
Journal of Machine Learning Research 20 (2019) 1-75 Submitted 9/18; Revised 4/19; Published 6/19

Learning Optimized Risk Scores

Berk Ustun berk@seas.harvard.edu
Center for Research in Computation and Society
Harvard University

Cynthia Rudin cynthia@cs.duke.edu

Department of Computer Science

Department of Electrical and Computer Engineering

Department of Statistical Science

Duke University

Editor: Russ Greiner

Abstract

Risk scores are simple classification models that let users make quick risk predictions by
adding and subtracting a few small numbers. These models are widely used in medicine
and criminal justice, but are difficult to learn from data because they need to be cali-
brated, sparse, use small integer coefficients, and obey application-specific constraints. In
this paper, we introduce a machine learning method to learn risk scores. We formulate
the risk score problem as a mixed integer nonlinear program, and present a cutting plane
algorithm to recover its optimal solution. We improve our algorithm with specialized tech-
niques that generate feasible solutions, narrow the optimality gap, and reduce data-related
computation. Our algorithm can train risk scores in a way that scales linearly in the num-
ber of samples in a dataset, and that allows practitioners to address application-specific
constraints without parameter tuning or post-processing. We benchmark the performance
of different methods to learn risk scores on publicly available datasets, comparing risk
scores produced by our method to risk scores built using methods that are used in prac-
tice. We also discuss the practical benefits of our method through a real-world application
where we build a customized risk score for ICU seizure prediction in collaboration with the
Massachusetts General Hospital.

Keywords: scoring systems; classification; calibration; customization; interpretability;
cutting plane methods; discrete optimization; mixed integer nonlinear programming.

1. Introduction

Risk scores are linear classification models that let users assess risk by adding, subtracting,
and multiplying a few small numbers (see Figure 1). These models are widely used to
support human decision-making in domains such as:

• Medicine: to assess the risk of mortality in intensive care (e.g., Moreno et al., 2005),
critical physical conditions (e.g., adverse cardiac events, Six et al., 2008; Than et al.,
2014) and mental illnesses (e.g., ADHD in Kessler et al., 2005; Ustun et al., 2017).

• Criminal Justice: to assess the risk of recidivism when setting bail, sentencing, and release
on parole (see e.g., Latessa et al., 2009; Austin et al., 2010; Pennsylvania Bulletin, 2017).

c©2019 Berk Ustun and Cynthia Rudin.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are
provided at http://jmlr.org/papers/v20/18-615.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-615.html

Learning Optimized Risk Scores

• Finance: to assess the risk of default on a loan (see e.g., credit scores in FICO, 2011;
Siddiqi, 2017), and to guide investment decisions (Piotroski, 2000; Beneish et al., 2013).

The adoption of risk scores in these domains stems from the fact that decision-makers often
find them easy to use and understand. In comparison to other kinds of models, risk scores let
users make quick predictions by simple arithmetic, without a computer or calculator. Users
can gauge the effect of changing multiple input variables on a prediction, and override
predictions in an informed manner when needed. In comparison to scoring systems for
decision-making, which predict a yes-or-no outcome at a single operating point (see e.g.,
the models considered in Ustun and Rudin, 2016; Zeng et al., 2017; Carrizosa et al., 2016;
Van Belle et al., 2013; Billiet et al., 2018, 2017; Sokolovska et al., 2017, 2018), risk scores
output risk estimates at multiple operating points. Thus, users can choose an operating
point while the model is deployed. Further, they are given risk estimates that – when
calibrated – can inform this choice and support decisions in other ways (see e.g., Shah
et al., 2018). We provide more background on risk scores in Appendix C.

1. Congestive Heart Failure 1 point . . .
2. Hypertension 1 point + . . .
3. Age ≥ 75 1 point + . . .
4. Diabetes Mellitus 1 point + . . .
5. Prior Stroke or Transient Ischemic Attack 2 points +

SCORE =

SCORE 0 1 2 3 4 5 6

RISK 1.9% 2.8% 4.0% 5.9% 8.5% 12.5% 18.2%

Figure 1: CHADS2 risk score of Gage et al. (2001) to assess stroke risk (see www.mdcalc.com for other
medical scoring systems). The variables and points of this model were determined by a panel of experts,
and the risk estimates were computed empirically from data.

Although risk scores have existed for nearly a century (see e.g., Burgess, 1928), many
of these models are still built ad hoc. This is partly because risk scores are often developed
for applications where models must satisfy constraints on interpretability and usability (see
e.g., requirements on “face validity” and “user friendliness” in Than et al., 2014). Handling
such constraints necessitates precise control over multiple elements of a model, from its
choice of features, to their relationship with the outcome (see e.g., Gupta et al., 2016), to
the performance of the model on specific subgroups (Feldman et al., 2015; Pleiss et al.,
2017). Since existing classification methods do not provide control over all these elements,
risk scores are typically built using heuristics and expert judgment (e.g., preliminary feature
selection, followed by logistic regression with the chosen features, scaling, and rounding as
outlined by Antman et al., 2000). In some cases, risk scores are hand-crafted by a panel
of experts (see e.g., the CHADS2 score in Figure 1, or the National Early Warning Score
of McGinley and Pearse, 2012). As we will show, such approaches may produce a model
that violates important requirements, or that performs poorly relative to the best risk score
that can be built using the same dataset. In such cases, the lack of a formal guarantee
complicates model development: when a risk score performs poorly, one cannot tell if this
is due to the use of heuristics, or due to overly restrictive constraints.

2

http://www.mdcalc.com

Ustun and Rudin

In this paper, we present a new machine learning method to learn risk scores from data.
Our method learns risk scores by solving a mixed-integer nonlinear program (MINLP),
which minimizes the logistic loss for calibration and AUC, penalizes the `0-norm for sparsity,
and restricts coefficients to small integers. We refer to this optimization problem as the
risk score problem, and refer to the risk score built from its solution as a Risk-calibrated
Supersparse Linear Integer Model (RiskSLIM). We aim to recover a certifiably optimal
solution – i.e., a global optimum along with a certificate of optimality. This requires solving
a hard optimization problem, but has three major benefits for our setting:

(i) Performance: Since the MINLP directly penalizes and constrains discrete quantities,
it can produce a risk score that is fully optimized for feature selection and small integer
coefficients, and that obeys application-specific requirements. Thus, models will not
suffer in training performance due to the use of heuristics or post-processing.

(ii) Direct Customization: Practitioners can address application-specific requirements by
adding discrete constraints to the MINLP formulation, which can be solved with a
generic solver (that is called by our algorithm as a subroutine). In this way, they can
customize risk scores without parameter tuning, post-processing, or implementing a
new algorithm.

(iii) Evaluating the Impact of Constraints: Our method pairs risk scores with a certificate of
optimality. By definition, a certifiably optimal solution to the risk score problem attains
the best performance among risk scores that satisfy a particular set of constraints. Once
we recover a certifiably optimal solution, we therefore end up with a risk score with
acceptable performance, or a risk score with unacceptable performance and a certificate
proving that the constraints were too restrictive. By comparing certifiably optimal risk
scores for different sets of constraints, we can make informed choices between models
that obey different kinds of requirements.

Considering these potential benefits, a key goal of this paper is to recover certifiably
optimal solutions to the risk score problem. As we will show, solving the risk score problem
with a commercial MINLP solver is time-consuming even on small datasets, as generic
MINLP algorithms struggle with excessive data-related computation. Accordingly, we aim
to solve the risk score problem with a cutting plane algorithm, which reduces data-related
computation by solving a surrogate problem with a linear approximation of the loss function
that is much cheaper to evaluate. Cutting plane algorithms have an impressive track record
on large supervised learning problems, as they scale linearly with the number of samples
and provide control over data-related computation (see e.g., Teo et al., 2009; Franc and
Sonnenburg, 2009; Joachims et al., 2009).

However, prior cutting plane algorithms were designed under the assumption that the
surrogate problem can be solved to optimality at each iteration. This assumption leads
cutting plane algorithms to stall on empirical risk minimization problems with non-convex
regularizers and constraints, as the time to solve the surrogate to optimality increases
exponentially with each iteration. We present a cutting plane algorithm to overcome this
issue. We then improve its performance with specialized techniques to generate feasible
solutions, narrow the optimality gap, and reduce data-related computation. Our approach
extends the benefits of cutting plane algorithms to non-convex settings, allowing us to
reliably train customized risk scores on many problems of interest.

3

Learning Optimized Risk Scores

Contributions The main contributions of this paper are as follows.

• We introduce a machine learning method to build risk scores. Our method can learn
models that are fully optimized for feature selection and small integer coefficients, handle
application-specific constraints without parameter tuning or post-processing, and pair
models with a certificate of optimality.

• We present a new cutting plane algorithm – the lattice cutting plane algorithm (LCPA)
– to solve empirical risk minimization problems with non-convex regularizers and con-
straints. LCPA can be easily implemented using a MIP solver (e.g., CPLEX). It can train
customized risk scores in a way that scales linearly with the number of samples in a
dataset.

• We design specialized techniques for LCPA to quickly find a risk score with good perfor-
mance and a small optimality gap: rounding and polishing heuristics; bound-tightening
and initialization procedures; and techniques to reduce data-related computation.

• We benchmark a large collection of methods to learn risk scores from data. Our results
show that our method can consistently produce risk scores with best-in-class performance
in minutes. We highlight pitfalls of heuristics that are often used in practice, and propose
new heuristics to address these shortcomings.

• We present results from a collaboration with the Massachusetts General Hospital where
we built a customized risk score for ICU seizure prediction. Our results highlight the per-
formance benefits and the practical benefits of our method in applications where models
must obey real-world constraints.

• We provide a software package to build optimized risk scores in Python, available online
at http://github.com/ustunb/risk-slim.

Organization In the remainder of Section 1, we discuss related work. In Section 2, we
formally define the risk score problem. In Section 3, we present our cutting plane algorithm.
In Section 4, we describe techniques to improve it. In Section 5, we benchmark methods to
build risk scores. In Section 6, we discuss an application to ICU seizure prediction.

The supplement to this paper contains: proofs of all theorems (Appendix A); a primer
on how risk scores are developed in practice (Appendix C); additional algorithmic improve-
ments (Appendix E); supporting material for the experiments in Sections 3 and 4 (Appendix
D); the performance benchmark in Section 5 (Appendix F); and the seizure prediction ap-
plication in Section 6 (Appendix G).

Prior Work Our paper extends work that was first published in KDD (Ustun and Rudin,
2017). Real-world applications of RiskSLIM include building a screening tool for adult
ADHD from a short questionnaire (Ustun et al., 2017), and building a risk score for ICU
seizure prediction (Struck et al., 2017). Applications of this work have been discussed in
a paper that was a finalist for the 2017 INFORMS Daniel H. Wagner Prize (Rudin and
Ustun, 2018). The application to seizure prediction (Ustun et al., 2017) was awarded the
2019 INFORMS Innovative Applications in Analytics Award.

4

Ustun and Rudin

1.1. Related Work

Scoring Systems While several methods have been proposed to learn scoring systems
for decision-making (see, e.g., Ustun and Rudin, 2016; Carrizosa et al., 2016; Van Belle
et al., 2013; Billiet et al., 2018, 2017; Sokolovska et al., 2017, 2018), this work focuses on
learning scoring systems for risk assessment (i.e., risk scores). Risk scores represent the
majority of scoring systems that are currently used in medicine and criminal justice. These
models are built to output calibrated risk estimates (see e.g., Section 6 and Van Calster
and Vickers, 2015; Alba et al., 2017, for a discussion on how miscalibrated risk estimates
can lead to harmful decisions in medicine). As we will show in Section 5.2, building risk
scores that output calibrated risk estimates is challenging. Common heuristics in risk score
development (e.g., rounding or scaling) can undermine calibration in ways that are difficult
to repair.

RiskSLIM risk scores are the risk assessment counterpart to SLIM scoring systems
(Ustun et al., 2013; Ustun and Rudin, 2016), which have been applied to problems such as
sleep apnea screening (Ustun et al., 2016), Alzheimer’s diagnosis (Souillard-Mandar et al.,
2016), and recidivism prediction (Zeng et al., 2017; Rudin et al., 2019). Both RiskSLIM
and SLIM models are optimized for feature selection and small integer coefficients, and
can be customized to obey application-specific constraints. RiskSLIM models are designed
for risk assessment and minimize the logistic loss. In contrast, SLIM models are designed
for decision-making and minimize the 0–1 loss. SLIM models do not output probability
estimates, and the scores will not necessarily have high AUC. However, they will perform
better at the operating point on the ROC curve for which they were optimized. Optimizing
the 0–1 loss is also NP-hard, so training SLIM models may not scale to datasets with large
sample sizes. In practice, RiskSLIM is better-suited for applications where models must
output calibrated risk estimates and/or perform well at multiple operating points along the
ROC curve.

Machine Learning The cutting-plane algorithm in this work can be adapted to empirical
risk minimization problems with a convex loss function, a non-convex penalty, and non-
convex constraints. Such problems can be solved to learn a large class of predictive models,
including: scoring systems for decision-making (Carrizosa et al., 2016; Van Belle et al., 2013;
Billiet et al., 2018, 2017; Sokolovska et al., 2017); sparse rule-based models such as decision
lists (see e.g, Letham et al., 2015; Angelino et al., 2018), k-of-n rules (see e.g., Chevaleyre
et al., 2013) and other Boolean functions (see e.g., Malioutov and Varshney, 2013; Wang
et al., 2017; Lakkaraju et al., 2016); and other `0-regularized models (Sato et al., 2017, 2016;
Bertsimas et al., 2016). For each of these model types, our cutting-plane algorithm can train
models that optimize the same objective function and obey the same constraints, but in a
way that recovers a globally optimal solution, handles application-specific constraints, and
scales linearly with the number of samples.

Our work highlights an alternative approach to build models that obey constraints on,
for example, interpretability (see e.g. Caruana et al., 2015; Gupta et al., 2016; Rudin, 2019;
Chen et al., 2018; Li et al., 2018, where interpretability is addressed through constraints
on model form) safety (Amodei et al., 2016), credibility (Wang et al., 2018), and parity
(Kamishima et al., 2011; Zafar et al., 2017). Such qualities depend on multiple model
properties, which vary significantly across applications and present unknown performance

5

Learning Optimized Risk Scores

trade-offs. Existing approaches often aim to address specific types of constraints for generic
models by pre-processing or post-processing (see e.g., Goh et al., 2016; Calmon et al., 2017;
Wang et al., 2019). In contrast, our approach aims to address such constraints directly
for a specific model class. When these models belong to a simple hypothesis class (e.g.,
risk scores), we can expect model performance on training data to generalize, and we can
evaluate this empirically (e.g., using cross-validation). In this way, one can assess the impact
of constraints on predictive performance and make informed choices between models.

Our work is part of a broader stream of research on integer programming and other
discrete optimization methods in supervised learning (e.g., Carrizosa et al., 2016; Liu and
Wu, 2007; Goldberg and Eckstein, 2012; Guan et al., 2009; Nguyen and Franke, 2012; Sato
et al., 2017, 2016; Rudin and Ertekin, 2018; Bertsimas et al., 2016; Lakkaraju et al., 2016;
Angelino et al., 2018; Chen and Rudin, 2018; Chang et al., 2012; Verwer and Zhang, 2019;
Hu et al., 2019; Rudin and Wang, 2018; Goh and Rudin, 2014; Ustun et al., 2019). A
unique aspect of this work is that we recover models that are certifiably optimal or have
small optimality gaps (see also Ustun and Rudin, 2016; Angelino et al., 2018). Our results
suggest that certifiably optimal models perform better, especially in applications where
models must satisfy constraints (see e.g., Section 6).

Optimization We train risk scores by solving a MINLP with three main components: (i)
a convex loss function; (ii) a non-convex feasible region (i.e., small integer coefficients and
application-specific constraints); (iii) a non-convex penalty function (i.e., the `0-penalty).

In Section 3.3, we show that this MINLP requires a specialized algorithm because off-
the-shelf MINLP solvers fail to solve instances for small datasets. We propose solving the
risk score problem with a cutting plane algorithm. Cutting planes have been extensively
studied by the optimization community (see e.g., Kelley, 1960) and applied to solve convex
empirical risk minimization problems (Teo et al., 2007, 2009; Franc and Sonnenburg, 2008,
2009; Joachims, 2006; Joachims et al., 2009).

Our cutting plane algorithm (the Lattice Cutting Plane Algorithm – LCPA) builds a
cutting plane approximation while performing branch-and-bound search. It can be easily
implemented using a MIP solver with control callbacks (see e.g., Bai and Rubin, 2009;
Naoum-Sawaya and Elhedhli, 2010, for similar uses of control callbacks). LCPA retains the
key benefits of existing cutting plane algorithms on empirical risk minimization problems,
but does not stall on problems with non-convex regularizers or constraints. As we discuss
in Section 3.1, stalling affects many cutting plane algorithms, including variants that are
not considered in machine learning (see Boyd and Vandenberghe, 2004, for a list). LCPA is
similar to recent outer-approximation algorithms that been developed for convex MINLP
problems (see e.g., Lubin et al., 2018), which have also been shown to outperform generic
MINLP algorithms (Kronqvist et al., 2019).

6

Ustun and Rudin

2. Risk Score Problem

In what follows, we formalize the problem of learning a risk score – i.e., a classification
model with the same form as the one in Figure 1. We start with a dataset of n i.i.d.
training examples (xi, yi)

n
i=1 where xi ⊆ Rd+1 denotes a vector of features [1, xi,1, . . . , xi,d]

>

and yi ∈ {±1} denotes a class label. We represent the score as a linear function s(x) = 〈λ,x〉
where λ ⊆ Rd+1 is a vector of d+ 1 coefficients [λ0, λ1, . . . , λd]

>, and λ0 is an intercept. In
this setup, coefficient λj represents the points that feature j contributes to the score. Given
an example with features xi, a user tallies the points to compute a score si = 〈λ,xi〉, and
then converts the score into an estimate of predicted risk. We estimate the predicted risk
that example i is positive through the logistic link function1 as:

pi = Pr (yi = +1 | xi) =
1

1 + exp(−〈λ,xi〉)
.

Model Desiderata Our goal is to train a risk score that is sparse, has small integer
coefficients, and performs well in terms of the following measures:

1. Calibration: A calibrated model outputs risk predictions that match their observed
risks. We assess the calibration of a model using a reliability diagram (see DeGroot and
Fienberg, 1983), which plots the predicted risk (x-axis) at each score against the observed
risk (y-axis). We estimate the observed risk for a score of s as:

p̄s =
1

|{i : si = s}|
∑
i:si=s

1 [yi = +1].

We summarize the calibration of a model over the reliability diagram using the expected
calibration error (Naeini et al., 2015):

CAL =
1

n

∑
s

∑
i:si=s

|pi − p̄s|.

2. Rank Accuracy: A rank-accurate model outputs scores that can correctly rank exam-
ples in terms of their true risk. We assess the rank accuracy of a model using the area
under the ROC curve:

AUC =
1

n+n−

∑
[i:yi=+1]

∑
[k:yk=−1]

1 [si > sk] .

Here, n+ = |{i : yi = +1}| and n− = |{i : yi = −1}|.

As discussed in Section 1.1, calibration is the primary performance objective when
building a risk score. Although good calibration should ensure good rank accuracy, it is
important to report AUC because trivial risk scores (i.e., risk scores that assign the same
score to all examples) can have low CAL on datasets with class imbalance (see Section 5.2
for an example).

We determine the values of the coefficients by solving a mixed integer nonlinear program
(MINLP), which we refer to as the risk score problem or RiskSlimMINLP.

1. Other risk models can be used as well, so long as they produce a concave log-likelihood.

7

Learning Optimized Risk Scores

Definition 1 (Risk Score Problem, RiskSlimMINLP)
The risk score problem is a discrete optimization problem with the form:

min
λ

l(λ) + C0 ‖λ‖0

s.t. λ ∈ L,
(1)

where:

• l(λ) = 1
n

∑n
i=1 log(1 + exp(−〈λ, yixi〉)) is the normalized logistic loss function;

• ‖λ‖0 =
∑d

j=1 1 [λj 6= 0] is the `0-seminorm;

• L ⊂ Zd+1 is a set of feasible coefficient vectors (user-provided);

• C0 > 0 is a trade-off parameter to balance fit and sparsity (user-provided).

RiskSlimMINLP captures what we desire in a risk score. The objective minimizes the
logistic loss for calibration and AUC, and penalizes the `0-seminorm (the count of non-
zero coefficients) for sparsity. The trade-off parameter C0 controls the balance between
these competing objectives, and represents the maximum log-likelihood that is sacrificed to
remove a feature from the optimal model. The constraints restrict coefficients to a set of
small integers such as L = {−5, . . . , 5}d+1, and may be customized to encode other model
requirements such as those in Table 1.

Model Requirement Example

Feature Selection Choose between 5 to 10 total features

Group Sparsity Include either male or female in the model but not both

Optimal Thresholding Use at most 3 thresholds for a set of indicator variables:
∑100

k=1 1 [age ≤ k] ≤ 3

Logical Structure If male is in model, then include hypertension or bmi ≥ 30

Side Information Predict Pr (y = +1|x) ≥ 0.90 when male = TRUE and hypertension = TRUE

Table 1: Model requirements that can be addressed by adding operational constraints to RiskSlimMINLP.

A Risk-calibrated Supersparse Linear Integer Model (RiskSLIM) is a risk score that is
an optimal solution to (1). By definition, the optimal solution to RiskSlimMINLP attains
the lowest value of the logistic loss among feasible models on the training data, provided
that C0 is small enough (see Appendix B for a proof). Thus, a RiskSLIM risk score is a
maximum likelihood logit model that satisfies all required constraints.

Our experiments in Section 5 show that models with lower loss typically attain better
calibration and AUC on the training data (see also Caruana and Niculescu-Mizil, 2004), and
that this generalizes to test data due to the simplicity of our hypothesis space. There are
some theoretical results to explain why minimizing the logistic loss leads to good calibration
and AUC. In particular, the logistic loss is a strictly proper loss (Reid and Williamson,
2010; Ertekin and Rudin, 2011) which yields calibrated risk estimates under the parametric
assumption that the true risk can be modeled using a logistic link function (see Menon

8

Ustun and Rudin

et al., 2012). Further, the work of Kotlowski et al. (2011) shows that a “balanced” version
of the logistic loss forms a lower bound on 1−AUC, so minimizing the logistic loss indirectly
maximizes a surrogate of AUC.

Trade-off Parameter The trade-off parameter can be restricted to values between C0 ∈
[0, l(0)]. Setting C0 > l(0) will produce a trivial model where λ∗ = 0. Using an exact
formulation provides an alternative way to set the trade-off parameter C0:

• If we are given a limit on model size (e.g., ‖λ‖0 ≤ R), we can add it as a constraint in
the formulation, and set C0 to a small value such as C0 = 10−8. In this case, the optimal
solution to RiskSlimMINLP corresponds to the model minimizing the logistic loss that
obeys the model size constraint, provided that C0 is small enough (see Appendix B).

• If we wish to set the model size in a data-driven manner (e.g., to optimize a measure of
cross-validated performance), we can solve several instances of RiskSlimMINLP with a
model size constraint ‖λ‖0 ≤ R, where we fix C0 to a small value and vary the model
size limit from R = 1 to R = d. This approach produces the best models over the full
`0-regularization path after solving d instances of RiskSlimMINLP. In comparison, a
standard approach (i.e., where we treat C0 as a hyperparameter and solve an instance
of RiskSlimMINLP without a model size constraint for different values of C0) requires
solving at least d instances, since we cannot determine (in advance) d values of C0 that
produce the full range of risk scores.

Computational Complexity Optimizing RiskSlimMINLP is a difficult computational
task given that `0-regularization, minimization over integers, and MINLP problems are all
NP-hard (Bonami et al., 2012). These are worst-case complexity results that mean that
finding an optimal solution to RiskSlimMINLP may be intractable for high dimensional
datasets. As we will show, however, RiskSlimMINLP can be solved to optimality for many
real-world datasets in minutes, and in a way that scales linearly in the sample size.

Notation, Assumptions, and Terminology We let V (λ) = l(λ) +C0 ‖λ‖0 denote the
objective function of RiskSlimMINLP, and let λ∗ ∈ argminλ∈L V (λ) denote an optimal
solution. We bound the optimal values of the objective, loss, and `0-seminorm as V (λ∗) ∈
[V min, V max], l(λ∗) ∈ [Lmin, Lmax], ‖λ∗‖0 ∈ [Rmin, Rmax], respectively. We denote the set of
feasible coefficients for feature j as Lj , and let Λmin

j = minλj∈Lj λj and Λmax
j = maxλj∈Lj λj .

For clarity of exposition, we assume that: (i) the coefficient set contains the null vector,
0 ∈ L, which ensures that RiskSlimMINLP is always feasible; (ii) the intercept is not
regularized, which means that the more precise version of the RiskSlimMINLP objective
function is V (λ) = l(λ) + C0

∥∥λ[1,d]

∥∥
0

where λ = [λ0,λ[1,d]].
We measure the optimality of a feasible solution λ′ ∈ L in terms of its optimality gap,

defined as V (λ′)−V min

V (λ′) . Given an algorithm to solve RiskSlimMINLP, we denote the best

feasible solution that the algorithm returns in a fixed time as λbest ∈ L. The optimality gap
of λbest is computed using an upper bound set as V max = V (λbest), and a lower bound V min

that is provided by the algorithm. We say that the algorithm has solved RiskSlimMINLP
to optimality if λbest has an optimality gap of ε = 0.0%. This implies that it has found a
best feasible solution to RiskSlimMINLP and produced a lower bound V min = V (λ∗).

9

Learning Optimized Risk Scores

3. Methodology

In this section, we present the cutting plane algorithm that we use to solve the risk score
problem. In Section 3.1, we provide a brief introduction of cutting plane algorithms to
discuss their practical benefits and to explain why existing algorithms stall on non-convex
problems. In Section 3.2, we present a new cutting plane algorithm that does not stall.
In Section 3.3, we compare the performance of cutting plane algorithms to a commercial
MINLP solver on instances of the risk score problem.

3.1. Cutting Plane Algorithms

In Algorithm 1, we present a simple cutting plane algorithm to solve RiskSlimMINLP
that we call CPA.

CPA recovers the optimal solution to RiskSlimMINLP by repeatedly solving a surrogate
problem that optimizes a linear approximation of the loss function l(λ). The approximation
is built using cutting planes or cuts. Each cut is a supporting hyperplane to the loss function
at a fixed point λt ∈ L:

l(λt) + 〈∇l(λt),λ− λt〉.

Here, l(λt) ∈ R+ and∇l(λt) ∈ Rd+1 are cut parameters that can be computed by evaluating
the value and gradient of the loss at the point λt:

l(λt) =
1

n

n∑
i=1

log(1 + exp(−〈λt, yixi〉)), ∇l(λt) =
1

n

n∑
i=1

−yixi
1 + exp(−〈λt, yixi〉)

. (3)

As shown in Figure 2, we can construct a cutting plane approximation of the loss function
by taking the pointwise maximum of multiple cuts. In what follows, we denote the cutting
plane approximation of the loss function built using k cuts as:

l̂k(λ) = max
t=1...k

[
l(λt) + 〈∇l(λt),λ− λt〉

]
.

l(�)

�1
�2

Figure 2: A convex loss function l(λ) and its cutting plane approximation l̂2(λ).

On iteration k, CPA solves a surrogate mixed-integer program (MIP) that minimizes the
cutting plane approximation l̂k, namely RiskSlimMIP(l̂k). CPA uses the optimal solution
to the surrogate MIP (Lk,λk) in two ways: (i) it computes a new cut at λk to improve the
cutting plane approximation; (ii) it computes bounds on optimal value of RiskSlimMINLP

10

Ustun and Rudin

Algorithm 1 Cutting Plane Algorithm (CPA)

Input

(xi, yi)
n
i=1 training data

L coefficient set

C0 `0 penalty parameter

εstop ∈ [0, 1] maximum optimality gap of acceptable solution

Initialize

k ← 0 iteration counter

l̂0(λ)← {0} cutting plane approximation

(V min, V max)← (0,∞) bounds on the optimal value of RiskSlimMINLP

ε←∞ optimality gap

1: while ε > εstop do

2: (Lk,λk)← provably optimal solution to RiskSlimMIP(l̂k)

3: compute cut parameters l(λk) and ∇l(λk)

4: l̂k+1(λ)← max{l̂k(λ), l(λk) + 〈∇l(λk),λ− λk〉} update approximate loss function l̂k

5: V min ← Lk + C0

∥∥λk∥∥
0

optimal value of RiskSlimMIP is lower bound

6: if V (λk) < V max then

7: V max ← V (λk) update upper bound

8: λbest ← λk update incumbent

9: end if

10: ε← 1− V min/V max

11: k ← k + 1

12: end while

Output: λbest ε-optimal solution to RiskSlimMINLP

RiskSlimMIP(l̂k) is a surrogate problem for RiskSlimMINLP that minimizes a cutting
plane approximation l̂k of the loss function l:

min
L,λ

L+ C0 ‖λ‖0

s.t. L ≥ l̂k(λ)

λ ∈ L.

(2)

We present a MIP formulation for RiskSlimMIP(l̂k) in Appendix D.2.

11

Learning Optimized Risk Scores

to check for convergence. Here, the upper bound is set as the objective value of the best
solution across all iterations:

V max = min
t=1...k

[
l(λt) + C0‖λt‖0

]
.

The lower bound is set as the optimal value of the surrogate problem at the current iteration:

V min = l̂k(λk) + C0‖λk‖0.

CPA converges to an optimal solution of RiskSlimMINLP in a finite number of itera-
tions (see e.g., Kelley, 1960, for a proof). In particular, the cutting plane approximation of
a convex loss function improves monotonically with each cut:

l̂k(λ) ≤ l̂k+m(λ) ≤ l(λ) for all λ ∈ L and k,m ∈ N.

Since the cuts added at each iteration are not redundant, the lower bound improves mono-
tonically with each iteration. Once the optimality gap ε is less than a stopping threshold
εstop, CPA terminates and returns an ε-optimal solution λbest to RiskSlimMINLP.

Key Benefits of Cutting Plane Algorithms CPA has three important properties that
motivate why we want to use a cutting plane algorithm to solve the risk score problem:

(i) Scalability in the Sample Size: Cutting plane algorithms use the training data only
when computing cut parameters, and not while solving RiskSlimMIP. Since the pa-
rameters in (3) can be computed using elementary matrix-vector operations in O(nd)
time at each iteration, running time scales linearly in n for fixed d (see Figure 3).

(ii) Control over Data-related Computation: Cutting plane algorithms compute cut pa-
rameters in a single isolated step (e.g., Step 3 in Algorithm 1). Users can reduce
data-related computation by customizing their implementation to compute these cut
parameters efficiently (e.g., via distributed computing, or techniques that exploit struc-
tural properties of a specific model class as in Section E.2).

(iii) Ability to use a MIP Solver : Cutting plane algorithms have a special benefit in our
setting since the surrogate problem can be solved with a MIP solver (rather than a
MINLP solver). MIP solvers provide a fast implementation of branch-and-bound search
and other features to speed up the search process (e.g., built-in heuristics, preprocessing
and cut generation procedures, lazy evaluation of cut constraints, and control callbacks
that let us customize the search with specialized techniques). As we show in Figure 6,
using a MIP solver can substantially improve our ability to solve RiskSlimMINLP,
despite the fact that one may have to solve multiple MIPs.

Stalling in Non-Convex Settings Cutting plane algorithms for empirical risk mini-
mization (Joachims, 2006; Franc and Sonnenburg, 2008; Teo et al., 2009) are similar to
CPA in that they solve a surrogate optimization problem at each iteration (e.g., Step 2 of
Algorithm 1). When these algorithms are used to solve convex risk minimization problems,
the surrogate is convex and therefore tractable. When the algorithms are used to solve risk
minimization problems with non-convex regularizers or constraints, however, the surrogate

12

Ustun and Rudin

●

●

● ●

●

● ●
● ●

●

●
● ●

●
●

● ●

●

●
● ●

●

●

●

●

●

50

100

200

500

1000

103 104 105 106 107

N

R
un

tim
e

(s
ec

on
ds

)

Figure 3: Runtime of CPA on synthetic datasets with d = 10 and n ∈ [103, 107] (see Appendix D for details).
As n increases, the runtime for the solver (grey) remains roughly constant. The total runtime (black) scales
at O(n), which reflects the scalability of matrix-vector operations used to compute cut parameters.

is non-convex. In these settings, cutting plane algorithms will typically stall as they even-
tually reach an iteration where the surrogate problem cannot be solved to optimality within
a fixed time limit.

In Figure 4, we illustrate the stalling behavior of CPA on a difficult instance of RiskSlim-
MINLP for a synthetic dataset where d = 20 (see also Figure 6). As shown, the first
iterations terminate quickly as the surrogate problem RiskSlimMIP contains a trivial ap-
proximation of the loss. Since the surrogate becomes increasingly difficult to optimize with
each iteration, however, the time to solve RiskSlimMIP increases exponentially, leading
CPA to stall at iteration k = 86. In this case, the solution returned by CPA after 6 hours has
a large optimality gap and a highly suboptimal loss. This is unsurprising, as the solution
was obtained by optimizing a low-fidelity approximation of the loss (i.e., an 85-cut approxi-
mation of a 20-dimensional function). Since the value of the loss is tied to the performance
of the model (see Section 5), the solution corresponds to a risk score with poor performance.

0.01

0.1

1

10

100

1000

10000

10 20 50 100 200 500

Cuts Added

S
ec

on
ds

/C
ut

0%

20%

40%

60%

80%

100%

10 20 50 100 200 500

Cuts Added

O
pt

im
al

ity
 G

ap

Figure 4: Performance profile of CPA on RiskSlimMINLP for a synthetic dataset with n = 50,000 and
d = 20 (see Appendix D for details). We plot the time per iteration (left, in log-scale) and optimality
gap (right) for each iteration over 6 hours. CPA stalls on iteration 86, at which point the time to solve
RiskSlimMIP to optimality increases exponentially. The best solution obtained after 6 hours corresponds
to a risk score with poor performance.

13

Learning Optimized Risk Scores

There is no simple fix to prevent standard cutting plane algorithms such as CPA from
stalling on non-convex problems. This is because they need a globally optimal solution
to a surrogate optimization problem at each iteration to compute a valid lower bound.
In non-convex risk minimization problems, this requires finding the optimal solution of a
non-convex surrogate problem, and certifying that there does not exist a better solution
to the surrogate problem. If, for example, CPA only solved the surrogate until it found a
feasible solution with a non-zero optimality gap, then it could produce a cutting plane that
discards the true optimal solution. In this case, the lower bound computed in Step 5 would
exceed the true optimal value, leading the algorithm to terminate prematurely and return
a suboptimal solution with invalid bounds.

3.2. The Lattice Cutting Plane Algorithm

To avoid stalling in non-convex settings, we solve the risk score problem using the lattice
cutting plane algorithm (LCPA) shown in Algorithm 2. LCPA has the same benefits as other
cutting plane algorithms for the risk score problem, such as scalability in the sample size,
control over data-related computation, and the ability to use a MIP solver. As shown in
Figure 5, however, LCPA does not stall. This is because it can add cuts and compute a
lower bound without having to optimize a non-convex surrogate.

0.01

0.1

1

10

100

1000

10000

10 100 1000 10000

Cuts Added

S
ec

on
ds

/C
ut

0%

20%

40%

60%

80%

100%

10 100 1000 10000

Cuts Added

O
pt

im
al

ity
 G

ap

Figure 5: Performance profile of LCPA (red) and CPA (black) on the RiskSlimMINLP instance in Figure
4. Unlike CPA, LCPA does not stall. LCPA recovers a high-quality risk score (i.e., whose objective value is
≤ 10% of the optimal value) in 9 minutes after adding 4,655 cuts. The remaining time is used to reduce the
optimality gap.

LCPA recovers the optimal solution to RiskSlimMINLP via branch-and-bound (B&B)
search. The search process recursively splits the feasible region of RiskSlimMINLP, dis-
carding parts that are infeasible or provably suboptimal. LCPA solves a surrogate linear
program (LP) over each region. It updates the cutting plane approximation when the sur-
rogate LP yields an integer feasible solution. At that point, it sets the lower bound for the
risk score problem as the smallest lower bound of the surrogate LP over unexplored regions.

14

Ustun and Rudin

Algorithm 2 Lattice Cutting Plane Algorithm (LCPA)

Input

(xi, yi)
n
i=1 training data

L coefficient set

C0 `0 penalty parameter

εstop ∈ [0, 1] optimality gap of acceptable solution

RemoveNode procedure to remove node from a node set (provided by MIP solver)

SplitRegion procedure to split region into disjoint subsets (provided by MIP solver)

RiskSlimLP(l̂ ,R) LP relaxation of RiskSlimMIP(l̂) over the region R ⊆ conv (L) (see Definition 2)

Initialize

k ← 0 number of cuts

l̂k(λ)← {0} cutting plane approximation

(V min, V max)← (0,∞) bounds on the optimal value of RiskSlimMINLP

R0 ← conv (L) initial region is convex hull of coefficient set

v0 ← 0 lower bound of the objective value of the surrogate LP at R0

N ← {(R0, v0)} node set

ε←∞ optimality gap

1: while ε > εstop do

2: (Rt, vt)← RemoveNode (N) t is index of removed node

3: solve RiskSlimLP(l̂k,Rt)

4: λt ← coefficients from optimal solution to RiskSlimLP(l̂k,Rt)

5: V t ← optimal value of RiskSlimLP(l̂k,Rt)

6: if optimal solution is integer feasible then

7: compute cut parameters l(λt) and ∇l(λt)

8: l̂k+1(λ)← max{l̂k(λ), l(λt) + 〈∇l(λk),λ− λt〉} update approximate loss function l̂k

9: if V t < V max then

10: V max ← V t update lower bound

11: λbest ← λt update best solution

12: N ← N \ {(Rs, vs) | vs ≥ V max} prune suboptimal nodes

13: end if

14: k ← k + 1

15: else if optimal solution is not integer feasible then

16: (R′, R′′)← SplitRegion(Rt,λt) R′, R′′ are disjoint subsets of Rt

17: N ← N ∪ {(R′, V t), (R′′, V t)} V t is lower bound of RiskSlimLP for child regions R′,R′′

18: end if

19: V min ← mins=1...|N| v
s V min is smallest lower bound among nodes in N

20: ε← 1− V min/V max update optimality gap

21: end while

Output: λbest ε-optimal solution to RiskSlimMINLP

15

Learning Optimized Risk Scores

Definition 2 (RiskSlimLP)
Given a bounded convex region R ⊆ conv (L), trade-off parameter C0 > 0, cutting plane

approximation l̂k : Rd+1 → R+ with cut parameters {l(λt),∇l(λt)}kt=1, and bounds V min,

V max, Lmin, Lmax, Rmin, Rmax, the surrogate optimization problem RiskSlimLP(l̂k,R)
can be formulated as the linear program:

min
L,λ,α

V

s.t. V = L+ C0R objective value

R =

d∑
j=1

αj relaxed `0-norm

L ≥ l(λt) + 〈∇l(λt),λ− λt〉 t = 1,...,k cut constraints

λj ≤ Λmax
j αj j = 1,...,d `0-indicator constraints

λj ≥ −Λmin
j αj j = 1,...,d `0-indicator constraints

λ ∈ R feasible region

V ∈ [V min, V max] objective bounds

L ∈ [Lmin, Lmax] loss bounds

R ∈ [Rmin, Rmax] relaxed `0-bounds

αj ∈ [0, 1] j = 1,...,d relaxed `0-indicators

Branch-and-Bound Search In Algorithm 2, we represent the state of the B&B search
process using a B&B tree. We refer to each leaf of the tree as a node, and denote the set
of all nodes as N . Each node (Rt, vt) ∈ N consists of: a region of the convex hull of the
coefficient set Rt ⊆ conv (L); and a lower bound on the objective value of the surrogate LP
over this region vt.

Each iteration of LCPA removes a node from the node set (Rt, vt) ∈ N , then solves the
surrogate LP for the corresponding region, that is, RiskSlimLP(l̂k,Rt). Subsequent steps
of the algorithm are determined by the solution status of the surrogate LP:

• If RiskSlimLP(l̂k,Rt) has an integer solution, LCPA updates the cutting plane approxi-
mation l̂k with a new cut at λt in Step 8.

• If RiskSlimLP(l̂k,Rt) has a real-valued solution, LCPA adds two child nodes (R′, vt)
and (R′′, vt) to the node set N in Step 17. The child nodes are produced by applying a
splitting rule, which splits Rt into disjoint regions R′ and R′′. The lower bound for each
child node is set as the optimal value of the surrogate LP vt.

• If RiskSlimLP(l̂k,Rt) is infeasible, then LCPA discards the node from the node set.

The B&B search is governed by two procedures that are implemented in a MIP solver:

• RemoveNode, which removes a node (Rt, vt) from the node set N (e.g., the node with
the smallest lower bound vt).

• SplitRegion, which splits Rt into disjoint subsets of Rt (e.g., split on a fractional compo-
nent of λt, which returns R′ = {λ ∈ Rt |λtj ≥ dλtje} and R′′ = {λ ∈ Rt |λtj ≤ bλtjc}).
The output conditions for SplitRegion must ensure that the regions at each node remain
disjoint, the total number of nodes remains finite, and the total search region shrinks even
when the surrogate LP has a real-valued solution.

16

Ustun and Rudin

LCPA evaluates the optimality of solutions to the risk score problem by using bounds
on the objective value of RiskSlimMINLP. The upper bound V max is set as the objective
value of the best integer feasible solution in Step 10. The lower bound V min is set as the
smallest objective value among all nodes in Step 19. The value of V min can be viewed as
a lower bound on the objective value of the surrogate LP over the remaining search region⋃
tRt (i.e., V min is a lower bound on the objective value of RiskSlimLP(l̂k,

⋃
tRt)). Thus,

V min will increase when we reduce the remaining search region or add cuts.

Each iteration of LCPA reduces the remaining search region by either finding an integer
feasible solution, identifying an infeasible region, or splitting a region into disjoint subsets.
Thus, V min increases monotonically as the search region becomes smaller, and cuts are
added at integer feasible solutions. Likewise, V max decreases monotonically as it is set as
the objective value of the best integer feasible solution. Since there are a finite number of
nodes, even in the worst-case, LCPA terminates after a finite number of iterations, returning
an optimal solution to the risk score problem.

Remark 3 (Worst-Case Data-Related Computation for LCPA)
Given any training dataset (xi, yi)

n
i=1, any trade-off parameter C0 > 0, and any finite

coefficient set L ⊂ Zd+1, LCPA returns an optimal solution to the risk score problem after
computing at most |L| cutting planes, and processing at most 2|L| − 1 nodes.

Implementation with a MIP Solver with Lazy Cut Evaluation LCPA can easily
be implemented using a MIP solver (e.g., CPLEX, Gurobi, GLPK) with control callbacks.
In this approach, the solver handles the B&B related steps of Algorithm 2, and one needs
only to write a few lines of code to update the cutting plane approximation when the
algorithm finds an integer feasible solution. In a basic implementation, the solver would
call the control callback when it finds an integer feasible solution (i.e., Step 6). The code
would retrieve the integer feasible solution, compute the cut parameters, and add a cut to
the surrogate LP, handing control back to the solver at Step 9.

A key benefit of using a MIP solver is the ability to add cuts as lazy constraints. In
practice, if we were to add cuts as generic constraints to the surrogate LP, the time to
solve the surrogate LP would increase with each cut, which would progressively slow down
LCPA. When we add cuts as lazy constraints, the solver branches using a surrogate LP
that contains a subset of relevant cuts, and only evaluates the complete set of cuts when
LCPA finds an integer feasible solution. In this case, LCPA still returns the optimal solution.
However, computation is significantly reduced as the surrogate LP is much faster to solve
for the vast majority of cases where it is infeasible or yields a real-valued solution. From a
design perspective, lazy cut evaluation reduces the marginal computational cost of adding
cuts, which allows us to add cuts liberally (i.e., without having to worry about slowing
down LCPA by adding too many cuts).

3.3. Performance Comparison with MINLP Algorithms

In what follows, we benchmark CPA and LCPA against three MINLP algorithms as imple-
mented in a commercial MINLP solver (Artelsys Knitro 9.0, which is an updated version
of the solver in Byrd et al., 2006).

17

Learning Optimized Risk Scores

In Figure 6, we show the performance of algorithms on difficult instances of the risk
score problem for synthetic datasets with d dimensions and n samples (see Appendix D
for details). We consider the following performance metrics: (i) the time to find a near-
optimal solution; (ii) the optimality gap of the best solution at termination; and (iii) the
proportion of time spent on data-related computation. Since all three MINLP algorithms
behave similarly, we only show the best one in Figure 6 (i.e., ActiveSetMINLP), and include
results for the others in Appendix D.3.

As shown, LCPA finds an optimal or near-optimal solution for almost all instances of
the risk score problem, and pairs the solution with a small optimality gap. CPA performs
similarly to LCPA on low-dimensional instances. On instances with d ≥ 15, however, CPA
stalls after a few iterations and returns a highly suboptimal solution (i.e., a risk score with
poor performance). In comparison, the MINLP algorithms can only handle instances with
small n or d. On larger instances, the solver is slowed down by operations that involve
data-related computation, fails to converge within the 6-hour time limit and fails to recover
a high-quality solution. Seeing how MINLP solvers are designed to solve a diverse set of
optimization problems, we do not believe that they can identify and exploit the structure
of the risk score problem in the same way as a cutting plane algorithm.

LCPA CPA ActiveSetMINLP

Time to Train a Good Risk Score

i.e., the time for an algorithm to find a solution whose
loss is ≤ 10% of the optimal loss. This reflects the time to
obtain a risk score with good calibration without a proof of
optimality.

 <1 min

 <10 min

 <1 hour

 <6 hours

 6+ hours 1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

Optimality Gap of Best Solution at Termination

i.e., (V max − V min)/V max, where V max is the objective
value of the best solution found at termination. A gap of
0.0% means an algorithm has found the optimal solution
and provided a proof of optimality within 6 hours.

 0%

 0−20%

 20−50%

 50−90%

 90−100% 1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

% Time Spent on Data-Related Computation

i.e., the proportion of total runtime that an algorithm
spends computing the value, gradient, or Hessian of the
loss function.

 0−20%

 20−40%

 40−60%

 60−80%

 80−100% 1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

Figure 6: Performance of LCPA, CPA, and a commercial MINLP solver on difficult instances of RiskSlim-
MINLP for synthetic datasets with d dimensions and n samples (see Appendix D for details). ActiveSetMINLP
fails to produce good risk scores on instances with large n or d as it struggles with data-related computation.
CPA and LCPA scale linearly in n when d is fixed: if they solve an instance for a given d, then they can solve
instances for larger n in O(n) additional time. CPA stalls when d ≥ 15 and returns a low-quality risk score
when d ≥ 20. In contrast, LCPA consistently recovers a good model without stalling. Results reflect the
performance for a basic LCPA implementation without the improvements in Section 4. We show results for
two other MINLP algorithms in Appendix D.

18

Ustun and Rudin

4. Algorithmic Improvements

In this section, we describe specialized techniques to improve the performance of the lattice
cutting plane algorithm (LCPA) on the risk score problem. They include:

• Polishing Heuristic. We present a technique called discrete coordinate descent (DCD;
Section 4.1), which we use to polish integer solutions found by LCPA (solutions satisfying
the condition in Step 6). DCD aims to improve the objective value of all integer solutions,
which produces stronger upper bounds over the course of LCPA, and reduces the time to
recover a good risk score.

• Rounding Heuristic. We present a rounding technique called SequentialRounding (Sec-
tion 4.2) to generate integer solutions. We use SequentialRounding to round real-valued
solutions of the surrogate LP (which are solutions that satisfy the condition in Step 15)
and then polish the rounded solution with DCD. Rounded solutions may improve the
best solution found by LCPA, producing stronger upper bounds and reducing the time to
recover a good risk score.

• Bound Tightening Procedure. We design a fast procedure to strengthen bounds on the
optimal values of the objective, loss, and number of non-zero coefficients called ChainedUp-
dates (Section 4.3). We call ChainedUpdates whenever the solver updates the upper bound
in Step 10 or the lower bound in Step 19. ChainedUpdates improves the lower bound,
and reduces the optimality gap of the final risk score.

We present additional techniques to improve LCPA in Appendix E such as an initializa-
tion procedure and techniques to reduce data-related computation.

4.1. Discrete Coordinate Descent

Discrete coordinate descent (DCD) is a technique to polish an integer solution (Algorithm 3).
It takes as input an integer solution λ = [λ0, . . . , λd]

> ∈ L and iteratively changes a single
coordinate j to attain an integer solution with a better objective value. The coordinate at
each iteration is set to minimize the objective value, i.e., j ∈ argminj′ V

(
λ+ δj′ej′

)
.

DCD terminates once it can no longer strictly improve the objective value along any
coordinate. This eliminates the potential of cycling, and thereby guarantees that the proce-
dure will terminate in a finite number of iterations. The polished solution returned by DCD
satisfies a type of local optimality guarantee for discrete optimization problems. Formally, it
is 1-opt with respect to the objective value, meaning that one cannot improve the objective
value by changing any single coefficient (see e.g., Park and Boyd, 2018, for a technique to
find a 1-opt point for a different optimization problem).

In practice, the most expensive computation in DCD is finding a step-size δj ∈ ∆j that
minimizes the objective along coordinate j (Step 5 of Algorithm 3). We can significantly
reduce this computation by using golden section search. This approach requires nd log2 |Lj |
flops per iteration compared to nd|Lj | flops per iteration required by a brute force approach
(i.e., which evaluates the loss for all λj ∈ Lj).

In Figure 7, we show how DCD improves the performance of LCPA when we use it to
polish feasible solutions found by the MIP solver (i.e., the polishing is placed just after Step
6 of Algorithm 2).

19

Learning Optimized Risk Scores

Algorithm 3 Discrete Coordinate Descent (DCD)

Input

(xi, yi)
n
i=1 training data

L coefficient set

C0 `0 penalty parameter

λ ∈ L integer solution to RiskSlimMINLP

J ⊆ {0, . . . , d} valid descent directions

1: repeat

2: V ← V (λ) objective value at current solution

3: for j ∈ J do

4: ∆j ← {δ ∈ Z | λ+ δej ∈ L} list feasible moves along dim j

5: δj ← argminδ∈∆j
V (λ+ δ) find best move in dim j

6: vj ← V (λ+ δjej) store objective value for best move in dim j

7: end for

8: m← argminj∈J vj descend along dim that minimizes objective

9: λ← λ+ δmem
10: until vm ≥ V
Output: λ solution that is 1-opt with respect to the objective of RiskSlimMINLP

●●

●
●●

●
●●

●

●

● ●
●

●

0.16

0.17

0.18

0.19

0.20

0 500K 1M

Nodes Processed

U
pp

er
bo

un
d

●●●

●●

●●

●●

●

●

●

●

●

40%

60%

80%

100%

0 500K 1M

Nodes Processed

O
pt

im
al

ity
 G

ap

Figure 7: Performance profile of LCPA in a basic implementation (black) and with DCD (red). We use
DCD to polish every integer solution found by the MIP solver whose objective value is within 10% of the
current upper bound. We plot the number of total nodes processed of LCPA (x-axis) against the upper
bound (y-axis; left) and the optimality gap (y-axis; right). We mark iterations where LCPA updates the
incumbent solution. Results reflect performance on RiskSlimMINLP for a synthetic dataset with d = 30
and n = 50,000 (see Appendix D for details).

4.2. Sequential Rounding

SequentialRounding (Algorithm 4) is a rounding heuristic to generate integer solutions for
the risk score problem. In comparison to näıve rounding, which returns the closest rounding
from a set of 2d+1 possible roundings, SequentialRounding returns a rounding that iteratively
finds a local optimizer of the risk score problem.

Given a real-valued solution λreal ∈ conv (L), the procedure iteratively rounds one com-
ponent (up or down) in a way that reduces the objective of RiskSlimMINLP. On iteration
k, it has already rounded k components of λreal, and must round one of the remaining

20

Ustun and Rudin

Algorithm 4 SequentialRounding

Input

(xi, yi)
n
i=1 training data

L coefficient set

C0 `0 penalty parameter

λ ∈ conv (L) non-integer infeasible solution from RiskSlimLP

1: J real ← {j : λj 6= dλjc} index set of non-integer coefficients

2: repeat

3: λj,up ← (λ1, . . . , dλje, . . . , λd) for all j ∈ J real

4: λj,down ← (λ1, . . . , bλjc , . . . , λd) for all j ∈ J real

5: vup ← minj∈J real V (λj,up)

6: vdown ← minj∈J real V (λj,down)

7: if vup < vdown then

8: k ← argminj∈J real V (λj,up) and λk ← dλke
9: else

10: k ← argminj∈J real V (λj,down) and λk ← bλkc
11: end if

12: J real ← J real \ {k}
13: until J real = ∅
Output: λ ∈ L integer solution

d + 1 − k components to dλreal
j e or bλreal

j c. To this end, it computes the objective of all
feasible (component, direction)-pairs and chooses the best one. Formally, the minimization
on iteration k requires 2 · (d+ 1−k) evaluations of the loss function. Thus, given that there
are d+ 1 iterations, SequentialRounding terminates after 2 ·

∑d
k=1 k = d(d+ 1) evaluations

of the loss function.

In Figure 8, we show the impact of using SequentialRounding in LCPA. Here, we ap-
ply SequentialRounding to the non-integer solution of RiskSlimLP when the lower bound
changes (i.e., just after Step 3 of Algorithm 2), then polish the rounded solution using DCD.
As shown, this strategy can reduce the time required for LCPA to find a high-quality risk
score, and attain a lower optimality gap.

4.3. Chained Updates

We describe a fast bound tightening technique called ChainedUpdates (Algorithm 5). This
technique iteratively bounds the optimal values of the objective, loss, and `0-norm by iter-
atively setting the values of V min, V max, Lmin, Lmax, and Rmax in RiskSlimLP. Bounding
these quantities over the course of B&B restricts the search region without discarding the
optimal solution, thereby improving the lower bound and reducing the optimality gap.

Initial Bounds on Objective Terms We initialize ChainedUpdates with values of V min,
V max, Lmin, Lmax, and Rmax that can be computed using only the training data (xi, yi)

n
i=1

and the coefficient set L. We start with Proposition 4, which provides initial values for Lmin

and Lmax using the fact that the coefficient set L is bounded.

21

Learning Optimized Risk Scores

●

●●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●
●●

●

●

● ●
●

●

0.16

0.17

0.18

0.19

0.20

0 500K 1M

Nodes Processed

U
pp

er
bo

un
d

●●●●

●●
●

●

●●
●
●
●
●

●

●●

●●

●●

●

●

●

●

●

40%

60%

80%

100%

0 500K 1M

Nodes Processed

O
pt

im
al

ity
 G

ap

Figure 8: Performance profile of LCPA in a basic implementation (black) and with SequentialRounding and
DCD polishing (red). We call SequentialRounding to round non-integer solutions to RiskSlimLP in Step
15, and then polish the integer solution with DCD. We plot large points to show when LCPA updates the
incumbent solution. Results reflect performance on RiskSlimMINLP for a synthetic dataset with d = 30
and n = 50,000 (see Appendix D for details). Here, SequentialRounding and DCD reduce the upper bound
and optimality gap of LCPA compared to a basic implementation.

Proposition 4 (Bounds on Logistic Loss over a Bounded Coefficient Set)
Given a training dataset (xi, yi)

n
i=1 where xi ∈ Rd and yi ∈ {±1} for i = 1, . . . , n,

consider the normalized logistic loss of a linear classifier with coefficients λ:

l(λ) =
1

n

n∑
i=1

log(1 + exp(−〈λ, yixi〉)).

If the coefficients belong to a bounded set L, then the value of the normalized logistic loss
must obey l(λ) ∈ [Lmin, Lmax] for all λ ∈ L, where:

Lmin =
1

n

∑
i:yi=+1

log (1 + exp(−smax
i)) +

1

n

∑
i:yi=−1

log (1 + exp(smin
i)),

Lmax =
1

n

∑
i:yi=+1

log (1 + exp(−smin
i)) +

1

n

∑
i:yi=−1

log (1 + exp(smax
i)),

smin
i = min

λ∈L
〈λ,xi〉 for i = 1, . . . , n,

smax
i = max

λ∈L
〈λ,xi〉 for i = 1, . . . , n.

The value of Lmin in Proposition 4 represents the “best-case” loss in a separable setting
where we assign each positive example its maximal score smax

i , and each negative example its
minimal score smin

i . Conversely, Lmax represents the “worst-case” loss when we assign each
positive example its minimal score smin

i and each negative example its maximal score smax
i .

We initialize the bounds on the number of non-zero coefficients R to ∈ {0, . . . , d}, trivially.
In some cases, these bounds may be stronger due to operational constraints (e.g., we can set
R ∈ {0, . . . , 5} if models are required to use ≤ 5 features). Having initialized Lmin, Lmax,
Rmin and Rmax, we set the bounds on the optimal objective value as V min = Lmin +C0R

min

and V max = Lmax + C0R
max, respectively.

22

Ustun and Rudin

Algorithm 5 ChainedUpdates

Input

C0 `0 penalty parameter

V min, V max, Lmin, Lmax, Rmin, Rmax initial bounds on V (λ∗), l(λ∗) and ‖λ∗‖0

1: repeat

2: V min ← max
(
V min, Lmin + C0R

min
)

update lower bound on V (λ∗)

3: V max ← min (V max, Lmax + C0R
max) update upper bound on V (λ∗)

4: Lmin ← max
(
Lmin, V min − C0R

max
)

update lower bound on l(λ∗)

5: Lmax ← min
(
Lmax, V max − C0R

min
)

update upper bound on l(λ∗)

6: Rmax ← min
(
Rmax,

⌊
V max−Lmin

C0

⌋)
update upper bound on ‖λ∗‖0

7: until there are no more bound updates due to Steps 2 to 6.

Output: V min, V max, Lmin, Lmax, Rmin, Rmax

Dynamic Bounds on Objective Terms In Propositions 5 to 7, we present bounds that
can use information from the solver in LCPA to strengthen the values of Lmin, Lmax, Rmax,
V min and V max (see Appendix A for proofs).

Proposition 5 (Upper Bound on Optimal Number of Non-Zero Coefficients)
Given an upper bound on the optimal value V max ≥ V (λ∗), and a lower bound on the
optimal loss Lmin ≤ l(λ∗), the optimal number of non-zero coefficients is at most

Rmax =

⌊
V max − Lmin

C0

⌋
.

Proposition 6 (Upper Bound on Optimal Loss)
Given an upper bound on the optimal value V max ≥ V (λ∗), and a lower bound on the
optimal number of non-zero coefficients Rmin ≤ ‖λ∗‖0, the optimal loss is at most

Lmax = V max − C0R
min.

Proposition 7 (Lower Bound on Optimal Loss)
Given a lower bound on the optimal value V min ≤ V (λ∗), and an upper bound on the
optimal number of non-zero coefficients Rmax ≥ ‖λ∗‖0, the optimal loss is at least

Lmin = V min − C0R
max.

Implementation In Algorithm 5, we present a bound-tightening procedure that uses the
results of Propositions 5 to 7 to strengthen the values of V min, V max, Lmin, Lmax, and Rmax

in RiskSlimLP.
Propositions 5 to 7 impose dependencies between V min, V max, Lmin, Lmax, Rmin and

Rmax that may produce a complex “chain” of updates. As shown in Figure 9, ChainedUp-
dates can update multiple terms, and may update the same term more than once. Consider

23

Learning Optimized Risk Scores

a case where we call ChainedUpdates after LCPA improves V min. Say the procedure updates
Lmin in Step 4. If ChainedUpdates updates Rmax in Step 6, then it will also update V max,
Lmin, Lmax, and V min. However, if ChainedUpdates does not update Rmax in Step 6, then
it will not update V max, Lmin, Lmax, V min and terminate.

Considering these dependencies, Algorithm 5 applies Propositions 5 to 7 until it can no
longer improve V min, V max, Lmin, Lmax or Rmax. This ensures that ChainedUpdates will
return its strongest possible bounds regardless of the term that was first updated.

V max

V min

Rmax
Lmax

Lmin
V min Lmin

V max Lmax

Lmin V min

5

4 6

5

2

2

Figure 9: All possible “chains” of updates in ChainedUpdates. Circles represent “source” terms that can
be updated by LCPA to trigger ChainedUpdates. The path from each source term shows all bounds that can
be updated by the procedure. The number in each arrow references the update step in Algorithm 5.

In our implementation, we call ChainedUpdates whenever LCPA improves V max or V min

(i.e., Step 10 or Step 19 of Algorithm 2). If ChainedUpdates improves any bounds, we pass
this information back to the solver by updating the bounds on the auxiliary variables in
the RiskSlimLP (Definition 2). As shown in Figure 10, this technique can considerably
improve the lower bound and optimality gap over the course of LCPA.

0.00

0.05

0.10

0 500K 1M

Nodes Processed

Lo
w

er
bo

un
d

●

●

●

●●

●
●

●

●

●

●

●

40%

60%

80%

100%

0 500K 1M

Nodes Processed

O
pt

im
al

ity
 G

ap

Figure 10: Performance profile of LCPA in a basic implementation (black) and with ChainedUpdates (red).
Results reflect performance on a RiskSlimMINLP instance for a synthetic dataset with d = 30 and n =
50,000 (see Appendix D).

24

Ustun and Rudin

5. Experiments

In this section, we compare the performance of methods to create risk scores. We have three
goals: (i) to benchmark the performance and computation of our approach on real-world
datasets; (ii) to highlight pitfalls of traditional approaches used in practice; and (iii) to
present new approaches that address the pitfalls of traditional approaches.

5.1. Setup

We considered 6 publicly available datasets shown in Table 2. We chose these datasets to
see how methods are affected by factors such as class imbalance, the number of features,
and feature encoding. For each dataset, we fit risk scores using RiskSLIM and 6 baseline
methods that post-processed the coefficients of the best logistic regression model built using
Lasso, Ridge or Elastic Net. We used each method to fit a risk score with small integer
coefficients λj ∈ {−5, . . . , 5} that obeys the model size constraint ‖λ‖0 ≤ Rmax. We
benchmarked each method for target model sizes Rmax ∈ {2, . . . , 10}.

Dataset n d Pr(yi = 1) Conditions for yi = 1 Reference

income 32,561 36 24.1% person in 1994 US census earns over $50,000 Kohavi (1996)

mammo 961 14 46.3% person has breast cancer Elter et al. (2007)

mushroom 8,124 113 48.2% mushroom is poisonous Schlimmer (1987)

rearrest 22,530 48 59.0% person is arrested after release from prison Zeng et al. (2017)

spambase 4,601 57 39.4% e-mail is spam Cranor and LaMacchia (1998)

telemarketing 41,188 57 11.3% person opens bank account after marketing call Moro et al. (2014)

Table 2: Datasets used in Section 5. All datasets are available on the UCI repository (Bache and Lichman,
2013), other than rearrest which must be requested from ICPSR. We processed each dataset by dropping
examples with missing values, and by binarizing categorical variables and some real-valued variables. We
provide processed datasets and the code to process rearrest at http://github.com/ustunb/risk-slim.

RiskSLIM We formulated an instance of RiskSlimMINLP with the constraints: λ0 ∈
{−100, . . . , 100}, λj ∈ {−5, . . . , 5}, and ‖λ‖0 ≤ Rmax. We set the trade-off parameter to a
small value C0 = 10−6 to recover the sparsest model among equally accurate models (see
Appendix B). We solved each instance for at most 20 minutes on a 3.33 GHz CPU with 16
GB RAM using CPLEX 12.6.3 (ILOG, 2017).

Penalized Logistic Regression PLR is the best logistic regression model produced
over the full regularization path using a weighted combination of the `1 and `2 penalties
(i.e., the best model produced by Lasso, Ridge or Elastic Net). We train PLR models using
the glmnet package of Friedman et al. (2010). The coefficients of each model are the solution
to the optimization problem:

min
λ∈Rd+1

1

2n

n∑
i=1

log(1 + exp(−〈λ, yixi〉)) + γ ·
(
α ‖λ‖1 + (1− α)‖λ‖22

)
where α ∈ [0, 1] is the elastic-net mixing parameter and γ ≥ 0 is a regularization penalty.
We trained 1,100 PLR models by choosing 1,100 combinations of (α, γ): 11 values of
α ∈ {0.0, 0.1, . . . , 0.9, 1.0} × 100 values of γ (chosen automatically by glmnet for each α).

25

http://github.com/ustunb/risk-slim

Learning Optimized Risk Scores

This free parameter grid produces 1,100 PLR models that include models obtained by: (i)
Lasso (`1-penalty), which corresponds to PLR when α = 1.0; (ii) Ridge (`2-penalty), which
corresponds to PLR when α = 0.0; (iii) standard logistic regression, which corresponds to
PLR when α = 0.0 and γ is small.

Traditional Approaches While there is considerable variation in how risk scores are
developed in practice, many researchers follow a two-step approach: (i) fit a sparse logistic
regression model with real-valued coefficients; (ii) convert it into a risk score with integer
coefficients. We consider three methods that adopt this approach. Each method first
trains a PLR model (i.e., the one that maximizes the 5-CV AUC and obeys the model size
constraint), and then converts it into a risk score by applying a common rounding heuristic:

• PLR�Rd (Rounding): We round each coefficient to the nearest integer in {−5 . . . 5} by
setting λj ← dmin(max(λj ,−5), 5)c, and round the intercept as λ0 ← dλ0c.

• PLR�Unit (Unit Weighting): We round each coefficient to±1 as λj ← sign(λj)1 [λj 6= 0].
Unit weighting is a common heuristic in medicine and criminal justice (see e.g., Antman
et al., 2000; Kessler et al., 2005; U.S. Department of Justice, 2005; Duwe and Kim, 2016),
and sometimes called the Burgess method (as it was first proposed by Burgess, 1928).

• PLR�RsRd (Rescaled Rounding) We first rescale coefficients so that the largest coef-
ficient is ±5, then round each coefficient to the nearest integer (i.e., λj → dγλjc where
γ = 5/maxj |λj |). Rescaling is often used to avoid rounding small coefficients to zero,
which happens when |λj | < 0.5 (see e.g., Le Gall et al., 1993).

Pooled Approaches We also propose three new methods that use a pooling strategy
and the loss-minimizing heuristics from Section 4. Each method generates a pool of PLR
models with real-valued coefficients, applies the same post-processing procedure to each
model in the pool, then selects the best risk score among feasible risk scores. The methods
include:

• PooledRd (Pooled PLR + Rounding): We fit a pool of 1,100 models using PLR. For
each model in the pool, we round each coefficient to the nearest integer in {−5, . . . , 5} by
setting λj ← dmin(max(λj ,−5), 5)c, and round the intercept as λ0 ← dλ0c.

• PooledRd* (Pooled PLR + Rounding + Polishing): We fit a pool of 1,100 models using
PooledRd. For each model in the pool, we polish the rounded coefficients using DCD.

• PooledSeqRd* (Pooled PLR + Sequential Rounding + Polishing): We fit a pool of
1,100 models using PLR. For each model in the pool, we round the coefficients using
SequentialRounding and then polish the rounded coefficients using DCD.

To ensure that the polishing step in PooledRd*and PooledSeqRd* does not increase
the number of non-zero coefficients (which would violate the model size constraint), we run
DCD only on the set {j | λj 6= 0} (i.e., by fixing the set of zeros coefficients).

Performance Evaluation We evaluate the calibration of each risk score by plotting a
reliability diagram, which shows how the predicted risk (x-axis) matches the observed risk
(y-axis) for each distinct score (DeGroot and Fienberg, 1983). The observed risk at a score
of s is defined as

p̄s =
1

|{i : si = s}|
∑
i:si=s

1 [yi = +1].

26

Ustun and Rudin

If a model has over 30 distinct scores, we group them into 10 bins before plotting the
reliability diagram. A model with perfect calibration should output predictions that are
perfectly aligned with observed risk, as shown by a reliability diagram where all points lie
on the x = y line.

We report the following summary statistics for each model:

• Calibration Error, computed as CAL = 1
n

∑
s

∑
i:si=s

|pi − p̄s| where pi is the predicted
risk of example i, and p̄s is the observed risk for all examples with a score of s. CAL is
the expected calibration error over the reliability diagram (see, e.g., Naeini et al., 2015).

• Area under the ROC curve, computed as AUC = 1
n+n−

∑
i:yi=+1

∑
k:yk=−1 1 [si > sk] ,

where n+ = |{i : yi = +1}|, n− = |{i : yi = −1}|. Note that trivial models (i.e., models
that predict one class) achieve the best possible CAL (0.0%) but poor AUC (0.5).

• Logistic Loss, computed as Loss = 1
n

∑n
i=1 log(1 + exp(−yisi)). The loss reflects the

objective values of the risk score problem when C0 is small. We report the loss to see if
minimizing the objective value of the risk score problem improves CAL and AUC.

• Model Size: the number of non-zero coefficients excluding the intercept
∑d

j=1 1 [λj 6= 0].

Parameter Tuning We use nested 5-fold cross-validation (5-CV) to choose the free pa-
rameters of a final risk score (see Cawley and Talbot, 2010). The final risk score is fit
using the entire dataset for an instance of the free parameters that satisfies the model size
constraint and maximizes the 5-CV mean test AUC.

5.2. Discussion

On the Performance of Risk Scores We compare the performance of RiskSLIM
to traditional approaches in Figure 11, and to pooled approaches in Figure 12. These
results show that RiskSLIM models consistently attain better calibration and AUC than
alternatives. We present these results in greater detail for risk scores with a target model
size of Rmax = 5 in Table 3. Here, RiskSLIM has the best 5-CV mean test CAL on 5/6
datasets, the best 5-CV mean test AUC on 5/6 datasets, and no method has better test
CAL and test AUC than RiskSLIM.

We make two observations to explain the empirical performance of risk scores.

(i) Models that attain low values of the logistic loss have good calibration (see Figures 11
and 12 and the empirical results of e.g., Caruana and Niculescu-Mizil, 2004, 2006).

(ii) Since we are fitting from a simple class of models, risk scores tend to generalize (see
the test CAL/AUC and training CAL/AUC of RiskSLIM models in Figures 15 to 20,
and other risk scores in Table 7 in Appendix F).

Since RiskSLIM models optimize the loss over exact constraints on model form, they attain
minimal or near-minimal values of the loss. Thus, they perform well in terms of training
CAL/AUC as per (i) and test CAL/AUC as per (ii). These observations also explain why
methods that use loss-minimizing heuristics produce risk scores with better CAL and AUC
than those that do not (e.g., PooledRd* has better test CAL/AUC than PooledRd since
DCD polishing can only reduce the loss).

27

Learning Optimized Risk Scores

● ● ● ● PLR>Rd PLR>RsRd PLR>Unit RiskSLIM

Optimization Metric Performance Metric Selection Metric

Dataset Training Loss 5-CV Mean Test CAL 5-CV Mean Test AUC

income
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●
●●●

●
●

●

●

0.350

0.400

0.450

0.500

0.550

0.600

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●
●●

●

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●

●●

●

●●

●

●●

●

●●

●

●●

●
●●

●

●
●

●

●●

●
●
●

●●●●●●●
●

●

0.500

0.600

0.700

0.800

0.900

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 A
U

C

mammo

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

0.450

0.500

0.550

0.600

0.650

0.700

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●●●●●●●
●

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●
●
●

●

●●

●

●●

●

●●

●

●●
●
●●

●

●●

●

●
●

●

●●

●●●●●●●●

●

0.500

0.600

0.700

0.800

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 A
U

C

mushroom

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●●●
●

●
●

●

0.000

0.200

0.400

0.600

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●
●

●

●
0.0%

10.0%

20.0%

30.0%

40.0%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●●●●●●
●
●●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●●●●●●●●
●

0.500

0.600

0.700

0.800

0.900

1.000

2 3 4 5 6 7 8 9 10

Target Model Size
Te

st
 A

U
C

rearrest

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●
0.600

0.700

0.800

0.900

1.000

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●●●●●●●0.0%

10.0%

20.0%

30.0%

40.0%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●

●●

●

●
●

●

●
●

●

●
●

●

●●

●

●●

●

●●

●

●●

●●

●

●●●●●●●
●●

0.500

0.550

0.600

0.650

0.700

0.750

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 A
U

C

spambase

●●

●

●●

●

●●

●

●●

●

●●

●

●●●●●●●

●

●●● ●●●●●●●●● 0.000

 20.000

 40.000

 60.000

 80.000

100.000

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●●
●

●

●

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●●●●
●●

●

●
●

0.500

0.600

0.700

0.800

0.900

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 A
U

C

telemarketing

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●●
●0.300

0.350

0.400

0.450

0.500

0.550

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

0.0%

5.0%

10.0%

15.0%

20.0%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●●●●●●●●●

0.500

0.550

0.600

0.650

0.700

0.750

0.800

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 A
U

C

Figure 11: Summary statistics for risk scores built using RiskSLIM and traditional approaches. Each
point represents the best risk score with integer coefficients λj ∈ {−5, . . . , 5} and model size ‖λ‖0 ≤ Rmax

for Rmax ∈ {2, . . . , 10}. We show the variation in 5-CV mean test CAL and AUC for each method by shading
the range between the 5-CV minimum and maximum. The black line in each plot is a baseline, which shows
the performance of a single PLR model with real-valued coefficients and no model size constraint.

28

Ustun and Rudin

● ● ● ● PooledRd PooledRd* PooledSeqRd* RiskSLIM

Optimization Metric Performance Metric Selection Metric

Dataset Training Loss 5-CV Mean Test CAL 5-CV Mean Test AUC

income
●

●●

●

●
●

●●●
●
●

●
●
●
●

●
●

●

●

●

●

●●

●

●●

●

●●

●
●

●

●
●

●

●

0.340

0.360

0.380

0.400

0.420

0.440

0.460

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s

●

●
●

●

●
●

●

●●

●

●
●

●

●●●●

●●●
●

●●

●

●●

●

●
●●

●
●

●

●
●

●2.00%

4.00%

6.00%

8.00%

10.00%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●●●●●●●●●●●
●●

●
●

●
●

●
●

●

●

●●

●

●●

●

●
●●

●●
●●

●

●

0.750

0.800

0.850

0.900

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 A
U

C

mammo

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●●●●●
●

●

●

●

0.460

0.470

0.480

0.490

0.500

0.510

0.520

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s ●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●
●

●

●●

●●●●●●
●

●

●

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●
●
●●

●
●●

●
●●

●
●●

●
●●

●
●●

●●
●●●

●●●

●●●●●

●
●●

●

0.780

0.800

0.820

0.840

0.860

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 A
U

C

mushroom

●●●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●●●●●

●

●
●

●

0.000

0.100

0.200

0.300

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s

●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●

0.0%

5.0%

10.0%

15.0%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●●●●●
●

●●

●●
●
●

●
●●

●
●

●

●●

●

●
●

●

●●

●

●●●●●

●
●●

●

0.940

0.950

0.960

0.970

0.980

0.990

1.000

2 3 4 5 6 7 8 9 10

Target Model Size
Te

st
 A

U
C

rearrest

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●●●●●

●●●●●●

●

●●

0.590

0.600

0.610

0.620

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●●
●●●●●●●●

●

0.0%

5.0%

10.0%

15.0%

20.0%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●●
●

●●
●

●●
●

●●
●

●●●●●●●●
●

●●
●

●●●

●●●●●
●

●

●
●

0.680

0.700

0.720

0.740

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 A
U

C

spambase

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●●●●●
●

●

●

0.200

0.400

0.600

0.800

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●●
●●

●

●

●

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●●●●●●●●
●●●●●●

●●●●

●●●

●●

●

●●●

●●●●
●●

●

●

●

0.600

0.700

0.800

0.900

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 A
U

C

telemarketing

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●●●

●●●●●●●
●

●

0.275

0.280

0.285

0.290

0.295

0.300

0.305

2 3 4 5 6 7 8 9 10

Target Model Size

Tr
ai

ni
ng

 L
os

s

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●●

●
●●

●●
●●

●●

1.00%

2.00%

3.00%

4.00%

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 C
A

L

●●

●

●●

●

●●●●●●●●●●●●●●
●●●●

●●●

●●●●
●

●●
●

●

0.740

0.750

0.760

0.770

0.780

0.790

2 3 4 5 6 7 8 9 10

Target Model Size

Te
st

 A
U

C

Figure 12: Summary statistics for risk scores built using RiskSLIM and pooled approaches. Each point
represents the best risk score with integer coefficients λj ∈ {−5, . . . , 5} and model size ‖λ‖0 ≤ Rmax for
Rmax ∈ {2, . . . , 10}. We show the variation in 5-CV mean test CAL and AUC for each method by shading
the range between the 5-CV minimum and maximum. The black line in each plot is a baseline, which shows
the performance of a single PLR model with real-valued coefficients and no model size constraint.

29

Learning Optimized Risk Scores

Traditional Approaches Pooled Approaches

Dataset Metric PLR�Rd PLR�RsRd PLR�Unit PooledRd PooledRd* PooledSeqRd* RiskSLIM

income

n = 32561
d = 36

test cal
test auc
loss value
model size
opt. gap

10.5%
0.787
0.465

2
-

19.5%
0.813
0.777

3
-

25.4%
0.814
0.599

5
-

3.0%
0.845
0.392

5
-

3.1%
0.854
0.383

5
-

4.2%
0.832
0.417

4
-

2.6%
0.854
0.385

5
9.7%

mammo

n = 961
d = 14

test cal
test auc
loss value
model size
opt. gap

10.5%
0.832
0.526

3
-

16.2%
0.846
0.745

5
-

8.5%
0.842
0.484

5
-

10.9%
0.845
0.503

3
-

7.1%
0.841
0.480

3
-

7.4%
0.845
0.480

3
-

5.0%
0.843
0.469

5
0.0%

mushroom

n = 8124
d = 113

test cal
test auc
loss value
model size
opt. gap

22.1%
0.890
0.543

1
-

8.0%
0.951
0.293

2
-

19.9%
0.969
0.314

5
-

12.6%
0.984
0.211

4
-

4.6%
0.986
0.130

4
-

5.4%
0.978
0.144

5
-

1.8%
0.989
0.069

5
0.0%

rearrest

n = 22530
d = 48

test cal
test auc
loss value
model size
opt. gap

7.3%
0.555
0.643

1
-

24.2%
0.692
1.437

5
-

21.8%
0.698
0.703

5
-

5.2%
0.676
0.618

4
-

1.4%
0.676
0.618

4
-

3.8%
0.677
0.624

4
-

2.4%
0.699
0.609

5
3.9%

spambase

n = 4601
d = 57

test cal
test auc
loss value
model size
opt. gap

15.0%
0.620
0.666

1
-

29.5%
0.875
1.090

4
-

33.4%
0.861
0.515

5
-

26.5%
0.910
0.624

5
-

16.3%
0.913
0.381

5
-

17.9%
0.908
0.402

5
-

11.7%
0.928
0.349

5
27.8%

telemarketing

n = 41188
d = 57

test cal
test auc
loss value
model size
opt. gap

2.6%
0.574
0.352

0
-

11.2%
0.700
11.923

3
-

6.2%
0.715
0.312

3
-

1.9%
0.759
0.292

4
-

1.3%
0.760
0.289

5
-

1.3%
0.760
0.289

5
-

1.3%
0.760
0.289

5
3.5%

Table 3: Summary statistics for risk scores with integer coefficients λj ∈ {−5, . . . , 5} for a model size
constraint ‖λ‖0 ≤ 5. Here: test cal is the 5-CV mean test CAL; test auc is the 5-CV mean test AUC; model
size and loss value pertain to a final model trained using the entire dataset. For each dataset, we highlight
the method that attains the best test cal, auc, and loss value in green. We also highlight methods that
produce trivial models in red.

On the Caveats of CAL The PLR�Rd risk score for telemarketing in Table 3 high-
lights a key shortcoming of CAL that illustrates why we report AUC: trivial and near-
trivial models can have misleadingly low CAL. Here, PLR�Rd rounds all coefficients other
than the intercept to zero, producing a model that trivially assigns a constant score to
all examples si = 〈λ,xi〉 = λ0 = 2. Since there is only one score, the predicted risk
for all points is pi = 11.9%,and the observed risk is the proportion of positive examples
p̄ = Pr (yi = +1) = 11.3%. Thus, a trivial model has a training CAL of 0.7%, the low-
est among all methods, which (misleadingly) suggests that it has the best performance on
training data (see Table 7 in Appendix F for values of training CAL). In this case, one could
instead determine that the model is trivial by its training AUC, which is 0.500. This result
also shows why we choose free parameters that maximize the 5-CV mean test AUC rather

30

Ustun and Rudin

than CAL: choosing free parameters to minimize the 5-CV mean test CAL can result in a
trivial model.

Traditional Approaches Pooled Approaches

PLR�Rd PLR�RsRd PLR�Unit PooledRd PooledRd* PooledSeqRd* RiskSLIM

income

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

mammo

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

mushroom

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

rearrest

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

spambase

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

telemark

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk
O

bs
er

ve
d

R
is

k

Figure 13: Reliability diagrams for risk scores with integer coefficients λj ∈ {−5, . . . , 5} for a model size
constraint ‖λ‖0 ≤ 5. We plot results for models from each fold on test data in grey, and for the final model
on training data in black.

On Calibration Issues of Risk Scores The reliability diagrams in Figure 13 highlight
two issues with respect to the calibration of risk scores that are difficult to capture using a
summary statistic:

• Monotonicity violations in observed risk. For example, the reliability diagrams for PLR�Rd
on spambase, or PooledRd and PooledSeqRd* on mushroom show that the observed
risk does not increase monotonically with predicted risk. There is not a way to calibrate
the risk scores to remove this, and it is non-intuitive to have an increase in risk score
correspond to a decrease in actual risk.

• Irregular spacing and coverage of predicted risk. For example, the PLR�Rd risk score for
income outputs risk predictions that range between only 20% to 60%, and the PLR�RsRd
risk score for rearrest produces risk predictions that are clustered at end points.

31

Learning Optimized Risk Scores

The results in Figure 13 suggest that such issues can be mitigated by optimizing the
logistic loss (see, e.g., the calibration of risk scores built using RiskSLIM, PooledRd*,
PooledSeqRd* where integer coefficients are determined by directly optimizing the lo-
gistic loss). In contrast, these issues are difficult to address by post-processing. Consider,
for example, using Platt scaling (Platt, 1999) to improve the calibration of the PLR�Rd
and PLR�RsRd risk scores in Figure 13. As shown in Figure 14, Platt scaling improves
calibration by centering and spreading risk estimates over the reliability diagram. However,
it does not resolve issues that were introduced by earlier heuristics, such as monotonicity
violations, a lack of coverage in risk predictions, or low AUC.

Rounding Rescaled Rounding

Raw + Platt Scaling Raw + Platt Scaling RiskSLIM

income

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

rearrest

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

Figure 14: Reliability diagrams for PLR�Rd and PLR�RsRd risk scores with and without Platt scaling,
and for RiskSLIM. Platt scaling improves calibration by centering and spreading risk predictions. However,
it cannot overcome calibration issues introduced by rounding heuristics such a lack of decision points (e.g.
PLR�Rd on income and rearrest, left) or monotonicity violations (e.g, PLR�RsRd on income, top
middle).

On the Pitfalls of Traditional Approaches Our results in Figure 11 and Table 3
show that risk scores built using traditional approaches perform poorly in terms of CAL
and AUC. In particular:

• Rounding (PLR�Rd) produces risk scores with low AUC when it eliminates features
from the model by rounding small coefficients λj < |0.5| to zero.

• Rescaled rounding (PLR�RsRd) hurts calibration since the logistic loss is not scale-
invariant (see e.g., the reliability diagram for rearrest PLR�RsRd in Figure 13).

• Unit weighting (PLR�Unit) results in poor calibration and unpredictable behavior (e.g.,
risk scores with more features can perform worse as seen in PLR�Unit models for income
and telemarketing in Figure 11).

The effects of rescaled rounding and unit weighting on calibration are reflected by highly
suboptimal values of the loss in Table 3 and Figure 11. These issues are often overlooked,
perhaps because their effect on AUC is far less severe (e.g. the rescaling is recommended
by U.S. Department of Justice, 2005; Pennsylvania Commission on Sentencing, 2012).

32

Ustun and Rudin

Our baseline methods may not match the exact methods used in practice as they do
not reflect the significant human input used in risk score development (e.g., domain experts
perform preliminary feature selection, round coefficients, or choose a scaling factor before
rounding, manually or without validation, as shown in Appendix C). Nevertheless, these
results highlight two major pitfalls of traditional approaches, namely:

• Traditional approaches heuristically post-process a single model. This means that they
fail whenever a heuristic dramatically changes CAL or AUC.

• Traditional approaches use heuristics that are oblivious to the value of the loss function,
which tends to result in poor calibration.

On Pooled Approaches Our results suggest that risk scores built using our pooled ap-
proaches attain considerably better calibration and rank accuracy than those built using tra-
ditional approaches. These methods aim to overcome the pitfalls of traditional approaches
using two strategies:

• Pooling, which generates a pool of PLR models, post-processes each model to produce
a pool of risk scores, and selects the best risk score within the pool. Pooling provides
some robustness against failure modes of heuristics that dramatically alter performance
(e.g., for rounding, it is very unlikely that the coefficients of all models in the pool will
be rounded to zero). The performance gain due to pooling can be seen by comparing the
results for PLR�Rd to PooledRd in Table 3.

• Loss-Sensitive Heuristics, such as SequentialRounding and DCD, which produce a pool of
risk scores that attain lower values of the loss, and thereby let us select a risk score with
better CAL and AUC. The performance gain due to loss-sensitive heuristics can be seen
by comparing the results for PooledRd to PooledRd* in Table 3.

The fact that RiskSLIM risk scores have lower loss compared to pooled methods shows
that direct optimization can efficiently find solutions that may not be found by exhaustive
post-processing (e.g., where we fit all possible `1 and `2 penalized logistic regression models,
and convert them to risk scores with specially-designed heuristics). Here, we have shown
that exhaustive post-processing strategies can often produce risk scores that perform well.
In Section 6, however, we will see that the performance gap can be significant in the presence
of non-trivial constraints.

On Computation Although the risk score problem is NP-hard, we trained RiskSLIM
models that were certifiably optimal or had small optimality gaps for all datasets in under
20 minutes using an LCPA implementation with the improvements in Section 4. Even when
LCPA did not recover a certifiably optimal solution, it produced a risk score that performed
well and did not exhibit the calibration issues of models built heuristically.

In general, the time spent computing cutting planes is a small portion of the overall
runtime for LCPA (< 1%, for all datasets). Given that LCPA scales linearly with sample
size, we expect to obtain similar results even if the datasets had far more samples. Factors
that affected the time to obtain a certifiably optimal solution include:

• Highly Correlated Features: Subsets of redundant features produce multiple optima, which
increases the size of the B&B tree.

33

Learning Optimized Risk Scores

• Feature Encoding : In particular, the problem is harder when the dataset includes real-
valued variables, like those in the spambase dataset.

• Difficulty of the Learning Problem: On separable problems such as mushroom, it is easy
to recover a certifiably optimal solution since many solutions perform well and produce a
near-optimal lower bound.

1. Prior Arrests ≥ 2 1 point . . .
2. Prior Arrests ≥ 5 1 point + . . .
3. Prior Arrests for Local Ordinance 1 point + . . .
4. Age at Release between 18 to 24 1 point + . . .
5. Age at Release ≥ 40 -1 point +

SCORE =

SCORE -1 0 1 2 3 4

RISK 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

Figure 15: RiskSLIM model for rearrest. RISK is the predicted probability that a prisoner is arrested
within 3 years of release from prison. This model has a 5-CV mean test CAL/AUC of 1.7%/0.697 and
training CAL/AUC of 2.6%/0.701.

1. Married 3 points . . .
2. Reported Capital Gains 2 points + . . .
3. Age 22 to 29 -1 point + . . .
4. Highest Level of Education is High School Diploma -2 points + . . .
5. No High School Diploma -3 points +

SCORE =

SCORE -4 to -1 0 1 2 3 4 5

RISK < 5.0% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

Figure 16: RiskSLIM model for income. RISK is the predicted probability that a US resident earns over
$50 000. This model has a 5-CV mean test CAL/AUC of 2.4%/0.854 and training CAL/AUC of 4.1%/0.860.

1. Call between January and March 1 point . . .
2. Called Previously 1 point + . . .
3. Previous Call was Successful 1 point + . . .
4. Employment Indicator < 5100 1 point + . . .
5. 3 Month Euribor Rate ≥ 100 -1 point +

SCORE =

SCORE -1 0 1 2 3 4

RISK 4.7% 11.9% 26.9% 50.0% 73.1% 88.1%

Figure 17: RiskSLIM model for telemarketing. RISK is the predicted probability that a client opens
a new bank account after a marketing call. This model has a 5-CV mean test CAL/AUC of 1.3%/0.760 and
a training CAL/AUC of 1.1%/0.760.

34

Ustun and Rudin

1. odor = foul 5 points . . .
2. gill size = broad -3 points + . . .
3. odor = almond -5 points + . . .
4. odor = anise -5 points + . . .
5. odor = none -5 points +

SCORE =

SCORE -8 -5 -3 2 to 5

RISK 1.8% 26.9% 73.1% > 95.0%

Figure 18: RiskSLIM model for mushroom. RISK is the predicted probability that a mushroom is
poisonous. This model has a 5-CV mean test CAL/AUC of 1.8%/0.989 and a training CAL/AUC of
1.0%/0.990.

1. IrregularShape 1 point . . .
2. Age ≥ 60 1 point + . . .
3. OvalShape -1 point + . . .
4. ObscuredMargin -1 point + . . .
5. CircumscribedMargin -2 points +

SCORE =

SCORE -3 -2 -1 0 1 2

RISK 4.7% 11.9% 26.9% 50.0% 73.1% 88.1%

Figure 19: RiskSLIM model for mammo. RISK is the predicted probability that a mammogram pertains
to a patient with breast cancer. This model has a 5-CV mean test CAL/AUC of 5.0%/0.843 and a training
CAL/AUC of 3.1%/0.849.

1. CharacterFrequency DollarSign × 5 points . . .
2. WordFrequency Remove × 4 points + . . .
3. WordFrequency Free × 2 points + . . .
4. WordFrequency HP × -2 points + . . .
5. WordFrequency George × -5 points +

SCORE =

SCORE ≤ -1.2 -1.2 to -0.4 -0.4 to 0.2 0.2 to 0.6 0.6 to 1.0 1.0 to 1.4 1.4 to 1.8 1.9 to 2.4 2.4 to 3.2 ≥ 3.2

RISK 1.4% 14.8% 26.8% 35.3% 45.1% 54.1% 65.3% 74.7% 85.6% 97.2%

Figure 20: RiskSLIM model for spambase. RISK is the predicted probability that an e-mail is spam.
This model has a 5-CV mean test CAL/AUC of 11.7%/0.928 and a training CAL/AUC of 12.3%/0.935.

35

Learning Optimized Risk Scores

6. ICU Seizure Prediction

In this section, we describe a collaboration with the Massachusetts General Hospital and
the University of Wisconsin Hospital where we built a customized risk score for ICU seizure
prediction (Struck et al., 2017). Our goal is to discuss practical aspects of our method on
a real-world problem with non-trivial constraints.

6.1. Problem Description

Patients who suffer from traumatic brain injury (e.g., due to a ruptured brain aneurysm)
often experience seizures that may lead to irreversible brain damage. Since these seizures are
not outwardly visible, patients who are brought into an intensive care unit are monitored via
continuous electroencephalography (cEEG). Based on current clinical standards, neurologists
are trained to recognize a large set of patterns in cEEG output (see e.g., Figure 21 and Hirsch
et al., 2013). They consider the presence and characteristics of cEEG patterns along with
other medical information to evaluate a patient’s risk of seizure. These risk estimates are
used to decide if a patient can be dismissed from the ICU, kept for further monitoring, or
prescribed a medical intervention to avert potential brain injury. In practice, hospitals have
a limited number of cEEG monitors that may be poorly allocated among patients in the
ICU. Given reliable estimates of seizure risk, patients with a low risk of seizure can be taken
off monitoring to free up monitors for new patients.

Figure 21: cEEG displays electrical activity at 16 standardized locations in a patient’s brain using electrodes
placed on the scalp. We show two cEEG patterns: a Generalized Periodic Discharge (GPD), which occurs
on both sides of the brain (left); and a Lateralized Periodic Discharge (LPD), which occurs on one side of
the brain (right). These figures were reproduced from a presentation at a training module by the American
Clinical Neurophysiology Society (2012).

Data Our dataset was derived from cEEG recordings from 41 hospitals, curated by the
Critical Care EEG Monitoring Research Consortium. It contains n = 5, 427 recordings and
d = 87 input variables (see Appendix G for a list). The outcome is defined as yi = +1
if patient i who has been in the ICU for the past 24 hours will have a seizure in the
next 24 hours. There is significant class imbalance as Pr (yi = +1) = 12.5%. The input
variables include information on patient medical history, secondary neurological symptoms,

36

Ustun and Rudin

and the presence and characteristics of 5 standard cEEG patterns: Lateralized Periodic
Discharges (LPD); Lateralized Rhythmic Delta (LRDA); Generalized Periodic Discharges
(GPD); Generalized Rhythmic Delta (GRDA); and Bilateral Periodic Discharges (BiPD).

Model Requirements Our collaborators wanted a risk score to help them reliably pre-
dict seizure risk by checking the presence and characteristics of cEEG patterns. It was
critical for the model to output calibrated risk predictions since physicians would use the
predicted risk to choose between multiple treatment options (i.e., patients may be prescribed
different medication based on their predicted risk; see also Van Calster and Vickers, 2015;
Shah et al., 2018, for a discussion on how miscalibrated risk predictions can lead to harmful
decisions). To be adopted by physicians, it was also important to build a model that could
be validated by domain experts and that was aligned with domain expertise.

In Figure 22, we present a RiskSLIM risk score for this problem that satisfies all
of these requirements (see Struck et al., 2017, for details on model development). This
risk score outputs calibrated risk estimates at several operating points. It obeys a model
size constraint (‖λ‖0 ≤ 6) to let physicians easily validate the model, and monotonicity
constraints to ensure that the signs of some coefficients are aligned with domain knowledge.

1. Any cEEG Pattern with Frequency > 2 Hz 1 point . . .
2. Epileptiform Discharges 1 point + . . .
3. Patterns include LPD or LRDA or BIPD 1 point + . . .
4. Patterns Superimposed with Fast, or Sharp Activity 1 point + . . .
5. Prior Seizures 1 point + . . .
6. Brief Rhythmic Discharges 2 points +

SCORE =

SCORE 0 1 2 3 4 5 6+

RISK <5% 12% 27% 50% 73% 88 % >95%

Figure 22: 2HELPS2B risk score built by RiskSLIM (see Struck et al., 2017, for details). This model has
a 5-CV mean test CAL/AUC of 2.7%/0.819.

As a follow up to our work in Struck et al. (2017), our collaborators wanted to see if we
could improve the usability of the risk score in Figure 22 without sacrificing too much cali-
bration or rank accuracy. Seeing how the risk score in Figure 22 includes features that could
require a physician to check a large number of patterns (e.g., MaxFrequencyOfAnyPattern≥2
Hz or PatternsIncludeLPD or LRDA or BIPD), our collaborators sought to improve usabil-
ity by specifying operational constraints on feature composition and feature encoding. In
turn, our goal was to produce the best risk score that satisfied these constraints, so that our
collaborators could correctly evaluate the loss in predictive performance due to their require-
ments, and make an informed choice between competing models. We present a complete
list of their constraints in Appendix G. They can be grouped as follows:

• Limited Model Size: The model had to use at most 4 input variables, so that it would be
easy to validate and use in an ICU.

• Monotonicity : The model had to obey monotonicity constraints for well-known risk factors
for seizures (e.g., it could not suggest that having prior seizures lowers seizure risk).

37

Learning Optimized Risk Scores

• No Redundancy Between Categorical Variables: The model had to include variables that
were linearly independent (e.g., it could include Male or Female but not both).

• Specific cEEG Patterns or Any cEEG Pattern: The dataset had variables for specific
cEEG patterns (e.g., MaxFrequencyLPD) and variables for any cEEG pattern (e.g.,
MaxFrequencyAnyPattern). The model had to use variables for specific patterns or any
pattern, but not both.

• Frequency in Continuous or Thresholded Form: The dataset had two kinds of variables
related to the frequency of a cEEG pattern: (i) a real-valued variable (e.g., MaxFrequen-
cyLPD ∈ [0, 3.0]); and (ii) 7 binary threshold variables (e.g., MaxFrequencyLPD≤ 0.5 Hz).
Models had to use the real-valued variable or the binary variables, not both.

• Limited # of Thresholds for Thresholded Encoding : To prevent clinicians from having to
check multiple thresholds, the model could include at most 2 binary threshold variables
for a given cEEG pattern.

Training Setup We used the training setup in Section 5.1, which we adapted to address
constraints as follows. We trained a RiskSLIM model by solving a customized instance
of RiskSlimMINLP with 20 additional constraints and 2 additional variables, which we
solved to optimality in ≤ 20 minutes. The baseline methods had built-in mechanisms to
handle monotonicity constraints, but required tuning to handle other constraints. For each
method, we trained a final model using all of the training data for the instance of the free
parameters that obeyed all constraints and maximized the mean 5-CV test AUC.

6.2. Discussion

On Performance and Usability in a Constrained Setting The results in Table 4
show the potential performance benefits of training an optimized risk score for problems with
non-trivial constraints. Here, RiskSLIM has a 5-CV mean test CAL/AUC of 2.5%/0.801
while the best risk score built using a heuristic method has a 5-CV mean test CAL/AUC
of 2.8%/0.745

In contrast to the experiments in Section 5, only RiskSLIM and our pooled methods
were able to find a feasible risk score under the constraints. Traditional methods (e.g.,
PLR�Rd, PLR�RsRd, and PLR�Unit) violate one or more constraints after rounding.
In fact, these methods cannot produce a risk score with comparable performance to the
RiskSLIM risk score even when these constraints are relaxed. If we consider only simple
constraints on model size and monotonicity, then risk scores produced by these methods
have a test AUC of at most 0.761 (PLR�RsRd) and a test CAL of at least 7.0% (PLR�Rd).

As shown in Figures 23 to 26, risk scores with similar test CAL can still exhibit important
differences in terms of calibration. Here, the risk predictions of the RiskSLIM model
are monotonic and within the boundaries of the risk predictions of the fold-based models.
In comparison, the risk predictions of other models do not monotonically increase with
observed risk and vary significantly across test folds (e.g., PooledSeqRd*). As noted
by our collaborators, such issues affect model adoption: the monotonicity violations of the
PooledSeqRd model suggest that patients with a score of 3.5 may have more seizures
compared to patients with a score of 4.0, eroding trust in the model’s risk predictions.

38

Ustun and Rudin

Method
Constraints

Violated

Test

CAL

Test

AUC

Model

Size

Loss

Value

Optimality

Gap

Train

CAL

Train

AUC

RiskSLIM –
2.5%

1.9 - 3.4%

0.801

0.758 - 0.841

4

4 - 4
0.293 0.0% 2.0% 0.806

PooledRd –
5.3%

3.1 - 7.1%

0.740

0.712 - 0.757

2

1 - 3
0.350 – 6.0% 0.752

PooledRd* –
3.0%

1.4 - 3.6%

0.745

0.712 - 0.776

2

1 - 3
0.308 – 1.9% 0.754

PooledSeqRd* –
2.8%

2.4 - 3.1%

0.745

0.713 - 0.805

3

2 - 4
0.313 – 1.9% 0.767

PLR All
2.6%

1.7 - 3.6%

0.844

0.829 - 0.869

29

20 - 35
0.272 – 2.0% 0.850

PLR
Integrality

Operational

4.4%

3.3 - 6.5%

0.742

0.712 - 0.774

4

3 - 4
0.325 – 3.9% 0.771

PLR�Rd Operational
7.0%

5.7 - 9.2%

0.743

0.705 - 0.786

2

2 - 3
0.329 – 7.0% 0.735

PLR�RsRd Operational
12.4%

11.2 - 13.6%

0.761

0.733 - 0.815

4

4 - 4
2.109 – 12.5% 0.760

PLR�Unit Operational
24.6%

23.6 - 25.7%

0.759

0.732 - 0.813

4

4 - 4
0.520 – 24.8% 0.759

Table 4: Performance of risk scores for seizure prediction, and feasibility with respect to constraints. We
report the 5-CV mean test CAL and 5-CV mean test AUC. The ranges in each cell represent the 5-CV
minimum and maximum. We present the risk scores built using each method in Figures 23 to 26.

Although the risk scores in Figures 23 to 26 obey all of the constraints specified by our
collaborators, they exhibit differences in terms of usability. The RiskSLIM model requires
physicians to check cEEG output for a single cEEG pattern (LPD). In comparison, other
risk scores include the feature PatternsInclude BiPD or LRDA or LPD, which can require
physicians to check cEEG output for 3 patterns in the worst case. The PooledSeqRd*
risk score also uses MaxFrequencyLPD , which requires estimating the frequency of LPD
and thereby requires more time.

On the Value of the Optimality Gap in Practice The results in Table 4 illustrate how
heuristics may lead practitioners to overestimate the true impact of real-world constraints on
model performance. Here: three traditional methods could not output a feasible risk score;
six pooled methods produced feasible risk scores with suboptimal AUC and calibration
issues; and a baseline PLR model with real-valued coefficients has an AUC of 0.742. Based
on these results, a practitioner might inadvertently conclude that no feasible risk score could
achieve a test AUC of 0.801.

In contrast, RiskSLIM models are paired with an optimality gap. In practice, a small
optimality gap suggests that we have trained the best possible risk score that satisfies a
specific set of constraints. Thus, if a risk score with a small optimality gap performs poorly
on training data, and the model generalizes (e.g., its training performance is similar to its

39

Learning Optimized Risk Scores

K-CV performance), then one can attribute the performance deficit of the model to overly
restrictive constraints and improve performance by relaxing them.

This provides a general mechanism to evaluate the effect of constraints on performance.
If, for example, that our collaborators were not satisfied with the performance or usabil-
ity of our model, then we could train certifiably optimal risk scores for different sets of
constraints. By comparing the performance of certifiably optimal models, our collabora-
tors could evaluate the true impact of their requirements on predictive performance, and
navigate trade-offs in an informed manner. This approach helped our collaborators decide
between a model with 4 features or 5 features. Here, we trained a RiskSLIM risk score
with 5 features, which has a 5-CV test CAL/AUC of 3.4%/0.816. However, the slight im-
provement in test AUC did not outweigh the fact that the larger model included the feature
MaxFreqFactorAnyPattern ≥ 2 which could increase the model evaluation time by doctors.

On the Challenges of Handling Operational Constraints One of the practical ben-
efits of our method is that it can address constraints without parameter tuning or post-
processing. Since our method can directly incorporate constraints into the MINLP for-
mulation, all RiskSLIM models are feasible. Thus we can produce a feasible risk score
and estimate its predictive performance by training 6 models: 1 final model fit on the full
dataset for deployment, and 5 models trained on subsets of the training data to produce an
unbiased performance estimate for the algorithm via 5-fold CV.

In contrast, the pooled methods produce a feasible model by post-processing a large
pool of models and discarding those that are infeasible. Since we must then choose between
feasible models on the basis of 5-CV performance, we must use a nested CV setup to pair
any model with an unbiased performance estimate. This requires fitting a total of 33,000
models.2 In general settings, there is no guarantee that pooled methods will produce a
feasible risk score. In this case, for instance, only 12% of the instances for the pooled
methods satisfied all constraints (see Table 9 in Appendix G). This kind of massive testing
can become computationally burdensome.

Our results highlight other issues with methods that aim to address constraints by
parameter tuning. Let us say we would use a standard K-fold CV setup to tune parameters.
In this case, we would train models on K validation folds for each instance of the free
parameters, choose the instance of the free parameters that maximizes the mean K-CV test
AUC without violating any constraints, and then train a “final model” for this instance.
Unfortunately, there is no guarantee that the final model will obey all constraints.

On the Benefits of Risk Scores with Small Integer Coefficients Figures 23 to 26
illustrate some of the practical benefits of risk scores with small integer coefficients. When
input variables belong to a small discrete set, the scores also belong to a small discrete set.
This reduces the number of operating points on the ROC curve and reliability diagram,
which makes it easier to pick an operating point. Further, when input variables are binary,
the decision rules at each operating point can be represented as a Boolean rule. For the
RiskSLIM model in Figure 23, for example, the decision rule:

ŷi = +1 if score ≥ 2

2. A nested CV setup with 5 outer folds, 5 inner folds, and 1,100 free parameter instances requires fitting
1, 100× 5× (5 + 1) = 33, 000 models.

40

Ustun and Rudin

is equivalent to the Boolean function:

ŷi = +1 if BriefRhythmicDischarge

OR PatternsIncludeLPD

OR (PriorSeizure AND EpiletiformDischarge)

Small integer coefficients let users extract such rules by listing conditions when the score
exceeds the threshold. This is more challenging when a model uses real-valued coefficients,
as shown by the score function of the PLR model from Table 4:

score =− 2.35 + 0.91 · PatternsIncludeBiPD or LRDA or LPD + 0.03 · PriorSeizure

+ 0.61 ·MaxFrequencyLPD.

In this case, extracting a Boolean function is difficult as computing the score involves
arithmetic with real-valued coefficients and the real-valued variable MaxFrequencyLPD .

1. BriefRhythmicDischarge 2 points . . .
2. PatternsInclude LPD 2 points + . . .
3. PriorSeizure 1 point + . . .
4. EpiletiformDischarge 1 point +

SCORE =

SCORE 0 1 2 3 4 5 6

RISK 4.7% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

0

1

2

3

4

5 6

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 23: RiskSLIM risk score (top), reliability diagram (bottom left), and ROC curve (bottom right)
for the seizure dataset. We plot results for the final model on training data in black, and the 5 fold models
on test data in grey. This model has a 5-CV mean test CAL/AUC of 2.5%/0.801.

41

Learning Optimized Risk Scores

1. BriefRhythmicDischarge 1 point . . .
2. PatternsIncludeBiPD or LRDA or LPD 1 point +

SCORE =

SCORE 0 1 2

RISK 4.7% 11.9% 26.9%

0

1

2

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

False Positive Rate
Tr

ue
 P

os
iti

ve
 R

at
e

Figure 24: PooledRd risk score (top), reliability diagram (bottom left), and ROC curve (bottom right)
for the seizure dataset. We plot results for the final model on training data in black, and results for the
fold models on test data in grey. This model has a 5-CV mean test CAL/AUC of 5.3/0.740%.

1. BriefRhythmicDischarge 3 points . . .
2. PatternsIncludeBiPD or LRDA or LPD 2 points +

SCORE =

SCORE 0 2 3 5

RISK 4.7% 26.9% 50.0% 88.1%

0

2

3

5

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 25: PooledRd* risk score (top), reliability diagram (bottom left), and ROC curve (bottom right)
for the seizure dataset. We plot results for the final model on training data in black, and results for the
fold models on test data in grey. This model has a 5-CV mean test CAL/AUC of 3.0/0.745%.

42

Ustun and Rudin

1. PriorSeizure 1 point . . .
2. PatternsIncludeBiPD or LRDA or LPD 1 point + . . .
3. MaxFreqFactorLPD × 1 point per Hz +

SCORE =

SCORE 0 1 2 2.5 3 3.5 4 4.5 5

RISK 4.7% 11.9% 26.9% 37.8% 50.0% 62.2% 73.1% 81.8% 88.1%

0.0

1.0

2.0
2.5

3.0

3.5

4.0

4.5 5.0

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Predicted Risk

O
bs

er
ve

d
R

is
k

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 26: PooledSeqRd* model (top), reliability diagram (bottom left), and ROC curve (bottom right)
for the seizure dataset. We plot results for fold models on test data in grey, and for the final model on
training data in black. This model has a 5-CV mean test CAL/AUC of 2.8%/0.745.

43

Learning Optimized Risk Scores

7. Concluding Remarks

Risk scores are simple models that are often used to support important decisions in tasks
such as mortality prediction and loan approval. Despite the fact that risk scores have been
used in such tasks for nearly a century, many models are still developed ad hoc – i.e., by
combining machine learning methods with heuristics (see e.g., the pipeline for the TIMI
risk score in Antman et al., 2000, in Appendix C). Ad hoc approaches do not produce risk
scores with performance guarantees, and may result in the deployment of risk score with
poor calibration or rank accuracy. In practice, ad hoc approaches can produce risk scores
that violate important requirements, leading practitioners to adjust risk scores manually, or
to specify models without data (e.g., via a panel of domain experts as in Gage et al., 2001;
McGinley and Pearse, 2012).

Our goal in this paper was to develop a machine learning method to build risk scores
that would streamline model development. Our method – RiskSLIM – trains risk scores
by solving an empirical risk minimization problem that performs exact feature selection,
restricts coefficients to small integers, and enforces application-specific constraints. Since
commercial solvers could not solve this problem reliably, we solved it with a new cutting
plane algorithm – LCPA –which allows training to scale linearly with the number of samples,
and can be used to solve other empirical risk minimization problems with non-convex regu-
larizers or constraints. As shown in Sections 5 and 6, LCPA can train certifiably optimal risk
scores for real-world datasets in minutes. These models attain best-in-class calibration and
rank accuracy and avoid pitfalls of heuristics used in practice. Our method also simplifies
model development, by allowing practitioners to customize risk scores without parameter
tuning or post-processing, and by pairing models with a certificate of optimality that helps
them understand how application-specific constraints affects performance.

Acknowledgments

We gratefully acknowledge support from Siemens, Phillips, and Wistron. We would like to
thank Paul Rubin for helpful discussions. We would also like to thank our collaborators
Aaron Struck and Brandon Westover for their guidance on the seizure prediction application.

References

Alba, Ana Carolina, Thomas Agoritsas, Michael Walsh, Steven Hanna, Alfonso Iorio, PJ Devereaux,
Thomas McGinn, and Gordon Guyatt. Discrimination and calibration of clinical prediction mod-
els: Users’ guides to the medical literature. Journal of the American Medical Association, 318
(14):1377–1384, 2017.

American Clinical Neurophysiology Society. Standardized Critical Care EEG Terminology Training
Module, 2012.

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

Angelino, Elaine, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin. Learning
certifiably optimal rule lists for categorical data. Journal of Machine Learning Research, 18(234):
1–78, 2018.

44

Ustun and Rudin

Antman, Elliott M, Marc Cohen, Peter JLM Bernink, Carolyn H McCabe, Thomas Horacek, Gary
Papuchis, Branco Mautner, Ramon Corbalan, David Radley, and Eugene Braunwald. The TIMI
risk score for unstable angina/non–ST elevation MI. Journal of the American Medical Association,
284(7):835–842, 2000.

Austin, James, Roger Ocker, and Avi Bhati. Kentucky Pretrial Risk Assessment Instrument Vali-
dation. Bureau of Justice Statistics, 2010.

Bache, K. and M. Lichman. UCI Machine Learning Repository, 2013.

Bai, Lihui and Paul A Rubin. Combinatorial Benders Cuts for the Minimum Tollbooth Problem.
Operations Research, 57(6):1510–1522, 2009.

Bardenet, Rémi and Odalric-Ambrym Maillard. Concentration inequalities for sampling without
replacement. Bernoulli, 21(3):1361–1385, 2015.

Beneish, Messod D, Charles MC Lee, and D Craig Nichols. Earnings manipulation and expected
returns. Financial Analysts Journal, 69(2):57–82, 2013.

Bertsimas, Dimitris, Angela King, and Rahul Mazumder. Best subset selection via a modern opti-
mization lens. The Annals of Statistics, 44(2):813–852, 2016.

Billiet, Lieven, Sabine Van Huffel, and Vanya Van Belle. Interval coded scoring extensions for larger
problems. In Proceedings of the IEEE Symposium on Computers and Communications, pages
198–203. IEEE, 2017.

Billiet, Lieven, Sabine Van Huffel, and Vanya Van Belle. Interval Coded Scoring: A toolbox for
interpretable scoring systems. PeerJ Computer Science, 4:e150, 04 2018.

Bobko, Philip, Philip L Roth, and Maury A Buster. The usefulness of unit weights in creating
composite scores. A literature review, application to content validity, and meta-analysis. Organi-
zational Research Methods, 10(4):689–709, 2007.

Bonami, Pierre, Mustafa Kilinç, and Jeff Linderoth. Algorithms and software for convex mixed
integer nonlinear programs. In Mixed Integer Nonlinear Programming, pages 1–39. Springer,
2012.

Boyd, Stephen P and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

Burgess, Ernest W. Factors determining success or failure on parole. The workings of the indeter-
minate sentence law and the parole system in Illinois, pages 221–234, 1928.

Byrd, Richard H, Jorge Nocedal, and Richard A Waltz. KNITRO: An Integrated Package for
Nonlinear Optimization. In Large-scale Nonlinear Optimization, pages 35–59. Springer, 2006.

Calmon, Flavio, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and
Kush R Varshney. Optimized pre-processing for discrimination prevention. In Advances in Neural
Information Processing Systems, pages 3995–4004, 2017.

Carrizosa, Emilio, Amaya Nogales-Gómez, and Dolores Romero Morales. Strongly agree or strongly
disagree?: Rating features in support vector machines. Information Sciences, 329:256–273, 2016.

Caruana, Rich and Alexandru Niculescu-Mizil. Data mining in metric space: an empirical analysis of
supervised learning performance criteria. In Proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 69–78. ACM, 2004.

45

Learning Optimized Risk Scores

Caruana, Rich and Alexandru Niculescu-Mizil. An empirical comparison of supervised learning
algorithms. In Proceedings of the 23rd international conference on Machine Learning, pages 161–
168. ACM, 2006.

Caruana, Rich, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad. In-
telligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1721–1730. ACM, 2015.

Cawley, Gavin C and Nicola LC Talbot. On over-fitting in model selection and subsequent selection
bias in performance evaluation. Journal of Machine Learning Research, 11(Jul):2079–2107, 2010.

Chang, Allison, Cynthia Rudin, Michael Cavaretta, Robert Thomas, and Gloria Chou. How to
reverse-engineer quality rankings. Machine Learning, 88:369–398, September 2012.

Chen, Chaofan and Cynthia Rudin. An optimization approach to learning falling rule lists. In
Proceedings of the 21st International Conference on Artificial Intelligence and Statistics, volume 84
of Proceedings of Machine Learning Research, pages 604–612. PMLR, 09–11 Apr 2018.

Chen, Chaofan, Kancheng Lin, Cynthia Rudin, Yaron Shaposhnik, Sijia Wang, and Tong Wang. An
interpretable model with globally consistent explanations for credit risk. In Proceedings of NeurIPS
2018 Workshop on Challenges and Opportunities for AI in Financial Services: the Impact of
Fairness, Explainability, Accuracy, and Privacy, 2018.

Chevaleyre, Yann, Frederic Koriche, and Jean-Daniel Zucker. Rounding methods for discrete linear
classification. In Proceedings of the 30th International Conference on Machine Learning, pages
651–659, 2013.

Cranor, Lorrie Faith and Brian A LaMacchia. Spam! Communications of the ACM, 41(8):74–83,
1998.

Dawes, Robyn M. The robust beauty of improper linear models in decision making. American
Psychologist, 34(7):571–582, 1979.

DeGroot, Morris H and Stephen E Fienberg. The comparison and evaluation of forecasters. The
Statistician, pages 12–22, 1983.

Duwe, Grant and KiDeuk Kim. Sacrificing accuracy for transparency in recidivism risk assessment:
The impact of classification method on predictive performance. Corrections, pages 1–22, 2016.

Einhorn, Hillel J and Robin M Hogarth. Unit weighting schemes for decision making. Organizational
Behavior and Human Performance, 13(2):171–192, 1975.

Elter, M, R Schulz-Wendtland, and T Wittenberg. The prediction of breast cancer biopsy outcomes
using two CAD approaches that both emphasize an intelligible decision process. Medical Physics,
34:4164, 2007.

Ertekin, Şeyda and Cynthia Rudin. On equivalence relationships between classification and ranking
algorithms. Journal of Machine Learning Research, 12:2905–2929, 2011.

Feldman, Michael, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubra-
manian. Certifying and removing disparate impact. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 259–268. ACM, 2015.

46

Ustun and Rudin

FICO. Introduction to Scorecard for FICO Model Builder.
http://www.fico.com/en/node/8140?file=7900, 2011.

Finlay, Steven. Credit scoring, response modeling, and insurance rating: a practical guide to fore-
casting consumer behavior. Palgrave Macmillan, 2012.

Franc, Vojtěch and Soeren Sonnenburg. Optimized cutting plane algorithm for support vector
machines. In Proceedings of the 25th International Conference on Machine Learning, pages 320–
327. ACM, 2008.

Franc, Vojtěch and Sören Sonnenburg. Optimized cutting plane algorithm for large-scale risk mini-
mization. Journal of Machine Learning Research, 10:2157–2192, 2009.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

Gage, Brian F, Amy D Waterman, William Shannon, Michael Boechler, Michael W Rich, and
Martha J Radford. Validation of clinical classification schemes for predicting stroke. Journal of
the American Medical Association, 285(22):2864–2870, 2001.

Goel, Sharad, Justin M Rao, and Ravi Shroff. Precinct or Prejudice? Understanding Racial Dis-
parities in New York City’s Stop-and-Frisk Policy. Annals of Applied Statistics, 10(1):365–394,
2016.

Goh, Gabriel, Andrew Cotter, Maya Gupta, and Michael P Friedlander. Satisfying real-world goals
with dataset constraints. In Advances in Neural Information Processing Systems, pages 2415–
2423, 2016.

Goh, Siong Thye and Cynthia Rudin. Box drawings for learning with imbalanced data. In Proceedings
of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 333–342. ACM, 2014.

Goldberg, Noam and Jonathan Eckstein. Sparse weighted voting classifier selection and its linear
programming relaxations. Information Processing Letters, 112:481–486, 2012.

Gottfredson, Don M and Howard N Snyder. The mathematics of risk classification: Changing data
into valid instruments for juvenile courts. NCJ 209158. Office of Juvenile Justice and Delinquency
Prevention Washington, D.C., 2005.

Guan, Wei, Alex Gray, and Sven Leyffer. Mixed-integer support vector machine. In NIPS Workshop
on Optimization for Machine Learning, 2009.

Gupta, Maya, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander
Mangylov, Wojciech Moczydlowski, and Alexander Van Esbroeck. Monotonic calibrated interpo-
lated look-up tables. Journal of Machine Learning Research, 17(1):3790–3836, 2016.

Hirsch, LJ, SM LaRoche, N Gaspard, E Gerard, A Svoronos, ST Herman, R Mani, H Arif, N Jette,
Y Minazad, et al. American clinical neurophysiology society’s standardized critical care EEG
terminology: 2012 version. Journal of Clinical Neurophysiology, 30(1):1–27, 2013.

Holte, Robert C. Very simple classification rules perform well on most commonly used datasets.
Machine Learning, 11(1):63–90, 1993.

Holte, Robert C. Elaboration on Two Points Raised in “Classifier Technology and the Illusion of
Progress”. Statistical Science, 21(1):24–26, February 2006.

47

Learning Optimized Risk Scores

Hu, Xiyang, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. In Proc. Neural
Information Processing Systems, 2019.

ILOG, IBM. CPLEX Optimizer 12.6. https://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/, 2017.

Joachims, Thorsten. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD
International conference on Knowledge Discovery and Data Mining, pages 217–226. ACM, 2006.

Joachims, Thorsten, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of structural
SVMs. Machine Learning, 77(1):27–59, 2009.

Kamishima, Toshihiro, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regular-
ization approach. In 2011 IEEE 11th International Conference on Data Mining Workshops, pages
643–650. IEEE, 2011.

Kelley, James E, Jr. The cutting-plane method for solving convex programs. Journal of the Society
for Industrial and Applied Mathematics, 8(4):703–712, 1960.

Kessler, Ronald C, Lenard Adler, Minnie Ames, Olga Demler, Steve Faraone, EVA Hiripi, Mary J
Howes, Robert Jin, Kristina Secnik, Thomas Spencer, et al. The World Health Organization
Adult ADHD Self-Report Scale (ASRS): a short screening scale for use in the general population.
Psychological Medicine, 35(02):245–256, 2005.

Kohavi, Ron. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining, pages 202–207.
AAAI Press, 1996.

Kotlowski, Wojciech, Krzysztof J Dembczynski, and Eyke Huellermeier. Bipartite ranking through
minimization of univariate loss. In Proceedings of the 28th International Conference on Machine
Learning, pages 1113–1120, 2011.

Kronqvist, Jan, David E Bernal, Andreas Lundell, and Ignacio E Grossmann. A review and com-
parison of solvers for convex MINLP. Optimization and Engineering, 20(2):397–455, 2019.

Lakkaraju, Himabindu, Stephen H Bach, and Jure Leskovec. Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1675–1684. ACM, 2016.

Latessa, Edward, Paula Smith, Richard Lemke, Matthew Makarios, and Christopher Lowenkamp.
Creation and validation of the Ohio risk assessment system: Final report, 2009.

Le Gall, Jean-Roger, Stanley Lemeshow, and Fabienne Saulnier. A new simplified acute physiology
score (SAPS II) based on a European/North American multicenter study. Journal of the American
Medical Association, 270(24):2957–2963, 1993.

Letham, Benjamin, Cynthia Rudin, Tyler H. McCormick, and David Madigan. Interpretable clas-
sifiers using rules and Bayesian analysis: Building a better stroke prediction model. Annals of
Applied Statistics, 9(3):1350–1371, 2015.

Li, Oscar, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning
through prototypes: A neural network that explains its predictions. In 32nd AAAI Conference
on Artificial Intelligence, 2018.

48

Ustun and Rudin

Liu, Yufeng and Yichao Wu. Variable selection via a combination of the L0 and L1 penalties. Journal
of Computational and Graphical Statistics, 16(4), 2007.

Lubin, Miles, Emre Yamangil, Russell Bent, and Juan Pablo Vielma. Polyhedral approximation in
mixed-integer convex optimization. Mathematical Programming, 172(1-2):139–168, 2018.

Malioutov, Dmitry and Kush Varshney. Exact rule learning via boolean compressed sensing. In
Proceedings of the 30th International Conference on Machine Learning, volume 28 of Proceedings
of Machine Learning Research, pages 765–773. PMLR, 17–19 Jun 2013.

Mangasarian, Olvi L, W Nick Street, and William H Wolberg. Breast cancer diagnosis and prognosis
via linear programming. Operations Research, 43(4):570–577, 1995.

McGinley, Ann and Rupert M Pearse. A National Early Warning Score for Acutely Ill Patients,
2012.

Menon, Aditya Krishna, Xiaoqian J Jiang, Shankar Vembu, Charles Elkan, and Lucila Ohno-
Machado. Predicting accurate probabilities with a ranking loss. In Proceedings of the International
Conference on Machine Learning, volume 2012, page 703, 2012.

Moreno, Rui P, Philipp GH Metnitz, Eduardo Almeida, Barbara Jordan, Peter Bauer, Ri-
cardo Abizanda Campos, Gaetano Iapichino, David Edbrooke, Maurizia Capuzzo, and Jean-Roger
Le Gall. SAPS 3 - From evaluation of the patient to evaluation of the intensive care unit. Part
2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care
Medicine, 31(10):1345–1355, 2005.

Moro, Sérgio, Paulo Cortez, and Paulo Rita. A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62:22–31, 2014.

Naeini, Mahdi Pakdaman, Gregory F Cooper, and Milos Hauskrecht. Binary classifier calibration: A
bayesian non-parametric approach. In Proc. SIAM Int Conf Data Mining (SDM), pages 208–216,
2015.

Naoum-Sawaya, Joe and Samir Elhedhli. An interior-point Benders based branch-and-cut algorithm
for mixed integer programs. Annals of Operations Research, 210(1):33–55, November 2010.

Nguyen, Hai Thanh and Katrin Franke. A general Lp-norm support vector machine via mixed
0-1 programming. In Machine Learning and Data Mining in Pattern Recognition, pages 40–49.
Springer, 2012.

Park, Jaehyun and Stephen Boyd. A semidefinite programming method for integer convex quadratic
minimization. Optimization Letters, 12(3):499–518, 2018.

Pennsylvania Bulletin. Sentence Risk Assessment Instrument, April 2017.

Pennsylvania Commission on Sentencing. Interim Report 4: Development of Risk Assessment Scale,
June 2012.

Piotroski, Joseph D. Value investing: The use of historical financial statement information to
separate winners from losers. Journal of Accounting Research, pages 1–41, 2000.

Platt, John C. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in Large Margin Classifiers, 10(3):61–74, 1999.

Pleiss, Geoff, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness
and calibration. In Advances in Neural Information Processing Systems, pages 5684–5693, 2017.

49

Learning Optimized Risk Scores

Reid, Mark D and Robert C Williamson. Composite binary losses. Journal of Machine Learning
Research, 11:2387–2422, 2010.

Reilly, Brendan M and Arthur T Evans. Translating clinical research into clinical practice: Impact
of using prediction rules to make decisions. Annals of Internal Medicine, 144(3):201–209, 2006.

Rudin, Cynthia. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1:206–215, May 2019.

Rudin, Cynthia and Şeyda Ertekin. Learning customized and optimized lists of rules with mathe-
matical programming. Mathematical Programming C (Computation), 10:659–702, 2018.

Rudin, Cynthia and Berk Ustun. Optimized Scoring Systems: Toward Trust in Machine Learning
for Healthcare and Criminal Justice. INFORMS Journal on Applied Analytics, 48:399–486, 2018.
Special Issue: 2017 Daniel H. Wagner Prize for Excellence in Operations Research Practice.

Rudin, Cynthia and Yining Wang. Direct Learning to Rank And Rerank. In Proceedings of the
21st International Conference on Artificial Intelligence and Statistics, volume 84 of Proceedings
of Machine Learning Research, pages 775–783. PMLR, 09–11 Apr 2018.

Rudin, Cynthia, Caroline Wang, and Beau Coker. The age of secrecy and unfairness in recidivism
prediction. Harvard Data Science Review, 2019. Forthcoming.

Sato, Toshiki, Yuichi Takano, Ryuhei Miyashiro, and Akiko Yoshise. Feature subset selection for
logistic regression via mixed integer optimization. Computational Optimization and Applications,
64(3):865–880, July 2016.

Sato, Toshiki, Yuichi Takano, and Ryuhei Miyashiro. Piecewise-linear approximation for feature
subset selection in a sequential logit model. Journal of the Operations Research Society of Japan,
60(1):1–14, March 2017.

Schlimmer, Jeffrey C. Concept acquisition through representational adjustment. PhD thesis, Univer-
sity of California, Irvine, 1987. AAI8724747.

Shah, Nilay D, Ewout W Steyerberg, and David M Kent. Big Data and Predictive Analytics:
Recalibrating Expectations. Journal of the American Medical Assocation, 2018.

Siddiqi, Naeem. Intelligent Credit Scoring: Building and Implementing Better Credit Risk Scorecards.
John Wiley & Sons, second edition, January 2017. ISBN 978-1-119-27915-0.

Six, A. J., B. E. Backus, and J. C. Kelder. Chest pain in the emergency room: value of the HEART
score. Netherlands Heart Journal, 16(6):191–196, 2008.

Sokolovska, Nataliya, Yann Chevaleyre, Karine Clément, and Jean-Daniel Zucker. The fused lasso
penalty for learning interpretable medical scoring systems. In Proceedings of the International
Joint Conference on Neural Networks, pages 4504–4511. IEEE, May 2017.

Sokolovska, Nataliya, Yann Chevaleyre, and Jean-Daniel Zucker. A provable algorithm for learning
interpretable scoring systems. In Proceedings of the 21st International Conference on Artificial
Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research, pages 566–
574. PMLR, 09–11 Apr 2018.

Souillard-Mandar, William, Randall Davis, Cynthia Rudin, Rhoda Au, David J. Libon, Rodney
Swenson, Catherine C. Price, Melissa Lamar, and Dana L. Penney. Learning classification models
of cognitive conditions from subtle behaviors in the digital clock drawing test. Machine Learning,
102(3):393–441, 2016.

50

Ustun and Rudin

Struck, Aaron F., Berk Ustun, Andres Rodriguez Ruiz, Jong Woo Lee, Suzette M. LaRoche,
Lawrence J. Hirsch, Emily J. Gilmore, Jan Vlachy, Hiba Arif Haider, Cynthia Rudin, and M. Bran-
don Westover. Association of an electroencephalography-based risk score with seizure probability
in hospitalized patients. JAMA Neurology, 74(12):1419–1424, 12 2017.

Teo, Choon Hui, Alex Smola, SVN Vishwanathan, and Quoc Viet Le. A scalable modular convex
solver for regularized risk minimization. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 727–736. ACM, 2007.

Teo, Choon Hui, S Vishwanathan, Alex Smola, and Quoc V Le. Bundle methods for regularized risk
minimization. Journal of Machine Learning Research, 11:311–365, 2009.

Than, Martin, Dylan Flaws, Sharon Sanders, Jenny Doust, Paul Glasziou, Jeffery Kline, Sally
Aldous, Richard Troughton, Christopher Reid, and William A Parsonage. Development and
validation of the Emergency Department Assessment of Chest pain Score and 2h accelerated
diagnostic protocol. Emergency Medicine Australasia, 26(1):34–44, 2014.

U.S. Department of Justice. The Mathematics of Risk Classification: Changing Data into Valid
Instruments for Juvenile Courts, 2005.

Ustun, Berk and Cynthia Rudin. Supersparse Linear Integer Models for Optimized Medical Scoring
Systems. Machine Learning, 102(3):349–391, 2016.

Ustun, Berk and Cynthia Rudin. Optimized Risk Scores. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1125–1134. ACM,
2017.

Ustun, Berk, Stefano Tracà, and Cynthia Rudin. Supersparse Linear Integer Models for Predictive
Scoring Systems. In AAAI Late-Breaking Developments, 2013.

Ustun, Berk, M.B. Westover, Cynthia Rudin, and Matt T. Bianchi. Clinical prediction models
for sleep apnea: The importance of medical history over symptoms. Journal of Clinical Sleep
Medicine, 12(2):161–168, 2016.

Ustun, Berk, Lenard A Adler, Cynthia Rudin, Stephen V Faraone, Thomas J Spencer, Patricia
Berglund, Michael J Gruber, and Ronald C Kessler. The World Health Organization Adult
Attention-Deficit / Hyperactivity Disorder Self-Report Screening Scale for DSM-5. JAMA Psy-
chiatry, 74(5):520–526, 2017.

Ustun, Berk, Yang Liu, and David Parkes. Fairness without harm: Decoupled classifiers with
preference guarantees. In Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pages 6373–6382. PMLR, 09–15 Jun
2019.

Van Belle, Vanya, Patrick Neven, Vernon Harvey, Sabine Van Huffel, Johan AK Suykens, and
Stephen Boyd. Risk group detection and survival function estimation for interval coded survival
methods. Neurocomputing, 112:200–210, 2013.

Van Calster, Ben and Andrew J Vickers. Calibration of risk prediction models: impact on decision-
analytic performance. Medical Decision Making, 35(2):162–169, 2015.

Verwer, Sicco and Yingqian Zhang. Learning optimal classification trees using a binary linear
program formulation. In 33rd AAAI Conference on Artificial Intelligence, 2019.

51

Learning Optimized Risk Scores

Wang, Hao, Berk Ustun, and Flavio Calmon. Repairing without retraining: Avoiding disparate
impact with counterfactual distributions. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 6618–6627.
PMLR, 09–15 Jun 2019.

Wang, Jiaxuan, Jeeheh Oh, Haozhu Wang, and Jenna Wiens. Learning credible models. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 2417–2426. ACM, 2018.

Wang, Tong, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and Perry MacNeille. A
Bayesian Framework for Learning Rule Sets for Interpretable Classification. Journal of Machine
Learning Research, 18(70):1–37, 2017.

Zafar, Muhammad Bilal, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P. Gummadi. Fair-
ness Constraints: Mechanisms for Fair Classification. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learn-
ing Research, pages 962–970. PMLR, 20–22 Apr 2017.

Zeng, Jiaming, Berk Ustun, and Cynthia Rudin. Interpretable classification models for recidivism
prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(3):689–
722, 2017.

52

Ustun and Rudin

Appendix A. Omitted Proofs

Proof (Remark 3). We first explain why LCPA attains the optimal objective value, and
then justify the upper bounds on the number of cuts and number of nodes.

Observe that LCPA finds the optimal solution to RiskSlimMINLP through an ex-
haustive search over the feasible region L. Thus, LCPA is bound to encounter the optimal
solution, since it only discards a node (vt,Rt) if: (i) the surrogate problem is infeasible
over Rt (in which case RiskSlimMINLP is also infeasible over Rt); or (ii) the surro-
gate problem has an objective value that exceeds than V max (in which case, any integer
feasible solution Rt is also suboptimal).

The bound on the number of cuts follows from the fact that Algorithm 2 only adds cuts
at integer feasible solutions, of which there are at most |L|. The bound on the number
of processed nodes represents a worst-case limit produced by bounding the depth of the
branch-and-bound tree. To do this, we exploit the fact that the splitting rule SplitRegion
splits a partition into two mutually exclusive subsets by adding integer-valued bounds such
λj ≥ dλje and λj ≤ bλjc − 1 on a single coefficient to the feasible solution. Consider
applying SplitRegion a total of Λmax

j −Λmin
j + 1 times in succession on a fixed dimension

j. This results in a total of Λmax
j − Λmin

j + 1 nodes where each node fixes the coefficient

in dimension j to an integer value λj ∈ {Λmin
j , . . . ,Λmax

j }. Pick any node and repeat this
process for coefficients in the remaining dimensions. The resulting B&B tree will have
at most 2|L| − 1 leaf nodes where λ is restricted to integer feasible solutions.

53

Learning Optimized Risk Scores

Proof (Proposition 4). Since the coefficient set L is bounded, the data are (xi, yi)
n
i=1

discrete, and the normalized logistic loss function l(λ) is continuous, it follows that the
value of l(λ) is bounded:

l(λ) ∈ [min
λ∈L

l(λ),max
λ∈L

, l(λ)] for all λ ∈ L.

Thus we need only to show that Lmin ≤ minλ∈L l(λ), and Lmax ≥ maxλ∈L l(λ). For the
lower bound, we observe that:

min
λ∈L

l(λ) = min
λ∈L

1

n

n∑
i=1

log(1 + exp(−〈λ, yixi〉))

= min
λ∈L

1

n

∑
i:yi=+1

log(1 + exp(−〈λ,xi〉)) +
1

n

∑
i:yi=−1

log(1 + exp(〈λ,xi〉))

≥ 1

n

∑
i:yi=+1

min
λ∈L

log(1 + exp(−〈λ,xi〉)) +
1

n

∑
i:yi=−1

min
λ∈L

log(1 + exp(〈λ,xi〉))

=
1

n

∑
i:yi=+1

log(1 + exp(−max
λ∈L
〈λ,xi〉)) +

1

n

∑
i:yi=−1

log(1 + exp(min
λ∈L
〈λ,xi〉))

=
1

n

∑
i:yi=+1

log(1 + exp(−smax
i) +

1

n

∑
i:yi=−1

log(1 + exp(smin
i))

= Lmin.

The upper bound can be derived in a similar manner.

54

Ustun and Rudin

Proof (Proposition 5). We are given that V max ≥ V (λ∗) where V (λ∗) := l(λ∗) +
C0 ‖λ∗‖0 by definition. Thus, we can recover the upper bound from Proposition 5 as
follows:

l(λ∗) + C0 ‖λ∗‖0 ≤ V
max,

‖λ∗‖0 ≤
V max − l(λ∗)

C0
,

‖λ∗‖0 ≤
V max − Lmin

C0
, (5)

‖λ∗‖0 ≤
⌊
V max − Lmin

C0

⌋
. (6)

Here, (5) follows from the fact that Lmin ≤ l(λ∗) by definition, and (6) follows from the
fact that the number of non-zero coefficients is a natural number.

Proof (Proposition 6). We are given that V max ≥ V (λ∗) where V (λ∗) := l(λ∗) +
C0 ‖λ∗‖0 by definition. Thus, we can recover the upper bound from Proposition 6 as
follows:

l(λ∗) + C0 ‖λ∗‖0 ≤ V
max,

l(λ∗) ≤ V max − C0 ‖λ∗‖0 ,
l(λ∗) ≤ V max − C0R

min.

Here, the last line follows from the fact that Rmin ≤ ‖λ∗‖0 by definition.

Proof (Proposition 7). We are given that V min ≤ V (λ∗) where V (λ∗) := l(λ∗) +
C0 ‖λ∗‖0 by definition. Thus, we can recover the lower bound from Proposition 7 as
follows:

l(λ∗) + C0 ‖λ∗‖0 ≥ V
min,

l(λ∗) ≥ V min − C0 ‖λ∗‖0 ,
l(λ∗) ≥ V min − C0R

max.

Here, the last line follows from the fact that Rmax ≥ ‖λ∗‖0 by definition.

55

Learning Optimized Risk Scores

Appendix B. Small Regularization Parameters do not Influence Accuracy

In Section 2, we state that if the trade-off parameter C0 in the objective of the risk score
problem is sufficiently small, then its optimal solution will attain the best possible trade-off
between logistic loss and sparsity. In what follows, we formalize this statement. In what
follows, we will omit the intercept term for clarity and explicitly show the regularization
parameter C0 in the RiskSLIM objective so that V (λ;C0) := l(λ)+C0 ‖λ‖0. We use some
new notation shown in Table 5.

Notation Description

M = argminλ∈L l(λ) minimizers of the logistic loss

L(k) = {λ ∈ L | ‖λ‖0 ≤ k} feasible coefficients of models with model size ≤ k

M(k) = argminλ∈L(k) l(λ) minimizers of the logistic loss among models of size ≤ k

L(k) = minλ∈L(k) l(λ) logistic loss of minimizers with model size ≤ k

λopt ∈ argminλ∈M ‖λ‖0 sparsest minimizers among all minimizers of the logistic loss

kopt = ‖λopt‖0 model size of sparsest minimizer

Table 5: Notation used in Remarks 8 and 9

Remark 8 (Minimizers of the Risk Score Problem)
Any optimal solution to the risk score problem will achieve a logistic loss of L(k) for
some k ≥ 0:

min
λ∈L

V (λ;C0) = min
k∈{0,1,...,kopt}

L(k) + C0k.

Remark 9 (Small Trade-Off Parameters Do Not Influence Accuracy)
There exists an integer z ≥ 1 such that if

C0 <
1

z

[
L(kopt − z)− L(kopt)

]
,

then
λopt ∈ argmin

λ∈L
V (λ;C0).

Remark 9 states that as long as C0 is sufficiently small, the regularized objective is minimized
by any model λopt that has the smallest size among the most accurate feasible models. In
other words, there exists a small enough value of C0 to guarantee that we will obtain the
best possible solution. Since we do not know z in advance and since it is just as difficult to
compute L as it is to solve the risk score problem, we will not know in advance how small
C0 must be to avoid sacrificing sparsity. However, it does not matter which value of C0 we
choose as long as it is sufficiently small. In practice, we set C0 = 10−8, which is the smallest
value that we can use without running into numerical issues with the MIP solver.

56

Ustun and Rudin

Proof (Remark 8). Since L(k) is the minimal value of the logistic loss for all models
with at most k non-zero coefficients, we have:

L(k) + C0k ≤ l(λ) + C0k for any λ ∈ L(k) (7)

Denote a feasible minimizer of V (λ;C0) as λ′ ∈ argminλ∈L V (λ;C0), and let k′ = ‖λ′‖0.
Since λ′ ∈ L(k′), we have that:

L(k′) + C0k
′ ≤ V (λ′;C0). (8)

Taking the minimum of the left hand side of (8):

min
k∈{0,1,2,...,kopt}

L(k) + C0k ≤ L(k′) + C0k
′. (9)

Combining (8) and (9), we get:

min
k∈{0,1,2,...,kopt}

L(k) + C0k ≤ L(k′) + C0k
′ ≤ min

λ∈L
V (λ;C0).

If these inequalities are not all equalities, we have a contradiction with the definition of
λ′ and k′ as the minimizer of V (λ;C0) and its size. So all must be equality. This proves
the statement.

57

Learning Optimized Risk Scores

Proof (Remark 9). Note that if C0 = 0, then any minimizer of V (λ;C0) has kopt non-
zero coefficients. Consider increasing the value of C0 starting from zero until a threshold
value Cmin

0 , defined as the smallest value such that the minimizer can sacrifice some
loss to remove at least one non-zero coefficient. Let z ≥ 1 be the number of non-zero
coefficients removed. For the threshold value Cmin

0 at which we choose the smaller model
rather than the one with size kopt, we have

L(kopt) + Cmin
0 kopt ≥ L(kopt − z) + Cmin

0 (kopt − z).

Simplifying, we obtain:

1

z

[
L(kopt − z)− L(kopt)

]
≤ Cmin

0 .

Thus, RiskSLIM does not sacrifice sparsity for logistic loss when:

1

z

[
L(kopt − z)− L(kopt)

]
> C0.

Here, we know that the value on the left hand side is greater than 0 because L(·) is
decreasing in its argument, and if there was no strict decrease, there would be a contra-
diction with the definition of kopt as the smallest number of terms of an optimal model.
In particular, L(kopt − z) = L(kopt) implies that:

min
λ
V (λ; 0) = L(kopt) + Cmin

0 kopt

= L(kopt − z) + Cmin
0 (kopt)

≥ L(kopt − z) + Cmin
0 (kopt − z)

≥ min
λ
V (λ; 0).

Thus all inequalities are equalities, which implies that z = 0 and contradicts z ≥ 1.

58

Ustun and Rudin

Appendix C. Background on Risk Scores

In Table 6, we present quotes from authors in medicine, criminal justice, and finance to
support the claim that risk scores are used because they are easy to use, understand, and
validate.

Domain Reference Quote

Medicine Than et al. (2014)

“Ease of use might be facilitated by presenting a rule devel-
oped from logistic regression as a score, where the original
predictor weights have been converted to integers that are
easy to add together... Though less precise than the origi-
nal regression formula, such presentations are less complex,
easier to apply by memory and usable without electronic as-
sistance.”

Criminal Justice Duwe and Kim (2016)

“It is commonplace... for fine-tuned regression coefficients to
be replaced with a simple-point system... to promote the easy
implementation, transparency, and interpretability of risk-
assessment instruments.”

Finance Finlay (2012)

“presenting a linear model in the form of a scorecard is at-
tractive because it’s so easy to explain and use. In particular,
the score can be calculated using just addition to add up the
relevant points that someone receives”

Table 6: Quotes on why risk scores with small integer coefficients are used in different domains.

Importance of Operational Constraints

The approaches used to create risk scores vary significantly for each problem. There is
no standard approach within a given domain, (see e.g., the different techniques proposed
in criminal justice by Gottfredson and Snyder, 2005; Bobko et al., 2007; Duwe and Kim,
2016), or a given application (see, e.g., the different approaches used to create risk scores
for cardiac illness, Six et al., 2008; Antman et al., 2000; Than et al., 2014).

A key reason for the lack of a standardized approach is because risk scores in domains
such as medicine and criminal justice need to obey additional operational constraints to be
used and accepted. In some cases, these constraints can be explicitly stated. Reilly and
Evans (2006), for example, describe the requirements put forth by physicians when building
a model to detect major cardiac complications for patients with chest pain:

“Our physicians... insisted that a new left bundle-branch block be considered
as an electrocardiographic predictor of acute ischemia. In addition, they argued
that patients who are stratified as low risk by the prediction rule could inap-
propriately include patients presenting with acute pulmonary edema, ongoing
ischemic pain despite maximal medical therapy, or unstable angina after recent
coronary revascularization (52). They insisted that such emergent clinical pre-
sentations be recommended for coronary care unit admission, not telemetry unit
admission.”

59

Learning Optimized Risk Scores

In other cases, however, operational constraints may depend on qualities that are difficult
to define a priori. Consider for example, the following statement of Than et al. (2014), that
describes the importance of sensibility for deployment:

“An important consideration during development is the clinical sensibility of the
resulting prediction rule [...] Evaluation of sensibility requires judgment rather
than statistical methods. A sensible rule is easy to use, and has content and face
validities. Prediction rules are unlikely to be applied in practice if they are not
considered sensible by the end-user, even if they are accurate.”

Approaches to Model Development

Common heuristics used in model development include:

• Heuristic Feature Selection: Many approaches use heuristic feature selection to reduce the
number of variables in the model. Model development pipelines can often involve multiple
rounds of feature selection, and may use different heuristics at each stage (e.g., Antman
et al. 2000 use a significance test to remove weak predictors, then use approximate feature
selection via forward stepwise regression).

• Heuristic Rounding : Many approaches use rounding heuristics to produce models with
integer coefficients. In the simplest case, this involves scaling and rounding the coefficients
from a logistic regression model (e.g., Goel et al., 2016) or a linear probability model (e.g.,
U.S. Department of Justice, 2005). The SAPS II score (Le Gall et al., 1993), for example,
was built in this way (“the general rule was to multiply the β for each range by 10 and
round off to the nearest integer.”)

• Expert Judgement : A common approach to model development involves having a panel
experts build a model by hand, and using data to validate the model after it is built (e.g.,
for the CHADS2 score for stroke prediction of Gage et al. 2001, and the National Early
Warning Score to assess acute illness in the ICU of McGinley and Pearse 2012). Expert
judgement can also be used in data-driven approaches. In developing the EDACS score
(Than et al., 2014), for example, expert judgement was used to: (i) determine a scaling
factor for model coefficients (“The beta coefficients were multiplied by eight, which was
the smallest common multiplication factor possible to obtain a sensible score that used
whole numbers and facilitated clinical ease of use.”) (ii) convert a continuous variable
into a binary variables (“Age was the only continuous variable to be included in the final
score. It was converted to a categorical variable, using 5-year age bands with increasing
increments of +2 points.”)

• Unit Weighting : This technique aims to produce a score by simply adding together all
variables that are significantly correlated with the outcome of interest. Unit weighting is
prevalent in criminal justice (see, e.g., Bobko et al., 2007; Duwe and Kim, 2016), where it
is referred to as the Burgess method (as it was first proposed by Burgess, 1928). The use
of this technique is frequently motivated by empirical work showing that linear models
with unit weights may perform surprisingly well (see, e.g., Einhorn and Hogarth, 1975;
Dawes, 1979; Holte, 1993, 2006; Bobko et al., 2007).

60

Ustun and Rudin

Critical Analysis of a Real-World Training Pipeline

Many risk scores are built using sequential training pipelines that combine traditional sta-
tistical techniques, heuristics, and expert judgement. The TIMI Risk Score of Antman et al.
(2000), for example, was built as follows:

1. “A total of 12 baseline characteristics arranged in a dichotomous fashion were screened
as candidate predictor variables of risk of developing an end-point event”

2. “After each factor was tested independently in a univariate logistic regression model,
those that achieved a significance level of p < .20 were [retained].”

3. “[The remaining factors]... selected for testing in a multivariate step-wise (backward
elimination) logistic regression model. Variables associated with p < .05 were retained
in the final model.”

4. “After development of the multivariate model, the [risk predictions were determined]...
for the test cohort using those variables that had been found to be statistically signifi-
cant predictors of events in the multivariate analysis.”

5. “The score was then constructed by a simple arithmetic sum of the number of variables
present.”

Although this pipeline uses several established statistical techniques (e.g. stepwise regres-
sion, significance testing), it is unlikely to output a risk score that attains the best possible
performance because:

• Decisions involving feature selection and rounding are made sequentially rather than
globally (e.g., Steps 1-3 involve feature selection, Step 5 involves rounding).

• The objective function that is optimized at each step differs from the global performance
metric of interest.

• Some steps optimize conflicting objective functions (e.g., backward elimination typically
optimizes the AIC or BIC, while the final model is fit to optimize the logistic loss).

• Some steps do not fully optimize their own objective function (i.e., backward elimination
does not return a globally optimal feature set).

• Some steps depend free parameters that are set without validation (e.g., the threshold
significance level of p < .20 used in Step 2)

• The final model is not trained using all the available training data. Here, Steps 4 and 5
use data from a “test cohort” that could have been used to improve the fit of the final
model.

• The coefficients of the final model are set to +1 and not optimized (that is, the model
uses unit weights).

61

Learning Optimized Risk Scores

Appendix D. Details on Computational Experiments

In this appendix, we provide additional details on the computational experiments in Sections
3.3 and 4.

D.1. Simulation Procedure for Synthetic Datasets

We ran the computational experiments in Sections 3.3 and 4 using a collection of synthetic
datasets that we generated from the breastcancer dataset of Mangasarian et al. (1995),
which contains n = 683 samples and d = 9 features xij ∈ {0, . . . , 10}. This choice was based
off the fact that the breastcancer dataset produces a RiskSlimMINLP instance that can
be solved using many algorithms, the data have been extensively studied in the literature,
and can be obtained from the UCI ML repository (Bache and Lichman, 2013).

We show the simulation procedure in Algorithm 6. Given the original dataset, this
procedure generates a collection of nested synthetic datasets in two steps. First, it generates
the largest dataset (with nmax = 5×106 and dmax = 30) by replicating features and samples
from the original dataset and adding normally distributed noise. Second, it produces smaller
datasets by taking nested subsets of the samples and features. This ensures that a synthetic
dataset with d features and n samples contains the same features and examples as a smaller
synthetic dataset (i.e., with d′ < d features and n′ < n samples).

The resulting collection of synthetic datasets has two properties that are useful for
benchmarking the performance of algorithms for RiskSlimMINLP:

1. They produce difficult instances of the risk score problem. Here, the RiskSlimMINLP
instances for synthetic datasets with d > 9 are challenging because the dataset contains
replicates of the original 9 features. In particular, feature selection becomes exponentially
harder when the dataset contains several copies of highly correlated features, as it means
that there are an exponentially larger number of slightly suboptimal solutions.

2. They can be used to make inferences about the optimal objective value of RiskSlim-
MINLP instances we may not be able to solve. Say, for example, that we could not solve
an instance of the risk score problem for a synthetic dataset with (d, n) = (20, 106), but
could solve an instance for a smaller synthetic dataset with (d, n) = (10, 106). In this case,
we know that the optimal value of an RiskSlimMINLP instance where (d, n) = (20, 106)
must be less than or equal to the optimal value of an RiskSlimMINLP instance where
(d, n) = (10, 106). This is because the (d, n) = (20, 106) dataset contains all of the
features as the (d, n) = (10, 106) dataset.

62

Ustun and Rudin

Algorithm 6 Simulation Procedure to Generate Nested Synthetic Datasets

Input

Xoriginal ← [xij]i=1...noriginal,j=1...doriginal feature matrix of original dataset

Y original ← [yi]i=1...noriginal label vector of original dataset

d1 . . . dmax dimensions for synthetic datasets (increasing order)

n1 . . . nmax sample sizes for synthetic datasets (increasing order)

Initialize

J original ← [1, . . . , doriginal] index array for original features

Jmax ← [] index array of features for largest synthetic dataset

mfull ← bdmax/doriginalc
mremainder ← dmax −mfull · doriginal

Step I: Generate Largest Dataset

1: for m = 1, . . . ,mfull do

2: Jmax ← [Jmax,RandomPermute(J original)]

3: end for

4: Jmax ← [Jmax,RandomSampleWithoutReplacement(J original,mremainder)]

5: for i = 1, . . . , nmax do

6: sample l with replacement from 1, . . . , noriginal

7: ymax
i ← yi

8: for j = 1, . . . , dmax do

9: k ← Jmax[j]

10: sample ε from Normal(0, 0.5)

11: xmax
ij ← dxl,k + εc new features are noisy versions of original features

12: xmax
ij ← min(10,max(0, xmax

ij)) new features have same bounds as old features

13: end for

14: end for

15: Xmax ← [xmax
ij]i=1...nmax,j=1...dmax

16: Y max ← [ymaxi]i=1...nmax

Step II: Generate Smaller Datasets

17: for d = [d1, . . . , dmax] do

18: for n = [n1, . . . , nmax] do

19: X(n,d) = Xmax[1 : n, 1 : d]

20: Y n = Y max[1 : n]

21: end for

22: end for

Output: synthetic datasets (X(n,d), Y n) for all n1 . . . nmax and d1 . . . dmax.

63

Learning Optimized Risk Scores

D.2. Setup on the Performance Comparison in Section 3.3

We consider an instance of RiskSlimMINLP where C0 = 10−8, λ0 ∈ {−100, 100}, and
λj = {−10, . . . , 10} for j = 1, . . . , d. We solved this instance on a 3.33 GHz Intel Xeon CPU
with 16GB of RAM for up to 6 hours using the following algorithms:

(i) CPA, as described in Algorithm 1;

(ii) LCPA, as described in Algorithm 2;

(iii) ActiveSetMINLP, an active set MINLP algorithm;

(iv) InteriorMINLP, an interior point MINLP algorithm;

(v) InteriorCGMINLP, an interior point MINLP algorithm where the primal-dual KKT sys-
tem is solved with a conjugate gradient method;

All MINLP algorithms were implemented in a state-of-the-art commercial solver (i.e., Ar-
telsys Knitro 9.0, which is an updated version of the solver described in Byrd et al. 2006).
If an algorithm did not return a certifiably optimal solution for a particular instance within
the 6 hour time limit, we reported results for the best feasible solution. Both CPA and LCPA
were implemented using CPLEX 12.6.3.

Our CPA implementation uses the solves the following formulation of RiskSlimMIP.

Definition 10 (RiskSlimMIP)
Given a finite coefficient set L ⊂ Zd+1, trade-off parameter C0 > 0, and cutting plane
approximation l̂k : Rd+1 → R+ with cut parameters {l(λt),∇l(λt)}kt=1, the surrogate

optimization problem RiskSlimMIP(l̂k) can be formulated as the mixed integer program:

min
L,λ,α

V

s.t. V = L+ C0R objective value (10a)
L ≥ l(λt) + 〈∇l(λt),λ− λt〉 t = 1,...,k cut constraints (10b)

R =

d∑
j=1

αj `0–norm (10c)

λj ≤ Λmax
j αj j = 1,...,d `0 indicator constraints (10d)

λj ≥ −Λmin
j αj j = 1,...,d `0 indicator constraints (10e)

V ∈ [V min, V max] bounds on objective value (10f)
L ∈ [Lmin, Lmax] bounds on loss value (10g)
R ∈ {Rmin, . . . , Rmax} bounds on `0–norm (10h)
λj ∈ {Λmin

j , . . . ,Λmax
j } j = 1,...,d coefficient bounds (10i)

αj ∈ {0, 1} j = 1,...,d `0 indicator variables

The formulation in Definition 10 contains 2d + 3 variables and k + 2d + 2 constraints
(excluding bounds on the variables). Here, the cutting plane approximation is represented
via the cut constraints in (10b) and the auxiliary variable L ∈ R+. The `0–norm is computed
using the indicator variables αj = 1 [λj 6= 0] set in constraints (10d) and (10e). The λj are
restricted to a bounded set of integers in constraints (10i). The formulation includes two
additional auxiliary variables: V , defined as the objective value in (10a); and R, defined as
the `0-norm in (10c).

64

Ustun and Rudin

D.3. Results for MINLP Algorithms

In Figure 27, we plot results for all MINLP algorithms that we benchmarked against CPA
and LCPA: ActiveSetMINLP, InteriorMINLP, and InteriorCGMINLP. We reported results for
ActiveSetMINLP in Section 3.3 because it solved the largest number of instances to optimal-
ity.

ActiveSetMINLP InteriorMINLP InteriorCGMINLP

Time to Train a Good
Risk Score
i.e., the time for an al-
gorithm to find a solution
whose loss ≤ 10% of the op-
timal loss. It reflects the
time to obtain a risk score
with good calibration without
a proof of optimality.

 <1 min

 <10 min

 <1 hour

 <6 hours

 6+ hours 1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

Optimality Gap of Best
Solution at Termination

i.e., (V max − V min)/V max,
where V max is the objec-
tive value of the best solution
found at termination. A gap
of 0.0% means an algorithm
has found the optimal solu-
tion and provided a proof of
optimality within 6 hours.

 0%

 0−20%

 20−50%

 50−90%

 90−100% 1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

% Time Spent on Data-
Related Computation

i.e., the proportion of to-
tal runtime that an algorithm
spends computing the value,
gradient, or Hessian of the
loss function.

 0−20%

 20−40%

 40−60%

 60−80%

 80−100% 1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

1 × 104

5 × 104

1 × 105

5 × 105

1 × 106

5 × 106

5 10 15 20 25 30

d

N

Figure 27: Performance of MINLP algorithms on difficult instances of RiskSlimMINLP for synthetic
datasets with varying dimensions d and sample sizes n. All algorithms perform similarly. We report results
for ActiveSetMINLP in Section 3.3 because it solves the most instances to optimality.

65

Learning Optimized Risk Scores

Appendix E. Additional Details on Algorithmic Improvements

E.1. Initialization Procedure

In Algorithm 7, we present an initialization procedure for LCPA. The procedure aims to
speed up LCPA by generating: a collection of cutting planes; a good integer solution; and
non-trivial bounds on the values of the objective, loss, and number of non-zero coefficients.
It combines all of the techniques from this section, as follows:

1. Run CPA using RiskSlimLP: We apply traditional CPA to produce a cutting-plane ap-
proximation of the loss function using a convex relaxation of RiskSlimMINLP. We can
achieve this by replacing RiskSlimMIP(k) in Step 2 of CPA with RiskSlimLP(k, conv (L)),
and running CPA until a user-specified stopping condition is met. We store: (i) the cuts
from RiskSlimLP (which will be used as an initial cutting plane approximation for
LCPA); (ii) the lower bound from CPA on the objective value of RiskSlimLP (which
represents a lower bound V min on the optimal value of RiskSlimMINLP).

2. Sequential Rounding and Polishing : We collect the solutions produced at each iteration
of CPA. For each solution, we run SequentialRounding to obtain an integer solution for
RiskSlimMINLP, and then polish it using DCD. We use the best solution found so far
to update the upper bound V max on the optimal value to RiskSlimMINLP.

3. Chained Updates: Having obtained non-trivial bounds on V min and V max, we update
the bounds on key quantities using ChainedUpdates.

In Figure 28, we show how the initialization procedure in Algorithm 7 improves the lower
bound and the optimality gap over the course of LCPA.

0.00

0.05

0.10

0.15

0 500K 1M

Nodes Processed

Lo
w

er
bo

un
d

●

●

●

●

●

●●

●
●

●

●

●

●

●

40%

60%

80%

100%

0 500K 1M

Nodes Processed

O
pt

im
al

ity
 G

ap

Figure 28: Performance profile of LCPA in a basic implementation (black) and with the initialization
procedure in Algorithm 7 (red). Results reflect performance on a RiskSlimMINLP instance for a synthetic
dataset with d = 30 and n = 50,000 (see Appendix D for details).

E.2. Reducing Data-Related Computation

In this section, we present techniques to reduce data-related computation for the risk score
problem.

66

Ustun and Rudin

Algorithm 7 Initialization Procedure for LCPA

Input

(xi, yi)
n
i=1 training data

L coefficient set

C0 `0 penalty parameter

V min, V max, Lmin, Lmax, Rmin, Rmax initial bounds on V (λ∗), l(λ∗) and ‖λ∗‖0
Tmax time limit for CPA on RiskSlimLP

Initialize

l̂0(λ)← {0} initial approximation of loss function

P int ← ∅ initial collection of integer solutions

Step I: Run CPA using subroutine RiskSlimLP

1: Run CPA Algorithm 1 using RiskSlimLP(l̂0, conv (L))

2: k ← number of cuts added by CPA within time limit Tmax

3: l̂initial ← l̂k store cuts from each iteration

4: Preal ← {λt}kt=1 store solutions from each iteration

5: V min ← lower bound from CPA lower bound for RiskSlimLP is lower bound for RiskSlimMINLP

Step II: Round and Polish Non-Integer Solutions from CPA

6: for each λreal ∈ Preal do

7: λsr ← SequentialRounding
(
λreal,L, C0

)
Algorithm 4

8: λdcd ← DCD (λsr,L, C0) Algorithm 3

9: P int ← P int ∪ {λdcd} store polished integer solutions

10: end for

11: λbest ← argminλ∈Pint V (λ)

12: V max ← V
(
λbest

)
best integer solution produces upper bound for V (λ∗)

Step III: Update Bounds on Objective Terms

13: (V min, . . . , Rmax)← ChainedUpdates
(
V min, . . . , Rmax, C0

)
Algorithm 5

Output: λbest, l̂initial(λ), V min, V max, Lmin, Lmax, Rmin, Rmax

67

Learning Optimized Risk Scores

E.2.1. Fast Loss Evaluation via a Lookup Table

The first technique is designed to speed up the evaluation of the loss function and its
gradient, which reduces runtime when we compute cut parameters (3) and call the rounding
and polishing procedures in Section 4. The technique requires that the features xi and
coefficients λ belong to sets that are bounded, discrete, and regularly spaced, such as
xi ∈ X ⊆ {0, 1}d and λ ∈ L ⊆ {−10, . . . , 10}d+1.

Evaluating the logistic loss, log(1 + exp(−〈λ, yixi〉), is a relatively expensive operation
because it involves exponentiation and must be carried out in multiple steps to avoid nu-
merical overflow/underflow when the scores si = 〈λ,xiyi〉 are too small or large3. When
the training data and coefficients belong to discrete bounded sets, the scores si = 〈λ,xiyi〉
belong to a discrete and bounded set

S =
{
〈λ,xiyi〉

∣∣ i = 1, . . . , n and λ ∈ L
}
.

If the elements of the feature set X and the coefficient set L are regularly spaced, then the
scores belong to the set of integers S ⊆ Z ∩ [smin, smax] where:

smin = min
i,λ
{〈λ,xiyi〉 for all (xi, yi) ∈ D and λ ∈ L} ,

smax = max
i,λ
{〈λ,xiyi〉 for all (xi, yi) ∈ D and λ ∈ L} .

Thus, we can precompute and store all possible values of the loss function in a lookup table
with smax−smin +1 rows, where row m contains the value of [log(1+exp(−(m+smin−1)))].

This strategy can reduce the time to evaluate the loss as it replaces a computationally
expensive operation with a fast lookup. In practice, the lookup table is small enough to be
cached in memory, which yields a substantial speedup. In addition, when Rmax is updated
over the course of LCPA, the lookup table can be further reduced by recomputing smin and
smax, and limiting the entries to values between smin and smax. The values of smin and smax

can be computed in O(n) time, so the update is not expensive.

E.2.2. Faster Rounding Heuristics via Subsampling

We now describe a subsampling technique to reduce computation for rounding heuristics
that require multiple evaluations of the loss function (e.g., SequentialRounding).

Ideally, we would want to run such heuristics frequently as possible because each run
may output a solution that updates the incumbent solution (i.e., the current best solution
to the risk score problem). In practice, however, this may slow down LCPA since each
run requires multiple evaluations of the loss, and runs that fail to update the incumbent
amount to wasted computation. If, for example, we ran SequentialRounding each time the
MIP solver found a set of non-integer coefficients in LCPA (i.e., Step 15 of Algorithm 2),
many rounded solutions would not update the incumbent, and we would have wasted too
much time rounding, without necessarily finding a better solution.

Our technique aims to reduce the overhead of calling heuristics by running them on
a smaller dataset Dm built by sampling m points without replacement from the training

3. The value of exp(s) can be computed reliably using IEEE 754 double precision floating point numbers
for s ∈ [−700, 700]. The term will overflow to∞ when s < −700, and underflow to 0 when when s > 700.

68

Ustun and Rudin

dataset Dn. In what follows, we present probabilistic guarantees to choose the number
of samples m so that an incumbent update using Dm guarantees an incumbent update
using Dn. To clarify when the loss and objective are computed using Dm or Dn, we let
li(λ) = log(1 + exp(〈λ, yixi〉)) and define:

lm(λ) =
1

m

m∑
i=1

li(λ), Vm(λ) = lm(λ) + C0 ‖λ‖0 ,

ln(λ) =
1

n

n∑
i=1

li(λ), Vn(λ) = ln(λ) + C0 ‖λ‖0 .

Consider a case where a heuristic returns a promising solution λhr such that:

Vm(λhr) < V max. (11)

In this case, we compute the objective on the full training dataset Dn by evaluating the loss
for each of the n−m points that were not included in Dm. We then update the incumbent
solution if λhr attains an objective value that is less than the current upper bound:

Vn(λhr) < V max. (12)

Although this strategy requires evaluating the loss for the full training dataset to validate
an incumbent update, it still reduces data-related computation since rounding heuristics
typically require multiple evaluations of the loss (e.g., SequentialRounding, which requires
d
3(d2 + 3d+ 2) evaluations).

To guarantee that any solution that updates the incumbent when the objective is evalu-
ated with Dm will also update the incumbent when the objective is evaluated with Dn (i.e.,
that any solution that satisfies (11) will also satisfy (12)), we can use the generalization
bound from Theorem 11.

Theorem 11 (Generalization of Sampled Loss on Finite Coefficient Set)
Let Dn = (xi, yi)

n
i=1 denote a training dataset with n > 1 points, Dm = (xi, yi)

m
i=1 denote

a sample of m points drawn without replacement from Dn, and λ denote the coefficients
of a linear classifier from a finite set L. For all ε > 0, it holds that

Pr

(
max
λ∈L

(
ln(λ)− lm(λ)

)
≥ ε
)
≤ |L| exp

(
− 2ε2

(1
m)(1− m2

n2)∆max(L,Dn)2

)
,

where ∆max(L,Dn) = maxλ∈L (maxi=1,...,n li(λ)−mini=1,...,n li(λ)) .

69

Learning Optimized Risk Scores

Proof (Theorem 11). For a fixed set coefficient vector λ ∈ L, consider a sample of
n points composed of the values for the loss function li(λ) for each example in the full
training dataset Dn = (xi, yi)

n
i=1. Let ln(λ) = 1

n

∑n
i=1 li(λ) and lm(λ) = 1

m

∑m
i=1 li(λ).

Then, the Hoeffding-Serfling inequality (see e.g., Theorem 2.4 in Bardenet and Maillard,
2015) guarantees the following for all ε > 0:

Pr (ln(λ)− lm(λ) ≥ ε) ≤ exp

(
− 2ε2

(1
m)(1− m

n)(1 + m
n)∆(λ,Dn)2

)
,

where

∆(λ,Dn) = max
i=1,...,n

li(λ)− min
i=1,...,n

li(λ).

We recover the desired inequality by generalizing this bound to hold for all λ ∈ L as
follows.

Pr

(
max
λ∈L

(
ln(λ)− lm(λ)

)
≥ ε
)

= Pr

(⋃
λ∈L

(ln(λ)− lm(λ) ≥ ε)

)
,

≤
∑
λ∈L

Pr (ln(λ)− lm(λ) ≥ ε) , (13)

≤
∑
λ∈L

exp

(
− 2ε2

(1
m)(1− m

n)(1 + m
n)∆(λ,Dn)2

)
, (14)

≤ |L| exp

(
− 2ε2

(1
m)(1− m

n)(1 + m
n)∆max(L,Dn)2

)
. (15)

Here, (13) follows from the union bound, (14) follows from the Hoeffding Serling inequal-
ity, (15) follows from the fact that ∆(λ,Dn) ≤ ∆max(L,Dn) given that λ ∈ L.

Theorem 11 is derived from a concentration inequality for sampling without replace-
ment, called the Hoeffding-Serfling inequality (see Bardenet and Maillard, 2015). The
Hoeffding-Serfling inequality is tighter than the classical Hoeffding inequality as it ensures
that Pr (ln(λ)− lm(λ) ≥ ε) → 0 as m → n for all ε > 0. Here, ∆max(L,Dn) is a normal-
ization term that represents the maximum range of the loss and can be computed quickly
using the training dataset Dn and coefficient set L as shown in Proposition 4 in Section 4.3.

In general machine learning settings, the |L| term in Theorem 11 would yield a vacuous
bound. In this setting, however, rounding ensures that L contains at most 2d elements,
which produces a well-defined bound on the difference between ln(λ) and lm(λ). As a
result, Theorem 11 can be used to assess the probability that a proposed incumbent update
leads to an actual incumbent update (see Corollary 12). Alternatively, it can be used to
set the sample size m so that an incumbent update on Dm is likely to yield an incumbent
update on Dn. In practice, the bound in Theorem 11 can be tightened by recomputing
the normalization term ∆max(L,Dn) over the course of LCPA. This can be done for each
real-valued solution ρ, or when the MIP solver restricts the set of feasible coefficients L.

70

Ustun and Rudin

Corollary 12 (Update Probabilities of Rounding Heuristics on Subsampled Data)
Consider a rounding heuristic that takes as input a vector of real-valued coefficients ρ =
(ρ1, . . . , ρd) ∈ conv(L) and outputs a vector of rounded coefficients λ ∈ L|ρ where

Lρ =
(
λ ∈ L

∣∣ λj ∈ {dρje, bρjc} for j = 1, . . . , d
)
.

If we evaluate the rounding heuristic using m points Dm = (xi, yi)
m
i=1 drawn without

replacement from Dn = (xi, yi)
n
i=1 and the rounded coefficients λ ∈ Lρ attain an objective

value Vm(λ), then for any δ, with probability at least 1− δ, we have that

Vm(λ) < V max − εδ =⇒ Vn(λ) ≤ V max,

where

εδ = ∆max(Lρ,Dn)

√
log(1/δ) + d log(2)

2

(
1

m

)(
1− m2

n2

)
.

Proof (Corollary 12). We will first show that for any tolerance δ > 0 that we pick, the
prescribed choice of εδ will ensure that Vn(λ)−Vm(λ) ≤ εδ w.p. at least 1− δ. Restating
the result of Theorem 11, we have that for any ε > 0:

Pr

(
max
λ∈L

(
ln(λ)− lm(λ)

)
≥ ε
)
≤ |L| exp

(
− 2ε2

(1
m)(1− m

n)(1 + m
n)∆max(L,Dn)2

)
. (16)

Note that ln(λ)− lm(λ) = Vn(λ)− Vm(λ) for any fixed λ. In addition, note that the set
of rounded coefficients L(ρ) contains at most |L(ρ)| ≤ 2d coefficient vectors. Therefore,
in this setting, (16) implies that for any ε > 0,

Pr (Vn(λ)− Vm(λ) ≥ ε) ≤ 2d exp

(
− 2ε2

(1
m)(1− m

n)(1 + m
n)∆(L(ρ),Dn)2

)
. (17)

By setting ε = εδ and simplifying the terms on the right hand side in (17), we see that

Pr (Vn(λ)− Vm(λ) ≥ εδ) ≤ δ.

Thus, the prescribed value of εδ ensures that Vn(λ)− Vm(λ) ≤ εδ w.p. at least 1− δ.
Since we have set εδ so that Vn(λ) − Vm(λ) ≤ εδ w.p. at least 1 − δ, we now need

only to show that any λ satisfying Vm(λ) < V max − εδ will also satisfy Vn(λ) ≤ V max to
complete the proof. To see this, observe that:

Vn(λ)− Vm(λ) ≤ εδ,
Vn(λ) ≤ Vm(λ) + εδ,

Vn(λ) < V max. (18)

Here, (18) follows from the fact that Vm(λ) < V max − εδ =⇒ Vm(λ) + εδ < V max.

71

Learning Optimized Risk Scores

Appendix F. Additional Experimental Results

Traditional Approaches Pooled Approaches

Dataset Metric PLR�Rd PLR�RsRd PLR�Unit PooledRd PooledRd* PooledSeqRd*
RiskSLIM

income

n = 32561
d = 36

test cal
train cal
test auc
train auc

10.5%
10.5%
0.787
0.787

19.5%
19.8%
0.813
0.811

25.4%
25.8%
0.814
0.815

3.0%
2.6%
0.845
0.848

3.1%
2.5%
0.854
0.857

4.2%
4.4%
0.832
0.827

2.6%
4.2%
0.854
0.860

mammo

n = 961
d = 14

test cal
train cal
test auc
train auc

10.5%
12.2%
0.832
0.846

16.2%
14.2%
0.846
0.852

8.5%
7.2%
0.842
0.850

10.9%
10.1%
0.845
0.847

7.1%
5.4%
0.841
0.847

7.4%
5.4%
0.845
0.847

5.0%
3.1%
0.843
0.849

mushroom

n = 8124
d = 113

test cal
train cal
test auc
train auc

22.1%
28.6%
0.890
0.890

8.0%
5.6%
0.951
0.942

19.9%
18.3%
0.969
0.978

12.6%
11.9%
0.984
0.984

4.6%
4.2%
0.986
0.984

5.4%
3.3%
0.978
0.983

1.8%
1.0%
0.989
0.990

rearrest

n = 22530
d = 48

test cal
train cal
test auc
train auc

7.3%
4.8%
0.555
0.640

24.2%
24.3%
0.692
0.700

21.8%
14.1%
0.698
0.698

5.2%
1.1%
0.676
0.676

1.4%
1.1%
0.676
0.676

3.8%
3.7%
0.677
0.682

2.4%
2.6%
0.699
0.701

spambase

n = 4601
d = 57

test cal
train cal
test auc
train auc

15.0%
18.7%
0.620
0.772

29.5%
26.8%
0.875
0.872

33.4%
23.8%
0.861
0.876

26.5%
25.1%
0.910
0.917

16.3%
14.6%
0.913
0.921

17.9%
19.3%
0.908
0.926

11.7%
12.3%
0.928
0.935

telemarketing

n = 41188
d = 57

test cal
train cal
test auc
train auc

2.6%
0.7%
0.574
0.500

11.2%
11.3%
0.700
0.685

6.2%
4.9%
0.715
0.685

1.9%
1.7%
0.759
0.759

1.3%
1.1%
0.760
0.760

1.3%
1.1%
0.760
0.760

1.3%
1.1%
0.760
0.760

Table 7: Summary statistics of risk scores with integer coefficients λj ∈ {−5, . . . , 5} with model size of
‖λ‖0 ≤ 5. Here: test cal and test auc, which are the 5-CV mean test CAL / AUC; train cal and train auc
which are the CAL and AUC of the final model fit using the entire dataset.

72

Ustun and Rudin

Appendix G. Supporting Material for Seizure Prediction

In this appendix, we provide supporting material for the seizure prediction application in
Section 6.

G.1. List of Input Variables

In Table 8, we list all input variables in the training dataset.

Input Variable Values Sign

Male {0, 1}

Female {0, 1}

PriorSeizure {0, 1} +

PosteriorDominantRhythmPresent {0, 1} −

BriefRhythmicDischarge {0, 1} +

NoReactivityToStimulation {0, 1}

EpileptiformDischarges {0, 1} +

SecondaryDXIncludesMentalStatusFirst {0, 1}

SecondaryDXIncludesCNSInfection {0, 1}

SecondaryDXIncludesCNSInflammatoryDisease {0, 1}

SecondaryDXIncludesCNSNeoplasm {0, 1}

SecondaryDXIncludesHypoxisIschemicEncephalopathy {0, 1}

SecondaryDXIncludesIntracerebralHemorrhage {0, 1}

SecondaryDXIncludesIntraventricularHemorrhage {0, 1}

SecondaryDXIncludesMetabolicEncephalopathy {0, 1}

SecondaryDXIncludesIschemicStroke {0, 1}

SecondaryDXIncludesSubarachnoidHemmorage {0, 1}

SecondaryDXIncludesSubduralHematoma {0, 1}

SecondaryDXIncludesTraumaticBrainInjury {0, 1}

SecondaryDXIncludesHydrocephalus {0, 1}

PatternIsStimulusInducedAny {0, 1}

PatternIsStimulusInducedBiPD {0, 1}

PatternIsStimulusInducedGPD {0, 1}

PatternIsStimulusInducedGRDA {0, 1}

PatternIsStimulusInducedLPD {0, 1}

PatternIsStimulusInducedLRDA {0, 1}

PatternIsSuperImposedAny {0, 1} +

PatternIsSuperImposedBiPD {0, 1} +

PatternIsSuperImposedGPD {0, 1} +

PatternIsSuperImposedGRDA {0, 1} +

PatternIsSuperImposedLPD {0, 1} +

PatternIsSuperImposedLRDA {0, 1} +

PatternsInclude BiPD {0, 1} +

PatternsInclude GPD {0, 1} +

PatternsInclude GRDA {0, 1} +

PatternsInclude LPD {0, 1} +

PatternsInclude LRDA {0, 1} +

PatternsInclude GRDA or GPD {0, 1} +

PatternsInclude BiPD or LRDA or LPD {0, 1} +

MaxFrequencyAnyPattern {0.0, 0.5, . . . , 3.0} +

MaxFrequencyBiPD {0.0, 0.5, . . . , 3.0} +

MaxFrequencyGPD {0.0, 0.5, . . . , 3.0} +

MaxFrequencyLPD {0.0, 0.5, . . . , 3.0} +

MaxFrequencyLRDA {0.0, 0.5, . . . , 3.0} +

Input Variable Values Sign

MaxFrequencyAnyPattern = 0.0Hz {0, 1}

MaxFrequencyAnyPattern≥ 0.5Hz {0, 1} +

MaxFrequencyAnyPattern≥ 1.0Hz {0, 1} +

MaxFrequencyAnyPattern≥ 1.5Hz {0, 1} +

MaxFrequencyAnyPattern≥ 2.0Hz {0, 1} +

MaxFrequencyAnyPattern≥ 2.5Hz {0, 1} +

MaxFrequencyAnyPattern≥ 3.0Hz {0, 1} +

MaxFrequencyBiPD = 0.0 {0, 1}

MaxFrequencyBiPD≥ 0.5Hz {0, 1} +

MaxFrequencyBiPD≥ 1.0Hz {0, 1} +

MaxFrequencyBiPD≥ 1.5Hz {0, 1} +

MaxFrequencyBiPD≥ 2.0Hz {0, 1} +

MaxFrequencyBiPD≥ 2.5Hz {0, 1} +

MaxFrequencyBiPD≥ 3.0Hz {0, 1} +

MaxFrequencyGPD = 0.0 {0, 1}

MaxFrequencyGPD≥ 0.5Hz {0, 1} +

MaxFrequencyGPD≥ 1.0Hz {0, 1} +

MaxFrequencyGPD≥ 1.5Hz {0, 1} +

MaxFrequencyGPD≥ 2.0Hz {0, 1} +

MaxFrequencyGPD≥ 2.5Hz {0, 1} +

MaxFrequencyGPD≥ 3.0Hz {0, 1} +

MaxFrequencyGRDA = 0.0 {0, 1}

MaxFrequencyGRDA≥ 0.5Hz {0, 1} +

MaxFrequencyGRDA≥ 1.0Hz {0, 1} +

MaxFrequencyGRDA≥ 1.5Hz {0, 1} +

MaxFrequencyGRDA≥ 2.0Hz {0, 1} +

MaxFrequencyGRDA≥ 2.5Hz {0, 1} +

MaxFrequencyGRDA≥ 3.0Hz {0, 1} +

MaxFrequencyLPD = 0.0 {0, 1}

MaxFrequencyLPD≥ 0.5Hz {0, 1} +

MaxFrequencyLPD≥ 1.0Hz {0, 1} +

MaxFrequencyLPD≥ 1.5Hz {0, 1} +

MaxFrequencyLPD≥ 2.0Hz {0, 1} +

MaxFrequencyLPD≥ 2.5Hz {0, 1} +

MaxFrequencyLPD≥ 3.0Hz {0, 1} +

MaxFrequencyLRDA = 0.0 {0, 1}

MaxFrequencyLRDA≥ 0.5Hz {0, 1} +

MaxFrequencyLRDA≥ 1.0Hz {0, 1} +

MaxFrequencyLRDA≥ 1.5Hz {0, 1} +

MaxFrequencyLRDA≥ 2.0Hz {0, 1} +

MaxFrequencyLRDA≥ 2.5Hz {0, 1} +

MaxFrequencyLRDA≥ 3.0Hz {0, 1} +

Table 8: Names, values, and sign constraints for input variables in the seizure dataset.

73

Learning Optimized Risk Scores

G.2. List of Operational Constraints

No Redundant Categorical Variables

1. Use either Male or Female.

2. Use either PatternsInclude GRDA or GPD or any one of
(PatternsInclude GRDA, PatternsInclude GPD).

3. Use either PatternsInclude BiPD or LRDA or LPD or any one of
(PatternsInclude BiPD , PatternsInclude LRDA, PatternsInclude LPD).

4. Use either MaxFrequencyAnyPattern = 0.0 or MaxFrequencyAnyPattern≥ 0.5 or nei-
ther.

5. Use either MaxFrequencyLPD = 0.0 or MaxFrequencyLPD≥ 0.5 or neither.

6. Use either MaxFrequencyGPD = 0.0 or MaxFrequencyGPD≥ 0.5 or neither.

7. Use either MaxFrequencyGRDA = 0.0 or MaxFrequencyGRDA≥ 0.5 or neither.

8. Use either MaxFrequencyBiPD = 0.0 or MaxFrequencyBiPD≥ 0.5 or neither.

9. Use either MaxFrequencyLRDA = 0.0 or MaxFrequencyLRDA≥ 0.5 or neither.

Frequency in Continuous Encoding or Thresholded Encoding

10. Choose between MaxFrequencyAnyPattern or
(MaxFrequencyAnyPattern = 0.0 . . . MaxFrequencyAnyPattern≥ 3.0).

11. Choose between MaxFrequencyGPD or
(MaxFrequencyGPD = 0.0 . . . MaxFrequencyGPD≥ 3.0).

12. Choose between MaxFrequencyLPD or
(MaxFrequencyLPD = 0.0 . . . MaxFrequencyLPD≥ 3.0).

13. Choose between MaxFrequencyGRDA or
(MaxFrequencyGRDA = 0.0 . . . MaxFrequencyGRDA≥ 3.0).

14. Choose between MaxFrequencyBiPD or
(MaxFrequencyBiPD = 0.0 . . . MaxFrequencyBiPD≥ 3.0).

15. Choose between MaxFrequencyLRDA or
(MaxFrequencyLRDA = 0.0 . . . MaxFrequencyLRDA≥ 3.0).

Limited # of Thresholds for Thresholded Variables

16. Use at most 2 of: MaxFrequencyAnyPattern = 0.0, MaxFrequencyAnyPattern≥ 0.5 . . .
MaxFrequencyAnyPattern≥ 3.0.

17. Use at most 2 of: MaxFrequencyLPD = 0.0, MaxFrequencyLPD≥ 0.5. . .MaxFrequencyLPD≥
3.0.

18. Use at most 2 of: MaxFrequencyGPD = 0.0, MaxFrequencyGPD≥ 0.5. . .MaxFrequencyGPD≥
3.0.

74

Ustun and Rudin

19. Use at most 2 of: MaxFrequencyGRDA= 0.0, MaxFrequencyGRDA≥ 0.5. . .MaxFrequencyGRDA≥
3.0.

20. Use at most 2 of: MaxFrequencyBiPD = 0.0, MaxFrequencyBiPD≥ 0.5. . .MaxFrequencyBiPD≥
3.0.

21. Use at most 2 of: MaxFrequencyLRDA = 0.0, MaxFrequencyLRDA≥ 0.5 . . .MaxFrequencyLRDA≥
3.0.

Any cEEG Pattern or Specific cEEG Patterns

22. Use either PatternIsStimulusInducedAny or any of (PatternIsStimulusInducedBiPD ,
PatternIsStimulusInducedGRDA, PatternIsStimulusInducedGPD , PatternIsStimulusIn-
ducedLPD , PatternIsStimulusInducedLRDA) or none of the variables.

23. Use either PatternIsSuperImposed or any of (PatternIsSuperImposedBiPD , PatternIsSu-
perImposedGPD PatternIsSuperImposedGRDA, PatternIsSuperImposedLPD , PatternIsSu-
perImposedLRDA), or none of the variables.

24. Use either MaxFrequencyAnyPattern (or its thresholded versions) or any of MaxFre-
quencyBiPD , MaxFrequencyGRDA, MaxFrequencyGPD , MaxFrequencyLPD , MaxFre-
quencyLRDA, (or their thresholded versions), or none of the variables.

G.3. Additional Experimental Results

Training Requirements % of Instances That Satisfy Constraints on

Method # Instances # Models Monotonicity Model Size Operational All Constraints

RiskSLIM 1 6 100% 100% 100% 100%

PooledRd 1,100 33,000 100% 22% 20% 20%

PooledRd* 1,100 33,000 100% 22% 20% 20%

PooledRsRd 1,100 33,000 100% 9% 5% 2%

PooledRsRd* 1,100 33,000 23% 9% 5% 5%

PooledSeqRd 1,100 33,000 100% 10% 7% 4%

PooledSeqRd* 1,100 33,000 98% 10% 8% 4%

Table 9: Training requirements and constraint violations for the methods in Table 4. Each instance is a
unique combination of free parameters. # models represents the total number of models that we must train
to (1) choose parameters of the final risk score and (2) pair this model an unbiased estimate of performance.
We need to train 33K for other methods since they require nested cross validation.

75

	Introduction
	Related Work

	Risk Score Problem
	Methodology
	Cutting Plane Algorithms
	The Lattice Cutting Plane Algorithm
	Performance Comparison with MINLP Algorithms

	Algorithmic Improvements
	Discrete Coordinate Descent
	Sequential Rounding
	Chained Updates

	Experiments
	Setup
	Discussion

	ICU Seizure Prediction
	Problem Description
	Discussion

	Concluding Remarks
	Omitted Proofs
	Small Regularization Parameters do not Influence Accuracy
	Background on Risk Scores
	Details on Computational Experiments
	Simulation Procedure for Synthetic Datasets
	Setup on the Performance Comparison in Section 3.3
	Results for MINLP Algorithms

	Additional Details on Algorithmic Improvements
	Initialization Procedure
	Reducing Data-Related Computation
	Fast Loss Evaluation via a Lookup Table
	Faster Rounding Heuristics via Subsampling

	Additional Experimental Results
	Supporting Material for Seizure Prediction
	List of Input Variables
	List of Operational Constraints
	Additional Experimental Results

