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Abstract

Kernel-based methods exhibit well-documented performance in various nonlinear learn-
ing tasks. Most of them rely on a preselected kernel, whose prudent choice presumes
task-specific prior information. Especially when the latter is not available, multi-kernel
learning has gained popularity thanks to its flexibility in choosing kernels from a pre-
scribed kernel dictionary. Leveraging the random feature approximation and its recent
orthogonality-promoting variant, the present contribution develops a scalable multi-kernel
learning scheme (termed Raker) to obtain the sought nonlinear learning function ‘on the
fly,’ first for static environments. To further boost performance in dynamic environments,
an adaptive multi-kernel learning scheme (termed AdaRaker) is developed. AdaRaker ac-
counts not only for data-driven learning of kernel combination, but also for the unknown
dynamics. Performance is analyzed in terms of both static and dynamic regrets. AdaRaker
is uniquely capable of tracking nonlinear learning functions in environments with unknown
dynamics, and with with analytic performance guarantees. Tests with synthetic and real
datasets are carried out to showcase the effectiveness of the novel algorithms.1

Keywords: Online learning, reproducing kernel Hilbert space, multi-kernel learning,
random features, dynamic and adversarial environments.

1. Introduction

Function approximation emerges in various learning tasks such as regression, classification,
clustering, dimensionality reduction, as well as reinforcement learning (Schölkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004; Dai et al., 2017). Among them, the emphasis here
is placed on supervised functional learning tasks: given samples {(x1, y1), . . . , (xT , yT )}Tt=1

with xt ∈ Rd and yt ∈ R, the goal is to find a function f(·) such that the discrepancy
between each pair of yt and f(xt) is minimized. Typically, such discrepancy is measured by
a cost function C(f(xt), yt), which requires to find f(·) minimizing

∑T
t=1 C(f(xt), yt). While

this goal is too ambitious to achieve in general, the problem becomes tractable when f(·)
is assumed to belong to a reproducing kernel Hilbert space (RKHS) induced by a kernel
(Schölkopf and Smola, 2002). Comparable to deep neural networks, functions defined in

1. Preliminary results in this paper were presented in part at the 2018 International Conference on Artificial
Intelligence and Statistics (Shen et al., 2018).
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RKHS can model highly nonlinear relationship, and thus kernel-based methods have well-
documented merits for principled function approximation. Despite their popularity, most
kernel methods rely on a single pre-selected kernel. Yet, multi-kernel learning (MKL) is
more powerful, thanks to its data-driven kernel selection from a given dictionary; see e.g.,
(Shawe-Taylor and Cristianini, 2004; Rakotomamonjy et al., 2008; Cortes et al., 2009; Gönen
and Alpaydın, 2011), and (Bazerque and Giannakis, 2013).

In addition to the attractive representation power that can be afforded by kernel meth-
ods, several learning tasks are also expected to be performed in an online fashion. Such a
need naturally arises when the data arrive sequentially, such as those in online spam detec-
tion (Ma et al., 2009), and time series prediction (Richard et al., 2009); or, when the sheer
volume of data makes it impossible to carry out data analytics in batch form (Kivinen et al.,
2004). This motivates well online kernel-based learning methods that inherit the merits of
their batch counterparts, while at the same time allowing efficient online implementation.
Taking a step further, the optimal function may itself change over time in environments
with unknown dynamics. This is the case when the function of interest e.g., represents the
state in brain graphs, or, captures the temporal processes propagating over time-varying
networks. Especially when variations are due to adversarial interventions, the underlying
dynamics are unknown. Online kernel-based learning in such environments remains a largely
uncharted territory (Kivinen et al., 2004; Hoi et al., 2013).

In accordance with these needs and desiderata, the goal of this paper is an algorithmic
pursuit of scalable online MKL in environments with unknown dynamics, along with their
associated performance guarantees. Major challenges come from two sources: i) the well-
known “curse” of dimensionality in kernel-based learning; and, ii) the defiance of tracking
unknown time-varying functions without future information. Regarding i), the representer
theorem renders the size of kernel matrices to grow quadratically with the number of data
(Wahba, 1990), thus the computational complexity to find even a single kernel-based pre-
dictor is cubic. Furthermore, storage of past data causes memory overflow in large-scale
learning tasks such as those emerging in e.g., topology identification of social and brain
networks (Shen et al., 2016, 2017; Shen and Giannakis, 2018), which makes kernel-based
methods less scalable relative to their linear counterparts. For ii), most online learning set-
tings presume time invariance or slow dynamics, where an algorithm achieving sub-linear
regret incurs on average “no-regret” relative to the best static benchmark. Clearly, design-
ing online schemes that are comparable to the best dynamic solution is appealing though
formidably challenging without knowledge of the dynamics (Kivinen et al., 2004).

1.1. Related works

To put our work in context, we review prior art from the following two aspects.

Batch kernel methods. Kernel methods are known to suffer from the growing dimension-
ality in large-scale learning tasks (Shawe-Taylor and Cristianini, 2004). Major efforts have
been devoted to scaling up kernel methods in batch settings. Those include approaches to
approximating the kernel matrix using low-rank factorizations (Williams and Seeger, 2001;
Sheikholeslami et al., 2018), whose performance was analyzed in (Cortes et al., 2010). Re-
cently, random feature (RF) based function estimators have gained popularity since the
work of (Rahimi and Recht, 2007) and (Dai et al., 2014), whose variance has been con-
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siderably reduced through an orthogonality promoting RF modification (Yu et al., 2016).
These approaches assume that the kernel is known, a choice crucially dependent on domain
knowledge. Enabling kernel selection, several MKL-based approaches have emerged, see
e.g., (Lanckriet et al., 2004; Rakotomamonjy et al., 2008; Bach, 2008; Cortes et al., 2009;
Gönen and Alpaydın, 2011), and their performance gain has been documented relative to
their single kernel counterparts. However, the aforementioned methods are designed for
batch settings, and are either intractable or become less efficient in online setups. When
the sought functions vary over time and especially when the dynamics are unknown (as in
adversarial settings), batch schemes fall short in tracking the optimal function estimators.

Online (multi-)kernel learning. Tailored for streaming large-scale datasets, online
kernel-based learning methods have gained due popularity. To deal with the growing com-
plexity of online kernel learning, successful attempts have been made to design budgeted
kernel learning algorithms, including techniques such as support vector removal (Kivinen
et al., 2004; Dekel et al., 2008), and support vector merging (Wang et al., 2012). Maintain-
ing an affordable budget, online multi-kernel learning (OMKL) methods have been reported
for online classification (Jin et al., 2010; Hoi et al., 2013; Sahoo et al., 2016), and regression
(Sahoo et al., 2014; Lu et al., 2018). Devoid of the need for budget maintenance, online
kernel-based learning algorithms based on RF approximation (Rahimi and Recht, 2007)
have been developed in (Lu et al., 2016; Bouboulis et al., 2018; Ding et al., 2017), but
only with a single pre-selected kernel. More importantly, existing kernel-based learning ap-
proaches implicitly presume a static environment, where the benchmark is provided through
the best static function (a.k.a. static regret) (Shalev-Shwartz, 2011). However, static regret
is not a comprehensive metric for dynamic settings, where the optimal kernel also varies
over time and the dynamics are generally unknown as with adversarial settings.

1.2. Our contributions

The present paper develops an adaptive online MKL algorithm, capable of learning a nonlin-
ear function from sequentially arriving data samples. Relative to prior art, our contributions
can be summarized as follows.

c1) For the first time, RFs are employed for scalable online MKL tackled by a weighted
combination of advices from an ensemble of experts - an innovative cross-fertilization of
online learning to MKL. Performance of the resultant algorithm (abbreviated as Raker) is
benchmarked by the best time-invariant function approximant via static regret analysis.

c2) A novel adaptive approach (termed AdaRaker) is introduced for scalable online
MKL in environments with unknown dynamics. AdaRaker is a hierarchical ensemble learner
with scalable RF-based modules that provably yields sub-linear dynamic regret, so long as
the accumulated variation grows sub-linearly with time.

c3) The novel algorithms are compared with competing alternatives for online nonlinear
regression on both synthetic and real datasets. The tests corroborate that Raker and
AdaRaker exhibit attractive performance in both accuracy and scalability.

Outline. Section 2 presents preliminaries, and states the problem. Section 3 develops the
Raker for online MKL in static environments, and Section 4 develops its adaptive version
for online MKL in environments with unknown dynamics. Section 5 reports numerical tests
with both synthetic and real datasets, while conclusions are drawn in Section 6.
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Notation. Bold uppercase (lowercase) letters will denote matrices (column vectors), while
(·)> stands for vector and matrix transposition, and ‖x‖ denotes the `2-norm of a vector x.
Inequalities for vectors x > 0, and the projection operator [a]+ := max{a,0} are defined
entrywise. Symbol † represents the Hermitian operator, while the indicator function 1{A}
takes value 1 when the event A happens, and 0 otherwise. E denotes the expectation, while
〈·, ·〉 and 〈·, ·〉H the vector inner product in Euclidian and Hilbert space respectively.

2. Preliminaries and Problem Statement

This section reviews briefly basics of kernel-based learning, to introduce notation and the
needed background for our novel online MKL schemes.

Given samples {(x1, y1), . . . , (xT , yT )}Tt=1 with xt ∈ Rd and yt ∈ R, the function ap-
proximation task is to find a function f(·) such that yt = f(xt) + et, where et denotes an
error term representing noise or un-modeled dynamics. It is supposed that f(·) belongs to a
reproducing kernel Hilbert space (RKHS), namely H := {f |f(x) =

∑∞
t=1 αtκ(x,xt)}, where

κ(x,xt) : Rd × Rd → R is a symmetric positive semidefinite basis (so-termed kernel) func-
tion, which measures the similarity between x and xt. Among the choices of κ specifying
different bases, a popular one is the Gaussian given by κ(x,xt) := exp[−‖x−xt‖2/(2σ2)]. A
kernel is reproducing if it satisfies 〈κ(x,xt), κ(x,xt′)〉H = κ(xt,xt′), which in turn induces
the RKHS norm ‖f‖2H :=

∑
t

∑
t′ αtαt′κ(xt,xt′). Consider the optimization problem

min
f∈H

1

T

T∑
t=1

C(f(xt), yt) + λΩ
(
‖f‖2H

)
(1)

where depending on the application, the cost function C(·, ·) can be selected to be, e.g., the
least-squares (LS), the logistic or the hinge loss; Ω(·) is an increasing function; and, λ > 0 is
a regularization parameter that controls overfitting. According to the representer theorem,
the optimal solution of (1) admits the finite-dimensional form, given by (Wahba, 1990)

f̂(x) =
T∑
t=1

αtκ(x,xt) := α>k(x) (2)

where α := [α1, . . . , αT ]> ∈ RT collects the combination coefficients, and the T × 1 ker-
nel vector is k(x) := [κ(x,x1), . . . , κ(x,xT )]>. Substituting (2) into the RKHS norm, we
find ‖f‖2H :=

∑
t

∑
t′ αtαt′κ(xt,xt′) = α>Kα, where the T × T kernel matrix K has en-

tries [K]t,t′ := κ(xt,xt′); thus, the functional problem (1) boils down to a T -dimensional
optimization over α, namely

min
α∈RT

1

T

T∑
t=1

C(α>k(xt), yt) + λΩ
(
α>Kα

)
(3)

where k>(xt) is the tth row of the matrix K. While a scalar yt is used here for brevity,
coverage extends readily to vectors {yt}.

Note that (1) relies on: i) a known pre-selected kernel κ; and ii) having {xt, yt}Tt=1

available in batch form. A key observation here is that the dimension of the variable α in

4



Random Feature-based Online MKL in Environments with Unknown Dynamics

(3) grows with time T (or, the number of samples in the batch form), making it less scalable
in online implementation. In the ensuing section, an online MKL method will be proposed
to select κ as a superposition of multiple kernels, when the data become available online.

3. Online MKL in static environments

In this section, we develop an online learning approach that builds on the notion of random
features (Rahimi and Recht, 2007; Yu et al., 2016), and leverages in a unique way multi-
kernel approximation – two tools justifying our acronym Raker used henceforth.

3.1. RF-based single kernel learning

To cope with the curse of dimensionality in optimizing (3), we will reformulate the functional
optimization problem (1) as a parametric one with the dimension of optimization variables
not growing with time. In this way, powerful toolboxes from convex optimization and online
learning in vector spaces can be leveraged. We achieve this goal by judiciously using RFs.
Although generalizations will follow, this subsection is devoted to RF-based single kernel
learning, where basics of kernels, RFs, and online learning will be revisited.

As in (Rahimi and Recht, 2007), we will approximate κ in (2) using shift-invariant
kernels that satisfy κ(xt,xt′) = κ(xt−xt′). For κ(xt−xt′) absolutely integrable, its Fourier
transform πκ(v) exists and represents the power spectral density, which upon normalizing
to ensure κ(0) = 1, can also be viewed as a probability density function (pdf); hence,

κ(xt − xt′) =

∫
πκ(v)ejv

>(xt−xt′ )dv := Ev

[
ejv
>(xt−xt′ )

]
(4)

where the last equality is just the definition of the expected value. Drawing a sufficient
number of D independent and identically distributed (i.i.d.) samples {vi}Di=1 from πκ(v),
the ensemble mean in (4) can be approximated by the sample average

κ̂c(xt,xt′) :=
1

D

D∑
i=1

ejv
>
i (xt−xt′ ) := ζ†V(xt)ζV(xt′) (5)

where V := [v1, . . . ,vD]> ∈ RD×d, symbol † represents the Hermitian (conjugate-transpose)
operator, and ζV(x) the complex RF vector

ζV(x) :=
1√
D

[
ejv
>
1 x, . . . , ejv

>
Dx
]>

. (6)

Taking expected values on both sides of (5) and using (4) yields Ev[κ̂c(xt,xt′)] = κ(xt,xt′),
which means κ̂c is unbiased. Likewise, κ̂c can be shown consistent since Var[κ̂c(xt,xt′)] ∝
D−1 vanishes as D → ∞. Finding πκ(v) requires d-dimensional Fourier transform of κ,
generally through numerical integration. For a number of popular kernels however, πκ(v)
is available in closed form. Taking the Gaussian kernel as an example, where κG(xt,xt′) =
exp

(
‖xt−xt′‖22/(2σ2)

)
, has Fourier transform corresponding to the pdf πG(v) = N (0, σ−2I).

Instead of the complex RFs {ζV(xt)} in (6) forming the linear kernel estimator κ̂c in (5),
one can consider its real part κ̂(xt,xt′) := <{κ̂c(xt,xt′)} that is also an unbiased estimator
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of κ. Defining the real RF vector zV(x) := [<>{ζV(xt)},=>{ζV(xt)}]>, this real kernel
estimator becomes (cf. (5))

κ̂(xt,xt′) = z>V(xt)zV(xt′) (7)

where the 2D × 1 real RF vector can be written as

zV(x) =
1√
D

[
sin(v>1 x), . . . , sin(v>Dx), cos(v>1 x), . . . , cos(v>Dx)

]>
. (8)

Hence, the nonlinear function that is optimal in the sense of (1) can be approximated
by a linear one in the new 2D-dimensional RF space, namely (cf. (2) and (7))

f̂RF(x) =
T∑
t=1

αtz
>
V(xt)zV(x) := θ>zV(x) (9)

where θ> :=
∑T

τ=1 ατz
>
V(xτ ) is the new weight vector of size 2D whose dimension does not

increase with number of data samples T .

While the solution f̂ in (2) is the superposition of nonlinear functions κ, its RF approx-
imant f̂RF in (9) is a linear function of zV(x). As a result, the loss becomes

Lt
(
f(xt)

)
:= C(f(xt), yt) + λΩ

(
‖f‖2H

)
= C

(
θ>zV(xt), yt

)
+ λΩ

(
‖θ‖2

)
(10)

where ‖θ‖2 :=
∑

t

∑
t′ αtαt′z

>
V(xt)zV(xt′) := ‖f‖2H; and the online learning task is

min
θ∈R2D

T∑
t=1

L
(
θ>zV(xt), yt

)
, with L

(
θ>zV(xt), yt

)
:= C

(
θ>zV(xt), yt

)
+ λΩ

(
‖θ‖2

)
. (11)

Compared with the functional optimization in (1), the reformulated problem (11) is para-
metric, and more importantly it involves only optimization variables of fixed size 2D. We
can thus solve (11) using the online gradient descent iteration, e.g., (Hazan, 2016). Acquir-
ing xt per slot t, its RF zV(xt) is formed as in (8), and θt+1 is updated online as

θt+1 = θt − ηt∇L(θ>t zV(xt), yt) (12)

where {ηt} is the sequence of stepsizes that can tune learning rates, and ∇L(θ>t zV(xt), yt)
the gradient at θ = θt. Iteration (12) provides a functional update since f̂RF

t (x) = θ>t zV(x),
but the upshot of involving RFs is that this approximant is in the span of {zV(x),∀x ∈ X}.
Since E[κ̂] = κ, we find readily that E[f̂RF] = f̂ ; in words, unbiasedness of the kernel
approximation ensures that the RF-based function approximant is also unbiased.

Variance-reduced RF. Besides unbiasedness, performance of the RF approximation is
also influenced by the variance of RFs. Note that the variance of κ̂ in (7) is of order
O(D−1), but its scale can be reduced if V is formed to have orthogonal rows (Yu et al.,
2016). Specifically for a Gaussian kernel with bandwidth σ2, recall that V = σ−1G in (8),
where each entry of G is drawn from N (0, 1). For the variance-reduced orthogonal (O)RF
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with D = d, one starts with Q-R factorization of V = QR, and uses the d × d factor Q
along with a diagonal matrix Λ, to form (Yu et al., 2016)

VORF = σ−1 ΛQ (13)

where the diagonal entries of Λ are drawn i.i.d. from the χ distribution with d degrees of
freedom, to ensure unbiasedness of the kernel approximant. For D > d, one selects D = νd
with ν > 1 integer, and generates independently ν matrices each of size d × d as in (13).
The final VORF is formed by concatenating these d×d sub-matrices. The upshot of ORF is
that (Yu et al., 2016) Var(κ̂ORF(xt,xt′)) ≤ Var(κ̂(xt,xt′)). As we have also confirmed via
simulated tests, ORF-based function approximation can attain a prescribed accuracy with
considerably less ORFs than what required by its RF-based counterpart.

The RF-based online single kernel learning scheme in this section presumes that κ is
known a priori. Since this is not generally possible, it is prudent to adaptively select kernels
by superimposing multiple kernel functions from a prescribed dictionary. This superposition
will play a key role in the RF-based online MKL approach presented next.

3.2. Raker for online MKL

Specifying the kernel that “shapes” H is a critical choice for single kernel learning, since dif-
ferent kernels yield function estimates of variable accuracy. To deal with this, combinations
of kernels from a prescribed and sufficiently rich dictionary {κp}Pp=1 can be employed in (1).

Each combination belongs to the convex hull K̄ := {κ̄ =
∑P

p=1 ᾱpκp, ᾱp ≥ 0,
∑P

p=1 ᾱp = 1},
and is itself a kernel (Schölkopf and Smola, 2002). With H̄ denoting the RKHS induced
by κ̄ ∈ K̄, one then solves (1) with H replaced by H̄ := H1

⊕
· · ·
⊕
HP , where {Hp}Pp=1

represent the RKHSs corresponding to {κp}Pp=1 (Micchelli and Pontil, 2005).

The candidate function f̄ ∈ H̄ is expressible in a separable form as f̄(x) :=
∑P

p=1 f̄p(x),

where f̄p(x) belongs to Hp, for p ∈ P := {1, . . . , P}. To add flexibility per kernel in our
ensuing online MKL scheme, we let wlog {f̄p = wpfp}Pp=1, and seek functions of the form

f(x) :=

P∑
p=1

w̄pfp(x) ∈ H̄ (14)

where f := f̄/
∑P

p=1wp, and the normalized weights {w̄p := wp/
∑P

p=1wp}Pp=1 satisfy w̄p ≥
0, and

∑P
p=1 w̄p = 1. Plugging (14) into (1), MKL solves the nonconvex problem

min
{w̄p},{fp}

1

T

T∑
t=1

C

 P∑
p=1

w̄pfp(xt), yt

+ λΩ

∥∥∥∥∥∥
P∑
p=1

w̄pfp

∥∥∥∥∥∥
2

H̄

 (15a)

s. to
P∑
p=1

w̄p = 1, w̄p ≥ 0, p ∈ P (15b)

fp ∈ Hp, p ∈ P. (15c)

If Ω is convex over f , then (15a) is biconvex, meaning it is convex wrt {fp} ({w̄p}) when
{w̄p} ({fp}) is given. Leveraging biconvexity, existing batch MKL schemes solve (15) via
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alternating minimization that is known not to scale well with P and T (Micchelli and Pontil,
2005; Cortes et al., 2009; Gönen and Alpaydın, 2011).

To deal with scalability, our novel approach will leverage for the first time (O)RFs in a
uniquely principled MKL formulation to end up with an efficient online learning approach.
To this end, we will minimize a cost that upper bounds that in (15a), namely

min
{w̄p},{fp}

1

T

T∑
t=1

P∑
p=1

w̄p C (fp(xt), yt) + λ
P∑
p=1

w̄p Ω
(
‖fp‖2Hp

)
s. to (15b) and (15c) (16)

where Jensen’s inequality confirms that under (15b) the cost in (16) upper bounds that of
(15a). A key advantage of (16) is that its objective is separable across kernel ‘atoms.’

We will exploit this separability jointly with the RF-based function approximation per
kernel, to formulate our scalable online MKL task as

min
{w̄p},{f̂RF

p }

T∑
t=1

P∑
p=1

w̄p Lt
(
f̂RF
p (xt)

)
s. to (15b) and f̂RF

p ∈
{
f̂p(x)=θ>zVp(x)

}
(17)

where we interchangeably use Lt(f̂(xt)) as defined in (10) and L
(
θ>zV(xt), yt

)
as in (11).

We will efficiently solve (17) ‘on-the-fly’ using our Raker algorithm, and what more, we will
provide analytical performance guarantees. Our iterative solution will update separately
each f̂RF

p as in Section 3.1 using the scalable (O)RF-based function approximation scheme.
Given xt, an RF vector zp(xt) will be generated per p from pdf πκp(v) (cf. (8)), where we
let zp(xt) := zVp(xt) for notational brevity. Hence, for each p and slot t, we have

f̂RF
p,t (xt) = θ>p,tzp(xt) (18)

and as in (12), θp,t is updated via

θp,t+1 = θp,t − η∇L(θ>p,tzp(xt), yt). (19)

As far as solving for w̄p,t, since it resides on a probability simplex (15b), our idea is
to employ a multiplicative update (a.k.a. exponentiated gradient descent), e.g., (Hazan,
2016). Specifically, the un-normalized weights are found first as

wp,t+1 = arg min
wp

η Lt
(
f̂RF
p,t (xt)

)
(wp − wp,t) +DKL(wp‖wp,t) (20)

where DKL(wp‖wp,t) := wp log(wp/wp,t) is the KL-divergence. It can be readily verified that
(20) admits the following closed-form update

wp,t+1 = wp,t exp
(
−ηLt

(
f̂RF
p,t (xt)

))
(21)

where η ∈ (0, 1) is a chosen constant that controls the adaptation rate of {wp,t}. Having

found {wp,t} as in (21), the normalized weights in (14) are obtained as w̄p,t := wp,t/
∑P

p=1wp,t.

Update (21) is intuitively pleasing because when f̂RF
p,t contributes a larger loss relative to

other f̂RF
p′,t with p′ 6= p at slot t, the corresponding wp,t+1 decreases more than the other
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Algorithm 1 Raker for online MKL in static environments

1: Input: Kernels κp, p = 1, . . . , P , step size η > 0, and number of random features D.
2: Initialization: θ1 = 0.
3: for t = 1, 2, . . . , T do
4: Receive a streaming datum xt.
5: Construct zp(xt) via (8) using κp for p = 1, . . . , P .

6: Predict f̂RF
t (xt) :=

∑P
p=1 w̄p,tf̂

RF
p,t (xt) with f̂RF

p,t (xt) in (18).

7: Observe loss function Lt, incur Lt(f̂RF
t (xt)).

8: for p = 1, . . . , P do
9: Obtain loss L(θ>p,tzp(xt), yt) or Lt(f̂RF

p,t (xt)).
10: Update θp,t+1 via (19).
11: Update wp,t+1 via (21).
12: end for
13: end for

weights in the next time slot. In other words, a more accurate RF-based approximant tends
to play more important role in predicting the upcoming data.

Remark 1. The update (21) resembles the online learning paradigm, a.k.a. online predic-
tion with (weighted) expert advices (Vovk, 1995; Cesa-Bianchi and Lugosi, 2006). Building
on but going beyond OMKL in (Sahoo et al., 2014), the idea here is to view MKL with
RF-based function approximants as a weighted combination of advices from an ensemble
of P function approximants (experts). Besides permeating benefits from online learning to
MKL, what is distinct here relative to (Vovk, 1995; Cesa-Bianchi and Lugosi, 2006) is that
each function approximant also performs online learning for self improvement (cf. (19)).

In summary, our Raker for static (or slow-varying) dynamics is listed as Algorithm 1.

Memory requirement and computational complexity. At the t-th iteration, our
Raker in Algorithm 1 needs to store a real 2D RF vector, and its corresponding weight
vector per κp. Hence, the memory required is of order O(dDP ). Regarding computational
overhead, the per-iteration complexity (e.g., calculating inner products) is again of order
O(dDP ). Compared with the complexity of O(tdP ) for OMKL by (Sahoo et al., 2014), or,
O(t3P ) when matrix inversion required for the batch MKL, e.g., (Bazerque and Giannakis,
2013), the Raker is clearly more scalable, as t grows. Even when OMKL is confined to a
budget of B past samples, the corresponding complexity of O(dBP ) is comparable to that
of Raker. This speaks for Raker’s merits, whose performance guarantees will be proved
analytically, and also demonstrated by numerical tests to outperform budgeted schemes.

Application examples: Online MKL regression and classification. To appreciate
the usefulness of RF-based online MKL, consider first nonlinear regression, where given
samples {xt ∈ Rd, yt ∈ R}Tt=1, the goal is to find a nonlinear function f ∈ H, such that
yt = f(xt) + et. The criterion is to minimize the regularized prediction error of yt, typically
using the LS loss L(f(xt), yt) := [yt − f(xt)]

2 + λ‖f‖2H, whose gradient is (cf. (19))

∇L
(
θ>p,tzp(xt), yt

)
= 2(θ>p,tzp(xt)− yt)zp(xt) + 2λθp,t. (22)

9
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It is clear that the per iteration complexity of Raker is only related to the dimension of
zp(xt), and does not increase over time.

For nonlinear classification, consider kernel-based perceptron and kernel-based logistic
regression, which aim at learning a nonlinear classifier that best approximates either yt or
the pdf of yt conditioned on xt. With binary labels {±1}, the perceptron solves (1) with
L(f(xt), yt) = max(0, 1 − ytf(xt)) + λ‖f‖2H, which equals zero if yt = f(xt), otherwise it
equals 1. Raker’s gradient in this case is (cf. (19))

∇L
(
θ>p,tzp(xt), yt

)
= −2ytC(θ>p,tzp(xt), yt)zp(xt) + 2λθp,t. (23)

Accordingly, given xt, logistic regression postulates that Pr(yt = 1|xt) = 1/(1+exp(f(xt))).
Here the gradient of Raker takes the form (cf. (19))

∇L
(
θ>p,tzp(xt), yt

)
=

2yt exp(ytθ
>
p,tzp(xt))

1 + exp(ytθ
>
p,tzp(xt))

zp(xt) + 2λθp,t. (24)

To compare alternatives on equal footing, the numerical tests in Section 5 will deal with
kernel-based regression and classification.

3.3. Static regret analysis of Raker

To analyze the performance of Raker, we assume that the following conditions are satisfied.

(as1) Per slot t, the loss function L(θ>zV(xt), yt) in (11) is convex w.r.t. θ.

(as2) For θ belonging to a bounded set Θ with ‖θ‖ ≤ Cθ, the loss is bounded; that is,
L(θ>zV(xt), yt) ∈ [−1, 1], and has bounded gradient, meaning, ‖∇L(θ>zV(xt), yt)‖ ≤ L.

(as3) Kernels {κp}Pp=1 are shift-invariant, standardized, and bounded, that is, κp(xi,xj)≤
1, ∀xi,xj; and w.l.o.g. they also have bounded entries, meaning ‖x‖ ≤ 1.

Convexity of the loss under (as1) is satisfied by the popular loss functions including
the square loss and the hinge loss. As far as (as2), it ensures that the losses, and their
gradients are bounded, meaning they are L-Lipschitz continuous. While boundedness of
the losses commonly holds since ‖θ‖ is bounded, Lipschitz continuity is also not restrictive.
Considering kernel-based regression as an example, the gradient is (θ>zV(xt)−yt)zV(xt)+
λθ. Since the loss is bounded, e.g., ‖θ>zV(xt) − yt‖ ≤ 1, and the RF vector in (8) can
be bounded as ‖zV(xt)‖ ≤ 1, the constant is L := 1 + λCθ using the Cauchy-Schwartz
inequality. Kernels satisfying conditions in (as3) include Gaussian, Laplacian, and Cauchy
(Rahimi and Recht, 2007). In general, (as1)-(as3) are standard in online convex optimization
(OCO) (Shalev-Shwartz, 2011; Hazan, 2016), and in kernel-based learning (Micchelli and
Pontil, 2005; Rahimi and Recht, 2007; Lu et al., 2016).

With regard to the performance of an online algorithm, static regret is commonly
adopted as a metric by most OCO schemes to measure the difference between the ag-
gregate loss of an OCO algorithm, and that of the best fixed function approximant in
hindsight, e.g., (Shalev-Shwartz, 2011; Hazan, 2016). Specifically, for a generic sequence
{f̂t} generated by an RF-based kernel learning algorithm A, its static regret is

Regs
A(T ) :=

T∑
t=1

Lt(f̂t(xt))−
T∑
t=1

Lt(f∗(xt)) (25)

10
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where f̂t will henceforth represent f̂RF
t without the superscript for notational brevity; and,

f∗(·) is obtained as the batch solution

f∗(·) ∈ arg min
{f∗p , p∈P}

T∑
t=1

Lt(f∗p (xt)) with f∗p (·) ∈ arg min
f∈Fp

T∑
t=1

Lt(f(xt)) (26)

with Fp := Hp, and Hp representing the RKHS induced by κp. Using (25) and (26), we
first establish the static regret of our Raker approach in the following lemma.

Lemma 1 Under (as1), (as2), and with f̂∗p as in (26) with Fp := {f̂p|f̂p(x) = θ>zp(x), ∀θ ∈
R2D}, the sequences {f̂p,t} and {w̄p,t} generated by Raker satisfy the following bound

T∑
t=1

Lt
( P∑
p=1

w̄p,tf̂p,t(xt)

)
−

T∑
t=1

Lt
(
f̂∗p (xt)

)
≤ lnP

η
+
‖θ∗p‖2

2η
+
ηL2T

2
+ ηT (27)

where θ∗p is associated with the best RF function approximant f̂∗p (x) =
(
θ∗p
)>

zp(x).

Proof: See Appendix A.

Besides Raker’s static regret bound, the next theorem compares the Raker loss relative
to that of the best functional estimator in the original RKHS.

Theorem 1 Under (as1)-(as3) and with f∗p in (26) belonging to the RKHS Hp, for a fixed

ε > 0, the following bound holds with probability at least 1− 28
(σp
ε

)2
exp

(−Dε2
4d+8

)
T∑
t=1

Lt

 P∑
p=1

w̄p,tf̂p,t(xt)

− min
p∈{1,...,P}

T∑
t=1

Lt
(
f∗p (xt)

)
≤ lnP

η
+

(1 + ε)C2

2η
+
ηL2T

2
+ ηT+εLTC (28)

where C is a constant, while σ2
p := EπκpV [‖v‖2] is the second-order moment of the RF vector

norm. Setting η = ε = O(1/
√
T ) in (28), the static regret in (25) leads to

Regs
Raker(T ) = O(

√
T ). (29)

Proof: See Appendix B.

Observe that the probability of (28) to hold grows as D increases, and one can always
find a D to ensure a positive probability for a given ε. Bearing this in mind, we will
henceforth use “with high probability” (w.h.p.) to summarize the sense (28) and (29) hold.
Theorem 1 establishes that with proper choice of parameters, the Raker achieves sub-linear
regret relative to the best static function approximant in (26).

11
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Figure 1: Hierarchical AdaRaker structure. Experienced experts in the middle layer present
a Raker instance, where the size of expert cartoons is proportional to the interval length.

4. Online MKL in Environments with Unknown Dynamics

Our Raker in Section 3 combines an ensemble of kernel learners ‘on the fly,’ and performs
on average as the “best” fixed function, thus fulfilling the learning objective in environ-
ments with zero (or slow) dynamics. To broaden its scope to environments with unknown
dynamics, this section introduces an adaptive Raker approach (termed AdaRaker).

4.1. AdaRaker with hierarchical ensembles

As with any online learning algorithm, the choice of η in (19) and (21) affects the perfor-
mance critically. Especially in environments with unknown dynamics, a large η improves
the tracking ability of fast-varying functions, while a smaller one allows improved estima-
tion of slow-varying parameters {θt, wp,t}. The optimal choice of ηt clearly depends on
the variability of the optimal function estimator (Kivinen et al., 2004; Besbes et al., 2015).
Selecting {ηt} however, is formidably challenging if the environment dynamics are unknown.

Toward addressing this challenge, our idea here is to hedge between multiple Raker
learners with different learning rates. Specifically, we view each Raker instance in Algorithm
1 as a black box algorithm AI , where the subscript I represents the algorithm running on
interval I := [I, Ī] starting from slot I to slot Ī. Let a pre-selected set I collect all these
intervals, the design of which will be specified later. At the beginning of each interval
I ∈ I, a new instance of the online Raker algorithm AI is initialized with an interval-
specific learning rate η(I) := min{1/2, η0/

√
|I|} with constant η0 > 0. Allowing for overlap

between intervals, multiple Raker instances {AI} will be run in parallel. Consider now

12
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Algorithm 2 AdaRaker for online MKL in dynamic environments

1: Initialization: learner weights {h(I)
1 }, and their learning rates {η(I)}.

2: for t = 1, 2, . . . , T do

3: Obtain f̂
(I)
t (xt) from each Raker instance AI , I ∈ I(t).

4: Predict f̂t(xt) via a weighted combination (33).
5: Observe loss function Lt, and incur Lt(f̂t(xt)).
6: for I ∈ I(t) do

7: Incur loss Lt(f̂ (I)
t (xt)).

8: Update f̂
(I)
t via Raker in Algorithm 1.

9: Update weights h
(I)
t+1 via (31).

10: end for
11: end for

collecting all active intervals at the current slot t in the set

I(t) := {I ∈ I | t ∈ [I, Ī]}, ∀t ∈ T . (30)

For each Raker instance AI with I ∈ I(t), let f̂
(I)
t (·) denote its output at time t that

combines multiple kernel-based function estimators, and Lt(f̂ (I)
t (xt)) represent the associ-

ated instantaneous loss. The output of the ensemble learner A at time t is the weighted

combination of outputs from all learners, namely {f̂ (I)
t , ∀I ∈ I(t)}. With h

(I)
t denoting the

weight of the Raker instance AI , we will update it online via

h
(I)
t+1 =


0, if t /∈ I
η(I), if t = I

h
(I)
t exp

(
− η(I)r

(I)
t

)
, else

(31)

where I is the first time slot of interval I, and the loss of AI relative to the overall loss is

r
(I)
t = Lt(f̂t(xt))− Lt(f̂ (I)

t (xt)), ∀I ∈ I(t). (32)

Intuitively thinking, one would wish to decrease (increase) the weights of those instances
with small (large) losses in future rounds. Using update (31), and defining the normalized

weight as h̄
(I)
t := h

(I)
t /

∑
J∈I(t) h

(J)
t , the overall output is given by

f̂t(x) :=
∑
I∈I

h̄
(I)
t f̂

(I)
t (x) with f̂

(I)
t (x) :=

∑
p∈P

w̄
(I)
p,t f̂

(I)
p,t (x) (33)

where {w̄(I)
p,t } are the kernel combination weights generated by Raker AI (cf. (21)).

The AdaRaker scheme is summarized in Algorithm 2, and depicted in Figure 1.
Selecting judiciously variable-length intervals in I can affect performance critically. Such

a selection criterion for achieving interval regret has been reported in (Daniely et al., 2015).
Instead, our pursuit is a hierarchical ensemble design for online MKL in environments
with unknown dynamics using scalable RF-based function approximants. This hierarchical

13
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Figure 2: AdaRaker as an ensemble of Rakers with different learning rates: Each light/dark
black interval initiates a Raker learner. At slot 7, colored experts are active, and gray ones
are inactive.

design is well motivated because with long intervals, the Raker loss per interval is relatively
low in slow-varying settings, but higher as the dynamics become more pronounced. On the
other hand, a short interval can hedge against a possibly rapid change, but its performance
on each interval could suffer if the objective stays nearly static. Bearing these tradeoffs in
mind, we present next a simple yet efficient interval partitioning scheme.

Illustration of interval sets: Consider partitioning the entire horizon into intervals of
length 20, 21, 22, . . .. Intervals of length 2j with a given j ∈ N are consecutively assigned
without overlap starting from t = 2j. In the non-overlapping case, define a set of intervals
Ij = [Ij , Īj ] such that each interval’s length is |Ij | = Īj − Ij + 1 = 2j , j ∈ N. For this
selection of intervals, each time slot t is covered by a set of at most dlog2 te intervals, which
forms the active set of intervals I(t) at time t. See the diagram in Fig. 2.

4.2. Dynamic regret analysis of AdaRaker

The static regret in Theorem 1 is with respect to a time-invariant optimal function estima-
tor benchmark. In dynamic environments however, this optimal function benchmark may
change over time - what justifies this subsection’s performance analysis of AdaRaker.

Our analysis will rely on the dynamic regret that is related to tracking regret, and has
been introduced in (Besbes et al., 2015; Jadbabaie et al., 2015) to quantify the performance
of online algorithms. The dynamic regret is defined as (cf. (25))

Regd
A(T ) :=

T∑
t=1

Lt(f̂t(xt))−
T∑
t=1

Lt(f∗t (xt)) (34)

where the benchmark is the aggregate loss incurred by a sequence of the best dynamic
functions{f∗t } from F formed by the union of function spaces Hp induced by {κp}, given
by

f∗t (·) ∈ arg min
{f∗p,t, p∈P}

Lt(f∗p (xt)) with f∗p,t(·) ∈ arg min
f∈Hp

Lt(f(xt)) (35)
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Comparing (26) with (35) we deduce that the dynamic regret is always larger than the static
regret in (25). Thus, a sub-linear dynamic regret implies a sub-linear static regret, but not
vice versa. Given {Lt}, AdaRaker generates functions {f̂t} to minimize the dynamic regret.

To assess the AdaRaker performance, we will start with an intermediate result on the
static regret associated with any sub-interval I ⊆ T .

Lemma 2 Under (as1)-(as3), the static regret on any interval I ⊆ T is given by

Regs
A(|I|) :=

∑
t∈I
Lt(f̂t(xt))−

∑
t∈I
Lt(f∗I (xt)) (36)

where |I| denotes the length of interval I, and the best time-invariant function approximant
is f∗I ∈ arg minf∈

⋃
p∈P Hp

∑
t∈I Lt(f(xt)), with Hp denoting the RKHS induced by κp. Then

for any interval I ⊆ T and fixed positive constants C0, C1, the following bound holds

Regs
AdaRaker(|I|) ≤ C0

√
|I|+ C1 lnT

√
|I|, w.h.p. (37)

Proof: See Appendix C.

Lemma 2 establishes that by combining Raker learners with different learning rates,
AdaRaker can achieve sub-linear static regret over any interval I with arbitrary interval
length. This also holds for intervals overlapping with multiple intervals; see e.g., the red
interval in Fig. 2. Clearly, the best fixed solution in (36) is interval specific, which can vary
over different intervals. This is qualitatively why the function approximants generated by
AdaRaker can cope with a time-varying benchmark. Such an intuition will in fact become
quantitative in the next theorem, which establishes the dynamic regret for AdaRaker.

Theorem 2 Suppose (as1)-(as3) are satisfied, and define the accumulated variation of on-
line loss functions as

V({Lt}Tt=1) :=
T∑
t=1

max
f∈F

∣∣Lt+1(f(xt+1))−Lt(f(xt))
∣∣ (38)

where F :=
⋃
p∈P Hp. Then AdaRaker can afford a dynamic regret in (34) bounded by

Regd
AdaRaker(T ) ≤(2 + C0 + C1 lnT )T

2
3V

1
3 ({Lt}Tt=1)

=Õ
(
T

2
3V

1
3 ({Lt}Tt=1)

)
, w.h.p. (39)

where Õ neglects the lower-order terms with a polynomial log T rate.

Proof: See Appendix D.

Theorem 2 asserts that AdaRaker’s dynamic regret depends on the variation of loss
functions in (38), and on the horizon T . Interesting enough, whenever the loss functions do
not vary on average, meaning V({Lt}Tt=1) = o(T ), AdaRaker achieves sub-linear dynamic
regret. To this end, it is useful to present an example where this argument holds.
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Intermittent switches: With Lt 6= Lt+1 defining a switch, consider that the number of
switches is sub-linear over T ; that is,

∑T
t=1 1(Lt 6= Lt+1) = T γ , ∀γ ∈ [0, 1). Then it follows

that V({Lt}Tt=1) = O(T γ), since the one-slot variation of the loss functions is bounded.
Other setups with sub-linear accumulated variation emerge, e.g., when the per-slot vari-

ation decreases as V(Lt) = O(tγ−1), ∀γ ∈ [0, 1). Besides dynamic losses, sub-linear dynamic
regrets can be also effected by confining the variability of optimal function estimators.

Theorem 3 Suppose the conditions of Theorem 2 hold, and define the regret relative to an
m-switching dynamic benchmark as RegmA(T ) :=

∑T
t=1Lt(f̂t(xt)) −

∑T
t=1 Lt(f̌∗t (xt)), where

{f̌∗t } is any trajectory from{{
f̌∗t
}T
t=1
∈
⋃
p∈P Hp

∣∣∣∑T
t=1 1(f̌∗t 6= f̌∗t−1) ≤ m

}
. (40)

With C0 and C1 denoting some universal constants, it then holds w.h.p. that

RegmAdaRaker(T )≤(C0+C1 lnT )
√
Tm=Õ

(√
Tm

)
. (41)

Proof: See Appendix E.

Theorem 3 asserts that without prior knowledge of the environment dynamics, the
dynamic regret of AdaRaker is sub-linearly growing with time, provided that the number of
changes of the optimal function estimators is sub-linear in T ; that is, RegmAdaRaker(T ) = o(T )
given m = o(T ). Therefore, our AdaRaker can track the optimal dynamic functions, if
the optimal function varies slowly over time; e.g., it does not change in the long-term
average sense. While the conditions to guarantee optimality in dynamic settings may appear
restrictive, they are practically relevant, since abrupt changes or adversarial samples will
likely not happen at each and every slot in practice.

5. Numerical Tests

This section evaluates the performance of our novel algorithms in online regression tasks
using both synthetic and real-world datasets.

In the subsequent tests, we use the following benchmarks.

RBF: the online single kernel learning method using Gaussian kernels, a.k.a. radial basis
functions (RBFs), with bandwidth σ2 = {0.1, 1, 10} (cf. RBF01, RBF1, RBF10);
POLY: the online single kernel method using polynomial kernels, with degree d = {2, 3}
(cf. POLY2, POLY3);
LINEAR: the online single kernel learning method using a linear kernel;
AvgMKL: the online single kernel learning method using the average of candidate kernels
without updating the weights;
OMKL: the popular online (O)MKL algorithm without a budget (Sahoo et al., 2014);
OMKL-B: the OMKL algorithm on a budget for regression modified from its single kernel
version (Kivinen et al., 2004), with the kernel combination weights updated as (21);
M-Forgetron: the online multi-kernel based Forgetron modified from its single kernel
version (Dekel et al., 2008), with the kernel combination weights updated as in (21);
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Time index [1, 200] [201, 1000] [1001, 2000] [2001, 2300] [2301, 3000]
σ2 0.01 1 10 0.01 1

Time index [3001, 3500] [3501, 4300] [4301, 5100] [5101, 5900] 5901, 6500
σ2 10 0.01 1 0.01 0.1

Table 1: Intervals and {σ2} for synthetic dataset.

AdaMKL: the adaptive version of OMKL that operates in a similar fashion as Algorithm
2, but instead of using our Raker as an ensemble, it adopts OMKL as an instance AI .

Note that AdaMKL, OMKL-B, and M-Forgetron have not been formally proposed in
existing works, but we introduced them here only for comparison purposes. All the con-
sidered MKL approaches use a dictionary of Gaussian kernels with σ2 = {0.1, 1, 10}, and
AvgMKL, OMKL, AdaMKL, OMKL-B, and M-Forgetron also include a linear, and a poly-
nomial kernel with order of 2 into their kernel dictionary. For all MKL approaches, the
stepsize for updating kernel combination weights in (21) is chosen as 0.5 uniformly, while
the stepsize for updating per-kernel function estimators will be specified later in each test.
The regularization parameter is set equal to λ = 0.01 for all approaches. Entries of {xt} and
{yt} are normalized to lie in [0, 1]. Regarding AdaMKL and AdaRaker, multiple instances
are initialized on intervals with length |I| := 20, 21, 22, . . ., along with the corresponding
learning rate on the interval I as η(I) := min{1/2, 10/

√
|I|}; see the example in Figure 2.

All the results in the tables were reported using the performance at the last time index.

5.1. Synthetic data tests for regression

This subsection presents the synthetic data tests for regression.

Data generation. In this test, two synthetic datasets were generated as follows.
For Dataset 1, the feature vectors {xt ∈ R10}14,000

t=1 are generated from the standardized
Gaussian distribution, while yt is generated as yt =

∑t
τ=1 ατκτ (xt,xτ ), where {αt} is

generated as αt = 1 + et with et ∼ N (0, σ2
α) and σα = 0.01, while {κt} are kernel functions

that change overtime: for t ∈ [1, 8000]
⋃

[18001, 26000], κt is a Gaussian kernel with σ2 = 1,
while for t ∈ [8001, 18000]

⋃
[26001, 36000] the Gaussian kernel has σ2 = 10. Therefore, the

underlying nonlinear relationship between xt and yt undergoes intermittent changes, which
come from corresponding changes in the optimal kernel combinations.
Dataset 2 is generated with more variance and switching points. Specifically, the feature
vectors are generated from the standardized Gaussian distribution, while yt is generated as
yt =

∑t
τ=1 ατκτ (xt,xτ ), where {κt} change over 10 intervals with different σ2; see Table 1.

Testing performance. The performance of all schemes is tested in terms of the mean-
square (prediction) error MSE(t) := (1/t)

∑t
τ=1 (yτ − ŷτ )2 in Figure 3 and Figure 4, and

their CPU time is listed in Table 2. For OMKL-B, B = 20 and 50 most recent data samples
were kept in the budget; and for RF-based Raker and AdaRaker approaches, D = 20 and
50 orthogonal random features were used by default. The default stepsize is chosen as
1/
√
T for RBF, POLY, LINEAR, AvgMKL, OMKL, OMKL-B and Raker. In both tests,

AdaRaker outperforms the alternatives in terms of MSE, especially when the true nonlinear
relationship between xt and yt changes; e.g., compare the MSE of KL-RBF and Raker with
that of AdaRaker at t = 8000, 18000, 26000 in Figure 3, and t = 200, 2000, 3000, 3500
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Figure 3: MSE performance on synthetic Dataset 1: a) D = B = 20; b) D = B = 50.

0 1000 2000 3000 4000 5000 6000

Time index

10
-2

10
-1

10
0

M
S

E

0 1000 2000 3000 4000 5000 6000

Time index

10
-2

10
-1

10
0

M
S

E

AdaMKL

OMKL

OMKL-B

RBF1

RBF10

RFB01

AdaRaker

Raker

AvgMKL

POLY2

POLY3

LINEAR

(a) (b)

Figure 4: MSE performance on synthetic Dataset 2: a) D = B = 20; b) D = B = 50.

in Figure 4. This corroborates the effectiveness of the novel AdaRacker method that can
flexibly select learning rates according to the variability of the environments, and adaptively
combine multiple kernels when the optimal underlying nonlinear relationship is varying over
time. In addition, MKL approaches including our Raker approach enjoy lower MSE than
that of the single-kernel approaches as well as the simple AvgMKL approach, which is also
aligned with our design principle of developing MKL schemes that broaden generalizability
of a kernel-based learner over a larger function space.

Table 2 records the CPU time of all benchmark algorithms running tests on two different
datasets. It can be observed that leveraging the RF-based approximation, the proposed
AdaRaker and Raker algorithms are much faster than AdaMKL and OMKL; hence, they
are preferable especially for large-scale datasets. Although the CPU time of OMKL-B with
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Dataset 1 Dataset 2
Setting D = B = 20 D = B = 50 D = B = 20 D = B = 50

AdaMKL 318.52 27.29
OMKL 157.10 5.47
RBF 47.83 1.06

POLY2 6.01 0.47
POLY3 28.27 1.24

LINEAR 4.80 0.35
AvgMKL 144.85 5.02
OMKL-B 3.75 4.05 0.72 0.77

Raker 1.39 1.53 0.18 0.20
AdaRaker 21.94 24.24 3.32 3.54

Table 2: CPU time (in seconds) on synthetic datasets. RBF, POLY represents all single-
kernel methods using RBF and polynomial kernels, since they have the same CPU time.

Dataset # features (d) # samples (T ) feature type

Twitter 77 14, 000 real & integer
Twitter (Large) 77 100, 000 real & integer
Tom’s hardware 96 10, 000 real & integer

Energy 27 18, 600 real
Air quality 13 9, 358 real

Table 3: A summary of real datasets used in the tests.

a budget size B = 20 or B = 50 is relatively low, OMKL-B does not perform as well as
AdaRaker and Raker algorithms. Therefore, the AdaRaker and Raker approaches attain a
sweet-spot in the performance-complexity tradeoff.

5.2. Real data tests for online regression

To further evaluate our algorithms in real-world scenarios, the present subsection is
devoted to testing and comparing on several popular real datasets.

Datasets description. Performance is tested on benchmark datasets from UCI machine
learning repository (Lichman, 2013).

• Twitter dataset consists of T = 14, 000 samples from a popular micro-blogging plat-
form Twitter, where xt ∈ R77 include features such as the number of new interactive
authors, and the length of discussion on a given topic, while yt represents the average
number of active discussion (popularity) on a certain topic (Kawala et al., 2013). A
larger dataset with T = 100, 000 is also included for testing only (Ada)Raker and
OMKL-B, since other methods do not scale to such a large T .

• Tom’s hardware dataset contains T = 10, 000 samples from a worldwide new tech-
nology forum, where a 96-dimensional feature vector includes the number of discus-
sions involving a certain topic, while yt represents the average number of display about
a certain topic on Tom’s hardware (Kawala et al., 2013).
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Algorithms/ Datasets Twitter Tom’s Energy Air

RBF (σ2 = 0.1) 27.0 14.4 28.9 26.3
RBF (σ2 = 1) 13.5 17.0 28.8 12.7
RBF (σ2 = 10) 23.3 18.8 28.8 15.5

POLY2 12.7 22.3 28.8 7.34
POLY3 20.4 22.7 28.9 5.91

LINEAR 8.57 19.5 28.8 10.7
AvgMKL 14.4 17.5 28.7 11.9
OMKL 8.55 14.3 28.1 6.4

AdaMKL 16.1 18.4 30.4 10.1
OMKL-B (B = 50) 27.0 22.1 73.3 35.9

Raker (D = 50) 3.0 3.4 19.3 2.0
AdaRaker (D = 50) 2.6 1.9 13.8 1.3

Table 4: MSE (10−3) performance of different algorithms with stepsize 1/
√
T .

Algorithms/ Datasets Twitter Tom’s Energy Air

RBF (σ2 = 0.1) 17.2 3.3 16.6 8.1
RBF (σ2 = 1) 3.3 5.1 16.4 2.8
RBF (σ2 = 10) 5.6 13.6 16.4 18.9

POLY2 8.1 15.9 16.2 3.3
POLY3 20.4 20.7 16.2 4.6

LINEAR 2.7 4.8 16.3 2.9
AvgMKL 7.1 6.2 16.3 2.8
OMKL 4.2 3.3 16.2 2.4

AdaMKL 16.1 18.4 30.4 10.1
OMKL-B (B = 50) 9.9 11.8 19 7.1

Raker (D = 50) 2.9 2.6 13.8 1.3
AdaRaker (D = 50) 2.6 1.9 13.8 1.3

Table 5: MSE (10−3) performance of different algorithms with optimally chosen stepsizes.

• energy dataset consists of T = 18, 600 samples, with each xt ∈ R27 describing the
humidity and temperature indoors and outdoors, while yt denotes the energy use of
light fixtures in the house (Candanedo et al., 2017).

• air quality dataset collects T = 9, 358 instances of hourly averaged responses from
five chemical sensors located in a polluted area of Italy. The averaged sensor response
xt ∈ R13 contains the hourly concentrations of e.g., CO, Non Metanic Hydrocar-
bons, and Nitrogen Dioxide (NO2), where the goal is to predict the concentration of
polluting chemicals yt in the air (De Vito et al., 2008).

To highlight the effectiveness of our approaches, the datasets mainly include time series
data, where non-stationarity is more likely to happen; see Table 3 for a summary.

MSE performance. The MSE performance of each algorithm on the aforementioned
datasets is presented in Table 4. By default, we use the complexity B = D = 50 for
OMKL-B and (Ada)Raker, and the stepsize 1/

√
T for RBF, POLY, LINEAR, AvgMKL,
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MSE OMKL-B Raker AdaRaker

Stepsize 1/
√
T 0.5/

√
t 0.1/

√
t Tuned 1/

√
T 0.5/

√
t 0.1/

√
t Tuned /

Twitter 27.0 27.1 29.6 9.9 3.0 17.9 4.3 2.9 2.6
Tom’s 22.1 22.1 22.6 11.8 3.4 2.0 7.6 2.6 1.9
Energy 73.3 74.1 79.5 19.0 19.3 29.5 25.1 13.8 13.8

Air 35.9 35.9 40.1 7.1 2.0 29.1 4.0 1.3 1.3
Twitter (Large) 20.7 27.2 28.0 11.3 3.2 3.1 3.3 3.0 2.7

Table 6: MSE (10−3) versus the choice of stepsizes with complexity B = D = 50.

OMKL, OMKL-B and Raker. To boost the performance of each algorithm, their MSE when
using manually tuned stepsizes is also reported in Table 5, which selects the best stepsize on
each dataset among {10−3, 10−2, · · · , 103}/

√
T . A common observation is that leveraging

the flexibility of multiple kernels, MKL methods in most cases outperform the algorithms
using only a single kernel. By simply averaging over all the kernels, AvgMKL outperforms
most of single kernel methods, but performs worse than the adaptive kernel combination
methods. This confirms that relying on a pre-selected kernel function is not sufficient to
guarantee low fitting loss, while allowing the MKL approaches to select the best kernel
combinations in a data-driven fashion holds the key for improved performance.

In most tested datasets, Raker obtains function approximants with lower MSE relative to
MKL alternatives without RF approximation. Furthermore, incorporating multiple Raker
instances with variable learning rates, AdaRaker consistently yields the lowest MSE in all
the tests. As it has been shown in the synthetic data test, the sizable performance gain
of AdaRaker appears when the underlying nonlinear models change in the tested time-
series datasets. This observation is aligned with our design principle of AdaRaker; that
is, when the optimal function predictor varies slowly (fast), AdaRaker tends to select a
Raker instance with small (large) learning rate. Interesting enough, even with adaptive
learning rate, AdaMKL does not perform as well as OMKL in some tests. This is partially
because unlike AdaRaker with fixed number of RFs, each instance in AdaMKL involves
a different number of support vectors (samples). The instance operating on the longest
interval contains at most T/2 support vectors, which may deteriorate performance relative
to OMKL with T support vectors.

Table 6 further compares the MSE performance of AdaRaker with OMKL-B and Raker
using different stepsizes. Clearly, the performance of OMKL-B and Raker is sensitive to
the choice of stepsizes. While the optimal stepsize varies from dataset to dataset, selecting
a constant stepsize 1/

√
T generally leads to better performance than a diminishing one

of O(1/
√
t). In the online scenarios however, the choice 1/

√
T may not be feasible if T is

unknown ahead of time. In contrast, AdaRaker obtained the best MSE performance without
knowing T , and without the need of stepsize selection, which confirms that AdaRaker is
capable of adapting its stepsize to variable environments with unknown dynamics.

Computational complexity. The CPU time of all the considered schemes is recorded
under all the tests; see Table 7. It is evident that in all tests, our RF-based MKL methods
including Raker and AdaRaker are computationally more efficient than other MKL methods
except that OMKL-B is faster than AdaRaker. Intuitively speaking, the per-slot complexity
of Raker does not grow with time, since it requires computing only one inner product of two
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Algorithms/ Datasets Twitter Tom’s Energy Air

RBF 54.7 32.5 26.6 1.71
POLY2 2.25 1.16 2.42 0.58
POLY3 5.62 2.97 7.90 1.51

LINEAR 1.83 0.98 196 0.39
AvgMKL 148.4 81.6 82.4 5.29
OMKL 153.5 81.9 83.3 5.90

AdaMKL 164.1 102.7 117.9 35.3
OMKL-B (B = 50) 1.89 1.42 2.02 0.89

Raker (D = 50) 0.51 0.38 0.65 0.28
AdaRaker (D = 50) 8.64 6.03 10.94 5.28

Table 7: A summary of CPU time (second) on real datasets.

MSE OMKL-B Raker AdaRaker
Complexity 10 50 100 10 50 100 10 50 100

Twitter 28.9 27.0 26.1 5.9 3.0 3.0 3.8 2.6 2.6
Tom’s 22.7 22.1 21.7 8.1 3.4 2.3 7.0 1.9 1.8
Energy 79.1 73.3 67.9 25.7 19.3 16.4 18.7 13.8 13.3

Air pollution 36.7 35.9 35.8 10.1 2.0 1.7 4.3 1.3 1.2
Twitter (Large) 25.0 20.7 19.0 3.9 3.2 3.0 3.3 2.7 2.7

Table 8: MSE (10−3) versus complexity. For OMKL-B, the complexity measure is the data
budget B; and for (Ada)Raker, the complexity measure is the number of RFs D.

2D-dimensional vectors per kernel learner, while the computational complexity of AdaMKL,
OMKL, POLY, LINEAR, AvgMKL, and RBF increases with time at least linearly. With
a fixed budget size, OMKL-B enjoys light-weight updates that leads to a lower CPU time
than alternatives, but higher than Raker. However, given such a limited budget of data,
OMKL-B exhibits higher MSE than AdaRaker and Raker; see MSE in Tables 4 and 6.

Running multiple instances of Raker in parallel, the complexity of AdaRaker is reason-
ably higher than Raker (roughly log T times higher), but its runtime is still only around 10%
of that of AdaMKL, and significantly lower than other single-kernel alternatives especially
when the actual feature dimension d is higher than the number of random features D. The
computational advantage of our MKL algorithms in this test also corroborates the quanti-
tative analysis at the end of Section 3.2. Regarding the tradeoff between learning accuracy
and complexity, a delicate comparison among OMKL-B, Raker and AdaRaker follows next.

Accuracy versus complexity. To further understand the tradeoff between complexity
and learning accuracy, the performance of three scalable methods AdaRaker, Raker and
OMKL-B is tested under different parameter settings, e.g., D, the number of random fea-
tures, and B, the number of budgeted data. The MSE performance is reported in Table 8
after one pass of all data in each dataset, while the corresponding CPU time is in Table 9.

Not surprising, all three algorithms require longer CPU time as the complexity (in
terms of B or D) increases. For given complexity (same B and D), Raker requires the
lowest CPU time, and its MSE is also markedly lower than that of OMKL-B in all tests.
On the other hand, AdaRaker always attains the lowest MSE, and its performance gain is
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Time OMKL-B Raker AdaRaker
Complexity 10 50 100 10 50 100 10 50 100

Twitter 1.42 1.89 2.84 0.42 0.51 0.80 7.58 8.64 11.65
Tom’s 1.00 1.42 2.81 0.41 0.38 0.56 5.09 6.03 8.98
Energy 1.84 2.02 2.32 0.58 0.65 0.76 9.96 10.94 12.47

Air pollution 0.82 0.89 0.97 0.24 0.28 0.32 4.09 5.28 5.29
Twitter (Large) 12.90 16.34 23.6 6.07 6.63 8.42 67.10 78.10 109.40

Table 9: CPU time (second) versus complexity of B for OMKL-B, and D for (Ada)Raker.

Classification error CPU time
Algorithms/Datasets Movement Devices Activity Movement Devices Activity

RBF (σ2 = 0.1) 43.1 6.67 0.46 2.76 2.13 4.42
RBF (σ2 = 1) 41.3 28.1 5.21 2.79 2.04 4.42
RBF (σ2 = 10) 40.3 31.8 41.1 2.62 2.09 4.43

POLY2 43.5 14.3 3.13 1.63 0.31 0.81
POLY3 43.6 25.2 2.39 4.75 0.57 1.79

LINEAR 43.8 47.4 4.30 1.26 0.21 0.60
AvgMKL 41.7 23.9 3.16 10.2 6.72 14.67
OMKL 38.2 16.0 0.60 10.27 7.07 14.46

AdaMKL 3.5 0.86 0.98 33.77 10.51 21.46
M-Forgetron (B = 50) 1.64 0.53 1.14 0.92 0.27 0.53

Raker (D = 50) 9.74 2.54 0.58 0.40 0.12 0.21
AdaRaker (D = 50) 1.10 0.36 0.34 6.76 1.73 3.56

Table 10: Classification error (%) and runtime (second) of different algorithms with the
default stepsize 1/

√
T for RBF, OMKL and Raker, and with complexity B = D = 50.

remarkable especially in the Energy and Air pollution datasets. For Twitter (Large) dataset,
the performance of AdaRaker does not improve as RFs increase from D = 50 to D = 100,
which implies that D = 50 is enough to provide reliable kernel approximation in this dataset.
Considering that AdaRaker is embedded with concurrent log t Raker instances at time t, its
CPU time is relatively higher. However, one would expect a major reduction in the number
of concurrent instances and thus markedly lower CPU time, if a larger basic interval size
(instead of base number 2 in Figure 2) is incorporated in AdaRaker real implementation.

At this point, one may wonder how many RFs are enough for Raker and AdaRaker to
guarantee the same online learning accuracy as that of OMKL-B with B samples. While
this intriguing question has been recently studied in the batch setting with an answer of
D = O(

√
B) RFs (Rudi and Rosasco, 2017), its thorough treatment in the online setting

constitutes our future research.

5.3. Real data tests for online classification

In this section, the performance of Raker and AdaRaker is tested on real datasets for the
online classification task. We use the logistic loss as the learning objective function with the
regularization parameter λ = 0.005 for all considered approaches except for the perceptron-
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Classification error
Algorithms/Datasets Movement Devices Activity

RBF (σ2 = 0.1) 28.9 5.16 0.26
RBF (σ2 = 1) 1.27 0.42 0.53
RBF (σ2 = 10) 1.10 0.36 1.14

POLY2 8.19 1.7 0.56
POLY3 15.2 17.3 0.45

LINEAR 7.46 30.7 0.60
AvgMKL 1.69 2.26 0.48
OMKL 1.10 0.36 0.29

AdaMKL 3.50 0.86 1.00
M-Forgetron (B = 50) 1.64 0.53 1.14

Raker (D = 50) 1.10 0.28 0.24
AdaRaker (D = 50) 1.10 0.36 0.34

Table 11: Classification error (%) of different algorithms with the dataset-specific optimally
chosen stepsizes for RBF, OMKL and Raker, and with complexity B = D = 50.

based Forgetron algorithm. Kernels and all other parameters such as the default stepsizes,
are chosen as those in the regression task.

Datasets description. We test classification performance on the following datasets.

• Movement dataset consists of T = 13, 197 temporal streams of received signal
strength (RSS) measured between the nodes of a wireless sensor network, with each
xt ∈ R4 comprising 4 anchor nodes (Bacciu et al., 2014). Data has been collected
during user movements at the frequency of 8 Hz (8 samples per second). The RSS
samples in the dataset have been rescaled to lie in [−1, 1]. The binary label yt indi-
cates whether the user’s trajectory will lead to a change in the spatial context (here
a room change) or not.

• Electronic Device dataset consists of T = 3, 600 samples collected as part of a
government sponsored study called ‘Powering the Nation,’ where the feature vectors
xt ∈ R60 represent electricity readings from different households over 15 mins, sampled
within a month (Lines et al., 2011). Binary label yt represents the type of electronic
devices used at the certain interval of time time: dishwasher or kettle.

• Human Activity dataset consists of T = 7, 352 samples collected from a group of
30 volunteers wearing a smartphone (Samsung Galaxy S II) on their waist to monitor
activities (Anguita et al., 2013). Feature vectors {xt ∈ R30} here measure e.g., triaxial
acceleration and angular velocity, while binary label yt represents the activity during
a certain period: walking or not walking.

Classification performance. The classification error (1/T )
∑T

t=1 max{0, sign(−ytŷt)}
and the CPU time of each algorithm on these datasets are summarized in Table 10 when
a default stepsize 1/

√
T is used for POLY, LINEAR, RBF, AvgMKL, OMKL and Raker.

The budget of M-Forgetron is set at B = 50 samples, while Raker and AdaRaker adopt
D = 50 RFs. As with the regression tests, it is evident that AdaRaker attains the highest
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OMKL Raker AdaRaker

Stepsize 1/
√
T 1/

√
t 10/

√
t Tuned 1/

√
T 1/

√
t 10/

√
t Tuned /

Movement 38.2 39.5 22.3 1.10 12.1 8.60 1.79 1.10 1.10
Devices 16.0 13.2 6.06 0.36 2.54 2.04 0.53 0.28 0.36
Activity 0.60 0.53 0.50 0.29 0.58 0.52 0.54 0.24 0.34

Table 12: Classification error (%) versus different choices of stepsizes with B = D = 50.

Classification error CPU time
Algorithms/ Datasets Movement Devices Activity Movement Devices Activity

M-Forgetron (B = 10) 1.60 0.53 1.14 0.92 0.26 0.53
M-Forgetron (B = 50) 1.64 0.53 1.14 0.92 0.27 0.53
M-Forgetron (B = 100) 1.42 0.53 1.14 0.94 0.29 0.53
Raker (D = 10) 26.3 8.37 3.26 0.35 0.10 0.18
Raker (D = 50) 9.74 2.54 0.58 0.40 0.12 0.21
Raker (D = 100) 4.65 1.53 0.43 0.46 0.15 0.26
AdaRaker (D = 10) 2.46 0.66 0.68 6.13 0.65 3.22
AdaRaker (D = 50) 1.10 0.36 0.34 6.76 1.73 3.56
AdaRaker (D = 100) 1.10 0.36 0.34 7.55 2.04 4.22

Table 13: Classification error (%) and CPU time (second) versus complexity.

classification accuracy and the Raker has the lowest CPU time among all competing algo-
rithms. Without having to tune stepsizes, the performance of AdaMKL and M-Forgetron is
also competitive in this case. To explore the best performance of each algorithm, the clas-
sification performance under manually tuned stepsizes is reported in Table 11, where each
algorithm uses the best stepsize among {10−3, 10−2, · · · , 103}/

√
T for each dataset. With

the optimally chosen stepsizes, the performance of all algorithms improves, and Raker even
achieves slightly lower classification error than AdaRaker in some datasets. This is rea-
sonable since compared to Raker with the offline tuned stepsize, AdaRaker will incur some
error due to the online adaptation to several (possibly suboptimal) learning rates.

To corroborate the effectiveness of our algorithms in adapting to unknown dynamics
(e.g., unknown time horizon T and variability), Table 12 compares the performance of
AdaRaker with OMKL and Raker using default, diminishing and optimally tuned stepsizes.
Similar to regression tests, the performance of Raker and OMKL is sensitive to the step-
size choice, while AdaRaker achieves the desired performance by combining learners with
different learning rates. By simply averaging over all the kernels, AvgMKL outperforms sin-
gle kernel methods in most cases, but performs much worse than OMKL and (Ada)Raker
methods. Note that the Raker also achieves competitive classification accuracy when the
constant stepsize 1/

√
T is used. Such a choice is however not always feasible in practice,

since it requires knowledge of how many data samples will be available ahead of time.

Accuracy versus complexity. In this experiment, we test classification performance
in terms of both classification error and CPU time for different levels of complexity; see
Table 13. We use the number of support vectors B for M-Forgetron, and the number of
RFs D for Raker and AdaRaker to represent different levels of complexity, and compare
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their performance using the default stepsize. It is expected that CPU time increases as
the complexity increases, and the classification error decreases as the complexity grows.
For all three datasets, the AdaRaker achieves the lowest classification error, and the Raker
outperforms the M-Forgetron while at the same time it is more efficient computationally.

6. Concluding Remarks

This paper dealt with kernel-based learning in environments with unknown dynamics that
also include static or slow variations. Uniquely combining advances in random feature
based function approximation with online learning from an ensemble of experts, a scalable
online multi-kernel learning approach termed Raker, was developed for static environments
based on a dictionary of kernels. Endowing Raker with capability of tracking time-varying
optimal function estimators, AdaRaker was introduced as an ensemble version of Raker
with variable learning rates. The key modules of the novel learning approaches are: i)
the random features are for scalability, as they reduce the per-iteration complexity; ii) the
preselected kernel dictionary is for flexibility, that is to broaden generalizability of a kernel-
based learner over a larger function space; iii) the weighted combination of kernels adjusted
online accounts for the reliability of learners; and, iv) the adoption of multiple learning
rates is for improved adaptivity to changing environments with unknown dynamics.

Complementing the principled algorithmic design, the performance of Raker is rigor-
ously established using static regret analysis. Furthermore, without a-priori knowledge of
dynamics, it is proved that AdaRaker achieves sub-linear dynamic regret, provided that
either the loss or the optimal learning function does not change on average. Experiments
on synthetic and real datasets validate the effectiveness of the novel methods.
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Appendix A. Proof of Lemma 1

To prove Lemma 1, we introduce two intermediate lemmata as follows.

Lemma 3 Under (as1), (as2), and f̂∗p as in (26) with Fp := {f̂p|f̂p(x) = θ>zp(x), ∀θ ∈
R2D}, let {f̂p,t(xt)} denote the sequence of estimates generated by Raker with a pre-selected
kernel κp. Then the following bound holds true w.p.1

T∑
t=1

Lt(f̂p,t(xt))−
T∑
t=1

Lt(f̂∗p (xt))≤
‖θ∗p‖2

2η
+
ηL2T

2
(42)

where η is the learning rate, L is the Lipschitz constant in (as2), and θ∗p is the corresponding

parameter (or weight) vector supporting the best estimator f̂∗p (x) = (θ∗p)
>zp(x).
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Proof: Similar to the regret analysis of online gradient descent (Shalev-Shwartz, 2011),
using (12) for any fixed θ, we find

‖θp,t+1 − θ‖2 =‖θp,t − η∇L(θ>p,tzp(xt), yt)− θ‖2 (43)

=‖θp,t − θ‖2 + η2‖∇L(θ>p,tzp(xt), yt)‖2 − 2η∇>L(θ>p,tzp(xt), yt)(θp,t − θ).

Meanwhile, the convexity of the loss under (as1) implies that

L(θ>p,tzp(xt), yt)− L(θ>zp(xt), yt) ≤ ∇>L(θ>p,tzp(xt), yt)(θp,t − θ). (44)

Plugging (44) into (43) and rearranging terms yields

L(θ>p,tzp(xt), yt)−L(θ>zp(xt), yt) ≤
‖θp,t − θ‖2 − ‖θp,t+1 − θ‖2

2η
+
η

2
‖∇L(θ>p,tzp(xt), yt)‖2.

(45)
Summing (45) over t = 1, . . . , T , with f̂p,t(xt) = θ>p,tzp(xt), we arrive at

T∑
t=1

(
L(f̂p,t(xt), yt)−L(θ>zp(xt), yt)

)
≤
‖θp,1−θ‖2 − ‖θp,T+1 − θ‖2

2η
+
η

2

T∑
t=1

‖∇L(θ>p,tzp(xt), yt)‖2

(a)

≤ ‖θ‖
2

2η
+
ηL2T

2
(46)

where (a) uses the Lipschitz constant in (as2), the non-negativity of ‖θp,T+1 − θ‖2, and
the initial value θp,1 = 0. The proof of Lemma 3 is then complete by choosing θ = θ∗p =∑T

t=1 α
∗
p,tzp(xt) such that f̂∗p (xt) = θ>zp(xt) in (46).

Lemma 3 establishes that the static regret of the Raker is upper bounded by some constants,
which mainly depend on the stepsize in (19) and the time horizon T .

In addition, we will bound the difference between the loss of the solution obtained
from Algorithm 1 and the loss of the best single kernel-based online learning algorithm.
Specifically the following lemma holds:

Lemma 4 Under (as1) and (as2), with {f̂p,t} generated from Raker, it holds that

T∑
t=1

P∑
p=1

w̄p,tLt(f̂p,t(xt))−
T∑
t=1

Lt(f̂p,t(xt)) ≤ ηT +
lnP

η
(47)

where η is the learning rate in (21), and P is the number of kernels in the dictionary.

Proof: Letting Wt :=
∑P

p=1wp,t, the weight recursion in (21) implies that

Wt+1 =
P∑
p=1

wp,t+1 =
P∑
p=1

wp,t exp
(
−ηLt

(
f̂p,t(xt)

))

≤
P∑
p=1

wp,t

(
1− ηLt

(
f̂p,t(xt)

)
+ η2Lt

(
f̂p,t(xt)

)2
)

(48)
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where the last inequality holds because exp(−ηx) ≤ 1−ηx+η2x2, for |η| ≤ 1. Furthermore,
substituting w̄p,t := wp,t/

∑P
p=1wp,t = wp,t/Wt into (48), it follows that

Wt+1 ≤
P∑
p=1

Wtw̄p,t

(
1− ηLt

(
f̂p,t(xt)

)
+ η2Lt

(
f̂p,t(xt)

)2
)

= Wt

(
1− η

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
+ η2

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
)
. (49)

Using 1 + x ≤ ex, ∀x, (49) leads to

Wt+1 ≤Wt exp

(
− η

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
+ η2

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
)
. (50)

Telescoping (50) from t = 1 to T , we have (W1 = 1)

WT+1 ≤ exp

(
− η

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
+ η2

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
)
. (51)

On the other hand, for any p, the following holds true

WT+1 ≥ wp,T+1 = wp,1

T∏
t=1

exp(−ηLt
(
f̂p,t(xt)

)
)

= wp,1 exp

(
− η

T∑
t=1

Lt
(
f̂p,t(xt)

))
. (52)

Combining (51) with (52), we arrive at

exp

(
−η

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
+ η2

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
)

≥wp,1 exp

(
−η

T∑
t=1

Lt
(
f̂p,t(xt)

))
. (53)

Taking the logarithm on both sides of (53), we find that (cf. wp,1 = 1/P )

−η
T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
+ η2

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
≥−η

T∑
t=1

Lt
(
f̂p,t(xt)

)
− lnP (54)

which leads to

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
≤

T∑
t=1

Lt
(
f̂p,t(xt)

)
+ η

T∑
t=1

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)2
+

lnP

η
(55)
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and the proof is complete since Lt
(
f̂p,t(xt)

)2
≤ 1 and

∑P
p=1 w̄p,t = 1.

Moreover, since Lt(·) is convex under (as1), Jensen’s inequality implies that

Lt
( P∑
p=1

w̄p,tf̂p,t(xt)

)
≤

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
. (56)

Plugging (56) into (47) in Lemma 4, we arrive at

T∑
t=1

Lt
( P∑
p=1

w̄p,tf̂p,t(xt)

)
≤

T∑
t=1

Lt
(
f̂p,t(xt)

)
+ ηT +

lnP

η

(a)

≤
T∑
t=1

Lt
(
f̂∗p (xt)

)
+

lnP

η
+
‖θ∗p‖2

2η
+
ηL2T

2
+ ηT (57)

where (a) follows because θ∗p is the optimal solution for any given kernel κp. This proves
the claim in Lemma 1.

Appendix B. Proof of Theorem 1

To derive the performance bound relative to the best function estimator f∗(xt) in the
RKHS, the key step is to bound the error of approximation. For a given shift-invariant κp,
the maximum point-wise error of the RF kernel approximant is uniformly bounded with
probability at least 1− 28

(σp
ε

)2
exp

(−Dε2
4d+8

)
, by (Rahimi and Recht, 2007)

sup
xi,xj∈X

∣∣∣z>p (xi)zp(xj)− κp(xi,xj)
∣∣∣ < ε (58)

where ε > 0 is a given constant, D the number of features, while d represents the dimension
of x, and σ2

p := Ep[‖v‖2] is the second-order moments of the RF vector norm. Henceforth,

for the optimal function estimator (26) in Hp denoted by f∗p (x) :=
∑T

t=1 α
∗
p,tκp(x,xt), and

its RF-based approximant f̌∗p :=
∑T

t=1 α
∗
p,tz
>
p (x)zp(xt) ∈ Fp, we have∣∣∣∣∣

T∑
t=1

Lt
(
f̌∗p (xt)

)
−

T∑
t=1

Lt
(
f∗p (xt)

)∣∣∣∣∣ (a)

≤
T∑
t=1

∣∣Lt (f̌∗p (xt)
)
− Lt(f∗p (xt))

∣∣
(b)

≤
T∑
t=1

L

∣∣∣∣∣
T∑
t′=1

α∗p,t′z
>
p (xt′)zp(xt)−

T∑
t′=1

α∗p,t′κp(xt′ ,xt)

∣∣∣∣∣
(c)

≤
T∑
t=1

L

T∑
t′=1

|α∗p,t′ |
∣∣∣z>p (xt′)zp(xt)− κp(xt′ ,xt)

∣∣∣ (59)

where (a) follows from the triangle inequality; (b) uses the Lipschitz continuity of the loss,
and (c) is due to the Cauchy-Schwarz inequality. Combining with (58), yields∣∣∣∣∣

T∑
t=1

Lt(f̌∗p (xt))−
T∑
t=1

Lt(f∗p (xt))

∣∣∣∣∣ ≤
T∑
t=1

Lε
T∑
t′=1

|α∗p,t′ | ≤ εLTC, w.h.p. (60)
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where the equality follows from C := maxp
∑T

t=1 |α∗p,t|. Under the kernel bounds in (as3),

the uniform convergence in (58) implies that supxt,xt′∈X z>p (xt)zp(xt′) ≤ 1+ε, w.h.p., which
in turn leads to

∥∥θ∗p∥∥2
:=

∥∥∥∥∥
T∑
t=1

α∗p,tzp(xt)

∥∥∥∥∥
2

=

∣∣∣∣∣
T∑
t=1

T∑
t′=1

α∗p,tα
∗
p,t′z

>
p (xt)zp(xt′)

∣∣∣∣∣ ≤ (1 + ε)C2 (61)

where we again used the definition of C.
Lemma 1 together with (60) and (61) leads to the regret of the proposed Raker algorithm

relative to the best static function in Hp, that is given by

T∑
t=1

Lt
( P∑
p=1

wp,tf̂p,t(xt)

)
−

T∑
t=1

Lt(f∗p (xt))

=
T∑
t=1

Lt
( P∑
p=1

wp,tf̂p,t(xt)

)
−

T∑
t=1

Lt
(
f̌∗p (xt)

)
+

T∑
t=1

Lt
(
f̌∗p (xt)

)
−

T∑
t=1

Lt(f∗p (xt))

≤ lnP

η
+
ηL2T

2
+ ηT +

(1 + ε)C2

2η
+ εLTC, w.h.p. (62)

which completes the proof of Theorem 1.

Appendix C. Proof of Lemma 2

Using Theorem 1 with η = ε = O(1/
√
T ), it holds w.h.p. that

T∑
t=1

Lt
( P∑
p=1

wp,tf̂p,t(xt)

)
−

T∑
t=1

Lt(f∗p∗(xt))≤
(

lnP +
C2

2
+
L2

2
+ LC

)√
T := c0

√
T (63)

where p∗ := arg minp∈P
∑T

t=1 Lt
(
f̂∗p (xt)

)
. At the end of interval I, we then deduce that

the static regret of the Raker learner AI is (cf. (36))

Regs
AI (|I|) =

∑
t∈I
Lt
(
f̂

(I)
t (xt)

)
−
∑
t∈I
Lt(f∗I (xt))≤ c0

√
|I|, w.h.p. (64)

where f̂
(I)
t (xt) is defined in (33), and f∗I ∈ arg minf∈

⋃
p∈P Hp

∑
t∈I Lt(f(xt)). To this end,

we sketch the main steps leading to Lemma 2 as follows.
For every interval I, the static regret of the AdaRaker can be decomposed as

Regs
AdaRaker(|I|) =

∑
t∈I
Lt
(
f̂t(xt)

)
−
∑
t∈I
Lt
(
f̂

(I)
t (xt)

)
+
∑
t∈I
Lt
(
f̂

(I)
t (xt)

)
−
∑
t∈I
Lt(f∗I (xt))

:= R1 +R2 (65)

where the first two sums in (65) represented by R1 capture the regret of the Ada-Raker
learnerA relative to the Raker learnerAI ; while the last two sums in (65) formingR2 denote
the static regret of AI on this interval. Notice that R2 directly follows from (64), while R1
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can be bounded following the same steps in Lemma 4. Different from the kernel selections
however, the crux is that the number of Raker learners (experts) |I(t)| is time-varying.

A tight bound can be derived via the Sleeping Experts reformulation of (Luo and
Schapire, 2015; Daniely et al., 2015), where an expert that has never appeared is thought
of as being asleep for all previous rounds. For a looser bound, we assume the experts (in-
stances {AI}) ever appeared until t are all active; that is, the total number of experts is
upper bounded by t log t, since at most log t experts are run during time t. Using (48)-(55),
we have that

R1 ≤ η(I)|I|+ ln(t log t)

η(I)
=
√
|I| (1 + ln t+ ln(log t)) ≤

√
|I| (1 + 2 ln t) (66)

where η(I) := 1/
√
|I|, and ln(log t)≤ ln(t). With (64), for any interval I ∈ I, we have

Regs
AdaRaker(|I|) =

√
|I| (1 + c0 + 2 ln t) ≤

√
|I| (1 + c0 + 2 lnT ) . (67)

Since the static regret bound (65) holds only at the end of such interval, the bound (67)
only holds for those intervals (collected in I) (re)initializing Raker instance AI .

The next step is to show that (67) holds for any interval I ⊆ T , possibly I /∈ I. This is
possible whenever the interval set I is properly designed, e.g., the interval partition given in
Section 4.1. For any interval I, define the set of subintervals covered by I as I‖I := {I ′ ⊆
I, I ′ ∈ I}. As argued in (Daniely et al., 2015, Lemma 5), interval I can be partitioned into
two sequences of non-overlapping but consecutive intervals, given by {I−m, . . . , I0} ⊆ I‖I
and {I1, . . . , In} ⊆ I‖I, the lengths of which satisfy |Ik+1|/|Ik| ≤ 1/2, ∀k ∈ [1, n − 1] and

|Ik|/|Ik+1| ≤ 1/2, ∀k ∈ [−m,−1]. Therefore, we have (using
∑∞

k=1

√
2−kT0 ≤ 4

√
T0)

Regs
AdaRaker(|I|) =

n−1∑
k=1

Regs
Ada(|Ik|) +

−1∑
k=−m

Regs
Ada(|Ik|) ≤ C0

√
|I|+ C1 lnT

√
|I| (68)

where the inequality follows from (67) with |I| replaced by |Ik| (≤ |I|), and C0, C1 are
constants depending on c0 defined in (63). This completes the proof of Lemma 2.

Appendix D. Proof of Theorem 2

To start, the dynamic regret in (34) can be decomposed as

Regd
A(T ) :=

T∑
t=1

Lt(f̂t(xt))−
T∑
t=1

Lt(f∗(xt)) +

T∑
t=1

Lt(f∗(xt))−
T∑
t=1

Lt(f∗t (xt)) (69)

where f∗(·) is the best fixed function in (26), and f∗t (·) is the best dynamic function in
(35), both of which belong to the union of spaces

⋃
p∈P Hp. In (69), the first difference of

sums is the static regret of AdaRaker, while the second difference of sums is the relative
loss between the best fixed function and the best dynamic solution in the common space.

Intuitively, if the time horizon T is large, then the average static regret will become
small, but the gap between the two benchmarks is large. With the insights gained from
(Besbes et al., 2015; Luo et al., 2017), T essentially trades off the values of two terms. Thus,
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splitting T into sub-horizons {Ts}, s = 1, . . . , bT/∆T c, each having length ∆T , the dynamic
regret of AdaRaker can be bounded by

Regd
AdaRaker(T ) =

bT/∆T c∑
s=1

∑
t∈Ts

(
Lt(f̂t(xt))−Lt(f∗Ts(xt))

)
+

bT/∆T c∑
s=1

∑
t∈Ts

(
Lt(f∗Ts(xt))−Lt(f

∗
t (xt))

)
:=

bT/∆T c∑
s=1

R1 +

bT/∆T c∑
s=1

R2 (70)

where the first sum over Ts we define as R1 can be bounded under AdaRaker from Lemma
2, while the second sum over Ts that we define as R2 depends on the variability of the
environments V({Lt}), can be bounded by (Besbes et al., 2015, Prop. 2)

R2 ≤ 2∆TV({Lt}t∈Ts). (71)

Together with Lemma 2, it follows that

Regd
AdaRaker(T ) ≤

bT/∆T c∑
s=1

(
(C0 + C1 lnT )

√
∆T + 2∆TV({Lt}t∈Ts)

)
= (C0 + C1 lnT )

T√
|∆T |

+ 2|∆T |V({Lt}Tt=1), w.h.p. (72)

Since (37) in Lemma 2 holds for any interval ∆T ⊆ T , after selecting ∆T so that |∆T | =(
T/V({Lt}Tt=1)

) 2
3 , we arrive at

Regd
AdaRaker(T ) ≤ (C0 + C1 lnT )T

2
3V

1
3 ({Lt}Tt=1) + 2T

2
3V

1
3 ({Lt}Tt=1), w.h.p. (73)

which completes the proof of Theorem 2.

Appendix E. Proof of Theorem 3

Suppose that the m-switching dynamic solution {f̌∗t } changes at slots t1 = 1, . . . , tm, and
define the m sub-intervals that partition T := {1, . . . , T} as T1 := [1, t2 − 1], T2 := [t2, t3 −
1], . . ., and Tm := [tm, T ]. To use the bound in Lemma 2, we decompose the regret of
AdaRaker relative to the m-switching dynamic solution {f̌∗t } by

RegmAdaRaker(T )
(a)
=

m∑
s=1

∑
t∈Ts

(
Lt(f̂t(xt))− Lt(f̌∗ts(xt))

)
(b)

≤
m∑
s=1

∑
t∈Ts

(
Lt(f̂t(xt))− Lt(f∗Ts(xt))

)
(74)

where (a) holds because the definition of {f̌∗t } in (40) implies that f̌∗t = f̌∗ts , ∀t ∈ Ts, and
(b) because the best fixed function is given by f∗Ts ∈ arg minf∈f∈

⋃
p∈P Hp

∑
t∈Ts Lt(f(xt)).

Therefore, using the regret bound of Lemma 2 in (37), we have

RegmAdaRaker(T ) ≤
m∑
s=1

Regs
A(|Ts|) ≤ (C0 + C1 lnT )

m∑
s=1

√
|Ts|. (75)
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Holder’s inequality further implies that

RegmAdaRaker(T ) ≤ (C0 + C1 lnT )

(
m∑
s=1

(1)2

) 1
2
(

m∑
s=1

(√
|Ts|
)2
) 1

2

≤ (C0 + C1 lnT )
√
Tm, w.h.p. (76)

which completes the proof of Theorem 3.
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Jyrki Kivinen, Alexander J. Smola, and Robert C. Williamson. Online learning with kernels.
IEEE Trans. Sig. Proc., 52(8):2165–2176, Aug. 2004.

Gert R.G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I.
Jordan. Learning the kernel matrix with semidefinite programming. J. Machine Learning
Res., 5:27–72, Jan. 2004.

34



Random Feature-based Online MKL in Environments with Unknown Dynamics

Moshe Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.

edu/ml.

Jason Lines, Anthony Bagnall, Patrick Caiger-Smith, and Simon Anderson. Classification
of household devices by electricity usage profiles. In Intl. Conf. on Intelligent Data
Engineering and Automated Learning, pages 403–412, Norwich, United Kingdom, Sept.
2011.

Jing Lu, Steven CH. Hoi, Jialei Wang, Peilin Zhao, and Zhi-Yong Liu. Large scale online
kernel learning. J. Machine Learning Res., 17(47):1–43, Apr. 2016.

Jing Lu, Doyen Sahoo, Peilin Zhao, and Steven CH Hoi. Sparse passive-aggressive learning
for bounded online kernel methods. ACM Trans. Intell. Syst. Tech., 9(4):45, February
2018.

Haipeng Luo and Robert E. Schapire. Achieving all with no parameters: Adanormalhedge.
In Proc. Conf. on Learning Theory, pages 1286–1304, Lille, France, Jul. 2015.

Haipeng Luo, Alekh Agarwal, and John Langford. Efficient contextual bandits in non-
stationary worlds. arXiv preprint:1708.01799, Aug. 2017.

Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. Identifying suspicious
URLs: An application of large-scale online learning. In Proc. Intl. Conf. Mach. Learn.,
pages 681–688, Montreal, Canada, Jun. 2009.

Charles A. Micchelli and Massimiliano Pontil. Learning the kernel function via regulariza-
tion. J. Machine Learning Res., 6:1099–1125, Jul. 2005.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Proc.
Advances in Neural Info. Process. Syst., pages 1177–1184, Vancouver, Canada, Dec. 2007.

Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, and Yves Grandvalet. Sim-
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