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Abstract

We propose an efficient algorithm for approximate computation of the profile maximum
likelihood (PML), a variant of maximum likelihood maximizing the probability of observing
a sufficient statistic rather than the empirical sample. The PML has appealing theoretical
properties, but is difficult to compute exactly. Inspired by observations gleaned from ex-
actly solvable cases, we look for an approximate PML solution, which, intuitively, clumps
comparably frequent symbols into one symbol. This amounts to lower-bounding a certain
matrix permanent by summing over a subgroup of the symmetric group rather than the
whole group during the computation. We extensively experiment with the approximate
solution, and the empirical performance of our approach is competitive and sometimes
significantly better than state-of-the-art performances for various estimation problems.

Keywords: Profile maximum likelihood, dynamic programming, sufficient statistic, par-
tition of multi-partite numbers, integer partition

1. Introduction

The maximum likelihood principle, proposed by Ronald Fisher, has proved to be a powerful
and versatile method used throughout nearly all scientific fields. However, it is still the
source of considerable controversy in the statistics and machine learning community. Indeed,
quoting Efron (Efron, 1982):

“The controversy centers on the relationship between decision theory and maximum

likelihood. Beginning with the Neyman-Pearson lemma, decision theory has reshaped

the theory and practice of hypothesis testing...”

Indeed, Wald’s statistical decision theory (Wald, 1950) provided a comprehensive frame-
work for evaluating and proposing statistical procedures. The maximum likelihood ap-
proach, which can be proved to be asymptotically efficient under mild conditions in the
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Hájek-Le Cam theory (Van der Vaart, 2000, Chap. 9), lacks a finite-sample justification.
Indeed, as Le Cam (Le Cam, 1979) argued, even in the asymptotic regime the maximum
likelihood approach may have weird behavior and is not always consistent.

The recent work (Acharya et al., 2017) provided an elegant justification of the maxi-
mum likelihood approach which is intimately connected to decision theory. It was shown
in (Acharya et al., 2017) that plugging-in the profile maximum likelihood (PML) distri-
bution estimators into a variety of functionals achieves the optimal sample complexity in
estimating those functionals, which the generic sequence maximum likelihood (SML) fails
to achieve. We also refer the readers to (Anevski et al., 2017) for statistical properties of
PML.

To compute the profile maximum likelihood estimator we must solve the following op-
timization problem: given n samples with empirical distribution p̂ = (p̂1, p̂2, . . .), maximize
the probability to observe p̂ up to relabeling σp̂ , (p̂σ(1), p̂σ(2), . . .) of the empirical distri-
bution, where σ is some permutation. This amounts to computing the PML distribution
p∗:

p∗ = argmax
p

∑
σ

Pp(σp̂) = argmax
p

∑
σ

e−nD(σp̂||p) (1)

where the max is over all discrete distributions p with a known support set size (we treat
the unknown case later; it is similar), the sum is over all permutations σ of the support set
of distribution p, and where D(·||·) is the Kullback-Leibler divergence.

The profile maximum likelihood estimator is computationally challenging to find – as
can shown to be equivalent to optimizing a certain matrix permanent – and the best known
algorithm has running time exponential in the support size of the unknown discrete distri-
bution. Our main contributions are the following:

1. We present an efficiently computable approximation for the PML distribution. The
approximation idea is motivated by observations for the exact PML for small alpha-
bets, where the PML distribution tends to put symbols whose empirical counts are
close (within O(

√
n)) into the same level set1. The idea is to lower bound the sum

in (1) by summing over only the permutations that contribute “a lot” – namely the
subgroup of permutations that only mix symbols within the level sets of p. This leads
to the objective function in the argmax below (a lower bound to the objective function
in (1)) to define the approximate PML (APML) distribution p̄∗:

p̄∗ = argmax
p

(
e−nD(p̂||p)

∏
α∈A(p)

|α|!
)

(2)

where A(p) is the partition of the support set of p into the level sets α of p. The
second factor of the objective function rewards clumping many symbols together into
a few large level sets, while the first factor encourages similarity to the empirical
distribution and dominates as the sample size n→∞.

We present a dynamic programming approach to compute the approximate PML
distribution p̄∗. Compared with existing approximations to the PML (Orlitsky et al.,
2004b; Vontobel, 2012), our algorithm has no tuning parameters, is deterministic, runs

1. A level set of distribution p is {x : px = u} for some value u.
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in at most linear time in the sample size (usually computing the empirical histogram
is the slowest part), and achieves state-of-the-art empirical performance in various
estimation tasks that we detail below.

For the case of unknown support set size, we state the appropriate generalization of
the PML distribution and its approximation. We modify our dynamic programming
algorithm slightly to handle this case, preserving a linear worst-case runtime. It may
happen that the PML and our approximate PML distributions have a discrete part
with finite support and a “continuous part” in the terminology of (Orlitsky et al.,
2004b); we are able to detect this case and find the discrete part of the approximate
PML distribution and the probability mass of the continuous part.

2. Given the result in (Acharya et al., 2017) that plugging in the PML distribution into
various functionals achieves the optimal sample complexity, we extensively experi-
ment with the plug-in estimator using our APML distribution. We estimate entropy,
Rényi entropy, support set size, L1 distance to uniformity, and the sorted probabil-
ity vector of a discrete distribution and compare with the state-of-the-art approaches
with available code for estimating those functionals. We find that the performance of
plugging in our APML distribution into those functionals is consistently competitive,
and sometimes much better than state-of-the-art packages.

3. We extend our approximation scheme to the multi-dimensional PML problem, which
is intimately connected to estimating divergence functions of discrete distributions.
Utilizing results on partitions of bipartite numbers, we show that solving the two-
dimensional PML problem leads to estimators that achieve the optimal sample com-
plexity for estimating a variety of functionals such as the KL divergence, the L1 dis-
tance, the squared Hellinger distance, and the χ2 divergence. The multi-dimensional
APML distribution turns out to be harder to compute than the one-dimensional
APML, so we settle for a greedy heuristic to approximate the multi-dimensional APML
distribution.

4. We provide extensive experimental results on the plug-in approach for estimating
divergence functions using our approximation to the two-dimensional PML. This
achieves competitive and sometimes much better results than state-of-the-art ap-
proaches in KL divergence and L1 distance estimation.

5. We generalize the PML idea to general group actions, leading to the generalized PML
approach for mutual information estimation. We analyze several candidates for the
PML solution and show that one candidate makes the key arguments in (Acharya
et al., 2017) fail, while the other succeeds.

We provide code at https://github.com/dmitrip/PML and (Pavlichin et al., 2017) for
computing the approximate PML distributions.

This work is organized as follows. Section 2 reviews some results on profile maximum
likelihood and functional estimation. Section 3 specializes the discussion of Section 2 to the
setting of estimating functionals of discrete distributions, and defines the PML and multi-
dimensional PML distributions. Section 4 presents our APML approach and observations
about the exact PML that inspired it. Section 5 shows the results of numerical experiments
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using the APML to estimate symmetric functionals of a distribution: the sorted probability
vector, entropy, Rényi entropy, L1 distance to uniformity, and support set size. Section 6
shows the results of numerical experiments using the APML to estimate symmetric func-
tionals of multiple distributions: the KL divergence and L1 distance. Appendices contain
proofs, examples, most of the notation and algorithms related to the multi-dimensional
APML (Appendix H), and application of the PML to estimation of mutual information
(Appendix I).

2. The principle of profile maximum likelihood and partial sufficiency

We rephrase the key result in (Acharya et al., 2017) regarding the maximum likelihood
principle in Theorem 3; similar ideas appeared in (Acharya et al., 2011). We define a
statistical model

E = {X , Pθ, θ ∈ Θ}, (3)

where the observation X ∼ Pθ for some θ ∈ Θ, X ∈ X . Let F (θ) : Θ 7→ Y be a measurable
function. Let d(F, F̂ ) : Y × Y 7→ R≥0 be the loss function, which is also assumed to be a
metric.

Given observation x, upon asserting that a statistic T is partially sufficient (Basu, 2011)
for estimating F (θ), the general profile maximum likelihood approach aims at maximizing
the probability that t = T (x) appears rather than the probability of x, which is the aim
of traditional maximum likelihood. Then, we simply plug-in the PML estimator into the
function F (·) to obtain an estimate of the functional F (θ). The profile maximum likelihood
estimator of θ is defined as follows.

Definition 1 (Profile maximum likelihood) The profile maximum likelihood estimator
of θ is defined as

θ̂T(t) , argmax
θ

Pθ(T (X) = t). (4)

Remark 2 The notion of profile likelihood has appeared in the statistics literature be-
fore (Murphy and Van der Vaart, 2000), bearing a different meaning from the one we adopt.
The principle of profile maximum likelihood we introduced in Definition 1 is known in the
statistics community as restricted maximum likelihood, which was introduced in (Patterson
and Thompson, 1971) and surveyed in (Harville, 1977).

The following theorem provides a general performance guarantee for the PML algorithm
introduced in Definition 1 in terms of estimating any functional F (θ).

Theorem 3 (Acharya et al., 2017) We fix a statistical model E = {X , Pθ : θ ∈ Θ}. Let
T = T (X) be a statistic such that T : X 7→ T and |T | < ∞. Let F (θ) : Θ 7→ Y be a
measurable function. Suppose there exists an estimator F̂ : T 7→ Y such that

sup
θ∈Θ

Pθ

(
d(F (θ), F̂ (T )) > ε

)
< δ. (5)

Then,

sup
θ∈Θ

Pθ

(
d(F (θ), F (θ̂T)) > 2ε

)
≤ δ · |T |. (6)
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The usefulness of Theorem 3 would rely on two factors: the existence of a good estimator
F̂ (T ) in terms of worst case risk, and the small cardinality of the set T that the statistic T
lies in. As we discussed above, it would be sensible to employ the PML approach if we can
assert that the statistic T is “sufficient” for estimating F (θ). However, what is the right
definition of sufficiency in this context?

The definition of sufficiency in this context is one of the most basic problems in decision
theory, which turns out to be a highly non-trivial question. It is usually termed “partial
sufficiency”, and we refer the readers to (Basu, 2011) for a survey. To illustrate the sub-
tleties of this definition, we review some historical developments below. This question was
considered by Kolmogorov (Kolmogoroff, 1942), who proposed the following definition:

Definition 4 (Kolmogorov’s definition of partial sufficiency) (Kolmogoroff, 1942) A
statistic T = T (X) is called partially sufficient for F (θ), if the posterior distribution of F (θ)
given X = x, depends only on T = t and on the prior distribution of θ.

It was later shown by Hájek (Hájek, 1967) that the Kolmogorov definition is void in the
sense that if F (θ) is not a constant, and T is partially sufficient for F (θ) in the sense of
Kolmogorov, then T is sufficient for θ in the usual sense as well.

In this context, Hájek proposed another definition of partial sufficiency. 2

Definition 5 (Hájek, 1967, Def. 2.2) A statistic T = T (X) is called partially sufficient
for F (θ) if there exists some other functional R(θ) such that F (θ) = F1(R(θ)), and the
following is satisfied:

1. The distribution of T will depend on R(θ) only, that is

Pθ(dT ) = PR(θ)(dT ); (7)

2. There exists a distribution QR ∈ PR such that T is sufficient for the family {QR},
where PR is the convex hull of the distributions {Pθ : R(θ) = R}.

It was shown in (Hájek, 1967) that under the partial sufficiency in Def. 5, an analogue
of the Rao-Blackwell theorem in terms of the worst case risk can be proved. 3

It begs the question: in general how could one prove a certain statistic T is partially
sufficient for F (θ)? The following equivalence relation induced by group transformations
is common in practice. Let G = {g} be a group of one-to-one transformations of the X
space on itself. We shall say that an event is G-invariant, if gA = A for all g ∈ G. The set
of G-invariant events is a sub-σ-algebra B, and a measurable function f is B-measurable if
and only if f(gx) = f(x) for all g ∈ G, x ∈ X .

Theorem 6 (Hájek, 1967) Suppose parameter θ can be represented as θ = (τ, g), where
g ∈ G, and G is a group of one-to-one transformations of the X space on itself. Suppose
there exists a family of probability distributions {Pτ} indexed by τ such that

Pθ(A) = Pτ (gX ∈ A), (8)

2. For other definitions of sufficiency, see (Le, 1964; Birnbaum, 1962; Blackwell and Girshick, 1979).
3. Note that it is weaker than the usual Rao-Blackwell theorem, which holds pointwise for the risk function.
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where X ∼ Pτ . Then, under mild conditions 4, the sub-σ-algebra of G-invariant events is
partially sufficient for τ under statistical model {X , Pθ} in the sense of Def. 5.

Theorem 6 can be interpreted in the following way. We introduce the equivalence relation
x1 ∼ x2 if and only if there exists some g ∈ G such that x1 = gx2. Then, Theorem 6 states
that it is partially sufficient for τ to look at the equivalence classes [a] = {x ∈ X |x ∼ a}.

3. Discrete distributions up to relabeling

In this section, we specialize Theorem 6 to several different settings, centered around the
problem of estimating functionals of discrete distributions.

3.1. Permutation group and single sorted probability vector

The standard PML problem can be viewed as a special case of Theorem 6 with the group
being the permutation group. Concretely, let G be the permutation group SX on X , let p
be a distribution supported on set X – that is, px > 0 ∀x ∈ X – and let τ be the sorted non-
increasing probability vector (p(1), p(2), . . . , p(|X |)) of p. It is clear that the label-invariant
properties of a distribution, such as the entropy, Rényi entropy, and support set size, depend
on p only through τ .

Suppose we observe n i.i.d. samples xn1 = (x1, . . . , xn) with distribution p. Denote by
p̂ = p̂(xn1 ) the empirical distribution:

p̂ = (p̂x)x∈X =

(
1

n

n∑
i=1

1(xi = x)

)
x∈X

(9)

It is well known that the empirical distribution is the minimum complete sufficient
statistic for p (Lehmann and Casella, 1998). The probability of observing a specific empirical
distribution is given by

Pp(p̂) =

(
n

np̂

) ∏
x∈X

pnp̂xx (10)

where the prefactor in (10) is a multinomial coefficient5.

Applying Theorem 6 with θ = p = (τ, g), we obtain that the fingerprint statistic (Valiant
and Valiant, 2011b, 2013)6 is partially sufficient for τ . Concretely, the fingerprint F =
(Fi)i≥0 is defined so that Fi is the number of symbols observed exactly i times in xn1 :

F = F(p̂(xn1 )) = (Fi)i≥0 , (|{x ∈ X : np̂x = i}|)i≥0 (11)

4. Precisely, Condition 3.1 in (Hájek, 1967).

5.

(
n

np̂

)
, n!

∏
x∈X

1
(np̂x)!

.

6. The fingerprint is also called the profile (Orlitsky et al., 2004b), histogram order statistics (Paninski,
2003), and histogram of histograms (Batu et al., 2000).
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Below, we compute the probability of a specific fingerprint for the case that p is supported
on finite alphabet X = Supp(p) with

K , |X | (12)

and the empirical distribution p̂ is supported on empirical alphabet X̂ , Supp(p̂) = {x ∈
X : p̂x > 0} ⊂ X with

K̂ , |X̂ |. (13)

Then F0 = |X \ X̂ | = K − K̂ counts the number of “unseen” symbols, and is thus unknown
if the support set size K is unknown.

In Appendix A we derive the following expression for the probability of a specific fin-
gerprint for the case of finite X :

Pp(F) =

∏
i≥0

1

Fi!

( n

np̂

)
perm

((
p
np̂x′
x

)
x,x′∈X︸ ︷︷ ︸

Q

)
(14)

where perm(A) denotes the matrix permanent of the K ×K matrix A:

perm(A) =
∑
σ∈SX

∏
x∈X

Ax,σ(x) (15)

where the sum is over the symmetric group SX on X . To simplify notation, we let Q denote
the K × K matrix in (14). Note that to evaluate expression (14) we need to know the
support set X , both to evaluate perm(Q) and F0 = |X \ X̂ |. Appendix B shows examples
of the computation of Pp(F) over small alphabets.

For completeness, Appendix A also contains expression (87) for Pp(F) for the case of
infinite countable X , though this expression is not used elsewhere in this work for the reason
stated in the last paragraph of Section 3.1.

For a given collection of distributions P, the profile maximum likelihood distribution is
defined as

p∗ , argmax
p∈P

Pp(F) = argmax
p∈P

perm (Q)

(K − K̂)!
, (16)

where in the second equality we discarded all p-independent factors of Pp(F) (14). F0 =
K − K̂ = |X \ X̂ | depends on p through its support set size. Note that Pp(F) is invariant
under relabeling of the components of p, so we can choose p∗ to be non-increasing in the
same ordering as we choose for the support set X . Note that the set P is not necessarily
the same as the set of all discrete distributions.

If the collection of distributions P includes distributions with different support set sizes
(for example, all finite support set sizes at least as large as K̂), then we can estimate the
support set size by breaking up the optimization in (16) into two steps:

K∗ , argmax
K

(
1

(K − K̂)!
max
p∈PK

perm (Q)

)
(17)
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whenever the max over K exists, where PK , {p ∈ P : |Supp(p)| = K}. The maximizer
K∗ usually exists because increasing K makes the first factor in (17) smaller, but makes the
K×K matrix Q bigger, boosting the number K! of permutations to sum over in computing
the permanent.

It may happen that K∗ does not exist7, in which case we are still able to define a PML
distribution in terms of a discrete part and continuous part in the terminology of (Orlitsky
et al., 2004b). (Orlitsky et al., 2004b) showed that for any fingerprint F , there exists a
distribution p∗ maximizing Pp(F), but this distribution may assign some symbols to the
continuous part, and others to the discrete part with finite support. The intuition is that if
there are sufficiently many symbols that appear exactly once in the sample, then the PML
distribution p∗ assigns discrete probability 0 to infinitely many symbols to maximize the
probability that each of them is seen only once. Then we can define K∗d to be the optimal
support set size of the discrete part of p∗. (Orlitsky et al., 2004b) further derived conditions
lower- and upper-bounding K∗d in terms of maxx p̂x and minx p̂x and thus showing K∗d exists,
and upper-bounding the size of the continuous part in terms of F1 (the numbers of symbols
occurring once). (Acharya et al., 2009) computed p∗ for all sample sizes up to n = 7.

Note that either K∗ exists or the PML distribution p∗ has a continuous part, but it is
never the case that p∗ has infinite countable support. For this reason we never use expression
(87) for the probability of a fingerprint when X is countably infinite.

3.2. Permutation group and multiple probability vectors

Suppose we have two distributions p, q on the same alphabet X , such that px+ qx > 0 ∀x ∈
X . This condition ensures that there are no symbols x such that px = qx = 0, which
simplifies the expressions below. Draw n samples i.i.d. from p with empirical distribution
p̂ and draw m samples i.i.d. from q with empirical distribution q̂. It is clear that the
label-invariant properties of two distributions, such as the Kullback-Leibler divergence,
L1 distance, and the general family of divergences

∑
x∈X f(px, qx), are invariant to the

permutation group SX acting on pairs of distributions as σ(p, q) , (σp, σq) for all σ ∈ SX .
Denote the 2-D fingerprint (Raghunathan et al., 2017) by F(p̂, q̂), analogous to (11):

F = F(p̂, q̂) = (Fi,j)i,j≥0 , (|{x ∈ X : np̂x = i,mq̂x = j|)i,j≥0 (18)

The probability to draw the 2-D fingerprint under p, q is:

Pp,q(F) =

∏
i,j≥0

1

Fi,j !

( n

np̂

)(
m

mq̂

)
perm

((
p
np̂x′
x q

mq̂x′
x

)
x,x′∈X

)
(19)

Following the general profile maximum likelihood methodology, for a collection P of
pairs of distributions on alphabet X , the PML distributions p∗, q∗ are:

(p∗, q∗) , argmax
(p,q)∈P

Pp,q(F) (20)

Note that finding the PML pair (p∗, q∗) is not equivalent to solving two independent opti-
mization problems since the matrix permanent in (19) does not factor into two terms. As

7. For example, if n ≥ 2 and each symbol occurs exactly once in the sample, so p̂x = 1
n

for all x ∈ X (p̂).
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in the 1D PML case, if the support set size K = |X | is unknown, then we can attempt to
estimate it analogously to (17). See Appendix H for a precise statement.

Appendix H generalizes the argument above in a straightforward manner toD-dimensional
fingerprints (Raghunathan et al., 2017). This allows estimation of functionals of more than
two distributions.

4. An approximation to the profile maximum likelihood distribution

4.1. Our approximate PML algorithm: an overview

It seems computationally challenging to compute the profile maximum likelihood distribu-
tion in all the cases discussed in Section 3, though the computational complexity of this
problem is not known. Indeed, it involves computing the matrix permanent in (16), and
computing permanents is #P -hard (Valiant, 1979). Since the computation of permanents
is exponentially slow in the support set size |X | with the best-known algorithms, one may
lower the target and hope to find an approximate efficient algorithm to all the profile max-
imum likelihood problems in Section 3. Some algorithms on approximate PML have been
developed: (Orlitsky et al., 2004a) proposes an expectation maximization algorithm and
(Vontobel, 2012) proposes a Bethe approximation to the PML distribution. None of these
works, including ours, provides guarantees on the nearness of the approximate and exact
PML distributions.

Here we develop a PML distribution approximation inspired by some empirical obser-
vations in the small examples where this distribution is computable exactly in reasonable
time. We provide a fast algorithm for computing this approximation. The algorithm has no
tunable parameters and runs in time at most linear in the sample size in the standard PML
problem (Section 3.1), its run time usually dominated by the computation of the empirical
distribution p̂. It is also efficient in solving divergence estimation problems as described in
Section 3.2.

Observations from solving the PML exactly in small cases (see Section 4.2) yield the
intuition that the PML distribution p∗ assigns equal mass to (“clumps together”) symbols
whose empirical counts are close, differing on the order of

√
n, where n is the sample size. For

such a “clumped” distribution p∗, we further guess that the value of the matrix permanent
in Pp∗(F) ∼ perm(Q)/F0! (14) is dominated by a subset of terms in the summation over
the symmetric group SX – namely the subgroup of permutations that only mix symbols
within the same “clump” – a level set of p∗ – but not between different clumps. Armed with
this intuition, we replace maximization of the matrix permanent, which seems hard, with
maximization of a lower bound involving a sum over only this subgroup of permutations,
which is much easier. Section 4.3 gives a precise statement of these remarks and further
motivates our approach. The remainder of this section is devoted to an overview of our
approximation algorithm.

Let A(p) = {α} be the partition of X into level sets of distribution p:

A(p) , {{x ∈ X : px = u} : u ∈ {px : x ∈ X}} (21)

That is, x, x′ ∈ α ∈ A(p) if and only if px = px′ .

9
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Then our lower bound V̄ to the log permanent is defined by summing over a subgroup
of the symmetric group, and satisfies (see derivation in Section 4.3):

log(perm(Q)) ≥ V̄ (p) =
∑

α∈A(p)

log(|α|!)− n(D(p̂||p) +H(p̂)) (22)

whereD(p̂||p) =
∑

x∈X p̂x log(p̂x/px) is the Kullback-Leibler divergence andH(p̂) = −
∑

x∈X px log(px)
is the entropy of the empirical distribution. The approximate PML (APML) distribution
is then the maximizer of the lower bound V̄ :

p̄∗ , argmax
p∈P

V̄ (p) (23)

The right hand side of (22) yields some intuition for the approximate PML distribution.
Suppose P contains only distributions with support set size K = |X |, so F0 = K − |X̂ | is
fixed in (16), and the first term on the right hand side of (22) encourages p̄∗ to clump many
symbols together into a few large clumps (since log(|α|!) ∼ |α| log(|α|) is superlinear in |α|),
while the second term encourages p̄∗ to be similar to the empirical distribution p̂. As the
sample size n → ∞, the second term dominates, and we have p̄∗ → p̂, consistent with our
intuition for the large sample size limit and consistent with the result of (Orlitsky et al.,
2004b) (Theorem 16) for the exact PML distribution.

It turns out that computation of the approximate PML distribution p̄∗ is equivalent
to optimization over all partitions of X . This is because, as we show, any distribution p̄∗

maximizing V̄ satisfies an averaging property with respect to the empirical distribution p̂
for all x ∈ X : Let α(x, p̄∗) = {x′ ∈ X : p̄∗x′ = p̄∗x} ∈ A(p̄∗) be the level set of p̄∗ containing
symbol x, then

p̄∗x =
1

|α(x, p̄∗)|
∑

x′∈α(x,p̄∗)

p̂x′ (24)

Therefore p̄∗ is determined by its partition of the alphabet X into level sets, so we can
replace maximization of V̄ over p with maximization over all partitions A. Let Ā∗ denote
the optimal partition:

Ā∗ , argmax
A: partition of X

V̄ (A) (25)

where V̄ (A) , V̄ (pA(p̂)) and pA(p̂) is the distribution obtained by averaging the empirical
distribution over the partition elements – that is, satisfying property (24) for all x ∈ X .
The approximate PML distribution is then p̄∗ = pĀ∗(p̂).

We derive constraints on the optimal partition Ā∗ that enable an efficient8 dynamic
programming algorithm to compute Ā∗ and the approximate PML distribution p̄∗. This
algorithm is presented in Section 4.5.

For the case of D ≥ 2 probability vectors and D-dimensional fingerprints – for example,
when estimating the KL divergence, corresponding to D = 2 as in Section 3.2 – we are
unable to give an efficient algorithm for maximizing our lower bound V̄ suitably generalized
to the D-dimensional case. The difficulty is that there is no natural ordering on ND for

8. Running in time O(| Supp(F)|2). Any empirical distribution p̂ satisfies | Supp(F(p̂))| ≤ (
√

8n+ 1 + 1)/2
(see discussion at end of Section 4.5), where n is the sample size, so the running time is O(n). The run
time of our algorithm is usually dominated by computation of the empirical distribution p̂.

10
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D ≥ 2, so the dynamic programming approach for D = 1 does not work here. In this case
we settle for another layer of approximation, using a greedy heuristic to iteratively merge
clumps of symbols: we enlarge the first term in (22) until the second term becomes too
large. This algorithm is presented in Appendix H.

Figures 1 and 2 show the approximate PML distributions for the cases D = 1 and
D = 2, respectively. For D = 1, the approximate PML distribution is as defined in (23).
For D ≥ 2, we approximately maximize our lower bound V̄ to the log matrix permanent as
described in Appendix H. Figure 14 in Appendix H shows the case D = 3.

X

10 20 30 40
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20

p (underlying distribution)
p̂ (sorted empirical)
p̄
∗(approximate PML)

X

5 10 15 20 25 30 35 40

X

5

10

15

20

25

30

35

40

Figure 1: (left) An empirical histogram p̂ sorted in non-increasing order (gray squares)
drawn from underlying distribution p (black area) and the approximate PML (APML)
distribution p̄∗ (23) (red line), scaled by the sample size n = 200. The alphabet is X =
{1, . . . , 40}, assumed unknown in computing p̄∗. (right) Computation of the log permanent
lower bound V̄ (p̄∗) (31) involves summing over all permutations that mix symbols only
within the level sets of p̄∗, corresponding to all permutation matrices with nonzero entries
within the black blocks.

4.2. Intuitions from solving the PML exactly

For small alphabets, we can numerically and sometimes analytically optimize the permanent
in (16) and (20). We observe that the PML distribution tends to assign equal mass to
symbols whose empirical counts are close, differing on the order of

√
n, where n is the

sample size. This observation motivates our approximate PML scheme in Section 4.3.

4.2.1. Exact solution for size 2 alphabet

Suppose the alphabet size is |X | = 2. Given sample size n and empirical distribution
p̂ = (p̂1, p̂2) = (p̂1, 1 − p̂1), without loss of generality one may assume p̂1 ≥ 1

n (otherwise
the PML is given by Bern(1)) and p̂1 ≤ 1

2 . The exact PML distribution p̂∗ was computed
in (Orlitsky et al., 2004b):

11
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2-D fingerprint F(p̂, q̂)

Figure 2: (Left) empirical distributions p̂ and q̂ (gray squares) drawn from underlying
distributions p and q (black area) with n = m = 400 samples. The approximate PML
distributions (¯̄p∗, ¯̄q∗) are computed by clumping entries of a 2-D fingerprint according to
the greedy heuristic described in Appendix H. The approximate PML distributions are
ordered in the same way as the empirical distributions (with a distinct color for each level
set corresponding to the subplot on the right). All distributions are plotted scaled by the
sample size. (Right) the 2-D fingerprint Fi,j at coordinates (i, j). Marker areas are roughly
proportional to Fi,j . All points within the colored convex hulls correspond to a level set of
the approximate PML distributions. We can see three large level sets corresponding to the
three distinct values of (px, qx) for x ∈ X .

Theorem 7 ((Orlitsky et al., 2004b)) For all 1
n ≤ p̂1 ≤ 1

2 ,

p̂∗ =


(

1
2 ,

1
2

)
: |p̂1 − p̂2| ≤ 1√

n(
1

1+p ,
p

1+p

)
: |p̂1 − p̂2| > 1√

n

, (26)

where p is the unique root in (0, 1) of the polynomial

p̂1p
n(1−2p̂1)+1 − p̂2p

n(1−2p̂1) + p̂2p− p̂1. (27)

Theorem 7 states that |p̂1 − p̂2| ≤ 1√
n
⇔ p∗ is uniform, which confirms our intuition

that the relative ranking of two bins is “resolvable” if their empirical counts are more
than about

√
n apart, since the empirical counts are marginally binomially-distributed with

standard deviation proportional to
√
n. Figure 3 summarizes these observations for the

size-2 alphabet.

4.2.2. Size 3 alphabet

Next let’s consider the case of |X | = 3 bins. Given empirical distribution p̂ = (p̂1, p̂2, p̂3),
we use an expectation-maximization (EM) algorithm to numerically search for the PML
distribution. The EM algorithm starts from an initial point p ← p̂ and converges to a
local maximum of perm(Q) (14). We sort the components of this local maximum in non-

12
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p̂1 (empirical)
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Figure 3: “Phase diagram” for the PML distribution p∗ = (p∗1, 1 − p∗1) on binary alphabet
X = {1, 2} and empirical distribution (p̂1, 1 − p̂1) on n = 30 samples (plotting the first
component). Circles correspond to the possible histograms (p̂1 ∈ {0/30, 1/30, . . . , 30/30}).
Solid black lines correspond to the solution for arbitrary p̂1 ∈ [0, 1], obtained numerically.
The PML distribution p∗ is uniform when |p̂1 − p̂2| ≤ 1/

√
n. Outside this middle region

there are two PML branches, since any permutation of the PML distribution is another
PML distribution. Diagonal dashed lines correspond to the lines (p̂1, p̂1) and (p̂1, 1− p̂1).

increasing order and denote the result by p∗EM. Details of the EM algorithm can be found
in Appendix D. We summarize our findings in Figure 4.

4.2.3. Exact solution for size 2 alphabet with D distributions

Suppose we have D distributions ((p
(d)
1 , 1− p(d)

1 ))Dd=1 on the same alphabet X = {1, 2} and

draw (nd)
D
d=1 samples from each, obtaining empirical distributions ((p̂

(d)
1 , 1−p̂(d)

1 ))Dd=1. Then
the D-dimensional PML distribution (p∗(d))Dd=1 (defined for D = 2 in Section 3.2 and for
general D in Appendix H) is stated in Theorem 8.

Theorem 8 The D-tuple of PML distributions (p∗(d))Dd=1 on a binary alphabet satisfies:

D∑
d=1

4nd

(
p̂

(d)
1 −

1

2

)2

> 1 ⇒ (p∗(d))Dd=1 6=
((

1

2
,
1

2

))D
d=1

(28)

See Appendix E for a proof. We conjecture that the converse of statement (28) holds.
Theorem 8 extends the results of (Orlitsky et al., 2004b) and (Fernandes and Kashyap,

2013) on the uniformity of the D-dimensional distribution beyond D = 1. The left side of
(28) describes the interior of an ellipsoid in the space of distributions centered on (1

2)Dd=1,
shown in Figure 5 for the case D = 2. Note that (28) is not consistent with D copies
of condition (26) for D ≥ 2; this reflects the fact that the probability of a D-dimensional
fingerprint does not decompose into a product of D terms (see (19) for the case D = 2 and
Appendix H for the general case).
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(30, 0, 0) (0, 30, 0)

(0, 0, 30)

p∗1 = p∗2 = p∗3

p∗1 > p∗2 = p∗3

p∗1 = p∗2 > p∗3

p∗1 > p∗2 > p∗3

Figure 4: “Phase diagram” for the PML distribution approximation p∗EM for alphabet size
|X | = 3 bins and n = 30 samples (analogous to Figure 3), computed by an expectation-
maximization (EM) algorithm as discussed in Section 4.2.2 and Appendix D. We plot a
marker for each possible empirical distribution – a type – on the simplex. Each type has
three coordinates, which we then project onto the 2-dimensional image shown (so, e.g., the
uniform type np̂ = (10, 10, 10) is in the center). The shape of the marker at position np̂
corresponds to the level set decomposition of the distribution p∗EM, with components sorted
in non-increasing order.

4.2.4. Empirical observations of the exact solutions

Figures 3, 4, and 5 suggest that the PML distribution tends to “cluster” together similar
entries of the empirical histogram p̂, rather than smooth them out. If n|p̂x − p̂x′ | is smaller
than approximately

√
np̂x, then the relative ranking of the true distribution’s x and x′

components is not well resolved statistically, and the permanent of Q (14) tends to be
maximized with p∗x = p∗x′ . On the other hand if n|p̂x − p̂x′ | is larger than approximately√
np̂x, then it tends to happen that p∗x 6= p∗x′ . The similar phenomenon of a phase transition

between a uniform and nonuniform PML distribution (for a different approximation of the
PML (Vontobel, 2012)) has been reported by (Fernandes and Kashyap, 2013; Chan et al.,
2015).

These observations lead to the intuition that permutations σ ∈ SX that exchange suffi-
ciently different components of p̂ do not contribute much to the permanent perm(Q). This
intuition motivates our idea of simplifying the computation of the permanent by summing
over only those permutations that contribute “a lot” to the sum. Section 4.3 develops this
idea.
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p∗, q∗ not both uniform

Figure 5: “Phase diagram” for the 2-D PML pair of distributions p∗, q∗ (20) on binary
alphabet X = {1, 2} and empirical distributions (p̂1, 1− p̂1), (q̂1, 1− q̂1) on n = 10,m = 20
samples. p∗, q∗ are not both uniform whenever the empirical distribution components p̂1, q̂1

both lie outside the shaded ellipse 4n
(
p̂1 − 1

2

)2
+ 4m

(
q̂1 − 1

2

)2 ≤ 1.

4.3. Approximate PML: the case of a single distribution

In the sequel, denote by A(p) = {α} the partition of X into the level sets of p:

A(p) , {{x ∈ X : px = u} : u ∈ {px : x ∈ X}} (29)

In this Section we assume that the underlying distribution p is supported on finite set X
of known cardinality. The case of unknown or infinite support set size is treated in Section
4.6. If the support set size is known, then so is the number of “unseen” symbols F0, so from
(16) we conclude that the PML distribution p∗ is a maximizer of the function:

V (p) , log(perm(Q)) (30)

We lower bound the log permanent V (p) by summing over a subset of the terms in the
summation – a subgroup of the symmetric group SX . Denote the lower bound by V̄ (p):

V̄ (p) , log

 ∑
σ∈SX ,p

∏
x∈X

p
np̂σ(x)
x

 ≤ log

∑
σ∈SX

∏
x∈X

p
np̂σ(x)
x

 = V (p) (31)

where SX ,p is a subgroup of SX consisting of all permutations that exchange only those
alphabet symbols x, x′ ∈ X that are within the same level set of p. Equivalently, SX ,p is
the stabilizer of distribution p under the action of relabeling its components:

SX ,p , {σ ∈ SX : σp = p} ∼= ×
α∈A(p)

Sα (32)

where (σp)x , pσ(x), ∼= denotes group isomorphism, × denotes the direct product of groups,
and Sα is the symmetric group acting on level set α ⊂ X . Then |SX ,p| =

∏
α∈A(p) |α|!.
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Our approximate profile maximum likelihood distribution p̄∗ maximizes the lower bound
V̄ (p). In other words, for the case of every distribution in collection P having the same
support set size,

p̄∗ , argmax
p∈P

V̄ (p) (33)

The case of unknown support set size is treated in Section 4.6.

Some intuition for the computational difficulty of the proposed approximation: the
product structure (32) of SX ,p allows us to lower bound the log matrix permanent V (p) =
log(perm(Q)) ≥ log(perm(Q̄)) = V̄ (p), where Q̄ is the block-diagonal matrix Q̄x,x′ =
Qx,x′1(p̂x = p̂x′) whose permanent is the product of the permanents in each block. Since p
is constant within each block, the permanent of each block is easy to evaluate, so evaluation
of the lower bound V̄ (p) is dramatically simpler than evaluation of V (p), taking time O(|X |).
It moreover turns out to be possible to optimize V̄ (p) computationally efficiently to find
the approximate PML distribution p̄∗; this is done below.

The restriction to summing over SX ,p rather than SX seems large, but the hope is that
p̄∗ clusters together only comparably frequent symbols (that is, p̄∗x = p̄∗x′ implies n|p̂x− p̂x′ |
is less than about

√
np̂x), so we hope that V̄ (p̄∗) ≈ V (p̄∗) and that p̄∗ is close to p∗, the exact

profile maximum likelihood (16). Figure 1 shows that the approximate PML distribution p̄∗

clustering together similar enough bins of p̂. We thus expect our approximate PML scheme
to perform best when data is drawn from a distribution with a few well-separated level sets
(like a uniform distribution or mixture of uniforms) and less well for more smoothly-varying
distributions (like a Zipf distribution); this intuition is borne by the numerical experiments
of Section 5.

We can rewrite our log permanent lower bound V̄ (p) (31) as (see proof in Appendix F):

V̄ (p) = log

 ∑
σ∈SX ,p

∏
x∈X

p
np̂σ(x)
x

 (34)

= −n
(
D(p̂||p) +H(p̂)

)
+

∑
α∈A(p)

log(|α|!) (35)

where A(p) (29) is the partition of X into level sets of p, D(p̂||p) is the Kullback-Leibler
divergence and H(p̂) is the entropy of the empirical distribution.

Expression (35) yields some intuition about the approximate PML distribution p̄∗ – a
maximizer of V̄ (p). A distribution p that “clumps” many symbols together (that is, has
a few large level sets α) boosts the second term (the summation over α ∈ A(p)) in (35),
but is very different from p̂, thus lowering the first term. On the other hand, by setting
p = p̂, we maximize the first term, but reduce the second term. As the sample size n→∞,
the contribution of the second term in (35) vanishes relative to the first term, and we have
p̄∗ → p̂, the ML distribution, in this limit.

Section 4.4 establishes some properties of the approximate PML solution p̄∗ (33) that
enable us to compute it efficiently via a dynamic programming algorithm in Section 4.5.
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4.4. Properties of the approximate PML distribution

Let α ⊂ X and denote by p̂α the average value of the empirical distribution p̂ over α:

p̂α ,
1

|α|
∑
x∈α

p̂x (36)

We can show that the PML distribution approximation p̄∗ (33) satisfies for all x ∈ X

p̄∗x = p̂α(x,p̄∗) (37)

where α(x, p̄∗) = {x′ :∈ X : p̄∗x′ = p̄∗x} is the level set of p̄∗ containing x. That is, p̄∗x
(37) is equal to the average value of the empirical histogram p̂ over the symbols clumped
with x into the same level set of p̄∗. This follows from the fact that D(p̂‖p) is a Bregman
divergence (Jiao et al., 2017, Lemma 4).

The averaging property (37) determines our approximate PML distribution p̄∗ in terms
of its partition of X into level sets. Therefore, instead of maximizing V̄ (p), we maximize
V̄ (A), defined:

V̄ (A) ,
∑
α∈A

V̄ (α) (38)

where for α ⊂ X
V̄ (α) , log (|α|!) + n|α|p̂α log(p̂α) (39)

We can check that V̄ (A) = V̄ (p̂A), where p̂A is the distribution obtained by averaging the
empirical distribution p̂ within each partition element α ∈ A. Let Ā∗ denote the optimal
partition:

Ā∗ , argmax
A: partition of X

V̄ (A) (40)

Now optimizing the lower bound to the permanent V̄ (p) (31) is equivalent to optimizing
V̄ (A) (38) over partitions of X , since V̄ (p̄∗) = V̄ (Ā∗) and p̄∗ = p̂Ā∗ .

We make two observations for the solution of the approximate PML problem (40) that
allow us to restrict the set of partitions over which we optimize. Let A be a partition of X .
We say A has the iso-clumping or convexity properties defined below:

1. Iso-clumping property. Symbols with the same empirical probabilities are clumped
together: For all x, x′ ∈ X :

p̂x = p̂x′ ⇒ α(x) = α(x′) (41)

Where α(x) ∈ A is the partition element containing x.

2. Convexity property. For all x, x′, x′′ ∈ X :(
p̂x < p̂x′ < p̂x′′ and α(x) = α(x′′)

)
⇒ α(x) = α(x′) = α(x′′) (42)

Theorem 9 Let Ā∗ (40) be the partition of X into level sets of the approximate PML
distribution p̄∗ (33) and let p̂ be the empirical distribution. Then Ā∗ has the iso-clumping
and convexity properties (41) and (42).

See Appendix G for a proof.
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4.5. A dynamic programming computation of the approximate PML
distribution

Theorem 9 lets us efficiently maximize V̄ (A) (38) by restricting to only those partitions of
X that have the iso-clumping and convexity properties. Once we find Ā∗ (40), the averaging
property (37) lets us compute the approximate PML distribution p̄∗.

Let F+ , (Fi)i≥1. Let

0 = m0 < m1 < m2 < . . . < mF+ ≤ n (43)

where
Supp(F+) = {m ≥ 1 : Fm > 0} = {mi}F+

i=1 (44)

Then any distribution whose level set partition satisfies the iso-clumping (41) and con-
vexity (42) properties has all level sets of the form Xi:j with 0 ≤ i ≤ j ≤ F+:

Xi:j , {x ∈ X : mi ≤ np̂x ≤ mj}. (45)

Thus we optimize V̄ (A) (38) over partitions of X into level sets of the form (45). Note that
if F0 > 0, then the set X0:0 = {x ∈ X : p̂x = 0} of unseen symbols can not appear in the
optimal partition Ā∗ because if it does, then its probability mass under pĀ∗ is 0, violating
our assumption that p has support X . If F0 = 0, then X0:0 = ∅.

This optimization can be done by a dynamic programming algorithm. For integers i ≤ j,
let [i, j] , {k ∈ N : i ≤ k ≤ j}. Let V̄i denote for 0 ≤ i ≤ F+:

V̄i , max
j∈[i∨1,F+]

(V̄ (Xi:j) + V̄j+1) (46)

(a)
= max
A: partition of Xi:F+

V̄ (A) (47)

with boundary condition V̄F++1 , 0, where i ∨ j denotes the greater of i and j, and where
V̄ (Xi:j) is as in (39). (a) follows by induction on i downwards from F+. We let j ∈ [i∨1, F+]
in (46) (rather than j ∈ [i, F+]) in order to optimize over only those partitions of X that
do not contain the set X0:0 of unseen symbols; this restriction forces the approximate PML
distribution to have support set size |X |, as we assumed in the beginning of Section 4.3.

Then the PML distribution approximation p̄∗ = argmaxp V̄ (p) satisfies (setting i = 0
and using X0:F+ = X in (47)):

V̄ (p̄∗) = max
A: partition of X

V̄ (A) = V̄0 (48)

We can compute the term V̄ (Xi:j) in (46), corresponding to clustering all symbols of
Xi:j into a level set of p, using (39):

V̄ (Xi:j) = log (|Xi:j |!) + n|Xi:j |p̂Xi:j log
(
p̂Xi:j

)
(49)

= log

(( j∑
k=i

Fmk
)

!

)
+

(
j∑
k=i

mkFmk

)
log

(∑j
k=imkFmk

n
∑j

k=iFmk

)
(50)

where we used |Xi:j | =
∑j

k=iFmk and p̂Xi:j = 1
n|Xi:j |

∑j
k=imkFmk .
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Relations (46) and (50) allow us to compute the level set decomposition p̄∗ by filling out
a (F+ + 1) × F+ array (V̄ (Xi:j))i∈[0,F+],j∈[1,F+] and keeping track of the maximizing index
each time we compute V̄i. Once we have the optimal level set decomposition Ā∗ = {Xi:j}
of p̄∗, we set for all x ∈ Xi:j , for all i, j

p̄∗x = p̂Xi:j (51)

For example, in Figure 1, we have (mi)
F+=12
i=0 = (0, 1, 2, 3, 4, 5, 7, 9, 12, 13, 15, 16, 20) and

the approximate PML distribution p̄∗ (red line) has level sets {X0:6,X7:12}.
The running time of this dynamic programming algorithm is O(|Supp(F)|2), where

|Supp(F)| ≤ F+ + 1. In terms of the sample size n, any empirical distribution p̂ satisfies
|Supp(F(p̂))| ≤ 1

2

(
1 +
√

8n+ 1
)
, with equality achieved by the empirical distribution p̂i =

2i
|X |(|X |+1) for i ∈ [0, |X |] with |X | = |Supp(F)| and n = 1

2 |X |(|X |+ 1). Thus the worst-case

run time for the dynamic programming algorithm is O(
√
n

2
) = O(n). We “usually” have

|Supp(F)| much smaller than
√
n, so this is a pessimistic estimate for a typical case. The

run time of our approximate PML scheme is usually dominated by computation of p̂. An
implementation optimization is to pre-compute the sums

∑j
k=iFmk and

∑j
k=imkFmk for

all i ≤ j in computing V̄ (Xi:j).

4.6. Unknown or infinite support set size

If the support set size K = |X | is unknown, then we can attempt to infer it. Our estimator
K̄∗ for the support set size is the same as (17), but replaces the permanent with our lower
bound (31), eV̄ (p) ≤ perm(Q):

K̄∗ , argmax
K

(
1

(K − K̂)!
max
p∈PK

eV̄ (p)

)
(52)

whenever the max over K exists, where PK , {p ∈ P : | Supp(p)| = K}, where K̂ = |X̂ |
is the support set size of the empirical distribution p̂. Then the PML distribution is p̄∗

with support set K̄∗. The max over p is obtained via our approximate PML algorithm in
Section 4.5. The maximizer K̄∗ usually exists because a larger K boosts the value of the log
permanent lower bound V̄ (p) (since there are more permutations to sum over), but reduces
the first factor in (52). It may happen that K̄∗ does not exist, in which case we say our
approximate PML distribution has a continuous part in the terminology of (Orlitsky et al.,
2004b). In general the function in the argmax in (52) is multimodal in K.

It turns out we can efficiently compute K̄∗ if it exists and compute the corresponding
approximate PML distribution; if K̄∗ does not exist, then we can efficiently detect this case
and compute the corresponding approximate PML distribution, which in this case has a
continuous part.

We state and derive our observations in Appendix J. The idea is to optimize over all
possible ways to clump the unseen symbols X0:0 with the other symbols. Since the optimal
clumping satisfies the iso-clumping and convexity properties, we show that there are only
|Supp(F+)| ≤

√
2n + 1 possibilities to check and that the value of each possibility can be

checked quickly, reusing the work done in the dynamic programming approach described in
the previous Section, so this can be done efficiently.
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4.7. Approximate PML: the case of multiple distributions (see Appendix H)

We generalize the PML distribution and approximate PML distribution to the case of
(nd)

D
d=1 samples drawn from distributions (p(d))Dd=1 on the same alphabet (see Section 3.2

for the case D = 2, used in estimating functionals of pairs of distributions). This requires
some more notation that we delegate to Appendix H.

For D ≥ 2, we are unable to give an efficient algorithm to compute the D-dimensional
approximate PML. The difficulty is due to the lack of a natural ordering on ND for D ≥ 2,
so the dynamic programming approach we use for D = 1 does not work for D ≥ 2. We settle
for approximately computing our the approximate PML distribution via a greedy heuristic:
we iteratively enlarge level sets of a candidate solution by merging pairs of distinct level
sets until the objective function V̄ (suitably generalized to D distributions) stops increasing.
See Appendix H for details.

4.8. Comparison to the (exact) PML distribution for size 2 alphabet

Recall the discussion of Section 4.2.1 on the PML distribution for alphabet size |X | = 2. A
computation establishes the condition for uniformity of the APML distribution:

p̄∗ =

{(
1
2 ,

1
2

)
: H(p̂) ≥ log(2)

(
1− 1

n

)
(p̂1, 1− p̂1) : otherwise

(53)

where H(p̂) is the entropy of the empirical distribution and n is the sample size.
Let’s consider the large n limit. Let p̂unif

1 be the critical value at which the APML
distribution switches between uniform and nonuniform (the least value of p̂1 satisfying the
uniformity condition in (53)). Then a computation shows that

p̂unif
1 =

1

2

(
1−

√
log(4)

n
+O

(
1

n

))
(54)

Comparing this to condition (26) for the (exact) PML, we see that in the APML case, p̂unif
1

carries an extra factor of
√

log(4) ≈ 1.18 in the 1/
√
n term relative to the uniform/nonuni-

form critical value of p̂1 for the PML.
Figure 6 compares the APML and PML distributions for a size-2 alphabet. Both the

APML and PML are uniform when |p̂1− p̂2| is small enough, though at different points, as
remarked above. Whenever the APML solution is not uniform, it exactly matches (up to
relabeling of components) the empirical distribution, unlike the PML.

5. Estimating symmetric functionals of a single discrete distribution

In the standard PML setting discussed in Section 3.1, we argued the sufficiency of the
fingerprint F (11) in estimating the sorted probability vector of a discrete distribution,
which implies the sufficiency of the fingerprint for estimating any functional F of the sorted
probability vector of the form

F (p) = G
(∑
x∈X

f(px)
)
, (55)
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Figure 6: “Phase diagram” for the exact PML (hollow circles) and APML distributions
(red circles) on binary alphabet with sample size n indicated above each subplot (compare
to Figure 3). Solid black lines correspond to the solution for arbitrary p̂1 ∈ [0, 1], obtained
numerically. The PML distribution p∗ is uniform when |p̂1 − p̂2| ≤ 1/

√
n, while the APML

distribution is uniform when |p̂1− p̂2| ≤
√

log(4)/
√
n+O(1/n). Outside this middle region

there are two PML (APML) branches, since any permutation of the PML (APML) distri-
bution is another PML (APML) distribution. The APML distribution exactly matches the
empirical distribution outside the uniform region. Diagonal dashed lines correspond to the
lines (p̂1, p̂1) and (p̂1, 1− p̂1).

where we constrain f(0) = 0 to accommodate the unknown alphabet setting. Note that the
fingerprint is also partially sufficient for functionals of type

∑
x,y∈X f(px, py), etc.

In order to apply Theorem 3, one also needs to show the cardinality of the fingerprint
F is small. The fingerprint F = (Fi)i≥0 satisfies∑

i≥0

iFi = n, (56)

and each fingerprint corresponds to an unordered integer partition of the integer n. We
now recall the Hardy-Ramanujan result on integer partitions.

Theorem 10 (Hardy and Ramanujan, 1918)(Bárány and Vershik, 1992, Theorem 2) The
cardinality of the set of fingerprints (11) on n samples is given by

e
π
√

2n
3

(1−o(1)) ≤ |{(Fi)i≥1}| ≤ e
π
√

2n
3 . (57)

The key observation is that the cardinality of the fingerprint is sub-exponential. Then,
combining with Theorem 3 and the fact that there exist estimators for various symmetric
functionals with near exponential measure concentration, (Acharya et al., 2017) showed that
plugging in the PML achieves the optimal sample complexity in estimating the Shannon
entropy, the support size, the support coverage, and the L1 distance to uniformity.

In this section, we extensively test the performance of symmetric functional estimation
via plugging in our approximate PML (APML) distribution into the functionals. Recall

21



Pavlichin, Jiao, and Weissman

that the PML distribution p∗ is defined as in (16) for empirical distribution p̂ on n samples
with fingerprint F(p̂):

p∗ = argmax
p∈P

Pp (F) = argmax
p∈P

perm

((
p
np̂x′
x

)
x,x′∈X

)
(K − K̂)!

. (58)

where the optimization is over distributions of possibly different support set size, X denotes
the support set of distribution p, K = |X |, and K̂ denotes the support set size of the
empirical distribution p̂. p∗ is difficult to compute exactly, so we compute the APML
distribution p̄∗ (33), (52):

p̄∗ = argmax
p∈P

eV̄ (p)

(K − K̂)!
(59)

which maximizes a lower bound to the probability Pp(F) since V̄ (p) (31) lower bounds the
log permanent in (58). Then our estimator for function F of the form (55) is the plugin
F (p̄∗).

Our approximate PML estimator performs comparably well to the competition (Valiant
and Valiant, 2011a) (Valiant and Valiant, 2013) (Jiao et al., 2015), (Wu and Yang, 2016),
(Wu and Yang, 2015) across different functions F and distributions, and performs signifi-
cantly better when the true distribution is uniform. This good performance for the uniform
case makes some intuitive sense: the approximate PML distribution p̄∗ maximizes a lower
bound (22) to a matrix permanent obtained by summing over only those permutations that
mix symbols within level sets of p̄∗. If there is only one level set – that is, if p̄∗ is uniform –
then we have exactly optimized the matrix permanent (or at least found a local maximum),
rather than a lower bound to the permanent.

5.1. Sorted L1 loss

Given n samples from a distribution p, the usual L1 loss in measuring the accuracy of
estimating p is given by ∑

x∈X
|px − qx|. (60)

The sorted L1 loss measures the shape difference between the reconstruction distribution
q and the true distribution p. In other words, we first sort the distributions p, q into non-
increasing probability vectors (p(1), p(2), . . . , p(K)), (q(1), q(2), . . . , q(K)), and then measure
the loss by ∑

1≤i≤K
|p(i) − q(i)|. (61)

The sorted L1 loss measures the error in reconstructing the sorted probability vector,
for which the fingerprints are partially sufficient as shown by Theorem 6. The sorted L1

loss can also be viewed as a Wasserstein distance (Vallender, 1974), i.e.,∑
1≤i≤K

|p(i) − q(i)| = K sup
f∈Lip1

∫
f(x)

(∑
x

1

K
δpx −

∑
x

1

K
δqx

)
, (62)
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where the supremum is over all Lipschitz functions with Lipschitz constant one.

We estimate the sorted L1 loss using the plug-in q = p̄∗, the APML distribution (59),
computed over collection of distributions P = ∆, where

∆ , {p : | Supp(p)| <∞} (63)

denotes the set of all discrete distributions with finite support set size, and collection of
distributions P = ∆K , where

∆K , {p : | Supp(p)| = K} (64)

denotes the set of all discrete distributions with support set size K.

Figure 7 shows the sorted probability vector inferred by our approximate PML distri-
bution in ∆ (63) – that is, the case of unknown support set size – along with the sorted
ML (empirical) distribution and the distribution of (Valiant and Valiant, 2013). We see
that both the approximate PML distribution and the distribution of (Valiant and Valiant,
2013) perform much better than the sorted ML distribution, and that the PML distribution
“prefers” to have fewer and larger level sets than the distribution of (Valiant and Valiant,
2013).

Figure 8 shows the performance of our approximate PML distribution in ∆K (64) –
that is, the case of known support set size – as a plugin estimator for the sorted L1 loss,
along with the estimator of (Valiant and Valiant, 2011a) and the empirical distribution
plugin estimator (MLE) (see caption for performance test parameters). We see that the
approximate PML distribution performs well for the uniform and mixture-of-two-uniforms
distributions, but more poorly for the Zipf distributions, consistent with the remarks in the
previous Section. Good performance on near-uniform distributions is observed for other
performance tests as well (see below).
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Figure 7: Inferring the sorted probability vector given samples from an underlying distri-
bution (plotted in gray). The distribution is held constant in each column and the sample
size n is held constant in each row of the figure. In all cases K = |X | = 1000. “Uniform”
is uniform on X , “Mix 2 Uniforms” is a mixture of two uniform distributions, with half the
probability mass on the first K/5 symbols, and the other half on the remaining symbols,
and Zipf(α) ∼ 1/iα with i ∈ {1, . . . ,K}. ML denotes the sorted empirical distribution. VV
is (Valiant and Valiant, 2013).
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Figure 8: Sorted L1 loss in estimating an unknown distribution p with known support set size
K = |X |. In all cases K = 104. “Uniform” is uniform on X , “Mix 2 Uniforms” is a mixture
of two uniform distributions, with half the probability mass on the first K/5 symbols, and
the other half on the remaining symbols, and Zipf(α) ∼ 1/iα with i ∈ {1, . . . ,K}. MLE
denotes the ML plugin (“naive”) approach of using the sorted empirical distribution in (61).
VV is (Valiant and Valiant, 2013). Each data point represents 100 random trials, with 2
standard error bars smaller than the plot marker for most points.

5.2. Entropy and Rényi entropy estimation

For entropy H(p) = −
∑

x∈X px log(px) and Rényi entropy Hα(p) = 1
1−α log

(∑
x∈X p

α
x

)
of

distribution p, the corresponding approximate PML estimator is defined as the plugin esti-
mator H(p̄∗), Hα(p̄∗), where p̄∗ is as in (59), optimized over the collection of distributions
P = ∆ (63) for both the entropy and Rényi entropy. Additionally, to enable direct com-
parison with the entropy estimator of (Wu and Yang, 2016), which requires a support set
size as input, we also find the approximate PML distribution optimized over P = ∆K (64).

Figure 9 shows the performance of our approximate PML scheme for estimating the
entropy and Rényi entropy with α ∈ {2, 1.5, 0.8}. Overall, our approximation looks com-
petitive with the other approaches, and is particularly strong for the uniform distribution.
Adding in knowledge of the true support set size in estimating the entropy did not make
much of a difference, except for improvement in the case of the uniform distribution.
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Figure 9: Root mean squared error of several estimators of entropy (first column) and Rényi
entropy (last three columns for α ∈ {2, 1.5, 0.8}). In all cases except “Geometric” we set the
alphabet size |X | = 104. “Uniform” is uniform on X , Zipf(α) ∼ 1/iα with i ∈ {1, . . . ,K},
“Geometric” is the geometric distribution with infinite support and mean K. MLE denotes
the ML plugin (“naive”) approach of computing H(p̂). VV is (Valiant and Valiant, 2013).
JVHW is (Jiao et al., 2015). WY is (Wu and Yang, 2016) – this estimator requires the
support set size |X | as an input. Our estimator optionally accepts the support set size |X |
(shown in dark red). Each data point represents 100 random trials, with 2 standard error
bars smaller than the plot marker for most points. Log base 2.
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5.3. L1 distance to uniformity

For estimating the L1 distance to uniformity, which is
∑

x∈X |px −
1
K |, the corresponding

PML estimator is (Acharya et al., 2017) the plugin of p∗ (58) optimized over the collection
of distributions P = ∆K (64) (the case of known support set size). The APML estimator
is the plugin of p̄∗ (59) optimized over P = ∆K .

Figure 10 shows the performance of our approximate PML scheme for estimating the
L1 distance to a uniform distribution with known support set size. Our approach looks
competitive, and is by far the best if the true distribution is uniform.
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Figure 10: Root mean squared error for estimation of L1 distance to uniformity with known
support set size K = |X |. In all cases K = 104. “Uniform” is uniform on X , “Mix 2
Uniforms” is a mixture of two uniform distributions, with half the probability mass on the
first K/5 symbols, and the other half on the remaining symbols, and Zipf(α) ∼ 1/iα with i ∈
{1, . . . ,K}. MLE denotes the ML plugin (“naive”) approach of computing

∑
x∈X |p̂x −

1
K |.

VV is (Valiant and Valiant, 2013). Each data point represents 100 random trials, with 2
standard error bars smaller than the plot marker for most points.
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5.4. Support set size estimation

For support size estimation, the corresponding PML estimator is (Acharya et al., 2017) the
plugin of p∗ (58) optimized over the collection of distributions P = ∆≥ 1

K
, where

∆≥ 1
K

, {p : px ≥
1

K
∀x ∈ X} (65)

denotes the set of all discrete distributions whose minimum nonzero probability for each
symbol is at least 1

K . The approximate PML estimator is the plugin of p̄∗ (59) optimized
over P = ∆≥ 1

K
.

Figure 11 shows the performance of our approximate PML scheme for estimating the
support set size. Here we plot the mean and standard error of the support set size inferred
by the different estimation schemes rather than a root mean squared error. Overall, our
approach is comparable to the others, performing worst on the Zipf distributions, and best
on the uniform distribution.
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Figure 11: Support set size estimation for the same cases as in (Wu and Yang, 2015),
plotting the mean and 2 standard deviations of the distribution of inferred support set sizes
in 100 trials vs. sample size n. In all cases the support set set size K = |X | is chosen
such that mini∈{1,...,K} pi ≈ 10−6. “Uniform” is uniform on {1, . . . ,K}, Zipf(α) ∼ 1/iα with
i ∈ {1, . . . ,K}, and “Mix geom. and Zipf” is a mixture of pi ∼ 1/i for i ∈ {1, . . . ,K/2} and
pi ∼ (1− 2/K)i−K/2−1 for i ∈ {K/2 + 1, . . . ,K} normalized so that half the mass is on the
first K/2 symbols. MLE denotes the ML plugin (“naive”) approach of using the empirical
support set size. VV is (Valiant and Valiant, 2013). WY is (Wu and Yang, 2015).
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6. Estimating the divergence function between two distributions

In the 2-D PML setting discussed in Section 3.2, we argued the sufficiency of the finger-
print (18) in estimating functions of two discrete distributions of the form

F (p, q) =
∑
x∈X

f(px, qx). (66)

In order to apply Theorem 3, one needs to show the cardinality of the sufficient statistic is
not too big. Below we present an argument that applies to the D-dimensional PML. Suppose
we have D discrete distributions on the same alphabet X , denoted as p(1), p(2), . . . , p(D).
Suppose we obtain nd samples from each distribution p(d) with empirical distribution p̂(d).
Let the joint fingerprint be defined for every (i1, i2, . . . , iD) ≥ 0,

Fi1,i2,...,iD = |{x ∈ X : (ndp̂
(d)
x )Dd=1 = (id)

D
d=1}|. (67)

We now argue that the joint fingerprint (Fi1,i2,...,iD)(i1,i2,...,iD)≥0 corresponds to the par-
tition of multipartite numbers. Indeed, the joint fingerprint satisfies the following equation:

∑
(i1,i2,...,iD)≥0

Fi1,i2,...,iD


i1

i2
...

iD

 =


n1

n2

...

nD

 . (68)

Theorem 11 quantifies the size of the sufficient statistic.

Theorem 11 (Auluck, 1953; Bárány and Vershik, 1992; Acharya et al., 2011) Suppose
D = 2. If n1 = n2 = n, then the cardinality of the set of 2-D fingerprints on n samples is
given by

|{(Fij)(i,j)6=(0,0)}| = e3(ζ(3))1/3n2/3(1+o(1)). (69)

For general D > 2, if nd ≥ 2D+1, 1 ≤ d ≤ D, we have

|{(Fi1,i2,...,iD)(i1,i2,...,iD) 6=0}| ≤ exp

(
2

(
1 +

1

D

) D∑
d=1

n
D
D+1

d

)
. (70)

where 0 = (0, . . . , 0). Moreover, if nd = n for all d ∈ {1, . . . , D}, we have

|{(Fi1,i2,...,iD)(i1,i2,...,iD)6=0}| = exp
(

(D + 1)(ζ(D + 1))1/(D+1)n
D
D+1 (1− o(1))

)
. (71)

Here ζ(D + 1) =
∑∞

k=1 k
−(D+1) is the Riemann zeta function.

Fortunately, the cardinality of the D-dimensional fingerprint is still sub-exponential
in the sample size for all D. Then, combining with Theorem 3 and the fact that there
exist estimators for the aforementioned divergence functions with near exponential measure
concentration (which can be shown in a straightforward manner as in (Acharya et al., 2017;
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Han et al., 2016a,b; Bu et al., 2016; Valiant and Valiant, 2011a; Jiao et al., 2018)), we
know that plugging in the 2-D PML achieves the optimal sample complexity in estimating
the Kullback-Leibler divergence, L1 distance, the squared Hellinger distance, and the χ2

divergence. The proof of these results is to be reported elsewhere.
In this section, we extensively test the performance of divergence estimation via plugging

in our approximate 2-D PML. We mainly compete with the released code of KL divergence
estimator in (Han et al., 2016a,b). The concrete divergence functional estimation algorithm
is as follows. Suppose we observe n samples from distribution p with empirical distribution
p̂ and m samples from distribution q with empirical distribution q̂. Let the 2-D PML
estimator be as (20):

(p∗, q∗) = argmax
(p,q)∈P

Pp,q(F), (72)

where F is the 2-D fingerprint (18) and P is a collection of pairs of distributions on the
same alphabet X . The APML distributions maximize a lower bound to Pp,q(F):

(p̄∗, q̄∗) = argmax
(p,q)∈P

eV̄ (p,q)

(K − K̂)!
(73)

where V̄ is defined for the D-dimensional case in Appendix H, X = Supp(p) ∪ Supp(q),
K = |X |, and K̂ = |Supp(p̂) ∪ Supp(q)|.

As discussed in Section 4.7, there is no natural ordering on the bins of the 2-D finger-
print, so we do not give a dynamic programming algorithm like the one in section 4.5 to
find the APML distributions. Instead we use a greedy heuristic presented in Appendix H
to approximately maximize V̄ (p, q) and approximate the already-approximate PML distri-
butions:

(¯̄p∗, ¯̄q∗) ≈ (p̄∗, q̄∗) (74)

Then our estimator for functional F of the form (66) is F (¯̄p∗, ¯̄q∗).
Our approximate PML estimator performs overall best relative to the competition, which

for the KL divergence consists of only (Han et al., 2016a,b) and the MLE plugin estimator,
and for the L1 distance consists of only the MLE plugin estimator. (Valiant and Valiant,
2013), (Valiant, 2008) generalize their approach to the 2-D fingerprint setting, but do not
release code to repeat their experiments.

6.1. KL divergence estimation

For the KL divergence D(p||q) =
∑

x∈X px log
(
px
qx

)
, the corresponding approximate PML

estimator is the plugin D(¯̄p∗||¯̄q∗), where ¯̄p∗, ¯̄q∗ are as in (74), optimized over collection of
distributions P = ∆ρ, where

∆ρ = {(p, q) : sup
x

(px/qx) ≤ ρ} (75)

denotes the set of all pairs of discrete distributions with finite support and maximum ratio
ρ.

Figure 12 shows the performance of our approximate PML scheme for estimating the KL
divergence. The approximate PML estimator looks mostly better than (Han et al., 2016a,b)
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and the MLE. All three estimators show non-monotonicity of their root mean squared per-
formance in the sample size. Qualitatively, the approximate PML estimator’s performance
looks best-behaved among the three in terms of being roughly monotone decaying in the
sample size.

6.2. L1 distance

For the L1 distance ‖p − q‖1 =
∑

x∈X |px − qx|, the corresponding approximate PML es-
timator is the plugin ‖ ¯̄p∗ − ¯̄q∗‖1, where ¯̄p∗, ¯̄q∗ are as in (74), optimized over collection of
distributions P = ∆, where ∆ denotes the set of all pairs of discrete distributions with finite
support set size (possibly different support set sizes within the pair).

Figure 13 shows the performance of our approximate PML scheme for estimating the L1

distance between two distributions. The approximate PML estimator looks overall stronger
than the MLE plugin estimator for all distributions and sample sizes, and seems to perform
best when the two unknown distributions p and q are the same (corresponding to the
diagonal of the matrix of plots in the figure). Although (Valiant and Valiant, 2013) did not
release their code for estimating the L1 distance, their Figure 2, leftmost pane corresponds
exactly in its parameters to the top-leftmost pane of our Figure 13; from roughly checking
a few sample sizes visually, the approximate PML seems to perform significantly better.
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Appendix A. Proof of expression (14) for the probability of a fingerprint

Let SX denote the symmetric group on the discrete, possibly infinite set X and let SX p̂
denote the orbit of empirical distribution p̂ under the action of SX by relabeling the compo-
nents of p̂. That is, if σ ∈ SX , then (σp̂)x , p̂σ(x), and SX p̂ = {σp̂}σ∈SX . Each distribution
in the orbit SX p̂ has the same fingerprint and distinct orbits have distinct fingerprints, so
the set of distinct fingerprints F is in bijection with the set of distinct orbits under the
action of SX , so the probability of a specific fingerprint F is given by

Pp(F) = Pp(SX p̂) =
∑

p̂′∈SX p̂
Pp(p̂′) =

(
n

np̂

) ∑
p̂′∈SX p̂

∏
x∈X

pnp̂
′
x

x (76)

where the last equality follows from (10).

When the alphabet X is finite, then we can replace the summation over the orbit SX p̂
in (76) with a summation over the finite symmetric group SX , taking care to avoid double-
counting, since |SX p̂| ≤ |SX | with strict inequality if there exist distinct x, x′ ∈ X such
that p̂x = p̂x′ (see Appendix B for an example of this). The fingerprint notation lets us
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Figure 12: Root mean squared error for estimation of KL divergence between distributions
indicated in row and column names (that is, D(prow||pcolumn)). In all cases K = |X | = 104.
“Uniform” is uniform on X , “Mix 2 Uniforms” is a mixture of two uniform distributions,
with half the probability mass on the first K/5 symbols, and the other half on the remaining
symbols, and Zipf(α) ∼ 1/iα with i ∈ {1, . . . ,K}. MLE denotes the ML plugin (“naive”)
approach of computing D(p̂||q̂). HJW is (Han et al., 2016a,b). Each data point represents
100 random trials, with 2 standard error bars smaller than the plot marker for most points.
Log base 2.
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Figure 13: Root mean squared error for estimation of L1 distance between distributions
indicated in row and column names. Same parameters as in Figure 12. Since the L1

distance is symmetric in its arguments, the performance matrix is symmetric.
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conveniently express |SX p̂|:

|SX p̂| =

(
|X |
F

)
= |X |!

∏
i≥0

1

Fi!
. (77)

The probability of a specific fingerprint F under distribution p with finite support X is
given by

Pp(F) = Pp(SX p̂) =
∑

p̂′∈SX p̂
Pp(p̂′) (78)

(a)
=
|SX p̂|
|SX |

∑
σ∈SX

Pp(σp̂) (79)

(b)
=

1

|X |!

(
|X |
F

) ∑
σ∈SX

Pp(σp̂) (80)

(c)
=

∏
i≥0

1

Fi!

( n

np̂

) ∑
σ∈SX

∏
x∈X

p
np̂σ(x)
x (81)

=

∏
i≥0

1

Fi!

( n

np̂

)
perm

((
p
np̂x′
x

)
x,x′∈X︸ ︷︷ ︸

Q

)
(82)

(d)
=

1

|X \ Supp(p̂)|!

∏
i≥1

1

Fi!

( n

np̂

)
perm(Q) (83)

where in (a) the prefactor corrects for multiple-counting points in the orbit SX p̂ when
we sum over σ ∈ SX , (b) follows from (77), (c) follows from (10), and (d) follows since
F0 = |X \ Supp(p̂)|.

When the alphabet X is countably infinite, then we group terms in the sum (76) by the
support set Supp(p̂′). Let K̂ = | Supp(p̂)| (13) denote the empirical support set size and let
ΠK̂(X ) denote the set of all subsets of X of size K̂. Then

Pp(F) =
∑

p̂′∈SX p̂
Pp(p̂′) (84)

=
∑

X ′∈ΠK̂(X )

∑
p̂′∈SX p̂: Supp(p̂′)=X ′

Pp(p̂′) (85)

(a)
=

∑
X ′∈ΠK̂(X )

|SX ′ p̂|
|SX ′ |

∑
σ∈SX′

Pp(σp̂) (86)

(b)
=

∏
i≥1

1

Fi!

( n

np̂

) ∑
X ′∈ΠK̂(X )

perm

((
p
np̂x′
x

)
x,x′∈X ′

)
(87)

where in (a) the prefactor corrects for multiple-counting points in the orbit SX ′ p̂ when we
sum over σ ∈ SX ′ and (b) follows from (10) and the fact that p̂′ is supported on X ′ (so
there is no F0 term, unlike the case when X is finite).
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Appendix B. Illustration of computing the probability of a fingerprint

To illustrate the computation of the probability of the fingerprint, suppose that we have an
alphabet of 3 symbols X = {a,b, c} and consider the sequence x7

1 = (a,b,b,a,b,b,c). Then
the empirical distribution is p̂(x7

1) = (p̂a, p̂b, p̂c) = 1
7 (2, 4, 1) and the fingerprint F(p̂) is

Fi = 1 if i ∈ {1, 2, 3} and Fi = 0 otherwise. The probability under p = (pa, pb, pc) of F(p̂)
is indicated pictorially below:

P(F(p̂)) = Pp

SX


a b c


 = Pp

 + Pp

 + Pp

 
+ Pp

 + Pp

 + Pp

  (88)

=
1

1!1!1!

7!

2! 4! 1!
perm

 p2
a p4

a p1
a

p2
b p4

b p1
b

p2
c p4

c p1
c

 (89)

where each term on the right hand side of (88) is computed via (10) and in (89) the two
prefactors are the multinomial coefficients in (83).

Suppose now that we happen to observe only the symbol ‘b’ in x4
1 = (b,b,b,b), but know

that X consists of 3 symbols as in the previous example. Then p̂(x4
1) = 1

4 (0, 1, 0) and the
fingerprint is F0 = 2, F1 = 1, and Fi = 0 for i ≥ 2. Our pictorial computation of the
probability under p = (pa, pb, pc) of F(p̂) is shown in (90):

Pp(F(p̂)) = Pp

SX


a b c


 = Pp

 + Pp

 + Pp

  (90)

=
1

2!1!

4!

0!4!0!
perm

 1 p4
a 1

1 p4
b 1

1 p4
c 1

 = p4
a + p4

b + p4
c (91)

Note that there are now fewer than |SX | = |X |! distinct permutations to sum over, reflected
in the prefactor 1/F0! with F0 = 2 since there are two “unseen” symbols.

Appendix C. Proof of Theorem 12

Let Z be the number in Theorem 12. We first prove the lower bound.
Fix a (constant) parameter α ∈ (0, 1). Consider all 0-1 assignments to an αn×αn array

such that the total number of 1’s is exactly n. The number of such assignments is(
α2n2

n

)
≥
(
α2n

)n
.

On the other hand, each equivalent class generates at most

((αn)!)2 ≤ (αn)2αn
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such assignments. Therefore, the number of equivalent classes Z is at least

Z ≥
(
α2n

)n
/(αn)2αn = n(1−2α)n · α2n(1−α).

The above inequality holds for any α > 0. In particular, for any constant α, we have
Z ≥ n(1−2α−o(1))n, which implies the claimed bound.

Now we prove the upper bound. Consider the following procedure for generating an
assignment to a n× n array.

1. Choose an integer 1 ≤ m ≤ n arbitrarily;

2. Choose m entries from the n2 entries arbitrarily;

3. For each of the m chosen entries from last step, fill in a positive integer such that the
m entries sum up to n.

It is easy to verify that for every equivalent class, some assignment in the class can be
generated by the above procedure. On the other hand, the number of different assignments
that can be generated is at most

n∑
m=1

(
n2

m

)
·
(
n

m

)
≤ 2n · n · max

1≤m≤n

(
n2

m

)
≤ 2n · n · (e · n)n = n(1+o(1))n.

This proves the upper bound.

Appendix D. The EM algorithm used to numerically solve the PML for
small alphabets in Section 4

D.1. 1-D case

We treat p as the unknown parameter to be inferred and assume that p is sorted. Recall
that for a fixed alphabet size, the PML distribution is:

p∗ = argmax
p

∑
σ∈SX

∏
x∈X

p
np̂σ(x)
x (92)

We treat permutation σ as the hidden data drawn uniformly on SX , and the observed
data p̂ drawn from the permuted distribution σp. Then if p(t) is our estimate for p after t
iterations of the EM algorithm, the next value is:

p(t+1) ∼
∑
σ∈SX

(σp̂)
∏
x∈X

p
np̂σ(x)
(t),x (93)

where σp̂ denotes the permuted empirical histogram and ∼ denotes equality up to normal-
ization. For the starting point we choose p(0) = p̂.
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D.2. 2-D case

Analogously to the 1D case above, let p(t), q(t) be our estimates for p, q after t iterations of
the EM algorithm. Then the next values are:

p(t+1) ∼
∑
σ∈SX

(σp̂)wσ (94)

q(t+1) ∼
∑
σ∈SX

(σq̂)wσ (95)

where

wσ ,
∏
x∈X

p
np̂σ(x)
(t),x q

mq̂σ(x)
(t),x (96)

and ∼ denotes equality up to normalization. For the starting point we choose p(0) = p̂,
q(0) = q̂.

Appendix E. Proof of Theorem 8 (D-dimensional PML distribution on a
binary alphabet)

TheD-dimensional PML distributions p∗ , (p(d)∗)Dd=1 are (see Appendix H for a derivation):

p∗ , argmax
p∈P

perm

( D∏
d=1

(p(d)
x )ndp̂

(d)

x′

)
x,x′∈{1,2}

 (97)

= argmax
p∈P

(
D∏
d=1

(p
(d)
1 )ndp̂

(d)
1 (1− p(d)

1 )nd(1−p̂(d)1 ) +

D∏
d=1

(p
(d)
1 )nd(1−p̂(d)1 )(1− p(d)

1 )ndp̂
(d)
1

)
(98)

where P is a collection of D-tuples of distributions on the binary alphabet X = {1, 2}. To
lighten notation, let

rd , p
(d)
1 (99)

and

∆d , nd

(
p̂

(d)
1 −

1

2

)
(100)

Then p∗ = ((r∗d, 1− r∗d))Dd=1, where

(r∗d)
D
d=1 = argmax

(rd)Dd=1∈[0,1]D

(
D∏
d=1

r
nd/2+∆d

d (1− rd)nd/2−∆d +

D∏
d=1

r
nd/2−∆d

d (1− rd)nd/2+∆d

︸ ︷︷ ︸
−U(r1,...,rd)

)

(101)

= argmin
(rd)Dd=1∈[0,1]D

U(r1, . . . , rd) (102)

37



Pavlichin, Jiao, and Weissman

If r∗d = 1/2 for all d, then U(r1, . . . , rd) must have positive definite Hessian HU at (rd)
D
d=1 =

(1/2)Dd=1. Let’s compute the Hessian at rd = 1/2 for all d, letting [D] , {1, . . . , D}:

H∗U , HU |(rd)Dd=1=(1/2)Dd=1
=

(
∂2U

∂rd∂rd′

)
d,d′∈[D]

∣∣∣∣∣
(rd)Dd=1=(1/2)Dd=1

(103)

= c

(
(∆d∆d′)d,d′∈[D] − diag

((nd
4

)
d∈[D]

))
(104)

where c = 25−
∑D
d=1 nd and in the second term in (104) diag(·) denotes the diagonal matrix

with entry nd in the d-th row and d-th column.

The matrix H∗U is positive definite when ∆d = 0 for all d with eigenvalues (−cnd/4)Dd=1.
Since the eigenvalues of H∗U vary continuously in (∆d)

D
d=1, we conclude that H∗U is positive

definite when (∆d)
D
d=1 is in the neighborhood of (0)Dd=1 determined by:

det(H) = c′

(
−1 +

D∑
d=1

4∆2
d

nd

)
> 0 (105)

m
D∑
d=1

4nd

(
p̂

(d)
1 −

1

2

)2

> 1 (106)

where c′ = c 22D
∏D
d=1 nd. Thus H∗U is not positive definite at (rd)

D
d=1 = (1/2)Dd=1 when the

empirical distribution components (p̂
(d)
1 )Dd=1 lie outside the ellipse determined by (106), so

the D PML distributions (p(d)∗)Dd=1 are not uniform in this case.

Appendix F. Proof of permanent lower bound identity (35)

Given distribution p supported on set X , denote by Xu(p) a level set of p:

Xu(p) , {x ∈ X : px = u} (107)

Denote by U(p) the set of unique entries of p:

U(p) , {px : x ∈ X} (108)

and denote by A(p) the partition of X into level sets of p (equivalent to the definition (29)):

A(p) , {Xu(p) : u ∈ U(p)} (109)

It is convenient to express the group SX ,p (32) as isomorphic to:

SX ,p ∼= ×
α∈A(p)

Sα = ×
u∈U(p)

SXu (110)
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We write

V (p) = log(perm(Q)) ≥ V̄ (p) (111)

= log

 ∑
σ∈SX ,p

∏
x∈X

p
np̂σ(x)
x

 (112)

(a)
= log

 ∑
σ∈SX ,p

∏
x∈X

pnp̂xσ(x)

 (113)

(b)
= log

 ∑
σ∈×u∈U(p) SXu

∏
x∈X

pnp̂xσ(x)

 (114)

(c)
= log

 ∏
u∈U(p)

∑
σ∈SXu

∏
x∈Xu

unp̂x

 (115)

(d)
= log

 ∏
u∈U(p)

|SXu | un
∑
x∈Xu p̂x

 (116)

=
∑

u∈U(p)

(
log(|SXu |) + n

( ∑
x∈Xu

p̂x

)
log(u)

)
(117)

=
∑

u∈U(p)

log(|SXu |!) + n
∑

u∈U(p)

∑
x∈Xu

p̂x log (u) (118)

(e)
=

∑
u∈U(p)

log(|Xu|!) + n
∑
x∈X

p̂x log (px) (119)

=
∑

u∈U(p)

log(|Xu|!) + n
∑
x∈X

p̂x

(
log

(
px
p̂x

)
+ log (p̂x)

)
(120)

(f)
=

∑
α∈A(p)

log(|α|!)− n(D(p̂||p) +H(p̂)) (121)

where in (a) we changed order of summation over the group SX , in (b) we summed over the
isomorphic group (110), in (c) we used the product structure (110) of SX ,p to rewrite the
sum as a product of sums and used the fact that px = u for all x ∈ Xu (107). In (d) we used
the fact that the summands are independent of σ and moved the sum into the exponent.
In (e) we used |Sα| = |α|! and used the fact that u = px for all x ∈ Xu. In (f) we used
α ∈ A(p)⇔ ∃u ∈ U(p) : Xu = α.

Appendix G. Proof of Theorem 9 (properties of the approximate PML
distribution’s level set partition Ā∗)

G.1. Proof of iso-clumping property (41)

Suppose Ā∗ does not satisfy property (41). Then there exist x, y ∈ X such that p̂x = p̂y,
but α(x) 6= α(y). We show that the partition obtained by either “reassigning” y to the
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same level set as x or reassigning x to the same level set as y achieves a higher value of the
log permanent lower bound V̄ (·) (38), contradicting the optimality of Ā∗ (40).

Let m , np̂x = np̂y, let Nα(x) ,
∑

x∈α(x) np̂x. Let Vδ denote for δ ∈ [−1, 1]:

Vδ , log((|α(x)|+ δ)!) +
(
Nα(x) +mδ

)
log

(
Nα(x) +mδ

n(|α(x)|+ δ)

)
+ log((|α(y)| − δ)!) +

(
Nα(y) −mδ

)
log

(
Nα(y) −mδ
n(|α(y)| − δ)

)
(122)

Then V0 = V̄ (α(x))+V̄ (α(y)) (39) corresponds to two terms in V̄ (Ā∗) (38), and V1 (resp.
V−1) corresponds to two terms in the value of the partition of X obtained by reassigning
symbol y to the same level set as x (resp. reassigning symbol x to the same level set as y).
We can check that Vδ is strictly convex in δ ∈ [−1, 1]. A strictly convex function attains its
maximum on the boundaries of a convex set, so either V−1 > V0 or V1 > V0, contradicting
the optimality of partition Ā∗, thus establishing the iso-clumping property.

G.2. Proof of convexity property (42)

Suppose Ā∗ does not satisfy property (42). Then there exist x1, x2, x3 ∈ X such that
p̂x1 < p̂x2 < p̂x3 , but α(x1) = α(x3) 6= α(x2). For all x ∈ X , let Nα(x) ,

∑
x∈α(x) np̂x.

If
Nα(x1)
|α(x1)| ≥

Nα(x2)
|α(x2)| , then let x = x2 and y = x1; otherwise let x = x3, y = x2. Let

∆ , n(p̂x − p̂y). Then ∆ > 0 and

Nα(y)

|α(y)|
≥
Nα(x)

|α(x)|
. (123)

Let A′ denote the partition of X obtained by swapping the set memberships of x and
y in Ā∗. We show that V̄ (A′) > V̄ (Ā∗), contradicting the optimality of Ā∗ (A′ might not
satisfy the iso-clumping property (41)).

Since A′ is obtained from Ā∗ by swapping the level set memberships of x and y, the
elements of A′ and Ā∗ have the same sizes, so

∑
α∈A′ log(|α|!) =

∑
α∈Ā∗ log(|α|!), so using

(38) and (39) we write:

V̄ (A′)− V̄ (Ā∗) =(Nα(x) −∆) log

(
Nα(x) −∆

n|α(x)|

)
+ (Nα(y) + ∆) log

(
Nα(y) + ∆

n|α(x)|

)
−Nα(x) log

(
Nαx

n|α(x)|

)
−Nα(y) log

(
Nα(y)

n|α(y)|

)
(124)

=∆ log

(
Nα(y)

|α(y)|
|α(x)|
Nα(x)

)
+ f(Nα(x),∆) + f(Nα(y),−∆) (125)

(a)
>0 (126)

where f(N,∆) , ∆+(N−∆) log
(
N−∆
N

)
with f(N,N) , lim∆→N f(N,∆) = N . (a) follows

because we can show that f(N,∆) ≥ 0 for ∆ ≤ N with strict inequality iff ∆ 6= 0, so the
last two terms in (125) are positive since ∆ > 0. The first term in (125) is non-negative
since ∆ > 0 and (123). Thus V̄ (A′) > V̄ (Ā∗), contradicting the optimality of partition Ā∗,
thus establishing the convexity property.
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Appendix H. Our approximate PML algorithm: the case of multiple
distributions

We generalize the discussion of Section 3.2 to D-dimensional fingerprints. In this case we
are not able to optimize a D-dimensional analogue of our objective function V̄ (31) and
will instead settle for an approximation of our already-approximate PML distribution. We
use a greedy heuristic to approximate the optimal partition Ā∗ (40) by iteratively, greedily
merging partition elements (enlarging the second term in a D-dimensional analogue of (35)
until the first term becomes too large) (see Section H.4). Even this doubly-approximate
algorithm turns out to be too slow to run on examples of practical interest, so we introduce
a further heuristic to speed things up (only trying to merge partition elements that are
close in Euclidean distance), which comes at a cost of adding some tunable knobs to the
algorithm.

H.1. Some notation

Suppose we have D distributions (p(d))Dd=1 on the same alphabet X and for each d draw
nd samples i.i.d. from p(d) with empirical distribution p̂(d). Let bold symbols denote D-
component collections:

p , (p(d))Dd=1 n , (nd)
D
d=1 p̂ , (p̂(d))Dd=1 np̂ , (ndp

(d))Dd=1 (127)

We assume that the D distributions p satisfy:

D∑
d=1

p(d)
x > 0 ∀x ∈ X (128)

This condition ensures that there are no symbols x such that p
(d)
x = 0 for all d, which

simplifies the expressions below. Denote by X̂ the empirical support set:

X̂ ,
D⋃
d=1

Supp(p̂(d)) = {x ∈ X :

D∑
d=1

p̂(d)
x > 0} (129)

Finally let K , |X | and K̂ , |X̂ |.
The probability to draw empirical distributions p̂ under distributions p is (using the

independence of the D empirical distributions and (10)):

Pp(p̂) =

(
D∏
d=1

(
nd

ndp̂
(d)

)) ∏
x∈X

D∏
d=1

(p(d)
x )ndp̂

(d)
x (130)

where the first product is over multinomial coefficients in the notation of (10).
Hereon denote by F = F(p̂(1), . . . , p̂(D)) the D-dimensional fingerprint (Raghunathan

et al., 2017) indexed by vector i = (id)
D
d=1 ∈ ND (which we write as satisfying i ≥ 0⇔ id ≥

0 ∀d, where 0 , (0)Dd=1):

F = F(p̂) = (Fi)i≥0 ,
(
|{x ∈ X : (ndp̂

(d)
x )Dd=1 = i}|

)
i≥0

(131)
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Note that F0 = |X \ X̂ | = K − K̂ counts the number of symbols “unseen” by any of the D
samples, and is thus unknown if the support set size K is unknown. Then the probability
to draw the D-dimensional fingerprint F under p is (obtained analogously to the D = 1
case in Appendix A):

Pp(F) =

∏
i≥0

1

Fi!

( D∏
d=1

(
nd

ndp̂
(d)

)) ∑
σ∈SX

∏
x∈X

D∏
d=1

(p(d)
x )

ndp̂
(d)
σ(x) (132)

=
1

(K − K̂)!

 ∏
i≥0,i6=0

1

Fi!

( D∏
d=1

(
nd

ndp̂
(d)

))
perm

((
D∏
d=1

(p(d)
x )ndp̂

(d)

x′

)
x,x′∈X︸ ︷︷ ︸

Q

)

(133)

where in (133) the first product is over all D-dimensional indices i such that mind id ≥ 0
and maxd id > 0.

H.2. The PML distributions in D dimensions

For a given collection P of D-tuples of distributions, the D-dimensional PML distributions
p∗ are:

p∗ , (p(d)∗)Dd=1 , argmax
p∈P

Pp(F(p̂)) (134)

= argmax
p∈P

perm(Q)

(K − K̂)!
(135)

where in (135) we discarded all p-independent factors of Pp(F) (133). F0 = K−K̂ = |X \X̂ |
depends on p through its support set size. Note that Pp(F) is invariant under relabeling of
the components of p, so we can choose p∗ to be non-increasing in the same ordering as we
choose for the support set X . Note that the set P is not necessarily the same as the set of
all discrete distributions.

Note that finding the D-dimensional PML distributions (135) is not equivalent to finding
D 1-dimensional PML distributions since Pp(F) (133) does not factor into D pieces.

If the collection of D-tuples of distributions P includes distributions with different sup-
port set sizes, then we can estimate the support set size by breaking up the optimization in
(135) into two steps:

K∗ , argmax
K

(
1

(K − K̂)!
max
p∈PK

perm (Q)

)
(136)

whenever the max over K exists, where PK , {p ∈ P : |
⋃D
d=1 Supp(p(d))| = K}.

The case D ≥ 2 is more complicated than the case D = 1 because the D support
sets (Supp(p(d)))Dd=1 can overlap partially. If X is the joint support set – that is, X =⋃D
d=1 Supp(p(d)) – then we can associate with each symbol x ∈ X an indicator function

φd(x) = 1(x ∈ Supp(p(d))), so there are 2D − 1 possible values (φd(x))Dd=1 for each x ∈ X 9.

9. 1 less than 2D since φd(x) = 0 ∀d implies x /∈ X .
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We could then be more ambitious and estimate not just the joint support set size K = |X |,
but also the optimal value (φd(x))Dd=1 for all symbols. Our proposed approximate PML
approximation scheme for D ≥ 2 is less ambitious and only supports estimation of |X |, but
not of the finer structure of the joint support set X in terms of D partially overlapping
support sets (Supp(p(d)))Dd=1.

H.3. Approximate PML in D dimensions: the case of known support set size

In this Section we assume the support set size K = |X | is known. Analogously to the
notation in the D = 1 case of Section 4.3 and the proof of the permanent lower bound for
D = 1 in Appendix F, define the level sets Xu(p) of p indexed by D-dimensional real vector
u = (ud)

D
d=1:

Xu(p) , {x ∈ X : (p(d)
x )Dd=1 = u} (137)

the unique D-tuple entries of p by U(p):

U(p) , {(p(d)
x )Dd=1 : x ∈ X} (138)

and the partition A(p) of X into level sets of p:

A(p) , {Xu(p) : u ∈ U(p)} (139)

We assume K = |X | is known, so p∗ (135) is a maximizer of

V (p) , log(perm(Q)) (140)

As for the D = 1 case, we do not know how to computationally efficiently maximize V (p)
over p, so we settle for maximizing a lower bound V̄ (p), analogous to (31) and motivated
by our empirical observations for the case D = 2 in Section 4.2:

V (p) ≥ V̄ (p) , log

 ∑
σ∈SX ,p

∏
x∈X

D∏
d=1

(p(d)
x )

ndp̂
(d)
σ(x)

 (141)

= −
D∑
d=1

nd

(
D(p̂(d)||p(d)) +H(p̂(d))

)
+

∑
α∈A(p)

log(|α|!) (142)

where SX ,p is analogous to (32) – a subgroup of SX consisting of all permutations that
exchange only those alphabet symbols that are in the same level set of p:

SX ,p , {σ ∈ SX : σp = (σp(d))Dd=1 = p} (143)

(142) follows from (141) by an analogous argument to the one given in in Appendix F for
the case D = 1.

As in the D = 1 case, the intuition is that we approximate the permanent by summing
over only those permutations that contribute “a lot” to the value, and then maximize this
lower bound V̄ (p) over p. Our approximate PML distributions are the D-tuple:

p̄∗ = (p̄(d)∗)Dd=1 , argmax
p∈P

V̄ (p) (144)
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As in the 1-D case, the first term in (142) encourages p̄∗ to clump many symbols together,
while the second term encourages p̄∗ to be similar to p̂, dominating as n→∞.

Note that optimizing V̄ (p) over p is not equivalent to solving D independent optimiza-
tion problems because the D distributions “interact” through the second summation in
expression (142) (the summation over A(p)).

As in the 1-D case, we can show that for all d the approximate PML distribution p̄(d)∗

(144) satisfies the averaging property (37). Therefore as in the 1-D case, p̄∗ is determined
by its partition of X into level sets. Thus we seek to maximize the quantity

V̄ (A) ,
∑
α∈A

V̄ (α) (145)

where for α ⊂ X

V̄ (α) , log(|α|!) + |α|
D∑
d=1

ndp̂
(d)
α log(p̂(d)

α ) (146)

The optimal partition is

Ā∗ , argmax
A: partition of X

V̄ (A) (147)

Finally p̄∗ is obtained by averaging the empirical distributions p̂∗ within each partition
element α ∈ Ā∗.

As in the 1-dimensional case, the approximate PML partition Ā∗ has the iso-clumping
property (generalizing (41) to D dimensions):

(p̂(d)
x )Dd=1 = (p̂

(d)
x′ )Dd=1 ⇒ α(x) = α(x′) (148)

for all x, x′ ∈ X , where α(x), α(x′) ∈ Ā∗ are the partition elements containing x, x′,
respectively. This can be shown by adapting the proof for the 1-D case in Appendix G.1.

We do not know if Ā∗ satisfies a convexity property analogous to the 1-D case (42).

H.4. A greedy heuristic to approximately maximize the permanent for D ≥ 2
distributions

Unlike the D = 1 case, we do not solve the optimization problem (144) exactly for D ≥ 2.
The difficulty is that there is no natural ordering on ND for D ≥ 2, so we can no longer
define a structured collection of subsets of X from which to build the approximate PML
partition Ā∗ (147) X , so we do not offer a dynamic programming algorithm like the one
described in Section 4.3. Our search for an optimal partition of X is similar in flavor to
a clustering problem, so the added difficulty in D ≥ 2 dimensions makes some sense. For
example, k-means clustering in 1 dimension is exactly solvable by a dynamic programming
algorithm (Wang and Song, 2011) similar to the one we present, but no such algorithm is
available for dimension greater than 1 (indeed k-means is NP-hard for dimension greater
than 1).

We settle for a greedy heuristic to approximately maximize V̄ (A), and call the resulting
approximate optimizer ¯̄A∗:

¯̄A∗ ≈ argmax
A: partition of X

V̄ (A) (149)
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the double bar signaling the two levels of approximation (an approximation to the approx-
imate PML partition Ā∗ (144)). The doubly-approximate PML distribution ¯̄p∗ is obtained
by averaging the empirical distributions p̂∗ within each partition element α ∈ ¯̄A∗.

The greedy heuristic used to compute ¯̄A∗ is given in algorithm (1). In words, we start
with initial partition A(p̂) of X into the level sets of the empirical distributions p̂ (we clump
equally empirically frequent symbols into the same level sets since we know that Ā∗ satisfies
the iso-clumping property; see Section H.3) and then iteratively merge partition elements
until it is no longer profitable to do so in terms of the objective function V̄ increasing.
At each step we merge two partition elements that most boost the value of the objective
function.

Algorithm 1 Approximation to level set partition of the approximate D-dimensional PML
distribution

1: function ¯̄A∗(p̂,n, |X |) . Input: D empirical distributions, D sample sizes, and
assumed support set size |X |

2: A ← A(p̂) . Initial partition into level sets of empirical distribution p̂
3: while maxα1,α2∈A:α1 6=α2

(
V̄ (α1 ∪ α2)− (V̄ (α1) + V̄ (α2))

)
> 0 do

4: (α∗1, α
∗
2)← argmaxα1,α2∈A:α1 6=α2

(
V̄ (α1 ∪ α2)− (V̄ (α1) + V̄ (α2))

)
5: A ← (A ∪ {α∗1 ∪ α∗2}) \ {α∗1, α∗2} . Merge two level sets into one
6: end while
7: return A . Output: ¯̄A∗(p̂)
8: end function

The inputs p̂ and n in algorithm (1) are used when evaluating V̄ (α) (146) for α ⊂ X .
The input of the support set size |X | is used in line (2) to initially assign the |X |−|X (p̂)| un-
observed symbols to a partition element. The loop in algorithm (1) always terminates since
we only merge distinct partition elements of the finite support set X . We can implement
algorithm (1) efficiently by observing that for α1, α2 ⊂ X α1 6= α2:

p̂α1∪α2 =
|α1|p̂α1 + |α2|p̂α2

|α1|+ |α2|
(150)

Relation (150) lets us evaluate V̄ (α1 ∪ α2) without summing over all points in α1 ∪ α, so
we can reuse the work we did when we previously computed V̄ (α1), V̄ (α2).

We obtain the doubly-approximate set of D distributions ¯̄p∗ by setting for all x ∈ X ,
d ∈ {1, . . . , D}

¯̄p(d)∗
x = p̂

(d)
α(x) (151)

where α(x) ∈ ¯̄A∗ is the partition element containing x, and p̂
(d)
α (36) is the average of p̂(d)

over α ⊂ X .

We know that the partition ¯̄A∗ computed by algorithm (1) is suboptimal (that is, does
not maximize V̄ (147)) because it only tries to merge pairs of existing partition elements
rather than triplets or larger collections; it is possible to construct an example where the
optimal partition consists of a single set (all of X ) but no pair of partition elements of A(p̂)
is “worth” merging in the sense of satisfying the loop condition in line (3).

45



Pavlichin, Jiao, and Weissman

The running time of the heuristic (1) is O(|Supp(F)|2) = O(n), where n =
∑D

d=1 nd:
In line (2), we have |A(p̂)| = | Supp(F)| = O(

√
n). To evaluate the max over α1, α2 ∈ A

for the first time in line (3) we consider O(|A(p̂)|2) = O(n) pairs of partition elements. On
every subsequent iteration of the loop, we add one new partition element (α∗1∪α∗2) to A and
remove two partition elements (α∗1 and α∗2) from A, so there are O(|A|) = O(

√
n) new pairs

of distinct partition elements to check in computing the max in line (3). The size of |A|
decrements by one each time the loop is run, so the loop is run at most O(|A(p̂)|) = O(

√
n)

times, so the overall complexity of algorithm 1 is O(n) +O(
√
n)O(

√
n) = O(n).

If the support set size |X | is unknown, then we vary the assumed support set size |X |
to optimize V̄ ( ¯̄A∗(p̂,n, |X |)) using a bisection search on the range [|X (p̂)|,maxd∈[1,D] n

2
d],

increasing the overall running time of the algorithm (optimizing over both the level set
partition A and the support set size) to O(n log(n)). Numerical experiments show that
V̄ ( ¯̄A∗(p̂,n, |X |)) is not unimodal in |X |, so this heuristic might choose a suboptimal support
set size.

The O(n) worst-case running time of algorithm (1) turns out to be slow for examples of
practical interest (in making the performance plots of Section 6), so we introduce another
heuristic to speed things up at the cost of adding some tunable knobs to the algorithm. The
heuristic is to avoid checking all pairs of partition elements α1, α2 ∈ A, instead checking only

the “promising” pairs. A pair α1, α2 ∈ A is called promising if the point (p̂
(d)
α1 )Dd=1 ∈ RD

is one of the k nearest neighbors of the point (p̂
(d)
α2 )Dd=1 ∈ RD in Euclidean distance10.

This heuristic is motivated by the observation that the level sets that get merged in the
loop of algorithm (1) tend to correspond to nearby points in Euclidean distance. Then
we modify algorithm (1) to first compute the set of k nearest neighbors (doable in time
O(|Supp(F)| log(|Supp(F)|)) = O(

√
n log(

√
n)) = O(

√
n log(n))) and then to update the

set of nearest neighbors after each loop execution. This updating can be done heuristically

by taking the k nearest neighbors of p̂
(d)
α1∪α2

to be the k nearest points chosen from among

only the union of the k nearest neighbors of (p̂
(d)
α1 )Dd=1 and the k nearest neighbors of (p̂

(d)
α2 )Dd=1

(rather than the k nearest points chosen from among (p̂
(d)
α )Dd=1 for all α ∈ A). The loop is

executed O(
√
n) times, so the overall running time of the algorithm is O(

√
n log(n)+k

√
n).

The time to compute the empirical histograms p̂ is O(n), asymptotically in n dominating
the runtime of our algorithm for large n, but tends to take less time in our use cases than
running algorithm 1 modified with our k nearest neighbor heuristic. For the performance
plots of Section 6 we used k = 5.

Figures 2 and 14 show the doubly-approximate PML level set partition ¯̄A∗ (149) for
D = 2 and D = 3, respectively.

Appendix I. Mutual and Lautum information

For the case of estimating the mutual information I(X;Y ), defined as

I(X;Y ) =
∑

x∈X ,y∈Y
px,y log

(
px,y
pxpy

)
, (152)

10. The nearest neighbor relation is not symmetric, so α1, α2 being promising does not imply that α2, α1 is
a promising pair.
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Figure 14: Computing the doubly-approximate PML distribution level set partition ¯̄A∗
(149) by clumping entries of a 3-D fingerprint Fi,j,k using algorithm 1 modified with the
5-nearest neighbors heuristic as described in Section H.4, shown in three projections. The
underlying distributions are p(1) = p(2) uniform on {1, . . . , 100} and p(3) is a mixture of
two uniforms, with half its mass uniform on {1, . . . , 20} and the other half uniform on
{21, . . . , 100}. The sample size is 500 for all three empirical distributions (p̂(d))3

d=1. Colored
convex hulls correspond to symbols assigned to the same clump (partition element). The
marker size of point (i, j, k) is roughly proportional to Fi,j,k. We can see two large clumps,
corresponding to symbols {1, . . . , 20} and {21, . . . , 100}.

or lautum information (Palomar and Verdú, 2008), defined as

L(X;Y ) =
∑

x∈X ,y∈Y
pxpy log

(
pxpy
px,y

)
, (153)

we have n samples from a joint distribution p on X × Y with joint histogram p̂. Here
px =

∑
y px,y, py =

∑
x px,y are the marginal distributions of X and Y , respectively.

I.1. Product of permutation groups: one candidate for PML

It is clear that the mutual information and the lautum information are invariant to the
product of two permutation groups SX × SY , acting on p as:

((σX , σY)p)x,y , pσX (x),σY (y) (154)

for all (σX , σY) ∈ SX × SY . Let (SX × SY)p denote the orbit of p under the group action.
Following the general profile maximum likelihood methodology for the product of these two
permutation groups, the PML distribution p∗ maximizes the following quantity over a set
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of distribution P on X × Y:

Pp((SX × SY)p̂) =
∑

p̂′∈(SX×SY )p̂

Pp(p̂′) (155)

(a)
=
|(SX × SY)p̂|
|SX × SY |

∑
(σX ,σY )∈SX×SY

Pp((σX , σY)p̂) (156)

=

∏
i≥0

1

Fi!

( n

np̂

) ∑
(σX ,σY )∈SX×SY

∏
(x,y)∈X×Y

p
np̂σ(σX ,σY )X (x),σY (y)

x,y (157)

=

∏
i≥0

1

Fi!

( n

np̂

)
perm

((
p
np̂x′,y′
x,y

)
(x,y),(x′,y′)∈X×Y

)
, (158)

where in (a) the prefactor corrects for multiple-counting points of the orbit (SX×SY)p̂ when
we sum over (σX , σY) ∈ (SX ×SY), and where (Fi)i≥0 = (|{(x, y) ∈ X ×Y : np̂x,y = i}|)i≥0

is the fingerprint of the distribution when one treats X × Y as a single alphabet. Note
that in this setting (Fi)i≥0 is not partially sufficient for estimating the mutual (lautum)
information: the mutual (lautum) information cannot be written as a functional of the
sorted probabilities of px,y.

In this setting, it follows from Theorem 6 that the partially sufficient statistic could
be defined via the following equivalence class representation: for any empirical distribution

p̂(1) = (p̂
(1)
x,y),p̂(2) = (p̂

(2)
x,y), we say p̂(1) is equivalent to p̂(2) if there exists an element g ∈

SX × SY such that gp̂(1) = p̂(2). The partially sufficient statistic is the corresponding
equivalent classes.

In this PML formulation, we analyze the cardinality of the corresponding partially
sufficient statistic below. This number appeared in (OEIS sequence A007716), and its
precise asymptotics is obtained in the following theorem.

Theorem 12 For any two empirical distributions p̂(1) = (p̂
(1)
x,y),p̂(2) = (p̂

(2)
x,y) with identical

sample size n, we say p̂(1) is equivalent to p̂(2) if there exists an element (σX , σY) ∈ SX ×SY
such that (σX , σY)p̂(1) = p̂(2), where SX ,SY are the permutation groups on X ,Y, respec-
tively. Then, the number of equivalence classes is given by e(1+o(1))n logn.

Theorem 12 shows that the cardinality of the partially sufficient statistic is no longer
sub-exponential. This negative result immediately renders Theorem 3 not applicable, which
leaves us with no guarantee on the performance of this type of PML on estimating mutual
information or lautum information.

I.2. Three permutation groups: the other candidate for the PML

The mutual information I(X;Y ) can be rewritten as

I(X;Y ) = H(PX) +H(PY )−H(PXY ) (159)

=
∑
x∈X

px log

(
1

px

)
+
∑
y∈Y

py log

(
1

py

)
−

∑
x∈X ,y∈Y

px,y log

(
1

px,y

)
, (160)
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where H(PX) =
∑

x px log 1
px

denotes the Shannon entropy of discrete distribution PX .
Following the discussion in Section 3.1, we introduce

(FXYi )i≥0 = (| {(x, y) ∈ X × Y : np̂x,y = i} |)i≥0 (161)

(FXi )i≥0 = (| {x ∈ X : np̂x = i} |)i≥0 (162)

(FYi )i≥0 = (| {y ∈ Y : np̂y = i} |)i≥0 , (163)

and it is clear that
(
FXYi

)
i≥0

is partially sufficient for H(PXY ),
(
FXi
)
i≥0

is partially

sufficient for H(PX), and
(
FYi
)
i≥0

is partially sufficient for H(PY ). Since I(X;Y ) =

H(PX) +H(PY )−H(PXY ), it motivates the following PML definition:

p∗ , argmax
p∈P

Pp
(
FXY ,FX ,FY

)
. (164)

In other words, the PML distribution (p∗x,y) on X×Y maximizes the probability of observing

the three joint fingerprints
(
FXY ,FX ,FY

)
. This PML formulation, which only applies to

mutual information but not lautum information, does not suffer from the super-exponential
cardinality problem. Applying Theorem 10, it follows that the cardinality of the statistic is
at most (

e
π
√

2n
3

)3

= eπ
√

6n, (165)

which is still sub-exponential. However, it seems to be a non-trivial task to even approxi-
mately solve the PML formulation (164). Moreover, this PML formulation does not apply
to lautum information.

Note that there may not exist a group G (a subgroup of the symmetric group SX×Y) act-
ing on the joint empirical distributions p̂ such that the set of distinct triplets (FXY ,FX ,FY )
is in bijection with the set of distinct orbits under the action of G. For example, let p̂, p̂′,
and p̂′′ be three empirical distributions on X = {x1, x2}, Y = {y1, y2, y3} with sample size
n = 1110:

np̂ =

(
1 4 100

2 3 1000

)
np̂′ =

(
2 3 100

1 4 1000

)
np̂′′ =

(
2 100 3

1 1000 4

)
(166)

where rows (columns) correspond to elements of X (Y). p̂, p̂′, and p̂′′ have the same X -
and Y-marginal distributions ((105, 1005)/1110 and (3, 7, 1100)/1110, respectively) and the
same set of entries, so their fingerprint triplets (FXY ,FX ,FY ) are the same.

Suppose there exists a group G ⊂ SX×Y such that the orbit Gp̂ contains exactly those
distributions with the same fingerprint triplet (FXY ,FX ,FY ). Then p̂′, p̂′′ ∈ Gp̂. Let
σ ∈ G, where p̂′ = σp̂. Then σ switches x1 and x2 iff y 6= y3:

(σp)x,y =


px2,y : x = x1, y 6= y3

px1,y : x = x2, y 6= y3

px,y : otherwise

(167)
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On the other hand,

n(σp̂′′) =

(
1 1000 3

2 100 4

)
(168)

has X -marginal (1004, 106)/1110, and thus a different FX , so the action of σ does not
preserve the triplet (FXY ,FX ,FT ), so group G does not exist.

Appendix J. Estimating the support set size of the approximate PML
distribution

We first state our results in the notation introduced in Sections 4.5 and 4.6.

Theorem 13 Let p̄∗ be the approximate PML distribution. Then X0:i∗ ∈ A(p̄∗) is a level
set of p̄∗, where

i∗ , argmax
i∈[1,F+]

(
sup
F0∈N

(
− log(F0!) + V̄ (X0:i)

)
+ V̄i+1

)
(169)

For each value of i ∈ [1, F+] the supremum over F0 in (169) is finite and we compute it
below.

Let Ki , |X1:i| and Ni ,
∑

x∈X1:i
np̂x.

If i = 1 and F1 ≥ 1, then N1 = K1 = F1 ≥ 1 is the number of symbols seen exactly
once in the sample, and the supremum in (169) is equal to N1 log

(
N1
n

)
. If F1 > 1, then the

supremum is approached as F0 → ∞ and is not achieved by any F0 ∈ N. If F1 = 1, then

the supremum is achieved by all F0 ∈ N, so we arbitrarily choose F (1)
0 = 0 as an achiever.

If i > 1 or F1 = 0, then Ni > Ki and the supremum in (169) is achieved by F (i)
0 ∈ N

where

F (i)
0 , argmax

F0∈N

(
log

(
(Ki + F0)!

F0!

)
−Ni log (Ki + F0)

) = 0 : Ni ≥ KiHKi

∈ [0,
K2
i −Ni

Ni−Ki + 1] : KiHKi > Ni > Ki

(170)
where Hk ,

∑k
j=1

1
j is the k-th harmonic number.

If the supremum in (169) is achieved by finite F0 = F (i∗)
0 (this is the case unless i∗ = 1

and F1 > 1) then the approximate PML distribution p̄∗ has finite support set size K̄∗ =

F (i∗)
0 +K̂, where K̂ is the support set size of the empirical distribution p̂. Then we compute

p̄∗ as in Section 4.5 with known support set size K̄∗. If the supremum is not achieved by
finite F0 (this is the case if i∗ = 1 and F1 > 1), then we say p̄∗ has a continuous part of
mass N1/n and discrete part p̄∗d of mass 1−N1/n supported on X2:F+ = X \X0:1. Then we
compute p̄∗d as in Section 4.5 with known support set size |X2:F+ |.

Since the function in the argmax in (170) is unimodal in F0 and 0 ≤ F (i)
0 ≤

K2
i −Ni

Ni−Ki +1 ≤
N2
i +2 (where the last inequality follows from Ni ≥ Ki+1), we can compute the optimizing

integer F (i)
0 in O(log(Ni)) iterations of a bisection search. We must do this bisection search
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F+ = | Supp(F+)| times. As remarked earlier, since | Supp(F+)| ≤
√

2n+ 1 and Ni ≤ n for
all i, then the total run time of our support set size optimization scheme is O(

√
n log(n)).

Thus to estimate the support set size of the approximate PML distribution we solve
F+ optimization problems, corresponding to estimation of the support set size of a uniform
distribution (since all symbols in X0:i are assigned to a single level set) given a sample of
size Ni with Ki distinct symbols.

Proof

Optimizing over the support set size K, the approximate PML distribution p̄∗ satisfies:

log(Pp̄∗(F)) = sup
K

(
− log((K − K̂)!) + max

p∈PK

(
V̄ (p)

) )
(171)

= sup
F0

(
− log(F0!) + max

p∈PK̂+F0

(
V̄ (p)

) )
(172)

(a)
= sup
F0

(
− log(F0!) + V̄0

)
(173)

(b)
= sup
F0

(
− log(F0!) + max

i∈[1,F+]

(
V̄ (X0,i) + V̄i+1

) )
(174)

(c)
= max

i∈[1,F+]

(
V̄i+1 + sup

F0

(
V̄ (X0,i)− log(F0!)

))
(175)

(d)
= max

i∈[1,F+]

(
V̄i+1 +Ni log

(
Ni

n

)
+ sup
F0

(
log

(
(Ki + F0)!

F0!

)
−Ni log (Ki + F0)︸ ︷︷ ︸

f(F0,Ki,Ni)

))

(176)

where (a) follows from (48), (b) follows from (46), (c) follows since V̄i is independent of F0

(and hence K) for i ≥ 1, and (d) from (39) and (50). We use supF0
(rather than maxF0)

since a maximizing value of F0 might not exist. We later show that the supremum in (176)
is finite, so we interchange the order of the max and supremum. The function f(F0,K,N)
is defined for non-negative arguments as in (176). Note that we do not allow i = 0 in the
optimization (176) in order to exclude X0,0 (the set of unseen symbols) as a level set of
p; otherwise, due to the averaging-over-clumps property (37), we would have p vanish on
X0,0, violating the assumption that the support set size of p is K. It is possible to have
K̄∗ = K̂ = |Supp(p̂)|, corresponding to the case F0 = 0, so that X0,i = X1,i for all i.

Let’s compute the supremization in (176). We can check that f(F0, N,N) < 0 for all
N > 1 and F0 ≥ 0, and

lim
F0→∞

f(F0, N,N) = 0 (177)

so if i = 1 and F1 > 1, then N1 = K1 = F1 > 1 and the supremum in (176) is equal to 0,
is approached as F0 →∞, and is not achieved by any F0 ∈ N.

We can check that f(F0, 1, 1) = 0 for all F0, so if i = 1 and F1 = 1, then N1 = K1 =
F1 = 1 and the supremum in (176) is equal to 0 and is achieved by all F0 ∈ N, so we

arbitrarily choose F (1)
0 = 0 as an achiever.
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If i > 1 or F1 = 0, then Ni > Ki. When N > K the function f(F0,K,N) is continuous
in F0

11 and unimodal with a global maximum. Solving

∂

∂F0
f(F0,K,N

∗) = 0 (178)

for N∗ we find N∗ = KHK , where HK is the K-th harmonic number. Thus if Ni ≥ KiHKi ,
then the supremum in (176) is achieved by F0 = 0. If Ni < KiHKi , then we can upper
bound the supremizing value F0 by finding the unique inflection point of f in F0 beyond
the global maximum. Setting the “discrete” second derivative to 0 (we take the discrete
derivative because the function ∂f

∂F0
is easier to work with for integer F0):

∂

∂F0
(f(F0 + 1,K,N)− f(F0,K,N))

∣∣∣∣
F0=F∗0

= 0 (179)

we find F∗0 = K2−N
N−K . If K < N < KHK then K > 1 (since 1 = H1) and N < K2, so F∗0 > 0.

Thus we can upper bound the inflection point of f by K2−N
N−K + 1, so if Ki < Ni < KiHKi ,

then F (i)
0 ∈ [0,

K2
i −Ni

Ni−Ki + 1].
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Jaroslav Hájek. On basic concepts of statistics. In Proceedings of the Fifth Berkeley Sym-
posium on Mathematical Statistics and Probabilities, volume 1, pages 139–162, 1967.

Yanjun Han, Jiantao Jiao, and Tsachy Weissman. Minimax rate-optimal estimation of
divergences between discrete distributions. arXiv preprint arXiv:1605.09124, 2016a.

Yanjun Han, Jiantao Jiao, and Tsachy Weissman. Minimax rate-optimal estimation of KL
divergence between discrete distributions. In Information Theory and Its Applications
(ISITA), 2016 International Symposium on, pages 256–260. IEEE, 2016b.

Godfrey H Hardy and Srinivasa Ramanujan. Asymptotic formulaæ in combinatory analysis.
Proceedings of the London Mathematical Society, 2(1):75–115, 1918.

David A Harville. Maximum likelihood approaches to variance component estimation and
to related problems. Journal of the American Statistical Association, 72(358):320–338,
1977.

Jiantao Jiao, Kartik Venkat, Yanjun Han, and Tsachy Weissman. Minimax estimation of
functionals of discrete distributions. Information Theory, IEEE Transactions on, 61(5):
2835–2885, 2015.

Jiantao Jiao, Kartik Venkat, and Tsachy Weissman. Relations between information and
estimation in discrete-time Lévy channels. IEEE Transactions on Information Theory,
63(6):3579–3594, 2017.

Jiantao Jiao, Yanjun Han, and Tsachy Weissman. Minimax estimation of the L1 distance.
IEEE Transactions on Information Theory, 64(10):6672–6706, 2018.

53



Pavlichin, Jiao, and Weissman

A Kolmogoroff. Sur lestimation statistique des parametres be la loi de gauss. Izvestiya
Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 6(1):3–32, 1942.

L Le. Sufficiency and approximate sufficiency. The Annals of Mathematical Statistics, pages
1419–1455, 1964.

Lucien Le Cam. Maximum likelihood: an introduction. Statistics Branch, Department of
Mathematics, University of Maryland, 1979.

Erich Leo Lehmann and George Casella. Theory of point estimation, volume 31. Springer,
1998.

Susan A Murphy and Aad W Van der Vaart. On profile likelihood. Journal of the American
Statistical Association, 95(450):449–465, 2000.

OEIS Foundation Inc. The online encyclopedia of integer sequences (OEIS)–A007716.
https://oeis.org/A007716. Accessed: 2017-05-16.

Alon Orlitsky, Sajama, Narayana Santhanam, Krishnamurthy Viswanathan, and Junan
Zhang. Algorithms for modeling distributions over large alphabets. In Information Theory
(ISIT), 2004 IEEE International Symposium on, page 304. IEEE, 2004a.

Alon Orlitsky, Narayana P Santhanam, Krishnamurthy Viswanathan, and Junan Zhang. On
modeling profiles instead of values. In Proceedings of the 20th conference on Uncertainty
in artificial intelligence, pages 426–435. AUAI Press, 2004b.
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