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Abstract

This paper considers online convex optimization over a complicated constraint set, which
typically consists of multiple functional constraints and a set constraint. The conventional
online projection algorithm (Zinkevich, 2003) can be difficult to implement due to the
potentially high computation complexity of the projection operation. In this paper, we relax
the functional constraints by allowing them to be violated at each round but still requiring
them to be satisfied in the long term. This type of relaxed online convex optimization
(with long term constraints) was first considered in Mahdavi et al. (2012). That prior
work proposes an algorithm to achieve O(v/T) regret and O(T>/*) constraint violations for
general problems and another algorithm to achieve an O(Tz/ 3) bound for both regret and
constraint violations when the constraint set can be described by a finite number of linear
constraints. A recent extension in Jenatton et al. (2016) can achieve O(T™2*1%:1=0}) regret
and O(T"~%/?) constraint violations where § € (0,1). The current paper proposes a new
simple algorithm that yields improved performance in comparison to prior works. The new
algorithm achieves an O(v/T) regret bound with O(1) constraint violations.

Keywords: online convex optimization, long term constraints, regret bounds, constraint
violation bounds, low complexity

1. Introduction

Online optimization and learning is a multi-round process of making decisions in the pres-
ence of uncertainty, where a decision strategy should generally adapt decisions based on
results of previous rounds (Cesa-Bianchi and Lugosi, 2006). Online convex optimization is
an important subclass of these problems where the received loss function is convex with
respect to the decision. At each round of online convex optimization, the decision maker
is required to choose x(t) from a known convex set X'. After that, the convex loss func-
tion f!(x(t)) is disclosed to the decision maker. Note that the loss function can change
arbitrarily every round ¢, with no probabilistic model imposed on the changes.
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The goal of an online convex optimization algorithm is to select a good sequence x(t) such
that the accumulated loss Zthl fi(x(t)) is competitive with the loss of any fixed x € X. To
capture this, the T-round regret with respect to the best fixed decision is defined as follows:

T T
Regrety = Y f'(x(t)) — min Y _ f*(x). (1)
t=1 t=1

xeX

The best fixed decision in hindsight x* = argmingecx Ethl fi(x) typically cannot be
implemented. That is because it would need to be determined before the start of the first
round, and this would require knowledge of the future f!(-) functions for all t € {1,2,...,T}.
However, to avoid being embarrassed by the situation where our performance is significantly
exceeded by a stubborn decision maker guessing x* correctly by luck, a desired learning
algorithm should have a small regret. Specifically, we desire a learning algorithm for which
Regret grows sub-linearly with respect to T, i.e., the difference of average loss tends to zero
as T goes to infinity when comparing the dynamic learning algorithm and a lucky stubborn
decision maker.

For online convex optimization with loss functions that are convex and have bounded
gradients!, the best known regret is O(v/T) and is attained by a simple online gradient
descent algorithm (Zinkevich, 2003). At the end of each round ¢, Zinkevich’s algorithm
updates the decision for the next round ¢ 4+ 1 by

x(t+1) = P [x(t) = yV 1 (x(t))] (2)

where Px|-] represents the projection onto convex set X and + is the step size.

Hazan et al. (2007) shows that better regret is possible under a more restrictive strong
convexity assumption. However, Hazan et al. (2007) also shows that Q(v/T) regret is un-
avoidable with no additional assumption.

In the case when X is a simple set, e.g., a box constraint, the projection Py|[-] is simple
to compute and often has a closed form solution. However, if set X is complicated, e.g.,
set X is described via a number of functional constraints as X = {x € Ap : gr(x) < 0,7 €

{1,2,...,m}}, then equation (2) requires to solve the following convex program:
minimize: [}x — [x(t) — 1V f(x ()] | (3)
such that: gx(x) <0,Vk € {1,2,...,m} (4)
x € X eR" (5)

which can yield heavy computation and/or storage burden at each round. For instance,
the interior point method (or other Newton-type methods) is an iterative algorithm and
takes a number of iterations to approach the solution to the above convex program. The

1. In fact, Zinkevich’s algorithm in (Zinkevich, 2003) can be extended to treat non-differentiable convex loss
functions by replacing the gradient with the subgradient. The same O(v/T) regret can be obtained as
long as the convex loss functions have bounded subgradients. This paper also has the bounded gradient
assumption in Assumption 1. This is solely for simplicity of the presentation. In fact, none of the results
in this paper require the differentiability of loss functions. If any loss function is non-differentiable, we
could replace the gradient with the subgradient and obtain the same regret and constraint violation
bounds by replacing the bounded gradient assumption with the bounded subgradient assumption.
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computation and memory space complexity at each iteration is between O(n?) and O(n?),
where n is the dimension of x.

As an attempt to reduce the projection complexity, Hazan and Kale (2012) use the
Frank-Wolfe technique to replace the quadratic convex program (3)-(5) with simpler lin-
ear optimization with the same constraints (4)-(5). To completely circumvent the com-
putational challenge due to constraint (4) in the projection operator, a variation of the
standard online convex optimization, also known as online convex optimization with long
term constraints, is first considered by Mahdavi et al. (2012). In this variation, compli-
cated functional constraints gi(x) < 0 are relaxed to be soft long term constraints. That
is, we do not require x(t) € Xp to satisfy gr(x(t)) < 0 at each round, but only require
that Z?zl gr(x(t)), called constraint violations, grows sub-linearly. Mahdavi et al. (2012)
proposes two algorithms such that one achieves O(v/T) regret and O(T?/*) constraint viola-
tions; and the other achieves O(T%/?) for both regret and constraint violations when the set
X can be represented by linear constraints. Further, Mahdavi et al. (2012) posed an open
question of whether there exists a low complexity algorithm with an O(v/T) bound on the
regret and a better bound than O(7%/4) on the constraint violations. Jenatton et al. (2016)
recently extends the algorithm of Mahdavi et al. (2012) to achieve O(T max{e,l—e}) regret
and O(T'~%/2) constraint violations where 6 € (0,1) is a user-defined tradeoff parameter.
By choosing # = 1/2 or 6 = 2/3, the [O(V/T),O(T3/*)] or [O(T%?),0(T?/3)] regret and
constraint violations of Mahdavi et al. (2012) are recovered. It is easy to observe that the
best regret or constraint violations in Jenatton et al. (2016) are O(v/T) under different 3
values. However, the algorithm of Jenatton et al. (2016) can not achieve O(v/T) regret and
O(V/T) constraint violations simultaneously.

The current paper proposes a new algorithm that can achieve O(v/T) regret and O(1)
constraint violations that do not grow with T'; and hence yields improved performance in
comparison to prior works (Mahdavi et al., 2012; Jenatton et al., 2016). The algorithm is
the first to reduce the complexity associated with multiple constraints while maintaining
O(VT) regret and achieving a constraint violation bound strictly better than O(T3/4).
Hence, we give a positive answer to the open question posed by Mahdavi et al. (2012).
The new algorithm is related to a recent technique we developed for deterministic convex
programming with a fixed objective function (Yu and Neely, 2017) and the drift-plus-penalty
technique for stochastic optimization in dynamic queue networks (Neely, 2010). Our other
paper (Yu et al., 2017) developed another algorithm with O(v/T) regret and weaker O(v/T)
constraint violations for online convex optimization with stochastic constraints that include
long term constraints as special cases.

Many engineering problems can be directly formulated as online convex optimization
with long term constraints. For example, problems with energy or monetary constraints
often define these in terms of long term time averages rather than instantaneous constraints.
In general, we assume that instantaneous constraints are incorporated into the set Ajp;
and long term constraints are represented via functional constraints gi(x). Two example
problems are given as follows. More examples can be found in Mahdavi et al. (2012) and
Jenatton et al. (2016).

e In the application of online display advertising (Goldfarb and Tucker, 2011; Ghosh
et al., 2009), the publisher needs to iteratively allocate “impressions” to advertisers
to optimize some online concave utilities for each advertiser. The utility is typically
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unknown when the decision is made but can be inferred later by observing user click
behaviors under the given allocations. Since each advertiser usually specifies a certain
budget for a period, the “impressions” should be allocated to maximize advertisers’
long term utilities subject to long term budget constraints.

e In the application of network routing in a neutral or adversarial environment, the
decision maker needs to iteratively make routing decisions to maximize network util-
ities. Furthermore, link quality can vary after each routing decision is made. The
routing decisions should satisfy the long term flow conservation constraint at each
intermediate node so that queues do not overflow.

2. Online Convex Optimization with Long Term Constraints

This section introduces the problem of online convex optimization with long term constraints
and presents our new algorithm.

2.1. Online Convex Optimization with Long Term Constraints

Let & be a closed convex set and gi(x),k € {1,2,...,m} be continuous convex functions.
Denote the stacked vector of multiple functions g1(x), . . ., gm(x) as g(x) = [g1(X), - - ., gm(X)].
Define X = {x € Xy : gp(x) < 0,k € {1,2,...,m}}. Let fi(x) be a sequence of continu-
ous convex loss functions which are determined by nature (or by an adversary) such that
ft(x) is unknown to the decision maker until the end of round #. For any sequence x(t)
yielded by an online algorithm, define Zthl FH(x(t)) — mingex Zthl ft(x) as the regret and
S gr(x(1),k € {1,2,...,m} as the constraint violations. The goal of online convex op-
timization with long term constraints is to choose x(t) € Ap for each round ¢ such that both
the regret and the constraint violations grow sub-linearly with respect to 7. Throughout
this paper, we use || - || to denote the Euclidean norm.

Assumption 1

o The loss functions have bounded gradients on Xy. That is, there exists D > 0 such
that ||V f{(x)|| < D for all x € Xy and all t.

o There exists a constant 5 such that ||g(x) — g(y)|| < Bl|x — y|| for all x,y € Xp, i.e.,
g(x) is Lipschitz continuous with modulus (5.

Assumption 2 There exists a constant G such that ||g(x)|| < G for all x € Ap.
Assumption 3 There exists a constant R such that |[x —y| < R for all x,y € Xp.

Note that if X is bounded, then the existence of G follows directly from the compact-
ness of set Xp and the continuity of g(x) and the existence of R follows directly from the

boundedness of set Aj.

Assumption 4 There exists € > 0 and X € Xy such that gi(X) < —e¢ forallk € {1,2,...,m}.
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Assumption 4, known as the Slater condition or the interior point condition, is a mild
assumption in convex optimization (Boyd and Vandenberghe, 2004).

In Sections 2-3, we shall propose a new algorithm to achieve O(v/T) regret and O(1)
constraint violations for online convex optimization with long term constraints under As-
sumptions 1-4 by assuming time horizon 7T is known in advance. In Section 4, further
extensions on dealing with unknown time horizon 7" and relaxing Assumptions 3-4 will be
discussed.

2.2. New Algorithm

Define g(x) = vg(x) where v > 0 is an algorithm parameter. Note that each gp(x) is still
a convex function and g(x) < 0 if and only if g(x) < 0. The next lemma follows directly.

Lemma 1 If online convex optimization with long term constraints satisfies Assumptions
1-4, then

° [g8(x) — eIl <Blx =yl for all x,y € Ap.

e ||g(x)]| <G for all x € Ap.

o Gi(X) < —ve forallk € {1,2,...,m}.

Now consider the following algorithm described in Algorithm 1. This algorithm chooses
x(t + 1) as the decision for round ¢ + 1 based on f!(-) without knowing the cost function
fi1(). In this paper, we show that if the parameters v and a are chosen to satisfy
v =TY* and o = 8%+ 1]V/T, then Algorithm 1 achieves an O(v/T) regret bound with
O(1) constraint violations.

Algorithm 1

Let v, > 0 be constant parameters. Initialize Qx(0) = 0,Vk € {1,2,...,m}. Choose
arbitrary x(1) € Xp. At the end of each round t € {1,2,3,...}, observe f!(-) and do the
following:

e Update virtual queue vector Q(t) via
Qr(t) = max {—gr(x(t)), Qr(t — 1) + ge(x(t))},Vk € {1,2,...,m}.
e Choose x(t + 1) that solves

min { [V (x(O)] b — (1)) + [Q() + EC(0))T50x) + allx — x()]*}

XEXO

as the decision for the next round ¢ + 1, where V f(x(t)) is the gradient of f!(x) at
point x = x(t).

This algorithm introduces a virtual queue vector for constraint functions. The update
equation of this virtual queue vector is similar to an algorithm recently developed by us
for deterministic convex programs (with a fixed and known objective function) in Yu and
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Neely (2017). However, the update for x(¢ + 1) is different from Yu and Neely (2017). The
role of Q(t) is similar to a Lagrange multiplier vector and its value is like a “queue backlog”
of constraint violations. By introducing the virtual queue vector, we can characterize the
regret and constraint violations for the new algorithm through the analysis of a drift-plus-
penalty expression. The analysis of a drift-plus-penalty expression was originally considered
in stochastic optimization for dynamic queueing systems where the decision at each round is
made by observing the instantaneous cost function that changes in an i.i.d. manner (Neely,
2003, 2010). The algorithm developed in this paper is different from the conventional drift-
plus-penalty algorithm in both the decision update and the virtual queue update. However,
it turns out that the analysis of the drift-plus-penalty expression is also the key step to
analyze the regret and the constraint violation bounds for online convex optimization with
long term constraints.

Because of the ||[x — x(t)|? term, the choice of x(t + 1) in Algorithm 1 involves min-
imization of a strongly convez function (strong convexity is formally defined in the next
section). If the constraint functions g(x) are separable (or equivalently, g(x) are separable)
with respect to components or blocks of x, e.g., g(x) = Y1, g (2;) or g(x) = Ax — b,
then the primal updates for x(¢ + 1) can be decomposed into several smaller independent
subproblems, each of which only involves a component or block of x(t+1). The next lemma
further shows that the update of x(¢ 4 1) follows a simple gradient update in the case when
g(x) is linear.

Lemma 2 If g(x) is affine, i.e, g(x) = Ax+ b for some matriz A and vector b, then the
update of x(t 4+ 1) at each round in Algorithm 1 is given by

X(t+1) = Pay [x(1) — 5-d(1)]

where d(t) = VfH(x(t)) + D iy [Qx(t) + gk (x(8))]Vgr(x(t)) and Px,[-] denotes projection
onto set Xy.

Proof Fix ¢t > {0,1,...}. Note that d(¢) is a constant vector in the update of x(¢ + 1).
The projection operator can be interpreted as an optimization problem as follows:

x(t+ 1) = Pa [x(t) — 5 -d(1)]

(C)

x(t+1) = argminse | [x ~ [x(t) ~ 5]

i

x(t 4+ 1) = argmine, I~ x(0)]7 + ~dT (1)~ x(1)] + 15 10 ]

& x(t+1) = argmine, _Z[Qk(t +1) + G (x(8)]gr(x(1)) + dT (8) [x — x(2)]
Tk=1

+allx = x(1)]?]
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G x(t+1) = argminex, [V e(t)]TBe = x(2)) + 3 Q(E) + Gx(x(1))]gx (x(1)

k=1

+ > [Qk(t) + Ge(x()][Var(x(t)]T [x — x()] + o[ x — X(t)\lﬂ

k

—_

d
il x(t + 1) = argmingex,

—

[V F4(x(0)]T [x = x()] + [Q(t) + &(x(1))]T&(x) + allx —x(1) Hﬂ :

where (a) follows from the definition of the projection onto a convex set; (b) follows from
the fact the minimizing solution does not change when we remove constant term 55 ||d(t)||?,
multiply positive constant « and add constant term » ;" | [Qx(t) + gr(x(¢))]gr(x(t)) in the
objective function; (c) follows from the definition of d(¢); and (d) follows from the identity

[Q()+&(x(t)]T8(x) = Y51 [Qu 1)+ (x(6))] g1 (x(8))+ 331 [Qre (1) +3k (x ()] [V i (x(2))] T [x—
x(t)] for any x € R™, which further follows from the linearity of g(x). [ |

2.3. Properties of Virtual Queues in Algorithm 1

In this subsection, we summarize important properties for virtual queues introduced in Al-
gorithm 1. The virtual queue properties in this subsection are similar to those we developed
in another context in Yu and Neely (2017). However, the virtual queue of the current paper
is slightly different and we give proofs for completeness. These properties come from the
algorithm design and rely on none of Assumptions 1-4.

Lemma 3 In Algorithm 1, we have
1. At each round t € {0,1,2,...}, Qx(t) >0 for all k € {1,2,...,m}.
2. At each round t € {1,2,...}, Qk(t) + gr(x(t)) > 0 for all k € {1,2...,m}.

3. At round t = 1, [|Q(1)|? = |lg(x(1))||*>. At each round t € {2,3,...}, |Q®)|* >
18 (x(t))]I-

4. At each round t € {1,2,...}, Q)| < |Q(t — )|l + [[&(x(?))]l-
Proof

1. Fix k € {1,2,...,m}. The proof is by induction. Note that Qx(0) = 0 by initializa-
tion. Assume Qg(t) > 0 for some t € {0,1,2,...}. We now prove Qx(t +1) > 0. If
gx(x(t + 1)) > 0, the virtual queue update equation of Algorithm 1 gives:

Qu(t +1) = max{—gi(x(t + 1)), Qu(t) + o (x(t + 1)} = Qu(t) + Gu(x(t +1)) = 0.

On the other hand, if gx(x(t + 1)) < 0, then Qx(t + 1) = max{—gr(x(t + 1)), Qx(t) +
ge(x(t+1))} > —gr(x(t+ 1)) > 0. Thus, in both cases we have Q(t + 1) > 0.

2. Fix k € {1,2,...,m}. Fix t € {0,1,...}. By the virtual queue update equation, we
have Qg (t) = max{—gr(x(t)), Qr(t — 1) + gr(x(t))} > —gr(x(t)), which implies that
Qr(t) + gr(x(t)) = 0.
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3. Since we initialize Qr(0) = 0,Vk, we have Q(1) = max{—gr(x(1)), gr(x(1 ))} =
G0<(D)], V. Thus, [Q(DIP = |E(x(1)|P. Fix t € {2,3,...} and k € {1,2,...,m}.
If gr(x(t)) > 0, then

Qr(t) = max{—gr(x(t)), Qr(t — 1) + gr(x(t))}
> Qr(t — 1) + gr(x(2))
% () = 13k(x(0),
where (a) follows from part 1. On the other hand, if gi(x(f)) < 0, then Qx(t) =

max{—gr(x(t)), Qr(t — 1) + gr(x(t))} > —gr(x(t)) = |gr(x(t))|. Thus, in both cases,
we have Q(t) > |gr(x(t))|. Squaring both sides and summing over k € {1,2,...,m}

yields |Q(£)[* > [|g(x(£))]*.

4. Fixt € {0,1,...}. Define vector h = [h1, ..., h,]" by hi, = |Gr(x(2))],Vk € {1,2,...,m}.
Note that ||h|| = ||g(x(¢))||. For any k& € {1,2,...,m}, by the virtual update equation
we have

~

Qr(t) = max{—gr(x(t)),
<|Qk(t = 1]+ [gr
= Qr(t = 1) + hy.

Squaring both sides and summing over k € {1,2,...,m} yields |Q(#)||*> < ||Q(t —
1) + h||?, which is equivalent to ||Q(t)|| < ||Q(¢t — 1) + h|. Finally, by the triangle
inequality ||Q(t — 1) +h| < [|Q(¢t — 1)| + ||h| and recalling that ||h|| = ||g(x(¢))||, we
have [|Q(#)[| < [|Q(t — 1) + [[&(x(®)) -

Qr(t —1) + gr(x(2))}
(x(8))]

Lemma 4 Let Q(t),t € {0,1,...} be the sequence generated by Algorithm 1. For any
T > 1, we have

T

D ar(x(t) < iQk(T),Vk €{1,2,...,m}.

t=1

Proof Fix k € {1,2,...,m} and T" > 1. For any t € {1,2,...,T} the update rule of
Algorithm 1 gives:

Qr(t) = max{—gr(x(t)), Qr(t = 1) + gr(x(t))} = Qr(t — 1) + gr(x())-
Hence, gr(x(t)) < Qk(t) — Qx(t — 1). Summing over t € {0,...,T — 1} yields

T a
S G x(0) < Qu(T) — Qu(0) © Qu(T).
t=1

where (a) follows from the initialization rule Qx(0) = 0. This lemma follows by recalling
that gr(x) = ygk(x). u
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Let Q(t) = [Q1(2),. .-, Qm(t)]T be the vector of virtual queue backlogs. Define L(t) =
211Q(®)[|%. The function L(t) shall be called a Lyapunov function. Define the Lyapunov
drift as

At) = L{t+1) = L(t) = %[IIQ(t + 17~ lQE)IP). (6)

The Lyapunov drift in (6) was originally used in the drift-plus-penalty technique for
stochastic optimization in dynamic queueing networks (Neely, 2010) and was recently used
in Yu and Neely (2017) to develop fast O(1/T) converging Lagrangian methods for deter-
ministic optimization by controlling constraint violations through a virtul queue dynamic.
While online convex optimization with long term constraints differs from both scenarios,
it turns out the Lyapunov drift is still quite useful to jointly analyze regret and constraint
violations.

Lemma 5 At each round t € {0,1,2,...} in Algorithm 1, an upper bound of the Lyapunov
drift is given by

A(t) < [QOI g (x(t+ 1)) + g (x(t + 1)) (7)

Proof Fixt € {0,1,...,}. The virtual queue update equations Q(t+1) = max{—gx(x(t+
1)), Qr(t) + gr(x(t + 1)) },Vk € {1,2,...,m} can be rewritten as

Qr(t+1)=Qr(t) + hp(x(t+1)), Yk € {1,2,...,m}, (8)

where

gr(x(t + 1)), if Qr(t) + gr(x(t+1)) > —gr(x(t + 1))
hi(x(t)) —{ _Qk(gt’; et 1), e Tk Ik VE.

Fix k € {1,2,...,m}. Squaring both sides of (8) and dividing by 2 yields:
1
SQu(t+ 1P
1 1
:g[Qk(t)]Z + E[hk(x(t + 1) + Qr(t)hr(x(t + 1))

=S [QUP 4 S Cx(t + D) + Qu()k(x(t + 1)) + Qe(B)u(x(t + 1)) — Gu(x(t + 1))

D2 IQMOP + Sl x(t + D) + Qe(B)d(x(t + 1)
= Drae(t-+ 1) + el + D)kl + 1)) — Gt + D)

1

=51k - o e (x( + D) + Qr(t)gr(x(t + 1)) + [g(x(t + 1))]”

< QO + Qu)aulx(t + 1) + [as(x(t + D),

where (a) follows from the fact that Qg (¢)[he(x(t + 1)) — gr(x(t + 1))] = —[he(x(t + 1)) +
ge(x(t+1))] - [hr(x(t+1)) — gx(x(t+1))], which can be shown by considering hy(x(t+1)) =
gr(x(t+1)) and hg(x(t + 1)) # gr(x(t + 1)). Summing over k € {1,2,...,m} yields

S1Q( + DI < ZIQ()IP + [QUT &0t + 1)) + & (x(t + )]
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Rearranging the terms yields the desired result. |

3. Regret and Constraint Violation Analysis of Algorithm 1

This section analyzes the regret and constraint violations of Algorithm 1 for online convex
optimization with long term constraints under Assumptions 1-4.

3.1. An Upper Bound of the Drift-Plus-Penalty Expression

Definition 1 (Strongly Convex Functions) Let X C R" be a convex set. Function h
is said to be strongly convex on X with modulus « if there exists a constant o > 0 such that
h(x) — 3ax|? is conver on X.

By the definition of strongly convex functions, if h(x) is convex and a > 0, then h(x) +
al|x — xol|? is strongly convex with modulus 2« for any constant xg. The following lemma
summarizes a useful property of the minimizer for a strongly convex function.

Lemma 6 (Corollary 1 in Yu and Neely (2017)) Let X C R™ be a convex set. Let
function h be strongly convex on X with modulus o and x°Pt be a global minimum of h on
X. Then, h(xP') < h(x) — §||xP" —x||? for allx € X.

Lemma 7 Consider online convex optimization with long term constraints under Assump-

tion 1. Letx* € Xy be any fixed solution that satisfies g(x*) < 0, e.g., X* = argmingcx Zthl fi(x).
Let v > 0 and n > 0 be arbitrary. If a > %[7262 + )] in Algorithm 1, then for allt > 1, we

have

A(t) + f1(x(1))
Sft(X*) + OC[HX* o X(t)”2 — HX* — X(t + 1)”2] + %[Hg(X(t + 1>)H2 - Hg(x(t)>H2] + 2];7D2’

where B and D are defined in Assumption 1.

Proof Fix t > 1. Note that part 2 of Lemma 3 implies that Q(¢) + g(x(t)) is component-
wise nonnegative. Hence, [V f!(x(¢))]T[x — x(¢)] + [Q(t) + &(x(t))]T&(x) is a convex function
with respect to x. Since afx — x(¢)||? is strongly convex with respect to x with modulus
2, it follows that

[V/4(x(0)]T [x = x(8)] + [Q(t) + §(x(1)]"&(x) + allx — x(t)||*

is strongly convex with respect to x with modulus 2a.
Since x(t 4 1) is chosen to minimize the above strongly convex function, by Lemma 6,
we have

[V @) (t + 1) = x(t)] + [Q(#) + &(x(t))] &(x(t + 1)) + allx(t + 1) —x(t)||*
SIVAA )T = x(0)] + [Q(t) + g(x ()] g(x") + alx* — x(t)|I* — allx* —x(t + 1|

10
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Adding f(x(t)) on both sides yields

FHx () + [V )] [t + 1) = x(0)] + [Q(H) + &(x(t))] &(x(t + 1))
+alx(t+1) = x(t)]?
<FUx()) + [V @) —x@)] + [Q(1) + g(x(t))] &(x") + allx* —x(1)]?
—aflx* - x(t + 1)

<)+ [Q() + g(x(1)]T 8 (x") +alllx™ — x(8)]* — |x" = x(t + 1)]]

(b)t * * 2 * 2
<)+l = x@) =[x = x(E+ D7,

where (a) follows from the convexity of function f!(x); and (b) follows by using the fact
that gr(x*) <0 and Qx(f) + gx(x(f)) > 0 (i.e., part 2 in Lemma 3) for all k € {1,2,...,m}
to eliminate the term marked by an underbrace.

Rearranging terms yields

F1x(0) + Q)] g(x(t + 1))
<P+ afllx = x (@ = [1x" = x(t + DI?] = afx(t+1) —x(0)]”
— [V @) +1) — x(t)] - [B(x())] &(x(t + 1)) (9)

For any n > 0, we have

VGt + 1) — x(6)] YVt + 1) (1))
=15 IV NIyt + 1) = (o))
(
<5 IV PGP + gallx(e+ 1) = x(0)|°

QL ey L+ 1) — xo)? (10)
_27] 277 X X ,

where (a) follows from the Cauchy-Schwarz inequality; (b) follows from the basic inequality
ab < $(a? 4+ b%),Va,b € R; and (c) follows from Assumption 1.

Note that uuy = %[Hu1||2 + |luz||? = |lu; — uz|/?] for any uy,us € R™. Thus, we have

g + gt + D)I* — gt + 1)) — gx®)I°]. (11)

l\.’)\r—t

E(x(0)]"g(x(t+1)) =

11
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Substituting (10) and (11) into (9) yields
FHx() + [Q] g (x(t + 1))

<PO) F allx = x(0) =[x = x(t+ DI+ [0 = allxtt + 1) = x(O] + 5-D°

+ S EOx(t + 1) — B — S IECe() I — 5 IEx(e + D)
(a)
SO+ all = x O = I = x(t + DI+ [55°8 + 50— allbx(t + 1) = <))

+ 50" = 5B — S E(x(t + D)

®) b/ * * 2 * 2 Lo 1. o 1, 2
<P F ol =x@7 = %" ==+ DIF + 5. D7 = 5 llsx®)I” - 5let + DI
(12)

where (a) follows from the fact that ||g(x(t + 1)) — g(x(¢))]| < v8||x(t + 1) — x(¢)||, which
further follows from Lemma 1; and (b) follows from the fact that a > £[y28% + ).
By Lemma 5, we have

A < [QUTT &0+ 1)) + & (x(t + D) (13)
Summing (12) and (13) together yields
A®) + 1 (x(1)
<PO) ol =) = [ =t + DI+ gGe(e+ 1) = gGx(e) ]+ 5D

3.2. Regret Analysis

Theorem 1 Consider online convexr optimization with long term constraints under As-
sumption 1. Let x* € Xy be any fixed solution that satisfies g(x*) < 0, e.g., x* =
argmingex 1y f'(x).
1. Let v > 0 and n > 0 be arbitrary. If o > %[7252 + n] in Algorithm 1, then for all
T > 1, we have

T T
ST () < 37 £ + allx —x (1) + ;nD%.
t=1 t=1

2. Ify=TY4 n = VT and o = %[ﬂ2 + 1T in Algorithm 1, then for all T > 1, we
have

T

T
Do) <Y ) + 0T,
t=1

t=1

12
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Proof Fix T > 1. Since a > $[y28% + 1], by Lemma 7, for all ¢ € {1,2,...,T}, we have

A(t) + f1(x(t))
<FHE) + afllxt = x(@)F - [lx" = x(t + D] + %[IIQ(X(t + DI = eI + 5 DQ-

Summing over t € {1,2,...,T} yields

T T T

T
DAY ) <Y S Fa)y [lIx = x (@) — x"—x(t+ 1))
t=1

t=1 t=1 t=1

T
+ = S llE (et + 1)) — &) + 2177D2T.
t=1

DN |

Recalling that A(t) = L(t + 1) — L(¢) and simplifying summations yields
L(T +1) ) + Zf*
d 1 1 1
<) +alx = x()? —afx’ = x(T+ DI + S I8&(T +1)[* - 5 &6(1)]* + %DQT

T
<30 O) Fallx” = x(DI + FIE(T + 1)1 = () + 5-D°T.

T
<3076 + al = x()| + SIEK(T + D)+ L(1) = LT+ 1)+ 5-D°T

t=1
a) 1 1
@ ) +alxt - x(D))F + 5”@(X(T +1) - §H§(X(1))HQ + %HQ(UH2
t=1
1 1
- iHQ(T +1))° + %DzT

T
* * 1
<D ) +alxt = x(D))? + %DQT
t=1

where (a) follows form the definition that L(1) = £(|Q ( )I? and L(T + 1) = 3| Q(T + 1)||%;
and (b) follows from the fact that [|Q(1)||* = ||g(x(1))||? and |Q(T+1)||* > ||g(x(T+1))]?,
i.e., part 3 in Lemma 3.

Thus, the first part of this theorem follows. Note that if we let v = TV/* and = VT,
then a = $[32+1]v/T > 1[28%+n]. The second part of this theorem follows by substituting

13
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y=TY4 n =T and a = (8% + 1]VT into the first part of this theorem. Thus, we have

T T
S (1) <30 10+ 518+ 1)~ x(UIPVT + S DT
t=1 t=1
T
=3 FH(x) + O(T).
t=1

3.3. An Upper Bound of the Virtual Queue Vector

It remains to establish a bound on constraint violations. Lemma 4 shows this can be done
by bounding ||Q(¢t)]|.

Lemma 8 Consider online convex optimization with long term constraints under Assump-

tions 1-4. At each round t € {1,2,...,} in Algorithm 1, if ||Q(¢)|| > vG + W,
where D, G and R are defined in Assumption 1 and € is defined in Assumption 4, then

Q-+ < lQM)]-

Proof Let X € Ap and € > 0 be defined in Assumption 4. Fix ¢ > 0. Since x(t + 1) is
chosen to minimize [V f!(x(t))]"[x — x(t)] + [Q(¢) + g(x(2))]T&(x) + af|x — x(¢)||?, we have

[V ()T Be(t + 1) —x(8)] + [Q(E) + §(x()]T&(x(t + 1)) + allx(t + 1) —x(1)]?
[V (@) [x = x()] + [Q(1) + g(x(t))] &%) + af|x — x(t)]*

(V£ (e()]" [ = x(2)] — e

INE A

NE

[Qr(t) + g (x()] + ol — x(t)]*

e
Il

1
[V /A (x(@)]T [% = x(1)] = 7ellQ(t) + &(x(1))I| + allx — x(t)|

[V ()] [x = x()] = e [IQM)I| - Ig(x(®))I] + allx —x(®)],

—
INS

—
INe

where (a) follows from the fact that gi(x) < —ve,Vk € {1,2,...,m}, i.e., Lemma 1 and the
fact that Qg(t) + grp(x(t)) > 0,Vk € {1,2,...,m}, i.e., part 2 in Lemma 3; (b) follows from

the basic inequality Y i*; a; > /> v, a? for any nonnegative vector a > 0; and (c) follows
from the triangle inequality ||x —y|| > ||x|| — ||y, Vx,y € R™.

14
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Rearranging terms yields

[Q(t)]Té( (t+1))
— YellQM) || + vellg(x()) ]| + allx — x(®)[I* — aflx(t + 1) — x(t)||?
+ [V ()] [% = x(8)] = [V (x(0)]T et + 1) = x(8)] = [B(x(8)]T &(x(t + 1))
< — el Q)| + el g(x() ] + eIk — x(8)|* + [V £* (x(t)] T [% — x(t + 1)]
— [B(x()]"&(x(t+ 1))

(a)
< — el QM) + el §x(E)]| + all — x(O)]? + [V (x(e)][|% - x(t + 1)
+ &) & Ge(t + 1)

(b)
< — €| Q(1)|| + %G 4+ aR? + DR + ~*G?, (14)

where (a) follows from Cauchy-Schwarz inequality and (b) follows from Assumption 1 and
Lemma 1.
By Lemma 5, we have

A(t) <[QO)T&(x(t + 1)) + |&(x(t + 1))
QO] &(x(t + 1)) + G

—7€|Q()|| + %G + aR® + DR + 29°G?,

INE A

—
INS

where (a) follows from Lemma 1 and (b) follows from (14).
Thus, if [|Q(¢)]| > G + PR tpen A(f) < 0. That is, [Q(t + 1)[| < Q)]

€

Corollary 1 Consider online convex optimization with long term constraints under As-
sumptions 1-4. At each round t € {1,2,...,} in Algorithm 1,

R%? + DR+ 272G?
Q)| < 296 + S

where D, G and R are defined in Assumption 1 and € > 0 is defined in Assumption 4.

Proof

Note that Q)] £ [1QO)] + [8x(O)] £ 1G < 2G + SEEDRERIE e (o)

follows from Lemma 3 and (b) follows from Lemma 1. We need to show ||Q(?)]| < 2vG +

2 22
W for all rounds ¢ > 2. This can be proven by contradiction as follows:

R?+DR+2+2G?
Assume that [[Q(t)|| > 27G + ““—-7=—" happens at some round ¢ > 2. Let 7 be

. . . . aR?+DR+2v%G?
the first (smallest) round index at which this happens, i.e., |Q(7)| > 27G + %

Note that 7 > 2 since we know ||Q(1)]| < 279G + w The definition of 7 implies

R24+DR+27%G? .
that ||Q(7 — 1)|| < 279G + % Now c0n81der the value of ||Q(7 — 1)|| in two
cases.

15
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o If |Q(T — 1) > vG+ QP +DRA2PGE  ihan by Lemma 8, we must have ||Q(7)| <

YE
1Q(T —1)|| < 279G + w. This contradicts the definition of 7.
o If |Q(T —1)| <G+ w, then by part 4 in Lemma 3, we must have

(a)
1QM) < 1QUr=D)I+E((T))I| < AG+EHPEECE G = 9y AFADIENTE
where (a) follows from Lemma 1. This also contradicts the definition of 7.

In both cases, we have a contradiction. Thus, | Q(t)|] < 2vG + w for all round
t> 2. |

3.4. Constraint Violation Analysis

Theorem 2 Consider online convexr optimization with long term constraints under As-
sumptions 1-4. Let D, 3,G, R and € be defined in Assumptions 1-4.

1. For all T > 1, we have

T

R24+ DR 2G?
S grx(t) <26+ 2 ke (1,2, m}.
t=1

Y€

2. Ify=TY* and a = %[52 + 1)VT in Algorithm 1, then for all T > 1, we have

1B+ 1]R? + 2G2 . DR
€ ex/T’

T
> ae(x(t) <26+ Yk e {1,2,...,m}.
t=1

Proof Fix T >1and k € {1,2,...,m}. By Lemma 4, we have

T

1 1 (a) 2 aR? + DR + 272G?
D ar(x(1) <=Qu(T) < — QK| < =G + =
=1 v v v At

)

where (a) follows from Corollary 1. Thus, the first part of this theorem follows.
The second part of this theorem follows by substituting v = 7%/4 and a = %[ﬂ2 +1VT
into the last inequality. |

3.5. Performance Summary

Theorem 1 and Theorem 2 together imply that if we choose? v = T4 and a = %[,6’2 +1VT

in Algorithm 1, then we can achieve O(v/T) regret and O(1) constraint violations for online
convex optimization with long term constraints under Assumptions 1-4.

2. More precisely, to achieve O(v/T) regret and O(1) constraint violations, it suffices to choose vy = O(T*/*)
and a = 13%y* + O(VT).

16
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Parts (1) of Theorems 1 and 2 suggest that our regret and constraint violations do not
rely on the m, which is the number of constraints. However, the constraint violation bound
does depend on G?, where G is defined in Assumption 2. Note that G? in the worst case
can grow linearly with respect to m.

Note that the O(1) constraint violation bound proven in Theorem 2 is in terms of
D,G, R and € defined in Assumptions 1-4. However, the implementation of Algorithm
1 only requires the knowledge of 5, which is known to us since the constraint function
g(x) does not change. In contrast, the algorithms developed in Mahdavi et al. (2012) and
Jenatton et al. (2016) have parameters that must be chosen based on the knowledge of D,
which is usually unknown and can be difficult to estimate in an online optimization scenario.

4. Extensions

This section extends the analysis in the previous section by considering intermediate and
unknown time horizon T and by relaxing Assumptions 2-4.

4.1. Intermediate Time Horizon T

Note that parts (1) of Theorems 1 and 2 hold for any T'. For large T', choosing n = T*/* and
a = 1[8% + 1]VT yields the O(VT) regret bound and O(1) constraint violations as proven
in parts (2) of both theorems. For intermediate T, the constant factor hidden in the O(v/T)
bound can be important and the O(1) constraint violation bound can be relatively large.
If parameters in Assumptions 1-4 are known, we can obtain the best regret and constraint
violation bounds by choosing v and o as the solution to the following geometric program?:

min z
777’y7a7z

1
st. aR?+ 272G2 + 2—D2T <z,
n
aR? + DR + 272G?
<z,
v2e -
L 2 o

77777047Z>0'

2G +

3. By dividing the first two constraints by z and dividing the third constraint by « on both sides, this
geometric program can be written into the standard from of geometric programs. Geometric programs
can be reformulated into convex programs and can be efficiently solved. See Boyd et al. (2007) for more
discussions on geometric programs.

17
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In certain applications, we can choose v and « to minimize the regret bound subject to the
constraint violation guarantee by solving the following geometric program:

1

min  aR?+27y°G? + —D?T

7,7, 2n

aR? + DR + 272G?
Ve

L2 2

S+ < e

7,7, >0,

s.t. 2G +

> 20,

where zg > 0 is a constant that specifies the maximum allowed constraint violation. Or
alternatively, we can consider the problem of minimizing the constraint violation subject to
the regret bound guarantee.

4.2. Unknown Time Horizon T

To achieve O(v/T) regret and O(1) constraint violations, the parameters v and a in Algo-
rithm 1 depend on the time horizon T'. In the case when T is unknown, we can use the
classical “doubling trick” to achieve O(v/T) regret and O(log, T) constraint violations.

Suppose we have an online convex optimization algorithm A whose parameters depend
on the time horizon. In the case when the time horizon 7" is unknown, the general doubling
trick (Cesa-Bianchi and Lugosi, 2006; Shalev-Shwartz, 2011) is described in Algorithm 2.
It is known that the doubling trick can preserve the order of algorithm A’s regret bound
in the case when the time horizon 7' is unknown. The next theorem summarizes that by
using the “doubling trick” for Algorithm 1 with unknown time horizon T', we can achieve
O(VT) regret and O(log, T) constraint violations.

Algorithm 2 The Doubling Trick (Cesa-Bianchi and Lugosi, 2006; Shalev-Shwartz, 2011)

e Let algorithm A be an algorithm whose parameters depend on the time horizon. Let
i=1.

e Repeat until we reach the end of the time horizon

— Run algorithm A for 2¢ rounds by using 2¢ as the time horizon.

— Leti=1+1.

Theorem 3 If the time horizon T is unknown, then applying Algorithm 1 with the “doubling
trick” can yield O(VT) regret and O(logy T) constraint violations.

Proof Let T be the unknown time horizon. Define each iteration in the doubling trick
as a period. Since the i-th period consists of 2° rounds, we have in total [log, T'| periods,
where [z] denotes the smallest integer no less than z.

18
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1. The proof of O(v/T) regret is almost identical to the classical proof. By Theorem 1,
there exists a constant C' such that the regret in the i-th period is at most CV2i.
Thus, the total regret is at most

[log, T'] _/5llogy T
» ovai=c V21— V2 ]
i=1 1-v2

V2 -1

< V20 \/§1+10ng

TV2-1

20
< VT
“V2-1

Thus, the regret bound is O(v/T) when using the “doubling trick”.

2. The proof of O(log, T') constraint violations is simple. By Theorem 1, there exists a
constant C' such that the constraint violation in the i-th period is at most C'. Since
we have [log, T'] periods, the total constraint violation is C[logy T'].

4.3. Relaxing Assumptions 3-4

Note that previous works Mahdavi et al. (2012) and Jenatton et al. (2016) consider online
convex optimization with long term constraints under Assumptions 1-3 and the additional
assumption that all f!(-) functions are bounded without imposing Assumption 4.

In this subsection, we show that if we are allowed to introduce the bounded f!() as-
sumption (formally defined in Assumption 5) used in Mahdavi et al. (2012) and Jenatton
et al. (2016) , then Algorithm 1 can still achieve a superior performance without imposing
Assumptions 3-4.

Assumption 5 There exists a constant F such that |f(x) — fi(y)| < F for all x,y € X
and all t € {1,2,...}.

Recall that the O(v/T) regret summarized in Theorem 1 holds regardless of Assumptions
2-4. Now, it remains to show the constraint violation of Algorithm 1 under Assumption
1 and Assumption 2, both of which are used in Mahdavi et al. (2012) and Jenatton et al.
(2016).

Theorem 4 Consider online convexr optimization with long term constraints under As-
sumptions 1-2 and 5. If we choose v = TY* and o = %[ﬁ2 + 1VT in Algorithm 1, we

have
T

> ge(x(t) < O(TY*),Vk € {1,2,...,m}.

t=1
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Proof Fix T > 1. Let v > 0,1 > 0 be arbitrary. If o > %[7262 + 7], by Lemma 7, we have

A(t) + f'(x(1))
<FO) +alllx = x@O = x" = x(t+ D)%) + %[HQ(X(t + D) = eI+ 5 D2

Summing over t € {1,2,...,T — 1} and rearranging terms yields
T—1 T—1 T—1
A <Y [ = 1] +a ) lIx = =@ = [Ix* —x(t+ 1)
t=1 t_1T_1 1 t=1 1
+) SlIEG(E + 1) = llax()7] + %[T - 1]p?
=) ') = F1&x)] +alx" = x| — allx" = x(T)|
t=1
+ SIET) I = (D)) + 517~ 110°

Substituting A(t) = 1[|Q(t + 1)[|> — 5/|Q(¢)||? into it, simplifying the telescoping sum, and
rearranging terms yields

T—1
SIQUIP < 32 [7'667) = 6] + allx” = x(IF - el = (D)
+ I = SIEC)I? + QU + 5[ = 11D

WS [£1(x) — 1] + allx* — x(1)]? = afx* — x(T)?

1
1 2 2 1 2
- — [T —1]D
+57 sx(T))ll +277[ ]
®) * 2 1 22 1 2
<[T - 1F +alx” - x(1)|* + 54°G +%[T—1]D

where (a) follows because ||g(x(1))[> = ||Q(1)|> by Lemma 3; and (b) follows from As-
sumption 2 and Assumption 5.

Multiplying both sides by a factor of 2 and taking square roots on both sides yields

QD)) < VAT =TIF + V20l = x(1)] +9G + Dy (15)
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Fix k € {1,2,...,m}. By Lemma 4, we have

T
> ge(x(t) §;Qk(T)
t=1
< Q)]
(%) 2[T —1]F N mHX*_x(l)H +G+9 T-1
v v v\

where (a) follows from (15).
Note that if we let v = T4 and n = \/T, then a = %[ﬁQ + 1]\/T > %[7252 + 7).
Substituting these values into the above equation yields

r AT — 1| F (682 + 1VT D [T-1
;gk(x(t)) < [T1/4 L g I X+ G+ Fpy [
=0(T"*)

Remark 1 Theorem 1 and Theorem 4 together imply that if we choose v = T'/* and
a = $[B2+1VT in Algorithm 1, then we can achieve O(V/'T) regret and O(T'/*) constraint
violations for online convex optimization with long term constraints under Assumptions
1-2 and 5. This is still uniformly better than the best known O(Tmax{g’lfa}) regret and
O(T'=9/2) constraint violations for all € (0,1) established in Jenatton et al. (2016) under
Assumptions 1-3 and 5. We further note the parameters used to achieve O(TY*) constraint
violations under Assumption 5 are identical to those used in Section 3 to achieve O(1)
constraint violations under Assumption 4. Thus, Algorithm 1 is very adaptive and its
practical implementation can be blind to Assumption 4 or Assumption 5.

5. Experiment

This section considers numerical experiments to verify the performance of our algorithm.
Consider online convex optimization with loss functions f(x) = c(t)"x, where c(t) is time-
varying and unknown at round ¢; and constraint functions Ax < b. The constraint functions
are only required to be satisfied in long term:

T
1
lim sup T Z Ax(t) <b.
t=1

T—o0

The above problem formulation arises often in fields such as resource allocation, prod-
uct planning, finance portfolio selection, network scheduling, load distribution, and so on
(Ibaraki and Katoh, 1988). For example, consider a power grid network where the electricity
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generation at each power plant is scheduled in real-time, e.g., hour-by-hour. In this prob-
lem, each component x; corresponds to the amount of electricity produced by the i-th power
plant. The time-varying loss function f!(-), which represents the economic loss/reward de-
pending on the real-time power demand, is in general unknown to the decision maker at
the beginning of round ¢. Inequality constraint Ax < b corresponds to constraints such as
fuel consumption, man-power consumption, carbon emission and electricity scheduling.

In the numerical experiment, we assume x € R?, A € R3*2; each component of x
satisfies the box constraint x € Xy where Xp = {x : -1 < 27 < 1,-1 < 29 < 1}; and
T = 5000. Each component of A is generated from the uniform distribution in the interval
[0,1] and each component of b is generated from the uniform distribution in the interval
[0,2]. A and b are kept fixed for all rounds once they are generated. To simulate arbitrarily
varying objective functions, at each round ¢, c(t) = ¢ (t) + @ (t) + ¢ (¢) is randomly
generated such that each component ¢(V)(t) is from the uniform distribution in the interval
[—t1/10, 441/10]; each component of ¢(?)(t) is from the uniform distribution in the interval
[—1,0] when ¢ € [1,1500] U [2000, 3500] U [4000, 5000] and is from the uniform distribution
in the interval [0, 1] otherwise; and each element of ¢(®)(#) is equal to (—1)*®) where u(t) is
a random permutation of vector [1 : 5000]

We run our proposed Algorithm 1, our proposed Algorithm 1 with the doubling trick
(without knowing 7' = 5000), Algorithm 1 in Mahdavi et al. (2012) and the Algorithm in
Jenatton et al. (2016) with § = 1/2 and 8 = 2/3 over 1000 independent experiments gener-
ated from the above distribution setting. Figure 1 and Figure 2 plot the cumulative regret
and the cumulative constraint violations (averaged over 1000 independent experiments),
respectively. Figure 1 shows that the first 3 algorithms have similar regret since they are all
proven to have O(v/T) regret and the Algorithm in Jenatton et al. (2016) with 8 = 2/3 has
the largest regret since it has O(TQ/ 3) regret. Figure 2 shows that our algorithm has the
smallest constraint violation since the constraint violation of our algorithm is bounded by
a constant and does not grow with 7" while the other algorithms have O(T%/%) or O(T?%/?)
constraint violations.

6. Conclusion

This paper considers online convex optimization with long term constraints, where func-
tional constraints are only required to be satisfied in the long term. Prior algorithms in
Mahdavi et al. (2012) can achieve O(v/T) regret and O(T%/*) constraint violations for gen-
eral problems and achieve O(T2/3) bounds for both regret and constraint violations when
the constraint set can be described by a finite number of linear constraints. A recent exten-
sion in Jenatton et al. (2016) can achieve O(T™2*{%:1=0}) regret and O(T'~%/2) constraint
violations where 6 € (0,1). This paper proposes a new algorithm that can achieve an O(\/T)
bound for regret and an O(1) bound for constraint violations; and hence yields improved
performance in comparison to the prior works (Mahdavi et al., 2012; Jenatton et al., 2016).
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Figure 2: The cumulative constraint violations of the long term constraints.
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