reports the running times of solver without and with the method in Shibagaki
et al. 2016 and SIFS for solving problem (P∗) at 1, 000 pairs of parameter values on real data
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sets. The speedup gained by SIFS is up to 300 times on real-sim, rcv1-train and rcv1-test.
Moreover, SIFS significantly outperforms the method in Shibagaki et al. 2016 in terms of
speedup—by about 30 to 40 times faster on the aforementioned three data sets. For data
sets url and kddb, we do not report the results of the solver as the sizes of the data sets are
huge and the computational cost is prohibitive. Instead, we can see that the solver with
SIFS is about 25 times faster than the solver with the method in Shibagaki et al. 2016 on
both data sets url and kddb. Let us take the data set kddb as an example. The solver with
SIFS takes about 13 hours to solve problem (P∗) for 1, 000 pairs of parameter values, while
the solver with the method in Shibagaki et al. 2016 needs 11 days to finish the same task.

Data
Set

Solver
Method in Shibagaki et al. 2016+Solver SIFS+Solver

Screen Solver Speedup Screen Solver Speedup

real-sim 3.93E+04 24.10 4.94E+03 7.91 60.01 140.25 195.00

rcv1-train 2.98E+04 10.00 3.73E+03 7.90 27.11 80.11 277.10

rcv1-test 1.10E+06 398.00 1.35E+05 8.10 1.17E+03 2.55E+03 295.11

url >3.50E+06 3.18E+04 8.60E+05 >4.00 7.66E+03 2.91E+04 >100

kddb >5.00E+06 4.31E+04 1.16E+06 >4.00 1.10E+04 3.6E+04 >100

Table 3: Running time (in seconds) for solving problem (P∗) at 1, 000 pairs of parameter
values on five real data sets.
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Figure 4: Rejection ratios of SIFS on real-sim when it performs IFS first (first row: Feature
Screening, second row: Sample Screening).

Verification of the Synergy Effect In Fig. 3, SIFS performs ISS (sample screening)
first, while in Fig. 4, it performs IFS (feature screening) first. All the rejection ratios of
the 1st triggering of IFS in Fig. 3(a)-3(d) where SIFS performs ISS first are much higher
than (at least equal to) those in Fig. 4(a)-4(d) where SIFS performs IFS first. In turn, all
the rejection ratios of the 1st triggering of ISS in Fig. 4(e)-4(h) where SIFS performs IFS
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first are also much higher than those in Fig. 3(e)-3(h) where SIFS performs ISS first. This
demonstrates that the screening result of ISS can reinforce the capability of IFS and vice
versa, which is the so called synergistic effect. At last, in Fig. 4 and Fig. 3, we can see that
the overall rejection ratios at the end of SIFS are exactly the same. Hence, no matter which
rule (ISS or IFS) we perform first in SIFS, SIFS has the same screening performances in the
end, which verifies the conclusion we present in Theorem 12.

Performance in Solving Single Problems In the experiments above, we solve prob-
lem (P∗) at a grid of turning parameter values. This setting is meaningful and it arises
naturally in various cases, such as cross validation (Kohavi, 1995) and feature selection
(Meinshausen and Bühlmann, 2010; Yang et al., 2015). Therefore, the results above demon-
strate that our method would be helpful in such real applications. We notice that sometimes
one may be interested in the model at a specific parameter value pair. To this end, we
now evaluate the performance of our method in solving a single problem. Due to the space
limitation, we solve sparse SVM at 16 specific parameter values pairs on the real-sim data set
for examples, To be precise, β ∈ {0.05, 0.10, 0.5, 0.9} and each β has 4 values of α satisfying
α/αmax(β) ∈ {0.05, 0.1, 0.5, 0.9}. For each (αi, βi), we construct a parameter value path
{(αj,i, βi), j = 0, ...,M} with αj,i equally spaced at the logarithmic scale of αj,i/αmax(βi)
between 1 and αi/αmax(βi), which implies that αmax(βi) = α0,i > α1,i > ... > αM,i = αi.
Then we use AProx-SDCA integrated with SIFS to solve problem (P∗) at the parameter
value pairs on the path one by one and report the total time cost. It can be expected that for
αi far from αmax(βi), we need more points on the parameter value path in order to obtain
higher rejection ratios and more significant speedups of SIFS and otherwise we need fewer
ones. In this experiment, we fix M = 50 at each αi for convenience. For comparison, we
solve the problem at (αi, βi) using AProx-SDCA with random initializations, which would be
faster than solving all the problems on the path. Table 4 reports the speedups achieved by
SIFS at these parameter value pairs. It shows that SIFS can still obtain significant speedups.
In addition, compared with the results in Tables 1 and 3, we can see that our method is
much better at solving a problem sequence than solving a single problem.

XXXXXXXXXβ/βmax

α/αmax(β)
0.05 0.10 0.50 0.90

0.05 6.31 7.14 21.04 146.66

0.10 6.14 7.18 21.83 156.63

0.50 5.75 7.18 20.99 154.60

0.90 6.39 7.66 23.16 173.56

Table 4: The speedups achieved by SIFS in solving single problems

6.3. Experiments with Multi-class Sparse SVMs

We evaluate SIFS for multi-class Sparse SVMs on 3 synthetic data sets (syn-multi1, syn-
multi2, and syn-multi3) and 2 real data sets (news20 and rcv1-multiclass). Their statistics
are given in Table 5.

The synthetic data sets are generated in a similar way as we did in Section 6.1. Each
of them has K = 5 classes and each class has n/K samples. The data points of them
can be written as x = [x1; x2], where x1 = [x1

1; ...; xK1 ] ∈ R0.02p with xk1 ∈ R0.02p/Kand
x2 ∈ R0.98p. If x belongs to the k-th class, then xk1 is sampled from a Gaussian distribution
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G = N(u, 0.75I) with u = 1.51, I ∈ R(0.02p/K)×(0.02p/K) and other components in x1 are
from N(0, 1). Each entry of x2 has chance η = 0.2 to be sampled from distribution N(0, 1)
and chance 1− η to be 0.

Dataset Feature size: p Sample size: n Classes

syn-multi1 1,000 10,000 5

syn-multi2 10,000 10,000 5

syn-multi3 10,000 1,000 5

news20 3,993 62,060 20

rcv1-multiclass 47,236 15,564 53

Table 5: Statistics of the multi-class data sets.

Fig. 5 shows the scaling ratios of ISS, IFS, and SIFS on the synthetic data sets at 1, 000
pairs of parameter values. Similar to the results in sparse SVMs, SIFS totally surpasses IFS
and ISS, with scaling ratios larger than 98% at any parameter value pair against 70− 90%.
Thus, we can expect significant speedups by integrating SIFS with the solver.
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Figure 5: Scaling ratios of ISS, IFS, and SIFS (from left to right).

Fig. 6 and 7 present the rejection ratios of SIFS on the news20 data set (the results of
other data sets can be found in the appendix). It indicates that, by alternatively applying
IFS and ISS, we can finally identify most of the inactive samples (> 95%) and features
(> 99%). The synergistic effect between IFS and ISS can also be found in these figures.

As a result of excellent performance of SIFS in identifying inactive features and samples,
we observe significant speedups gained by SIFS in Table 6, which are up to 200 times
on news20 and 300 times on syn-multi3. Specifically, on news20, the solver without any
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Figure 6: Rejection ratios of SIFS on syn-multi2 (first row: Feature Screening, second row:
Sample Screening).
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Figure 7: Rejection ratios of SIFS on news20 (first row: Feature Screening, second row:
Sample Screening).

screening method takes about 97 hours to solve the problem at 1, 000 pairs of parameter
values; however, integrated with SIFS, the solver only needs less than 0.5 hour for the same
task. Moreover, Table 6 also indicates that the speedup gained by SIFS is much more
significant than that gained by IFS and ISS. This demonstrates again the great benefit of
alternatively applying IFS and ISS in SIFS. At last, we notice that the speedup gained by
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SIFS and IFS on syn-multi3 is far greater than those gained on syn-multi1 and syn-multi2.
The reason is that the convergence rate of the solver in our problem may depend on the
condition number of the data matrix. The dimension of w in syn-multi3 is much larger
than its sample size (50, 000 over 1, 000), which leads to a large condition number and a bad
convergence rate. However, SIFS and IFS can remove the inactive features from the model,
which can greatly improve the convergence rate of the solver by decreasing the condition
number. This point can also be supported by the fact in the experiment on syn-multi3 that
the solver with SIFS or IFS needs much fewer iterations to converge to the optima than
that without SIFS or IFS.

Data Solver
ISS+Solver IFS+Solver SIFS+Solver

ISS Solver Speedup IFS Solver Speedup SIFS Solver Speedup

syn-multi1 9009 72 1233 6.9 90 388 18.9 178 83 34.5

syn-multi2 105484 412 27661 3.8 920 2606 29.9 1936 893 37.3

syn-multi3 78373 44 18341 4.3 84 337 186.2 203 59 299.9

news20 350277 283 13950 24.6 1000 65175 5.3 1485 290 197.3

rcv1-multiclass 396205 793 44639 8.7 1620 33191 11.4 2850 1277 96.0

Table 6: Running time (in seconds) for solving problem (m-P∗) at 1, 000 pairs of parameter
values on synthetic and real data sets.

7. Conclusions

In this paper, we proposed a novel data reduction method SIFS to simultaneously identify
inactive features and samples for sparse SVMs. Our major contribution is a novel framework
for an accurate estimation of the primal and dual optima based on strong convexity. To the
best of our knowledge, the proposed SIFS is the first static screening method that is able
to simultaneously identify inactive features and samples for sparse SVMs. An appealing
feature of SIFS is that all detected features and samples are guaranteed to be irrelevant
to the outputs. Thus, the model learned on the reduced data is exactly identical to that
learned on the full data. To show the flexibility of the proposed SIFS, we extended it
to multi-class sparse SVMs. The experimental results demonstrate that, for both sparse
SVMs and multi-class sparse SVMs, SIFS can dramatically reduce the problem size and
the resulting speedup can be orders of magnitude. We plan to generalize SIFS to more
complicated models, e.g., SVMs with a structured sparsity-inducing penalty.
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Appendix A. Detailed Proofs and More Experimental Results

In this appendix, we first present the detailed proofs of all the theorems in the main paper
and then report the rest experimental results which are omitted in the experimental section.

A.1. Proof for Lemma 3

Proof of Lemma 3:
1) It is the immediate conclusion of the analysis above.
2) After feature screening, the primal problem (P∗) is scaled into:

min
w̃∈R|F̂c|

α

2
||w̃||2 + β||w̃||1 +

1

n

n∑
i=1

`(1− 〈[x̄i]F̂c , w̃〉). (scaled-P ∗-1)

Thus, we can easily derive out the dual problem of (scaled-P ∗-1):

min
θ̃∈[0,α]

n
D̃(θ̃;α, β) =

1

2α
||Sβ(

1

n F̂
c [X̄]θ̃)||2 +

γ

2n
||θ̃||2 − 1

n
〈1, θ̃〉, (scaled-D∗-1)

and the KKT conditions:

w̃∗(α, β) =
1

α
Sβ(

1

n F̂
c [X̄]θ̃∗(α, β)), (scaled-KKT-1)

[θ̃∗(α, β)]i =


0, if 1− 〈[x̄i]F̂c , w̃

∗(α, β)〉 < 0,
1
γ (1− 〈[x̄i]F̂c , w̃

∗(α, β)), if 0 ≤ 1− 〈[x̄i]F̂c , w̃
∗(α, β) ≤ γ,

1, if 1− 〈[x̄i]F̂c , w̃
∗(α, β) > γ,

(scaled-KKT-2)

Then, it is obvious that w̃∗(α, β) = [w∗(α, β)]F̂c , since essentially, problem (scaled-P ∗-1)
can be derived by substituting 0 to the weights for the eliminated features in problem (P∗)
and optimizing over the rest weights.
Since the solutions w∗(α, β) and θ∗(α, β) satisfy the conditions (KKT-1) and (KKT-2) and
〈[x̄i]F̂c , w̃

∗(α, β)〉 = 〈x̄i,w∗(α, β)〉 for all i , we know that w̃∗(α, β) and θ∗(α, β) satisfy the
conditions (scaled-KKT-1) and (scaled-KKT-2). Thus they are the solutions of problems
(scaled-P ∗-1) and (scaled-D∗-1). Then, due to the uniqueness of the solution of problem
(scaled-D∗-1), we have

θ∗(α, β) = θ̃∗(α, β). (27)

From 1) we have [θ̃∗(α, β)]R̂c = 0 and [θ̃∗(α, β)]L̂c = 1. Therefore, from the dual problem

(scaled-D∗), we can see that [θ̃∗(C,α)]D̂c can be recovered from the following problem:

min
θ̂∈[0,1]

|D̂c|

1

2α
||Sβ(

1

n
Ĝ1θ̂ +

1

n
Ĝ21)||2 +

γ

2n
||θ̂||2 − 1

n
〈1, θ̂〉.

Since [θ̃∗(α, β)]D̂c = [θ∗(α, β)]D̂c , the proof is therefore completed.
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A.2. Proof for Lemma 4

Proof of Lemma 4:

(i) We prove this lemma by verifying that the solutions w∗(α, β) = 0 and θ∗(α, β) = 1
satisfy the conditions (KKT-1) and (KKT-2).

Firstly, since β ≥ βmax = || 1nX̄1||∞, we have Sβ( 1
nX̄1) = 0. Thus w∗(α, β) = 0 and

θ∗(α, β) = 1 satisfy the condition (KKT-1).

Then, for all i ∈ [n], we have

1− 〈x̄i,w∗(α, β)〉 = 1− 0 > γ.

Thus, w∗(α, β) = 0 and θ∗(α, β) = 1 satisfy the condition (KKT-2). Hence, they are the
solutions of the primal problem (P∗) and the dual problem (D∗), respectively.

(ii) Similar to the proof of (i), we prove this by verifying that the solutions w∗(α, β) =
1
αSβ( 1

nX̄θ∗(α, β)) and θ∗(α, β) = 1 satisfy the conditions (KKT-1) and (KKT-2).

1. Case 1: αmax(β) ≤ 0. Then for all α > 0, we have

min
i∈[n]
{1− 〈x̄i,w∗(α, β)〉}

= min
i∈[n]
{1− 1

α
〈x̄i,Sβ(

1

n
X̄θ∗(α, β))〉} = min

i∈[n]
{1− 1

α
〈x̄i,Sβ(

1

n
X̄1)〉}

=1− 1

α
max
i∈[n]
〈x̄i,Sβ(

1

n
X̄1)〉 = 1− (1− γ)

1

α
αmax(β)

≥1 > γ.

Then, L = [n], and w∗(α, β) = 1
αSβ( 1

nX̄θ∗(α, β)) and θ∗(α, β) = 1 satisfy the condi-
tions (KKT-1) and (KKT-2). Hence, they are the optimal solution of the primal and
dual problems (P∗) and (D∗).

2. Case 2: αmax(β) > 0. Then for any α ≥ αmax(β), we have

min
i∈[n]
{1− 〈x̄i,w∗(α, β)〉}

= min
i∈[n]
{1− 1

α
〈x̄i,Sβ(

1

n
X̄θ∗(α, β))〉} = min

i∈[n]
{1− 1

α
〈x̄i,Sβ(

1

n
X̄1)〉}

=1− 1

α
max
i∈[n]
〈x̄i,Sβ(

1

n
X̄1)〉 = 1− (1− γ)

1

α
αmax(β) ≥ 1− (1− γ) = γ.

Thus, E ∪ L = [n], and w∗(α, β) = 1
αSβ( 1

nX̄θ∗(α, β)) and θ∗(α, β) = 1 satisfy the
conditions (KKT-1) and (KKT-2). Hence, they are the optimal solution of the primal
and dual problems (P∗) and (D∗).

The proof is complete.
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A.3. Proof for Lemma 5

Proof of Lemma 5:
Due to the α-strong convexity of the objective P (w;α, β), we have

P (w∗(α0, β0);α, β0) ≥ P (w∗(α, β0);α, β0) +
α

2
||w∗(α0, β0)−w∗(α, β0)||2,

P (w∗(α, β0);α0, β0) ≥ P (w∗(α0, β0);α0, β0) +
α0

2
||w∗(α0, β0)−w∗(α, β0)||2,

which are equivalent to

α

2
||w∗(α0, β0)||2 + β0||w∗(α0, β0)||1 + L(w∗(α0, β0))

≥ α

2
||w∗(α, β0)||2 + β0||w∗(α, β0)||1 + L(w∗(α, β0)) +

α

2
||w∗(α0, β0)−w∗(α, β0)||2,

α0

2
||w∗(α, β0)||2 + β0||w∗(α, β0)||1 + L(w∗(α, β0))

≥ α0

2
||w∗(α0, β0)||2 + β0||w∗(α0, β0)||1 + L(w∗(α0, β0)) +

α0

2
||w∗(α0, β0)−w∗(α, β0)||2.

Adding the above two inequalities together, we obtain

α− α0

2
||w∗(α0, β0)||2 ≥ α− α0

2
||w∗(α, β0)||2 +

α0 + α

2
||w∗(α0, β0)−w∗(α, β0)||2

⇒ ||w∗(α, β0)− α0 + α

2α
w∗(α0, β0)||2 ≤ (α− α0)2

4α2
||w∗(α0, β0)||2. (28)

Substituting the prior that [w∗(α, β0)]F̂ = 0 into Eq. (28), we obtain

||[w∗(α, β0)]F̂c −
α0 + α

2α
[w∗(α0, β0)]F̂c ||2

≤(α− α0)2

4α2
||w∗(α0, β0)||2 − (α0 + α)2

4α2
||[w∗(α0, β0)]F̂ ||

2.

The proof is complete.

A.4. Proof for Lemma 6

Proof of Lemma 6: Firstly, we need to extend the definition of D(θ;α, β) to Rn:

D̃(θ;α, β) =

{
D(θ;α, β), if θ ∈ [0, 1]n,

+∞, otherwise.
(29)

Due to the strong convexity of objective D̃(θ;α, β), we have

D̃(θ∗(α0, β0), α, β0) ≥ D̃(θ∗(α, β0), α, β0) +
γ

2n
||θ∗(α0, β0)− θ∗(α, β0)||2,

D̃(θ∗(α, β0), α0, β0) ≥ D̃(θ∗(α0, β0), α0, β0) +
γ

2n
||θ∗(α0, β0)− θ∗(α, β0)||2.

27



Hong, Zhang, Liu, Ye, Cai, He and Wang

Since θ∗(α0, β0), θ∗(α, β0) ∈ [0, 1]n, the above inequalities are equivalent to

1

2α
fβ0(θ∗(α0, β0)) +

γ

2n
||θ∗(α0, β0)||2 − 1

n
〈1, θ∗(α0, β0)〉

≥ 1

2α
fβ0(θ∗(α, β0)) +

γ

2n
||θ∗(α, β0)||2 − 1

n
〈1, θ∗(α, β0)〉+

γ

2n
||θ∗(α0, β0)− θ∗(α, β0)||2,

1

2α0
fβ0(θ∗(α, β0)) +

γ

2n
||θ∗(α, β0)||2 − 1

n
〈1, θ∗(α, β0)〉

≥ 1

2α0
fβ0(θ∗(α0, β0)) +

γ

2n
||θ∗(α0, β0)||2 − 1

n
〈1, θ∗(α0, β0)〉+

γ

2n
||θ∗(α0, β0)− θ∗(α, β0)||2.

Adding the above two inequalities, we obtain

γ(α− α0)

2n
||θ∗(α0, β0)||2 − α− α0

n
〈1, θ∗(α0, β0)〉

≥ γ(α− α0)

2n
||θ∗(α, β0)||2 − α− α0

n
〈1, θ∗(α, β0)〉+

γ(α0 + α)

2n
||θ∗(α0, β0)− θ∗(α, β0)||2.

That is equivalent to

||θ∗(α, β0)||2 − 〈α− α0

γα
1 +

α0 + α

α
θ∗(α0, β0), θ∗(α, β0)〉

≤ −α0

α
||θ∗(α0, β0)||2 − α− α0

γα
〈1, θ∗(α0, β0)〉. (30)

That is

||θ∗(α, β0)− (
α− α0

2γα
1 +

α0 + α

2α
θ∗(α0, β0))||2 ≤ (

α− α0

2α
)2||θ∗(α0, β0)− 1

γ
1||2. (31)

Substituting the priors that [θ∗(α, β0)]R̂ = 0 and [θ∗(α, β0)]L̂ = 1 into Eq. (31), we have

||[θ∗(α, β0)]D̂c − (
α− α0

2γα
1 +

α0 + α

2α
[θ∗(α0, β0)]D̂c)||2

≤ (
α− α0

2α
)2||θ∗(α0, β0)− 1

γ
1||2 − ||(2γ − 1)α+ α0

2γα
1− α0 + α

2α
[θ∗(α0, β0)]L̂||

2

− ||α− α0

2γα
1 +

α0 + α

2α
[θ∗(α0, β0)]R̂||

2.

The proof is complete.

A.5. Proof for Lemma 8

Before the proof of Lemma 8, we should prove that the optimization problem in (2) is
equivalent to

si(α, β0) = max
θ∈Θ

{
1

n
|〈[x̄i]D̂c , θ〉+ 〈[x̄i]L̂,1〉|

}
, i ∈ F̂c. (32)
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To avoid notational confusion, we denote the feasible region Θ and θ in Eq. (2) as Θ̃ and θ̃,
respectively. Then,

max
θ̃∈Θ̃

{∣∣∣∣ 1n [X̄θ̃]i

∣∣∣∣} = max
θ̃∈Θ̃

{
1

n

∣∣∣x̄iθ̃∣∣∣}
= max

θ̃∈Θ̃

{
1

n

∣∣∣[x̄i]D̂c [θ̃]D̂c + [x̄i]L̂[θ̃]L̂ + [x̄i]R̂[θ̃]R̂

∣∣∣}
= max

θ̃∈Θ̃

{
1

n
|〈[x̄i]D̂c , [θ̃]D̂c〉+ 〈[x̄i]L̂,1〉|

}
= max

θ∈Θ

{
1

n
|〈[x̄i]D̂c , θ〉+ 〈[x̄i]L̂,1〉|

}
= si(α, β0).

The last two equations hold since [θ]L̂ = 1, [θ]R̂ = 0, and [θD̂c ] ∈ Θ.
Proof of Lemma 8:

si(α, β0) = max
θ∈B(c,r)

{ 1

n
|〈[x̄i]D̂c , θ〉+ 〈[x̄i]L̂,1〉|}

= max
η∈B(0,r)

{ 1

n
|〈[x̄i]D̂c , c〉+ 〈[x̄i]L̂,1〉+ 〈[x̄i]D̂c , η〉|}

=
1

n

(
|〈[x̄i]D̂c , c〉+ 〈[x̄i]L̂,1〉|+ ‖[x̄

i]D̂c‖r
)
.

The last equality holds since −‖[x̄i]D̂c‖r ≤ 〈[x̄i]D̂c , η〉 ≤ ‖[x̄i]D̂c‖r.
The proof is complete.

A.6. Proof for Theorem 9

Proof of Theorem 9:
(1) It can be obtained from the rule R1.
(2) It is from the definition of F̂ .

A.7. Proof for Lemma 10

Firstly, we need to point out that the optimization problems in Eqs. (3) and (4) are
equivalent to the problems:

ui(α, β0) = max
w∈W

{1− 〈[x̄i]F̂c ,w〉}, i ∈ D̂c,

li(α, β0) = min
w∈W

{1− 〈[x̄i]F̂c ,w〉}, i ∈ D̂c.

They follow from the fact that [w]F̂c ∈ W and

{1− 〈w, x̄i〉}
={1− 〈[w]F̂c , [x̄i]F̂c〉 − 〈[w]F̂ , [x̄i]F̂ 〉}
={1− 〈[w]F̂c , [x̄i]F̂c〉} (since [w]F̂ = 0).
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Proof of Lemma 10:

ui(α, β0) = max
w∈B(c,r)

{1− 〈[x̄i]F̂c ,w〉}

= max
η∈B(0,r)

{1− 〈[x̄i]F̂c , c〉 − 〈[x̄i]F̂c , η〉}

=1− 〈[x̄i]F̂c , c〉+ max
η∈B(0,r)

{−〈[x̄i]F̂c , η〉}

=1− 〈[x̄i]F̂c , c〉+ ‖[x̄i]F̂c‖r.

li(α, β0) = min
w∈B(c,r)

{1− 〈[x̄i]F̂c ,w〉}

= min
η∈B(0,r)

{1− 〈[x̄i]F̂c , c〉 − 〈[x̄i]F̂c , η〉}

=1− 〈[x̄i]F̂c , c〉+ min
η∈B(0,r)

{−〈[x̄i]F̂c , η〉}

=1− 〈[x̄i]F̂c , c〉 − ‖[x̄i]F̂c‖r.

The proof is complete.

A.8. Proof for Theorem 11

Proof of Theorem 11:
(1) It can be obtained from the rule R2.
(2) It is from the definitions of R̂ and L̂.

A.9. Proof for Theorem 12

Proof of Theorem 12:
(1) Given the reference solutions pair w∗(αi−1,j , βj) and θ∗(αi−1,j , βj), if we do ISS first in
SIFS and apply ISS and IFS for infinite times. If after s times of triggering, no new inactive
features or samples are identified, then we can denote the sequence of F̂ , R̂, and L̂ as:

F̂A0 = R̂A0 = L̂A0 = ∅ ISS−→ F̂A1 , R̂A1 , L̂A1
IFS−→ F̂A2 , R̂A2 , L̂A2

ISS−→ ...F̂As , R̂As , L̂As
IFS/ISS−→ ... (33)

with F̂As = F̂As+1 = F̂As+2 = ..., R̂As = R̂As+1 = R̂As+2 = ... and L̂As = L̂As+1 = L̂As+2 = ... (34)

In the same way, if we do IFS first in SIFS and no new inactive features or samples are
identified after t times of triggering of ISS and IFS, then the sequence can be denoted as:

F̂B0 = R̂B0 = L̂B0 = ∅ IFS−→ F̂B1 , R̂B1 , L̂B1
ISS−→ F̂B2 , R̂B2 , L̂B2

IFS−→ ...F̂Bt , R̂Bt , L̂Bt
IFS/ISS−→ ... (35)

with F̂Bt = F̂Bt+1 = F̂Bt+2 = ..., R̂Bt = R̂Bt+1 = R̂Bt+2 = ...and L̂Bt = L̂Bt+1 = L̂Bt+2 = ... (36)

We first prove that F̂Bk ⊆ F̂Ak+1, R̂Bk ⊆ R̂Ak+1 and L̂Bk ⊆ L̂Ak+1 hold for all k ≥ 0 by induction.

30



Scaling Up Sparse SVMs by Simultaneous Feature and Sample Reduction

1) When k = 0, the equalities F̂B0 ⊆ F̂A1 , R̂B0 ⊆ R̂A1 and L̂B0 ⊆ L̂A1 hold since F̂B0 =
R̂B0 = L̂B0 = ∅.

2) If F̂Bk ⊆ F̂Ak+1, R̂Bk ⊆ R̂Ak+1 and L̂Bk ⊆ L̂Ak+1 hold, by the synergistic effect of ISS and

IFS, we have that F̂Bk+1 ⊆ F̂Ak+2, R̂Bk+1 ⊆ R̂Ak+2 and L̂Bk+1 ⊆ L̂Ak+2 hold.

Thus, F̂Bk ⊆ F̂Ak+1, R̂Bk ⊆ R̂Ak+1 and L̂Bk ⊆ L̂Ak+1 hold for all k ≥ 0.

Similar to the analysis in (1), we can also prove that F̂Ak ⊆ F̂Bk+1, R̂Ak ⊆ R̂Bk+1 and

L̂Ak ⊆ L̂Bk+1 hold for all k ≥ 0.

Combining (1) and (2), we can acquire

F̂B0 ⊆ F̂A1 ⊆ F̂B2 ⊆ F̂A3 .... (37)

F̂A0 ⊆ F̂B1 ⊆ F̂A2 ⊆ F̂B3 .... (38)

R̂B0 ⊆ R̂A1 ⊆ R̂B2 ⊆ R̂A3 .... (39)

R̂A0 ⊆ R̂B1 ⊆ R̂A2 ⊆ R̂A3 .... (40)

L̂B0 ⊆ L̂A1 ⊆ L̂B2 ⊆ L̂A3 .... (41)

L̂A0 ⊆ L̂B1 ⊆ L̂A2 ⊆ L̂B3 .... (42)

By the first equality of Eqs. (34), (37), and (38), we can obtain F̂Ap = F̂Bt . Similarly, we

can obtain R̂Ap = R̂Bt and L̂Ap = L̂Bt .

(2) If p is odd, then by Eqs. (37), (39, and (41), we have F̂As ⊆ F̂Bp+1, R̂As ⊆ R̂Bp+1, and

L̂As ⊆ L̂Bp+1. Thus q ≤ p+ 1.

Else if p is even, then by Eqs. (38), (40), and (42), we have F̂As ⊆ F̂Bp+1, R̂As ⊆ R̂Bp+1,

and L̂As ⊆ L̂Bp+1. Thus q ≤ p+ 1.

Doing the same analysis for q, we can obtain p ≤ q + 1.

Hence, |p− q| ≤ 1.

The proof is complete.

A.10. Proof for Theorem 13

Proof of Theorem 13:

We notice (Xk
i )>w = w>k xi−w>yixi. By denoting φi(a) =

∑K
k=1 `([ui]k + [a]k), it is easy

to verify that `i(w) = φi(X
>
i w). Thus, the problem (m-P∗) can be rewritten as:

min
w∈RKp

P (w;α, β) =
1

n

n∑
i=1

φi(X
>
i w) +

α

2
‖w‖2 + β||w||1.

Let zi = X>i w. The primal problem (P∗) is then equivalent to

min
w∈Rp,z∈Rn

α

2
||w||2 + β||w||1 +

1

n

n∑
i=1

φi(zi),

s.t. zi = X>i w, i = 1, 2, .., n.

31



Hong, Zhang, Liu, Ye, Cai, He and Wang

The Lagrangian then becomes

L(w, z, θ) =
α

2
||w||2 + β||w||1 +

1

n

n∑
i=1

φi(zi) +
1

n

n∑
i=1

〈X>i w − zi, θi〉

=
α

2
||w||2 + β||w||1 +

1

n
〈Xθ,w〉︸ ︷︷ ︸

:=f1(w)

+
1

n

n∑
i=1

(φi(zi)− 〈zi, θi〉)︸ ︷︷ ︸
:=f2(z)

. (43)

We first consider the subproblem minw L(w, z, θ):

0 ∈ ∂wL(w, z, θ) = ∂wf1(w) = αw +
1

n
Xθ + β∂||w||1 ⇔

1

n
Xθ ∈ −αw − β∂||w||1 ⇒ w = − 1

α
Sβ(

1

n
Xθ). (44)

By substituting Eq. (44) into f1(w), we obtain

f1(w) =
α

2
||w||2 + β||w||1 − 〈αw + β∂||w||1,w〉 = −α

2
||w||2 = − 1

2α
||Sβ(

1

n
Xθ)||2. (45)

Then, we consider the problem minz L(w, z, θ):

0 =∇[zi]kL(w, z, θ) = ∇[zi]kf2(z) =


− 1
n [θi]k, if [zi]k + [ui]k < 0,

1
γn([zi]k + [ui]k)− 1

n [θi]k, if 0 ≤ [zi]k + [ui]k ≤ γ,
1
n −

1
n [θi]k, if [zi]k + [ui]k > γ.

⇒[θi]k =


0, if [zi]k + [ui]k < 0,

1
γ ([zi]k + [ui]k), if 0 ≤ [zi]k + [ui]k ≤ γ,

1, if [zi]k + [ui]k > γ.

(46)

Thus, we have

f2(z) =

{
− γ

2n ||θ||
2 + 1

n〈u, θ〉, if [θi]k ∈ [0, 1], ∀i ∈ [n], k ∈ [K],
−∞, otherwise .

(47)

Combining Eqs.(43), (45), and (47), we obtain the dual problem:

min
θ∈[0,1]

Kn

1

2α
||Sβ(

1

n
Xθ)||2 +

γ

2n
||θ||2 − 1

n
〈u, θ〉.

A.11. Proof for Lemma 14

Lemma 14 can be proved quite similarly with Lemma 3. Therefore, we omit this proof here.
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A.12. Proof for Lemma 15

Proof of Lemma 15:
(i) We prove this lemma by verifying that the solutions w∗(α, β) = 0 and θ∗(α, β) = u

satisfy the conditions (m-KKT-1) and (m-KKT-2).
Firstly, since β ≥ βmax = || 1nXu||∞, we have Sβ( 1

nXu) = 0. Thus, w∗(α, β) = 0 and
θ∗(α, β) = u satisfy the condition (m-KKT-1). Then, for all i ∈ [n], we have

〈Xk
i ,w

∗(α, β)〉+ [ui]k = [ui]k =

{
1, if k 6= yi;

0, if k = yi;
∀i = 1, ..., n, k = 1, ...,K.

Thus, w∗(α, β) = 0 and θ∗(α, β) = u satisfy the condition (m-KKT-2). Hence, they are the
solutions of the primal problem (m-P∗) and the dual problem (m-D∗), respectively.

(ii) Similar to the proof of (i), we prove this by verifying that the solutions w∗(α, β) =
1
αSβ(− 1

nXu) and θ∗(α, β) = u satisfy the conditions (m-KKT-1) and (m-KKT-2).

1. Case 1: αmax(β) ≤ 0. Then for all α > 0, we have

if k = yi, 〈Xk
i ,w

∗(α, β)〉+ uki = uki = 0,

if k 6= yi, 〈Xk
i ,w

∗(α, β)〉+ uki = 1− 〈Xk
i ,

1

α
Sβ(

1

n
Xu)〉

= 1− 1

α
〈Xk

i ,Sβ(
1

n
Xu)〉 ≥ 1 > γ.

Thus, w∗(α, β) = 1
αSβ(− 1

nXu) and θ∗(α, β) = u satisfy the conditions (m-KKT-1)
and (m-KKT-2). Hence, they are the optimal solution of problems (m-P∗) and (m-D∗).

2. Case 2: αmax(β) > 0. Then for any α ≥ αmax(β), we have

if k = yi, 〈Xk
i ,w

∗(α, β)〉+ uki = uki = 0,

if k 6= yi, 〈Xk
i ,w

∗(α, β)〉+ uki = 1− 〈Xk
i ,

1

α
Sβ(

1

n
Xu)〉

= 1− 1

α
〈Xk

i ,Sβ(
1

n
Xu)〉

≥ 1− αmax(β)

α
(1− γ) ≥ 1− (1− γ) = γ.

Thus, w∗(α, β) = 1
αSβ(− 1

nXu) and θ∗(α, β) = u satisfy the conditions (m-KKT-1) and
(m-KKT-2). Hence, they are the optimal solutions of the primal and dual problems
(m-P∗) and (m-D∗).

The proof is complete.

A.13. More Experimental Results

Below, we report the rejection ratios of SIFS on syn1 (Fig. 8), syn3 (Fig. 9), rcv1-train
(Fig. 10), rcv1-test(Fig. 11), url (Fig. 12), kddb (Fig. 13), syn-multi1 (Fig. 14), syn-multi3
(Fig. 15), and rcv1-multiclass (Fig. 16), which are omitted in the main paper. In all the
figures, the first row presents the rejection ratios of feature screening and the second row
presents those of sample screening.
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Figure 8: Rejection ratios of SIFS on syn1.
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Figure 9: Rejection ratios of SIFS on syn3.
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Figure 10: Rejection ratios of SIFS on rcv1-train.
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Figure 11: Rejection ratios of SIFS on rcv1-test.
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Figure 12: Rejection ratios of SIFS on url.
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Figure 13: Rejection ratios of SIFS on kddb.
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Figure 14: Rejection ratios of SIFS on syn-multi1.
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Figure 15: Rejection ratios of SIFS on syn-multi3.
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Figure 16: Rejection ratios of SIFS on rcv1-multiclass.
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