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Abstract

We study robust PCA for the fully observed setting, which is about separating a low
rank matrix L and a sparse matrix S from their sum D = L + S. In this paper, a new
algorithm, dubbed accelerated alternating projections, is introduced for robust PCA which
significantly improves the computational efficiency of the existing alternating projections
proposed in (Netrapalli et al., 2014) when updating the low rank factor. The acceleration is
achieved by first projecting a matrix onto some low dimensional subspace before obtaining
a new estimate of the low rank matrix via truncated SVD. Exact recovery guarantee has
been established which shows linear convergence of the proposed algorithm. Empirical
performance evaluations establish the advantage of our algorithm over other state-of-the-
art algorithms for robust PCA.

Keywords: Robust PCA, Alternating Projections, Matrix Manifold, Tangent Space,
Subspace Projection

1. Introduction

Robust principal component analysis (RPCA) appears in a wide range of applications,
including video and voice background subtraction (Li et al., 2004; Huang et al., 2012),
sparse graphs clustering (Chen et al., 2012), 3D reconstruction (Mobahi et al., 2011), and
fault isolation (Tharrault et al., 2008). Suppose we are given a sum of a low rank matrix
and a sparse matrix, denoted D = L + S. The goal of RPCA is to reconstruct L and S
simultaneously from D. As a concrete example, for foreground-background separation in
video processing, L represents static background through all the frames of a video which
should be low rank while S represents moving objects which can be assumed to be sparse
since typically they will not block a large portion of the screen for a long time.
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RPCA can be achieved by seeking a low rank matrix L′ and a sparse matrix S′ such
that their sum fits the measurement matrix D as well as possible:

min
L′,S′∈Rm×n

‖D −L′ − S′‖F subject to rank(L′) ≤ r and ‖S′‖0 ≤ |Ω|, (1)

where r denotes the rank of the underlying low rank matrix, Ω denotes the support set
of the underlying sparse matrix, and ‖S′‖0 counts the number of non-zero entries in S′.
Compared to the traditional principal component analysis (PCA) which computes a low
rank approximation of a data matrix, RPCA is less sensitive to outliers since it includes a
sparse part in the formulation.

Since the seminal works of (Wright et al., 2009; Candès et al., 2011; Chandrasekaran
et al., 2011), RPCA has received intensive investigations both from theoretical and algo-
rithmic aspects. Noticing that (1) is a non-convex problem, some of the earlier works focus
on the following convex relaxation of RPCA:

min
L′,S′∈Rm×n

‖L′‖∗ + λ‖S′‖1 subject to L′ + S′ = D, (2)

where ‖ · ‖∗ is the nuclear norm (viz. trace norm) of matrices, λ is the regularization
parameter, and ‖ · ‖1 denotes the `1-norm of the vectors obtained by stacking the columns
of associated matrices. Under some mild conditions, it has been proven that the RPCA
problem can be solved exactly by the aforementioned convex relaxation Candès et al. (2011);
Chandrasekaran et al. (2011). However, a limitation of the convex relaxation based approach
is that the resulting semidefinite programming is computationally rather expensive to solve,
even for medium size matrices. Alternative to the convex relaxation, many non-convex
algorithms have been designed to target (1) directly. This line of research will be reviewed
in more detail in Section 2.3 after our approach has been introduced.

This paper targets the non-convex optimization for RPCA directly. The main contribu-
tions of this work are two-fold. Firstly, we propose a new algorithm, accelerated alternating
projections (AccAltProj), for RPCA, which is substantially faster than other state-of-the-art
algorithms. Secondly, exact recovery of accelerated alternating projections has been estab-
lished for the fixed sparsity model, where we assume the ratio of the number of non-zero
entries in each row and column of S is less than a threshold.

1.1. Assumptions

It is clear that the RPCA problem is ill-posed without any additional conditions. Common
assumptions are that L cannot be too sparse and S cannot be locally too dense, which are
formalized in A1 and A2, respectively.

A1 The underlying low rank matrix L ∈ Rm×n is a rank-r matrix with µ-incoherence, that
is

max
i
‖eTi U‖2 ≤

√
µr

m
, and max

j
‖eTj V ‖2 ≤

√
µr

n

hold for a positive numerical constant 1 ≤ µ ≤ min{m,n}
r , where L = UΣV T is the SVD of

L.
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Assumption A1 was first introduced in (Candès and Recht, 2009) for low rank matrix
completion, and now it is a very standard assumption for related low rank reconstruc-
tion problems. It basically states that the left and right singular vectors of L are weakly
correlated with the canonical basis, which implies L cannot be a very sparse matrix.

A2 The underlying sparse matrix S ∈ Rm×n is α-sparse. That is, S has at most αn non-
zero entries in each row, and at most αm non-zero entries in each column. In the other
words, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n,

‖eTi S‖0 ≤ αn and ‖Sej‖0 ≤ αm. (3)

In this paper, we assume1

α . min

{
1

µr2κ3
,

1

µ1.5r2κ
,

1

µ2r2

}
, (4)

where κ is the condition number of L.
Assumption A2 states that the non-zero entries of the sparse matrix S cannot concen-

trate in a few rows or columns, so there does not exist a low rank component in S. If the
indices of the support set Ω are sampled independently from the Bernoulli distribution with
the associated parameter being slightly smaller than α, by the Chernoff inequality, one can
easily show that (3) holds with high probability.

1.2. Organization and Notation of the Paper

The rest of the paper is organized as follows. In the remainder of this section, we introduce
standard notation that is used throughout the paper. Section 2.1 presents the proposed
algorithm and discusses how to implement it efficiently. The theoretical recovery guarantee
of the proposed algorithm is presented in Section 2.2, followed by a review of prior art
for RPCA. In Section 3, we present the numerical simulations of our algorithm. Section 4
contains all the mathematical proofs of our main theoretical result. We conclude this paper
with future directions in Section 5.

In this paper, vectors are denoted by bold lowercase letters (e.g., x), matrices are denoted
by bold capital letters (e.g., X), and operators are denoted by calligraphic letters (e.g., H).
In particular, ei denotes the ith canonical basis vector, I denotes the identity matrix, and I
denotes the identity operator. For a vector x, ‖x‖0 counts the number of non-zero entries in
x, and ‖x‖2 denotes the `2 norm of x. For a matrix X, [X]ij denotes its (i, j)th entry, σi(X)
denotes its ith singular value, ‖X‖∞ = maxij |[X]ij | denotes the maximum magnitude of

its entries, ‖X‖2 = σ1(X) denotes its spectral norm, ‖X‖F =
√∑

i σ
2
i (X) denotes its

Frobenius norm, and ‖X‖∗ =
∑

i σi(X) denotes its nuclear norm. The inner product of
two real valued vectors is defined as 〈x,y〉 = xTy, and the inner product of two real valued
matrices is defined as 〈X,Y 〉 = Trace(XTY ), where (·)T represents the transpose of a
vector or matrix.

Additionally, we sometimes use the shorthand σAi to denote the ith singular value of a
matrix A. Note that κ = σL1 /σ

L
r always denotes the condition number of the underlying

1. The standard notion “.” in (4) means there exists an absolute numerical constant C > 0 such that α
can be upper bounded by C times the right hand side.
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rank-r matrix L, and Ω = supp(S) is always referred to as the support of the underlying
sparse matrix S. At the kth iteration of the proposed algorithm, the estimates of the low
rank matrix and the sparse matrix are denoted by Lk and Sk, respectively.

2. Algorithm and Theoretical Results

In this section, we present the new algorithm and its recovery guarantee. For ease of
exposition, we assume all matrices are square (i.e., m = n), but emphasize that nothing
is special about this assumption and all the results can be easily extended to rectangular
matrices.

2.1. Proposed Algorithm

Alternating projections is a minimization approach that has been successfully used in many
fields, including image processing (Wang et al., 2008; Chan and Wong, 2000; O’Sullivan
and Benac, 2007), matrix completion (Keshavan et al., 2012; Jain et al., 2013; Hardt, 2013;
Tanner and Wei, 2016), phase retrieval (Netrapalli et al., 2013; Cai et al., 2017; Zhang,
2017), and many others (Peters and Heath, 2009; Agarwal et al., 2014; Yu et al., 2016; Pu
et al., 2017). A non-convex algorithm based on alternating projections, namely AltProj,
is presented in (Netrapalli et al., 2014) for RPCA accompanied with a theoretical recovery
guarantee. In each iteration, AltProj first updates L by projecting D−S onto the space of
rank-r matrices, denoted Mr, and then updates S by projecting D − L onto the space of
sparse matrices, denoted S; see the left plot of Figure 1 for an illustration. Regarding to the
implementation of AltProj, the projection of a matrix onto the space of low rank matrices
can be computed by the singular value decomposition (SVD) followed by truncating out
small singular values, while the projection of a matrix onto the space of sparse matrices
can be computed by the hard thresholding operator. As a non-convex algorithm which
targets (1) directly, AltProj is computationally much more efficient than solving the convex
relaxation problem (2) using semidefinite programming (SDP). However, when projecting
D−S onto the low rank matrix manifold, AltProj requires to compute the SVD of a full size
matrix, which is computationally expensive. Inspired by the work in (Vandereycken, 2013;
Wei et al., 2016a,b), we propose an accelerated algorithm for RPCA, coined accelerated
alternating projections (AccAltProj), to circumvent the high computational cost of the
SVD. The new algorithm is able to reduce the per-iteration computational cost of AltProj
significantly, while a theoretical guarantee can be similarly established.

Our algorithm consists of two phases: initialization and projections onto Mr and S
alternatively. We begin our discussion with the second phase, which is described in Algo-
rithm 1. For geometric comparison between AltProj and AccAltProj, see Figure 1.

Let (Lk,Sk) be a pair of current estimates. At the (k + 1)th iteration, AccAltProj first
trims Lk into an incoherent matrix L̃k using Algorithm 2. Noting that L̃k is still a rank-
r matrix, so its left and right singular vectors define an (2n − r)r-dimensional subspace
(Vandereycken, 2013),

T̃k = {ŨkA
T + BṼ T

k | A,B ∈ Rn×r}, (5)
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(i) Illustration of AltProj (ii) Illustration of AccAltProj

Figure 1: Visual comparison between AltProj and AccAltProj, where Mr denotes the
manifold of rank-r matrices and S denotes the set of sparse matrices. The red dash line
in (ii) represents the tangent space of Mr at Lk. In fact, each circle represents a sum of
a low rank matrix and a sparse matrix, but with the component on one circle fixed when
projecting onto the other circle. For conciseness, the trim stage, i.e., L̃k, is not included in
the plot for AccAltProj.

Algorithm 1 Robust PCA by Accelerated Alternating Projections (AccAltProj)

1: Input: D = L + S: matrix to be split; r: rank of L; ε: target precision level; β:
thresholding parameter; γ: target converge rate; µ: incoherence parameter of L.

2: Initialization
3: k = 0
4: while <‖D −Lk − Sk‖F /‖D‖F ≥ ε> do
5: L̃k = Trim(Lk, µ)
6: Lk+1 = Hr(PT̃k(D − Sk))

7: ζk+1 = β
(
σr+1

(
P
T̃k

(D − Sk)
)

+ γk+1σ1

(
P
T̃k

(D − Sk)
))

8: Sk+1 = Tζk+1
(D −Lk+1)

9: k = k + 1
end while

10: Output: Lk, Sk

where L̃k = ŨkΣ̃kṼ
T
k is the SVD of L̃k

2. Given a matrix Z ∈ Rn×n, it can be easily

verified that the projections of Z onto the subspace T̃k and its orthogonal complement are
given by

P
T̃k
Z = ŨkŨ

T
k Z + ZṼkṼ

T
k − ŨkŨ

T
k ZṼkṼ

T
k (6)

and

(I − P
T̃k

)Z = (I − ŨkŨ
T
k )Z(I − ṼkṼ

T
k ). (7)

2. In practice, we only need the trimmed orthogonal matrices Ũk and Ṽk for the projection PT̃k
, and they

can be computed efficiently via a QR decomposition. The entire matrix L̃k should never be formed in
an efficient implementation of AccAltProj.
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Algorithm 2 Trim

1: Input: L = UΣV T : matrix to be trimmed; µ: target incoherence level.

2: cµ =
√

µr
n

3: for <i = 1 to m> do
4: A(i) = min{1, cµ

‖U (i)‖}U
(i)

end for
5: for <j = 1 to n> do
6: B(j) = min{1, cµ

‖V (j)‖}V
(i)

end for
7: Output: L̃ = AΣB

As stated previously, AltProj truncates the SVD of D−Sk directly to get a new estimate
of L. In contrast, AccAltProj first projects D−Sk onto the low dimensional subspace T̃k,
and then projects the intermediate matrix onto the rank-r matrix manifold Mr using the
truncated SVD. That is,

Lk+1 = Hr(PT̃k(D − Sk)),

where Hr computes the best rank-r approximation of a matrix,

Hr(Z) := QΛrP
T where Z = QΛP T is its SVD and [Λr]ii :=

{
[Λ]ii i ≤ r
0 otherwise.

(8)

Before proceeding, it is worth noting that the set of rank-r matrices Mr form a smooth
manifold of dimension (2n− r)r, and T̃k is indeed the tangent space ofMr at L̃k (Vander-
eycken, 2013). Matrix manifold algorithms based on the tangent space of low dimensional
spaces have been widely studied in the literature, see for example (Ngo and Saad, 2012;
Mishra et al., 2012; Vandereycken, 2013; Mishra and Sepulchre, 2014; Mishra et al., 2014;
Wei et al., 2016a,b) and references therein. In particular, we invite readers to explore
the book (Absil et al., 2009) for more details about the differential geometry ideas behind
manifold algorithms.

One can see that a SVD is still needed to obtain the new estimate Lk+1. Nevertheless, it
can be computed in a very efficient way (Vandereycken, 2013; Wei et al., 2016a,b). Let (I−
ŨkŨ

T
k )(D−Sk)Ṽk = Q1R1 and (I−ṼkṼ T

k )(D−Sk)Ũk = Q2R2 be the QR decompositions

of (I − ŨkŨ
T
k )(D − Sk)Ṽk and (I − ṼkṼ

T
k )(D − Sk)Ũk, respectively. Note that (I −

ŨkŨ
T
k )(D − Sk)Ṽk and (I − ṼkṼ

T
k )(D − Sk)Ũk can be computed by one matrix-matrix

subtraction between an n×n matrix and an n×n matrix, two matrix-matrix multiplications
between an n × n matrix and an n × r matrix, and a few matrix-matrix multiplications
between a r× n and an n× r or between an n× r matrix and a r× r matrix. Moreover, A
little algebra gives

P
T̃k

(D − Sk) = ŨkŨ
T
k (D − Sk) + (D − Sk)ṼkṼ

T
k − ŨkŨ

T
k (D − Sk)ṼkṼ

T
k

= ŨkŨ
T
k (D − Sk)(I − ṼkṼ

T
k ) + (I − ŨkŨ

T
k )(D − Sk)ṼkṼ

T
k + ŨkŨ

T
k (D − Sk)ṼkṼ

T
k

= ŨkR
T
2 Q

T
2 + Q1R1Ṽ

T
k + ŨkŨ

T
k (D − Sk)ṼkṼ

T
k

6



AccAltProj for Robust PCA

=
[
Ũk Q1

] [
ŨT
k (D − Sk)Ṽk RT

2

R1 0

] [
Ṽ T
k

QT
2

]
:=
[
Ũk Q1

]
Mk

[
Ṽ T
k

QT
2

]
,

where the fourth line follows from the fact ŨT
k Q1 = Ṽ T

k Q2 = 0. Let Mk = UMk
ΣMk

V T
Mk

be the SVD of Mk, which can be computed using O(r3) flops since Mk is a 2r× 2r matrix.
Then the SVD of P

T̃k
(D − Sk) = ŨkΣ̃kṼ

T
k can be computed by

Ũk+1 =
[
Ũk Q1

]
UMk

, Σ̃k+1 = ΣMk
, and Ṽk+1 =

[
Ṽk Q2

]
VMk

(9)

since both the matrices
[
Ũk Q1

]
and

[
Ṽk Q2

]
are orthogonal. In summary, the overall

computational costs of Hr(PT̃k(D − Sk)) lie in one matrix-matrix subtraction between an
n × n matrix and an n × n matrix, two matrix-matrix multiplications between an n × n
matrix and an n × r matrix, the QR decomposition of two n × r matrices, an SVD of
a 2r × 2r matrix, and a few matrix-matrix multiplications between a r × n matrix and
an n × r matrix or between an n × r matrix and a r × r matrix, leading to a total of
4n2r+ n2 +O(nr2 + r3) flops. Thus, the dominant per iteration computational complexity
of AccAltProj for updating the estimate of L is the same as the novel gradient descent
based approach introduced in (Yi et al., 2016). In contrast, computing the best rank-r
approximation of a non-structured n × n matrix D − Sk typically costs O(n2r) + n2 flops
with a large hidden constant in front of n2r.

After Lk+1 is obtained, following the approach in (Netrapalli et al., 2014), we apply the
hard thresholding operator to update the estimate of the sparse matrix,

Sk+1 = Tζk+1
(D −Lk+1),

where the thresholding operator Tζk+1
is defined as

[Tζk+1
Z]ij =

{
[Z]ij |[Z]ij | > ζk+1

0 otherwise
(10)

for any matrix Z ∈ Rm×n. Notice that the thresholding value of ζk+1 in Algorithm 1 is
chosen as

ζk+1 = β
(
σr+1

(
P
T̃k

(D − Sk)
)

+ γk+1σ1

(
P
T̃k

(D − Sk)
))

,

which relies on a tuning parameter β > 0, a convergence rate parameter 0 ≤ γ < 1, and
the singular values of P

T̃k
(D − Sk). Since we have already obtained all the singular values

of P
T̃k

(D − Sk) when computing Lk+1, the extra cost of computing ζk+1 is very marginal.
Therefore, the cost of updating the estimate of S is very low and insensitive to the sparsity
of S.

In this paper, a good initialization is achieved by two steps of modified AltProj when
setting the input rank to r, see Algorithm 3. With this initialization scheme, we can
construct an initial guess that is sufficiently close to the ground truth and is inside the “basin
of attraction” as detailed in the next subsection. Note that the thresholding parameter βinit
used in Algorithm 3 is different from that in Algorithm 1.
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Algorithm 3 Initialization by Two Steps of AltProj

1: Input: D = L+S: matrix to be split; r: rank of L; βinit, β: thresholding parameters.
2: L−1 = 0
3: ζ−1 = βinit · σD1
4: S−1 = Tζ−1(D −L−1)
5: L0 = Hr(D − S−1)
6: ζ0 = β · σ1(D − S−1)
7: S0 = Tζ0(D −L0)
8: Output: L0, S0

2.2. Theoretical Guarantee

In this subsection, we present the theoretical recovery guarantee of AccAltProj (Algorithm 1
together with Algorithm 3). The following theorem establishes the local convergence of
AccAltProj.

Theorem 1 (Local Convergence of AccAltProj) Let L ∈ Rn×n and S ∈ Rn×n be two
symmetric matrices satisfying Assumptions A1 and A2. If the initial guesses L0 and S0

obey the following conditions:

‖L−L0‖2 ≤ 8αµrσL1 , ‖S − S0‖∞ ≤
µr

n
σL1 , and supp(S0) ⊂ Ω,

then the iterates of Algorithm 1 with parameters β = µr
2n and γ ∈

(
1√
12
, 1
)

satisfy

‖L−Lk‖2 ≤ 8αµrγkσL1 , ‖S − Sk‖∞ ≤
µr

n
γkσL1 , and supp(Sk) ⊂ Ω.

The next theorem states that the initial guesses obtained from Algorithm 3 fulfill the
conditions required in Theorem 1.

Theorem 2 (Guaranteed Initialization) Let L ∈ Rn×n and S ∈ Rn×n be two symmet-
ric matrices satisfying Assumptions A1 and A2, respectively. If the thresholding parameters

obey
µrσL1
nσD1

≤ βinit ≤
3µrσL1
nσD1

and β = µr
2n , then the outputs of Algorithm 3 satisfy

‖L−L0‖2 ≤ 8αµrσL1 , ‖S − S0‖∞ ≤
µr

n
σL1 , and supp(S0) ⊂ Ω.

The proofs of Theorems 1 and 2 are presented in Section 4. The convergence of AccAlt-
Proj follows immediately by combining the above two theorems together.

For conciseness, the main theorems are stated for symmetric matrices. However, similar
results can be established for nonsymmetric matrix recovery problems as they can be cast as
problems with respect to symmetric augmented matrices, as suggested in (Netrapalli et al.,
2014). Without loss of generality, assume dm ≤ n < (d+ 1)m for some d ≥ 1 and construct
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L and S as

L :=


0 · · · 0
...

. . .
...

0 · · · 0

LT · · · LT︸ ︷︷ ︸
d times

L
...

L

0



 d times

, S :=


0 · · · 0
...

. . .
...

0 · · · 0

ST · · · ST︸ ︷︷ ︸
d times

S
...

S

0



 d times

.

Then it is not hard to see that L is O(µ)-incoherent, and S is O(α)-sparse, with the
hidden constants being independent of d. Moreover, based on the connection between the
SVD of the augmented matrix and that of the original one, it can be easily verified that
at the kth iteration the estimates returned by AccAltProj with input D = L + S have the
form

Lk =


0 · · · 0
...

. . .
...

0 · · · 0

LTk · · · LTk︸ ︷︷ ︸
d times

Lk
...

Lk

0



 d times

, Sk =


0 · · · 0
...

. . .
...

0 · · · 0

STk · · · STk︸ ︷︷ ︸
d times

Sk
...

Sk

0



 d times

,

where Lk,Sk are the the kth estimates returned by AccAltProj with input D = L + S.

2.3. Related Work

As mentioned earlier, convex relaxation based methods for RPCA have higher computa-
tional complexity and slower convergence rate which are not applicable for high dimensional
problems. In fact, the convergence rate of the algorithm for computing the solution to the
SDP formulation of RPCA (Candès et al., 2011; Chandrasekaran et al., 2011; Xu et al.,
2010) is sub-linear with the per iteration computational complexity being O(n3). By con-
trast, AccAltProj only requires O(log(1/ε)) iterations to achieve an accuracy of ε, and the
dominant per iteration computational cost is O(rn2).

There have been many other algorithms which are designed to solve the non-convex
RPCA problem directly. In (Wang et al., 2013), an alternating minimization algorithm
was proposed for (1) based on the factorization model of low rank matrices. However,
only convergence to fixed points was established there. In (Gu et al., 2016), the authors
developed an alternating minimization algorithm for RPCA, which allows the sparsity level
α to be O(1/(µ2/3r2/3n)) for successful recovery, which is more stringent than our result
when r � n. A projected gradient descent algorithm was proposed in Chen and Wainwright
(2015) for the special case of positive semidefinite matrices based on the `1-norm of each
row of the underlying sparse matrix, which is not very practical.

In Table 1, we compare AccAltProj with the other two competitive non-convex algo-
rithms for RPCA: AltProj from (Netrapalli et al., 2014) and non-convex gradient descent
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(GD) from (Yi et al., 2016). GD attempts to reconstruct the low rank matrix by minimizing
an objective function which contains the prior knowledge of the sparse matrix. The table
displays the computational complexity of each algorithm for updating the estimates of the
low rank matrix and the sparse matrix, as well as the convergence rate and the theoretical
tolerance for the number of non-zero entries in the sparse matrix.

From the table, we can see that AccAltProj achieves the same linear convergence rate
as AltProj, which is faster than GD. Moreover, AccAltProj has the lowest per iteration
computational complexity for updating both the estimates of L and S (ties with AltProj for
updating the sparse part). It is worth emphasizing that the acceleration stage in AccAltProj
which first projects D−Sk onto a low dimensional subspace reduces the computational cost
of the SVD in AltProj dramatically. Overall, AccAltProj will be substantially faster than
AltProj and GD, as confirmed by our numerical simulations in next section. The table also
shows that the theoretical sparsity level that can be tolerated by AccAltProj is lower than
that of GD and AltProj. Our result looses an order in r because we have replaced the
spectral norm by the Frobenius norm when considering the reduction of the reconstruction
error in terms of the spectral norm. In addition, the condition number of the target matrix
appears in the theoretical result because the current version of AccAltProj deals with the
fixed rank case which requires the initial guess is sufficiently close to the target matrix for
the theoretical analysis. Nevertheless, we note that the sufficient condition regarding to α
to guarantee the exact recovery of AccAltProj is highly pessimistic when compared with its
empirical performance. Numerical investigations in next section show that AccAltProj can
tolerate as large α as AltProj does under different energy levels.

Table 1: Comparison of AccAltProj, AltProj and GD.

Algorithm AccAltProj AltProj GD

Updating S O
(
n2
)

O
(
rn2
)

O
(
n2 + αn2 log(αn)

)
Updating L O

(
rn2

)
O
(
r2n2

)
O
(
rn2

)
Tolerance of α O

(
1

max{µr2κ3,µ1.5r2κ,µ2r2}

)
O
(

1
µr

)
O
(

1
max{µr1.5κ1.5,µrκ2}

)
Iterations needed O

(
log (1

ε
)
)

O
(
log (1

ε
)
)

O
(
κ log(1

ε )
)

3. Numerical Expierments

In this section, we present the empirical performance of our AccAltProj algorithm and
compare it with the state-of-the-art AltProj algorithm from (Netrapalli et al., 2014) and
the leading gradient descent based algorithm (GD) from (Yi et al., 2016). The tests are
conducted on a laptop equipped with 64-bit Windows 7, Intel i7-4712HQ (4 Cores at 2.3
GHz) and 16GB DDR3L-1600 RAM, and executed from MATLAB R2017a. We implement
AltProj by ourselves, while the codes for GD are downloaded from the author’s website3.
Hand tuned parameters are used for these algorithms to achieve the best performance in
the numerical comparison. The codes for AccAltProj can be found online:

3. Website: www.yixinyang.org/code/RPCA_GD.zip.
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https://github.com/caesarcai/AccAltProj_for_RPCA.

Notice that the computation of an initial guess by Algorithm 3 requires the truncated
SVD on a full size matrix. As is typical in the literature, we used the PROPACK library4

for this task when the size of D is large and r is relatively small. To reduce the dependence
of the theoretical result on the condition number of the underlying low rank matrix, AltProj
was originally designed to loop r stages for the input rank increasing from 1 to r and each
stage contains a few number of iterations for a fixed rank. However, when the condition
number is medium large which is the case in our tests, we have observed that AltProj
achieves the best computational efficiency when fixing the rank to r. Thus, to make fair
comparison, we test AltProj when input rank is fixed, the same as the other two algorithms.

Synthetic Datasets We follow the setup in (Netrapalli et al., 2014) and (Yi et al., 2016)
for the random tests on synthetic data. An n × n rank r matrix L is formed via L =
PQT , where P ,Q ∈ Rn×r are two random matrices having their entries drawn i.i.d from
the standard normal distribution. The locations of the non-zero entries of the underlying
sparse matrix S are sampled uniformly and independently without replacement, while the
values of the non-zero entries are drawn i.i.d from the uniform distribution over the interval
[−c · E(|[L]ij |), c · E(|[L]ij |)] for some constant c > 0. The relative computing error at the
kth iteration of a single test is defined as

errk =
‖D −Lk − Sk‖F

‖D‖F
. (11)

The test algorithms are terminated when either the relative computing error is smaller than
a tolerance, errk < tol, or a maximum number of 100 iterations is reached. Recall that µ
is the incoherence parameter of the low rank matrix L and α is the sparsity parameter of
the sparse matrix S. In the random tests, we use 1.1µ in AltProj and AccAltProj, and use
1.1α in GD.

Though we are only able to provide a theoretical guarantee for AccAltProj with trim
in this paper, it can be easily seen that AccAltProj can also be implemented without the
trim step. Thus, both AccAltProj with and without trim are tested. The parameters β and
βinit are set to be β = 1.1µr

2
√
mn

and βinit = 1.1µr√
mn

in our experiments, and γ = 0.5 is used when

α < 0.55 and γ = 0.65 is used when α ≥ 0.55.

We first test the performance of the algorithms under different values of α for fixed
n = 2500 and r = 5. Three different values of c are investigated: c ∈ {0.2, 1, 5}, which
represent three different signal levels of S. For each value of c, 10 different values of
α from 0.3 to 0.75 are tested. We set tol = 10−6 in the stopping condition for all the
test algorithms. The backtracking line search has been used in GD which can improve
its recovery performance substantially in our tests. An algorithm is considered to have
successfully reconstructed L (or equivalently, S) if the low rank output of the algorithm Lk
satisfies

‖Lk −L‖F
‖L‖F

≤ 10−4.

4. Website: sun.stanford.edu/~rmunk/PROPACK.
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Table 2: Rate of success for AccAltProj with and without trim, AltProj, and GD for
different values of α.

c = 0.2 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

AccAltProj w/ trim 10 10 10 10 10 10 10 10 4 0
AccAltProj w/o trim 10 10 10 10 10 10 10 10 4 0

AltProj 10 10 10 10 10 10 10 10 0 0
GD 10 10 10 0 0 0 0 0 0 0

c = 1 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

AccAltProj w/ trim 10 10 10 10 10 10 10 9 0 0
AccAltProj w/o trim 10 10 10 10 10 10 10 9 0 0

AltProj 10 10 10 10 10 10 10 8 0 0
GD 10 10 10 10 9 0 0 0 0 0

c = 5 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

AccAltProj w/ trim 10 10 10 10 10 10 10 5 0 0
AccAltProj w/o trim 10 10 10 10 10 10 10 5 0 0

AltProj 10 10 10 10 10 10 10 3 0 0
GD 10 10 10 10 10 10 7 0 0 0

The number of successful reconstructions for each algorithm out of 10 random tests are
presented in Table 2. It is clear that AccAltProj (with and without trim) and AltProj
exhibit similar behavior even though the theoretical requirement of AccAltProj with trim
is a bit more stringent than that of AltProj, and they can tolerate larger values of α than
GD when c is small.

Next, we evaluate the runtime of the test algorithms. The computational results are
plotted in Figure 2 together with the setup corresponding to each plot. Figure 2(i) shows
that AccAltProj is substantially faster than AltProj and GD. In particular, when n is
large, it achieves about 10× speedup. Figure 2(ii) shows that AccAltProj and AltProj are
less sensitive to the sparsity of S. Notice that we have used a well-tuned fixed stepsize
for GD here so that it can achieve the best computational efficiency. Thus, GD fails to
converge when α ≥ 0.35 which is smaller than the largest value of α for successful recovery
corresponding to c = 1 in Table 2. Lastly, Figure 2(iii) shows the lowest computational
time of AccAltProj against the relative computing error.

Video Background Subtraction In this section, we compare the performance of Ac-
cAltProj with and without trim, AltProj and GD on video background subtraction, a real
world benchmark problem for RPCA. The task in background subtraction is to separate
moving foreground objects from a static background. The two videos we have used for this
test are Shoppingmall and Restaurant which can be found online5.The size of each frame
of Shoppingmall is 256 × 320 and that of Restaurant is 120 × 160. The total number of
frames are 1000 and 3055 in Shoppingmall and Restaurant, respectively. Each video can
be represented by a matrix, where each column of the matrix is a vectorized frame of the

5. Website: perception.i2r.a-star.edu.sg/bk_model/bk_index.html.
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Figure 2: Runtime for synthetic datasets: (i) Varying dimension n vs runtime, where r = 5,
α = 0.1, c = 1, and n varies from 1000 to 15000. The algorithms are terminated after
errk < 10−4 is satisfied. (ii) Varying sparsity factor α vs runtime, where r = 5, c = 1
and n = 2500. The algorithms are terminated when either errk < 10−4 or 100 number
of iterations is reached, whichever comes first. (iii) Relative error errk vs runtime, where
r = 5, α = 0.1, c = 1, and n = 2500. The algorithms are terminated after errk < 10−5 is
satisfied so that we can observe more iterations.

Table 3: Computational results for video background subtraction. Here “S” represents
Shoppingmall, “R” represents Restaurant, and µ is the incoherence parameter of the output
low rank matrices along the time axis (i.e., among different frames).

AccAltProj w/ trim AccAltProj w/o trim AltProj GD
runtime µ runtime µ runtime µ runtime µ

S 38.98s 2.12 38.79s 2.26 82.97s 2.13 161.1s 2.85
R 28.09s 5.16 27.94s 5.25 69.12s 5.28 107.3s 6.07

video. Then, we apply each algorithm to decompose the matrix into a low rank part which
represents the static background of the video and a sparse part which represents the moving
objects in the video. Since there is no ground truth for the incoherence parameter and the
sparsity parameter, their values are estimated by trial-and-error in the tests. We set γ = 0.7
and r = 2 in the decomposition of both videos, and tol is set to 10−4 in the stopping criteria.
All the four algorithms can achieve desirable visual performance for the two tested videos
and we only present the decomposition results of three selected frames for both AccAltProj
with trim and without trim in Figure 3.

Table 3 contains the runtime of each algorithm. We can see that AccAltProj with
and without trim are also faster than AltProj and GD for the background subtraction
experiments conducted here. We also include the incoherence values of the output low rank
matrices along the time axis. It is worth noting that the incoherence parameter value of
the low rank output from AccAltProj with trim are smaller than that from AccAltProj
without trim, which suggests the output backgrounds from AccAltProj with trim are more
consistent through all the frames. Additionally, AccAltProj and AltProj have comparable
output incoherence.
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Figure 3: Video background subtraction: The top three rows correspond to three different
frames from the video Shoppingmall, while the bottom three rows are frames from the video
Restaurant. The first column contains the original frames, the middle two columns are the
separated background and foreground outputs of AccAltProj with trim, and the right two
columns are the separated background and foreground outputs of AccAltProj without trim.
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4. Proofs

4.1. Proof of Theorem 1

The proof of Theorem 1 follows a route established in (Netrapalli et al., 2014). Despite this,
the details of the proof itself are nevertheless quite involved because there are two more
operations (i.e., projection onto a tangent space and trim) in AccAltProj than in AltProj.
Overall, the proof consists of two steps:

• When ‖L−Lk‖2 and ‖S − Sk‖∞ are sufficiently small, and supp(Sk) ⊂ Ω, then
‖L−Lk+1‖2 deceases in some sense by a constant factor (see Lemma 12) and ‖L−Lk+1‖∞
is small (see Lemma 13).

• When ‖L−Lk+1‖∞ is sufficiently small, we can choose ζk+1 such that supp(Sk+1) ⊂
Ω and ‖S − Sk+1‖∞ is small (see Lemma 14).

These results will be presented in a set of lemmas. For ease of notation we define τ := 4αµrκ
and υ := τ(48

√
µrκ+ µr) in the sequel.

Lemma 3 (Weyl’s inequality) Let A,B,C ∈ Rn×n be the symmetric matrices such that
A = B + C. Then the inequality

|σAi − σBi | ≤ ‖C‖2

holds for all i, where σAi and σBi represent the ith singular values of A and B respectively.

Proof This is a well-known result and the proof can be found in many standard textbooks,
see for example Bhatia (2013).

Lemma 4 Let S ∈ Rn×n be a symmetric sparse matrix which satisfies Assumption A2.
Then, the inequality

‖S‖2 ≤ αn‖S‖∞
holds, where α is the sparsity level of S.

Proof The proof can be found in (Netrapalli et al., 2014, Lemma 4).

Lemma 5 Let Trim be the algorithm defined by Algorithm 2. If Lk ∈ Rn×n is a rank-r
matrix with

‖Lk −L‖2 ≤
σLr

20
√
r
,

then the trim output with the level
√

µr
n satisfies

‖L̃k −L‖F ≤ 8κ‖Lk −L‖F , (12)

max
i
‖eTi Ũk‖2 ≤

10

9

√
µr

n
, and max

j
‖eTj Ṽk‖2 ≤

10

9

√
µr

n
, (13)
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where L̃k = ŨkΣ̃kṼ
T
k is the SVD of L̃k. Furthermore, it follows that

‖L̃k −L‖2 ≤ 8
√

2rκ‖Lk −L‖2. (14)

Proof Since both L and Lk are rank-r matrices, Lk −L is rank at most 2r. So

‖Lk −L‖F ≤
√

2r‖Lk −L‖2 ≤
√

2r
σLr

20
√
r

=
σLr

10
√

2
.

Then, the first two parts of the lemma, i.e., (12) and (13), follow from (Wei et al., 2016a,
Lemma 4.10). Noting that ‖L̃k −L‖2 ≤ ‖L̃k −L‖F , (14) follows immediately.

Lemma 6 Let L = UΣV T and L̃k = ŨkΣ̃kṼ
T
k be the SVD of two rank-r matrices, then

‖UUT − ŨŨT ‖2 ≤
‖L̃k −L‖2

σLr
, ‖V V T − Ṽ Ṽ T ‖2 ≤

‖L̃k −L‖2
σLr

, (15)

and

‖(I − P
T̃k

)L‖2 ≤
‖L̃k −L‖22

σLr
. (16)

Proof The proof of (15) can be found in (Wei et al., 2016b, Lemma 4.2). The Frobenius
norm version of (16) can also be found in (Wei et al., 2016a,b). Here we only need to prove
the spectral norm version, i.e., (16). Since L = UUTL and L̃k(I − ṼkṼ

T
k ) = 0, we have

‖(I − P
T̃k

)L‖2 = ‖(I − ŨkŨ
T
k )L(I − ṼkṼ

T
k )‖2

= ‖(I − ŨkŨ
T
k )UUTL(I − ṼkṼ

T
k )‖2

= ‖(UUT − ŨkŨ
T
k )UUTL(I − ṼkṼ

T
k )‖2

= ‖(UUT − ŨkŨ
T
k )L(I − ṼkṼ

T
k )‖2

= ‖(UUT − ŨkŨ
T
k )(L− L̃k)(I − ṼkṼ

T
k )‖2

≤ ‖(UUT − ŨkŨ
T
k )‖2‖(L− L̃k)‖2‖(I − ṼkṼ

T
k )‖2

≤ ‖L̃k −L‖22
σLr

,

where the last inequality follows from (15).

Lemma 7 Let S ∈ Rn×n be a symmetric matrix satisfying Assumption A2. Let L̃k ∈ Rn×n
be a rank-r matrix with 100

81 µ-incoherence. That is,

max
i
‖eTi Ũk‖2 ≤

10

9

√
µr

n
and max

j
‖eTj Ṽk‖2 ≤

10

9

√
µr

n
,

where L̃ = ŨkΣ̃kṼ
T
k is the SVD of L̃k. If supp(Sk) ⊂ Ω, then

‖P
T̃k

(S − Sk)‖∞ ≤ 4αµr‖S − Sk‖∞. (17)
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Proof By the incoherence assumption of L̃k and the sparsity assumption of S − Sk, we
have

[P
T̃k

(S − Sk)]ab = 〈P
T̃k

(S − Sk), eae
T
b 〉

= 〈S − Sk,PT̃k(eae
T
b )〉

= 〈S − Sk, ŨkŨ
T
k eae

T
b + eae

T
b ṼkṼ

T
k − ŨkŨ

T
k eae

T
b ṼkṼ

T
k 〉

= 〈(S − Sk)eb, ŨkŨ
T
k ea〉+ 〈eTa (S − Sk), e

T
b ṼkṼ

T
k 〉 − 〈S − Sk, ŨkŨ

T
k eae

T
b ṼkṼ

T
k 〉

≤ ‖S − Sk‖∞

 ∑
i|(i,b)∈Ω

|eTi ŨkŨ
T
k ea|+

∑
j|(a,j)∈Ω

|eTb ṼkṼ T
k ej |


+ ‖S − Sk‖2 ‖ŨkŨ

T
k eae

T
b ṼkṼ

T
k ‖∗

≤ 2αn
100µr

81n
‖S − Sk‖∞ + αn‖S − Sk‖∞‖ŨkŨ

T
k eae

T
b ṼkṼ

T
k ‖F

≤ 200

81
αµr‖S − Sk‖∞ + αn

µr

n
‖S − Sk‖∞

= 4αµr‖S − Sk‖∞,

where the first inequality uses Hölder’s inequality and the second inequality uses Lemma 4.
We also use the fact ŨkŨ

T
k eae

T
b ṼkṼ

T
k is a rank-1 matrix to bound its nuclear norm.

Lemma 8 Under the symmetric setting, i.e., UUT = V V T where U ∈ Rn×r and V ∈
Rn×r are two orthogonal matrices, we have

‖PTZ‖2 ≤
√

4

3
‖Z‖2

for any symmetric matrix Z ∈ Rn×n. Moreover, the upper bound is tight.

Proof First notice that

PTZ = UUTZ + ZUUT −UUTZUUT

is symmetric. Let y ∈ Rn be a unit vector such that ‖PTZ‖2 = |yT (PTZ)y|. Denote
y1 = UUTy and y2 = (I −UUT )y. Then,

‖PTZ‖2 = |yT (PTZ)y|
= |yT1 Zy + yTZy1 − yT1 Zy1|
= |yT1 Zy1 + yT1 Zy2 + yT2 Zy1|
= |〈y1y

T
1 + y1y

T
2 + y2y

T
1 ,Z〉|

≤ ‖y1y
T
1 + y1y

T
2 + y2y

T
1 ‖∗‖Z‖2.

Let a = ‖y1‖22. Since y1 ⊥ y2, we have ‖y1‖22 + ‖y2‖22 = 1, which implies ‖y2‖22 = 1− a and

y1y
T
1 + y1y

T
2 + y2y

T
1 =

[
y1 y2

] [1 1
1 0

] [
y1 y2

]T
17



Cai, Cai and Wei

=
[
y1√
a

y2√
1−a

] [ a
√
a(1− a)√

a(1− a) 0

] [
y1√
a

y2√
1−a

]T
.

Since
[
y1√
a

y2√
1−a

]
is an orthogonal matrix, one has

‖y1y
T
1 + y1y

T
2 + y2y

T
1 ‖∗ =

∥∥∥∥[ a
√
a(1− a)√

a(1− a) 0

]∥∥∥∥
∗

=
√
a2 + 4a(1− a)

=

√
4

3
− 3

(
a− 2

3

)2

≤
√

4

3
,

which complete the proof for the upper bound.

To show the tightness of the bound, let U = V =

[
1
0

]
and Z =

[
1
√

2√
2 −1

]
. It can be

easily verified that ‖PTZ‖2 =
√

4
3‖Z‖2.

Lemma 9 Let U ∈ Rn×r be an orthogonal matrix with µ-incoherence, i.e., ‖eTi U‖2 ≤
√

µr
n

for all i. Then, for any Z ∈ Rn×n, the inequality

‖eTi ZaU‖2 ≤ max
l

√
µr

n
(
√
n‖eTl Z‖2)a

holds for all i and a ≥ 0.

Proof This proof is done by mathematical induction.

Base case: When a = 0, ‖eTi U‖ ≤
√

µr
n is satisfied following from the assumption.

Induction Hypothesis: ‖eTi (Z)aU‖2 ≤ maxl

√
µr
n (
√
n‖eTl Z‖2)a for all i at the ath power.

Induction Step: We have

‖eTi Za+1U‖22 = ‖eTi ZZaU‖22

=
∑
j

(∑
k

[Z]ik[Z
aU ]kj

)2

=
∑
k1k2

[Z]ik1 [Z]ik2
∑
j

[ZaU ]k1j [Z
aU ]k2j

=
∑
k1k2

[Z]ik1 [Z]ik2〈eTk1Z
aU , eTk2Z

aU〉

≤
∑
k1k2

|[Z]ik1 [Z]ik2 |‖eTk1Z
aU‖2 ‖eTk2Z

aU‖2
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≤ max
l

µr

n
(
√
n‖eTl Z‖2)2a

∑
k1k2

|[Z]ik1 [Z]ik2 |

≤ max
l

µr

n
(
√
n‖eTl Z‖2)2a(

√
n‖eTi Z‖2)2

≤ max
l

µr

n
(
√
n‖eTl Z‖2)2a+2.

The proof is complete by taking a square root from both sides.

Lemma 10 Let L ∈ Rn×n and S ∈ Rn×n be two symmetric matrices satisfying Assump-
tions A1 and A2, respectively. Let L̃k ∈ Rn×n be the trim output of Lk. If

‖L−Lk‖2 ≤ 8αµrγkσL1 , ‖S − Sk‖∞ ≤
µr

n
γkσL1 , and supp(Sk) ⊂ Ω,

then
‖(P

T̃k
− I)L + P

T̃k
(S − Sk)‖2 ≤ τγk+1σLr (18)

and
max
l

√
n‖eTl [(P

T̃k
− I)L + P

T̃k
(S − Sk)]‖2 ≤ υγkσLr (19)

hold for all k ≥ 0, provided 1 > γ ≥ 512τrκ2 + 1√
12

. Here recall that τ = 4αµrκ and

υ = τ(48
√
µrκ+ µr).

Proof For all k ≥ 0, we get

‖(P
T̃k
− I)L + P

T̃k
(S − Sk)‖2 ≤ ‖(PT̃k − I)L‖2 + ‖P

T̃k
(S − Sk)‖2

≤ ‖L− L̃k‖22
σLr

+

√
4

3
‖S − Sk‖2

≤ (8
√

2rκ)2‖L−Lk‖22
σLr

+

√
4

3
αn‖S − Sk‖∞

≤ 128 · 8αµr2κ3‖L−Lk‖2 +

√
4

3
αn‖S − Sk‖∞

≤

(
512τrκ2 +

1

4

√
4

3

)
4αµrγkσL1

≤ 4αµrγk+1σL1 ,

= τγk+1σLr

where the second inequality uses Lemma 6 and 8, the third inequality uses Lemma 4 and 5,
the fourth inequality follows from ‖L−Lk‖2

σLr
≤ 8αµrκ, and the last inequality uses the bound

of γ.
To compute the bound of maxl

√
n‖eTl [(P

T̃k
− I)L + P

T̃k
(S − Sk)]‖2, first note that

max
l
‖eTl (I − P

T̃k
)L‖2 = max

l
‖eTl (UUT − ŨkŨ

T
k )(L− L̃k)(I − ŨkŨ

T
k )‖2
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≤ max
l
‖eTl (UUT − ŨkŨ

T
k )‖2‖L− L̃k‖2‖I − ŨkŨ

T
k ‖2

≤
(

19

9

√
µr

n

)
‖L− L̃k‖2,

where the last inequality follows from the fact L is µ-incoherent and L̃k is 100
81 µ-incoherent.

Hence, for all k ≥ 0, we have

max
l

√
n‖eTl ((P

T̃k
− I)L + P

T̃k
(S − Sk))‖2 ≤ max

l

√
n‖eTl (I − P

T̃k
)L‖2 +

√
n‖eTl PT̃k(S − Sk)‖2

≤ 19
√
n

9

√
µr

n
‖L− L̃k‖2 + n‖P

T̃k
(S − Sk)‖∞

≤ 19

9
8
√

2µrκ‖L−Lk‖2 + 4nαµr‖S − Sk‖∞

≤ 24
√
µrκ · 8αµrγkσL1 + 4nαµr · µr

n
γkσL1

= υγkσLr ,

where the third inequality uses Lemma 5 and 7.

Lemma 11 Let L ∈ Rn×n and S ∈ Rn×n be two symmetric matrices satisfying Assump-
tions A1 and A2, respectively. Let L̃k ∈ Rn×n be the trim output of Lk. If

‖L−Lk‖2 ≤ 8αµrγkσL1 , ‖S − Sk‖∞ ≤
µr

n
γkσL1 , and supp(Sk) ⊂ Ω,

then

|σLi − |λ
(k)
i || ≤ τσ

L
r (20)

and

(1− 2τ)γjσL1 ≤ |λ
(k)
r+1|+ γj |λ(k)

1 | ≤ (1 + 2τ)γjσL1 (21)

hold for all k ≥ 0 and j ≤ k + 1, provided 1 > γ ≥ 512τrκ2 + 1√
12

. Here |λ(k)
i | is the ith

singular value of P
T̃k

(D − Sk).

Proof Since D = L + S, we have

P
T̃k

(D − Sk) = P
T̃k

(L + S − Sk)

= L + (P
T̃k
− I)L + P

T̃k
(S − Sk).

Hence, by Weyl’s inequality and (18) in Lemma 10, we can see that

|σLi − |λ
(k)
i || ≤ ‖(PT̃k − I)L + P

T̃k
(S − Sk)‖2

≤ τγk+1σLr

hold for all i and k ≥ 0. So the first claim is proved since γ < 1.
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Notice that L is a rank-r matrix, which implies σLr+1 = 0, so we have

||λ(k)
r+1|+ γj |λ(k)

1 | − γ
jσL1 | = ||λ

(k)
r+1| − σ

L
r+1 + γj |λ(k)

1 | − γ
jσL1 |

≤ τγk+1σLr + τγj+k+1σLr

≤
(

1 + γk+1
)
τγjσLr

≤ 2τγjσL1

for all j ≤ k + 1. This completes the proof of the second claim.

Lemma 12 Let L ∈ Rn×n and S ∈ Rn×n be two symmetric matrices satisfying Assump-
tions A1 and A2, respectively. Let L̃k ∈ Rn×n be the trim output of Lk. If

‖L−Lk‖2 ≤ 8αµrγkσL1 , ‖S − Sk‖∞ ≤
µr

n
γkσL1 , and supp(Sk) ⊂ Ω,

then we have

‖L−Lk+1‖2 ≤ 8αµrγk+1σL1 ,

provided 1 > γ ≥ 512τrκ2 + 1√
12

.

Proof A direct calculation yields

‖L−Lk+1‖2 ≤ ‖L− PT̃k(D − Sk)‖2 + ‖P
T̃k

(D − Sk)−Lk+1‖2
≤ 2‖L− P

T̃k
(D − Sk)‖2

= 2‖L− P
T̃k

(L + S − Sk)‖2
= 2‖(P

T̃k
− I)L + P

T̃k
(S − Sk)‖2

≤ 2 · τγk+1σLr

= 8αµrγk+1σL1 ,

where the second inequality follows from the fact Lk+1 = Hr(PT̃k(D − Sk)) is the best

rank-r approximation of P
T̃k

(D − Sk), and the last inequality uses (18) in Lemma 10.

Lemma 13 Let L ∈ Rn×n and S ∈ Rn×n be two symmetric matrices satisfying Assump-
tions A1 and A2, respectively. Let L̃k ∈ Rn×n be the trim output of Lk. If

‖L−Lk‖2 ≤ 8αµrγkσL1 , ‖S − Sk‖∞ ≤
µr

n
γkσL1 , and supp(Sk) ⊂ Ω,

then we have

‖L−Lk+1‖∞ ≤
(

1

2
− τ
)
µr

n
γk+1σL1 ,

provided 1 > γ ≥ max{512τrκ2 + 1√
12
, 2υ

(1−12τ)(1−τ−υ)2
} and τ < 1

12 .

21



Cai, Cai and Wei

Proof Let P
T̃k

(D − Sk) =
[
Uk+1 Ük+1

] [Λ 0

0 Λ̈

] [
UT
k+1

ÜT
k+1

]
= Uk+1ΛUT

k+1 + Ük+1Λ̈ÜT
k+1

be its eigenvalue decomposition. We use the lighter notation λi (1 ≤ i ≤ n) for the
eigenvalues of P

T̃k
(D − Sk) at the k-th iteration and assume they are ordered by |λ1| ≥

|λ2| ≥ · · · ≥ |λn|. Moreover, Λ has its r largest eigenvalues in magnitude, Uk+1 contains
the first r eigenvectors, and Ük+1 has the rest. It follows that Lk+1 = Hr(PT̃k(D−Sk)) =

Uk+1ΛUT
k+1.

Denote Z = P
T̃k

(D−Sk)−L = (P
T̃k
−I)L+P

T̃k
(S−Sk). Let ui be the ith eigenvector

of P
T̃k

(D − Sk). Noting that (λiI −Z)ui = Lui, we have

ui =

(
I − Z

λi

)−1 L

λi
ui =

(
I +

Z

λi
+

(
Z

λi

)2

+ · · ·

)
L

λi
ui

for all ui with 1 ≤ i ≤ r, where the expansion is valid because

‖Z‖2
λi
≤
‖Z‖2
λr

≤ τ

1− τ
< 1

following from (18) in Lemma 10 and (20) in Lemma 11. This implies

Uk+1ΛUT
k+1 =

r∑
i=1

uiλiu
T
i

=
r∑
i=1

∑
a≥0

(
Z

λi

)a L

λi

uiλiu
T
i

∑
b≥0

(
Z

λi

)b L
λi

T

=
∑
a≥0

ZaL

r∑
i=1

(
ui

1

λa+b+1
i

uTi

)
L
∑
b≥0

Zb

=
∑
a,b≥0

ZaLUk+1Λ
−(a+b+1)UT

k+1LZb.

Thus, we have

‖Lk+1 −L‖∞ = ‖Uk+1ΛUT
k+1 −L‖∞

= ‖LUk+1Λ
−1UT

k+1L−L +
∑
a+b>0

ZaLUk+1Λ
−(a+b+1)UT

k+1LZb‖∞

≤ ‖LUk+1Λ
−1UT

k+1L−L‖∞ +
∑
a+b>0

‖ZaLUk+1Λ
−(a+b+1)UT

k+1LZb‖∞

:= Y0 +
∑
a+b>0

Yab.

We will handle Y0 first. Recall that L = UΣV T is the SVD of the symmetric matrix

L which obeys µ-incoherence, i.e., UUT = V V T and ‖eTi UUT ‖2 ≤
√

µr
n for all i. So, for

each (i, j) entry of Y0, one has

Y0 = max
ij
|eTi (LUk+1Λ

−1UT
k+1L−L)ej |
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= max
ij
|eTi UUT (LUk+1Λ

−1UT
k+1L−L)UUTej |

≤ max
ij
‖eTi UUT ‖2 ‖LUk+1Λ

−1UT
k+1L−L‖2 ‖UUTej‖2

≤ µr

n
‖LUk+1Λ

−1UT
k+1L−L‖2,

where the second equation follows from the fact UUTL = LUUT = L. Since L =
Uk+1ΛUT

k+1 + Ük+1Λ̈ÜT
k+1 −Z, there hold

‖LUk+1Λ
−1UT

k+1L−L‖2
= ‖(Uk+1ΛUT

k+1 + Ük+1Λ̈ÜT
k+1 −Z)Uk+1Λ

−1UT
k+1(Uk+1ΛUT

k+1 + Ük+1Λ̈ÜT
k+1 −Z)−L‖2

= ‖Uk+1ΛUT
k+1 −L−Uk+1U

T
k+1Z −ZUk+1U

T
k+1 −ZUk+1Λ

−1UT
k+1Z‖2

≤ ‖Z − Ük+1Λ̈ÜT
k+1‖2 + 2‖Z‖2 +

‖Z‖22
|λr|

≤ ‖Ük+1Λ̈ÜT
k+1‖2 + 4‖Z‖2

≤ |λr+1|+ 4‖Z‖2
≤ 5‖Z‖2
≤ 5τγk+1σL1 ,

where the fifth inequality uses (18) in Lemma 10, and notice that ‖Z‖2|λr| ≤
τ

1−τ < 1 since

τ < 1
2 and |λr+1| ≤ ‖Z‖2 since L is a rank-r matrix. Thus, we have

Y0 ≤
µr

n
5τγk+1σL1 . (22)

Next, we derive an upper bound for the rest part. Note that

Yab = max
ij
|eTi ZaLUk+1Λ

−(a+b+1)UT
k+1LZbej |

= max
ij
|(eTi ZaUUT )LUk+1Λ

−(a+b+1)UT
k+1L(UUTZbej)|

≤ max
ij
‖eTi ZaU‖2 ‖LUk+1Λ

−(a+b+1)UT
k+1L‖2 ‖UTZbej‖2

≤ max
l

µr

n
(
√
n‖eTl Z‖2)a+b‖LUk+1Λ

−(a+b+1)UT
k+1L‖2,

where the last inequality uses Lemma 9. Furthermore, by using L = Uk+1ΛUT
k+1 +

Ük+1Λ̈ÜT
k+1 −Z again, we get

‖LUk+1Λ
−(a+b+1)UT

k+1L‖2
= ‖(Uk+1ΛUT

k+1 + Ük+1Λ̈ÜT
k+1 −Z)Uk+1Λ

−(a+b+1)UT
k+1(Uk+1ΛUT

k+1 + Ük+1Λ̈ÜT
k+1 −Z)‖2

= ‖Uk+1Λ
−(a+b−1)UT

k+1 −ZUk+1Λ
−(a+b)UT

k+1 −Uk+1Λ
−(a+b)UT

k+1Z + ZUk+1Λ
−(a+b+1)UT

k+1Z‖2
≤ |λr|−(a+b−1) + |λr|−(a+b)‖Z‖2 + |λr|−(a+b)‖Z‖2 + |λr|−(a+b+1)‖Z‖22

= |λr|−(a+b−1)

(
1 +

2‖Z‖2
|λr|

+

(
‖Z‖2
|λr|

)2
)
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= |λr|−(a+b−1)

(
1 +
‖Z‖2
|λr|

)2

≤ |λr|−(a+b−1)

(
1

1− τ

)2

≤
(

1

1− τ

)2 (
(1− τ)σLr

)−(a+b−1)
,

where the second inequality follows from ‖Z‖2
|λr| ≤

τ
1−τ , and the last inequality follows from

Lemma 11. Together with (19) in Lemma 10, we have

∑
a+b>0

Yab ≤
∑
a+b>0

µr

n

(
1

1− τ

)2

υγkσLr

(
υγkσLr

(1− τ)σLr

)a+b−1

≤ µr

n

(
1

1− τ

)2

υγkσL1
∑
a+b>0

(
υ

1− τ

)a+b−1

≤ µr

n

(
1

1− τ

)2

υγkσL1

(
1

1− υ
1−τ

)2

≤ µr

n

(
1

1− τ − υ

)2

υγkσL1 . (23)

Finally, combining (22) and (23) together gives

‖Lk+1 −L‖∞ = Y0 +
∑
a+b>0

Yab

≤ µr

n
5τγk+1σL1 +

µr

n

(
1

1− τ − υ

)2

υγkσL1

≤
(

1

2
− τ
)
µr

n
γk+1σL1 ,

where the last inequality follows from γ ≥ 2υ
(1−12τ)(1−τ−υ)2

.

Lemma 14 Let L ∈ Rn×n and S ∈ Rn×n be two symmetric matrices satisfying Assump-
tions A1 and A2, respectively. Let L̃k ∈ Rn×n be the trim output of Lk. Recall that β = µr

2n .
If

‖L−Lk‖2 ≤ 8αµrγkσL1 , ‖S − Sk‖∞ ≤
µr

n
γkσL1 , and supp(Sk) ⊂ Ω

then we have

supp(Sk+1) ⊂ Ω and ‖S − Sk+1‖∞ ≤
µr

n
γk+1σL1 ,

provided 1 > γ ≥ max{512τrκ2 + 1√
12
, 2υ

(1−12τ)(1−τ−υ)2
} and τ < 1

12 .
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Proof We first notice that

[Sk+1]ij = [Tζk+1
(D−Lk+1)]ij = [Tζk+1

(S+L−Lk+1)]ij =

{
Tζk+1

([S + L−Lk+1]ij) (i, j) ∈ Ω

Tζk+1
([L−Lk+1]ij) (i, j) ∈ Ωc

.

Let |λ(k)
i | denote ith singular value of P

T̃k
(D − Sk). By Lemmas 11 and 13, we have

|[L−Lk+1]ij | ≤ ‖L−Lk+1‖∞ ≤
(

1

2
− τ
)
µr

n
γk+1σL1

≤
(

1

2
− τ
)
µr

n

1

1− 2τ

(
|λ(k)
r+1|+ γk+1|λ(k)

1 |
)

= ζk+1

for any entry of L−Lk+1. Hence, [Sk+1]ij = 0 for all (i, j) ∈ Ωc, i.e., supp(Sk+1) ⊂ Ω.

Denote Ωk+1 := supp(Sk+1) = {(i, j) | [(D − Lk+1)]ij > ζk}. Then, for any entry of
S − Sk+1, there hold

[S−Sk+1]ij =


0

[Lk+1 −L]ij

[S]ij

≤


0

‖L−Lk+1‖∞
‖L−Lk+1‖∞ + ζk+1

≤


0 (i, j) ∈ Ωc(

1
2 − τ

) µr
n γ

k+1σL1 (i, j) ∈ Ωk+1
µr
n γ

k+1σL1 (i, j) ∈ Ω\Ωk+1.

Here the last step follows from Lemma 11 which implies ζk+1 = µr
2n(|λ(k)

r+1| + γk+1|λ(k)
1 |) ≤(

1
2 + τ

) µr
n γ

k+1σL1 . Therefore, ‖S − Sk+1‖∞ ≤ µr
n γ

k+1σL1 .

Now, we have all the ingredients for the proof of Theorem 1.

Proof [Proof of Theorem 1] This theorem will be proved by mathematical induction.
Base Case: When k = 0, the base case is satisfied by the assumption on the intialization.
Induction Step: Assume we have

‖L−Lk‖2 ≤ 8αµrγkσL1 , ‖S − Sk‖∞ ≤
µr

n
γkσL1 , and supp(Sk) ⊂ Ω

at the kth iteration. At the (k + 1)th iteration. If follows directly from Lemmas 12 and 14
that

‖L−Lk+1‖2 ≤ 8αµrγk+1σL1 , ‖S − Sk+1‖∞ ≤
µr

n
γk+1σL1 and supp(Sk+1) ⊂ Ω,

which completes the proof.

Additionally, notice that we overall require 1 > γ ≥ max{512τrκ2+ 1√
12
, 2υ

(1−12τ)(1−τ−υ)2
}.

By the definition of τ and υ, one can easily see that the lower bound approaches 1√
12

when

the constant hidden in (4) is sufficiently large. Therefore, the theorem can be proved for

any γ ∈
(

1√
12
, 1
)

.
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4.2. Proof of Theorem 2

We first present a lemma which is a variant of Lemma 9 and also appears in (Netrapalli
et al., 2014, Lemma 5). The lemma can be similarly proved by mathematical induction.

Lemma 15 Let S ∈ Rn×n be a sparse matrix satisfying Assumption A2. Let U ∈ Rn×r be

an orthogonal matrix with µ-incoherence, i.e., ‖eTi U‖2 ≤
√

µr
n for all i. Then

‖eTi SaU‖2 ≤
√
µr

n
(αn‖S‖∞)a

for all i and a ≥ 0.

Though the proposed initialization scheme (i.e., Algorithms 3) basically consists of two
steps of AltProj (Netrapalli et al., 2014), we provide an independent proof for Theorem 2
here because we bound the approximation errors of the low rank matrices using the spectral
norm rather than the infinity norm. The proof of Theorem 2 follows a similar structure
to that of Theorem 1, but without the projection onto a low dimensional tangent space.
Instead of first presenting several auxiliary lemmas, we give a single proof by putting all
the elements together.
Proof [Proof of Theorem 2] The proof can be partitioned into several parts.

(i) Note that L−1 = 0 and

‖L−L−1‖∞ = ‖L‖∞ = max
ij

∣∣eTi UΣUTej
∣∣ ≤ max

ij
‖eTi U‖2‖Σ‖2‖UTej‖2 ≤

µr

n
σL1 ,

where the last inequality follows from Assumption A1, i.e., L is µ-incoherent. Thus, with

the choice of βinit ≥
µrσL1
nσD1

, we have

‖L−L−1‖∞ ≤ βinitσD1 = ζ−1. (24)

Since

[S−1]ij = [Tζ−1(S + L−L−1)]ij =

{
Tζ−1([S + L−L−1]ij) (i, j) ∈ Ω

Tζ−1([L−L−1]ij) (i, j) ∈ Ωc,

it follows that [S−1]ij = 0 for all (i, j) ∈ Ωc, i.e. Ω−1 := supp(S−1) ⊂ Ω. Moreover, for any
entries of S − S−1, we have

[S − S−1]ij =


0

[L−1 −L]ij

[S]ij

≤


0

‖L−L−1‖∞
‖L−L−1‖∞ + ζ−1

≤


0 (i, j) ∈ Ωc

µr
n σ

L
1 (i, j) ∈ Ω−1

4µr
n σL1 (i, j) ∈ Ω\Ω−1

,

where the last inequality follows from βinit ≤
3µrσL1
nσD1

, so that ζ−1 ≤ 3µr
n σL1 . Therefore, if

follows that

supp(S−1) ⊂ Ω and ‖S − S−1‖∞ ≤
4µr

n
σL1 . (25)
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By Lemma 4, we also have

‖S − S−1‖2 ≤ αn‖S − S−1‖∞ ≤ 4αµrσL1 .

(ii) To bound the approximation error of L0 to L in terms of the spectral norm, note that

‖L−L0‖2 ≤ ‖L− (D − S−1)‖2 + ‖(D − S−1)−L0‖2
≤ 2‖L− (D − S−1)‖2
= 2‖L− (L + S − S−1)‖2
= 2‖S − S−1‖2,

where the second inequality follows from the fact L0 = Hr(D − S−1) is the best rank-r
approximation of D − S−1. It follows immediately that

‖L−L0‖2 ≤ 8αµrσL1 . (26)

(iii) Since D = L+S, we have D−S−1 = L+S−S−1. Let λi denotes the ith eigenvalue of
D−S−1 ordered by |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. The application of Weyl’s inequality together
with the bound of α in Assumption A2 implies that

|σLi − |λi|| ≤ ‖S − S−1‖2 ≤
σLr
8

(27)

holds for all i. Consequently, we have

7

8
σLi ≤ |λi| ≤

9

8
σLi , ∀1 ≤ i ≤ r, (28)

‖S − S−1‖2
|λr|

≤
σLr
8

7σLr
8

=
1

7
. (29)

Let D − S−1 = [U0, Ü0]

[
Λ 0

0 Λ̈

]
[U0, Ü0]T = U0ΛUT

0 + Ü0Λ̈ÜT
0 be its eigenvalue de-

composition, where Λ has the r largest eigenvalues in magnitude and Λ̈ contains the rest
eigenvalues. Also, U0 contains the first r eigenvectors, and Ü0 has the rest. Notice that
L0 = Hr(D−S−1) = U0ΛUT

0 due to the symmetric setting. Denote E = D−S−1 −L =
S − S−1. Let ui be the ith eigenvector of D − S−1 = L + E. For 1 ≤ i ≤ r, since
(L + E)ui = λiui, we have

ui =

(
I − E

λi

)−1 L

λi
ui =

(
I +

E

λi
+

(
E

λi

)2

+ · · ·

)
L

λi
ui

for each ui, where the expansion in the last equality is valid because
‖E‖2
|λi| ≤

1
7 for all

1 ≤ i ≤ r following from (29). Therefore,

‖L0 −L‖∞ = ‖U0ΛUT
0 −L‖∞
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= ‖LU0Λ
−1UT

0 L−L +
∑
a+b>0

EaLU0Λ
−(a+b+1)UT

0 LEb‖∞

≤ ‖LU0Λ
−1UT

0 L−L‖∞ +
∑
a+b>0

‖EaLU0Λ
−(a+b+1)UT

0 LEb‖∞

:= Y0 +
∑
a+b>0

Yab.

We will handle Y0 first. Recall that L = UΣV T is the SVD of the symmetric matrix L

which is µ-incoherence, i.e., UUT = V V T and ‖eTi UUT ‖2 ≤
√

µr
n for all i. For each (i, j)

entry of Y0, we have

Y0 = max
ij
|eTi (LU0Λ

−1UT
0 L−L)ej |

= max
ij
|eTi UUT (LU0Λ

−1UT
0 L−L)UUTej |

≤ max
ij
‖eTi UUT ‖2 ‖LU0Λ

−1UT
0 L−L‖2 ‖UUTej‖2

≤ µr

n
‖LU0Λ

−1UT
0 L−L‖2,

where the second equation follows from the fact L = UUTL = LUUT . Since L =
U0ΛUT

0 + Ü0Λ̈ÜT
0 −E,

‖LU0Λ
−1UT

0 L−L‖2
= ‖(U0ΛUT

0 + Ü0Λ̈ÜT
0 −E)U0Λ

−1UT
0 (U0ΛUT

0 + Ü0Λ̈ÜT
0 −E)−L‖2

= ‖U0ΛUT
0 −L−U0U

T
0 E −EU0U

T
0 −EU0Λ

−1UT
0 E‖2

≤ ‖E − Ü0Λ̈ÜT
0 ‖2 + 2‖E‖2 +

‖E‖22
|λr|

≤ ‖Ü0Λ̈ÜT
0 ‖2 + 4‖E‖2

≤ |λr+1|+ 4‖E‖2
≤ 5‖E‖2,

where the first and fourth inequality follow from (27) and (29), and |λr+1| ≤ ‖E‖2 since
σLr+1 = 0. Together, we have

Y0 ≤
5µr

n
‖E‖2 ≤ 5αµr‖E‖∞, (30)

where the last inequality follows from Lemma 4.

Next, we will find an upper bound for the rest part. Note that

Yab = max
ij
|eTi EaLU0Λ

−(a+b+1)UT
0 LEbej |

= max
ij
|(eTi EaUUT )LU0Λ

−(a+b+1)UT
0 L(UUTEbej)|

≤ max
ij
‖eTi EaU‖2 ‖LU0Λ

−(a+b+1)UT
0 L‖2 ‖UTEbej‖2
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≤ µr

n
(αn‖E‖∞)a+b‖LU0Λ

−(a+b+1)UT
0 L‖2

≤ αµr‖E‖∞
(
σLr
8

)a+b−1

‖LU0Λ
−(a+b+1)UT

0 L‖2,

where the second inequality uses Lemma 15. Furthermore, by using L = U0ΛUT
0 +

Ü0Λ̈ÜT
0 −E again, we have

‖LU0Λ
−(a+b+1)UT

0 L‖2
= ‖(U0ΛUT

0 + Ü0Λ̈ÜT
0 −E)U0Λ

−(a+b+1)UT
0 (U0ΛUT

0 + Ü0Λ̈ÜT
0 −E)‖2

= ‖U0Λ
−(a+b−1)UT

0 −ELU0Λ
−(a+b)UT

0 −LU0Λ
−(a+b)UT

0 E + ELU0Λ
−(a+b+1)UT

0 E‖2
≤ |λr|−(a+b−1) + |λr|−(a+b)‖E‖2 + |λr|−(a+b)‖E‖2 + |λr|−(a+b+1)‖E‖22

= |λr|−(a+b−1)

(
1 +

2‖E‖2
|λr|

+

(
‖E‖2
|λr|

)2
)

= |λr|−(a+b−1)

(
1 +
‖E‖2
|λr|

)2

≤ 2|λr|−(a+b−1)

≤ 2

(
7

8
σLr

)−(a+b−1)

,

where the second inequality follows from (29) and the last inequality follows from (28).
Together, we have

∑
a+b>0

Yab ≤
∑
a+b>0

2αµr‖E‖∞

(
1
8σ

L
r

7
8σ

L
r

)a+b−1

≤ 2αµr‖E‖∞
∑
a+b>0

(
1

7

)a+b−1

≤ 2αµr‖E‖∞

(
1

1− 1
7

)2

≤ 3αµr‖E‖∞. (31)

Finally, combining (30)) and (31)) together yields

‖L0 −L‖∞ = Y0 +
∑
a+b>0

Yab

≤ 5αµr‖E‖∞ + 3αµr‖E‖∞
≤ µr

4n
σL1 , (32)

where the last step uses (25) and the bound of α in Assumption A2.

29



Cai, Cai and Wei

(iv) From the thresholding rule, we know that

[S0]ij = [Tζ0(S + L−L0)]ij =

{
Tζ0([S + L−L0]ij) (i, j) ∈ Ω

Tζ0([L−L0]ij) (i, j) ∈ Ωc
.

So (28), (32) and ζ0 = µr
2nλ1 imply [S0]ij = 0 for all (i, j) ∈ Ωc, i.e., supp(S0) := Ω0 ⊂ Ω.

Also, for any entries of S − S0, there hold

[S − S0]ij =


0

[L0 −L]ij

[S]ij

≤


0

‖L−L0‖∞
‖L−L0‖∞ + ζ0

≤


0 (i, j) ∈ Ωc

µr
4nσ

L
1 (i, j) ∈ Ω0

µr
n σ

L
1 (i, j) ∈ Ω\Ω0.

Here the last inequality follows from (28) which implies ζ0 = µr
2nλ1 ≤ 3µr

4n σ
L
1 . Therefore, we

have
supp(S0) ⊂ Ω and ‖S − S0‖∞ ≤

µr

n
σL1 .

The proof is compete by noting (26) and the above results.

5. Discussion and Future Direction

We have presented a highly efficient algorithm AccAltProj for robust principal component
analysis. The algorithm is developed by introducing a novel subspace projection step be-
fore the SVD truncation, which reduces the per iteration computational complexity of the
algorithm of alternating projections significantly. Theoretical recovery guarantee has been
established for the new algorithm, while numerical simulations show that our algorithm is
superior to other state-of-the-art algorithms.

There are three lines of research for future work. Firstly, the theoretical number of the
non-zero entries in a sparse matrix below which AccAltProj can achieve successful recovery
is highly pessimistic compared with our numerical findings. This suggests the possibility
of improving the theoretical result. Secondly, recovery stability of the proposed algorithm
to additive noise will be investigated in the future. Finally, this paper focuses on the fully
observed setting. The proposed algorithm might be similarly extended to the partially
observed setting where only partial entries of a matrix are observed. It is also interesting to
study the recovery guarantee of the proposed algorithm under this partial observed setting.
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