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Abstract
Latent variable models allow capturing the hidden structure underlying the data. In par-
ticular, feature allocation models represent each observation by a linear combination of
latent variables. These models are often used to make predictions either for new obser-
vations or for missing information in the original data, as well as to perform exploratory
data analysis. Although there is an extensive literature on latent feature allocation models
for homogeneous datasets, where all the attributes that describe each object are of the
same (continuous or discrete) type, there is no general framework for practical latent fea-
ture modeling for heterogeneous datasets. In this paper, we introduce a general Bayesian
nonparametric latent feature allocation model suitable for heterogeneous datasets, where
the attributes describing each object can be arbitrary combinations of real-valued, positive
real-valued, categorical, ordinal and count variables. The proposed model presents several
important properties. First, it is suitable for heterogeneous data while keeping the proper-
ties of conjugate models, which enables us to develop an inference algorithm that presents
linear complexity with respect to the number of objects and attributes per MCMC itera-
tion. Second, the Bayesian nonparametric component allows us to place a prior distribution
on the number of features required to capture the latent structure in the data. Third, the
latent features in the model are binary-valued, which facilitates the interpretability of the
obtained latent features in exploratory data analysis. Finally, a software package, called
GLFM toolbox, is made publicly available for other researchers to use and extend. It is
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available at https://ivaleram.github.io/GLFM/. We show the flexibility of the proposed
model by solving both prediction and data analysis tasks on several real-world datasets.

1. Introduction

One of the aims of unsupervised learning is to recover the latent structure responsible for
generating the observed properties or attributes of a set of objects. In particular, latent
feature models (also called latent factor models) represent the attributes of each object with
an unobserved vector of latent features, usually of lower dimensionality than the number of
attributes which describe the object. It is assumed that the observations are generated from
a distribution parameterized by those latent feature values. In other words, latent feature
models allow us to represent, with only a few features, the immense redundant information
present in the observed data, by capturing the statistical dependencies among the different
objects and attributes. As a consequence, they have been used to make predictions either
for new values of interest or missing information in the original data (Salakhutdinov and
Mnih, 2008; Gopalan et al., 2014), as well as to perform exploratory data analysis in order
to better understand the data (Blanco et al., 2013; Valera et al., 2016).

There is an extensive literature in latent feature models for homogeneous data, where
all the attributes describing each object in the dataset are assumed to be of the same
type, that is either continuous or discrete. Specifically, most of the existing literature
assumes that datasets contain only either continuous data, often modeled as Gaussian
random variables (Griffiths and Ghahramani, 2011; Todeschini et al., 2013), or discrete
data, that can be modeled either with discrete likelihoods (Li, 2009; Ruiz et al., 2013;
Gopalan et al., 2014) or simply treated as Gaussian variables (Salakhutdinov and Mnih,
2008; Blanco et al., 2013; Todeschini et al., 2013). However, to the best of our knowledge,
only a few works consider mixed continuous and discrete variables (Khan et al., 2010,
2013; Klami et al., 2012; Collins et al., 2002)—either by assuming mixed Gaussian and
categorical variables or mixed members of the exponential family—, which are very common
in real world applications. For instance, Electronic Health Records of hospitals contain lab
measurements (real-valued or positive real-valued data), diagnoses (categorical data) and
genomic information (ordinal, count data and categorical data). Another example is surveys,
which contain diverse information about the participants such as age (count data), gender
(categorical data), salary (positive real data), among other types of data. Despite the
diversity of data types, a standard approach for dealing with heterogeneous datasets is to
model all attributes, either continuous or discrete, with a single member of the exponential
family, e.g., using a Gaussian likelihood. Alternatively, some approaches consider mixed
continuous and categorical variables, see Section 2 for a non-exhaustive overview of related
contributions.

This paper presents a general latent feature model (GLFM) suitable for heterogeneous
datasets, where the attributes describing each object might belong to mixed types of data,
either discrete or continuous variables. Specifically, we simultaneously take into account
real-valued and positive real-valued as examples of continuous variables, and categorical,
ordinal and count data as examples of discrete variables. The proposed model relies on
a Bayesian nonparametric prior, called the Indian Buffet Process (IBP), as a building
block (Griffiths and Ghahramani, 2011; Teh and Görür, 2009; Broderick et al., 2013). The
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IBP induces a prior distribution over binary matrices where the number of columns, corre-
sponding to the number of latent features, is potentially infinite and can be learned from the
data along with the other model parameters. The IBP presents several appealing properties.
First, the nonparametric nature of the IBP allows to automatically infer the appropriate
model complexity, i.e., the number of necessary latent features, from the data. Second, the
IBP considers binary-valued latent features which have been shown to provide more inter-
pretable results in data exploration than standard real-valued latent feature models (Ruiz
et al., 2012, 2013). The standard linear-Gaussian IBP model assumes binary latent fea-
tures, Gaussian weighting factors, that capture the influence of every latent feature in each
observed attribute, and observations, leading to a conjugate model that permits the use of
fast inference algorithms (Doshi-Velez and Ghahramani, 2009; Reed and Ghahramani, 2013;
Doshi-Velez et al., 2009). In this paper, we extend the standard linear-Gaussian IBP model
to handle heterogeneous datasets, where conjugacy is not straightforwardly preserved.

In order to make inference possible with such a general observation model together with
the nonparametric prior for the number of features, we exploit two key ideas. First, we use
a data augmentation scheme (Tanner and Wong, 1987) where we introduce an auxiliary
real-valued variable, called a pseudo-observation, for each observed (continuous or discrete)
attribute. Once we condition on the pseudo-observations, the model is the standard linear-
Gaussian IBP from Griffiths and Ghahramani (2011). Second, we assume that there exists
a function that transforms the pseudo-observation into an actual observation, mapping the
real line into the (discrete or continuous) observation space of each attribute in the data.
These two key ideas allow to derive an efficient inference algorithm based on the acceler-
ated Gibbs sampler (Doshi-Velez and Ghahramani, 2009), which has linear complexity per
MCMC iteration with respect to the number of objects and attributes in the data.

The flexibility and applicability of the proposed model is shown by tackling both pre-
diction and data exploration tasks in several real-world datasets. In particular, we use the
proposed model for missing data estimation in heterogeneous datasets. We assume that
the missing data is missing completely at random, see (Seaman et al., 2013, Definition
4) for the definition of such concept. For the missing data estimation task, our scheme
outperforms the Bayesian probabilistic matrix factorization model (BPMF) (Salakhutdi-
nov and Mnih, 2008) and the standard linear-Gaussian IBP (Griffiths and Ghahramani,
2011), which assume Gaussian observations. These results have been previously discussed
by Valera and Ghahramani (2014), where the main focus was missing data estimation or ta-
ble completion. The extended version presented here focuses on the model itself, providing
the necessary details on the GLFM, the corresponding inference scheme for latent feature
modeling in heterogeneous datasets and a software toolbox. It provides a powerful tool not
only for missing data estimation, but also for exploratory data analysis tasks. In the second
part of the experiments we present several examples of how to use the proposed model for
data exploration in real-world datasets from diverse application domains such as medicine,
psychiatry, sociology and politics.

The source software package is publicly available at https://github.com/ivaleraM/
GLFM, that provides users with the necessary functions and scripts to use the GLFM for
both missing data estimation and data exploration tasks. The core inference algorithm is
developed in C++, and the corresponding user interfaces are provided in Matlab, Python
and R. A description of the GLFM implementation is provided in Appendix B.
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The rest of the paper is organized as follows. In Section 2, a non-exhaustive overview
of the existing literature is provided. In Section 3, we provide the details on the general
Bayesian nonparametric latent feature model for heterogeneous datasets. In Section ??, we
develop the inference algorithm based on the Gibbs sampler, where the augmented pseudo-
observation model is used to collapse the sampler. In Section 5, the model is used for two
types of real-world tasks: missing data estimation and data analysis. Finally, in Section 6,
potential applications and future work are suggested.

2. Related work

For this reason, Latent variable models are useful for capturing the underlying statisti-
cal dependencies via the unobserved random variables. In particular, probabilistic ma-
trix factorization models (Singh and Gordon, 2008) decompose the data as a product of a
weight matrix and a feature matrix. Some examples include principal component analy-
sis (PCA) (Pearson, 1901), probabilistic PCA (Tipping and Bishop, 1997; Roweis, 1997),
independent component analysis (Hyvärinen, 1997) and factor analysis (Thurstone, 1931),
among others. Matrix factorization models are used in a wide range of applications which
include, e.g., recommender systems (Gopalan et al., 2014), matrix completion (Salakhutdi-
nov and Mnih, 2007) and dimensionality reduction (Tipping and Bishop, 1997).

Next, we briefly review two basic matrix factorization models: probabilistic PCA and
factor analysis. Probabilistic PCA (pPCA) assumes that for each observation vector xn ∈
RD, there is a latent vector zn ∈ RK , such that the observation vector can be written as a
noisy linear combination of the latent vector, namely, xn = Wzn + εn. The latent vector
and the noise are assumed to be Gaussian, zn ∼ N (0, IK) and εn ∼ N (0, ψID) and K < D.
In pPCA: i) the maximum likelihood solution for W given a fixed ψ lies in the K-principal
subspace of the data; ii) when ψ = 0, we recover the classical PCA; and iii) the marginal
likelihood is given by p(xn) = N (xn | 0,WWT + ψID). Note that pPCA assumes that
the noise variance ψ is shared across all the dimensions in the data, which in general is a
restrictive assumption. Factor analysis (FA) generalizes pPCA by assuming a more general
distribution for εn such that εn ∼ N (0,Ψ), where Ψ is a diagonal matrix. As a consequence,
the marginal likelihood is distributed according to p(xn) = N (xn | 0,WWT + Ψ). These
two basic matrix factorization models assume that the data lies in a lower dimensional
manifold and that the corresponding marginal distribution is Gaussian.

Both pPCA and FA are known to be unidentifiable, being in general difficult to es-
tablish the identifiability of the parameters of latent variable models. In order to ensure
identifiability, most Bayesian factor analysis models rely on a lower-triangular specification
for the factor loading matrix. This idea was originally proposed by Anderson and Rubin
(1956) (see also Geweke and Zhou (1996); Aguilar and West (2000); Lopes and West (2004);
Frühwirth-Schnatter and Lopes (2010), and references therein). Typically, in order to en-
sure identifiability one can pick a specific ordering of the factor loadings by setting the upper
triangle of the loadings matrix to be zero a priori. Alternatively, Conti et al. (2014) intro-
duce a novel way to ensure identifiability of a Bayesian exploratory factor analysis model
by incorporating identifying criteria into the factor distribution of model parameters.

In order to have more general assumptions about the data’s generating mechanism, some
alternatives have been proposed such as mixtures of factor analyzers (Ghahramani and
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Hinton, 1996), nonparametric mixtures of factor analyzers (Görür and Rasmussen, 2009)
and nonparametric factor analyzers with Beta process priors (Paisley and Carin, 2009). In
the Bayesian nonparametric context, most methods usually focus on covariance structure,
variable selection or prediction, and identification is not strictly required to achieve these
goals from a Bayesian perspective. All of these models assume that the distribution of the
data can be approximated arbitrarily well with a mixture distribution given enough number
of mixture components. In order for this to be true, the assumption of continuous support
is crucial and a Gaussian distribution for each mixture component is typically used.

Relaxing the assumption of Gaussianity might lead to potential benefits in terms of
predictive accuracy or more meaningful latent representations, but it makes the inference
problem more challenging due to the presence of non-analytic likelihood functions. Non-
Gaussian likelihood models have been considered before, for instance, discrete component
analysis (Buntine and Jakulin, 2006), exponential family PCA (Collins et al., 2002; Mo-
hamed et al., 2009), exponential family partial least squares (Klami et al., 2012), and latent
variable models with non-conjugate likelihoods (Wang and Blei, 2013; Khan et al., 2013).
Nonparametric counterparts of some of these models have also been proposed (Miller et al.,
2009; Ruiz et al., 2014; Hoffman et al., 2010; Lee et al., 2015; Hannah et al., 2011). All of
these works consider homogeneous datasets, since they assume the same likelihood model,
often from the exponential family, for all the observed variables in a dataset.

In addition, only a few works consider mixed continuous and discrete variables (Gu-
nasekar et al., 2014; Khan et al., 2010). Khan et al. (2010) proposes a variational EM
algorithm to perform fast inference in factor analysis models with mixed continuous and
categorical observations. The performance of the proposed method is evaluated in a miss-
ing data estimation task, for which code is provided by the authors in https://emtiyaz.
github.io/software/mixedDataFA.html. In Section 6, we compare the performance of
this approach with the proposed GLFM for the missing data imputation task. More re-
cently, Gunasekar et al. (2014) introduced an exponential matrix factorization model under
structural constraints, which accounts for heterogeneous noise within the exponential family.
In this rather theoretical work, the model parameters are learned by convex optimization
and data imputation is done using maximum likelihood. Remarkably, none of the existing
contributions can handle discrete data of ordinal type. The reason for this is that the only
member of the exponential family suitable for ordinal data is the multinomial, which does
not take into account the inherent order between categories. In many situations, ordinal
data are part of real datasets, for example, the severity scores of a disease, the quality levels
of a product, or the frequency of an action.

Our proposed model provides a general framework for heterogeneous datasets: it is
useful for mixed continuous, real-valued and positive real-valued attributes, and for discrete
attributes, categorical, ordinal and count data. It performs dimensionality reduction in the
same way as in matrix factorization models. It uses a Bayesian nonparametric prior to infer
the number of latent features from the data and uses a variety of generalized linear model
link functions to handle heterogeneous datasets. Importantly, this work is accompanied
by a software package that implements the proposed GLFM, allowing users to perform a
variety of tasks. In the next sections, we detail the proposed model and inference algorithm
and analyze in detail several real-world applications of the proposed GLFM.
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3. Latent feature model for heterogeneous data

We assume that the data can be stored in an observation matrix X of size N×D, each of the
N objects is defined by a set of D attributes. Let xdn denote each entry of the observation
matrix X, which might be of the following types:
• Continuous variables:

1. Real-valued, xdn ∈ <
2. Positive real-valued, xdn ∈ <+.

• Discrete variables:
1. Categorical data, xdn takes a value in a finite unordered set, e.g., xdn ∈ {‘blue’,

‘red’, ‘black’}.
2. Ordinal data, xdn takes values in a finite ordered set, e.g., xdn ∈ {‘never’, ‘some-

times’, ‘often’, ‘usually’, ‘always’}.
3. Count data, xdn ∈ {0, . . . ,∞}.

As in standard latent feature allocation models, we assume that xdn can be explained by a
K-length vector of latent features associated to the n-th data point, zn = [zn1, . . . , znK ], and
a weight vector1 Bd = [bd1, . . . , bdK ]T (K is the number of latent variables), whose elements
bdk weight the contribution of the k-th latent feature to the d-th dimension of X. The
corresponding likelihood can be factorized as follows

p(X|Z, {Bd,Ψd}Dd=1) =
D∏
d=1

N∏
n=1

p(xdn|zn,Bd,Ψd),

where Ψd denotes the set of random variables necessary to define the distribution of the
d-th attribute. The binary-valued latent binary feature vectors zn are stored in an N ×K
matrix Z that follows an IBP prior with concentration parameter α, denoted by Z ∼ IBP(α)
(Griffiths and Ghahramani, 2011). Additionally, a Gaussian distribution with zero mean
and covariance matrix, given by σ2

BIK , is assumed for the weight vectors Bd.
If xdn ∈ < is assumed to be Gaussian, for each of the d = 1, . . . , D attributes, with mean

znBd, where znBd denotes the usual vector multiplication, then, the above model is equiv-
alent to the standard IBP with Gaussian observations (Griffiths and Ghahramani, 2011).
This model can be efficiently learnt using the properties of the Gaussian distribution (Doshi-
Velez and Ghahramani, 2009). However, if the observation matrices are heterogeneous or
non-Gaussian then, the inference algorithm from Doshi-Velez and Ghahramani (2009) can-
not be used directly. The reason is that the priors are no longer conjugate and the model
becomes intractable.

We propose an augmentation of the original model to solve the intractability due to non-
conjugacy. An auxiliary Gaussian variable ydn is introduced per entry xdn in the observation
matrix, called pseudo-observation. We assume that there exists a link function fd(·) over
the variables ydn to obtain the observations xdn, mapping the real line < into the observation
space of the d-th attribute in the observation matrix Ωd, i.e.,

fd : < 7→ Ωd

ydn → xdn
. (1)

1. For convenience, we capitalize here the notation for the weight vectors Bd.
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Figure 1: Graphical Model for the Generalized Latent Feature Model. Grey nodes
represent observed variables, white nodes correspond to latent variables. Introducing the
pseudo-observations Yd allow us to deal with heterogeneous data.

Each pseudo-observation ydn is Gaussian distributed with mean znBd and variance σ2
y , i.e.,

p(ydn|zn,Bd) = N (ydn|znBd, σ2
y),

such that, when we conditioned on the pseudo-observations, the latent variable model be-
haves as the standard linear-Gaussian IBP. In Section 3.1, more details are provided about
the functions which map the real line < into each of the discrete and continuous spaces of the
original attributes. In previous work, auxiliary Gaussian variables have been used to link a
latent variable model to the original datapoints for multi-class classification (Girolami and
Rogers, 2005) and for ordinal regression (Chu and Ghahramani, 2005). Such approach has
not been used to account for mixed continuous and discrete data simultaneously. Further-
more, the existing approaches for the IBP with discrete observations propose non-conjugate
likelihood models and approximate inference algorithms (Ruiz et al., 2012, 2013; Valera
et al., 2016) which make inference more costly.

The generative model is shown in Figure 4, where Z is the IBP latent matrix, and Yd

and Bd contain, respectively, the pseudo-observations ydn and the weight factors bdk for the
d-th dimension of the data. Additionally, Ψd denotes the set of auxiliary random variables
needed to obtain the observation vector xd given Yd, and Hd contains the hyper-parameters
associated to the random variables in Ψd. It is also possible to extend the latent feature
matrix Z so it contains an extra latent feature that is active for every object in the data.
This can be used as a bias term, similar to (Ruiz et al., 2012, 2013; Valera et al., 2016), it
allows to obtain more interpretable results while performing data exploration.

3.1. Mapping Functions

In this section, we define the set of functions that transforms the pseudo-observations ydn
into the corresponding observations xdn. These functions map from the real line < to the
(continuous or discrete) observation space of the d-th attribute describing the data. Since
each attribute (dimension) in X may contain any discrete or continuous data types, we

7



Valera, Pradier, Lomeli, Ghahramani

provide a mapping function for each kind of data and the corresponding likelihood function
for heterogeneous data.

3.1.1. Continuous Variables

In the case of continuous variables, we assume that the mapping functions are of the form
x = f(y + u), where f(·) is a continuous invertible and differentiable function and u corre-
sponds to additive Gaussian noise with variance σ2

u. The corresponding likelihood function,
after integrating out the pseudo-observation ydn, is given as follows

p(xdn|zn,Bd) = 1√
2π(σ2

y + σ2
u)

exp
{
− 1

2(σ2
y + σ2

u)(f−1(xdn)− znBd)2
} ∣∣∣∣ ddxdn f−1(xdn)

∣∣∣∣ , (2)

where f−1(·) is the inverse of the function f(·), i.e., f−1(f(v)) = v. Next, we provide
examples of mapping functions for the real-valued and positive real-valued data cases.

Real-valued Data. In order to obtain real-valued observations, i.e., xdn ∈ <, we need a
transformation over ydn that maps from the real numbers to the real numbers, i.e., fd : < →
<. The simplest case is to assume that x = fd(y + u) = y + u. Therefore, each observation
is distributed as xdn ∼ N (znbd<, σ2

y + σ2
u). Other mapping functions can be used, e.g., one

might opt for the following transformation

x = fd(y + u) = w(y + u) + µ,

where w and µ are parameters which allow the user to scale or shift the attribute. A
common choice is to choose w = 1/Var[xd] and µ = E[xd], which normalize the data. The
corresponding auxiliary variables and hyper-parameters are Ψd = {und} andHd = {σ2

u, w, µ}.

Positive Real-valued Data. In order to obtain positive real-valued observations, i.e.,
xdn ∈ <+, we can apply any transformation over ydn that maps the real numbers to the
positive real numbers, i.e., fd : < → <+, as long as fd is an invertible and differentiable
function. An example of such function is

fd(y) = log(exp(wy + µ) + 1),

where w and µ are hyper-parameters. Similarly to the case of real-valued attributes, we
also use the Gaussian variable udn to obtain xdn from ydn, therefore, Ψd = {und} and Hd =
{σ2

u, w, µ}.

3.1.2. Discrete Variables

In the case of discrete variables, there is no general way to map the real line into a generic
type of discrete variable. Therefore, we derive a different transformation that is tailored for
each of the specific types of discrete variables, i.e., categorical, ordinal and count data.

Categorical Data. Let xdn be a categorical observation, namely, it can take values in the
index set given by {1, . . . , Rd}. Hence, assuming a multinomial probit model, we can then
write

xdn = fd(ydn) = arg maxr∈{1,...,Rd} y
d
nr, (3)
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with ydnr ∼ N (ydnr|znbdr , σ2
y) where bdr denotes theK-length weight (column) vector, in which

each bdkr measures the influence of the k-th feature for the observation xdn taking value r.
Under this likelihood model, we have as many pseudo-observations ydnr and weight vectors
bdr per observation as number of categories in the d-th attribute, i.e., r ∈ {1, . . . , Rd}. In
this case, the pseudo-observations can be stored in the N × Rd matrix Yd and the weight
factors in a K×Rd matrix Bd. Under this observation model, we can write ydnr = znbdr+udnr,
where udnr is Gaussian noise with variance σ2

y . Analogously to Girolami and Rogers (2005),
the probability of each element xdn taking a value r ∈ {1, . . . , Rd} is obtained as follows

p(xdn = r|zn,Bd) = Ep(u)

[
Rd∏
j=1
j 6=r

Φ
(
u+ zn(bdr − bdj )

)]
, (4)

where the subscript r in bdr refers to the column in Bd (r ∈ {1, . . . , Rd}), Φ(·) denotes the
cumulative distribution function of the standard normal distribution and Ep(u)[·] denotes
expectation with respect to the distribution p(u) = N (0, σ2

y). Then, the auxiliary variables
and hyper-parameters are defined as Ψd = {und} and Hd = {σ2

u}.
Ordinal Data. Consider ordinal data, in which each element xdn takes values in the ordered
index set {1, . . . , Rd}. Then, assuming an ordered probit model, we can write

xdn = fd(ydn) =


1 if ydn ≤ θd1
2 if θd1 < ydn ≤ θd2

...
Rd if θdRd−1 < ydn

(5)

where again ydn is Gaussian distributed with mean znBd and variance σ2
y , and θdr for r ∈

{1, . . . , Rd − 1} are the thresholds that divide the real line into Rd regions. We assume
that the thresholds θdr are sequentially generated from the truncated Gaussian distribution
θdr ∝ N (θdr |0, σ2

θ)I(θdr > θdr−1), where θd0 = −∞ and θdRd
= +∞. In this case, the value

of xdn is determined by the region in which ydn falls and, as opposed to the categorical
case. A unique weight vector Bd and a unique Gaussian variable ydn are obtained for each
observation xdn.

Under the ordered probit model (Chu and Ghahramani, 2005), the probability of each
element xdn taking value r ∈ {1, . . . , Rd} can be written as

p(xdn = r|zn,Bd) = Φ
(
θdr − znBd

σy

)
− Φ

(
θdr−1 − znBd

σy

)
. (6)

As a final remark, if the d-th dimension of the observation matrix contains ordinal data,
the set of auxiliary variables reduces to the thresholds Ψd = {θd1 , . . . , θdRd−1}, and thus,
Hd = {σ2

θ}.
Count Data. In the case of count data, each observation xdn takes non-negative integer
values, , xdn ∈ {0, . . . ,∞}. Then, we assume that the observations are given by

xdn = fd(ydn) = bf<+(ydn)c, (7)
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where bvc returns the floor of v, that is the largest integer that does not exceed v, and
f<+ : < → <+ is an invertible function that maps the real numbers to the positive real
numbers. We can therefore write the likelihood function as

p(xdn|zn,Bd) = Φ
(
f−1(xdn + 1)− znBd

σy

)
− Φ

(
f−1(xdn)− znBd

σy

)
, (8)

where f−1
<+

: <+ → < is the inverse function of the transformation f<+(·). In this case,
there are no auxiliary random variables Ψd or hyper-parameters Hd and both these sets are
empty.

4. Inference

In this section, we describe the algorithm for learning the latent variables given the ob-
servation matrix. In order to jointly learn the latent vectors zn, the weight factors Bd,
and the auxiliary variables Ψd, we use a Markov Chain Monte Carlo (MCMC) inference
scheme. MCMC methods have been broadly applied to infer the IBP matrix (Griffiths
and Ghahramani, 2011; Williamson et al., 2010; Titsias, 2007). The proposed inference
algorithm, summarized in Algorithm 1, exploits the information in the available data to
learn similarities among objects, captured by the latent feature matrix Z. The inference
scheme identifies how the latent features show up in the attributes that describe the objects,
captured by Bd.

In Algorithm 1, we first update the latent matrix Z. Note that conditioned on {Yd}Dd=1,
both the latent matrix Z and the weight matrices {Bd}Dd=1 are independent of the obser-
vation matrix X. Additionally, since {Bd}Dd=1 and {Yd}Dd=1 are Gaussian distributed, we
can marginalize out the weight matrices {Bd}Dd=1 to obtain p({Yd}Dd=1|Z). In order to learn
matrix Z, we apply the collapsed Gibbs sampler which presents better mixing properties
than the uncollapsed version. For this reason, it is the common method of choice in the
context of the standard linear-Gaussian IBP (Griffiths and Ghahramani, 2011). However,
using an MCMC algorithm with such representation of the model has a high computational
cost: it is cubic in the number of data points N at every iteration, which is a prohibitive
cost when the dataset is big. Instead, we use the accelerated Gibbs sampler (Doshi-Velez
and Ghahramani, 2009), a fast, albeit approximate, scheme for inference. This algorithm
presents linear complexity with respect to the number of objects N in the observation matrix
per MCMC iteration.

Second, we sample the weight factors in Bd, which is a K × Rd matrix in the case of
categorical attributes, and a K-length column vector, otherwise. We denote each column
vector in Bd by bdr . The posterior over the weight vectors is given by

p(bdr |ydr ,Z) = N (bdr |P−1λdr ,P−1), (9)

where P = Z>Z + 1/σ2
BIk and λdr = Z>ydr , with ydr the r-th column of Yd. Here, r takes

values in {1, . . . , Rd} in the case of categorical observations, while r = 1 for the rest of the
variable types. Since the covariance matrix P−1 does not depend on the dimension d or on
r, we only need to invert the K×K matrix P once per iteration. In Section 4.1, we describe
how to efficiently sample Z, as well as how to efficiently compute P after the corresponding
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changes are made to the matrix Z by rank one updates. For this reason, we managed to
bypass the computation of the matrix product Z>Z. Once we have updated Z and Bd, we
sample each element in Yd from the distribution N (ydnr|znbdr , σ2

y) if the observation xdn is
missing, or from the posterior p(ydnr|xdn, zn,Bd) specified in Section 4.2, otherwise. Finally,
we sample the auxiliary variables in Ψd from their posterior distributions if necessary.2 See
Section 4.2 for more details about the posterior distributions in Ψd. In the worst case, the
last two steps consist of sampling from a doubly truncated univariate normal distribution,
we used the algorithm in Robert (1995).

Algorithm 1 Inference Algorithm.
Input: X
Initialize: Z and {Yd}Dd=1

1: for each iteration do
2: Update Z given {Yd}Dd=1 as detailed in Section 4.1.
3: for d = 1, . . . , D do
4: Sample Bd given Z and Yd according to (9).
5: Sample Yd given X, Z and Bd as shown in Section 4.2.
6: Sample Ψd (if needed) as shown in Section 4.2.
7: end for
8: end for
Output: Z, {Bd}Dd=1 and {Ψd}Dd=1

4.1. Details on the Accelerated Gibbs Sampler

In this section, we review and adapt the sampler in Doshi-Velez and Ghahramani (2009).
The authors introduce a linear-time accelerated Gibbs sampler for conjugate IBP models
that effectively marginalizes out the weight factors. The per-iteration complexity of this
algorithm is O(N(K2 +KD)), which is comparable to the uncollapsed linear-Gaussian IBP
sampler that has per-iteration complexity of O(NDK2) but does not marginalize out the
weight factors. The uncollapsed version of the algorithm presents a slower convergence rate.
In this paper, we adapt this algorithm for the proposed IBP model for heterogeneous data.

The accelerated Gibbs sampling algorithm exploits the Bayes rule to avoid the cubic
complexity per MCMC iteration with respect to N due to the computation of the marginal
likelihood in the collapsed Gibbs sampler. In particular, it uses the Bayes rule to obtain
the probability of each element in the latent feature matrix Z of being active as

p(znk = 1|{Yd}Dd=1,Z¬nk) ∝
m¬n,k
N

D∏
d=1

Sd∏
r=1

∫
bd

r

p(ydnr|zn,bdr)p(bdr |yd¬nrZ¬n)dbdr , (10)

2. The set of auxiliary variables for the d-dimension, Ψd, can be augmented to contain the variance of the
pseudo-observations Yd associated to the d-th attribute, which we denote by σ2

d and for which we assume
an inverse-gamma prior with parameters β1 and β2. Under this prior distribution, the posterior of σ2

d is
an inverse-gamma with parameters β1 +NSd/2 and β2 +

∑N

n=1
∑Sd

r=1(yd
nr − znbd

r)/2, where Sd is equal
to the number of categories Rd for those dimensions d that contain categorical attributes, and it is equal
to Sd = 1, otherwise.
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where Sd is the number of columns in matrices Yd and Bd, Z¬n corresponds to matrix
Z after removing the n-th row, vector yd¬nr is the r-th column of matrix Yd without the
element ydnr. Specifically, Sd is the number of categories Rd for those dimensions d that
contain categorical attributes, and it is equal to one, otherwise. The conditional distribution,
denoted by p(bdr |xd¬n,Z¬n), corresponds to the posterior of bdr computed without taking the
n-th datapoint into account, i.e.,

p(bdr |yd¬nr,Z¬n) = N (bdr |P−1
¬nλd¬nr,P−1

¬n), (11)

where P¬n = Z>¬nZ¬n + 1/σ2
BIK and λd¬ny = Z>¬nyd¬nr are the natural parameters of the

Gaussian distribution. In this case, we condition on the Gaussian pseudo-observations
{Yd}Dd=1, instead of the actual observations X, to compute the conditional distribution
p(znk = 1|{Yd}Dd=1,Z¬nk).

We use the natural parameterization for the Gaussian distribution over the posterior of
bdr in contrast to Doshi-Velez and Ghahramani (2009), who use the mean and covariance
matrix. This formulation allows to compute the full posterior over the weight factors as

p(bdr |ydr ,Z) = N (bdr |P−1λdr ,P−1). (12)

P = P¬n + z>n zn and λdr = λd¬nr + z>n ydnr are the natural parameters of the Gaussian
distribution.

In the accelerated Gibbs sampling scheme, we iteratively sample the value of each ele-
ment znk, after marginalizing out the weight factors Bd, according to

p(znk = 1|{Yd}Dd=1,Z¬nk) ∝
m¬n,k
N

D∏
d=1

Sd∏
r=1
N (ydnr|znλd¬nr, znP¬nz>n + σ2

y). (13)

For each object n, we first sample the existing latent features znk for k = 1, . . . ,K+, where
K+ is the number of non-zero columns in Z, or number of active features up to this iteration.
Successively, we sample the number of new features necessary to explain that data point
from a Poisson distribution with mean α/N , as proposed by Griffiths and Ghahramani
(2011).

4.2. Posterior Distribution over the Pseudo-observations

In Algorithm 1, we sample the pseudo-observations ydnr and the auxiliary variables in Ψd

from their corresponding posterior distributions. The posterior distributions for ydnr, and
for Ψd if needed, for all the considered types of data are given by

1. For real-valued observations

p(ydn1|xdn, zn,Bd) = N

ydn1

∣∣∣∣
(

znbd1
σ2
y

+ f−1
d (xdn)
σ2
u

)(
1
σ2
y

+ 1
σ2
u

)−1

,

(
1
σ2
y

+ 1
σ2
u

)−1
 ,
(14)

where f−1
d : < → <.
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2. For positive real-valued observations

p(ydn1|xdn, zn,Bd) = N

ydn1

∣∣∣∣
(

znbd1
σ2
y

+ f−1
d (xdn)
σ2
u

)(
1
σ2
y

+ 1
σ2
u

)−1

,

(
1
σ2
y

+ 1
σ2
u

)−1
 ,
(15)

where f−1
d : <+ → <.

3. For categorical observations

p(ydnr|xdn = T, zn,Bd) =
{
N (ydnr|znbdr , σ2

y)I(ydnr > maxj 6=r(ydnj)) If r = T

N (ydnr|znbdr , σ2
y)I(ydnr < ydnT ) If r 6= T

(16)

In Equation (16), if xdn = T = r, we sample ydnr from a Gaussian left-truncated by
maxj 6=r(ydnj). Otherwise, we sample from a Gaussian right-truncated by ydnr with
r = xdn. Sampling the variables ydnr corresponds to solving a multinomial probit
regression problem. In order for the model to be identifiable, without loss of generality,
we assume that the regression function fRd

(zn) is identically zero. Therefore, we fix
bdkRd

= 0 for all k.

4. For ordinal observations:

p(ydn1|xdn = r, zn,Bd) ∼ N (ydn1|znbd1, σ2
y)I(θdr−1 < ydn1 ≤ θdr ). (17)

In this case, we sample ydn1 form a Gaussian left-truncated by θdr−1 and right-truncated
by θdr . In this case, we also need to sample the threshold values θdr with r = 1, . . . , Rd−
1 as

p(θdr |ydn1) ∼N (θdr |0, σ2
θ)I(θdr > max(θdr−1,max

n
(ydn1|xdn = r))

× I(θdr < min(θdr ,min
n

(ydn1|xdn = r + 1)).
(18)

In this case, sampling the variables ydn1 corresponds to solving an ordered probit
regression problem, where the thresholds {θr}Rd

r=1 are unknown. In order for this part
of the model to be identifiable, we set one of the thresholds, θ1, to zero.

5. For count observations

p(ydn1|xdn, zn,Bd) = N (ydn1|znbd1, σ2
y)I(f−1

<+
(xdn) ≤ ydn1 < f−1(xdn + 1)), (19)

where f−1
<+

: <+ → <. We sample ydn1 from a Gaussian left-truncated by f−1
<+

(xdn) and
right-truncated by f−1

<+
(xdn + 1).

5. Applications

In this section, we apply the proposed model to solve two different tasks on several real-
world datasets. In Section 5.1, we focus on a prediction task in which we aim to estimate
and replace the missing data, which is assumed to be missing completely at random. These
results have been previously introduced in Valera and Ghahramani (2014). In Section 5.2,

13



Valera, Pradier, Lomeli, Ghahramani

we focus on a data analysis task on several real-world datasets from different application
domains including psychiatry, clinical trials and politics. We show how to use the proposed
model to perform exploratory data analysis, i.e., to find the latent structure in the data and
capture the statistical dependencies among the objects and their attributes in the data.

5.1. Missing Data Estimation

In this section, we use the proposed model to estimate missing data in heterogeneous
datasets, where we assume that the data is missing completely at random (MCAR) (Sea-
man et al., 2013). Missing data may occur in diverse applications due to different reasons.
For example, participants of a survey may decide not to respond or skip some questions of
the survey; participants in a clinical study may drop out during the course of the study;
or users of a recommendation system might only be able to rate a small fraction of the
available books, movies, or songs, due to time constraints. The presence of missing values is
challenging when the data is used for reporting, information sharing and decision support.
As a consequence, handling missing data has captured attention in diverse areas of data
science such as machine learning, data mining, and data warehousing and management
(Schafer and Graham, 2002; Mazumder et al., 2010).

Most of the extensive literature in probabilistic missing data estimation and imputa-
tion focuses on homogeneous datasets which contain only either continuous data, usually
modeled as Gaussian variables (Todeschini et al., 2013), or discrete data, that can be either
modeled by discrete likelihoods (Li, 2009) or simply treated as Gaussian variables (Salakhut-
dinov and Mnih, 2008; Todeschini et al., 2013). Only a few works consider mixed continuous
and discrete variables Khan et al. (2010, 2013). However, to the best of our knowledge,
none of the previous approaches consider ordinal data in their likelihood models.

Experimental Setup. We evaluate the predictive power of the proposed model at esti-
mating missing data on five real datasets, which are summarized in Table 1. The datasets
contain different numbers of objects and attributes, which cover all the discrete and contin-
uous variables described in Section 3. According to our model, the probability distribution
of the observation matrix is fully characterized by the latent matrices Z and {Bd}Dd=1 as
well as the auxiliary variables Ψd. Hence, if we assume the latent vector zn for the n-th
datapoint, the weight factors Bd and the auxiliary variables Ψd to be known, we have a
probability distribution over missing observations xdn. The probability distribution for miss-
ing observations can be used to obtain estimates for xdn by sampling from this distribution,3
or by taking a summary statistic such as mean, mode or median value, once the latent
matrix Z and the latent weight factors Bd (and Ψd) are learnt.

Here, we consider the following benchmark methods for missing data estimation to
compare to our proposed general table completion approach, denoted by GLFM:
• The standard linear-Gaussian IBP (Griffiths and Ghahramani, 2011) denoted by SIBP,

treating all attributes as Gaussian.

3. Note that sampling from this distribution might be computationally expensive. In this case, we can easily
obtain samples of xd

n by exploiting the structure of our model. In particular, we can simply sample the
auxiliary Gaussian variables yd

n given zn and Bd, and then obtain an estimate for xd
n by applying the

corresponding transformation, detailed in Section 3.1.
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• The Bayesian probabilistic matrix factorization approach (Salakhutdinov and Mnih,
2008) denoted by BPMF, that also treats all attributes in X as Gaussian distributed.
• The Mixed-Data Factor Analysis approach (Khan et al., 2010) denoted by MFDA,

that accounts for mixed Gaussian and categorical variables. Here we model all the
numerical variables, i.e., real-valued, positive real-valued and count data, as continu-
ous variables, and all nominal variables including both categorical and ordinal data,
as categorical.

We compare the above methods in terms of average imputation error computed as Err =
1/D

∑
d err(d). For numerical variables, we use the normalized root mean squared error

(NRMSE), normalized by the range of the variable. For categorical variables, we compute
the accuracy error which counts the number of times when the true and the imputed value
disagree. For ordinal variables, we compute the displacement error, which computes the
difference between the true and the imputed value, divided by the range of the variable (i.e.,
the total number of ordinal categories minus one). Additional results in terms of predictive
log-likelihood are provided in Appendix A.2.

In the GLFM model, for real positive and/or count data, we consider the following
transformation that maps from the real numbers to the real positive numbers, f(x) =
log(exp(wx) + 1). We select the parameter w such that the data is scaled to a common
range. For each dataset we run 5,000 iterations of the proposed MCMC sampler from
Section 4. The trace plots of the likelihood per iteration to evaluate the convergence of the
method are provided in Appendix A.1). Before running SIBP and BPMF, we normalized
each column in matrix X to have zero-mean and unit-variance. This normalization ensures
that the Gaussian likelihood evaluations of all the attributes describing the objects in each
dataset are comparable, regardless of their discrete or continuous nature. As a consequence,
it provides more accurate and fair results than applying the SIBP and BPMF directly on
the data without prior normalization.

Additionally, since both SIBP and BPMF assume continuous observations, when dealing
with discrete data, we estimate each missing value as the closest integer value to the (de-
normalized) Gaussian variable. Similarly, when dealing with count data in MFDA, we
estimate each missing value as the closest integer value.
Results. Figure 2 shows the average imputation error per missing value as a function
of the percentage of missing data. Each value in Figure 2 was obtained by averaging the
results across 20 independently split sets where the missing values were randomly chosen.
In Figures 2c and 2b, we cut the plot at a missing percentage of 50%. The reason for this
cut is that in these two datasets, the discrete attributes present a mode value that appears
for more than 80% of the instances. As a consequence, SIBP and BPMF assign probability
close to one to the mode, which results in an artificial decrease in the imputation error
when larger percentages of missing data are present. We used different numbers of latent
features for BPMF and MDFA models: 10, 20 and 50, respectively. We only show the best
results for each dataset. Specifically, for BPMF we depict K = 10 for the Nesarc and the
Wine datasets, and K = 50 for the remainder; and for MDFA, we show K = 50 for the
Wine and Internet dataset, K = 20 for the Statlog and Nesarc dataset, and K = 10 for
the biodegradation dataset. Both GLFM and SIBP have not learnt a number of binary
latent features above 25 in any case. As expected, in Figure 2 we observe that the average
imputation error tends to increase for the four models as the number of missing values
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Dataset N D Description
Statlog German credit
dataset (Eggermont
et al., 2004)

1,000 20 (10 C + 4 O
+ 6 N)

Information about the credit risks of the ap-
plicants.

QSAR biodegradation
dataset (Mansouri et al.,
2013)

1,055 41 (2 R + 17 P
+ 4 C + 18 N)

Molecular descriptors of biodegradable and
non-biodegradable chemicals.

Internet usage survey
dataset (Centre, 2014)

1,006 32 (23 C + 8 O
+ 1 N)

Responses of the participants to a survey re-
lated to the usage of internet.

Wine quality dataset
(Cortez et al., 2009)

6,497 12 (11 P + 1 N) Results of physicochemical tests realized to
different wines.

Nesarc dataset (Ruiz
et al., 2013)

43,000 55 C Responses of the participants to a survey re-
lated to personality disorders.

Table 1: Description of datasets. ‘R’ stands for real-valued variables, ‘P’ for positive
real-valued variables, ‘C’ for categorical variables, ‘O’ for ordinal variables and ‘N’ for count
variables
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(c) Internet usage survey.
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(e) Nesarc dataset.

Figure 2: Average test imputation error per missing datum versus percentage
of missing data. The ‘whiskers’ show one standard deviation away from the average test
log-likelihood.

increases. Figure 2 also shows that the proposed GLFM clearly outperforms the other three
models for the five datasets. The comparison among SIBP, BPMF and MDFA depends
on the dataset. BPMF presented poorer performance in general since it assumes a fixed
number of latent features, and Gaussian observations with fix variance.

Successively, we analyzed the performance of the three models for each kind of discrete
and continuous variables. Figure 3 shows the average imputation error per missing value
for each attribute in the table, which corresponds to each dimension in X. In this figure,
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(e) Nesarc dataset.
Figure 3: Average test imputation error per missing datum in each dimension.
Here, we consider 50% of missing data. In the x-axis ‘R’ stands for real-valued variables,
‘P’ for positive real-valued variables, ‘C’ for categorical variables, ‘O’ for ordinal variables
and ‘N’ for count variables. The number that accompanies ‘C’ or ‘O’ corresponds to the
number of categories. In the Nesarc dataset, all the variables are binary, i.e., ‘C2’.
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we have grouped the dimensions according to the kind of data that they contain, the x-axis
shows the number of considered categories for the case of categorical and ordinal data. In the
case of the Nesarc dataset, all the attributes are binary. In this figure, we observe that while
the proposed GLFM leads to low imputation error for all the variables, for the competing
models, the imputation error increases drastically for some of the attributes, independently
on they statistical data type. Using the Wine data set as an example, we can observe that
while the SIBP and MDFA presents similar imputation error than the proposed GLFM for
most of the variables, for one of the positive real-valued variables SIBP present imputation
error close to one, and MDFA fails at imputing the count variable, In contrast, BPMF
provides systematically slightly larger error than GLFM for all the variables. In summary,
Figures 2 and 3 shows that the two main properties of GLFM, i.e., unbounded number of
latent features and a heterogeneous likelihood model, results in a consistent improvement
at imputing missing values with respect to models that cannot handle the heterogenous
nature of the datasets or assume a fixed model complexity.

5.2. Data Exploration

In this section, we describe how to use GLFM for data exploration tasks. The main ob-
jective of data exploration is to find and analyze the latent structure to understand the
observed data. A typical approach for data exploration is usually based on: i) applying a
dimensionality reduction algorithm, such as for example PCA, factor analysis or cluster-
ing, which provides a summary of the data; and ii) visualize and analyze this summary.
However, as discussed in Section 2, most existing approaches for dimensionality reduction
assume homogeneous, and often continuous, observations. We propose the GLFM model
as an alternative method for dimensionality reduction that can handle heterogeneous data
and is also easily interpretable due to the binary nature of the feature activation vectors.
Our approach brings a complementary view to other methods, either by shedding light on
novel pieces of knowledge, or by validating previous results in the literature. See Ruiz et al.
(2012, 2013); Valera et al. (2016); Utkovski et al. (2018); Pradier et al. (2018) for examples
of data exploration using an IBP prior on homogeneous datasets.

An extension of GLFM for biomarker discovery has been successfully used to analyze
biomedical data from a phase II of a clinical trial, where the goal was to test the efficacy of
a new immunotherapy treatment against hepatocellular carcinoma (Pradier et al., 2019).

First, we provide some general guidelines about how to use the proposed GLFM for
data exploration. Then, we provide three showcase examples in the context of i) clinical
trials, to discover the effects of a new drug for prostate cancer; ii) psychiatry, to capture
the impact of social background in the development of mental disorders; and iii) politics,
to identify meaningful demographic profiles, together with their geographic location, and
voting tendencies in the United States. To run these experiments, we make use of the GLFM
software package which, as detailed in Appendix B, does not only provide functions for
dimensionality reduction, for the inference part in the GLFM, but also for the visualization
of results.
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Figure 4: Example of GLFM model for an ordinal variable.

5.2.1. GLFM for Data Exploration

As detailed in previous sections, the proposed GLFM assumes that each observation xn
can be explained by a potentially infinitely long binary vector zn whose elements indicate
whether a latent feature is active or not for the n-th object; and a real-valued weight vector
Bd (dictionary element), whose elements weight the influence of each latent feature in the
d-th attribute. Since the product of the latent feature vector and the dictionary element
leads to a real-valued variable, the GLFM then applies the link function fd(·) to map the
real-valued pseudo-observation ydn into the observation xdn. Figure 4 illustrates the GLFM
for an ordinal attribute taking values in the ordered set {low, medium, high}.

In order to perform data exploration, given the dictionary elements Bd for each d, one
can visualize the distribution of each attribute d given a latent feature allocation vector
z (containing either none, one or several features active) by depicting the corresponding
marginal likelihood after integrating out the pseudo-observations, p(xd|z,Bd). See Sec-
tion 3.1 for details on the analytic form of the marginal likelihood for each data type.

Each latent feature vector z present in the data can be interpreted as a pattern which
leads to a particular distribution for all the attributes, capturing the statistical dependen-
cies or correlations between the different attributes. Furthermore, similarly to the linear-
Gaussian IBP, GLFM also assumes a linear combination of the latent features, while the
non-linearity only comes at the level of the likelihood model, due to the transformation fd(·).
As a consequence, the contribution of each latent feature is additive in the observations: if
two features increase the activation probability of a value in an attribute (e.g., value ‘high’
in an ordinal attribute), the joint activation of these two features in a pattern will lead to
a higher probability (for that value) than under the activation of only one of the features.
Hence, patterns with more than one active latent feature can be seen as combinations of
patterns with only one active feature.

Additionally, similarly to Ruiz et al. (2012, 2013); Valera et al. (2016); Utkovski et al.
(2018); Pradier et al. (2018), the latent feature vectors in the GLFM can include a bias
term. The bias term is a latent feature that is active for every object in the data and may
ease the interpretability of results. In the following sections, we activate such bias term and
assume that the pattern with no active features, e.g., pattern (000), accounts for this term.

Finally, at every iteration of the inference algorithm, after the burn-in period, we obtain
a sample of the joint posterior distribution for the latent variables Z and Bd as described
in Section 4. It is not possible to identify a correspondence between latent features across
samples in the MCMC algorithm due to the non-identifiability caused by the label switching
problem. Fortunately, one may think of each joint sample of the latent features Z and their
weight vectors Bd as a potential explanation for the process generating the data. After
running our inference algorithm, one has access to as many explanations for the data as
number of collected samples during inference, either by running one or several independent
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Markov chains to facilitate the exploration of the posterior distribution. We next discuss
several ways to select such samples or the explanations to be analyzed.

One option is to select the sample that maximizes the log-likelihood across all the avail-
able samples, this corresponds to finding the most likely explanation of the data. Alterna-
tively, one could pick the sample that maximizes the test log-likelihood on a subset of the
data which are not used to infer the model. This solution corresponds to the explanation
that better generalizes to unseen data. Alternatively, one might be interested in analyzing
the different modes of the posterior distribution over Z and Bd, since they might lead to
qualitatively different explanations of the data. In order to distinguish between modes in
the posterior, one could look for jumps in the trace-plot of the likelihood evaluation, since
different modes tend to result in different likelihood values. This issue is not an intrinsic
problem of the proposed GLFM but a general one in Bayesian unsupervised models, such
as: pPCA, Gaussian mixture models and topic modeling, among others. There are several
contributions focused on how to select the best explanation (or parameter/latent variable
configuration) for the data (Roberts et al., 2016; Masood and Doshi-Velez, 2019; Greene
et al., 2008; Ross et al., 2017). In the following sections, we explore the posterior sample of
Z and Bd that maximizes the likelihood across samples from five different Markov chains,
as this sample corresponds to the most likely explanation found given our data.

5.2.2. Drug effect in a clinical trial for prostate cancer

Clinical trials aim to determine the safety and efficacy of a new drug before it can be sold
in the market. Concretely, the main goal of clinical trials is to prove the efficacy of a
new treatment for a disease while ensuring its safety, i.e., check whether its adverse effects
remain low enough for any dosage level of the drug. As an example, the publicly available
Prostate Cancer dataset4 collects data of a clinical trial that analyzed the effects of the
drug diethylstilbestrol (DES) as a treatment against prostate cancer. The dataset contains
information about 502 patients with prostate cancer in stages5 3 and 4, who entered a
clinical trial during 1967-1969 and were randomly allocated to different levels of treatment
with DES. The prostate cancer dataset has been used by several studies (Byar and Green,
1980; Kay, 1986; Lunn and McNeil, 1995) to analyze the survival times of patients in the
clinical trial and the causes behind their death. All these studies have pointed out that a
large dose of the treatment tends to reduce the risk of cancer death, but it might also result
in an increased risk of cardiovascular death. In this section, we apply the proposed GLFM
to the Prostate Cancer dataset to directly discover the statistical dependencies in the data,
which in this example corresponds to the effect of different levels of treatment with DES in
the presence of prostate cancer and cardiovascular diseases.
Experimental Setup. The prostate cancer dataset consists of 502 patients and 16 at-
tributes, from which we select five attributes listed in Table 2. The selection of these five
attributes allows us to focus only on capturing the statistical dependencies between the

4. dataset available at: http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
5. The stage of a cancer describes the size of a cancer and how far it has grown. Stage 3 means that

the cancer is already quite large and may have started to spread into surrounding tissues or local
lymph nodes. Stage 4 is more severe, and refers to a cancer that has already spread from where it
started to another body organ. This is also called secondary or metastatic cancer. Find more details
in http://www.cancerresearchuk.org/about-cancer/what-is-cancer/stages-of-cancer
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Attribute description Type of variable
Stage of the cancer Categorical with 2 categories
DES treatment level Ordinal with 3 categories
Tumor size in cm2 Count data
Serum Prostatic Acid Phosphatase (PAP) Positive real-valued
Prognosis Status (outcome of the disease) Categorical with 4 categories

Table 2: List of considered attributes for the Prostate Cancer dataset.

target attributes, i.e, the relationship between the different levels of treatment with DES
and the suffering of prostate cancer and cardiovascular diseases. In our experiments, we
sample the variance of the pseudo-observations in each dimension and choose the parameter
values as follows: α = 5, σ2

B = 1, and σ2
θ = 1. We also consider the following transforma-

tion that maps from the real numbers to the positive real numbers, for the positive real
and count data: f(x) = log(w · (x − µ) + 1), where µ = min(xd) and w = 2/std(xd) are
data-driven parameters whose objective is to shift and scale the data. In order to obtain
more interpretable results, we also activated the bias term, as explained in Section 5.2.1.

Feature Empirical Prob. Main implications
F1 0.1952 Favours stage 3, low DES levels and prostatic death
F2 0.2689 Favours stage 3, highest DES levels, and cardiovascular death
F3 0.1594 Favours stage 4, low DES levels, and mid-level prostatic death
F4 0.1155 Favours stage 4, low DES levels, and most severe prostatic cancer

Table 3: Empirical feature activation probabilities in the Prostate Cancer
dataset. These probabilities are directly computed from the inferred IBP matrix Z. Addi-
tionally, the table summarizes the main implications of the activation of each latent feature.

Patterns (0000) (0100) (1000) (0010) (0001) (1100) (0110) (0101) (1010)
Empirical Prob. 0.4641 0.1394 0.0936 0.0757 0.0518 0.0438 0.0359 0.0259 0.0219

Table 4: Empirical probability of pattern activation for the top-nine most popular
patterns. These probabilities are computed directly from the inferred IBP matrix Z.

Results. After running our model, we obtain four latent features, with corresponding
empirical activation probabilities and main implications shown in Table 3. Additionally,
Table 4 shows the nine most common latent feature vectors, also called feature patterns,
which capture over 95% of the observations. In order to study the effect of the latent
features on each attribute of the dataset, Figure 5 shows the inferred distribution of each
attribute for the five most common patterns, which only have one active latent feature plus
the bias term.6

In Figure 5, we can distinguish two groups of features. The first group, corresponds
to patients in stage 3 and includes the bias term and the two first latent features. Within
this group, the bias term – depicted as pattern (0000) – and the feature F1 – depicted as
pattern (1000) – corresponds to patients in stage 3 with a low average level of treatment
with DES, as shown in Figure 5b. However, while the bias term models patients with

6. In the case of patterns with multiple active latent features, the bias term should be counted only once.
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Figure 5: Data exploration of a prostate cancer clinical trial. We depict the effect
of each latent feature on each attribute. Panels (a)-(d) shows different indicators of the
prostate cancer, as well as the dose level of DES. Panel (d) corresponds to Prognosis Status,
which indicates whether the patient either is alive or dies from one of the following three
causes: vascular disease, prostatic cancer, or other reason. The baseline refers to the
empirical distribution of each attribute in the whole dataset. Pattern (0000) corresponds
to the bias term described in Section 5.2.1.

low probability (∼ 15%) of prostate cancer death, the first feature accounts for patients
with higher probability (∼ 40%) of prostate cancer death, which can be explained by a
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larger tumor size, as shown in Figure 5c. The feature F2 – or equivalently pattern (0100) –
corresponds to patients who exclusively received a high dosage (5 mg) of the drug, as shown
in Figure 5b. Patients with an active F2 feature present a small tumor size and the lowest
probability of prostatic cancer death, suggesting a positive effect of the drug as a treatment
for the cancer. However, they also present a significant increase in the probability of dying
from a vascular disease (∼ 50%), indicating a potential adverse-effect of the drug increasing
the risk of suffering from cardio-vascular diseases. Such observation is in agreement with
previous studies (Byar and Green, 1980; Kay, 1986; Lunn and McNeil, 1995).

The second group of features, which includes features F3 and F4 – depicted as the
activation patterns (0010) and (0001) – corresponds to patients in stage 4 with mild and
severe conditions, respectively. In particular, the F3 feature corresponds to patients with a
small tumor size but with intermediate values for the PAP biomarker, suggesting a certain
spread in the degree of the tumor compared to the features in the first group, but not
as severe as for patients with pattern (0001). Indeed, the pattern (0001) models those
patients in stage 4 with relatively high tumor size and highest PAP values, which is related
to metastasis – it is thus not surprising that those patients present the highest probability
(above 50%) of prostatic death.

5.2.3. Impact of Social Background on Mental Disorders

In this section, we extended the analysis in (Ruiz et al., 2013) to take into account the
influence of certain features that reflect the social background of subjects such as age,
gender, etc. in the probability of a subject suffering from a comorbid disorder. To this end,
in addition to the diagnoses of the 20 most common psychiatric disorders detailed below,
we also use of the information provided by the Nesarc dataset7, which includes information
both on the mental condition and on the social background of participants.

Several studies have analyzed the impact of a subject’s social background in the develop-
ment of mental disorders. These studies usually focus on the relationship between a mental
disorder and a specific aspect of the social background of the subjects. Some examples
in this area study the relationship between depression and gender (Weissman et al., 1993;
Kessler et al., 1993), or the link between common mental disorders and poverty or social
class (Weich and Lewis, 1998; Dohrenwend, 1975; Hollingshead and Redlich, 1953). Other
studies (Blanco et al., 2013; Ruiz et al., 2013) have focused on finding and analyzing the
co-occurring (comorbidity) pattern among the 20 most common psychiatric illnesses. These
studies found that the 20 most common disorders can be divided into three meta-groups of
disorders: i) externalizing disorders, which include substance use disorders (alcohol abuse
and dependence, drug abuse and dependence, and nicotine dependence); ii) internalizing
disorders, which include mood and anxiety disorders (major depressive disorder (MDD),
bipolar disorder and dysthymia, panic disorder, social anxiety disorder (SAD), specific
phobia and generalized anxiety disorder (GAD), as well as pathological gambling (PG));
and iii) personality disorders (avoidant, dependent, obsessive-compulsive (OC), paranoid,
schizoid, histrionic and antisocial personality disorders (PDs)). Additionally, such studies
also found that comorbid or co-occurring disorders tend to belong to the same group of

7. dataset available at: http://aspe.hhs.gov/hsp/06/catalog-ai-an-na/Nesarc.htm

23

http://aspe.hhs.gov/hsp/06/catalog-ai-an-na/Nesarc.htm


Valera, Pradier, Lomeli, Ghahramani

Attribute description Type of variable
Gender Categorical with 2 categories
Age Count data
Census region Categorical with 4 categories
Race/ethnicity Categorical with 5 categories
Marital status Categorical with 6 categories
Highest grade or years of school completed Ordinal with 14 categories

Table 5: List of considered social background attributes. We look for correlations
between each of these attributes with the twenty most common psychiatric disorders among
the subjects in the Nesarc dataset.

disorders (Valera et al., 2016). To the best of our knowledge, there are currently no studies
about the impact of social background in the suffering of comorbid disorders.

Experimental Setup. The Nesarc dataset contains the responses of a representative
sample of the U.S. population to a survey with questions related to the social background of
participants, alcohol and other drug consumption, and behaviors related to mental disorders.
The first wave of Nesarc sampled the adult U.S. population with over 43,000 respondents
who answered almost 3,000 questions. The dataset also includes the diagnoses for each of
the participants of the survey. In this experiment, in addition to the diagnoses of the 20
most common psychiatric disorders described above, we included one by one each of the
social background questions as input data to the proposed model. Table 5 summarizes the
considered questions and the considered data types when we introduce them into our model
as input variables. Note that the diagnoses of the 20 psychiatric disorders correspond to
categorical variables with two possible categories, e.g., a patient suffering or not from a
disorder. Each attribute related to the social background of the participants is introduced
independently to ensure that the model captures the dependencies between latent disorders
and social background, instead of the correlations among the different aspects of the social
background. This helps to focus on the correlations between each aspect of the social
background of the participants and the probability of suffering from each disorder, which
are in the order of 10−2, see Figure 6(a).

The following experimental results are reported: we ran the inference algorithm in
Section ?? for each question independently with parameter values given by: α = 5, σ2

B = 1,
σ2
y = 1, σ2

θ = 1. We consider the following transformation that maps from the real numbers
to the positive real numbers: f(x) = x2 for the positive real and count data. We chose a
different mapping function to show that the proposed model works with any differentiable
and invertible function. Similarly to Ruiz et al. (2013), we activated the bias term mentioned
in Section 5.2.1, i.e., an additional latent feature which is active to all the subjects in the
data set, so that we do not sample the rows of Z corresponding to those subjects who do
not suffer from any of the 20 disorders, but instead fix their latent features to zero. The
idea is that the bias term captures the population that does not suffer from any disorder,
while the rest of the active features in matrix Z characterize the disorders. As mentioned
previously, the bias term is useful for the interpretability of the inferred latent features.

Results. After running our model, we find that the census region, race, ethnicity, marital
status and educational level, which corresponds to the highest grade or years of school

24



General Latent Feature Models for Heterogeneous Datasets

completed, do not appear to have any influence in the comorbidity patterns of the 20
most common psychiatric disorders. In contrast, as detailed below, gender and age of the
participants influence the probability of suffering from a set of comorbid or co-occurring
disorders.

Gender. We model the gender information of the participants in the Nesarc as a categorical
variable with two categories: {‘male’, ‘female’}. The percentage of males in the Nesarc
dataset is approximately 43%. In this case, the GLFM found three latent features, with
corresponding empirical probabilities reported in Table 6. Furthermore, Table 7 shows the
empirical probability of all the feature pattern found in the dataset. Here, we observe
that the three latent features activate mostly in isolation, since the probability of jointly
activating two or more features is below 1%. Figure 6a shows the probability of meeting
each diagnostics criteria for the latent feature vectors zn listed in the legend and in the
dataset (baseline). Note that the obtained latent features are similar to the ones in (Ruiz
et al., 2013), i.e., feature F1 – pattern (100) – mainly models the seven personality disorders
(PDs), feature F2, which corresponds to pattern (010), models the alcohol and drug abuse
disorders and the antisocial PD, while feature F3 – pattern (001) – models the anxiety and
mood disorders. Additionally, in Figure 6b, we show the probability of being male and
female for the latent feature vectors zn shown in the legend and the empirical probability
of being male and female in the dataset (baseline).

In Figure 6b, we observe that having no active features (pattern (000), which corresponds
to people that do not suffer from any disorder, is more common in male subjects, suggesting
that that females tend to suffer more from psychiatric disorders. Moreover, F1 feature active
– pattern (100) – suggests a positive correlation between being a women and suffering from
mood and anxiety disorders; while feature F3 – pattern (001) – indicates that PDs are more
common in men.

Feature Empirical Prob. Main implications
Feature F1 0.0341 Correlates personality disorders and male gender
Feature F2 0.0470 Model subjects with alcohol and drug abuse disorders
Feature F3 0.0460 Correlates anxiety and mood disorders and female gender

Table 6: Gender: empirical probabilities of possessing at least one latent feature.
These probabilities are directly computed from the inferred IBP matrix Z.

Patterns (000) (010) (001) (100) (111) (011) (110)
Empirical Prob. 0.8615 0.0427 0.0414 0.0298 0.0023 0.0022 0.0020

Table 7: Gender: Empirical probability of feature pattern activations. These
probabilities are computed directly from the inferred IBP matrix Z.

Age. We focus on the age of the participants, which we model as count data. After
running our inference algorithm with the diagnoses of the 20 disorders and the subjects
age as input data, we again obtain three latent features that activate mostly in isolation
(combination of two features below 3%), with corresponding empirical probabilities listed
in Table 8. Furthermore, Table 9 shows the empirical probability of each feature pattern in
the dataset.
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Figure 6: Feature effects including gender in the analysis. (a) Probabilities of
suffering from the 20 considered disorders and (b) probability of being male and female
for the latent feature vectors zn shown in the legend and for the baseline.
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Figure 7: Feature effects including age in the analysis. (a) Probabilities of suffering
from the 20 considered disorders and (b) the age distribution for the latent feature vectors
zn shown in the legend and baseline probability distribution.

Figure 7a shows the probability of meeting each diagnostic criteria for the latent feature
vectors zn listed in the legend and in the dataset (baseline). In addition to the baseline
probability distribution, in Figure 7b we plot the inferred probability distributions over the
age when none or only one of the latent variables is active. This corresponds to the most
common feature patterns. In Figure 7b, the empirical probability distribution over the
age based on the data is shown, denoted by ‘baseline’. Here, we observe that introducing
the age of the participants as an input variable has changed the inferred latent features
(with respect to the features in (Ruiz et al., 2013) depicted in Figure 6a). In particular, we
observe that the obtained latent features mainly differ in the probability of suffering from
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personality disorders (i.e., disorders from 14 to 20), and the probability of suffering from
disorders 1 to 13 is similar for the three plotted latent feature patterns. In this figure, we
observe that the vector zn with no active latent features, e.g., pattern (000), captures the
average age in the dataset (which coincides with middle-aged subjects, i.e., 30 − 50 years
old). Furthermore, we observe that the subjects with the highest probability of suffering
from personality disorders – pattern (100) – are likely to be middle-aged, followed in a
decreasing order by young adults – pattern (010) – and elderly people – pattern (001).
Additionally, if we focus on the differences among the three features in disorders from 1
to 13, we also observe that, while young and elderly people tend to suffer from depression,
middle-aged people tend to suffer from bipolar disorder. Based on Figure 7, we conclude
that the bipolar disorder and the seven personality disorders tend to show up mostly in the
mature age, while young and elderly people tend to suffer from depression more often.

Feature Empirical Prob. Main implications
Feature F1 0.0332 Captures severe personality disorders and middle-age subjects
Feature F2 0.0550 Captures mid-severe personality disorders and young subjects
Feature F3 0.0569 Captures mid-severe personality disorders and older subjects

Table 8: Age: empirical probabilities of possessing at least one latent feature.
These probabilities are directly computed from the inferred IBP matrix Z.

Patterns (000) (010) (001) (100) (011) (110) (101)
Empirical Prob. 0.8615 0.0522 0.0503 0.0294 0.0028 0.0019 0.0019

Table 9: Age: Empirical probability of feature pattern activations. These proba-
bilities are computed directly from the inferred IBP matrix Z.

5.2.4. Voters profile in presidential election

Finally, we apply the proposed model to understand the correlations between demographic
profiles and political vote tendencies. In particular, we focus on the United States presi-
dential election of 1992, in which three major candidates ran for the race: the incumbent
Republican president George H. W. Bush, the Democratic Arkansas governor Bill Clinton,
and the independent Texas businessman Ross Perot. In 1992, the public’s concern about
the federal budget deficit and fears of professional politicians allowed the independent can-
didacy of billionaire Texan Ross Perot to appear on the scene dramatically (Alvarez and
Nagler, 1995), to the point of even leading against the major party candidates in the polls
during the electoral race8. The race ended up with the victory of Bill Clinton by a wide
margin in the Electoral College, receiving 43% of the popular vote against Bush’s 37.5% and
Perot’s 18.9% (Lacy and Burden, 1999). The election results are known to be the highest
vote share of a third-party candidate since 1912, even if Perot did not obtain any electoral
votes (Lacy and Burden, 1999).

Our primary objective in this sections to find and analyze the different types of voters’
profiles, as well as which candidate each profile tends to favor. We used the publicly available
Counties dataset which contains diverse information about voting results, demographics

8. New York Times: http://www.nytimes.com/1992/06/11/us/
the-1992-campaign-on-the-trail-poll-gives-perot-a-clear-lead.html
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and sociological factors per counties9. This dataset contains information for 3,141 counties.
Table 10 lists the per-county attributes that we used as input for our model.

Attribute description Type of data
State in which the county is located Categorical with 51 categories
Population density in 1992 per squared miles Positive real data
% of white population in 1990 Positive real data
% of people with age above 65 in 1990 Positive real data
% of people above 25 years old with bachelor’s degree or higher Positive real data
Median family income in 1989 (in dollars) Count data
% of farm population in 1990 Positive real data
% of votes cast for Democratic president Positive real data
% of votes cast for Republican president Positive real data
% of votes cast for Ross Perot Positive real data

Table 10: List of considered attributes regarding the United States presidential
election of 1992. Attributes 1 to 7 include demographic information and sociological
factors, while the last three attributes summarize the percentage voting outcome in each
county.

Feature Empirical Prob. Main implications
Feature F1 0.4874 Favours Perot, increases the probability of white population,

and decreases average income.
Feature F2 0.2703 Favours the Democrat candidate, increases population density,

and decreases family income, percentages of white population,
farming and college degrees.

Feature F3 0.2700 Favours the Republican candidate and Perot, increases the per-
centage of farming, and decreases population density.

Feature F4 0.0411 Capture the tails of the distributions of different attributes.Feature F5 0.0372

Table 11: Empirical feature activation probabilities for the Counties dataset. We
show the empirical probability of possessing at least one latent feature, as well as the main
implications of the activation of each feature. These are directly computed from the inferred
IBP matrix Z.

Patterns (000) (100) (101) (010) (110)
Empirical Prob. 0.2636 0.2407 0.1063 0.1060 0.0748

Table 12: Empirical probability of pattern activation for the top-five most pop-
ular patterns. These probabilities are computed directly from the inferred IBP matrix Z.
Features F4 and F5 are always switched off, and are thus omitted from the labels.

Experimental Setup. We ran our inference algorithm with α = 5, σ2
B = 1, σ2

θ = 1
and used the following mapping transformation from the real numbers to the positive real
numbers: f(x) = log(w ·(x−µ)+1), with µ = min(xd) and w = 2/std(xd). We activated the

9. dataset available at: http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets
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bias term and sampled the variance of the pseudo-observations for each dimension/attribute.
A challenging aspect of this dataset is that the distributions of some of its attributes are
heavy-tailed, leading to a large number of latent features as output of the GLFM, whose
purpose is to capture the tails of the distributions. This is not an issue for estimation and
imputation of missing data, but it renders data exploration more tedious. To solve this
limitation, we performed an additional data preprocessing step by applying a logarithmic
transformation to heavy-tailed attributes.10 In more detail, we applied the function g1(x) =
log(x+1) for population density, median family income, and percentage of farm population.
For the percentage of white population, we used the function g2(x) = log((100 − x) + 1)
since the distribution has most of its density close to 100%. In the Appendix B we discuss
further details about the data preprocessing step we used before applying GLFM as well as
the implementation of the GLFM software package.

Results. After running GLFM on this dataset we found 5 latent features, with correspond-
ing empirical activation probabilities shown in Table 11. We observe that while the first
three features are active for at least 27% of the counties, the last two features are active
only for around 4% of the counties. Furthermore, we find that the different combinations
of the three first latent features represent more than 92% of the counties in USA. In the
following, we focus only on the analysis of the three first features and, in particular, on
the top-five most popular feature patterns. In Table 12, the empirical probabilities of these
five patterns are shown, which represent around 80% of the U.S. counties. Figure 8 shows
the distribution of vote percentage per candidate associated to each of these top-five pat-
terns, while Figure 9 shows the corresponding geographic distribution (i.e., the empirical
activation probability) across states for each of these patterns. In these figures, we observe
that:

(i) pattern (000), corresponding to the bias term, tends to model middle values for the
percentage of votes for the three candidates (with an average percentage of votes of
∼ 50% for the Democrat candidate, ∼ 48% for the Republican candidate and ∼ 27%
for Perot), and activates mainly in the east and west coasts of the country, as well as
Florida;

(ii) pattern (100) provides similar percentage of votes for the Democrat and Republican
candidates as in pattern (000), but it favors the independent candidate Perot (with an
average percentage of votes above 30%). This pattern activates mostly in the north
central-east region of the country and Maine (the state where Perot’s party managed
to beat the Republican party);

(iii) pattern (101) activates in the north central-west region of the USA (not including the
coast) and represents a profile inclined towards the Republican party (with an average
percentage of votes of ∼ 55%) while also favoring in a lower extent the independent
candidate; and

(iv) patterns (010) and (001) clearly capture Democrat-oriented profiles, and activate
mainly in the south east region of the USA, including the state from which Bill
Clinton originally comes from, Arkansas.

10. The functionality of defining external pre-processing transformations for each dimension is supported by
our open-source GLFM package.
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Figure 8: Inferred probability distribution for the five most popular patterns.
The patterns are sorted in the legend according to their degree of popularity, as described
in Table 12. The baseline refers to the empirical distribution of each attribute in the entire
dataset.
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(a) Pattern (000) (b) Pattern (100) (c) Pattern (101)

(d) Pattern (010) (e) Pattern (110)

Figure 9: Empirical probability of pattern activation per state. We focus on the
top-five most popular combinations of features. The label for each pattern indicates whether
Features F1, F2, and F3 are active (value ‘1’) or not (value ‘0’). Features F4 are F5 are
always inactive in the five most common patterns, and thus are omitted in the labels.

The demographic results reported above are in agreement with the outcome of the election
per counties11, as shown in Figure 10. Next, we analyzed the demographic information
associated to each of the feature patterns above. In Figure 11, the distribution of each
attribute/dimension of the data for each of the considered patterns is displayed. First, we
observe that pattern (000), which activates mostly in the coasts and Florida, corresponds
to the highest population density, average income, and percentage of college degrees, as
well as an important race diversity and low farming activity. These observations align with
the typical profile characterizing “big-cities”. As stated before, this pattern is the most
balanced in terms of voting tendency, with an equilibrated support for both Democrat and
Republican, as well as intermediate values for the percentage of votes cast for Perot.

Second, patterns (100) and (101) represent the largest share of Perot’s votes, both with
an average percentage of votes above 30% for Perot. Figure 11 shows that Perot’s main
supporters, characterized mainly by pattern (101), also correspond to Republican main
supporters, who tend to live in low populated areas in the north central part of the country
where farming activity is considerable, and the percentages of white population and over-65
years old population are also high. The second voting force backing Perot, captured by

11. https://en.wikipedia.org/wiki/United_States_presidential_election,_1992
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Figure 10: Outcome of the 1992 presidential election per counties. Blue color
corresponds to a majority of votes for the Democrat party, red corresponds to a victory
for the Republican party, green corresponds to a victory of the independent party of Ross
Perot.

pattern (100) and located in the north east-central part of USA, corresponds mostly to
white population with an intermediate-high average income and an average percentage of
college degrees around 18% (the red curve in Figure 11e overlaps the green line). These
results back the analysis in (Lewis et al., 1994), which showed that the majority of Perot’s
voters (57%) belonged to the middle class, earning between $15,000 and $49,000 annually,
with the bulk of the remainder belonging to the upper middle class (29% earning more than
$50,000 annually). Perot’s campaign ended up taking 18.9% of the votes, finishing second
in Maine and Utah, as captured by pattern (100) and (101) respectively.

Finally, Democrat’s patterns (010) and (110) are mainly active in the Southeastern
United States, and capture a diverse range of voters in terms of their demographic prop-
erties. On one hand, pattern (010) captures highly populated counties, with low values
of family income, percentage of college degrees, percentage of white population and per-
centage of farming population. On the other hand, pattern (110) captures low populated
counties with a large percentage of population above 65 year old, as well as a larger pres-
ence of farming activity and lower average income. These results might be explained by the
broad appeal across all socio-ethno-economic demographics that the Democratic party has
historically targeted.

6. Conclusions

In this paper, we have developed an efficient general latent feature model, named GLFM.
The GLFM model is suitable for modeling tasks with real-world heterogeneous datasets.
The proposed model presents attractive properties in terms of flexibility and interpretabil-
ity. First, its nonparametric nature allows it to automatically infer the appropriate model
complexity (i.e., number of latent features) from data. Second, since the latent features
are binary-valued, it is easier to identify and interpret meaningful patterns in the data ex-
ploration process. Third, we derived an augmented model that inherits the properties of
conjugate models, which allow us to extend an efficient inference scheme that scales lin-
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Figure 11: Inferred probability distribution for the most occuring patterns. The
baseline refers to the empirical distribution of each attribute in the whole dataset.
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early with the number of observations (objects) and dimensions (attributes) in the data per
MCMC iteration.

We showed the flexibility and applicability of the proposed GLFM, and its available
software implementation detailed in Appendix B, by solving both prediction and data ex-
ploration tasks in several real-world datasets. In particular, we used the proposed model to
estimate and replace missing data in heterogeneous datasets. Also, we used the proposed
GLFM for data exploratory analysis of real-world datasets related to diverse application
domains: clinical trials, psychiatry, sociology and politics.

As future research lines, it would be interesting to incorporate automatic detection of
the type of data before training the model, to fully automatize the whole procedure for table
completion or data exploration (Valera and Ghahramani, 2017). Other promising directions
include replacing the latent feature model by more complex models, such as for example con-
sidering non-linear latent variable models for the pseudo-observations by parameterizing the
model using deep neural networks, leading to variational autoencoder (Kingma and Welling,
2013) architectures suitable for heterogeneous types of data. Finally, the usage of GLFM
for data exploration would increase if we manage to incorporate prediction-constraints to
the generative model (Hughes et al., 2017). This would result in latent representations
that not only allow us to explain the data, but that can also be used for an end-task pre-
diction problem, bringing close together the generative and discriminative perspectives of
probabilistic models.
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Appendix A. Additional results

A.1. Log-likelihood Trace Plots

Before entering in the details of the missing data estimation task, we first evaluate the
convergence of the proposed MCMC sampler. To this end, we track the evolution of the
log-likelihood with respect to the number of iterations of the sampler. As an example,
Figure 12 shows three examples of log-likelihood trace plots for three of the considered
datasets in Section 5.1. We can observe here that the burn-in period of the sampler consists
only of a few hundred samples for the three datasets. Then, for the rest of our experiments
we decide to run 5000 iterations of the sampler, where the first 1000 iterations are considered
as burn-in period.
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Figure 12: Trace plot of the log-likelihood per iteration of the sampler.

A.2. Missing Data Extimation

In this section, we provide additional results that compare the proposed GLFM with the
baselines in terms of test log-likelihood. To evaluate the test log-likelihood for the SIBP
and the BPMF models for discrete data, we compute the integral of the Gaussian likelihood
function in the interval (xdn − 0.5, xdn + 0.5] (or (−∞, x+ 0.5] or (x− 0.5,+∞), respectively
for the first and last discrete observed values in the data). Here, xdn corresponds to the true
value of the variable, and therefore this integral computes the probability of imputing the
true value for xdn under each of these models. This way of computing the test likelihood
ensures therefore a fair comparison between GLFM and the baselines. Note that test log-
likelihood results are provided for the baseline MDFA, since the exact computation of the
likelihood is not tractable and (Khan et al., 2010) only provide a bound on the likelihood.
Results. The plots in Figure 13 show the average predictive log-likelihood per missing
value as a function of the percentage of missing data. Each value in Figure 13 was obtained
by averaging the results across 20 independently split sets where the missing values were
randomly chosen. In Figures 13b and 13c, we cut the plot at a missing percentage of 50%
because, in these two datasets, the discrete attributes present a mode value that appears
for more than 80% of the instances. As a consequence, the SIBP and the BPMF algorithms
assign probability close to one to the mode, which results in an artificial increase in the
average test log-likelihood when larger percentages of missing data are present. For the
BPMF model, we used different numbers of latent features: 10, 20 and 50, respectively. We
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Figure 13: Average test log-likelihood per missing datum versus percentage of
missing data. The ‘whiskers’ show one standard deviation away from the average test
log-likelihood.

only show the best results for each dataset, specifically, K = 10 for the Nesarc and the wine
datasets, and K = 50 for the remainder. Both GLFM and SIBP have not learnt a number
of binary latent features above 25 in any case. In Figure 13e, we only plot the test log-
likelihood for GLFM and SIBP because BPMF provides much lower values. As expected,
we observe in Figure 13 that the average test log-likelihood decreases for the three models
as the number of missing values increases. The curves shown here have a flat shape due to
the logarithmic scale of the y-axis. In this figure, we also observe that the proposed GLFM
outperforms SIBP and BPMF for four of the datasets, being SIBP slightly better for the
Internet dataset. BPMF model presents the worst test log-likelihood in all datasets.

Successively, we analyzed the performance of the three models for each kind of discrete
and continuous variables. Figure 14 shows the average predictive likelihood per missing
value for each attribute in the table, which corresponds to each dimension in X. In this
figure, we have grouped the dimensions according to the kind of data that they contain,
the x-axis shows the number of considered categories for the case of categorical and ordinal
data. In the case of the Nesarc dataset, all the attributes are binary. The figure shows that
the GLFM presents similar performance for all the attributes in the five datasets, while for
the SIBP and the BPMF models, the test log-likelihood falls drastically for some of the
attributes. This low-likelihood effect is more dramatic in the case of BPMF as can be seen
in Figure 13. This effect is more evident in Figures 13b and 13d, respectively. In Figures 13
and 14, we observe that both IBP-based approaches (GLFM and SIBP) outperform BPMF,
with our proposed GLFM being the one that best performs across all datasets. We can
conclude that, unlike BPMF and SIBP, the GLFM model provides better estimates for the
missing data regardless of their discrete or continuous nature.
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(e) Nesarc dataset.
Figure 14: Average test log-likelihood per missing datum in each dimension. Here,
we consider 50% of missing data. In the x-axis ‘R’ stands for real-valued variables, ‘P’ for
positive real-valued variables, ‘C’ for categorical variables, ‘O’ for ordinal variables and ‘N’
for count variables. The number that accompanies ‘C’ or ‘O’ corresponds to the number of
categories. In the Nesarc dataset, all the variables are binary, i.e., ‘C2’.

38



General Latent Feature Models for Heterogeneous Datasets

Appendix B. GLFM Software package

This appendix provides the details about the implementation and usage of the GLFM soft-
ware package, which allows to perform latent feature modeling in heterogeneous datasets,
where the attributes describing each object can be either discrete, continuous or mixed
variables. To the best of our knowledge, this library provides the first available software
for latent feature modeling in heterogeneous data, and includes functions for the two main
applications of GLFM, i.e., missing data estimation (or table completion) and exploratory
data analysis.

B.1. Implementation

The GLFM package contains an efficient C++ implementation, together with user inter-
faces in Python, Matlab and R, of the collapsed Gibbs sampling algorithm described in
Algorithm 1. The main function of the package, hidden = GLFM.infer(data),12 runs the
inference algorithm given the input structure data and returns the learned latent variables
in the output structure hidden. This function receives as input an observation matrix X
and a vector indicating the type of data for each dimension. Optionally, model hyper-
parameters and simulation settings can be customized by the user. The latent variables
are learned by using the mapping transformations listed in Table 13 to account for the
continuous and discrete data types mentioned above. The parameters µ and w are used
to shift and scale the raw input data, and are set to the empirical mean and the standard
deviation, respectively in the case of real-valued attributes. These parameters are set to the
minimum value and to the empirical standard deviation, in the case of positive real-valued
and count attributes. This guarantees that the prior distributions on the latent variables
is equally good for all the attributes in the dataset, regardless their support. The output
structure hidden contains the latest MCMC sample of the latent feature vectors zn for
n = 1, . . . , N , the weighting vectors Bd, as well as the auxiliary variables, which include
the pseudo-observation variances σ2

d and the thresholds θr, necessary for the corresponding
transformation fd(·), for each dimension d = 1, . . . , D.

Furthermore, since the Bayesian nonparametric nature of the GLFM allows the model
complexity (i.e., the length of the vectors zn and Bd) to grow with the number of observa-
tions, we sometimes need to put a bound on the model complexity, which is an additional
input that can be set in the GLFM package. This bound allows us not only to keep the
model complexity, and the running time under control, but also to efficiently manage the
memory allocation. Finally, our implementation of the GLFM makes use of the GNU Sci-
entific Library (GSL),13 to efficiently perform a large variety of mathematical routines such
as random number generation, and matrix or vector operations.

12. This call corresponds to a python call. The equivalent call in Matlab is hidden = GLFM infer(data) and
in R output → GLFM infer(data).

13. https://www.gnu.org/software/gsl/
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Type Domain Transformation x = fd(y) Hyperparam.

Real-valued x ∈ < x = w(y + u) + µ
µ = mean(xd)
w = 2/std(xd)

Positive x ∈ <+ x = log(exp(w(y + u) + µ) + 1) µ = min(xd)
w = 2/std(xd)

Categorical x ∈ {1, 2, . . . , R}
(unordered set) x = arg maxr∈{1,...,R} yr

Ordinal x ∈ {1, 2, . . . , R}
(ordered set) x =


1 if y ≤ θ1
2 if θ1 < y ≤ θ2

...
R if θR−1 < y

Count x ∈ {1, 2, 3, . . .} x = blog(exp(w(y + u) + µ) + 1)c µ = min(xd)
w = 2/std(xd)

Table 13: Mapping functions implemented in the toolbox.

B.2. Usage

B.2.1. Data preprocessing and initialization

A convenient property of the GLFM package is that it can be used blindly on raw data
without requiring any preprocessing step on the dataset, or special tuning of the hyperpa-
rameters. The only requirement for the user is to format the data as a numerical matrix of
size N ×D and build an additional vector for the type of data for each of the D attributes.

The set of hyperparameters of the GLFM can be divided into two groups, the parameters
related to the prior distribution for the latent variables Z and B, and the hyperparame-
ters related to the link functions. The key hyperparameters are the ones related to the
link functions which allow us to map an heterogeneous observation to the corresponding
pseudo-observation, since the pseudo-observations could in principle take any value in <.
As mentioned above, the parameters of the transformations in Table 13 are internally fixed
such that the output of the inverse link function f−1

d (·) per dimension is normalized with
comparable mean and variance across different dimensions, which facilitate that the pseudo-
observations fall in a ball centered around the zero vector in <D. This choice was made
to ensure that prior distribution of the weighting vectors Bd ∼ N (0, σ2

B) is independent
to the data type of each dimension, such that the user does not need to specify a different
prior suitable for each attribute (dimension) but instead a common prior has a similar effect
across all the dimensions (and data types) in the data.

Since the GLFM model assumes that the the pseudo-observations are distributed as
a mixture of Gaussian distributions with a potentially infinite number of components—of
the form

∑
p=1,...,2K+ πpN (yd|zpBd, σ2

yd), where K+ is the total number of active features, p
indicates the binary feature vector (a.k.a pattern), and πp is the empirical probability of pat-
tern p (such that

∑
p=1,...,2K+ πp = 1)—, it is able to fit any pseudo-observation distribution

to within arbitrary error. However, for data exploratory tasks, if the pseudo-observation
distribution is highly non-Gaussian, we may infer a large number of additional features to
capture the non-Gaussianity, leading to less interpretable results. To alleviate this issue, we
incorporate an additional functionality that allows the user to specify external preprocess-
ing (external transformation) to the data in order to favor Gaussianity, and thus to further
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Figure 15: Illustration of optional data preprocessing. Panel (a) and (b) show the histograms
of, respectively, a heavy-tailed attribute and the attribute after a logarithmic transforma-
tion, as well the distribution of the inferred latent feature patterns. Panel (c) shows the his-
togram of the pseudo-observations inferred for the original and the preprocessed attributes,
as well the distribution of the inferred latent feature patterns. Here, we observe that the
distribution of the attribute is better captured by the latent model when a preprocessing
step is performed to correct/minimize the non-Gaussian behaviour of the attribute.

improve the performance of the algorithm. For instance, in cases in which the distribution
of an attribute presents a clearly non-Gaussian behavior, e.g., it is concentrated around a
single value or has a heavy-tailed distribution, it might be suitable to preprocess this vari-
able by applying a logarithmic transformation, as shown in Figure 15. This functionality is
exploited in our data exploration examples in Section 5.2. As an example, Figure 16 shows
the empirical distribution of the pseudo-observations and the fitting provided by GLFM for
all numerical variables in the dataset of the United States presidential election of 1992. The
first two rows correspond to the dimensions depicted in Figure 11 in the main text, whereas
the last row corresponds to the dimensions illustrated in Figure 8 in the main text.

Next, we also discuss the sensitivity of the inferred latent model with respect to the
selection of the concentration parameter of the IBP, which we set as the prior for the latent
feature matrix Z. We point out that this is particularly important in the case of data explo-
ration tasks, such as the ones performed in Section 5.2, since the insights obtained from the
data exploration are desired to be robust with respect to the hyperparameters of the model.
The concentration parameter α is directly related with the expected number of features for
a given number of datapoints N (Griffiths and Ghahramani, 2011). Thus, one may expect
that different values of this parameter may result in a different number of feature, and
thus, to different explanations of the data. In order to show that the results are consistent
independently of the prior parameters, we depict in Figure 17 normalize histogram obtained
using three independent runs and and 500 samples for each run of the Gibbs sampler for
the for the Counties dataset. Here we observe, that while the distribution of the inferred
number of features becomes more heavy-tailed as we increase the concentration parameter
α, the mode of the distribution barely changes. In fact, if we remove those feature that are
active in less than 5% of the data, the resulting number of features does not change among
samples or runs of the Gibbs sampler.

B.2.2. Missing Data Estimation

The GLFM toolbox can be used for estimation and imputation of missing data in hetero-
geneous datasets, where the missing values can be encoded with any (numerical) value that
the user specifies. The Bayesian nature of the GLFM allows to efficiently infer the latent
feature representation of the data using the available information (i.e., the non-missing val-
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Figure 16: Distribution of the pseudo-observations for the dataset of the United States
presidential election of 1992. Here, variables ’pop. density’, ’income’, ’farm’, and ’white’
present an additional pre-processing.

ues), and using it to compute the posterior distribution of each missing value in the data.
Note that given the posterior distribution of each missing value, one might opt for different
approaches to impute missing values, e.g., one might opt for imputing a sample of the pos-
terior distribution or simply the maximum a posteriori (MAP) value. The GLFM package
provides the function [Xmap, hidden] = GLFM.complete(data) which infers the latent
feature representation, given the (incomplete) observation matrix, and returns a complete
matrix where the missing values have been imputed to their MAP value; and the hidden
structure containing all the inferred latent variables. This function runs the C++ inference
engine GLFM.infer(), as well as the function GLFM.computeMAP(), which computes the
MAP of a single missing element xdn given zn and Bd.

B.2.3. Data Exploration Analysis

The GLFM toolbox can also be used as a tool for data exploratory analysis, since it is
able to find the latent structure in the data and capture the statistical dependencies among
the objects and their attributes in the data. The GLFM toolbox provides weighted binary
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Figure 17: Sensitivity of the results to the concentration parameter α. We show the his-
togram of the number of inferred features for 500 samples of 3 independent run of the Gibbs
sampler in the Counties dataset.

latent features, easing their interpretation and making it possible to cluster the objects
according to their activation patterns of latent features. Furthermore, it also allows to
activate a latent feature that is active for all the objects (a bias term), which is useful to
capture the mode of the distribution of each attribute in the dataset. In order to help
with data exploration, GLFM provides the function GLFM.plotPatterns(), which plots
the posterior distribution of each attribute under the given latent feature patterns. This
function allows us to find patterns and dependencies across both objects and attributes.
This function, in turn, makes use of the function GLFM.computePDF(), which evaluates the
posterior distribution of an attribute under a given latent feature vector. More generally,
the function GLFM.computeLogLikelihood() computes the log likelihood of each entry in
the provided matrix of observations given the different data type of each dimension.

B.2.4. Examples

The package manual contains simple examples demonstrating the package usage. Addition-
ally, we provide the following demonstrations (with scripts in Python, Matlab and R):
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• demo toy example: Simple illustration of GLFM pipeline, replicating the example of
the IBP linear-Gaussian model in (Griffiths and Ghahramani, 2011).
• demo completion: Illustration of missing data estimation on the MNIST image dataset.
• demo data exploration (counties & prostate): Replication of results on data explo-

ration in Section 6. This demo requires data download, which is instructed.

B.3. Availability and Documentation

GLFM code is publicly available in https://github.com/ivaleraM/GLFM, where we pro-
vide a technical document introducing the model and a user manual describing the usage
details of the toolkit, including software requirements. The Python and Matlab implemen-
tations are under MIT license. The R implementation extends the RcppGSLExample14, and
therefore, is under GPL (>= 2) license.
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