
Journal of Machine Learning Research 20 (2019) 1-8 Submitted 8/18; Revised 5/19; Published 5/19

iNNvestigate Neural Networks!

Maximilian Alber maximilian.alber@tu-berlin.de
Technische Universität Berlin, Machine Learning Group
10623 Berlin, Germany

Sebastian Lapuschkin sebastian.lapuschkin@hhi.fraunhofer.de
Fraunhofer Heinrich Hertz Institute, Video Coding and Analytics
10587 Berlin, Germany

Philipp Seegerer philipp.seegerer@tu-berlin.de
Miriam Hägele haegele@tu-berlin.de
Kristof T. Schütt kristof.schuett@tu-berlin.de
Grégoire Montavon gregoire.montavon@tu-berlin.de
Technische Universität Berlin, Machine Learning Group
10623 Berlin, Germany

Wojciech Samek wojciech.samek@hhi.fraunhofer.de
Fraunhofer Heinrich Hertz Institute, Video Coding and Analytics
10587 Berlin, Germany

Klaus-Robert Müller klaus-robert.mueller@tu-berlin.de
Technische Universität Berlin, Machine Learning Group
10623 Berlin, Germany
Korea University, Department of Brain and Cognitive Engineering
Seoul 02841, Korea
Max Planck Institute for Informatics
66123 Saarbrücken, Germany

Sven Dähne sven.daehne@tu-berlin.de

Pieter-Jan Kindermans p.kindermans@tu-berlin.de

Technische Universität Berlin, Machine Learning Group

10623 Berlin, Germany

Editor: Alexandre Gramfort

Abstract

In recent years, deep neural networks have revolutionized many application domains of
machine learning and are key components of many critical decision or predictive processes.
Therefore, it is crucial that domain specialists can understand and analyze actions and pre-
dictions, even of the most complex neural network architectures. Despite these arguments
neural networks are often treated as black boxes. In the attempt to alleviate this short-
coming many analysis methods were proposed, yet the lack of reference implementations
often makes a systematic comparison between the methods a major effort. The presented
library iNNvestigate addresses this by providing a common interface and out-of-the-
box implementation for many analysis methods, including the reference implementation
for PatternNet and PatternAttribution as well as for LRP-methods. To demonstrate the
versatility of iNNvestigate, we provide an analysis of image classifications for variety of
state-of-the-art neural network architectures.

c©2019 Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele, Kristof T. Schütt, Grégoire
Montavon, Wojciech Samek, Klaus-Robert Müller, Sven Dähne, Pieter-Jan Kindermans.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-540.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-540.html

Alber et al.

Keywords: Artificial neural networks, deep learning, analyzing classifiers, explaining
classifiers, computer vision

1. Introduction

In recent years deep neural networks have revolutionized many domains, e.g., image recog-
nition, speech recognition, speech synthesis, and knowledge discovery (Krizhevsky et al.,
2012; LeCun et al., 2012; Schmidhuber, 2015; LeCun et al., 2015; Van Den Oord et al.,
2016). Due to their ability to naturally learn from structured data and exhibit superior
performance, they are increasingly used in practical applications and critical decision pro-
cesses, such as novel knowledge discovery techniques, autonomous driving or medical image
analysis. To fully leverage their potential it is essential that users can comprehend and ana-
lyze these processes. E.g., in neural architecture (Zoph et al., 2018) or chemical compound
searches (Montavon et al., 2013; Schütt et al., 2017) it would be extremely useful to know
which properties help a neural network to choose appropriate candidates. Furthermore for
some applications understanding the decision process might be a legal requirement.

Despite these arguments neural networks are often treated as black boxes, because their
complex internal workings and the basis for their predictions are not fully understood. In
the attempt to alleviate this shortcoming several methods were proposed, e.g., Saliency
Map (Baehrens et al., 2010; Simonyan et al., 2013), SmoothGrad (Smilkov et al., 2017), In-
tegratedGradients (Sundararajan et al., 2017), Deconvnet (Zeiler and Fergus, 2014), Guid-
edBackprop (Springenberg et al., 2015), PatternNet and PatternAttribution (Kindermans
et al., 2018), LRP (Bach et al., 2015; Lapuschkin et al., 2016a,b, 2019; Montavon et al.,
2018), and DeepTaylor (Montavon et al., 2017). Theoretically it is not clear which method
solves the stated problems best, therefore an empirical comparison is required (Samek et al.,
2017; Kindermans et al., 2017). In order to evaluate these methods, we present iNNvesti-
gate which provides a common interface to a variety of analysis methods.

In particular, iNNvestigate contributes:

• A common interface for a growing number of analysis methods that is applicable to a
broad class of neural networks. With this instantiating a method is as uncomplicated
as passing a trained neural network to it and allows for easy qualitative comparisons of
methods. For quantitative evaluations of (image) classification task we further provide
an implementation of the method “perturbation analysis” (Samek et al., 2017).

• Support of all methods listed above—this includes the first reference implementation
for PatternNet and PatternAttribution and an extended implementation for LRP—
and an open source repository for further contributions.

• A clean and modular implementation, casting each analysis in terms of layer-wise
forward and backward computations. This limits code redundancy, takes advantage
of automatic differentiation, and eases future integration of new methods.

iNNvestigate is available at repository: https://github.com/albermax/innvestigate.
It can be simply installed as Python package and contains documentation for code and ap-
plications. To demonstrate the versatility of iNNvestigate we provide examples for the
analysis of image classifications for a variety of state-of-the-art neural networks.

2

https://github.com/albermax/innvestigate

iNNvestigate Neural Networks!

Terminology: The different methods pose different assumption to tasks and are designed
for different objectives, yet they are related to “explaining” or “interpreting” neural net-
works, see Montavon et al. (2018). We actively refrain from using this terminology in order
to prevent misunderstandings between the design choices of the algorithms and the implicit
assumption these terms bring along. Therefore we will solely use the neutral term analyzing
and leave any interpretation to the user.

2. Library

Interface: The main feature is a common interface to several analysis methods. The
workflow is as simple as passing a Keras neural network model to instantiate an analyzer
object for a desired algorithm. Then, if needed, the analyzer will be fitted to the data and
eventually be used to analyze the model’s predictions. The corresponding Python code is:

1 import i n n v e s t i g a t e
2 model = c r e a t e a k e r a s m o d e l ()
3 ana lyze r = i n n v e s t i g a t e . c r e a t e a n a l y z e r (‘ ‘ analyzer name ’ ’ , model)
4 ana lyze r . f i t (X tra in) # i f needed
5 a n a l y s i s = ana lyze r . ana lyze (X tes t)

Implemented methods: At publication time the following algorithms are supported: Gra-
dient Saliency Map, SmoothGrad, IntegratedGradients, Deconvnet, GuidedBackprop, Pat-
ternNet and PatternAttribution, DeepTaylor, and LRP including LRP-Z, -Epsilon, -AlphaBeta.
In contrast, current related work is limited to gradient- and perturbation-based methods
(Kotikalapudi and contributors, 2017; Ancona et al., 2018) or focuses on a single algorithm
(E.g., Lundberg and Lee, 2017; Ribeiro et al., 2016). For an overview see Alber (2019). We
intend to extend this selection and invite the community to contribute implementations as
new methods emerge.

Documentation: The library’s documentation contains several introductory scripts and ex-
ample applications. We demonstrate how the analyses can be applied to the following state-
of-the-art models: VGG16 (Simonyan and Zisserman, 2014), InceptionV3 (Szegedy et al.,
2016), ResNet50 (He et al., 2016), InceptionResNetV2 (Szegedy et al., 2017), DenseNet
(Huang et al., 2017), NASNet (Zoph et al., 2018). Figure 1 shows the result for a subset.

network: vgg16
pred: baseball

Input Gradient
SmoothGrad

Guided Backprop

PatternNet
Input * G

radient

Integrated Gradients

LRP-Epsilon
LRP-PresetA

DeepTaylor
PatternAttribution

logit: 17.28
prob: 0.54

network: inception_v3
pred: baseball

logit: 8.61
prob: 0.59

network: resnet50
pred: baseball

logit: 10.05
prob: 0.44

network: nasnet_large
pred: baseball

logit: 9.86
prob: 0.94

Figure 1: Result of methods applied to various neural networks (blank, if a method does
not support a network’s architecture).

3

Alber et al.

2.1. Details

Modular implementation: All of the methods have in common that they perform a back-
propagation from the model outputs to the inputs. The core of iNNvestigate is a set of
base classes and functions that is designed to allow for rapid and easy development of such
algorithms. The developer only needs to implement specific changes to the base algorithm
and the library will take care of the complex and error-prone handling of the propagation
along the graph structure. Further details can be found in the repositories documentation.

Another advantage of the modular design is that one can extend any analyzer with
a given set of wrappers. One application of this is the smoothing of the analysis results
by adding Gaussian noise to the copies of the input and averaging the outcome. E.g.,
SmoothGrad is realized in this way by combining a smoothing wrapper with a gradient
analyzer.

Training: PatternNet and PatternAttribution (Kindermans et al., 2018) are two novel
approaches that condition their analysis on the data distribution. This is done by identifying
the signal and noise direction for each neuron of a neural network. Our software scales
favorably, e.g., one can train required patterns for the methods on large data sets like
Imagenet (Deng et al., 2009) in less than an hour using one GPU. We present the first
reference implementation of these methods.

Quantitative evaluation: Often analysis methods for neural networks are compared by
qualitative (visual) inspection of the result. This is can lead to subjective evaluations and
one approach to create a more objective and quantitative comparison of analysis algorithms
is the method “perturbation analysis” (Samek et al., 2017, also known as “PixelFlipping”).
The intuition behind this method is that perturbing regions which are recognized as im-
portant for the classification task by the analyzing method, will impact the classification
most. This allows to assess which analysis method best identifies regions that matter for a
specific task and neural network. iNNvestigate contains an implementation of this method.

Installation & license: iNNvestigate is published as open-source software under the BSD-
2-license and can be downloaded from: https://github.com/albermax/innvestigate. It
is built as a Python 2 or 3 application on top of the popular and established Keras (Chollet
et al., 2015) framework. This allows to use the library on various platforms and devices
like CPUs and GPUs. At the time of publication only the TensorFlow (Abadi et al., 2016)
Keras-backend is supported. The library can be simply installed as Python package.

3. Conclusion

We have presented iNNvestigate, a library that makes it easier to analyze neural networks’
predictions and to compare different analysis methods. This is done by providing a common
interface and implementations for many analysis methods as well as making tools for training
and comparing methods available. In particular it contains reference implementations for
many methods (PatternNet, PatternAttribution, LRP) and example application for a large
number of state-of-the-art applications. We expect that this library will support the field of
analyzing machine learning and facilitate research using neural networks in domains such
as drug design or medical image analysis.

4

https://github.com/albermax/innvestigate

iNNvestigate Neural Networks!

Acknowledgments

Correspondence to MA, SL, KRM, WS and PJK. This work was supported by the Fed-
eral Ministry of Education and Research (BMBF) for the Berlin Big Data Center BBDC
(01IS14013A). Additional support was provided by the BK21 program funded by Korean
National Research Foundation grant (No. 2012-005741) and the Institute for Information
& Communications Technology Promotion (IITP) grant funded by the Korea government
(no. 2017-0-00451, No. 2017-0-01779).

5

Alber et al.

References

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a
system for large-scale machine learning. Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation, 16:265–283, 2016.

Maximilian Alber. Software and application patterns for explanation methods. In Inter-
pretable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer, 2019.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better under-
standing of gradient-based attribution methods for deep neural networks. In International
Conference on Learning Representations, 2018.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation. PLOS ONE, 10(7):1–46, 2015.

David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen,
and Klaus-Robert Müller. How to explain individual classification decisions. Journal of
Machine Learning Research, 11:1803–1831, 2010.

François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
pages 770–778, 2016.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely
connected convolutional networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2261–2269, 2017.

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt,
Sven Dähne, Dumitru Erhan, and Been Kim. The (un)reliability of saliency methods.
Neural Information Processing Systems 2017 - Interpreting, Explaining and Visualizing
Deep Learning - Now what? workshop, 2017.

Pieter-Jan Kindermans, Kristof T Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru
Erhan, Been Kim, and Sven Dähne. Learning how to explain neural networks: PatternNet
and PatternAttribution. In International Conference on Learning Representations, 2018.

Raghavendra Kotikalapudi and contributors. keras-vis. https://github.com/raghakot/

keras-vis, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems
25, pages 1097–1105, 2012.

6

https://github.com/fchollet/keras
https://github.com/raghakot/keras-vis
https://github.com/raghakot/keras-vis

iNNvestigate Neural Networks!

Sebastian Lapuschkin, Alexander Binder, Grégoire Montavon, Klaus-Robert Müller, and
Wojciech Samek. Analyzing classifiers: Fisher vectors and deep neural networks. In 2016
IEEE Conference on Computer Vision and Pattern Recognition, pages 2912–2920, 2016a.

Sebastian Lapuschkin, Alexander Binder, Grégoire Montavon, Klaus-Robert Müller, and
Wojciech Samek. The layer-wise relevance propagation toolbox for artificial neural net-
works. Journal of Machine Learning Research, 17:3938–3942, 2016b.

Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech
Samek, and Klaus-Robert Müller. Unmasking clever hans predictors and assessing what
machines really learn. Nature communcations, 10:ID: 1096, 2019.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient back-
prop. In Neural networks: Tricks of the trade, pages 9–48. 2012.

Yann A LeCun, Yoshua Bengio, and Geoffrey E Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Advances in Neural Information Processing Systems 30, pages 4765–4774, 2017.

Grégoire Montavon, Matthias Rupp, Vivekanand Gobre, Alvaro Vazquez-Mayagoitia, Katja
Hansen, Alexandre Tkatchenko, Klaus-Robert Müller, and Anatole Von Lilienfeld. Ma-
chine learning of molecular electronic properties in chemical compound space. New Jour-
nal of Physics, 15(9):ID: 095003, 2013.

Grégoire Montavon, Sebastian Bach, Alexander Binder, Wojciech Samek, and Klaus-Robert
Müller. Explaining nonlinear classification decisions with deep taylor decomposition.
Pattern Recognition, 65:211–222, 2017.

Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting
and understanding deep neural networks. Digital Signal Processing, 73:1–15, 2018.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”:
Explaining the predictions of any classifier. In Proceedings of the 22th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1135–1144,
2016.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-
Robert Müller. Evaluating the visualization of what a deep neural network has learned.
IEEE Transactions on Neural Networks and Learning Systems, 28(11):2660–2673, 2017.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:
85–117, 2015.

Kristof T Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus-Robert Müller, and Alexan-
dre Tkatchenko. Quantum-chemical insights from deep tensor neural networks. Nature
Communications, 8:ID: 13890, 2017.

7

Alber et al.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.
Smoothgrad: Removing noise by adding noise. International Conference on Machine
Learning 2017 - Workshop on Visualization for Deep Learning, 2017.

Jost T Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striv-
ing for simplicity: The all convolutional net. In International Conference on Learning
Representations - Workshop track, 2015.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks.
In Proceedings of the 34th International Conference on Machine Learning, pages 3319–
3328, 2017.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Proceedings of the
31st AAAI Conference on Artificial Intelligence (AAAI), pages 4278–4284, 2017.

Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gener-
ative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In Proceedings of the 2014 European Conference on Computer Vision, pages 818–833,
2014.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. 2018 IEEE Conference on Computer Vision
and Pattern Recognition, pages 8697–8710, 2018.

8

	Introduction
	Library
	Details

	Conclusion

