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Abstract

An approximate method for conducting resampling in Lasso, the `1 penalized linear re-
gression, in a semi-analytic manner is developed, whereby the average over the resampled
datasets is directly computed without repeated numerical sampling, thus enabling an in-
ference free of the statistical fluctuations due to sampling finiteness, as well as a significant
reduction of computational time. The proposed method is based on a message passing type
algorithm, and its fast convergence is guaranteed by the state evolution analysis, when
covariates are provided as zero-mean independently and identically distributed Gaussian
random variables. It is employed to implement bootstrapped Lasso (Bolasso) and stability
selection, both of which are variable selection methods using resampling in conjunction
with Lasso, and resolves their disadvantage regarding computational cost. To examine
approximation accuracy and efficiency, numerical experiments were carried out using simu-
lated datasets. Moreover, an application to a real-world dataset, the wine quality dataset,
is presented. To process such real-world datasets, an objective criterion for determining the
relevance of selected variables is also introduced by the addition of noise variables and re-
sampling. MATLAB codes implementing the proposed method are distributed in (Obuchi,
2018).

Keywords: bootstrap method, Lasso, variable selection, message passing algorithm,
replica method

1. Introduction

Variable selection is an important problem in statistics, signal processing, and machine
learning. A desire for useful techniques of variable selection has recently been growing, as
cumulated advances in measurement and information technologies have started to steadily
produce a large amount of high-dimensional data in science and engineering. A naive
method for selecting relevant variables requires solving discrete optimization problems. This
involves a serious computational difficulty as the dimensionality of the variables increases,
even in the simplest case of linear models (Natarajan, 1995). Hence, certain relaxations or
approximations are required for handling such large high-dimensional datasets.

A great deal of progress has been made with regard to relaxation techniques by intro-
ducing an `1 penalty (Tibshirani, 1996; Meinshausen and Bühlmann, 2004; Banerjee et al.,
2006; Friedman et al., 2008). Its model consistency, that is, whether the estimated model
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converges to the true model in the large size limit of data, has been extensively studied,
particularly in the case of linear models (Knight and Fu, 2000; Zhao and Yu, 2006; Yuan
and Lin, 2007; Wainwright, 2009; Meinshausen and Yu, 2009). These studies show that a
naive usage of the `1 penalty affects model consistency in realistic settings: The resultant
estimator cannot completely reject variables not present in the true model if there exist
non-trivial correlations between covariates, although the normal consistency in the `2 sense
is retained. This fact motivated the development of further techniques for recovering model
consistency in the variable selection context, particularly in the last decade, including tradi-
tional approaches using confidence interval and hypothesis testing (Zou, 2006; Bach, 2008;
Meinshausen and Bühlmann, 2010; Javanmard and Montanari, 2014a,b, 2015; Lockhart
et al., 2014; G’Sell et al., 2013; Takahashi and Kabashima, 2018). If the distribution of the
estimator is accurately figured out and the corresponding P-value is efficiently computed,
those traditional approaches are quite efficient and powerful enough to correctly perform
variable selection. However in many practical situations, the functional form of the distribu-
tion is not clear. In such cases, certain numerical approaches are employed to approximately
estimate the distribution. Resampling is one of the representative methods and is focused
on in the present paper.

Resampling is a versatile idea applicable to a wide range of problems in statistical mod-
eling and is broadly used in machine learning algorithms; some examples can be found in
boosting and bagging (Trevor et al., 2009). In statistics, Efron’s bootstrap method is a
pioneering example in which resampling is efficiently and systematically used (Efron and
Tibshirani, 1994). In the case of the `1-penalized linear regression or Lasso (Tibshirani,
1996), through a fine evaluation of each variable’s probability to be selected (positive prob-
ability) in a fairly general setting, Bach showed that it is possible to perform statistically
consistent variable selection by utilizing the bootstrap method (Bach, 2008); the associated
algorithm is called bootstrapped Lasso (Bolasso). Another algorithm based on a similar
idea, called stability selection (SS), was also implemented by randomizing the penalty coef-
ficient in Lasso (Meinshausen and Bühlmann, 2010). All these examples demonstrate that
resampling is powerful and versatile.

A common disadvantage of such resampling approaches is their computational cost. For
example, in the Bolasso case, the `1-penalized linear regression should be recursively solved
according to the number of resampled datasets, which should be sufficiently large so that
the positive probability of variables may be estimated. This multiple computational cost
precludes the application of such resampling techniques to large datasets. The aim of this
study is to avoid this problem by developing an approximation whereby the resampling is
conducted in a semi-analytic manner, and to implement it in Lasso.

Such an approximation was already obtained by Malzahn and Opper (2003), where a
general framework of semi-analytic resampling was developed using the replica method from
statistical mechanics, and was demonstrated in Gaussian process regression. We follow their
idea and pursue how it works in Lasso with certain resampling manners.

The remaining of the paper is organized as follows. In the next section, the general
framework for semi-analytic resampling using the replica method is reviewed. Concrete
formulas in the Lasso case are also provided. After taking the average with respect to the
resampling, there remains an intractable statistical model. Handling this model is another
key issue, and certain approximations (expected to be exact under certain conditions) should
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be adopted. In this study, Gaussian approximation is used in conjunction with the so-called
cavity method, providing a message passing type algorithm. Its dynamical behavior is
analyzed by the so-called state evolution, which guarantees that the algorithm convergence
is free from the model dimensionality and the dataset size when covariates are provided
as zero-mean independently and identically distributed (i.i.d.) Gaussian random variables.
They are explained in Section 3. In Section 4, numerical experiments are carried out
on both simulated and real-world datasets to examine the accuracy and efficiency of the
proposed semi-analytic method. For processing real-world datasets, an objective criterion
for determining the relevance of selected variables is also proposed, based on the addition
of noise variables and resampling. The last section concludes the paper.

2. Formulation for semi-analytic resampling

Let us start from preparing notations and definitions. We denote by D a given dataset,
which usually consists of a set of inputs xµ and outputs yµ as D = {(xµ, yµ)}Mµ=1, and

denote our basic statistics by β̂(D) = (β̂1(D), · · · , β̂N (D))>. They are interpreted as an
estimator of true parameters in the true model that is inferred. Based on the Bayesian
inference framework, it is assumed that the basic estimator can be expressed as an average
over a certain posterior distribution P (β|λ, D), that is,

β̂(λ, D) =

∫
dβ βP (β|λ, D) ≡ 〈β〉 , (1)

where 〈·〉 represents the average over the posterior distribution which is supposed to be
constructed as follows:

P (β|λ, D) =
1

Z(λ, D)
P0(β|λ)P (D|β). (2)

Here, P0(β|λ) is the prior distribution characterized by the parameters λ, and P (D|β)
represents the likelihood. The normalization constant or the partition function can be
explicitly expressed by

Z(λ, D) =

∫
dβ P0(β|λ)P (D|β). (3)

Considering the construction of a subsample by resampling from the full data D of size
M with replacement, let an indicator vector c = (c1, · · · , cM )> specify any such subsample;
each cµ is a non-negative integer counting the number of occurrences of the µ-th datapoint
of D in the subsample. A subsample identified by c is denoted by Dc. Specifying a
resampling defines the distribution P (c) of c, and the question is the behavior of the basic
estimators and their functions with respect to the average over P (c). In some resampling
techniques, additional randomization is introduced in the prior distribution (Meinshausen
and Bühlmann, 2010). Hence, an average over the parameters λ is further considered, and
the distribution P (λ) of λ is introduced. For notational simplicity, the average over these
distributions is denoted by square brackets with appropriate subscripts as follows:

[(· · · )]c,λ ≡
∑
c

∫
dλ(· · · )P (c)P (λ).

The average of this type is called configurational average throughout this paper.
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2.1. General theory of semi-analytic resampling

The purpose of resampling is to obtain the distribution of the basic estimator

P (βi) =
[
δ
(
βi − β̂i(λ, Dc)

)]
c,λ

, (4)

which is reduced to computing the moments
[
β̂ri (λ, Dc)

]
c,λ

of arbitrary degree ∀r ∈ N. We

thus show that these moments can be evaluated in the following manner.

By definition, the moment
[
β̂ri (λ, Dc)

]
c,λ

with r ∈ N can be written as

[
β̂ri (λ, Dc)

]
c,λ

=

[
1

Zr(λ, Dc)

∫ { r∏
a=1

dβa βai P0(βa|λ)P (Dc|βa)

}]
c,λ

(5)

= lim
n→0

[
Zn−r(λ, Dc)

∫ { r∏
a=1

dβa βai P0(βa|λ)P (Dc|βa)

}]
c,λ

(6)

.
= lim

n→0

[∫ { n∏
b=1

dβb

}{
r∏

a=1

βai

}{
n∏
b=1

P0(βb|λ)P (Dc|βb)

}]
c,λ

. (7)

The evaluation of (5) is technically difficult owing to the existence of Zr(λ, Dc) in the
denominator: The negative power of the partition function does not allow the analytical
evaluation of the average over c and λ, even if P (c) and P (λ) take reasonable forms. To
overcome this difficulty, an auxiliary parameter n is introduced in (6). The exponent n is
assumed to be a positive integer larger than r in (7); thus, the power of the partition function
can be expanded in the integral form (3). Integral variables {β1,β2, . . . ,βn} are termed
replicas since they are regarded as constituting n copies of the original system. In (7), the
configurational average can be analytically computed under appropriate approximations.
This yields an expression as a function of n that is analytically continuable from N to
R. The n → 0 limit is taken by employing the analytically continued expression after all
computations. The evaluation technique based on these procedures is often called the replica
method (Mézard et al., 1987; Nishimori, 2001; Dotsenko, 2005). Evidently, this technique is
not justified in a strict sense, but it is known that the replica method gives correct results
for many problems. Justification of the replica method is known to be difficult (Talagrand,
2003), and here we leave it as a future work and just employ the method for our purpose. In
the present problem, it is far from trivial to obtain an analytically continuable expression,
and below we concentrate on its derivation.

Accordingly, the configurational average of any power of the basic estimator can be
evaluated from the following quantities:

Ξ ({βa}na=1 |D) ≡
∫ { n∏

a=1

dβa

}[
n∏
a=1

P0(βa|λ)P (Dc|βa)

]
c,λ

,

P ({βa}na=1 |D) ≡ 1

Ξ ({βa}na=1 |D)

[
n∏
a=1

P0(βa|λ)P (Dc|βa)

]
c,λ

,
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where the former is called replicated partition function and the latter is called replicated
Boltzmann distribution. The average over the replicated Boltzmann distribution is denoted
by

(· · ·) ≡
∫ { n∏

a=1

dβa

}
(· · ·)P ({βa}na=1 |D) . (8)

It follows from (5)–(7) that this average converges to the desired total average over the
posterior and the configurational variables c and λ as n→ 0. The next step is to compute
this average. The nontrivial technical difficulties are in the integrations with respect to
replicas {βa}na=1 and in deriving a functional form that is analytically continuable with
respect to n. These will be handled after considering the specific case of Lasso.

2.2. Specifics to Lasso with independent sampling

The above general theory is now rephrased in the context of Lasso. Given a set of covariates
xµ ∈ RN and responses yµ ∈ R, D = {(xµ, yµ)}Mµ=1, the usual estimator by Lasso is

β̂(λ,D) = arg min
β

1

2

M∑
µ=1

(
yµ −

∑
i

xµiβi

)2

+ λ||β||1

 .

In contrast to this, considering Bolasso and SS, given the resampled data Dc and the
randomized penalty coefficients λ = (λ1, · · · , λN )>, the following estimator is introduced:

β̂(λ, Dc) = arg min
β

1

2

M∑
µ=1

cµ

(
yµ −

∑
i

xµiβi

)2

+
N∑
i=1

λi|βi|

 . (9)

For representing this in terms of the posterior average, the following quantities are intro-
duced:

H(β|λ, Dc) =
1

2

M∑
µ=1

cµ

(
yµ −

∑
i

xµiβi

)2

+

N∑
i=1

λi|βi|,

Zγ(λ, Dc) =

∫
dβ e−γH(β|λ,Dc),

Pγ(β|λ, Dc) =
1

Zγ
e−γH(β|λ,Dc),

where these quantities are called (in the order they appear) Hamiltonian, partition func-
tion, and Boltzmann distribution, in accordance with physics terminology. As γ →∞, the
Boltzmann distribution converges to a pointwise measure at β̂(λ, Dc) and thereby becomes
the desired posterior distribution, allowing the identification of the Boltzmann distribution
with the posterior distribution; thus, the average over the Boltzmann distribution is there-
after denoted by 〈· · ·〉 introduced in (1)1. The prior distribution P0(β|λ) and the likelihood

1. It is assumed that the order of the integration and the γ → ∞ limit may be changed.
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P (D|β) in (2) correspond to the factors e−γ
∑
i λi|βi| and e−

γ
2

∑M
µ=1 cµ(yµ−

∑
i xµiβi)

2

in the
Boltzmann distribution, respectively.

Considering Bolasso and SS, we draw the subsample c of a fixed size m in an unbiased
manner. Each sample comes out with a probability of M−mm!/(c1! · · · cM !), which has a
weak dependency among {cµ}µ. However, this dependency is not essential for large M and
m; thus, it is ignored. Using Stirling’s formula m! ≈ (me )m in conjunction with the relation

m =
∑M

µ=1 cµ, cµ is approximately regarded as an i.i.d. variable from a Poisson distribution
of mean τ = m/M , namely,

P (c) =
M∏
µ=1

τ cµ

cµ!
e−τ =

M∏
µ=1

P (cµ).

It is also natural to require that P (λ) is factorized into a batch of identical distributions as
follows:

P (λ) =
N∏
i=1

P (λi).

At this point, the explicit form of P (λi) is not specified. These factorized natures allow us
to express the replicated Boltzmann distribution as

Pγ({βa}na=1|D) ∝
[
e−γ

∑n
a=1H(βa|λ,Dc)

]
c,λ

=
M∏
µ=1

Φµ

(
{βi}Ni=1

) N∏
i=1

Ψ (βi) , (10)

where

Φµ

(
{βi}Ni=1

)
=
[
e−

1
2
γc
∑
a(yµ−

∑
i xµiβ

a
i )2
]
c
,

Ψ (βi) =
[
e−γλ

∑n
a=1 |βai |

]
λ
,

and the vector notation βi = (βai )a was introduced for later convenience. Φµ is hereafter
called µ-th potential function.

To proceed further, an approximation should be introduced to make the right-hand side
of (10) tractable. Although there are several ways for that, we here make an approximation
based on the cavity method from statistical physics. The details are in the next section.

3. Handling the replicated system

We below work with the cavity method, or the belief propagation (BP) in computer science,
and use a Gaussian approximation. This treatment is essentially identical to that used in
deriving the known approximate message passing (AMP) (Kabashima, 2003; Donoho et al.,
2009), and can be justified if each covariate is i.i.d. from Gaussian distributions (Bayati and
Montanari, 2011; Barbier et al., 2017). For treating nontrivial correlations between covari-
ates, more sophisticated approximations (Opper and Winther, 2001a,b, 2005; Kabashima
and Vehkapera, 2014; Çakmak et al., 2014; Cespedes et al., 2014; Rangan et al., 2016; Ma
and Ping, 2017; Takeuchi, 2017) are required. Such extensions are left as future work.
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(10) implies that the replicated Boltzmann distribution naturally has a factor graph
structure. Hence, by the cavity method, (10) can be “approximately” decomposed into two
messages as follows:

φ̃µ→i(βi) =
1

Zµ→i

∫ ∏
j( 6=i)

dβj Φµ

(
{βi}Ni=1

) ∏
j(6=i)

φj→µ(βj), (11)

φi→µ(βi) =
1

Zi→µ
Ψ (βi)

∏
ν(6=µ)

φ̃ν→i(βi), (12)

where Zµ→i, Zi→µ are normalization factors that are not relevant and will be discarded
below. The average of (8) can be computed by employing this set of equations.

3.1. Gaussian approximation on cavity method

A crucial observation for assessing (11),(12) is that the residual Raµ = yµ −
∑

j xµjβ
a
j ap-

pearing in Φµ has a sum of a large number of random variables; thus, the central limit
theorem justifies treating it as a Gaussian variable with the appropriate mean and variance.
This consideration leads to the following decomposition in (11)

Raµ + xµiβ
a
i ≡ yµ −

∑
j(6=i)

xµjβ
a
j ≈ yµ −

∑
j( 6=i)

xµjβ
\µ
j + Zaµi ≡ rµi + Zaµi,

where Zaµi is a zero-mean Gaussian variable whose covariance is equivalent to that of∑
j(6=i) xµjβ

a
j , and (· · ·)\µ is the average over

∏
j φj→µ(βj) or the replicated Boltzmann

distribution without µ-th potential function. This shows that it is difficult to consider the
correlation between βi and βj with different i, j in the present framework. This could be
overcome even in the cavity method framework (Opper and Winther, 2001a,b); however, it
is beyond the scope of this study.

The so-called replica symmetry is now assumed in the messages. This symmetry implies
that any permutation of the replicas {β1

i , · · · , βni } yields an identical message, which in
turn implies, by De Finetti’s theorem (Hewitt and Savage, 1955), that the messages can be
expressed as

φi→µ(βi) =

∫
dFρi→µ(F)

n∏
a=1

F(βai ),

φ̃µ→i(βi) =

∫
dGρµ→i(G)

n∏
a=1

G(βai ),

7



Obuchi and Kabashima

where dFρi→µ(F) and dGρi→µ(G) are probability measures over the probability distribution
functions F and G, respectively. From this form, two different variances naturally emerge:

V
\µ
i ≡ (βai )2 − βai βbi

\µ
=

∫
dβi

(
(βai )2 − βai βbi

)∫
dFρi→µ(F)

n∏
c=1

F(βci )

=

∫
dFρi→µ(F)

{∫
F(β)β2dβ −

(∫
F(β)βdβ

)2
}
,

W
\µ
i ≡ βai βbi

\µ
− βai

\µ
βbi
\µ

=

∫
dFρi→µ(F)

(∫
F(β)βdβ

)2

−
(∫

dFρi→µ(F)

∫
F(β)βdβ

)2

,

where it was assumed that a 6= b. Below, the µ-dependence of V
\µ
i and W

\µ
i is ignored, as

it is small, and let

V
\µ
i ≈ Vi = (βai )2 − βai βbi ,

W
\µ
i ≈Wi = βai β

b
i − βai βbi .

It can be implied that Vi describes the average of the variance inside a fixed resampled
dataset, whereas Wi represents the inter-sample variance. Using Vi and Wi, the covariance
of βi is generally written as

Cov\µ
(
βai , β

b
i

)
≡ βai βbi

\µ
− βai

\µ
βbi
\µ

= W
\µ
i + V

\µ
i δab ≈Wi + Viδab.

Using this relation, the covariance of {Zaµi}a can be expressed as

Cov\µ
(
Zaµi, Z

b
µi

)
=
∑
j,k(6=i)

xµixµjCov\µ
(
βaj , β

b
k

)
≈
∑
j

x2
µjCov\µ

(
βaj , β

b
j

)
≈
∑
j

x2
µj(Wj + Vjδab) ≡Wµ + Vµδab.

The correlation between βj and βk for j 6= k is neglected in the second sum because it
is not taken into account in the present framework, as explained above. Moreover, the
addition of the i-th term in the same sum does not affect the following discussion because
it is sufficiently small in the summation. Based on these observations, Zaµi is decomposed
as follows:

Zaµi = Dµi + ∆a
µi,

whereDµi and ∆a
µi are zero-mean Gaussian variables whose covariances are Cov\µ (Dµi, Dµi) =

Wµ, Cov\µ
(
Dµi,∆

a
µi

)
= 0, Cov\µ

(
∆a
µi,∆

b
µi

)
= Vµδab.

φ̃µ→i can now be computed. The integration with respect to {βj}j(6=i) in (11) is replaced
by that over Di and ∆a

i . The result is

φ̃µ→i(βi) ≈
∫
dDµiP (Dµi)

∫ ∏
a

d∆a
µiP (∆a

µi)
[
e−

1
2
γc
∑
a(rµi−xµiβai +Dµi+∆a

µi)
2
]
c

=
[
U(c)−

1
2 (1 + cγVµ)−

n
2 e−

1
2
S(c)

∑
a(rµi−xµiβai )

2
+ 1

2
T (c)(

∑
a(rµi−xµiβai ))

2]
c
,

8
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where

S(c) =
cγ

1 + cγVµ
,

T (c) =
c2γ2Wµ

(1 + cγVµ)(1 + cγ(Vµ + nWµ))
,

U(c) =
1 + cγ(Vµ + nWµ)

1 + cγVµ
.

ln φ̃µ→i(βi) can be expanded with respect to xµiβ
a
i , and the expansion up to the second

order leads to an effective Gaussian approximation of the message, yielding

φ̃µ→i(βi) ≈ e−
1
2
γÃµ→i

∑
a(βai )

2
+ 1

2
γ2C̃µ→i(

∑
a β

a
i )

2
+γB̃µ→i

∑
a β

a
i ,

where

Ãµ→i =

[
c

1 + cγVµ

]
c

x2
µi, (16a)

B̃µ→i =

[
c

1 + cγVµ

]
c

rµixµi, (16b)

C̃µ→i =

{[(
c

1 + cγVµ

)2
]
c

Wµ +

([(
c

1 + cγVµ

)2
]
c

−
[

c

1 + cγVµ

]2

c

)
(rµi)

2

}
x2
µi.(16c)

It should be noted that the n→ 0 limit was already taken in these coefficients.
Owing to the Gaussian approximation of φ̃µ→i(βi), the marginal distribution of the

replicated Boltzmann distribution can be simply written as

Pi(βi|D) ≡
∫ ∏

j(6=i)

dβjP ({βi}i|D) ∝ Ψ(βi)
∏
µ

φ̃µ→i(βi)

≈
[∫

Dz e
γ
(
− 1

2
Ai
∑
a(βai )

2
+(Bi+

√
Ciz)

∑
a β

a
i −λ

∑
a |βai |

)]
λ

, (17)

where Dz = dze−
1
2
z2/
√

2π, and the following identity was used:

e
1
2
Cx2 =

∫
Dz e

√
Czx.

Moreover, Ai =
∑

µ Ãµ→i, Bi =
∑

µ B̃µ→i, and Ci =
∑

µ C̃µ→i. All replicas are now
factorized, and the average can be taken for each replica independently, allowing passing to
the n→ 0 limit by analytic continuation from N to R with respect to n. For example, the
mean of βai is computed as

βai =

[∫
Dz

(∫
dβ eγ(−

1
2
Aiβ

2+(Bi+
√
Ciz)βi−λ|β|)

)n]−1

λ

×

[∫
Dz

∫
dβ βeγ(−

1
2
Aiβ

2+(Bi+
√
Ciz)βi−λ|β|)

(∫
dβ eγ(−

1
2
Aiβ

2+(Bi+
√
Ciz)βi−λ|β|)

)n−1
]
λ

n→0−−−→

[∫
Dz

∫
dβ βeγ(−

1
2
Aiβ

2+(Bi+
√
Ciz)βi−λ|β|)∫

dβ eγ(−
1
2
Aiβ2+(Bi+

√
Ciz)βi−λ|β|)

]
λ

γ→∞−−−→
[∫

DzSλ(Bi +
√
Ciz;Ai)

]
λ

,
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where Sλ is the so-called soft thresholding function

Sλ(x;A) =
1

A
(x− λsgn (x))θ(|x| − λ),

and θ(x) is the step function that is equal to 1 if x > 0 and 0 otherwise. Thus, the mean of
the basic estimator takes a reasonable form.

In the above average, it is assumed that the coefficients Ai, Bi, Ci remain finite as γ →∞.
This is the case if the following holds:

χµ ≡ γVµ =
∑
i

x2
µiγVi → O(1), (γ →∞).

This scaling is consistent, which can be shown by

χi ≡ γVi = γ
{

(βai )2 − βai βbi
}

n→0−−−→

∫ Dz γ


∫
dβ β2eγ(−

1
2
Aiβ

2+(Bi+
√
Ciz)βi−λ|β|)∫

dβ eγ(−
1
2
Aiβ2+(Bi+

√
Ciz)βi−λ|β|)

−

(∫
dβ βeγ(−

1
2
Aiβ+(Bi+

√
Ciz)βi−λ|β|)∫

dβ eγ(−
1
2
Aiβ2+(Bi+

√
Ciz)βi−λ|β|)

)2


λ

γ→∞−−−→ 1

Ai

[∫
Dzθ

(
|Bi +

√
Ciz| − λ

)]
λ

=
∂βi
∂Bi

.

In contrast to Vi, the inter-sample fluctuation Wi takes a finite value even as γ → ∞. Its
explicit form is

Wi = βai β
b
i − βai βbi

n→0, γ→∞−−−−−−−→
[∫

DzS2
λ

(
Bi +

√
Ciz;Ai

)]
λ

−
([∫

DzSλ

(
Bi +

√
Ciz;Ai

)]
λ

)2

.

It follows that any moment of the basic estimator can be computed from (17), once the
coefficients {Ai, Bi, Ci}Ni=1 are correctly estimated. Hence, the next task is to derive a set
of self-consistent equations for the coefficients and to construct an algorithm for solving it.

3.2. Self-consistent equations and a message passing algorithm

Using (12), we obtain

φi→µ(βi) ∝ Ψ (βi)
∏
ν(6=µ)

φ̃ν→i(βi)

≈
[∫

Dz e
γ
(
− 1

2
Ai→µ

∑
a(βai )

2
+(Bi→µ+

√
Ci→µz)

∑
a β

a
i −λ

∑
a |βai |

)]
λ

,

where Ai→µ =
∑

ν(6=µ) Ãν→i, Bi→µ =
∑

ν( 6=µ) B̃ν→i, and Ci→µ =
∑

ν(6=µ) C̃ν→i. Inserting
this into (11), we can derive a set of self-consistent equations determining all the cavity
coefficients {Ai→µ, Bi→µ, Ci→µ, Ãµ→i, B̃µ→i, C̃µ→i}i,µ. This procedure suggests an iterative
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algorithm, conventionally called BP algorithm, which is schematically described as follows:

{Ãµ→i, B̃µ→i, C̃µ→i}(t) ← {βi
\µ
, Vi,Wi}(t), (18a)

{Ai→µ, Bi→µ, Ci→µ}(t+1) ← {Ãµ→i, B̃µ→i, C̃µ→i}(t), (18b)

{βi
\µ
, Vi,Wi}(t+1) ← {Ai→µ, Bi→µ, Ci→µ}(t+1), (18c)

where t = 0, 1, · · · , denotes the algorithm time step. If the BP algorithm converges, the
full coefficients {Ai, Bi, Ci}Ni=1 are given from the converged values of {Ãµ→i, B̃µ→i, C̃µ→i}i,µ.
However, this algorithm is not particularly efficient because its computational cost isO(NM2).

A more efficient algorithm is derived by approximately rewriting the cavity coefficients

and the cavity mean β
\µ

using the full coefficients {Ai, Bi, Ci}i. To this end, φi→µ(βi) is
connected with Pi(βi|D) in a perturbative manner. Comparing the coefficients, it follows
that the difference between Ai and Ai→µ is negligibly small, as it is proportional to x2

µi =
O(1/N). The same is true between Ci and Ci→µ. Hence, the relevant difference is only

∆B
(t)
i = B

(t)
i −B

(t)
i→µ and is expressed as

∆B
(t)
i =

[
c

1 + cχ
(t−1)
µ

]
c

r
(t−1)
µi xµi = a(t−1)

µ xµi +

[
c

1 + cχ
(t−1)
µ

]
c

(
βi
\µ
)(t−1)

x2
µi

≈ a(t−1)
µ xµi,

where

a(t)
µ ≡

[
c

1 + cχ
(t)
µ

]
c

yµ −∑
j

xµj

(
βj
\µ
)(t)

 =

[
c

1 + cχ
(t)
µ

]
c

(
r

(t)
µi − xµi

(
βi
\µ
)(t)
)
. (19)

Accordingly, the difference between βi
\µ

and βi is computed as

(
βi
\µ
)(t)
≈ βi

(t) − ∂βi
(t)

∂B
(t)
i

∆B
(t)
i = βi

(t) − χ(t)
i a

(t−1)
µ xµi, (20)

Inserting (20) into (19) yields

a(t)
µ =

[
c

1 + cχ
(t)
µ

]
c

yµ −∑
j

xµjβj
(t)

+ χ(t)
µ a

(t−1)
µ

 ,

where the last term is interpreted as the Onsager reaction term in physics. Rewriting rµi
using aµ in the right-hand sides of (16) and collecting several factors, a simplified message

11



Obuchi and Kabashima

passing algorithm corresponding to (18) is obtained as follows:

χ(t)
µ =

∑
i

x2
µiχ

(t)
i , (21a)

W (t)
µ =

∑
i

x2
µiW

(t)
i , (21b)

(
f

(t)
1µ , f

(t)
2µ

)
=

[ c

1 + cχ
(t)
µ

]
c

,

( c

1 + cχ
(t)
µ

)2

c

 , (21c)

a(t)
µ = f

(t)
1µ

yµ −∑
j

xµjβj
(t)

+ χ(t)
µ a

(t−1)
µ

 , (21d)

A
(t+1)
i =

∑
µ

x2
µif

(t)
1µ , (21e)

B
(t+1)
i =

∑
µ

xµia
(t)
µ +

(∑
µ

x2
µif

(t)
1µ

)
βi

(t)
, (21f)

C
(t+1)
i =

∑
µ

x2
µi

f (t)
2µW

(t)
µ +

(
f

(t)
2µ −

(
f

(t)
1µ

)2
)(

a
(t)
µ

f
(t)
1µ

)2
 , (21g)

βi
(t+1)

=

[∫
DzSλ

(
B

(t+1)
i +

√
C

(t+1)
i z;A

(t+1)
i

)]
λ

, (21h)

χ
(t+1)
i =

1

A
(t+1)
i

[∫
Dz θ

(∣∣∣∣B(t+1)
i +

√
C

(t+1)
i z

∣∣∣∣− λ)]
λ

, (21i)

W
(t+1)
i =

[∫
DzS2

λ

(
B

(t+1)
i +

√
C

(t+1)
i z;A

(t+1)
i

)]
λ

−
(
βi

(t+1)
)2
. (21j)

We call the algorithm (21) AMPR (Approximate Message Passing with Resampling) because
it can be regarded as an extension of the AMP in the usual Lasso to the resampling case.
The computational cost is O(NM) per iteration and is significantly reduced compared with
the BP algorithm. This yields the main result of this study.

There is an ambiguity in the initial condition for AMPR. Here we assume that we are

given an initial estimate {βi
(0)
, χi

(0),Wi
(0)}i and conduct the iteration based on (21) until

convergence. Still, there is an ambiguity in computing a
(0)
µ , due to the presence of a

(−1)
µ in

(21d). To resolve this, we assume a
(−1)
µ = 0, yielding

a(0)
µ =

[
c

1 + cχ
(0)
µ

]
c

yµ −∑
j

xµjβj
(0)

 . (22)

These completely determine the initial condition.
As explained at the end of Section 3.1, the convergent solution of AMPR, {A∗i , B∗i , C∗i }i,

enables the computation of any moment of the basic estimator as follows:

[〈βi〉r]c,λ = lim
n→0

r∏
a=1

βai =

[∫
DzSrλ

(
B∗i +

√
C∗i z;A

∗
i

)]
λ

,

12
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which indicates that the marginal distribution of the basic estimator is obtained as

P (βi) =

[∫
Dz δ

(
βi − Sλ

(
B∗i +

√
C∗i z;A

∗
i

))]
λ

.

This yields the positive probability, which is important for variable selection techniques, as
follows:

Πi ≡ Prob
(
|β̂i| 6= 0

)
=

[∫
Dz θ

(∣∣∣B∗i +
√
C∗i z

∣∣∣− λ)]
λ

. (23)

Applications using these relations are provided in Section 4.

3.3. State evolution for AMPR

A benefit of the AMP type algorithms is that it is possible to track the macroscopic dy-
namical behavior of the algorithm. This can be done by using the so-called state evolution
(SE) equations. Here we derive the SE equations associated with AMPR. The derivation
relies on the i.i.d. assumption of the covariates, and hence we assume each xµi is i.i.d. from
the zero-mean Gaussian as

xµi ∼ N (0, σ2
x). (24)

The variance value is arbitrary in general, but for notational simplicity it is chosen as
σ2
x = 1/N in this section. Furthermore, we assume the data is generated from the following

linear process:

y = Xβ0 + ξ,

where ξ is the noise vector whose component is i.i.d. from N (0, σ2
ξ ) and β0 is the true

parameters whose component is also i.i.d. from a certain distribution Pβ0(·).
Under the assumption (24) with σ2

x = 1/N , the intra- and inter-sample variances can
be simplified as

χµ =
∑
i

x2
µiχi ≈

∑
i

E
[
x2
µiχi

]
≈ 1

N

∑
i

χi ≡ χ̃, (25)

Wµ =
∑
i

x2
µiWi ≈

∑
i

E
[
x2
µiWi

]
≈ 1

N

∑
i

Wi ≡ W̃ , (26)

where we have neglected the correlations between xµi and the variances2. Accordingly,
many quantities appearing in (21) become independent of the subscripts µ and i. Terms
retaining the dependence are only the linear terms with respect to xµi such as βi, Bi and
aµ. To derive the SE equations, we need to handle those terms.

2. Remembering the discussion in Section 3.2, these variances are actually the ones computed in the absence
of the µ-th potential function, χ

\µ
i and W

\µ
i , and hence this neglect can be justified. The same discussion

can be applied to the following.
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We start from the following form of B
(t+1)
i :

B
(t+1)
i =

∑
ν

[
c

1 + cχν

]
c

r
(t)
νi xνi ≈ f

(t)
1

∑
ν

xνi

yν −∑
j(6=i)

xνj

(
β̄
\ν
j

)(t)

 . (27)

The righthand side is the sum of a large number of random variables, and hence we can
treat it as a Gaussian variable with appropriate mean and variance. The mean is

E

f t1∑
ν

xνi

yν −∑
j( 6=i)

xνj

(
β̄
\ν
j

)(t)


= f t1

∑
ν

E
[
x2
νi

]
β0i +

∑
j(6=i)

E [xνixνj ]

(
β0j −

(
β̄
\µ
j

)(t)
)

+ E [xνiξν ]


= f t1

∑
ν

1

N
β0i = αf t1β0i, (28)

where α = M/N is the ratio of the dataset size to the dimensionality. In the same way, the
variance becomes

V

f t1∑
ν

xνi

yν −∑
j( 6=i)

xνi

(
β̄
\ν
j

)(t)

 ≈ α (f t1)2 (MSE(t) + σ2
ξ

)
≡ v(t+1)

0 , (29)

where MSE(t) denotes the mean-squared error (MSE) between the true and averaged pa-
rameters:

MSE(t) ≡ 1

N

N∑
i=1

(
β0i − β

(t)
i

)2
≈ 1

N

N∑
i=1

(
β0i −

(
β
\µ
i

)(t)
)2

. (30)

Hence, we may write

B
(t+1)
i = αf t1β0i +

√
v

(t+1)
0 ui, (31)

where ui ∼ N (0, 1). Besides, in the computation of C
(t+1)
i , we have∑

ν

x2
νif

(t)
2νW

(t)
ν ≈ αf

(t)
2 W̃ (t), (32)

∑
ν

x2
νi

(
r

(t)
νi

)2
≈ α

(
MSE(t) + σ2

ξ

)
. (33)

This yields

C
(t+1)
i ≈ C(t+1) = αf

(t)
2 W̃ (t) + α

(
f

(t)
2 −

(
f

(t)
1

)2
)(

MSE(t) + σ2
ξ

)
. (34)

In the same level of approximation, we get A
(t+1)
i ≈ A(t+1) = αf

(t)
1 .
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To derive a closed set of equations, we have to compute χ̃(t+1), W̃ (t+1) and MSE(t+1)

from {A(t+1), {B(t+1)
i }i, C(t+1)}. As an example, we show the derivation of χ̃(t+1) from (21i)

in the following:

χ̃(t+1) =
1

N

N∑
i=1

χ
(t+1)
i ≈ 1

N

N∑
i=1

1

A(t+1)

[∫
Dz θ

(∣∣∣B(t+1)
i +

√
C(t+1)z

∣∣∣− λ)]
λ

≈ 1

A(t+1)

∫
dβPβ0(β)

∫
Du

[∫
Dz θ

(∣∣∣∣αf (t)
1 β +

√
v

(t+1)
0 u+

√
C(t+1)z

∣∣∣∣− λ)]
λ

, (35)

where we have applied the law of large numbers. The other quantities W̃ ,MSE are computed
in the same manner. Overall, we reach the following set of equations:(

f
(t)
1 , f

(t)
2

)
=

([
c

1 + cχ̃(t)

]
c

,

[(
c

1 + cχ̃(t)

)2
]
c

)
, (36a)

A(t+1) = αf
(t)
1 , (36b)

C(t+1) = αf
(t)
2 W̃ (t) + α

(
f

(t)
2 −

(
f

(t)
1

)2
)(

MSE(t) + σ2
ξ

)
, (36c)

v
(t+1)
0 = α

(
f

(t)
1

)2 (
MSE(t) + σ2

ξ

)
, (36d)

χ̃(t+1) =
1

A(t+1)

∫
dβPβ0(β)

∫
Du

×
[∫

Dz θ

(∣∣∣∣A(t+1)β +

√
v

(t+1)
0 u+

√
C(t+1)z

∣∣∣∣− λ)]
λ

, (36e)

W̃ (t+1) =

∫
dβPβ0(β)

∫
Du

{[∫
DzS2

λ

(
A(t+1)β +

√
v

(t+1)
0 u+

√
C(t+1)z;A(t+1)

)]
λ

−
[∫

DzSλ

(
A(t+1)β +

√
v

(t+1)
0 u+

√
C(t+1)z;A(t+1)

)]2

λ

}
, (36f)

MSE(t+1) =

∫
dβPβ0(β)

∫
Du

×

{
β −

[∫
DzSλ

(
A(t+1)β +

√
v

(t+1)
0 u+

√
C(t+1)z;A(t+1)

)]
λ

}2

. (36g)

Given an initial condition {χ̃(0), W̃ (0),MSE(0)}, we can track the dynamical evolution of
those quantities according to (36). This is the SE equations for AMPR.

A direct consequence of the SE equations is the convergence property of AMPR: Its con-
vergence depends on neither the dataset size M nor the model dimensionality N . Hence, we
can assume the iteration steps required for convergence is O(1) and the total computational
cost of AMPR is thus guaranteed to be O(NM). This reinforces the superiority of the
present approach.

We, however, warn that the discussion based on the SE equations strongly relies on
the i.i.d. assumption among covariates, which is not necessarily satisfied in real-world
datasets. For covariates with non-trivial correlations and heterogeneity, it is known that
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AMP type algorithms tend to show slow convergence, or even not to converge in particular
cases (Caltagirone et al., 2014). A common prescription to overcome this difficulty is to
introduce a damping factor in the update of the messages (Rangan et al., 2014), which is
also employed in our implementation (Obuchi, 2018). In Sections 4.1.5 and 4.2, we see how
this prescription works for datasets with nontrivial covariates in numerical simulations.

4. Numerical experiments

In this section, the accuracy and the computational time of the proposed semi-analytic
method based on AMPR is examined by a comparison with direct numerical resampling. We
also check how nontrivial correlations among covariates affect the performance of AMPR.
Both simulated and real-world datasets (from UCI machine learning repository, Lichman,
2013) are used.

For all experiments involving numerical resampling, Glmnet (Friedman et al., 2010),
implemented as an MEX subroutine in MATLAB R©, was employed for solving (9), given a
sample {λ, Dc}. Moreover, the proposed AMPR algorithm was implemented as raw code in
MATLAB. This is not the most optimized approach because AMPR uses a number of for
and while loops which are slow in MATLAB; hence, the comparison of computational time
is not necessarily fair. However, even in this comparison, there is a significant difference
in the computational time between the proposed semi-analytic method and the numerical
resampling approach. For reference, it should be noted that all experiments below were
conducted in a single thread on a single CPU of Intel(R) Xeon(R) E5-2630 v3 2.4GHz.

For actual computations, the distribution P (λ) should be specified. In SS, the following
distribution is used (Meinshausen and Bühlmann, 2010):

P (λ) =
N∏
i=1

{pwδ (λi − λ/w) + (1− pw)δ (λi − λ)} ,

with 0 < w ≤ 1 and 0 < pw < 1. The case of the non-random penalty coefficient, in which
Bolasso is included (Bach, 2008), is recovered at w = 1, irrespective of the value of pw. This
distribution is adopted below.

4.1. Simulated dataset

Here, simulated datasets are treated. The data is supposed to be generated from the
following linear model:

y = Xβ0 + ξ,

where each component of the design matrix X = (x1,x2, · · · ,xN ) is i.i.d. from N
(
0, N−1

)
,

and ξ is the noise vector, whose component is i.i.d. from N (0, σ2
ξ ). The ratio of the dataset

size M to the model dimensionality N is denoted as α ≡ M/N hereafter. These settings
are identical to the ones assumed in Section 3.3. The true signal β0 ∈ RN is assumed
to be K0(= Nρ0)-sparse vector, and the non-zero components are i.i.d. from N (0, 1/ρ0),
setting the power of the signal unity. The index set of non-zero components is denoted by
S0 = {i||β0i| 6= 0} and is called true support. Any estimator of the true support is simply
called support and is hereafter denoted by S.
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For simplicity, the number of resampling times is fixed at Nres = 1000 in the experiments
with numerical resampling.

4.1.1. Accuracy of the semi-analytic method

Let us first check the consistency between the results of our semi-analytic method and of
the direct numerical resampling.

Figure 1 shows the plots of the experimental values of the quantities {βi,Wi,Πi}i against
their semi-analytic counterparts for the non-random penalty case w = 1 with the bootstrap
resampling τ = 1, which is the situation considered in Bolasso. The same plots in the SS
situation, w = 0.5(< 1), pw = 0.5, and τ = 0.5, are shown in Figure 2. Other detailed pa-
rameters are provided in the captions. These results show that the proposed semi-analytic
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Figure 1: Experimental values of βi (left), Wi (middle), and Πi (right) are plotted against
those computed by the semi-analytic method in the non-random penalty w = 1
and τ = 1 case. The upper panels are for λ = 0.01 and the lower are for λ = 1.
The other parameters are set to be (N,α, ρ0, σ

2
ξ ) = (1000, 0.5, 0.2, 0.01).

method reproduces the numerical results fairly accurately. As far as it was examined, re-
sults of similar accuracy were obtained for a very wide range of parameters. These validate
the proposed semi-analytic method.

In the above experiments using Glmnet, we set a threshold ε to judge the algorithm
convergence as ε = 10−10, which is rather tighter than the default value. This is necessary for
examining consistency with the proposed semi-analytic method. For example, for λ = 0.01
(the upper panels in Figures 1 and 2), a systematic deviation from the proposed semi-
analytic method (βi tends to be underestimated) emerges at the default value ε = 10−7.
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Figure 2: Same plots as in Figure 1 in the random penalty case with w = 0.5, pw = 0.5,
and τ = 0.5. The parameters of each panel are identical to the corresponding
parameters in Figure 1. In comparison to Figure 1, |βi| and Πi tend to be smaller,
whereas Wi tends to be larger. This is probably due to the additional stochas-
tic variation coming from the randomization on the penalty coefficient and the
difference between τ = 1 and 1/2.
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This implies that a rather tight threshold is required for microscopic quantities such as βi
and Wi. Unless explicitly mentioned, this value ε = 10−10 is used below.

4.1.2. Comparison with state evolution

To examine the convergence properties of AMPR, we next see the dynamical behavior of
the macroscopic quantities (χ̃(t), W̃ (t),MSE(t)) as the algorithm step t proceeds, in compar-
ison with the SE equations (36). Figure 3 shows the plots of them against t for different
parameters. In all the cases, these macroscopic quantities rapidly take stable values and
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Figure 3: Dynamical behavior of macroscopic parameters (χ̃(t), W̃ (t),MSE(t)) initialized at
(χ̃(0), W̃ (0)) = (0, 0) and MSE(0) ≈ 1. The result computed by SE is denoted
by lines while the one by AMPR is represented by markers, and the agreement
is fairly good. (Left) The non-randomized penalty case (w = 1, pw = 0, τ = 1).
(Right) The randomized penalty case (w = pw = τ = 1/2). The upper panels are
for λ = 1, while the lower ones are of λ = 0.01 for which insets are given to show
the MSE values in visible scales. The AMPR result is obtained at N = 20000.
The other parameters are fixed at (α, ρ0, σ

2
ξ ) = (0.5, 0.2, 0.01).

the agreement between the AMPR and SE results is excellent. This demonstrates the fast
convergence of AMPR, which does not depend on both N and M . To see a good agreement
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with the SE result by just one sample of {β0, X, ξ}, the model dimensionality N is chosen
as a rather large value of N = 20000 in the AMPR experiment. Although in Figure 3 the

initial condition is fixed at χ(0) = W (0) = β
(0)

= 0 corresponding to (χ̃(0), W̃ (0)) = (0, 0)
and MSE(0) ≈ 1, we also examined several other initial conditions and confirmed the good
agreement between the AMPR and SE results in all the cases.

4.1.3. Application to Bolasso

Bolasso is a variable selection method utilizing the positive probability (23) evaluated by
the bootstrap resampling τ = 1 with no penalty randomization w = 1. Its soft version,
abbreviated as Bolasso-S (Bach, 2008), selects variables with Πi ≥ 0.9 as active variables
and other variables are rejected from the support. We here adopt this manner and see the
performance of AMPR used for implementing this.

The left panel of Figure 4 shows the plot of the true positive ratio (TP) against the
false positive ratio (FP) as the values of α change. Bolasso requires scaling the regular-
ization parameter as λ ∝

√
α, and here, it is set to λ = (1/2)

√
α. The other parameters

are fixed at (N, ρ0, σ
2
ξ ) = (1000, 0.2, 0.01). As was theoretically shown (Bach, 2008), TP

converges to unity, whereas FP tends to zero in this setup. This demonstrates that the
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Figure 4: Bolasso experiment at (N, ρ0, σ
2
ξ ) = (1000, 0.2, 0.01). The semi-analytic result

(circle) is plotted with the numerical resampling result (asterisk). (Left) TP is
plotted against FP as α increases: TP approaches unity, whereas FP tends to zero.
The semi-analytic result completely overlaps that of the numerical resampling.
Error bars are omitted for clarity. (Right) Computational time plotted against
α. The observed large difference is attributed to the numerical resampling cost.

model consistency in the variable selection context is recovered. The contribution of this
study is a significant reduction of the computational time: In the right panel, the actual
computational time is compared between the semi-analytic method using AMPR and the
direct numerical resampling, by plotting it against α. The computational costs of AMPR
and Glmnet are both scaled as O(NM) and thus should be scaled linearly with respect to
α for fixed N . Figure 4 clearly shows this linearity. The significant difference in compu-
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tational time is fully attributed to the numerical resampling cost. This demonstrates the
efficiency of AMPR. It should be noted that the average over 10 different samples of D is
taken in Figure 4 to obtain smooth curves and error bars.

4.1.4. Application to stability selection

SS is another variable selection method utilizing positive probability. The difference from
Bolasso is the presence of the penalty coefficient randomization (w < 1) and that τ is set to
0.5. These introduce a further stochastic variation in the method, and consequently they
tend to show a clearer discrimination in the positive probabilities between the variables in
and outside the true support. AMPR can easily implement this, and here, it is compared
with numerical resampling.

Figure 5 shows the plots of the positive probability values against λ, the so-called sta-
bility path (Meinshausen and Bühlmann, 2010), and the computational time for obtaining
the stability path against the covariate dimensionality N . The other parameters are fixed
at (α, ρ0, σ

2
ξ , w, pw) = (2, 0.2, 0.01, 0.5, 0.5). Drawing all stability paths {Πi}i leads to an
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Figure 5: SS experiment at (α, ρ0, σ
2
ξ , w, pw) = (2, 0.2, 0.01, 0.5, 0.5). The semi-analytic re-

sult (circle) is plotted with the numerical resampling result (asterisk). (Left) Plots
of the medians (points) and q-percentiles (bars) of {Πi}i∈S0 (TP) and {Πi}i/∈S0

(FP) with q = 16 and 84 against λ for N = 8000. The semi-analytic result well
overlaps that of the numerical resampling. There is a clear gap between TP and
FP, suggesting that an accurate variable selection is possible. (Right) Computa-
tional time plotted against N on double-logarithmic scale. The dominant reason
for the difference is again the numerical resampling cost.

unclear plot; thus, only the median and q-percentiles of {Πi}i∈S0 and those of {Πi}i/∈S0
are

plotted, which are denoted by TP and FP in the left panel of Figure 5, respectively. The
medians are represented by points, and the percentiles of q = 16 and 84, approximately
corresponding to one-sigma points in normal distributions, are represented by bars. There
is a clear gap between TP and FP, suggesting that an accurate variable selection is possible
by setting an appropriate threshold of probability value, as discussed by Meinshausen and
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Bühlmann (2010). The right panel shows a plot of the computational time by AMPR and
by the numerical resampling. Both are supposed to be scaled as O(NM = N2). Although
such a scaling is not observed in the AMPR result, it is expected to appear for larger N .
Again, a significant difference in computational time is present between the semi-analytic
and the numerical resampling methods, demonstrating the effectiveness of the proposed
method.

4.1.5. Correlated covariates

In the derivation of AMPR and the associated SE equations, the weakness of correlations
between covariates is assumed, but this assumption does not necessarily hold in realistic
situations. Hence, it is important to check the accuracy of results obtained by AMPR for
datasets with correlated covariates. Here we numerically examine this point.

To introduce correlations into the simulated dataset described above in a systematic
way, we generate our covariates {xi}Ni=1 in the following manner: As a common component
we first generate a vector xcom ∈ RM each component of which is i.i.d. from N (0, 1/N);
choose a number 0 ≤ rcom < 1 controlling the ratio of the common component and generate
a binary vector mi each component of which independently takes 1 with probability rcom;
take another vector x̃i ∈ RM each component of which is i.i.d. fromN (0, 1/N), and generate
a covariate vector xi as a linear combination between xcom and x̃i with using mi as a mask.
These operations can be summarized in the following equation:

xi = xcom ◦mi(r
com) + x̃i ◦ (1−mi(r

com)), (37)

where ◦ denotes Hadamard (component-wise) product. The covariates’ correlations mono-
tonically increase as rcom grows. To quantify this, we compute an overlap between the co-

variates, overlapij = x>i xj/

(√
x>i xi

√
x>j xj

)
, and plot its mean value over i and j (6= i) in

Figure 6. Keeping in mind this quantitative information, we check the accuracy of AMPR
below.

To directly see the accuracy of AMPR for correlated covariates, we plot the experimental
values of the quantities {βi,Wi,Πi}i against those of AMPR in Figure 7 for two different
values of the common component ratio, rcom = 0.4 and rcom = 0.8. For rcom = 0.8, the
AMPR result shows a clear deviation from the experimental one, while for rcom = 0.4 it
still exhibits a good agreement with the experiment. Although Figure 7 is the specific
result to the non-random penalty case (w = 1, τ = 1) with parameters (N,α, ρ0, σ

2
ξ , λ) =

(1000, 0.5, 0.2, 0.01, 1), we have tested several different cases and observed similar tendency.
To capture more global and quantitative information, we introduce a normalized MSE of β

between the experimental β
exp

and AMPR β
AMPR

values as∑N
i=1

(
β

exp
i − βAMPR

i

)2

∑N
i=1

(
β

AMPR
i

)2 . (38)

The counterparts for W and Π are defined in the same way. Plots of the normalized
MSEs for these quantities against rcom are given in Figure 8. Here the results for both
the randomized (w = pw = τ = 0.5) and non-randomized (w = τ = 1, pw = 0) penalty
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Figure 6: Plot of mean overlap of covariates against the common component ratio rcom.
This is a result of a single numerical simulation at (N,α) = (1000, 0.5), but the
invariability of the result against changing the parameters has been also checked.
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Figure 7: Experimental values of βi (left), Wi (middle), and Πi (right) are plotted against
those computed by AMPR for correlated covariates with rcom = 0.4 (upper) and
rcom = 0.8 (lower). For the lower panels, there exists a systematic deviation in
the AMPR result. Here the non-random penalty case (w = 1, τ = 1) is treated
and the other parameters are (N,α, ρ0, σ

2
ξ , λ) = (1000, 0.5, 0.2, 0.01, 1).
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Figure 8: Plots of normalized MSEs of β,W,Π against rcom of the non-randomized (left,
w = 1, pw = 0, τ = 1) and randomized (right, w = pw = τ = 1/2) penalty cases.
The upper panels are for λ = 1 while the lower ones are of λ = 0.01. The other
parameters are (N,α, ρ0, σ

2
ξ ) = (1000, 0.5, 0.2, 0.01).
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cases are presented, with two different values of λ. This suggests that AMPR is practically
reliable up to a certain level of correlations: For example if rcom ≤ 0.6, the normalized MSE
of β is well suppressed and is commonly less than 0.2. According to Figure 6, rcom = 0.6
corresponds to the mean overlap value of about 0.36 which is not small. This speaks for
the effectiveness of AMPR even for real-world datasets, as long as the correlations are not
too large.

The above discussion clarifies the accuracy of AMPR for correlated covariates, but a
more crucial issue is in its convergent property. For the non-correlated case of rcom = 0,
AMPR converges very rapidly as shown in Figure 3, but for correlated cases it tends to badly
converge and can even diverge. A common way to overcome this is to introduce a damping
factor γ in the update (Caltagirone et al., 2014; Rangan et al., 2014), and we adopted this
in the above experiments. The update with the damping factor can be symbolized as

θ(t+1) = (1− γ)θ(t) + γG(θ(t)), (39)

where θ is a variable summarizing (β,χ,W ) and G represents the AMPR operations. The
original message passing update corresponds to γ = 1. Smaller values of γ are better for the
stability of the algorithm but takes a longer time until the convergence. Our experiments
on the simulated dataset seemingly show that a smaller value of γ is needed for larger rcom

and smaller λ. For example for obtaining Figure 7, we needed to set γ < 0.1 for avoiding
divergence. This value is found experimentally, and it is desired to find a more principled
way to choose an appropriate value of γ or a more effective way to better control the
convergence of AMP type algorithms. Some earlier studies tackled this problem (Caltagirone
et al., 2014; Rangan et al., 2014), but the complete understanding of the convergent property
is still missing. Investigation along this direction is an important topic but is beyond the
purpose of the present paper.

4.2. Real-world dataset

In this subsection, AMPR is applied to a real-world dataset, and the stability path is
computed for examining the relevant covariates or variables. The dataset treated here
is the wine quality dataset (Lichman, 2013): The data size is M = 4898 (only white
wine is treated), and the number of covariates, which represent physicochemical aspects of
wine, is N0 = 11. The basic aim of this dataset is to model wine quality in terms of the
physicochemical aspects only, and the response is an integer-valued quality score from zero
to ten obtained by human expert evaluation. This dataset can be used in both classification
and regression, and the linear model was also tested in earlier studies (Cortez et al., 2009;
Melkumova and Shatskikh, 2017). Lasso and SS are applied to this dataset.

As preprocessing, Nnoise noise variables are added into the dataset. Each component of
the noise variables is i.i.d. from N (0, 1/N). The usual standardization, zeroing the mean
of all variables and responses and normalizing the variables to be of unit norm, is also
conducted.

The reason of the introduction of the noise variables is to make an objective criterion for
judging relevant stability paths. The noise variables are by definition irrelevant for describ-
ing the responses and hence if some stability paths of original variables behave similarly to
the ones of the noise variables then those variables can be regarded as irrelevant. A dis-
tribution of stability paths of the noise variables thus defines a kind of “rejection region”,
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resolving the arbitrariness of judging criterion of the positive probability both in Bolasso
and SS. As far as we have searched, this kind of active construction of rejection regions has
never been observed in literatures, and hence this proposition itself can be regarded as a
part of new results of this paper.

This sort of manipulation to dataset is usually unfavored because it increases the com-
putational cost and tends to contaminate the dataset. However thanks to AMPR, the first
computational issue becomes less serious since the computational time of AMPR increases
just linearly with respect to the number of added noise variables Nnoise. The second issue
does not seem to be serious either for the wine quality dataset, because the dataset size
M = 4898 is very large compared to the number of original variables N0 = 11. Below, we
experimentally check if this strategy works well or not.

Let us start from checking how the noise variables influence on the dataset. To this
end, we plot the solution paths and the generalization errors estimated by 10-fold cross
validation (CV) in Figure 9 in the cases with and without the noise variables. This figure
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Figure 9: Solution paths (top) and CV errors plotted against λ (bottom), for Nnoise = 0
(left) and Nnoise = 689 (right). The vertical dotted line denotes the location
of the CV error minimum, λmin, whereas the vertical straight line represents
the location selected by the one-standard-error rule that “defines” the optimal λ
value, λopt. The effect of the noise variables addition is weak around λopt.
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Table 1: Overlap of the 3rd covariate (citric acid) and the others
index i 1 2 3 4 5 6 7 8 9 10 11

overlap x>
i x3 0.29 -0.15 1.00 0.09 0.11 0.09 0.12 0.15 -0.16 0.06 -0.07

indicates that the solution paths of the original variables and the CV error value are stable
against the introduction of noise variables, particularly in the relevant range of λ. At the
optimal λ (λopt), chosen by the one-standard-error rule (Trevor et al., 2009), the variables
in the support are common in both cases: They are indexed as 1, 2, 4, 5, 6, 10, and 11,
which represent fixed acidity, volatile acidity, residual sugar, chlorides, free sulfur dioxide,
sulphates, and alcohol, respectively. Hence, we can conclude that the introduction of the
noise variables hardly affects the estimates of the original variables, and we can effectively
use the noise variables to judge the significance of each original variable.

Subsequently, the result of applying SS with (τ, w, pw) = (0.5, 0.5, 0.5) to this dataset is
examined. Figure 10 shows the plots of the stability paths according to the three categories
of variables: The “important” variables are defined as being in the support, at λopt in
the Lasso analysis, and thus their indices are 1, 2, 4, 5, 6, 10, 11; the “neutral” variables
are the other variables in the original dataset, and the corresponding indices are 3, 7, 8, 9;
the remaining are the noise variables. Both the results of AMPR (circle) and the direct
numerical resampling (asterisk) are shown (the same variable is depicted in the same color).

Consequences of Figure 10 are three-fold. The first one is consistent agreement between
the results of AMPR and the direct numerical resampling. For all categories, the two curves
of each stability path Πi(λ) by AMPR and the direct numerical resampling are very close
to each other. This is an additional evidence supporting the accuracy of the proposed semi-
analytic method in real-world datasets with correlated covariates. The computational time
for obtaining these results in an experiment is 1077 s by AMPR and 2859 s by the numerical
resampling, demonstrating the efficiency of AMPR. It should be stressed that this efficiency
can be enhanced by optimizing the implementation of AMPR. The second consequence is
the different behaviors of stability paths in different categories. The positive probabilities of
the important variables (upper left) are growing largely even for λ > λmin, while those of the
noise variables (lower left) do not grow well unless λ drops below λmin. The behavior of the
neutral variables (upper right) is somewhat elusive, and a better interpretation is provided
by utilizing the noise variables, which is the third consequence: As discussed above, we can
define a rejection region from the distribution of stability paths of the noise variables; an
actual definition here is the q-percentiles with q = 16 and 84 of the distribution, which is in
the lower right panel depicted by red bars with the median (red markers) of the distribution,
the legend of which is given as FP, in the same manner as Figure 5. This analysis shows
that citric acid and total sulfur dioxide of the neutral variables tend to be in the rejection
region, implying that they are irrelevant for modeling wine quality. Moreover, density and
pH are well beyond the interval of the rejection region, and they can be regarded as relevant,
even though the behavior of density’s path is rather tricky.

The above conclusion of citric acid’s irrelevance contradicts that in Cortez et al. (2009),
where citric acid was concluded to be the fourth most important variable. This may be
explained by the collinearity of the covariates. In Table 1, the covariates’ overlap between
citric acid and the others is summarized. This shows a strong collinearity of the 3rd variable
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Figure 10: Stability paths for the wine quality data with Nnoise = 689. The paths of the
important variables are in the upper left, those of the neutral variables are in
the upper right, and those of the noise variables are in the lower left panels. For
the lower left panel, the paths of only a part of the noise variables are shown.
The vertical dotted and straight lines denote λmin and λopt, respectively, as in
Figure 9. Circles denote the result by AMPR and asterisks represent that by
the direct numerical resampling, and the same variable is depicted in the same
color; the semi-analytic and numerical results show a consistent agreement for
all cases. The lower right panel is the simultaneous plot of the stability paths
of the neutral variables and the FP interval computed from paths of the noise
variables.
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with several others, particularly with the 1st variable. This implies that citric acid can be
replaced by the 1st variable or fixed acidity. This is a plausible explanation because the
proposed model puts considerably more weight on fixed acidity than on citric acid, whereas
the opposite is the case in Cortez et al. (2009). Further thorough comparison will be required
to determine which model is better.

Table 1 also implies why AMPR works well for the wine quality dataset: The maximum
value of the covariates’s overlap is about 0.29 which corresponds rcom ≈ 0.5 in Figure 6;
Figure 8 shows that the accuracy of AMPR is commonly good around that value of rcom,
explaining the accuracy of AMPR. This consideration indicates that given a new dataset
we can judge whether AMPR will give an accurate result or not for the dataset from the
covariates’ overlap and Figures 6 and 8.

Overall, the analysis using stability paths provides richer information that cannot be
obtained by solely using Lasso. A new objective criterion could be proposed for determin-
ing the relevance of variables by utilizing the distribution of stability paths of the added
noise variables. These facts highlight the effectiveness of the resampling strategy in vari-
able selection, and the proposed semi-analytic method can implement this strategy in a
computationally efficient manner.

5. Conclusion

An approximate method was developed for performing resampling in Lasso in a semi-
analytic manner. The replica method enables us to analytically take the resampling av-
erage over the given data and the average over the penalty coefficient randomness, and
the resultant replicated model is approximately handled by a Gaussian approximation us-
ing the cavity method. A message passing algorithm named AMPR is thus derived, the
computational cost of which is O(NM) per iteration and is sufficiently reasonable. Its
convergence in O(1) iterations is guaranteed by a state evolution analysis when covariates
are given as zero-mean i.i.d. Gaussian random variables. We demonstrated how it actually
works through numerical experiments using simulated and real-world datasets. Comparison
with direct numerical resampling has evidenced its approximation accuracy and efficiency
in terms of computational cost, even for covariates with correlations of a moderate level.
AMPR was also employed to approximately perform Bolasso and SS, and it was applied
to the wine quality dataset (Lichman, 2013; Cortez et al., 2009). To provide a finer quan-
titative analysis of the dataset, an objective criterion was proposed for determining the
relevance of the stability paths by processing the added noise variables, yielding reasonable
results in satisfactory computational time.

An advantage of the present framework is its generality. For example, its extension
to a generalized linear model is straightforward. This is an immediate future research
direction. Extensions to other resampling techniques, such as the multiscale bootstrap
method (Shimodaira et al., 2004), would also be interesting.

An unsatisfactory aspect of the present AMPR is that the correlations between covari-
ates are neglected by the approximation. This is a clear drawback, and certain issues arise
when the present AMPR is applied to problems involving significantly correlated covariates,
although numerical experiments showed that the accuracy of AMPR is still good in the
presence of correlations of a moderate level. This drawback may be overcome using more
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sophisticated approximations, such as the expectation propagation or the adaptive TAP
method (Opper and Winther, 2001a,b, 2005; Kabashima and Vehkapera, 2014; Çakmak
et al., 2014; Cespedes et al., 2014; Rangan et al., 2016; Ma and Ping, 2017; Takeuchi, 2017).
Applying those approximations with retaining the benefit of message passing algorithms,
the low computational cost, is still a nontrivial challenge and promising future work.

Resampling is a very versatile framework applicable to various contexts and models in
statistics and machine learning. Reducing its computational cost by extending the present
method will thus be beneficial in various fields, and can even be imperative, as available
data in society will continue to increase rapidly.
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