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Abstract

We propose a stochastic variance-reduced cubic regularized Newton method (SVRC) for
non-convex optimization. At the core of SVRC is a novel semi-stochastic gradient along
with a semi-stochastic Hessian, which are specifically designed for cubic regularization
method. For a nonconvex function with n component functions, we show that our algorithm
is guaranteed to converge to an (ε,

√
ε)-approximate local minimum within Õ(n4/5/ε3/2)1

second-order oracle calls, which outperforms the state-of-the-art cubic regularization algo-
rithms including subsampled cubic regularization. To further reduce the sample complexity
of Hessian matrix computation in cubic regularization based methods, we also propose a
sample efficient stochastic variance-reduced cubic regularization (Lite-SVRC) algorithm for
finding the local minimum more efficiently. Lite-SVRC converges to an (ε,

√
ε)-approximate

local minimum within Õ(n + n2/3/ε3/2) Hessian sample complexity, which is faster than
all existing cubic regularization based methods. Numerical experiments with different non-
convex optimization problems conducted on real datasets validate our theoretical results
for both SVRC and Lite-SVRC.

Keywords: Cubic Regularization, Nonconvex Optimization, Variance Reduction, Hessian
Sample Complexity, Local Minimum

1. Introduction

We study the following unconstrained finite-sum nonconvex optimization problem:

min
x∈Rd

F (x) :=
1

n

n∑
i=1

fi(x), (1)

1. Here Õ hides poly-logarithmic factors.
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where each fi : Rd → R is a general nonconvex function. Such nonconvex optimization
problems are ubiquitous in machine learning, including training deep neural network (LeCun
et al., 2015), robust linear regression (Yu and Yao, 2017) and nonconvex regularized logistic
regression (Reddi et al., 2016b). In principle, finding the global minimum of (1) is generally
a NP-hard problem (Hillar and Lim, 2013) due to the lack of convexity.

Instead of finding the global minimum, various algorithms have been developed in the lit-
erature (Nesterov and Polyak, 2006; Cartis et al., 2011a; Carmon and Duchi, 2016; Agarwal
et al., 2017; Xu et al., 2018b; Allen-Zhu and Li, 2018) to find an approximate local minimum
of (1). In particular, a point x is said to be an (εg, εH)-approximate local minimum of F if

‖∇F (x)‖2 ≤ εg, λmin(∇2F (x)) ≥ −εH , (2)

where εg, εH > 0 are predefined precision parameters. It has been shown that such approx-
imate local minima can be as good as global minima in some problems. For instance, Ge
et al. (2016) proved that any local minimum is actually a global minimum in matrix comple-
tion problems. Therefore, to develop an algorithm to find an approximate local minimum
is of great interest both in theory and practice.

A very important and popular method to find the approximate local minimum is cubic-
regularized (CR) Newton method, which was originally introduced by Nesterov and Polyak
(2006). Generally speaking, in the k-th iteration, CR solves a sub-problem which minimizes
a cubic-regularized second-order Taylor expansion at current iterate xk. The update rule
can be written as follows:

hk = argmin
h∈Rd

〈∇F (xk),h〉+
1

2
〈∇2F (xk)h,h〉+

M

6
‖h‖32, (3)

xk+1 = xk + hk, (4)

where M > 0 is a penalty parameter used in CR. Nesterov and Polyak (2006) proved that
to find an (ε,

√
ε)-approximate local minimum of a nonconvex function F , CR requires at

most O(ε−3/2) iterations. However, a major drawback for CR is that it needs to sample
n individual gradients ∇fi(xk) and Hessian matrices ∇2fi(xk) in (3) at each iteration,
which leads to a total O(nε−3/2) Hessian sample complexity, i.e., number of queries to the
stochastic Hessian ∇2fi(x) for some i and x. Such computational cost will be extremely
expensive when n is large as in many large scale machine learning problems.

To overcome the computational burden of CR based methods, some recent studies have
proposed to use sub-sampled Hessian instead of the full Hessian (Kohler and Lucchi, 2017;
Xu et al., 2017a) to reduce the Hessian complexity. In detail, Kohler and Lucchi (2017)
proposed a sub-sampled cubic-regularized Newton method (SCR), which uses a subsampled
Hessian instead of full Hessian to reduce the per iteration sample complexity of Hessian
evaluations. Xu et al. (2017a) proposed a refined convergence analysis of SCR, as well
as a subsampled Trust Region algorithm (Conn et al., 2000). Nevertheless, SCR bears a
much slower convergence rate than the original CR method, and the total Hessian sample
complexity for SCR to achieve an (ε,

√
ε)-approximate local minimum is Õ(ε−5/2). This

suggests that the computational cost of SCR could be even worse than CR when ε . n−1.
In this paper, we propose a novel cubic regularization algorithm named Stochastic

Variance-Reduced Cubic regularization (SVRC), which incorporates the variance reduc-
tion techniques (Johnson and Zhang, 2013; Xiao and Zhang, 2014; Allen-Zhu and Hazan,
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2016; Reddi et al., 2016a) into the cubic-regularized Newton method. The key component
in our algorithm is a novel semi-stochastic gradient, together with a semi-stochastic Hes-
sian, that are specifically designed for cubic regularization. Furthermore, we prove that,
for L2-Hessian Lipschitz functions, to attain an (ε,

√
L2ε)-approximate local minimum, our

proposed algorithm requires O(n+n4/5/ε3/2) Second-order Oracle (SO) calls and O(1/ε3/2)
Cubic Subproblem Oracle (CSO) calls. Here an SO oracle represents an evaluation of triple
(fi(x),∇fi(x),∇2fi(x)), and a CSO oracle denotes an evaluation of the exact solution (or
inexact solution) of the cubic subproblem (3). Compared with the original cubic regu-
larization algorithm (Nesterov and Polyak, 2006), which requires O(n/ε3/2) SO calls and
O(1/ε3/2) CSO calls, our proposed SVRC algorithm reduces the SO calls by a factor of
Ω(n1/5).

The second-order oracle complexity is dominated by the maximum number of queries
to one of the elements in the triplet (fi(x),∇fi(x),∇2fi(x)), and therefore is not always
desirable in reflecting the computational complexity of multifarious applications. Therefore,
we need to focus more on the Hessian sample complexity of cubic regularization methods
for relatively high dimensional problems. Based on the SVRC algorithm, in order to further
reduce the Hessian sample complexity, we also develop a sample efficient stochastic variance-
reduced cubic-regularized Newton method called Lite-SVRC, which significantly reduces
the sample complexity of Hessian matrix evaluations in stochastic CR methods. Under
mild conditions, we prove that Lite-SVRC achieves a lower Hessian sample complexity
than existing cubic regularization based methods. We prove that Lite-SVRC converges to
an (ε,

√
ε)-approximate local minimum of a nonconvex function within Õ(n + n2/3ε−3/2)

Hessian sample complexity.
We summarize the major contributions of this paper as follows:

• We present a novel cubic regularization method (SVRC) with improved oracle com-
plexity. To the best of our knowledge, this is the first algorithm that outperforms
cubic regularization without any loss in convergence rate. In sharp contrast, existing
subsampled cubic regularization methods (Kohler and Lucchi, 2017; Xu et al., 2017a)
suffer from worse convergence rates than cubic regularization.

• We also extend SVRC to the case with inexact solution to the cubic regularization
subproblem. Similar to previous work (Cartis et al., 2011a; Xu et al., 2017a), we layout
a set of sufficient conditions, under which the output of the inexact algorithm is still
guaranteed to have the same convergence rate and oracle complexity as the exact
algorithm. This further sheds light on the practical implementation of our algorithm.

• As far as we know, our work is the first to rigorously demonstrate the advantage of
variance reduction for second-order optimization algorithms. Although there exist a
few studies (Lucchi et al., 2015; Moritz et al., 2016; Rodomanov and Kropotov, 2016)
using variance reduction to accelerate Newton method, none of them can deliver faster
rates of convergence than standard Newton method.

• We also propose a lite version of SVRC, namely, the Lite-SVRC algorithm, which only
requires a constant batch size of Hessian evaluations at each iteration. The proposed
Lite-SVRC further improves the Hessian sample complexity of SVRC and outperforms
the state-of-the-art result by achieving Õ(n+ n2/3ε−3/2) Hessian sample complexity.
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• We conduct extensive numerical experiments with different types of nonconvex opti-
mization problems on various real datasets to validate our theoretical results for both
SVRC and Lite-SVRC.

When the short version of this paper was submitted to ICML, there was a concurrent
work by Wang et al. (2018a), which applies the idea of stochastic variance reduction to cubic
regularization as well. Their algorithms have a worse Hessian sample complexity than Lite-
SVRC. Since the short version of this paper was published in ICML, there have been two
followup works by Wang et al. (2018b) and Zhang et al. (2018), which both proposed similar
algorithms to our Lite-SVRC algorithm, and achieved the same Hessian sample complexity.
However, Wang et al. (2018b) and Zhang et al. (2018)’s results rely on the adaptive choice
of batch size for stochastic Hessian. Furthermore, Zhang et al. (2018)’s result relies on a
stronger notion of Hessian Lipschitz condition. We will discuss the key difference between
our Lite-SVRC algorithm and the algorithms in Wang et al. (2018a,b); Zhang et al. (2018)
in detail in Section 7.

Notation: We use a(x) = O(b(x)) if a(x) ≤ Cb(x), where C is a constant independent
of any parameters in our algorithm. We use Õ(·) to hide polynomial logarithm terms. We
use ‖v‖2 to denote the 2-norm of vector v ∈ Rd. For symmetric matrix H ∈ Rd×d, we use
‖H‖2 and ‖H‖Sr to denote the spectral norm and Schatten r- norm of H. We denote the
smallest eigenvalue of H to be λmin(H).

2. Related Work

Cubic Regularization and Trust-region Newton Method Traditional Newton method
in convex setting has been widely studied in past decades (Bennett, 1916; Bertsekas, 1999).
The most related work to ours is the nonconvex cubic regularized Newton method, which
was originally proposed in Nesterov and Polyak (2006). Cartis et al. (2011a) presented
an adaptive framework of cubic regularization, which uses an adaptive estimation of the
local Lipschitz constant and approximate solution to the cubic subproblem. To connect
cubic regularization with traditional trust region method (Conn et al., 2000; Cartis et al.,
2009, 2012, 2013), Blanchet et al. (2016); Curtis et al. (2017); Mart́ınez and Raydan (2017)
showed that the trust-region Newton method can achieve the same iteration complexity as
the cubic regularization method. To overcome the computational burden of gradient and
Hessian matrix evaluations, Kohler and Lucchi (2017); Xu et al. (2017a,b) proposed to use
subsampled gradient and Hessian in cubic regularization. On the other hand, in order to
solve the cubic subproblem (3) more efficiently, Carmon and Duchi (2016) proposed to use
gradient descent, while Agarwal et al. (2017) proposed a sophisticated algorithm based on
approximate matrix inverse and approximate PCA. Tripuraneni et al. (2018) proposed a
refined stochastic cubic regularization algorithm based on above subproblem solver. How-
ever, none of the aforementioned variants of cubic regularization outperforms the original
cubic regularization method in terms of oracle complexity.
Finding Approximate Local Minima There is another line of work for finding approx-
imate local minima which focuses on escaping from nondegenerated saddle points using
the negative curvature. Ge et al. (2015); Jin et al. (2017) showed that simple (stochastic)
gradient descent with an injected uniform noise over a small ball is able to converge to ap-
proximate local minima. Carmon et al. (2018); Royer and Wright (2018); Allen-Zhu (2018)
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showed that by calculating the negative curvature using Hessian information or Hessian
vector product, one can find approximate local minima faster than first-order methods.
Xu et al. (2018b); Allen-Zhu and Li (2018); Jin et al. (2018) further proved that gradient
methods with additive noise are also able to find approximate local minima faster than the
first-order methods. Yu et al. (2017) proposed the GOSE algorithm to save negative curva-
ture computation and Yu et al. (2018) improved the gradient complexity by exploring the
third-order smoothness of objective functions. Raginsky et al. (2017); Zhang et al. (2017);
Xu et al. (2018a) proved that a family of algorithms based on discretizations of Langevin
dynamics can find a neighborhood of the global minimum of nonconvex objective functions.

Variance Reduction Variance-reduced techniques play an important role in our proposed
algorithm, which have been extensively studied for large-scale finite-sum optimization prob-
lems. Variance reduction was first proposed in convex finite-sum optimization (Roux et al.,
2012; Johnson and Zhang, 2013; Xiao and Zhang, 2014; Defazio et al., 2014), which uses
semi-stochastic gradient to reduce the variance of the stochastic gradient and improves the
gradient complexity of both stochastic gradient descent (SGD) and gradient descent (GD).
Representative algorithms include Stochastic Average Gradient (SAG) (Roux et al., 2012),
Stochastic Variance Reduced Gradient (SVRG) (Johnson and Zhang, 2013) and SAGA
(Defazio et al., 2014), to mention a few. Garber and Hazan (2015); Shalev-Shwartz (2016)
studied non-convex finite-sum problems where each individual function may be non-convex,
but their sum is still convex. Reddi et al. (2016a) and Allen-Zhu and Hazan (2016) ex-
tended SVRG to the general non-convex finite-sum optimization, and proved that SVRG
is able to converge to a first-order stationary point with the same convergence rate as gra-
dient descent, yet with an Ω(n1/3) improvement in gradient complexity. Recently Zhou
et al. (2018b) and Fang et al. (2018) further improved the gradient complexity of SVRG
type of algorithms to converge to a first-order stationary point in nonconvex optimization
to an optimal rate. However, to the best of our knowledge, it is still an open problem
whether variance reduction can improve the oracle complexity of second-order optimization
algorithms.

The remainder of this paper is organized as follows: we present the stochastic variance-
reduced cubic regularization (SVRC) algorithm in Section 3. We present our theoretical
analysis of the proposed SVRC algorithm in Section 4 and discuss on SVRC with inexact
cubic subproblem oracles in Section 5. In Section 6, we propose a modified algorithm, Lite-
SVRC, to further reduce Hessian sample complexity and present its theoretical analysis in
Section 7. We conduct thorough numerical experiments on different nonconvex optimization
problems and on different real world datasets to validate our theory in Section 8. We
conclude our work in Section 9.

3. Stochastic Variance-Reduced Cubic Regularization

In this section, we present a novel algorithm, which utilizes stochastic variance reduction
techniques to improve cubic regularization method.

As is discussed in the introduction, to reduce the computation burden of gradient and
Hessian matrix evaluations in the cubic regularization updates in (3), subsampled gradient
and Hessian matrix have been used in subsampled cubic regularization (Kohler and Luc-
chi, 2017; Xu et al., 2017b) and stochastic cubic regularization (Tripuraneni et al., 2018).
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Algorithm 1 Stochastic Variance Reduction Cubic Regularization (SVRC)

1: Input: batch size parameters bg, bh, cubic penalty parameters {Ms,t}, epoch number
S, epoch length T and starting point x0.

2: Initialization x̂1 = x0

3: for s = 1, . . . , S do
4: xs0 = x̂s

5: gs = ∇F (x̂s) = 1
n

∑n
i=1∇fi(x̂s),Hs = 1

n

∑n
i=1∇2fi(x̂

s)
6: for t = 0, . . . , T − 1 do
7: Sample index set Ig, Ih, |Ig| = bg, |Ih| = bh;
8: vst = 1

bg

∑
it∈Ig

[
∇fit(xst )−∇fit(x̂s)

]
+ gs −

(
1
bg

∑
it∈Ig ∇

2fit(x̂
s)−Hs

)
(xst − x̂s)

9: Us
t = 1

bh

∑
jt∈Ih

[
∇2fjt(x

s
t )−∇2fjt(x̂

s)
]

+ Hs

10: hst = argmin〈vst ,h〉+ 1
2〈U

s
th,h〉+

Ms,t

6 ‖h‖
3
2,

11: xst+1 = xst + hst
12: end for
13: x̂s+1 = xsT
14: end for
15: Output: xout = xst , where s, t are uniformly random chosen from s ∈ [S] and t ∈ [T ].

Nevertheless, the stochastic gradient and Hessian matrix have large variances, which un-
dermine the convergence performance. Inspired by SVRG (Johnson and Zhang, 2013), we
propose to use a semi-stochastic version of gradient and Hessian matrix, which can control
the variances automatically. Specifically, our algorithm has two loops. At the beginning
of the s-th iteration of the outer loop, we denote x̂s = xs0. We first calculate the full
gradient gs = ∇F (x̂s) and Hessian matrix Hs = ∇2F (x̂s), which are stored for further ref-
erences in the inner loop. At the t-th iteration of the inner loop, we calculate the following
semi-stochastic gradient and Hessian matrix:

vst =
1

bg

∑
it∈Ig

[
∇fit(xst )−∇fit(x̂s)

]
+ gs − 1

bg

∑
it∈Ig

(
∇2fit(x̂

s)−Hs
)
(xst − x̂s

)
, (5)

Us
t =

1

bh

∑
jt∈Ih

[
∇2fjt(x

s
t )−∇2fjt(x̂

s)
]

+ Hs, (6)

where Ig and Ih are batch index sets, and the batch sizes bg = |Ig|, bh = |Ih| will be decided
later. In each inner iteration, we solve the following cubic regularization subproblem:

hst = argminms
t (h),

ms
t (h) = 〈vst ,h〉+

1

2
〈Us

th,h〉+
Ms,t

6
‖h‖32, (7)

where {Ms,t} are cubic regularization parameters, which may depend on s and t. Then we
perform the update xst+1 = xst + hst in the t-th iteration of the inner loop. The proposed
algorithm is displayed in Algorithm 1.

There are two notable features of our “estimator” of the full gradient and Hessian in
each inner loop, compared with that used in SVRG (Johnson and Zhang, 2013). The first
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is that our gradient and Hessian estimators consist of mini-batches of stochastic gradient
and Hessian. The second one is that we use second-order information when we construct
the gradient estimator vst , while classical SVRG only uses first-order information to build
it. Intuitively speaking, both features are used to make a more accurate estimation of the
true gradient and Hessian with affordable oracle calls. Note that similar approximations of
the gradient and Hessian matrix have been staged in recent work by Gower et al. (2018)
and Wai et al. (2017), where they used this new kind of estimator for traditional SVRG in
the convex setting, which radically differs from our setting.

4. Theoretical Analysis of SVRC

In this section, we prove the convergence rate of SVRC (Algorithm 1) to an (ε,
√
ε)-

approximate local minimum. We first lay out the following Hessian Lipschitz assumption,
which is necessary for our analysis and is widely used in the literature (Nesterov and Polyak,
2006; Xu et al., 2016; Kohler and Lucchi, 2017).

Assumption 1 (Hessian Lipschitz) There exists a constant L2 > 0, such that for all
x,y and i ∈ [n] ∥∥∇2fi(x)−∇2fi(y)

∥∥
2
≤ L2‖x− y‖2.

The Hessian Lipschitz assumption plays a central role in controlling the changing speed
of second order information. In fact, this is the only assumption we need to prove our
theoretical results for SVRC. We then define the following optimal function gap between
initial point x0 and the global minimum of F .

Definition 2 (Optimal Gap) For function F (·) and the initial point x0, let ∆F be

∆F = inf{∆ ∈ R : F (x0)− F ∗ ≤ ∆},

where F ∗ = infx∈Rd F (x).

W.L.O.G., we assume ∆F < +∞ throughout this paper. Before we present nonasymptotic
convergence results of Algorithm 1, we define the following useful notation

µ(x) = max

{
‖∇F (x)‖3/22 ,−

λ3min

(
∇2F (x)

)
L
3/2
2

}
. (8)

A similar definition also appears in Nesterov and Polyak (2006) with a slightly different
form, which is used to describe how much a point is similar to a true local minimum. In
particular, according to the definition in (8), µ(x) ≤ ε3/2 holds if and only if

‖∇F (x)‖2 ≤ ε, λmin

(
∇2F (x)

)
> −

√
L2ε. (9)

Therefore, in order to find an (ε,
√
L2ε)-approximate local minimum of the nonconvex func-

tion F , it suffices to find x which satisfies µ(x) < ε3/2. Next we formally define our oracles:
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Definition 3 (Second-order Oracle) Given an index i and a point x, one second-order
oracle (SO) call returns such a triple:

[fi(x),∇fi(x),∇2fi(x)]. (10)

Definition 4 (Cubic Subproblem Oracle) Given a vector g ∈ Rd, a Hessian matrix H
and a positive constant θ, one Cubic Subproblem Oracle (CSO) call returns hsol, where hsol

can be solved exactly as follows

hsol = argmin
h∈Rd

〈g,h〉+
1

2
〈h,Hh〉+

θ

6
‖h‖32.

Remark 5 The second-order oracle is a special form of Information Oracle firstly intro-
duced by Nemirovsky and Yudin (1983), which returns gradient, Hessian and all high order
derivatives of the objective function F (x). Here, our second-order oracle will only returns
first and second order information at some point of single objective fi instead of F . We
argue that it is a reasonable adaption because in this paper we focus on finite-sum objective
function. The Cubic Subproblem Oracle will return an exact or inexact solution of (7),
which plays an important role in both theory and practice.

Now we are ready to give a general convergence result of Algorithm 1:

Theorem 6 Under Assumption 1, suppose that the cubic regularization parameter Ms,t of
Algorithm 1 satisfies that Ms,t = CML2, where L2 is the Hessian Lipschitz parameter and
CM ≥ 100 is a constant. The batch sizes bg and bh satisfy that

bg ≥ 5T 4, bh ≥ 100T 2 log d, (11)

where T ≥ 2 is the length of the inner loop of Algorithm 1 and d is the dimension of the
problem. Then the output of Algorithm 1 satisfies

E[µ(xout)] ≤
240C2

ML
1/2
2 ∆F

ST
. (12)

Remark 7 According to (8), to ensure that xout is an (ε,
√
L2ε)-approximate local mini-

mum, we can set the right hand side of (12) to be less than ε3/2. This immediately implies

that the total iteration complexity of Algorithm 1 is ST = O(∆FL
1/2
2 ε−3/2), which matches

the iteration complexity of cubic regularization (Nesterov and Polyak, 2006).

Remark 8 Note that there is a log d term in the expression of the parameter, and it is
only related to Hessian batch size bh. The log d term comes from matrix concentration
inequalities, which is believed to be unavoidable (Tropp et al., 2015). In other words, the
batch size of Hessian matrix bh has an inevitable relation to dimension d, unlike the batch
size of gradient bg.

The result in Theorem 6 depends on a series of parameters. In the following corollary, we
will show how to choose these parameters in practice to achieve a better oracle complexity.
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Corollary 9 Under Assumption 1, let the cubic regularization parameter Ms,t = M =

CML2, where CM ≥ 100 is a constant. Let the epoch length T = n1/5, batch sizes bg = 5n4/5,

bh = 100n2/5 log d, and the number of epochs S = max{1, 240C2
ML

1/2
2 ∆Fn

−1/5ε−3/2}. Then
Algorithm 1 will find an (ε,

√
L2ε)-approximate local minimum xout within

O

(
n+

∆F

√
L2n

4/5

ε3/2

)
SO calls (13)

and

O

(
∆F

√
L2

ε3/2

)
CSO calls. (14)

Remark 10 Corollary 9 states that we can reduce the SO calls by setting the batch size bg, bh
related to n. In contrast, in order to achieve an (ε,

√
L2ε) local minimum, original cubic

regularization method in Nesterov and Polyak (2006) needs O(n/ε3/2) second-order oracle
calls, which is by a factor of n1/5 worse than ours. And subsampled cubic regularization
(Kohler and Lucchi, 2017; Xu et al., 2017b) requires Õ(n/ε3/2 + 1/ε5/2) SO calls, which is
also worse than our algorithm.

In Table 1, we summarize the comparison of our SVRC algorithm with the most related
algorithms in terms of SO and CSO oracle complexities. It can be seen from Table 1 that
our algorithm (SVRC) achieves the lowest (SO and CSO) oracle complexity compared with
the original cubic regularization method (Nesterov and Polyak, 2006) which employs full
gradient and Hessian evaluations and the subsampled cubic method (Kohler and Lucchi,
2017; Xu et al., 2017b). In particular, our algorithm reduces the SO oracle complexity of
cubic regularization by a factor of n1/5 for finding an (ε,

√
L2ε)-approximate local minimum.

Algorithm SO calls CSO calls Gradient Lipschitz Hessian Lipschitz

CR O
(

n
ε3/2

)
O
(

1
ε3/2

)
no yes

SCR Õ
(

n
ε3/2

+ 1
ε5/2

)
2 O

(
1
ε3/2

)
yes yes

SVRC
Õ
(
n+ n4/5

ε3/2

)
O
(

1
ε3/2

)
no yes

(Algorithm 1)

Table 1: Comparisons between different methods to find (ε,
√
L2ε)-local minimum on the

second-order oracle (SO) complexity and the cubic sub-problem oracle (CSO) com-
plexity. The compared methods include (1) CR: Cubic regularization (Nesterov
and Polyak, 2006) and (2) SCR: Subsampled cubic regularization (Kohler and
Lucchi, 2017; Xu et al., 2017b).

2. It is the refined rate proved by Xu et al. (2017b) for the subsampled cubic regularization algorithm
proposed in Kohler and Lucchi (2017).
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5. SVRC with Inexact Oracles

In practice, the exact solution to the cubic subproblem (7) cannot be obtained. Instead,
one can only get an approximate solution by some inexact solver. Thus we replace the CSO
oracle in (4) with the following inexact CSO oracle

h̃sol ≈ argmin
h∈Rd

〈g,h〉+
1

2
〈h,Hh〉+

θ

6
‖h‖32.

To analyze the performance of SVRC with inexact cubic subproblem solver, we relax
the exact solver hst in Line 10 of Algorithm 1 with

h̃st ≈ argminms
t (h). (15)

The ultimate goal of this section is to prove that the theoretical results of SVRC still hold
with inexact subproblem solvers. To this end, we present the following sufficient condition,
under which inexact solution can ensure the same oracle complexity as the exact solution:

Condition 11 (Inexact Condition) For each s, t and a given δ > 0, h̃st satisfies δ-
inexact condition if h̃st satisfies

ms
t (h̃

s
t ) ≤ −

Ms,t

12
‖h̃st‖32 + δ,

‖∇ms
t (h̃

s
t )‖2 ≤M

1/3
s,t δ

2/3,∣∣‖h̃st‖2 − ‖hst‖2∣∣ ≤M−1/3s,t δ1/3.

Remark 12 Similar inexact conditions have been studied in the literature of cubic regular-
ization. For instance, Nesterov and Polyak (2006) presented a practical way to solve the
cubic subproblem without termination condition. Cartis et al. (2011a); Kohler and Lucchi
(2017) presented termination criteria for approximate solution to cubic subproblem, which
is slightly different from Condition 11.

Now we present the convergence result of SVRC with inexact CSO oracles:

Theorem 13 Suppose that for each s, t, h̃st is an inexact solver of cubic subproblem ms
t (h),

which satisfies Condition 11. Under the same conditions of Theorem 6, the output of Algo-
rithm 1 satisfies

E[µ(xout)] ≤
240C2

ML
1/2
2 ∆F

ST
+ 480C2

ML
1/2
2 δ. (16)

Remark 14 By the definition of µ(x), in order to attain an (ε,
√
L2ε)-approximate local

minimum, we require E[µ(xout)] ≤ ε3/2 and thus 480C2
ML

1/2
2 δ < ε3/2, which implies that δ

in Condition 11 should satisfy δ < (480C2
ML

1/2
2 )−1ε3/2. Thus the total iteration complexity

of Algorithm 1 with inexact oracle is still O(∆FL
1/2
2 ε−3/2).

By the same choice of parameters, Algorithm 1 with inexact oracle can achieve a reduc-
tion in SO calls.

10
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Corollary 15 Suppose that for each s, t, h̃st is an inexact solver of cubic subproblem ms
t (h),

which satisfies Condition 11 with δ = (960C2
M )−1L

−1/2
2 ε3/2. Under Assumption 1, let the

cubic regularization parameter Ms,t = M = CML2, where CM ≥ 100 is a constant. Let the

epoch length T = n1/5, batch sizes bg = 5n4/5 and bh = 100n2/5 log d, and the number of

epochs S = max{1, 480C2
ML

1/2
2 ∆Fn

−1/5ε−3/2}. Then Algorithm 1 will find an (ε,
√
L2ε)-

approximate local minimum within

O

(
n+

∆F

√
L2n

4/5

ε3/2

)
SO calls (17)

and

O

(
∆F

√
L2

ε3/2

)
CSO calls. (18)

Remark 16 It is worth noting that even with the inexact CSO oracle satisfying Condition
11, the SO and CSO complexities of SVRC remain the same as that of SVRC with exact
CSO oracle. Furthermore, this result always holds with any inexact cubic sub-problem solver.

6. Lite-SVRC for Efficient Hessian Sample Complexity

As we discussed in the introduction section, when the problem dimension d is relatively
high, we may want to focus more on the Hessian sample complexity of cubic regularization
methods than the second-order oracle complexity. In this section, we present a new algo-
rithm Lite-SVRC based on SVRC, which trades the second-order oracle complexity for a
more affordable Hessian sample complexity. As is displayed in Algorithm 2, our Lite-SVRC
algorithm has similar structure as Algorithm 1 with S epochs and T iterations within each
epoch. At the t-th iteration of the s-th epoch, we also use a semi-stochastic gradient ṽst and
Hessian Us

t to replace the full gradient and full Hessian in CR subproblem (3) as follows

ṽst =
1

Bg;s,t

∑
it∈Ig

[
∇fit(xst )−∇fit(x̂s)

]
+ gs, (19)

Us
t =

1

Bh

∑
jt∈Ih

[
∇2fjt(x

s
t )−∇2fjt(x̂

s)
]

+ Hs, (20)

where x̂s is the reference point at which gs and Hs are computed, Ig and Ih are sampling
index sets (with replacement), Bg;s,t and Bh are sizes of Ig and Ih.

Compared with SVRC (Algorithm 1), Lite-SVRC uses a lite version of semi-stochastic
gradient ṽst . Note that the additional Hessian information in the semi-stochastic gradient in
(5) actually increases the Hessian sample complexity. Therefore, with the goal of reducing
the Hessian sample complexity, the standard semi-stochastic gradient (Johnson and Zhang,
2013; Xiao and Zhang, 2014) is used in this section. Note that similar semi-stochastic
gradient and Hessian have been proposed in Johnson and Zhang (2013); Xiao and Zhang
(2014) and Gower et al. (2018); Wai et al. (2017); Zhou et al. (2018a); Wang et al. (2018a,b);
Zhang et al. (2018) respectively. In Algorithm 2, we choose fixed batch size of stochastic
Hessian as Bh = |Ih|. However, the batch size of stochastic gradient is chosen adaptively at
each iteration:

Bg;s,t = Dg/‖xst − x̂s‖22, (21)

11



Zhou, Xu and Gu

where Dg is a constant only depending on n and d.

Algorithm 2 Sample efficient stochastic variance-reduced cubic regularization method
(Lite-SVRC)

1: Input: batch size parameters Dg, Bh, cubic penalty parameter {Ms,t}, epoch number
S, epoch length T and starting point x0.

2: Initialization x̂1 = x0

3: for s = 1, . . . , S do
4: xs0 = x̂s

5: gs = ∇F (x̂s) = 1
n

∑n
i=1∇fi(x̂s),Hs = ∇2F (x̂s) = 1

n

∑n
i=1∇2fi(x̂

s)

6: hs0 = argminh∈Rd ms
0(h) = 〈gs,h〉+ 1

2〈H
sh,h〉+

Ms,0

6 ‖h‖
3
2

7: xs1 = xs0 + hs0
8: for t = 1, . . . , T − 1 do
9: Bg;s,t = Dg/‖xst − x̂s‖22, t > 0

10: Sample index set Ig, Ih ⊆ [n], |Ig| = Bg;s,t, |Ih| = Bh
11: ṽst = 1

Bg;s,t

(∑
it∈Ig ∇fit(x

s
t )−∇fit(x̂s)

)
+ gs

12: Us
t = 1

Bh

(∑
jt∈Ih ∇

2fjt(x
s
t )−∇2fjt(x̂

s)
)

+ Hs

13: hst = argminh∈Rd ms
t (h) = 〈ṽst ,h〉+ 1

2〈U
s
th,h〉+

Ms,t

6 ‖h‖
3
2

14: xst+1 = xst + hst
15: end for
16: x̂s+1 = xsT
17: end for
18: Output: xout = xst , where s, t are uniformly random chosen from s ∈ [S] and t ∈ [T ].

In addition, the major difference between our algorithm and the SVRC algorithms pro-
posed in Wang et al. (2018a); Zhang et al. (2018); Wang et al. (2018b) is that our algorithm
uses a constant Hessian minibatch size instead of an adaptive one in each iteration, and
thus the parameter tuning of our algorithm is much easier. In sharp contrast, the minibatch
sizes of the stochastic Hessian in the algorithm proposed by Wang et al. (2018a); Zhang
et al. (2018); Wang et al. (2018b) are dependent on both accuracy parameter ε and the
current update hst , which make the update an implicit one and it is hard to tune such
hyperparameters in practice.

7. Theoretical Analysis of Lite-SVRC

In this section, we present our theoretical results on the Hessian sample complexity of Lite-
SVRC (Algorithm 2). Different from the analysis of SVRC in Section 4 which only requires
the Hessian Lipschitz condition (Assumption 1), we will need additionally the following
smoothness assumption for the analysis of Lite-SVRC:

Assumption 17 (Gradient Lipschitz) There exists a constant L1 > 0, such that for all
x,y and i ∈ {1, ..., n}

‖∇fi(x)−∇fi(y)‖2 ≤ L1‖x− y‖2.

12
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Assumptions 1 and 17 are mild and widely used in the line of research for finding
approximate global minima (Carmon and Duchi, 2016; Carmon et al., 2018; Agarwal et al.,
2017; Wang et al., 2018a; Yu et al., 2018).

Recall the definition in (8), we need to upper bound µ(xout) in order to find the ap-
proximate local minimum. The following theorem spells out the upper bound of µ(xout).

Theorem 18 Under Assumptions 1 and 17, suppose that n > 10,Ms,t = CML2, Dg ≥
C1L

2
1/L

2
2 · n4/3/CM and Bh > 144(C1Ch)2/3n2/3/C2

M , where Ch = 1200(log d) and CM , C1

are absolute constants. Then the output xout of Algorithm 2 satisfies

E[µ(xout)] ≤
216C2

ML
1/2
2 ∆F

ST
. (22)

Remark 19 Theorem 18 suggests that with a fixed number of inner loops T , if we run Algo-
rithm 2 for sufficiently large S epochs, then we have a point sequence xi where E[µ(xi)]→ 0.
That being said, xi will converge to a local minimum, which is consistent with the conver-
gence analysis in existing related work (Nesterov and Polyak, 2006; Kohler and Lucchi,
2017; Wang et al., 2018a).

Now we provide a specific choice of parameters used in Theorem 18 to derive the total
Hessian sample complexity of Algorithm 2.

Corollary 20 Under the same assumptions as in Theorem 18, let batch size parameters
satisfy Dg = 4L2

1/L
2
2 ·n4/3 and Bh = log d·(Ch ·n)2/3. Set the inner loop parameter T = n1/3

and cubic regularization parameter Ms,t = CML2, where CM is an absolute constant. Set the

epoch number S = O(max{L1/2
2 ∆F /(ε

3/2n1/3), 1}). Then the output xout from Algorithm 2
is an (ε,

√
L2ε)-approximate local minimum after

Õ

(
n+

∆F

√
L2

ε3/2
· n2/3

)
stochastic Hessian evaluations. (23)

Moreover, the total number of CSO calls of Algorithm 2 is

O

(
∆F

√
L2

ε3/2

)
.

Remark 21 Note that the CSO oracle complexity of Lite-SVRC is the same as SVRC. In
what follows, we present a comprehensive comparison on Hessian sample complexity between
our Lite-SVRC and other related algorithms in Table 2. The algorithm proposed in Wang
et al. (2018a) has two versions: sample with replacement and sample without replacement.
For the completeness, we present both versions in Wang et al. (2018a). From Table 2 we can
see that Lite-SVRC strictly outperforms CR by a factor of n1/3 and outperforms SVRC by
a factor of n2/15 in terms of Hessian sample complexity. Lite-SVRC also outperforms SCR
when ε = O(n−2/3), which suggests that the variance reduction scheme makes Lite-SVRC
perform better in the high accuracy regime. More importantly, our proposed Lite-SVRC does
not rely on the assumption that the function F is Lipschitz continuous, which is required by
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the algorithm proposed in Wang et al. (2018a). In terms of Hessian sample complexity, our
algorithm directly improves that of Wang et al. (2018a) by a factor of n2/33. The Hessian
sample complexity of Lite-SVRC is the same as that of the algorithms recently proposed in
Wang et al. (2018b) and Zhang et al. (2018). Nevertheless, Lite-SVRC uses a constant
Hessian sample batch size in contrast to the adaptive batch size as used in Wang et al.
(2018b); Zhang et al. (2018), which makes the use of Lite-SVRC algorithm much simpler
and more practical.

Algorithm Per-iteration Total
Function Gradient Hessian
Lipschitz Lipschitz Lipschitz

CR O(n) O
(

n
ε3/2

)
No No Yes

SCR Õ
(

1
ε

)
Õ
(

1
ε5/2

)
No3 Yes Yes

SVRCwith
4 Õ

(
‖xs

t−x̂
s‖22

‖hs
t‖22

)
Õ
(
n+ n3/4

ε3/2

)
Yes Yes Yes

SVRCwithout
4 Õ

((
1
n +

‖hs
t‖

2
2

‖xs
t−x̂s‖22

)−1)
Õ
(
n+ n8/11

ε3/2

)
Yes Yes Yes

SVRCWang Õ
(
‖xs

t−x̂
s‖22

max{ε,‖hs
t‖22}

)
Õ
(
n+ n2/3

ε3/2

)
No Yes Yes

SVRCZhang Õ
(
‖xs

t−x̂
s‖22

ε

)
Õ
(
n+ n2/3

ε3/2

)
No Yes Yes

SVRC5

Õ(n4/5) Õ
(
n+ n4/5

ε3/2

)
No No Yes

(Algorithm 1)
Lite-SVRC

Õ(n2/3) Õ
(
n+ n2/3

ε3/2

)
No Yes Yes

(Algorithm 2)

Table 2: Comparisons of per-iteration and total sample complexities of Hessian evaluations
for different algorithms: CR (Nesterov and Polyak, 2006), SCR (Kohler and Luc-
chi, 2017; Xu et al., 2017a), SVRCwith (Wang et al., 2018a), SVRCwithout (Wang
et al., 2018a), SVRCWang (Wang et al., 2018b), SVRCZhang (Zhang et al., 2018),
SVRC (Algorithm 1) and Lite-SVRC (Algorithm 2). Similar to Table 1, the CSO
oracle complexities of all the methods being compared are the same, i.e. O(1/ε3/2).
Therefore, we omit it for simplicity.

Recall the inexact cubic subproblem solver defined in Section 5. The same inexact CSO
oracles can also be used in Algorithm 2. In what follows, we present the convergence result
of Lite-SVRC with inexact CSO oracles.

3. Although the refined SCR in Xu et al. (2017b) does not need function Lipschitz, the original SCR in
Kohler and Lucchi (2017) needs it.

4. In Wang et al. (2018a), both algorithms need to calculate λmin(∇2F (xs
t )) at each iteration to decide

whether the algorithm should continue, which adds additional O(n) Hessian sample complexity. We
choose not to include this into the results in the table.

5. For SVRC (Algorithm 1), we present its second-order oracle calls derived in Section 4 as the Hessian
sample complexity.
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Theorem 22 Suppose that for each s, t, h̃st is an inexact solver of cubic subproblem ms
t (h)

satisfying Condition 11. Then under the same conditions of Theorem 18, the output of
Algorithm 2 satisfies

E[µ(xout)] ≤
216C2

ML
1/2
2 ∆F

ST
+ 432C2

ML
1/2
2 δ. (24)

In addition, Algorithm 2 with inexact oracle can also reduce the Hessian sample com-
plexity, which is summarized in the following corollary.

Corollary 23 Suppose that for each s, t, h̃st is an inexact solver of cubic subproblem ms
t (h)

satisfying Condition 11 with δ = (864C2
ML

1/2
2 )−1ε3/2. Then with the same choice of pa-

rameters in Corollary 20, Algorithm 2 will find an (ε,
√
L2ε)-approximate local minimum

within

Õ

(
n+

∆F

√
L2

ε3/2
· n2/3

)
stochastic Hessian evaluations,

and

O

(
∆F

√
L2

ε3/2

)
CSO calls.

8. Experiments

In this section, we conduct experiments on real world datasets to support our theoretical
analysis of the proposed SVRC and Lite-SVRC algorithms. We investigate two nonconvex
problems on three different datasets, a9a, ijcnn1 and covtype, which are all common datasets
used in machine learning and the sizes are summarized in Table 3.

8.1. Baseline Algorithms

Dataset sample size n dimension d

a9a 32,561 123
covtype 581,012 54
ijcnn1 35,000 22

Table 3: Datasets used in experiments.

To validate the superior performance of
the proposed SVRC (Algorithm 1) in
terms of second-order oracles, we com-
pare it with the following baseline algo-
rithms: (1) trust-region Newton meth-
ods (TR) (Conn et al., 2000); (2) Adap-
tive Cubic regularization (Cartis et al.,
2011a,b); (3) Subsampled Cubic regular-
ization (Kohler and Lucchi, 2017); (4)
Gradient Cubic regularization (Carmon
and Duchi, 2016) and (5) Stochastic Cu-
bic regularization (Tripuraneni et al., 2018). To demonstrate the improvement of Lite-SVRC
(Algorithm 2) on Hessian sample complexity, we further conduct experiments to compare
Lite-SVRC with all the baselines above including SVRC. In addition, we also compare
Lite-SVRC with (6) SVRC-without (Wang et al., 2018a), which focuses on reducing the
Hessian sample complexity as well. In addition, there are two versions of SVRC in Wang

15



Zhou, Xu and Gu

et al. (2018a), but the one based on sampling without replacement performs better in both
theory and experiments. We therefore only compare with this one. Note that the SVRC
algorithms in Wang et al. (2018b); Zhang et al. (2018) are essentially the same as our Lite-
SVRC algorithm, except in the choice of batch size for stochastic Hessian. Thus we do not
compare our Lite-SVRC with these algorithms (Wang et al., 2018b; Zhang et al., 2018).

8.2. Implementation Details

For Subsampled Cubic and SVRC-without, the sample size Bk is dependent on ‖hk‖2
(Kohler and Lucchi, 2017) and Bh is dependent on ‖hst‖2 (Wang et al., 2018a), which
make these two algorithms implicit algorithms. To address this issue, we follow the sug-
gestion in Kohler and Lucchi (2017); Wang et al. (2018a) and use ‖hk−1‖2 and ‖hst−1‖2
instead of ‖hk‖2 and ‖hst‖2. Furthermore, we choose the penalty parameter Ms,t for SVRC,
SVRC-without and Lite-SVRC as constants which are suggested by the original papers of
these algorithms. Finally, to solve the CR sub-problem in each iteration, we choose to solve
the sub-problem approximately in the Krylov subspace spanned by Hessian related vectors,
as used by Kohler and Lucchi (2017).

8.3. Nonconvex Optimization Problems

In this subsection, we formulate the nonconvex optimization problems that will be studied
in our experiments. In particular, we choose two nonconvex regression problem as our
objectives with the following nonconvex regularizer

g(λ, γ,x) = λ ·
d∑
i=1

(γxi)
2

1 + (γxi)2
, (25)

where λ, γ are the control parameters and xi is the i-th coordinate of x. λ and γ are set
differently for each dataset. This regularizer has been widely used in nonconvex regression
problem, which can be regarded as a special example of robust nonlinear regression (Reddi
et al., 2016b; Kohler and Lucchi, 2017; Wang et al., 2018a).

8.3.1. Logistic Regression with Nonconvex Regularizer

The first problem is a binary logistic regression problem with a nonconvex regularizer g
(Reddi et al., 2016b). Given training data xi ∈ Rd and label yi ∈ {0, 1}, 1 ≤ i ≤ n, our
goal is to solve the following optimization problem:

min
s∈Rd

1

n

n∑
i=1

[
yi · log φ(s>xi) + (1− yi) · log[1− φ(s>xi)]

]
+ g(λ, γ, s), (26)

where φ(x) = 1/(1 + exp(−x)) is the sigmoid function and g is defined in (25).

8.3.2. Nonlinear Least Square with Nonconvex Regularizer

Another problem is the nonlinear least square problem with a nonconvex regularizer g(λ, γ,x)
defined in (25). The nonlinear least square problem is also studied in Xu et al. (2017b).
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Given training data xi ∈ Rd and yi ∈ {0, 1}, 1 ≤ i ≤ n, our goal is to minimize the following
problem

min
s∈Rd

1

n

n∑
i=1

[
yi − φ(s>xi)

]2
+ g(λ, γ, s). (27)

Here φ(x) = 1/(1 + exp(−x)) is again the sigmoid function and g is defined in (25).

8.4. Experimental Results for SVRC

In this subsection, we present the experimental results for SVRC compared with baseline
algorithms (1)-(5) listed in Section 8.1. Here, we fix λ = 10 and γ = 1 of the nonconvex
regularizer g in (25) for both the logistic regression and the nonlinear least square problems.

Calculation for SO calls: For Subsampled Cubic, each loop takes (Bg +Bh) SO calls,
where Bg and Bh are the subsampling sizes of gradient and Hessian. For Stochastic Cubic,
each loop costs (ng+nh) SO calls, where ng and nh denote the subsampling sizes of gradient
and Hessian-vector operator. Gradient Cubic, Adaptive Cubic and TR cost n SO calls in
each loop. We define the amount of epochs to be the amount of SO calls divided by n.

Parameters: For each algorithm and each dataset, we choose different bg, bh, T for
the best performance. Meanwhile, we choose the cubic regularization parameter as Ms,t =
α/(1+β)(s+t/T ), α, β > 0 for each iteration. When β = 0, it has been proved to enjoy good
convergence performance. This choice of parameter is similar to the choice of penalty pa-
rameter in Subsampled Cubic and Adaptive Cubic, which sometimes makes some algorithms
behave better in our experiments.

Subproblem Solver: With regard to the cubic subproblem solver for solving (7),
we choose the Lanczos-type method used in Cartis et al. (2011a), which finds the global
minimizer hst of ms

t (h) in a Krylov subspace Kl = span{vst ,Us
tv

s
t , (U

s
t )

2vst , . . . , (U
s
t )
l−1vst},

where l� d is the dimension of Kl and can be selected manually or adaptively (Cartis et al.,
2011a; Kohler and Lucchi, 2017). The computational complexity of Lanczos-type method
consists of two parts according to Carmon and Duchi (2018). First, (l − 1) matrix-vector
products are performed to calculate the basis of Kl, whose computational complexity is
O(d2l). Second, the minimizer of ms

t (h) is computed in subspace Kl, whose computational
complexity is O(l log l). Thus, the total computational complexity of Lanczos-type method
is O(d2l).

At each iteration, SVRC needs to compute the semi-stochastic gradient vst and Hessian
Us
t , which costs O(dbg + d2bh) computational complexity for both nonconvex regularized

logistic regression and nonlinear least square problems, where bg and bh are the mini-batch
sizes of stochastic gradient and Hessian respectively. Putting these pieces together, the per-
iteration complexity of SVRC is O(dbg+d2bh+d2l), and the total computational complexity
of SVRC is O(ST (dbg + d2bh + d3)), where S is the number of epochs and T is the length
of epoch.

For the binary logistic regression problem in (26), the parameters of Ms,t = α/(1 +
β)(s+t/T ), α, β > 0 are set as follows: α = 0.05, β = 0 for a9a and ijcnn1 datasets and
α = 5e3, β = 0.15 for covtype. The experimental results are shown in Figure 1. For the
non-linear least squares problem in (27), we set α = 0.05, 1e8, 0.003 and β = 0, 1, 0.5 for
a9a, covtype and ijcnn1 datasets respectively. The experimental results are shown in Figure
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2. From both Figures 1 and 2, we can see that SVRC outperforms all the other baseline
algorithms on all the datasets. The only exception happens in the non-linear least square
problem on the covtype dataset, where our algorithm behaves a little worse than Adaptive
Cubic at the high accuracy regime in terms of epoch counts. However, under this setting,
our algorithm still outperforms the other baselines in terms of the CPU time.
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Figure 1: Logarithmic function value gap for nonconvex regularized logistic regression on
different datasets. (a), (b) and (c) present the oracle complexity comparison; (d),
(e) and (f) present the runtime comparison.

8.5. Experimental Results for Lite-SVRC

In this subsection, we present the experimental results for Lite-SVRC compared with all
the baselines listed in Section 8.1. For Lite-SVRC, we use the same cubic subproblem solver
used for SVRC in the previous subsection.

In the binary logistic regression problem in (26), for the nonconvex regularizer g in (25),
we set λ = 10−3 for all three datasets, and set γ = 10, 50, 100 for a9a, ijcnn1 and covtype
datasets respectively. The experimental results are displayed in Figure 3. The first row of
the figure shows the plots of function value gap v.s. Hessian sample complexity of all the
compared algorithms, and the second row presents the plots of function value gap v.s. CPU
runtime (in seconds) of all the algorithms. It can be seen from Figure 3 that Lite-SVRC
performs the best among all algorithms regarding both sample complexity of Hessian and
runtime on all three datasets, which is consistent with our theoretical analysis. We remark
that SVRC performs the second best in most settings in terms of both Hessian sample
complexity and runtime. It should also be noted that although SVRC-without is also a
variance-reduced method similar to Lite-SVRC and SVRC, it indeed performs much worse
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Figure 2: Logarithmic function value gap for nonlinear least square on different datasets.
(a), (b) and (c) present the oracle complexity comparison; (d), (e) and (f) present
the runtime comparison.
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Figure 3: Function value gap of different algorithms for nonconvex regularized logistic re-
gression problems on different datasets. (a)-(c) are plotted w.r.t. Hessian sample
complexity. (d)-(e) are plotted w.r.t. CPU runtime.

19



Zhou, Xu and Gu

0 2 4 6 8 10
epochs

10 5

10 4

10 3

10 2

10 1

100

F
F

*
TR
Adaptive Cubic
Gradient Cubic
Subsampled Cubic
Stochastic Cubic
SVRC
SVRC_without
Lite-SVRC

(a) a9a

0 10 20 30 40 50
epochs

10 5

10 4

10 3

10 2

F
F

*

TR
Adaptive Cubic
Gradient Cubic
Subsampled Cubic
Stochastic Cubic
SVRC
SVRC_without
Lite-SVRC

(b) covtype

0 20 40 60 80 100 120 140
epochs

10 5

10 4

10 3

10 2

10 1

100

F
F

*

TR
Adaptive Cubic
Gradient Cubic
Subsampled Cubic
Stochastic Cubic
SVRC
SVRC_without
Lite-SVRC

(c) ijcnn1

0 1 2 3 4 5
time in seconds

10 5

10 4

10 3

10 2

10 1

100

F
F

*

TR
Adaptive Cubic
Gradient Cubic
Subsampled Cubic
Stochastic Cubic
SVRC
SVRC_without
Lite-SVRC

(d) a9a

0 5 10 15 20 25 30
time in seconds

10 5

10 4

10 3

10 2

F
F

*

TR
Adaptive Cubic
Gradient Cubic
Subsampled Cubic
Stochastic Cubic
SVRC
SVRC_without
Lite-SVRC

(e) covtype

0 2 4 6 8 10
time in seconds

10 5

10 4

10 3

10 2

10 1

100

F
F

*

TR
Adaptive Cubic
Gradient Cubic
Subsampled Cubic
Stochastic Cubic
SVRC
SVRC_without
Lite-SVRC

(f) ijcnn1

Figure 4: Function value gap of different algorithms for nonlinear least square problems on
different datasets. (a)-(c) are plotted w.r.t. Hessian sample complexity. (d)-(e)
are plotted w.r.t. CPU runtime.

than other methods, because as we pointed out in the introduction, it needs to compute
the minimum eigenvalue of the Hessian in each iteration, which actually makes the Hessian
sample complexity even worse than Subsampled Cubic, let alone the runtime complexity.

For the least square problem in (27), the parameters λ and γ in the nonconvex regularizer
for different datasets are set as follows: λ = 5×10−3 for all three datasets, and γ = 10, 20, 50
for a9a, ijcnn1 and covtype datasets respectively. The experimental results are summarized
in Figure 4, where the first row shows the plots of function value gap v.s. Hessian sample
complexity and the second row presents the plots of function value gap v.s. CPU runtime
(in seconds). It can be seen that Lite-SVRC again achieves the best performance among
all the algorithms regarding to both sample complexity of Hessian and runtime when the
required precision is high, which supports our theoretical analysis.

9. Conclusions

In this paper, we propose two novel second-order algorithms for non-convex optimization:
SVRC and Lite-SVRC. Our proposed algorithm SVRC is the first algorithm which im-
proves the oracle complexity of cubic regularization and its subsampled variants under
certain regime using variance reduction techniques. We also show that similar oracle com-
plexity also holds with inexact oracles. Under both exact and inexact oracle settings our
algorithm outperforms the state-of-the-art methods. Furthermore, our proposed algorithm
Lite-SVRC achieves a lower sample complexity of Hessian compared with SVRC and ex-
isting variance reduction based cubic regularization algorithms. Extensive experiments on
various nonconvex optimization problems and datasets validate our theory.
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Appendix A. Proof of Main Theoretical Results for SVRC

In this section, we present the proofs of our main theoretical results for SVRC. Let us first
recall the notations used in Algorithm 1. vst and Us

t are the semi-stochastic gradient and
Hessian defined in (5) and (6) respectively. xst ’s are the iterates and x̂s’s are the reference
points used in Algorithm 1. bg and bh are the batch sizes of semi-stochastic gradient and
Hessian. S and T are the number of epochs and epoch length of Algorithm 1. We set
Ms,t := M = CML2 as suggested by Theorems 6 and 13, where CM > 0 is a constant. hst
is the exact minimizer of ms

t (h), where ms
t (h) is defined in (7). h̃st is the inexact minimizer

defined in (15).

In order to prove Theorems 6 and 13, we lay down the following useful technical lemmas.
The first lemma is standard in the analysis cubic regularization methods.

Lemma 24 Suppose F is L2-Hessian Lipschitz for some constant L2 > 0. For the semi-
stochastic gradient and Hessian defined in (5) and (6), we have the following results:

vst + Us
th

s
t +

M

2
‖hst‖2hst = 0, (28)

Us
t +

M

2
‖hst‖2I � 0, (29)

〈vst ,hst 〉+
1

2
〈Us

th
s
t ,h

s
t 〉+

M

6
‖hst‖32 ≤ −

M

12
‖hst‖32. (30)

The next two important lemmas control the variances of vst and Us
t .

Lemma 25 For the semi-stochastic gradient vst defined in (5), we have

Eit‖∇F (xst )− vst‖
3/2
2 ≤ L

3/2
2

b
3/4
g

‖xst − x̂s‖32,

where Eit is the expectation over all it ∈ Ig.

Lemma 26 Let Us
t be the semi-stochastic Hessian defined in (6). If the batch size satisfy

bh ≥ 400 log d, then we have

Ejt
∥∥∇2F (xst )−Us

t

∥∥3
2
≤ 1200L3

2

(
log d

bh

)3/2

‖xst − x̂s‖32,

where Ejt is the expectation over all jt ∈ Ih.
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Lemma 27 For the semi-stochastic gradient and Hessian defined in (5) and (6) and h ∈
Rd, we have

〈∇F (xst )− vst ,h〉 ≤
M

27
‖h‖32 +

2‖∇F (xst )− vst‖
3/2
2

M1/2
,〈(

∇2F (xst )−Us
t

)
h,h

〉
≤ 2M

27
‖h‖32 +

27

M2

∥∥∇2F (xst )−Us
t

∥∥3
2
.

Lemma 28 Let h ∈ Rd and CM ≥ 100. For the semi-stochastic gradient and Hessian
defined in (5) and (6), we have

µ(xst + h) ≤ 9C
3/2
M

[
M3/2‖h‖32 + ‖∇F (xst )− vst‖

3/2
2 +M−3/2

∥∥∇2F (xst )−Us
t

∥∥3
2

+ ‖∇ms
t (h)‖3/22 +M3/2

∣∣‖h‖2 − ‖hst‖2∣∣3].
Lemma 29 Let h ∈ Rd and C ≥ 3/2, For the semi-stochastic gradient and Hessian defined
in (5) and (6), we have

‖xst + h− x̂s‖32 ≤ 2C2‖h‖32 + (1 + 3/C)‖xst − x̂s‖32. (31)

Lemma 30 We define constant series ct for 0 ≤ t ≤ T as follows: cT = 0 and ct =
ct+1(1 + 3/T ) +M(500T 3)−1 for 0 ≤ t ≤ T − 1. Then we have for any 1 ≤ t ≤ T ,

M/24− 2ctT
2 ≥ 0. (32)

A.1. Proof of Theorem 6

Proof [Proof of Theorem 6] We first upper bound F (xst+1) as follows

F (xst+1) ≤ F (xst ) + 〈∇F (xst ),h
s
t 〉+

1

2

〈
∇2F (xst )h

s
t ,h

s
t

〉
+
L2

6
‖hst‖32

= F (xst ) + 〈vst ,hst 〉+
1

2
〈Us

th
s
t ,h

s
t 〉+

M

6
‖hst‖32 + 〈∇F (xst )− vst ,h

s
t 〉

+
1

2

〈(
∇2F (xst )−Us

t

)
hst ,h

s
t

〉
− M − L2

6
‖hst‖32

≤ F (xst )−
M

12
‖hst‖32 +

(
M

27
‖hst‖32 +

2‖∇F (xst )− vst‖
3/2
2

M1/2

)
+

1

2

(
2M

27
‖hst‖32 +

27

M2

∥∥∇2F (xst )−Us
t

∥∥3
2

)
− M − L2

6
‖hst‖32

≤ F (xst )−
M

12
‖hst‖32 +

2

M1/2
‖∇F (xst )− vst‖

3/2
2 +

27

M2

∥∥∇2F (xst )−Us
t

∥∥3
2
, (33)

where the first inequality follows from Lemma 40 and the second inequality holds due to
Lemmas 24 and 27. We define

Rst = E
[
F (xst ) + ct‖xst − x̂s‖32

]
, (34)
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where ct is defined in Lemma 30. Then by Lemma 29, for T ≥ 3/2 we have

ct+1‖xst+1 − x̂s‖32 = ct+1‖hst + xst − x̂s‖32 ≤ 2ct+1T
2‖hst‖32 + ct+1(1 + 3/T )‖xst − x̂s‖32. (35)

Applying Lemma 28 with h = hst , we have

(
240C2

ML
1/2
2

)−1
µ(xst+1) ≤

M

24
‖hst‖32 +

‖∇F (xst )− vst‖
3/2
2

24M1/2
+

∥∥∇2F (xst )−Us
t

∥∥3
2

24M2

+
‖∇ms

t (h
s
t )‖

3/2
2

24M1/2
+
M

24

∣∣‖hst‖2 − ‖hst‖2∣∣3
=
M

24
‖hst‖32 +

‖∇F (xst )− vst‖
3/2
2

24M1/2
+

∥∥∇2F (xst )−Us
t

∥∥3
2

24M2
, (36)

where the equality is due to Lemma 24. Adding (33) with (35) and (36) and taking total
expectation, we have

Rst+1 +
(
240C2

ML
1/2
2

)−1E[µ(xst+1)]

= E
[
F (xst+1) + ct+1‖xst+1 − x̂s‖32 +

(
240C2

ML
1/2
2

)−1
µ(xst+1)

]
≤ E

[
F (xst ) + ct+1(1 + 3/T )‖xst − x̂s‖32 − ‖hst‖32

(
M/24− 2ct+1T

2
)]

+ E
[
3M−1/2‖∇F (xst )− vst‖

3/2
2 + 28M−2

∥∥∇2F (xst )−Us
t

∥∥3
2

]
≤ E

[
F (xst ) + ct+1(1 + 3/T )‖xst − x̂s‖32

]
+ E

[
3M−1/2‖∇F (xst )− vst‖

3/2
2

+ 28M−2
∥∥∇2F (xst )−Us

t

∥∥3
2

]
, (37)

where the third inequality holds due to Lemma 30. To further bound (37), we have

3

M1/2
E‖∇F (xst )− vst‖

3/2
2 ≤ 3L

3/2
2

M1/2b
3/4
g

E‖xst − x̂s‖32 ≤
M

1000T 3
E‖xst − x̂s‖32, (38)

where the first inequality holds due to Lemma 25, the second inequality holds due to M ≥
100L2 and bg ≥ 5T 4 from the condition of Theorem 6. We also have

28

M2
E
∥∥∇2F (xst )−Us

t

∥∥3
2
≤ 28× 15000L3

2

M2(bh/ log d)3/2
E‖xst − x̂s‖32 ≤

M

1000T 3
E‖xst − x̂s‖32, (39)

where the first inequality holds due to Lemma 26, where we have bh ≥ 100T 2 log d ≥
400 log d, and the second inequality holds due to M ≥ 100L2 and bh ≥ 100T 2 log d from the
assumption of Theorem 6. Thus, submitting (38) and (39) into (37), we have

Rst+1 +
(
240C2

ML
1/2
2

)−1E[µ(xst+1)] ≤ E
[
F (xst ) + ‖xst − x̂s‖32

(
ct+1(1 + 3/T ) +

M

500T 3

)]
= E

[
F (xst ) + ct‖xst − x̂s‖32

]
= Rst , (40)
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where the first equality holds due to the definition of ct in Lemma 30. Telescoping (40)
from t = 0 to T − 1, we have

Rs0 −RsT ≥
T∑
t=1

(
240C2

ML
1/2
2

)−1E[µ(xst )].

By the definition of cT in Lemma 30, we have cT = 0, then RsT = E
[
F (xsT ) + cT ‖xsT −

x̂s‖32
]

= EF (x̂s+1); meanwhile by the definition of xs0, we have xs0 = x̂s. Thus we have
Rs0 = E

[
F (xs0) + c0‖xs0 − x̂s‖32

]
= EF (x̂s), which implies

EF (x̂s)− EF (x̂s+1) = Rs0 −RsT ≥
(
240C2

ML
1/2
2

)−1 T∑
t=1

E[µ(xst )]. (41)

Finally, telescoping (41) from s = 1 to S yields

∆F ≥
S∑
s=1

EF (x̂s)− EF (x̂s+1) ≥
(
240C2

ML
1/2
2

)−1 S∑
s=1

T∑
t=1

E[µ(xst )].

By the definition about choice of xout, we complete the proof.

A.2. Proof of Corollary 9

Proof We can verify that the parameter setting in Corollary 9 satisfies the requirement
of Theorem 6. Thus, submitting the choice of parameters into Theorem 6, the output of
Algorithm 1 xout satisfies that

E[µ(xout)] ≤
240C2

ML
1/2
2 ∆F

ST
≤ ε3/2, (42)

which indeed implies that xout is an (ε,
√
L2ε)-approximate local minimum. Next we cal-

culate how many SO calls and CSO calls are needed. Algorithm 1 needs to calculate full
gradient gs and full Hessian Hs at the beginning of each epoch, with n SO calls. In each
epoch, Algorithm 1 needs to calculate vst and Us

t with bg + bh SO calls at each iteration.
Thus, the total amount of SO calls is

Sn+ (ST )(bg + bh) ≤ n+ C1∆FL
1/2
2 n4/5ε−3/2 + C1∆FL

1/2
2 ε−3/2(5n4/5 + 1000n2/5 log d)

= Õ

(
n+

∆F

√
L2n

4/5

ε3/2

)
,

where C1 = 240C2
M . For the CSO calls, Algorithm 1 needs to solve cubic subproblem at

each single iteration. Thus, the total amount of CSO calls is

ST ≤ C1∆FL
1/2
2 ε−3/2 = O

(
∆F

√
L2

ε3/2

)
.
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A.3. Proof of Theorem 13

Proof [Proof of Theorem 13] Similar to (33) in the proof of Theorem 6, we have

F (xst+1) ≤ F (xst ) +
〈
∇F (xst ), h̃

s
t

〉
+

1

2

〈
∇2F (xst )h̃

s
t , h̃

s
t

〉
+
L2

6

∥∥h̃st∥∥32
= F (xst ) +

〈
vst , h̃

s
t

〉
+

1

2

〈
Us
t h̃

s
t , h̃

s
t

〉
+
M

6

∥∥h̃st∥∥32 +
〈
∇F (xst )− vst , h̃

s
t

〉
+

1

2

〈
(∇2F (xst )−Us

t )h̃
s
t , h̃

s
t

〉
− M − L2

6

∥∥h̃st∥∥32
≤ F (xst )−

M

12

∥∥h̃st∥∥32 + δ +

(
M

27

∥∥h̃st∥∥32 +
2‖∇F (xst )− vst‖

3/2
2

M1/2

)
+

1

2

(
2M

27

∥∥h̃st∥∥32 +
27

M2

∥∥∇2F (xst )−Us
t

∥∥3
2

)
− M − L2

6

∥∥h̃st∥∥32
≤ F (xst )−

M

12

∥∥h̃st∥∥32 +
2

M1/2
‖∇F (xst )− vst‖

3/2
2 +

27

M2

∥∥∇2F (xst )−Us
t

∥∥3
2

+ δ,

(43)

where the second inequality holds because h̃st is an inexact solver satisfying Condition 11.
By Lemma 29 with h = h̃st , we have

ct+1‖xst+1 − x̂s‖32 = ct+1

∥∥xst − x̂s + h̃st
∥∥3
2
≤ 2ct+1T

2
∥∥h̃st∥∥32 + ct+1(1 + 3/T )‖xst − x̂s‖32.

(44)

By Lemma 28, we also have(
240C2

ML
1/2
2

)−1
µ(xst+1)

=
(
240C2

ML
1/2
2

)−1
µ
(
xst + h̃st

)
≤ M

24

∥∥h̃st∥∥32 +
‖∇F (xst )− vst‖

3/2
2

24M1/2
+

∥∥∇2F (xst )−Us
t

∥∥3
2

24M2
+

∥∥∇ms
t

(
h̃st
)∥∥3/2

2

24M1/2
+
M
∣∣∥∥h̃st∥∥2 − ‖hst‖2∣∣3

24
,

(45)

Since h̃st is an inexact solver satisfying Condition 11, we have∥∥∇ms
t

(
h̃st
)∥∥3/2

2

24M1/2
+
M
∣∣∥∥h̃st∥∥2 − ‖hst‖2∣∣3

24
≤ δ

24
+

δ

24
< δ. (46)

Submitting (46) into (45), we have

(
240C2

ML
1/2
2

)−1
µ(xst+1) ≤

M

24

∥∥h̃st∥∥32 +
‖∇F (xst )− vst‖

3/2
2

24M1/2
+

∥∥∇2F (xst )−Us
t

∥∥3
2

24M2
+ δ. (47)

Then adding (43), (44) and (47) up, we have

Rst+1 +
(
240C2

ML
1/2
2

)−1E[µ(xst+1)]

= E
[
F (xst+1) + ct+1‖xst+1 − x̂s‖32 +

(
240C2

ML
1/2
2

)−1
µ(xst+1)

]
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≤ E
[
F (xst ) + ct+1(1 + 3/T )‖xst − x̂s‖32 −

∥∥h̃st∥∥32(M/24− 2ct+1T
2
)]

+ E
[

3

M1/2
‖∇F (xst )− vst‖

3/2
2 +

28

M2

∥∥∇2F (xst )−Us
t

∥∥3
2

]
+ 2δ

≤ E
[
F (xst ) + ct+1(1 + 3/T )‖xst − x̂s‖32

]
+ E

[
3

M1/2
‖∇F (xst )− vst‖

3/2
2 +

28

M2

∥∥∇2F (xst )−Us
t

∥∥3
2

]
+ 2δ. (48)

Since the parameter setting is the same as Theorem 6, by (38) and (39), we have

3

M1/2
E‖∇F (xst )− vst‖

3/2
2 ≤ M

1000T 3
E‖xst − x̂s‖32, (49)

28

M2
E
∥∥∇2F (xst )−Us

t

∥∥3
2
≤ M

1000T 3
E‖xst − x̂s‖32. (50)

Submitting (49) and (50) into (48) yields

Rst+1 +
(
240C2

ML
1/2
2

)−1E[µ(xst+1)] ≤ E
[
F (xst ) + ‖xst − x̂s‖32

(
ct+1(1 + 3/T ) +

M

500T 3

)]
+ 2δ

= E
[
F (xst ) + ct‖xst − x̂s‖32

]
+ 2δ

= Rst + 2δ, (51)

where the first equality holds due to the definition of ct in Lemma 30. Telescoping (40)
from t = 0 to T − 1, we have

Rs0 −RsT ≥
T∑
t=1

((
240C2

ML
1/2
2

)−1E[µ(xst )]− 2δ
)
.

By the definition of cT in Lemma 30, we have cT = 0, then RsT = E
[
F (xsT ) + cT ‖xsT −

x̂s‖32
]

= E[F (x̂s+1)]; meanwhile by the definition of xs0, we have xs0 = x̂s. Thus we have
Rs0 = E

[
F (xs0) + c0‖xs0 − x̂s‖32

]
= E[F (x̂s)], which further implies

E[F (x̂s)]− E[F (x̂s+1)] = Rs0 −RsT ≥
T∑
t=1

((
240C2

ML
1/2
2

)−1E[µ(xst )]− 2δ
)
. (52)

Finally, telescoping (52) from s = 1 to S, we obtain

∆F ≥
S∑
s=1

E[F (x̂s)]− E[F (x̂s+1)] ≥
S∑
s=1

T∑
t=1

[(
240C2

ML
1/2
2

)−1E[µ(xst )]− 2δ
]
.

By the definition about choice of xout, we finish the proof.
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A.4. Proof of Corollary 15

Proof [Proof of Corollary 15] Under the parameter choice in Corollary 15, it holds that

E[µ(xout)] ≤
240C2

ML
1/2
2 ∆F

ST
+ 480C2

ML
1/2
2 δ ≤ ε3/2/2 + ε3/2/2 = ε3/2. (53)

Thus, xout is an (ε,
√
L2ε)-approximate local minimum. By the proof of Corollary 9, the

total amount of SO calls is

Sn+ (ST )(bg + bh) ≤ n+ C1∆FL
1/2
2 n4/5ε−3/2 + C1∆FL

1/2
2 ε−3/2(5n4/5 + 1000n2/5 log d)

= Õ

(
n+

∆F

√
L2n

4/5

ε3/2

)
,

where C1 = 480C2
M . For the CSO calls, Algorithm 1 needs to solve cubic subproblem at

each single iteration. Thus, the total amount of CSO calls is

ST ≤ C1∆FL
1/2
2 ε−3/2 = O

(
∆F

√
L2

ε3/2

)
.

Appendix B. Proof of Technical Lemmas in Appendix A

In this section, we prove the technical lemmas used in Appendix A.

B.1. Proof of Lemma 24

The result of Lemma 24 is typical in the literature of cubic regularization (Nesterov and
Polyak, 2006; Cartis et al., 2011a,b), but no exactly the same result has been shown in any
formal way. Thus we present the proof here for self-containedness.
Proof [Proof of Lemma 24] For simplicity, we let g = vst ,H = Us

t , θ = Mt and hopt = hst .
Then we need to prove

g + Hhopt +
θ

2
‖hopt‖2hopt = 0, (54)

H +
θ

2
‖hopt‖2I � 0, (55)

〈g,hopt〉+
1

2
〈Hhopt,hopt〉+

θ

6
‖hopt‖32 ≤ −

θ

12
‖hopt‖32. (56)

Let λ = θ‖hopt‖2/2. Note that hopt = argminm(h), then the necessary condition∇m(hopt) =
0 and ∇2m(hopt) � 0 can be written as

∇m(hopt) = g + Hhopt + λhopt = 0, (57)

w>∇2m(hopt)w = w>
(

H + λI + λ

(
hopt

‖hopt‖2

)(
hopt

‖hopt‖2

)>)
w ≥ 0,∀w ∈ Rd. (58)
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Apparently, (57) directly implies (54). To prove (55), we adapt the proof of Lemma 5.1 in
Agarwal et al. (2017). Note that if 〈w,hopt〉 = 0, then (58) directly implies (55). So we
only need to focus on the case that 〈w,hopt〉 6= 0.

Since 〈w,hopt〉 6= 0, there exists η 6= 0 such that ‖hopt + ηw‖2 = ‖hopt‖2. (In fact, we
can find η = −2〈w,hopt〉/‖w‖22 satisfies the requirement). Next we will take a close look at
the difference m(hopt + ηw)−m(hopt). On one hand, we have

m(hopt + ηw)−m(hopt)

= g>[(hopt + ηw)− hopt] +
(hopt + ηw)>H(hopt + ηw)

2
−

h>optHhopt

2

= −[(hopt + ηw)− hopt]
>(H + λI)hopt +

(hopt + ηw)>H(hopt + ηw)

2
−

h>optHhopt

2
(59)

=
λη2

2
‖w‖22 + [hopt − (hopt + ηw)]>Hhopt +

(hopt + ηw)>H(hopt + ηw)

2
−

h>optHhopt

2
(60)

=
λη2

2
‖w‖22 +

h>optHhopt

2
− (hopt + ηw)>Hhopt +

(hopt + ηw)>H(hopt + ηw)

2

=
λη2

2
‖w‖22 +

η2

2
w>Hw =

η2

2
w>(H + λI)w,

where (59) holds due to (57) and (60) holds due to the definition of η. On the other hand,
by the definition of hopt, m(hopt + ηw)−m(hopt) ≥ 0. Thus, we have proved (55). Finally,
we prove (56) by showing that

〈g,hopt〉+
1

2
〈Hhopt,hopt〉+

θ

6
‖hopt‖32

=

〈
g + Hhopt +

θ

2
‖hopt‖2hopt,hopt

〉
− 1

2
h>opt(H + λI)hopt −

θ

12
‖hopt‖32

= −1

2
h>opt(H + λI)hopt −

θ

12
‖hopt‖32 (61)

≤ − θ

12
‖hopt‖32, (62)

where (61) holds due to (54) and (62) holds due to (55).

B.2. Proof of Lemma 25

In order to prove Lemma 25, we need the following useful lemma.

Lemma 31 Suppose a1, . . . ,aN are i.i.d. and Eai = 0, then

E
∥∥∥ 1

N

N∑
i=1

ai

∥∥∥3/2
2
≤ 1

N3/4

(
E‖ai‖22

)3/4
.

Proof [Proof of Lemma 25] For simplification, we use E to replace Evit
. We have

E‖∇F (xst )− vst‖
3/2
2
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= E
∥∥∥∥ 1

bg

∑[
∇fit(xst )−∇fit(x̂s)

]
+ gs −

[
1

bg

∑
∇2fit(x̂

s)−Hs

]
(xst − x̂s)−∇F (xst )

∥∥∥∥3/2
2

= E
∥∥∥∥ 1

bg

∑[
∇fit(xst )−∇fit(x̂s)−∇2fit(x̂

s)(xst − x̂s)−∇F (xst )

+∇F (x̂s) +∇2F (x̂s)(xst − x̂s
]∥∥∥∥3/2

2

.

Now we set the parameters in Lemma 31 as N = bg and

ait = ∇fit(xst )−∇fit(x̂s)−∇2fit(x̂
s)(xst − x̂s)−∇F (xs+1

t ) +∇F (x̂s) +∇2F (x̂s)(xst − x̂s).

We can check that ait satisfy the assumption of Lemma 31. Thus, by Lemma 31, we have

E‖∇F (xst )− vst‖
3/2
2 ≤ 1

b
3/4
g

(
E
∥∥∇fit(xst )−∇fit(x̂s)−∇2fit(x̂

s)(xst − x̂s)

−∇F (xst ) +∇F (x̂s) +∇2F (x̂s)(xst − x̂s)
∥∥2
2

)3/4
. (63)

By Assumption 1 and Lemma 40, we have∥∥∇fit(xst )−∇fit(x̂s)−∇2fit(x̂
s)(xst − x̂s)−∇F (xst ) +∇F (x̂s) +∇2F (x̂s)(xst − x̂s)

∥∥
2

≤
∥∥∇fit(xst )−∇fit(x̂s)−∇2fit(x̂

s)(xst − x̂s)
∥∥
2

+
∥∥∇F (xst )−∇F (x̂s)−∇2F (x̂s)(xst − x̂s)

∥∥
2

≤ L2

2
‖xst − x̂s‖22 +

L2

2
‖xst − x̂s‖22

= L2‖xst − x̂s‖22. (64)

Plugging (64) into (63) yields

E‖∇F (xst )− vst‖
3/2
2 ≤ 1

b
3/4
g

(
L2
2‖xst − x̂s‖42

)3/4
=
L
3/2
2

b
3/4
g

‖xst − x̂s‖32.

B.3. Proof of Lemma 26

In order to prove Lemma 26, we need the following supporting lemma.

Lemma 32 Suppose that q ≥ 2, p ≥ 2, and fix r ≥ max{q, 2 log p}. Consider i.i.d. random
self-adjoint matrices Y1, ...,YN with dimension p× p, EYi = 0. It holds that[

E
∥∥∥∥ N∑
i=1

Yi

∥∥∥∥q
2

]1/q
≤ 2
√
er

∥∥∥∥( N∑
i=1

EY2
i

)1/2∥∥∥∥
2

+ 4er
(
Emax

i
‖Yi‖q2

)1/q
.

Proof [Proof of Lemma 26] For simplicity, we use E to denote Ejt . We have

E
∥∥∇2F (xst )−Us

t

∥∥3
2

= E
∥∥∥∥∇2F (xst )−

1

bh

(∑(
∇2fjt(x

s
t )−∇2fjt(x̂

s) + Hs
))∥∥∥∥3

2
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= E
∥∥∥∥ 1

bh

[∑[
∇2fjt(x

s
t )−∇2fjt(x̂

s) + Hs −∇2F (xst )
]]∥∥∥∥3

2

. (65)

We apply Lemma 32 with parameters

q = 3, p = d, r = 2 log p,Yjt = ∇2fjt(x
s
t )−∇2fjt(x̂

s) + Hs −∇2F (xst ), N = bh.

It can be easily checked that these parameters satisfy the assumption of Lemma 32. Mean-
while, by Assumption 1, we have the following upper bound for Yjt :∥∥Yjt

∥∥
2

=
∥∥∇2fjt(x

s
t )−∇2fjt(x̂

s) + Hs −∇2F (xst )
∥∥
2

≤
∥∥∇2fjt(x

s
t )−∇2fjt(x̂

s)
∥∥
2

+
∥∥Hs −∇2F (xst )

∥∥
2

≤ L2‖xst − x̂s‖2 + L2‖xst − x̂s‖2
= 2L2‖xst − x̂s‖2. (66)

By Lemma 32, we have[
E
∥∥∥∥∑Yjt

∥∥∥∥3
2

]1/3
≤ 2
√
er
∥∥∥(∑EY2

jt

)1/2∥∥∥
2

+ 4er
(
Emax

i
‖Yi‖32

)1/3
. (67)

The first term in RHS of (67) can be bounded as

2
√
er
∥∥∥(∑EY2

jt

)1/2∥∥∥
2

= 2
√
er
∥∥∥∑EY2

jt

∥∥∥1/2
2

= 2
√
Ner

∥∥∥EY2
jt

∥∥∥1/2
2

≤ 2
√
Ner

(
E
∥∥∥Y2

jt

∥∥∥
2

)1/2
= 2
√
Ner

(
E‖Yjt‖22

)1/2
≤ 4L2

√
Ner‖xst − x̂s‖2, (68)

where the first inequality holds due to Jensen’s inequality, the third equality holds because∥∥Y2
jt

∥∥
2

= ‖Yjt‖22 and the last inequality holds due to (66). The second term in RHS of
(67) can be bounded as

4er
(
Emax

i

∥∥Yi

∥∥3
2

)1/3 ≤ 4er[(2L2‖xst − x̂s‖2)3]1/3 = 8L2er‖xst − x̂s‖2. (69)

Submitting (68), (69) into (67), we have[
E
∥∥∥∑Yjt

∥∥∥3
2

]1/3
≤ 4L2

√
Ner‖xst − x̂s‖2 + 8L2er‖xst − x̂s‖2,

which immediately implies

E
∥∥∥∥ 1

N

∑
Yjt

∥∥∥∥3
2

≤ 64L3
2

(√
er

N
+

2er

N

)3

‖xst − x̂s‖32. (70)
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Submitting (70) into (65) with Yjt = ∇2fjt(x
s
t )−∇2fjt(x̂

s)+Hs−∇2F (xst ), r = 2 log d, N =
bh, we have

E
∥∥∇2F (xst )−Us

t

∥∥3
2
≤ 64L3

2

(√
2e log d

bh
+

4e log d

bh

)3

‖xst − x̂s‖32

≤ 1200L3
2

(
log d

bh

)3/2

‖xst − x̂s‖32,

where the last inequality holds due to bh ≥ 400 log d.

B.4. Proof of Lemma 27

Proof we have

〈∇F (xst )− vst ,h〉 ≤ ‖∇F (xst )− vst‖2 · ‖h‖2

=

(
M1/3

91/3
‖h‖2

)
·
(

91/3

M1/3
‖∇F (xst )− vst‖2

)
≤ 1

3

(
M1/3

91/3
‖h‖2

)3

+
2

3

(
91/3

M1/3
‖∇F (xst )− vst‖2

)3/2

=
M

27
‖h‖32 +

2‖∇F (xst )− vst‖
3/2
2

M1/2
,

where the second inequality holds due to Young’s inequality. Meanwhile, we have〈(
∇2F (xst )−Hs

)
h,h

〉
≤
∥∥∇2F (xst )−Hs

∥∥
2
· ‖h‖22

=

(
M2/3

92/3
‖h‖22

)
·
(

92/3

M2/3

∥∥∇2F (xst )−Hs
∥∥
2

)
≤ 2

3

(
M2/3

92/3
‖h‖22

)3/2

+
1

3

(
92/3

M2/3

∥∥∇2F (xst )−Hs
∥∥
2

)3

=
2M

27
‖h‖32 +

27

M2

∥∥∇2F (xst )−Us
t

∥∥3
2
,

where the second inequality holds due to Young’s inequality.

B.5. Proof of Lemma 28

In order to prove Lemma 28, we need the following two useful lemmas.

Lemma 33 Under Assumption 1, if M ≥ 2L2, then we have∥∥∇F (xst + h)
∥∥
2
≤M‖h‖22 + ‖∇F (xst )− vst‖2 +

1

M

∥∥∇2F (xst )−Us
t

∥∥2
2

+
∥∥∇ms

t (h)
∥∥
2
.

Lemma 34 Under Assumption 1, if M ≥ 2L2, then we have

−λmin

(
∇2F (xst + h)

)
≤M‖h‖2 +

∥∥∇2F (xst )−Us
t

∥∥
2

+M
∣∣‖h‖2 − ‖hst‖2∣∣.
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Proof [Proof of Lemma 28] By the definition of µ, we can bound ‖∇F (xst + h)‖3/22 and

0∨−L−3/22

[
λmin

(
∇2F (xst + h)

)]3
separately. To bound ‖∇F (xst + h)‖3/22 , applying Lemma

33 we have∥∥∇F (xst + h)
∥∥3/2
2

≤
[
M‖h‖22 + ‖∇F (xst )− vst‖2 +

1

M

∥∥∇2F (xst )−Us
t

∥∥2
2

+
∥∥∇ms

t (h)
∥∥
2

]3/2
≤ 2
[
M3/2‖h‖32 + ‖∇F (xst )− vst‖

3/2
2 +M−3/2

∥∥∇2F (xst )−Us
t

∥∥3
2

+
∥∥∇ms

t (h)
∥∥3/2
2

]
,

where the second inequality holds due to the following basic inequality (a+ b+ c+ d)3/2 ≤
2(a3/2 + b3/2 + c3/2 + d3/2). To bound −λmin

(
∇2F (xst + h)

)
, applying Lemma 26, we have

− L−3/22

[
λmin

(
∇2F (xst + h)

)]3
= −C3/2

M M−3/2
[
λmin

(
∇2F (xst + h)

)]3
≤ C3/2

M M−3/2
[
M‖h‖2 +

∥∥∇2F (xst )−Us
t

∥∥
2

+M
∣∣‖h‖2 − ‖hst‖2∣∣]3

≤ 9C
3/2
M

[
M3/2‖h‖32 +M−3/2

∥∥∇2F (xst )−Us
t

∥∥3
2

+M3/2
∣∣‖h‖2 − ‖hst‖2∣∣3],

where the second inequality is due to (a + b + c)3 ≤ 9(a3 + b3 + c3). Since 9C
3/2
M > 2, we

have

µ(xst + h) = max
{
‖∇F (xst + h)‖3/22 ,−L−3/22

[
λmin

(
∇2F (xst + h)

)]3}
≤ 9C

3/2
M

[
M3/2‖h‖32 + ‖∇F (xst )− vst‖

3/2
2 +M−3/2

∥∥∇2F (xst )−Us
t

∥∥3
2

+
∥∥∇ms

t (h)
∥∥3/2
2

+M3/2
∣∣‖h‖2 − ‖hst‖2∣∣3],

which completes the proof.

B.6. Proof of Lemma 29

Proof For any xst ,h, x̂
s and a constant C > 0, we have

‖xst + h− x̂s‖32
≤
(
‖h‖2 + ‖xst − x̂s‖2

)3
= ‖h‖32 + 3‖h‖22 · ‖xst − x̂s‖2 + 3‖h‖2 · ‖xst − x̂s‖22 + ‖xst − x̂s‖32

= ‖h‖32 + 3
(
C1/3‖h‖22

)
· ‖x

s
t − x̂s‖2
C1/3

+ 3
(
C2/3‖h‖2

)
· ‖x

s
t − x̂s‖22
C2/3

+ ‖xst − x̂s‖32

≤ ‖h‖32 + 3

(
2

3

(
C1/3‖h‖22

)3/2
+

1

3

(
‖xst − x̂s‖2

C1/3

)3)
+ 3

(
1

3

(
C2/3‖h‖2

)3
+

2

3

(
‖xst − x̂s‖22

C2/3

)3/2)
+ ‖xst − x̂s‖32
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= ‖h‖32 +

(
2C1/2‖h‖32 +

1

C
‖xst − x̂s‖32

)
+

(
C2‖h‖32 +

2

C
‖xst − x̂s‖32

)
+ ‖xst − x̂s‖32

≤ 2C2‖h‖32 +

(
1 +

3

C

)
‖xst − x̂s‖3, (71)

where the second inequality holds due to Young’s inequality, the last inequality holds be-
cause 1 + 2

√
C ≤ C2 when C ≥ 3/2.

B.7. Proof of Lemma 30

Proof By induction, we have for any 0 ≤ t ≤ T ,

ct = M
(1 + 3/T )T−t − 1

1500T 2
.

Then for any 0 ≤ t ≤ T ,

2ctT
2 ≤M 2(1 + 3/T )T

1500
≤M 2 · 27

1500
<
M

24
.

Appendix C. Proof of Auxiliary Lemmas

In this section, we prove auxiliary lemmas used in Appendix B.

C.1. Proof of Lemma 31

Proof We have

E
∥∥∥ 1

N

N∑
i=1

ai

∥∥∥3/2
2

=
E‖
∑N

i=1 ai‖3/22

N3/2
≤

(E‖
∑N

i=1 ai‖22)3/4

N3/2
=

(
∑N

i=1 E‖ai‖22)3/4

N3/2
=

(
E‖ai‖22

)3/4
N3/4

.

The first inequality holds due to Lemma 41 with s = 3/2, t = 2. The second equality holds
due to Eai = 0 and that ai are independently identically distributed.

C.2. Proof of Lemma 32

Proof This proof is mainly adapted from Chen et al. (2012); Tropp (2016). First, Let
{Yi

′ : i = 1, . . . , N} be an independent copy of the sequence {Yi : i = 1, . . . , N}. We
denote EY′ to be the expectation over the independent copy Y′. Then EY′Yi

′ = 0 and

E
∥∥∥∥ N∑
i=1

Yi

∥∥∥∥q
2

= E
∥∥∥∥ N∑
i=1

EY′(Yi −Yi
′)

∥∥∥∥q
2

≤ E
[
EY′

∥∥∥∥ N∑
i=1

(Yi −Yi
′)

∥∥∥∥q
2

]
= E

∥∥∥∥ N∑
i=1

(Yi −Yi
′)

∥∥∥∥q
2

.

(72)
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The first equality holds due to EY′Yi
′ = 0, the first inequality holds because ‖·‖q2 is a convex

function, and the second equality holds because we combine the iterated expectation into
a single expectation.

Note that Yi−Yi
′ has the same distribution as Yi

′−Yi, thus the independent sequence
{ξi(Yi −Yi

′) : 1 ≤ i ≤ n} has the same distribution as {Yi −Yi
′ : 1 ≤ i ≤ N}, where ξi

are independent Rademacher random variables, also independent with Yi,Yi
′. Therefore,

E

∥∥∥∥∥
N∑
i=1

(Yi −Yi
′)

∥∥∥∥∥
q

2

= E

∥∥∥∥∥
N∑
i=1

ξi(Yi −Yi
′)

∥∥∥∥∥
q

2

. (73)

Furthermore, we have

E
∥∥∥∥ N∑
i=1

ξi(Yi −Yi
′)

∥∥∥∥q
2

≤ E
[
2q−1

(∥∥∥∥ N∑
i=1

ξiYi

∥∥∥∥q
2

+

∥∥∥∥ N∑
i=1

ξiYi
′
∥∥∥∥q
2

)]
= 2q · E

∥∥∥∥ N∑
i=1

ξiYi

∥∥∥∥q
2

.

(74)

The first inequality holds due to ‖A−B‖q2 ≤ (‖A‖2 + ‖B‖2)q ≤ 2q−1(‖A‖q2 + ‖B‖q2), where

we let A =
∑N

i=1 ξiYi,B =
∑N

i=1 ξiYi
′; the equality holds due to the identical distribution

of {ξYi} and {ξYi
′}. Submitting (73), (74) into (72) yields

E
∥∥∥∥ N∑
i=1

Yi

∥∥∥∥q
2

≤ 2q · E
∥∥∥∥ N∑
i=1

ξiYi

∥∥∥∥q
2

(75)

Taking q-th root for both sides, we have[
E
∥∥∥∥ N∑
i=1

Yi

∥∥∥∥q
2

]1/q
≤ 2

[
E
∥∥∥∥ N∑
i=1

ξiYi

∥∥∥∥q
2

]1/q
. (76)

Next, we have the inequality chain:

2

[
E
∥∥∥∥ N∑
i=1

ξiYi

∥∥∥∥q
2

]1/q
≤ 2

[
E
∥∥∥∥ N∑
i=1

ξiYi

∥∥∥∥q
Sr

]1/q

= 2

[
EYi

(
Eξi

∥∥∥∥ N∑
i=1

ξiYi

∥∥∥∥q
Sr

)]1/q

≤ 2

[
EYi

(
Eξi

∥∥∥∥ N∑
i=1

ξiYi

∥∥∥∥r
Sr

)q/r]1/q
, (77)

where the first inequality holds due to ‖ · ‖2 ≤ ‖ · ‖Sr , the second inequality holds due to
Lyapunov’s inequality (Lemma 41), where we set s = q, t = r. Since q < r, then the second
inequality holds. Note we have

2

[
EYi

(
Eξi

∥∥∥∥ N∑
i=1

ξiYi

∥∥∥∥r
Sr

)q/r]1/q
≤ 2
√
r

[
E
∥∥∥∥( N∑

i=1

Y2
i

)1/2∥∥∥∥q
Sr

]1/q
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≤ 2
√
r

[
E
(
p1/r

∥∥∥∥( N∑
i=1

Y2
i

)1/2∥∥∥∥
2

)q]1/q

≤ 2
√
er

[
E
∥∥∥∥( N∑

i=1

Y2
i

)1/2∥∥∥∥q
2

]1/q

= 2
√
er

[
E
∥∥∥∥ N∑
i=1

Y2
i

∥∥∥∥q/2
2

]1/q
, (78)

where the first inequality holds due to Proposition 42; the second inequality holds because

‖A‖Sr ≤ p1/r‖A‖2, where we set A = (
∑N

i=1 Y2
i

)1/2
and p is the dimension of A ; the third

inequality holds because p1/r ≤ p1/(2 log p) =
√
e.

Finally, we use Proposition 43 to bound (78). Since Y2
i are positive-semidefinite and

independent random matrices, we can set Wi in Proposition 43 as Wi = Y2
i . Meanwhile,

q/2 ≥ 1, so we have[
E
∥∥∥∥ N∑
i=1

Y2
i

∥∥∥∥q/2
2

]2/q
≤
[∥∥∥∥ N∑

i=1

EY2
i

∥∥∥∥1/2
2

+ 2
√
er
(
Emax

i
‖Yi‖q2

)1/q]2
,

which immediately implies[
E
∥∥∥∥ N∑
i=1

Y2
i

∥∥∥∥q/2
2

]1/q
≤
∥∥∥∥ N∑
i=1

EY2
i

∥∥∥∥1/2
2

+ 2
√
er
(
Emax

i
‖Yi‖q2

)1/q
. (79)

Submitting (77), (78),(79) into (76), we have the proof completed.

C.3. Proof of Lemma 33

Proof We have

‖∇F (xst + h)‖2 =
∥∥∇F (xst + h)−∇F (xst )−∇2F (xst )h + vst + Us

th

+
(
∇F (xst )− vst

)
+
(
∇2F (xst )−Us

t

)
h
∥∥
2

≤
∥∥∇F (xst + h)−∇F (xst )−∇2F (xst )h

∥∥
2

+
∥∥∥vst + Us

th +
M

2
‖h‖2h

∥∥∥
2

+ ‖∇F (xst )− vst‖2 +
∥∥(∇2F (xst )−Us

t

)
h
∥∥
2

+
M

2
‖h‖22, (80)

where the inequality holds due to triangle inequality. In the following, we are going to
bound the right-hand side of (80). For the first term in the right-hand side of (80), it can
be bounded as∥∥∇F (xst + h)−∇F (xst )−∇2F (xst )h

∥∥
2
≤ L2

2
‖h‖22 ≤

M

4
‖h‖22,

where the first inequality holds due to Assumption 1 and the second inequality holds due
to 2L2 ≤M . For the second term in the the right hand side of (80), it equals to∥∥∥vst + Us

th +
M

2
‖h‖2h

∥∥∥
2

=
∥∥∇ms

t (h)
∥∥
2
.
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And the final term can be bounded as∥∥(∇2F (xst )−Us
t

)
h
∥∥
2
≤
∥∥∇2F (xst )−Us

t

∥∥
2
· ‖h‖2 ≤

1

M

∥∥∇2F (xst )−Us
t

∥∥2
2

+
M

4
‖h‖22,

where the last inequality is due to Young’s inequality. Putting all these bounds together
and submit them into (80), we have∥∥∇F (xst + h)

∥∥
2
≤M‖h‖22 + ‖∇F (xst )− vst‖2 +

1

M

∥∥∇2F (xst )−Us
t

∥∥2
2

+
∥∥∇ms

t (h)
∥∥
2
.

C.4. Proof of Lemma 34

Proof We have

∇2F (xst + h) � ∇2F (xst )− L2‖h‖2I
� Us

t −
∥∥∇2F (xst )−Us

t

∥∥
2
I− L2‖h‖2I

� −M
2
‖hst‖2I−

∥∥∇2F (xst )−Us
t

∥∥
2
I− L2‖h‖2I,

where the first inequality holds because ∇2F is L2-Hessian Lipschitz, the last inequality
holds due to (29) in Lemma 24. Thus we have

−λmin

(
∇2F (xst + h)

)
≤ M

2
‖hst‖2 +

∥∥∇2F (xst )−Us
t

∥∥
2

+ L2‖h‖2

=
M

2
(‖hst‖2 − ‖h‖2) +

∥∥∇2F (xst )−Us
t

∥∥
2

+ (L2 +M/2)‖h‖2

≤M‖h‖2 +
∥∥∇2F (xst )−Us

t

∥∥
2

+M
∣∣‖hst‖2 − ‖h‖2∣∣,

where the last inequality holds because L2 ≤M/2.

Appendix D. Proof of Main Theoretical Results for Lite-SVRC

In this section, we provide the proofs of theoretical results of Lite-SVRC (Algorithm 2).

D.1. Proof of Theorem 18

For the simplification of notation, we define ev, eU as follows

ev = ∇F (xst )− ṽst , eU = ∇2F (xst )−Us
t , (81)

where vs0 = gs,Us
0 = Hs. Before we state the proof, we present some technical lemmas

that are useful in our analysis. Firstly, we give a sharp bound of µ(xst+1). A very crucial
observation is that we can bound the norm of gradient ‖∇F (xst+1)‖2 and the smallest
eigenvalue of Hessian λmin(∇2F (xst+1)) with ‖hst‖2, ‖ev‖2 and ‖eU‖2 defined in (81).
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Lemma 35 Under the same assumption as in Theorem 18, let hst ,x
s
t+1,Ms,t be variables

defined by Algorithm 2. Then we have

µ(xst+1) ≤ 9C
3/2
M

(
M

3/2
s,t ‖hst‖32 + ‖ev‖3/22 +M

−3/2
s,t ‖eU‖32

)
, (82)

where CM is the parameter in Ms,t = CML2.

Lemma 35 suggests that to bound our target Eµ(xst+1), we only need to focus on E‖hst‖32,
E‖ev‖3/22 and E‖eU‖32. The next lemma upper bound F (xst )−F (xst+1) with ev, eU and hst ,
which can be straightforwardly derived from the Hessian Lipschitz condition.

Lemma 36 Under the same assumption as in Theorem 18, let hst ,x
s
t ,x

s
t+1,Ms,t be variables

defined by Algorithm 2. Then we have the following result:

F (xst+1) ≤ F (xst )−Ms,t/12 · ‖hst‖32 + C1

(
‖ev‖3/22 /M

1/2
s,t + ‖eU‖32/M2

s,t

)
, (83)

where C1 = 200.

We can also bound ‖xst+1 − x̂s‖32 with ‖xst − x̂s‖32 as follows.

Lemma 37 Under the same assumption as in Theorem 18, let hst ,x
s
t ,x

s
t+1,Ms,t be variables

defined by Algorithm 2. Then we have the following result:

‖xst+1 − x̂s‖32 ≤ (1 + 3/n1/3)‖xst − x̂s‖32 + 2n2/3‖hst‖32. (84)

Finally, we bound the variance of ṽst and Us
t as follows.

Lemma 38 Under the same assumption as in Theorem 18, let xst , ṽ
s
t and x̂s be the iterates

defined in Algorithm 2. Then we have

Eṽs
t
‖ev‖3/22 ≤ 3L

3/2
1

D
3/4
g

‖xst − x̂s‖32,

where Dg is the batch size parameter defined in (21) and Eṽs
t

takes expectation over ṽst .

Lemma 39 Under the same assumption as in Theorem 18, let xst ,U
s
t and x̂s be iterates

defined in Algorithm 2. If the batch size of Hessian satisfies Bh > 400 log d, we have

EUs
t
‖eU‖

3/2
2 ≤ ChL

3
2

B
3/2
h

‖xst − x̂s‖32,

where Ch = 1200(log d)3/2 and EUs
t

only takes expectation over Us
t .

Lemmas 38 and 39 suggest that with carefully selection of batch size, both E‖ev‖3/22 and
E‖eU‖32 can be bounded by E‖xst − x̂s‖32, which play similar roles to Lemmas 25 and 26 in
the analysis of SVRC.
Proof [Proof of Theorem 18] We first define Rst = E[F (xst ) + cs,t‖xst − x̂s‖32], where cs,t is
a number series defined as follows: cs,T = 0 and for s = 1, . . . , S, t = 0, . . . , T − 1,

cs,t = cs,t+1

(
1 + 3/n1/3

)
+Ms,t/(500n). (85)
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Combining Lemmas 36 and 37, we can upper bound F (xst+1) + cs,t+1‖xst+1 − x̂s‖32. Specifi-
cally, (83) + cs,t+1× (84) yields

F (xst+1) + cs,t+1‖xst+1 − x̂s‖32
≤ F (xst )− ‖hst‖32

(
Ms,t/12− 2n2/3cs,t+1

)
+ C1

(
‖ev‖3/22 /M

1/2
s,t + ‖eU‖32/M2

s,t

)
+ cs,t+1(1 + 3/n1/3)‖xst − x̂s‖32. (86)

By Lemma 35, multiplying (82) with
(
24× 9C

3/2
M M

1/2
s,t

)−1
and adding it into (86) yields

F (xst+1) + cs,t+1‖xst+1 − x̂s‖32 +
(
24× 9C

3/2
M M

1/2
s,t

)−1 · µ(xst+1)

≤ F (xst ) + cs,t+1

(
1 + 3/n1/3

)
‖xst − x̂s‖32

+
(24C1 + 1)

24M
1/2
s,t

· ‖ev‖3/22 +
(24C1 + 1)

24M2
s,t

· ‖eU‖32, (87)

where we use the fact that Ms,t/24 − 2n2/3cs,t+1 > 0 which can be easily verified by the
definition in (85) and a similar argument in Appendix B.7. By Lemmas 38 and 39 we have

E‖ev‖3/22 ≤ 3L
3/2
1

D
3/4
g

E‖xst − x̂s‖32, E‖eU‖32 ≤
ChL

3
2

B
3/2
h

E‖xst − x̂s‖32,

where Dg, Bh are batch size parameters and Ch = 1200(log d)3/2. Taking expectation on
(87), we obtain the following result

E
[
F (xst+1) + cs,t+1‖xst+1 − x̂s‖32 +

(
24× 9C

3/2
M M

1/2
s,t

)−1 · µ(xst+1)
]

≤ E
[
F (xst ) + ‖xst − x̂s‖32 ·

(
cs,t+1

(
1 + 3/n1/3

)
+

6L
3/2
1 C1

D
3/4
g M

1/2
s,t

+
2L3

2ChC1

B
3/2
h M2

s,t

)]
≤ E

[
F (xst ) + ‖xst − x̂s‖32 ·

(
cs,t+1

(
1 + 3/n1/3

)
+Ms,t/(500n)

)]
, (88)

where in the last inequality we use the fact that Ms,t = CML2, Dg ≥ C1n
4/3L2

1/(L
2
2C

4/3
M )

and Bh ≥ 144(C1Ch)2/3n2/3/C2
M . By the definition of cs,t in (85), (88) is equivalent to(

24× 9C
3/2
M M

1/2
s,t

)−1 · E(µ(xst+1)) ≤ Rst −Rst+1. (89)

Then we sum up (89) from t = 0 to T − 1, while yields

T−1∑
t=0

(
24× 9C

3/2
M M

1/2
s,t

)−1 · E[µ(xst+1)] ≤ Rs0 −RsT .

Substituting xs0 = x̂s,xsT = x̂s+1 and cs,T = 0 into the inequality above, we get

T−1∑
t=0

(
24× 9C

3/2
M M

1/2
s,t

)−1 · E[µ(xst+1)] ≤ EF (x̂s)− EF (x̂s+1).
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Then we take summation from s = 1 to S, we have

S∑
s=1

T−1∑
t=0

(
24× 9C

3/2
M M

1/2
s,t

)−1 · E[µ(xst+1)] ≤ EF (x̂0)− EF (x̂S+1)

≤ F (x̂0)− inf
x∈Rd

F (x)

= ∆F .

Plugging Ms,t = CML2 into the above inequality, we have

S∑
s=1

T−1∑
t=0

E[µ(xst+1)] ≤ 216C2
ML

1/2
2 ∆F . (90)

In Algorithm 2, we choose xout randomly over s and t, thus we have our result from (90):

E[µ(xout)] ≤
216C2

ML
1/2
2 ∆F

ST
.

This competes the proof.

D.2. Proof of Corollary 20

Now we provide the proof of our corollary for the sample complexity of Lite-SVRC.

Proof [Proof of Corollary 20] By the definition in (8) and the result in Theorem 18, to find

an (ε,
√
L2ε)-approximate local minimum, we only need to make sure 216C2

ML
1/2
2 ∆F /(ST ) ≤

ε3/2. Setting T = n1/3, it suffices to let S = O(max{L1/2
2 ∆F /(ε

3/2n1/3), 1}). We need to
sample n Hessian at the beginning of each inner loop, and in each inner loop, we need to
sample Bh = Õ(n2/3) Hessian matrices. Therefore, the total sample complexity of Hessian
for Algorithm 2 is S · n + S · T · Bh = Õ(n + n2/3 · (∆F

√
L2)/ε

3/2). The total amount of
CSO calls is O(ST ) = O(∆F

√
L2)/ε

3/2).

D.3. Proofs of Theorem 22 and Corollary 23

The proofs of the convergence of Lite-SVRC with an inexact cubic subproblem solver defined
in Section 5 are almost the same as that of the convergence of SVRC. More specifically, the
proof of Theorem 22 is the same as that of Theorem 13, and the proof of Corollary 23 is
the same as that of Corollary 15. Therefore, we omit the proofs here for simplicity.

Appendix E. Proof of Technical Lemmas

In this section, we prove the technical lemmas used in the proof of Theorem 18.
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E.1. Proof of Lemma 35

Proof [Proof of Lemma 35] Recall the definition of µ(·) in (8). We need to upper bound

‖∇F (xst+1)‖
3/2
2 and −L3/2

2 λ3min(∇2F (xst+1)), which can be achieved by applying Lemmas 33

and 34 since we have xst+1 = xst + hst . To bound ‖∇F (xst+1)‖
3/2
2 , we apply Lemma 33:

‖∇F (xst+1)‖
3/2
2

≤
[
Ms,t‖hst‖22 + ‖∇ms

t (h
s
t )‖2 + ‖∇F (xst )− ṽst‖2 +

1

Ms,t
‖∇2F (xst )−Us

t‖22
]3/2

≤ 2
[
M

3/2
s,t ‖hst‖32 + ‖∇F (xst )− ṽst‖

3/2
2 + ‖∇ms

t (h
s
t )‖

3/2
2 +M

−3/2
s,t ‖∇2F (xst )−Us

t‖32
]

≤ 2
[
M

3/2
s,t ‖hst‖32 + ‖∇F (xst )− ṽst‖

3/2
2 +M

−3/2
s,t ‖∇2F (xst )−Us

t‖32
]
,

where the second inequality holds due to the basic inequality (a+ b+ c+ d)3/2 ≤ 2(a3/2 +
b3/2 + c3/2 + d3/2) and in the last inequality we use the fact that ∇ms

t (h
s
t ) = 0. Next we

bound −M−3/2s,t

[
λmin

(
∇2F (xst+1)

)]3
. Applying Lemma 34 with h = hst , we have

−L−3/22

[
λmin

(
∇2F (xst+1)

)]3 ≤ C3/2
M M

−3/2
s,t

[
Ms,t‖hst‖2 + ‖∇2F (xst )−Us

t‖2
]3

≤ 9C
3/2
M M

−3/2
s,t ·

[
M3
s,t

4
‖hst‖32 + ‖∇2F (xst )−Us

t‖32
]

≤ 9C
3/2
M

[
M

3/2
s,t ‖hst‖32 +M

−3/2
s,t ‖∇2F (xst )−Us

t‖32
]
,

where the second inequality holds due to (a+ b+ c)3 ≤ 9(a3 + b3 + c3). Thus, we have

µ(xst+1) = max
{
‖∇F (xst+1)‖

3/2
2 ,−L−3/22

[
λmin

(
∇2F (xst+1)

)]3}
≤ 9C

3/2
M

[
M

3/2
s,t ‖hst‖32 + ‖∇F (xst )− ṽst‖

3/2
2 +M

−3/2
s,t ‖∇2F (xst )−Us

t‖32
]
,

which completes the proof.

E.2. Proof of Lemma 36

Proof [Proof of Lemma 36] Note that xst+1 = xst + hst . Apply Lemma 40 and we have

F (xst+1) = F (xst + hst ) ≤ F (xst ) + 〈∇F (xst ),h
s
t 〉+

1

2
〈∇2F (xst )h

s
t ,h

s
t 〉+

L2

6
‖hst‖32

= F (xst ) + 〈ṽst ,hst 〉+
1

2
〈Us

th
s
t ,h

s
t 〉+

Ms,t

6
‖hst‖32 + 〈ev,hst 〉

+
1

2
〈eUhst ,h

s
t 〉+

L2 −Ms,t

6
‖hst‖32. (91)

Based on Lemma 24 for the sub-problem in cubic regularization, we have

〈ṽst ,hst 〉+
1

2
〈Us

th
s
t ,h

s
t 〉+

Ms,t

6
‖hst‖32 ≤

−Ms,t

12
‖hst‖32. (92)
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Meanwhile, we have following two bounds on 〈ev,hst 〉 and 〈eUhst ,h
s
t 〉 by Young’s inequality:

〈ev,hst 〉 ≤ C4‖ev‖2 ·
1

C4
‖hst‖2 ≤ C

3/2
4 ‖ev‖

3/2
2 +

1

C3
4

‖hst‖32, (93)

〈eUhst ,h
s
t 〉 ≤ C2

5‖eU‖2 ·
(
‖hst‖2
C5

)2

≤ C6
5‖eU‖32 +

‖hst‖32
C3
5

. (94)

We set C4 = C5 = (18/Ms,t)
1/3. Finally, because L2 ≤Ms,t/2, we have

L2 −Ms,t

6
‖hst‖32 ≤

−Ms,t

12
‖hst‖32. (95)

Substituting (92), (93), (94) and (95) into (91), we have the final result:

F (xst+1) ≤ F (xst )−
Ms,t

12
‖hst‖32 + C1

(
‖ev‖3/22

M
1/2
s,t

+
‖eU‖32
M2
s,t

)
, (96)

where C1 = 200.

E.3. Proof of Lemma 37

Proof [Proof of Lemma 37] Note that xst+1 = xst + hst , then we have

‖xst+1 − x̂s‖32 ≤
(
‖xst − x̂s‖2 + ‖hst‖2

)3
= ‖xst − x̂s‖32 + ‖hst‖32 + 3‖xst − x̂s‖22 · ‖hst‖2 + 3‖xst − x̂s‖2 · ‖hst‖22. (97)

The inequality holds due to triangle inequality. Next, we bound ‖xst − x̂s‖22 · ‖hst‖2 and
‖xst − x̂s‖2 · ‖hst‖22 by Young’s inequality:

‖xst − x̂s‖22 · ‖hst‖2 =
‖xst − x̂s‖22

n2/9
· n2/9‖hst‖2 ≤

2‖xst − x̂s‖32
3n1/3

+
n2/3‖hst‖32

3
, (98)

‖xst − x̂s‖2 · ‖hst‖22 =
‖xst − x̂s‖2

n1/9
· n1/9‖hst‖22 ≤

‖xst − x̂s‖32
3n1/3

+
2n1/6‖hst‖32

3
. (99)

Substituting (98), (99) into (97), we have the result:

‖xst+1 − x̂s‖32 ≤ (1 + 1/n1/3 + 2/n1/3)‖xst − x̂s‖32 + (1 + 2n1/6 + n2/3)‖hst‖32
≤ (1 + 3/n1/3)‖xst − x̂s‖32 + 2n2/3‖hst‖32,

which completes the proof.
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E.4. Proof of Lemma 38

Proof [Proof of Lemma 38] This proof is essentially the same as that of Lemma 25 in
Section B.2. However, we replace the semi-stochastic gradient ṽst defined in (19) with vst
used in Lemma 25, which leads to the following inequality that is similar to (63):

Eṽs
t
‖∇F (xst )− ṽst‖

3/2
2 ≤ 1/B

3/4
g;s,t

(
E‖∇fit(xst )−∇fit(x̂s) + gs −∇F (xst )‖22

)3/4
. (100)

Next we bound ‖∇fit(xst )−∇fit(x̂s) + gs −∇F (xst )‖2. By Assumption 17, we have

‖∇fit(xst )−∇fit(x̂s) + gs −∇F (xst )‖2 ≤ ‖∇fit(xst )−∇fit(x̂s)‖2 + ‖gs −∇F (xst )‖2
= ‖∇fit(xst )−∇fit(x̂s)‖2 + ‖∇F (x̂s)−∇F (xst )‖2
≤ 2L1‖xst − x̂s‖2. (101)

Finally, substituting (101) and Bg;s,t = Dg/‖xst − x̂s‖22 into (100), we have

Eṽs
t
‖∇F (xst )− ṽst‖

3/2
2 ≤ ‖x

s
t − x̂s‖3/22

D
3/4
g

·
(
4L2

1‖xst − x̂s‖22
)3/4 ≤ 23/2L

3/2
1

D
3/4
g

‖xs+1
t − x̂s‖32.

This completes the proof.

E.5. Proof of Lemma 39

Proof [Proof of Lemma 39] The proof of Lemma 39 is the same as that of Lemma 26 in
Section B.3. Thus we omit it for simplicity.

Appendix F. Additional Lemmas and Propositions

It is obvious that Assumption 1 implies the Hessian Lipschitz assumption of F , which is
also equivalent to the following lemma:

Lemma 40 (Nesterov and Polyak, 2006) Suppose F is L2-Hessian Lipschitz for some con-
stant L2 > 0, then we have

‖∇2F (x)−∇2F (y)‖ ≤ L2‖x− y‖2,

F (x + h) ≤ F (x) + 〈∇F (x),h〉+
1

2
〈∇2F (x)h,h〉+

L2

6
‖h‖32,

‖∇F (x + h)−∇F (x)−∇2F (x)h‖2 ≤
L2

2
‖h‖22.

Lemma 41 (Lyapunov’s Inequality) (Durrett, 2010) For a random variable X, when
0 < s < t, it holds that

(E|X|s)1/s ≤ (E|X|t)1/t.

The following two lemmas are matrix concentration inequalities.
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Proposition 42 (Matrix Khintchine Inequality) (Mackey et al., 2014) Suppose r >
2. Consider a finite sequence {Ai, 1 ≤ i ≤ N} of deterministic, self-adjoint matrices. Then[

E
∥∥∥∥ N∑
i=1

ξiAi

∥∥∥∥r
Sr

]1/r
≤
√
r

∥∥∥∥[ N∑
i=1

A2
i

]1/2∥∥∥∥
Sr

,

where sequence ξi consists of independent Rademacher random variables.

Proposition 43 (Chen et al., 2012) Let q ≥ 1, and fix r ≥ max{q, 2 log p}. Consider
W1, ...,WN of independent, random, positive-definite matrices with dimension p×p. Then[

E
∥∥∥∥ N∑
i=1

Wi

∥∥∥∥q
2

]1/q
≤
[∥∥∥∥ N∑

i=1

EWi

∥∥∥∥1/2
2

+ 2
√
er
(
Emax

i
‖Wi‖q2

)1/(2q)]2
.
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