
Journal of Machine Learning Research 21 (2020) 1-76 Submitted 11/17; Revised 6/20; Published 8/20

New Insights and Perspectives on the Natural Gradient
Method

James Martens james.martens@gmail.com

DeepMind

London, United Kingdom

Editor: Léon Bottou

Abstract

Natural gradient descent is an optimization method traditionally motivated from the per-
spective of information geometry, and works well for many applications as an alternative to
stochastic gradient descent. In this paper we critically analyze this method and its proper-
ties, and show how it can be viewed as a type of 2nd-order optimization method, with the
Fisher information matrix acting as a substitute for the Hessian. In many important cases,
the Fisher information matrix is shown to be equivalent to the Generalized Gauss-Newton
matrix, which both approximates the Hessian, but also has certain properties that favor
its use over the Hessian. This perspective turns out to have significant implications for
the design of a practical and robust natural gradient optimizer, as it motivates the use of
techniques like trust regions and Tikhonov regularization. Additionally, we make a series of
contributions to the understanding of natural gradient and 2nd-order methods, including:
a thorough analysis of the convergence speed of stochastic natural gradient descent (and
more general stochastic 2nd-order methods) as applied to convex quadratics, a critical ex-
amination of the oft-used “empirical” approximation of the Fisher matrix, and an analysis
of the (approximate) parameterization invariance property possessed by natural gradient
methods (which we show also holds for certain other curvature matrices, but notably not
the Hessian).

Keywords: natural gradient methods, 2nd-order optimization, neural networks, conver-
gence rate, parameterization invariance

c©2020 James Martens.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/17-678.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/17-678.html

Martens

Contents

1 Introduction and Overview 3

2 Neural Networks 7

3 Supervised Learning Framework 7

4 KL Divergence Objectives 7

5 Various Definitions of the Natural Gradient and the Fisher Information
Matrix 9

6 Geometric Interpretation 10

7 2nd-order Optimization 11

8 The Generalized Gauss-Newton Matrix 13

9 Computational Aspects of the Natural Gradient and Connections to the
Generalized Gauss-Newton Matrix 18

10 Constructing Practical Natural Gradient Methods, and the Critical Role
of Damping 21

11 The Empirical Fisher 23

12 A Critical Analysis of Parameterization Invariance 27

13 A New Interpretation of the Natural Gradient 31

14 Asymptotic Convergence Speed 32

15 Conclusions and Open Questions 45

A Proof of Basic Identity from Murata (1998) 47

B Proofs of Convergence Theorems 47

C Derivations of Bounds for Section 14.2.1 66

D Some Self-contained Technical Results 67

E Proof of Corollary 2 70

2

New Insights and Perspectives on the Natural Gradient Method

1. Introduction and Overview

The natural gradient descent approach, pioneered by Amari and collaborators (e.g. Amari,
1998), is a popular alternative to traditional gradient descent methods which has received a
lot of attention over the past several decades, motivating many new and related approaches.
It has been successfully applied to a variety of problems such as blind source separation
(Amari and Cichocki, 1998), reinforcement learning (Peters and Schaal, 2008), and neural
network training (e.g. Park et al., 2000; Martens and Grosse, 2015; Desjardins et al., 2015).

Natural gradient descent is generally applicable to the optimization of probabilistic
models1, and involves the use of the so-called “natural gradient”, which is defined as the
gradient times the inverse of the model’s Fisher information matrix (aka “the Fisher” ;
see Section 5), in place of the standard gradient. In many applications, natural gradient
descent seems to require far fewer iterations than gradient descent, making it a potentially
attractive alternative method. Unfortunately, for models with very many parameters such
as large neural networks, computing the natural gradient is impractical due to the extreme
size of the Fisher matrix. This problem can be addressed through the use of various approx-
imations to the Fisher (e.g Le Roux et al., 2008; Ollivier, 2015; Grosse and Salakhudinov,
2015; Martens and Grosse, 2015) that are designed to be easier to compute, to store and
finally to invert, than the exact Fisher.

Natural gradient descent is classically motivated as a way of implementing steepest de-
scent2 in the space of realizable distributions3 instead of the space of parameters, where
distance in the distribution space is measured with a special “Riemannian metric” (Amari
and Nagaoka, 2007). This metric depends only on the properties of the distributions them-
selves and not their parameters, and in particular is defined so that it approximates the
square root of the Kullback–Leibler divergence within small neighborhoods. Under this
interpretation (discussed in detail in Section 6), natural gradient descent is invariant to
any smooth and invertible reparameterization of the model, putting it in stark contrast to
gradient descent, whose performance is parameterization dependent.

In practice however, natural gradient descent still operates within the default parameter
space, and works by computing directions in the space of distributions and then translating
them back to the default space before taking a step. Because of this, the above discussed
interpretation breaks down unless the step-size becomes arbitrarily small, and as discussed
in Section 10, this breakdown has important implications for designing a natural gradient
method that can work well in practice. Another problem with this interpretation is that
it doesn’t provide any obvious reason why a step of natural gradient descent should make
more progress reducing the objective than a step of standard gradient descent (assuming
well-chosen step-sizes for both). Moreover, given a large step-size one also loses the param-

1. This includes neural networks, which can be cast as conditional models.
2. “Steepest descent” is a common synonym for gradient descent, which emphasizes the interpretation of

the gradient as being the direction that descends down the loss surface most “steeply”. Here “steepness”
is measured as the amount loss reduction per unit of distance traveled, where distance is measured
according to some given metric. For standard gradient descent this metric is the Euclidean distance on
the default parameter space.

3. “Realizable distributions” means distributions which correspond to some setting of the model’s param-
eters.

3

Martens

eterization invariance property of the natural gradient method, although it will still hold
approximately under certain conditions which are described in Section 12.

In Section 10 we argue for an alternative view of natural gradient descent: as a type of
2nd-order method4 which utilizes the Fisher as an alternative to the Hessian. As discussed
in Section 7, 2nd-order methods work by forming a local quadratic approximation to
the objective around the current iterate, and produce the next iterate by optimizing this
approximation within some region where the approximation is believed to be accurate.
According to this view, natural gradient descent ought to make more progress per step than
gradient descent because it uses a local quadratic model/approximation of the objective
function which is more detailed (which allows it to be less conservative) than the one
implicitly used by gradient descent.

In support of this view is the fact that the Fisher can be cast as an approximation of
the Hessian in at least two different ways (provided the objective has the form discussed
in Section 4). First, as discussed in Section 5, it corresponds to the expected Hessian
of the loss under the model’s distribution over predicted outputs (instead of the usual em-
pirical one used to compute the exact Hessian). Second, as we establish in Section 9, it
is very often equivalent to the so-called “Generalized Gauss-Newton matrix” (GGN) (dis-
cussed in Section 8), a generalization of the classical Gauss-Newton matrix (e.g. Dennis Jr
and Schnabel, 1996; Ortega and Rheinboldt, 2000; Nocedal and Wright, 2006), which is a
popular alternative/approximation to the Hessian that has been used in various practical
2nd-order optimization methods designed specifically for neural networks (e.g Schraudolph,
2002; Martens, 2010; Vinyals and Povey, 2012), and which may actually be a better choice
than the Hessian in the context of neural net training (see Section 8.1).

Viewing natural gradient descent as a 2nd-order method is also prescriptive, since it
suggests the use of various damping/regularization techniques often used in the optimization
literature to account for the limited accuracy of local quadratic approximations (especially
over long distances). Indeed, such techniques have been successfully applied in 2nd-order
methods designed for neural networks (e.g. Martens, 2010; Martens and Grosse, 2015),
where they proved crucial in achieving fast and robust performance in practice. And before
that have had a long history of application in the context of practical non-linear regression
procedures (Tikhonov, 1943; Levenberg, 1944; Marquardt, 1963; Moré, 1978).

The “empirical Fisher”, which is discussed in Section 11, is an approximation to the
Fisher whose computation is easier to implement in practice using standard automatic-
differentiation libraries. The empirical Fisher differs from the usual Fisher in subtle but
important ways, which as we show in Section 11.1, make it considerably less useful as an
approximation to the Fisher, or as a curvature matrix to be used in 2nd-order methods.
Using the empirical Fisher also breaks some of the theory justifying natural gradient descent,
although it nonetheless preserves its (approximate) parameterization invariance (as we show
in Section 12). Despite these objections, the empirical Fisher has been used in many
approaches, such as TONGA (Le Roux et al., 2008), and the recent spate of methods that

4. By “2nd-order method” we mean any iterative optimization method which generates updates as the
(possibly approximate) solution of a non-trivial local quadratic model of the objective function. This
extends well beyond the classical Newton’s method, and includes approaches like (L-)BFGS, and methods
based on the Gauss-Newton matrix.

4

New Insights and Perspectives on the Natural Gradient Method

use the diagonal of this matrix such as RMSprop (Tieleman and Hinton, 2012) and Adam
(Ba and Kingma, 2015) (which we examine in Section 11.2).

A well-known and oft quoted result about stochastic natural gradient descent is that
it is asymptotically “Fisher efficient” (Amari, 1998). Roughly speaking, this means that
it provides an asymptotically unbiased estimate of the parameters with the lowest possible
variance among all unbiased estimators (that see the same amount of data), thus achieving
the best possible expected objective function value. Unfortunately, as discussed in Section
14.1, this result comes with several important caveats which significantly limit its appli-
cability. Moreover, even when it is applicable, it only provides an asymptotically accurate
characterization of the method, which may not usefully describe its behavior given a finite
number of iterations.

To address these issues we build on the work of Murata (1998) in Section 14.2 and Sec-
tion 14.3 to develop a more powerful convergence theory for stochastic 2nd-order methods
(including natural gradient descent) as applied to convex quadratic objectives. Our results
provide a more precise expression for the convergence speed of such methods than existing
results do5, and properly account for the effect of the starting point. And as we discuss in
Section 14.2.1 and Section 14.3.1 they imply various interesting consequences about the
relative performance of various 1st and 2nd-order stochastic optimization methods. Perhaps
the most interesting conclusion of this analysis is that, while stochastic gradient descent
with Polyak-style parameter averaging achieves the same asymptotic convergence speed as
stochastic natural gradient descent (and is thus also “Fisher efficient”, as was first shown
by Polyak and Juditsky (1992)), stochastic 2nd-order methods can possess a much more
favorable dependence on the starting point, which means that they can make much more
progress given a limited iteration budget. Another interesting observation made in our
analysis is that stochastic 2nd-order methods that use a decaying learning rate (of the form
αk = 1/(k+a+1)) can, for certain problems, achieve an asymptotic objective function value
that is better than that achieved in the same number of iterations by stochastic gradient
descent (with a similar decaying learning rate), by a large constant factor.

Unfortunately, these convergence theory results fail to explain why 2nd-order optimiza-
tion with the GGN/Fisher works so much better than classical 2nd-order schemes based
on the Hessian for neural network training (Schraudolph, 2002; Martens, 2010; Vinyals and
Povey, 2012). In Section 15 we propose several important open questions in this direction
that we leave for future work.

5. Alternate versions of several of our results have appeared in the literature before (e.g. Polyak and Judit-
sky, 1992; Bordes et al., 2009; Moulines and Bach, 2011). These formulations tend to be more general than
ours (we restrict to the quadratic case), but also less precise and interpretable. In particular, previous
results tend to omit asymptotically negligible terms that are nonetheless important pre-asymptotically.
Or when they do include these terms, their bounds are simultaneously looser and more complicated than
our own, perhaps owing to their increased generality. We discuss connections to some prior work on
convergence bounds in Sections 14.2.2 and 14.3.2.

5

Martens

Table of Notation

Notation Description

[v]i i-th entry of a vector v
[A]i,j (i, j)-th entry a matrix A
∇γ gradient of a scalar function γ
Jγ Jacobian of a vector-valued function γ
Hγ Hessian of a scalar function γ (typically taken with

respect to θ unless otherwise specified)
H Hessian of the objective function h w.r.t. θ (i.e. Hh)
θ vector of all the network’s parameters
Wi weight matrix at layer i
φi activation function for layer i
si unit inputs at layer i
ai unit activities at layer i
` number of layers
m dimension of the network’s output f(x, θ)
mi number of units in i-th layer of the network
f(x, θ) function mapping the neural network’s inputs to its output
L(y, z) loss function
h objective function
S training set
k current iteration
n dimension of θ
Mk(δ) local quadratic approximation of h at θk
λ strength constant for penalty-based damping
λj(A) j-th largest eigenvalue of a symmetric matrix A
G generalized Gauss-Newton matrix (GGN)
Px,y(θ) model’s distribution
Qx,y data distribution

Q̂x,y training/empirical distribution
Ry|z predictive distribution used at network’s output (so Py|x(θ) = Ry|f(x,θ))

p, q, r density functions associated with above P , Q, and R (resp.)
F Fisher information matrix (typically associated with Px,y)
FD Fisher information matrix associated with parameterized distribution D

∇̃h The natural gradient for objective h.

Table 1: A table listing some of the notation used throughout this document.

6

New Insights and Perspectives on the Natural Gradient Method

2. Neural Networks

Feed-forward neural networks are structured similarly to classical circuits. They typically
consist of a sequence of ` “layers” of units, where each unit in a given layer receive inputs
from the units in the previous layer, and computes an affine function of these followed by a
scalar non-linear function called an “activation function”. The input vector to the network,
denoted by x, is given by the units of the first layer, which is called the “input layer” (and
is not counted towards the total `). The output vector of the network is given by the units
of the network’s last layer (called the “output layer”). The other layers are referred to as
the network’s “hidden layers”.

Formally, given input x ∈ Rm0 , and parameters θ ∈ Rn which determine weight matrices
W1 ∈ Rm1×m0 ,W2 ∈ Rm2×m1 , . . . ,W` ∈ Rm`×m`−1 and biases b1 ∈ Rm1 , b2 ∈ Rm2 , . . . , b` ∈
Rm` , the network computes its output f(x, θ) = a` according to

si = Wiai−1 + bi

ai = φi(si) ,

where a0 = x. Here, ai is the vector of values (“activities”) of the network’s i-th layer, and
φi(·) is the vector-valued non-linear “activation function” computed at layer i, and is often
given by some simple scalar function applied coordinate-wise.

Note that most of the results discussed in this document will apply to the more general
setting where f(x, θ) is an arbitrary differentiable function (in both x and θ).

3. Supervised Learning Framework

The goal of optimization in the context of supervised learning is to find some setting of
θ so that, for each input x in the training set, the output of the network (which we will
sometimes call its “prediction”) matches the given target outputs as closely as possible, as
measured by some loss. In particular, given a training set S consisting of pairs (x, y), we
wish to minimize the objective function

h(θ) ≡ 1

|S|
∑

(x,y)∈S

L(y, f(x, θ)), (1)

where L(y, z) is a “loss function” which measures the disagreement between y and z.
The prediction f(x, θ) may be a guess for y, in which case L might measure the inaccu-

racy of this guess (e.g. using the familiar squared error 1
2‖y− z‖

2). Or f(x, θ) could encode
the parameters of some simple predictive distribution. For example, f(x, θ) could be the
set of probabilities which parameterize a multinomial distribution over the possible discrete
values of y, with L(y, f(x, θ)) being the negative log probability of y under this distribution.

4. KL Divergence Objectives

The natural gradient method of Amari (1998) can potentially be applied to any objective
function which measures the performance of some statistical model. However, it enjoys
richer theoretical properties when applied to objective functions based on the KL diver-
gence between the model’s distribution and the target distribution, or certain approxima-
tions/surrogates of these. In this section we will establish the basic notation and properties

7

Martens

of these objective functions, and discuss the various ways in which they can be formulated.
Each of these formulations will be analogous to a particular formulation of the Fisher in-
formation matrix and natural gradient (as defined in Section 5), which will differ in subtle
but important ways.

In the idealized setting, input vectors x are drawn independently from a target distri-
bution Qx with density function q(x), and the corresponding (target) outputs y from a
conditional target distribution Qy|x with density function q(y|x).

We define the goal of learning as the minimization of the KL divergence from the target
joint distribution Qx,y, whose density is q(y, x) = q(y|x)q(x), to the learned distribution
Px,y(θ), whose density is p(x, y|θ) = p(y|x, θ)q(x). (Note that the second q(x) is not a typo
here, since we are not learning the distribution over x, only the conditional distribution of
y given x.) Our objective function is thus

KL(Qx,y‖Px,y(θ)) =

∫
q(x, y) log

q(x, y)

p(x, y|θ)
dxdy .

This is equivalent to the expected KL divergence EQx [KL(Qy|x‖Py|x(θ))] as can be seen by

KL(Qx,y‖Px,y(θ)) =

∫
q(x, y) log

q(y|x)q(x)

p(y|x, θ)q(x)
dxdy

=

∫
q(x)

∫
q(y|x) log

q(y|x)

p(y|x, θ)
dydx

= EQx
[
KL(Qy|x‖Py|x(θ))

]
(2)

It is often the case that we only have samples from Qx and no direct knowledge of its
density function. Or the expectation w.r.t. Qx in eqn. 2 may be too difficult to compute.
In such cases, we can substitute an empirical training distribution Q̂x in for Qx, which is
given by a set Sx of samples from Qx. This results in the objective

EQ̂x
[
KL(Qy|x‖Py|x(θ))

]
=

1

|S|
∑
x∈Sx

KL(Qy|x‖Py|x(θ)) .

Provided that q(y|x) is known for each x in Sx, and that KL(Qy|x‖Py|x(θ)) can be
efficiently computed, we can use the above expression as our objective. Otherwise, as is often
the case, we might only have access to a single sample y from Qy|x for each x ∈ Sx, giving

an empirical training distribution Q̂y|x. Substituting this in for Qy|x gives the objective
function

EQ̂x

[
KL(Q̂y|x‖Py|x(θ))

]
∝ − 1

|S|
∑

(x,y)∈S

log p(y|x, θ) ,

where we have extended Sx to a set S of the (x, y) pairs (which agrees with how S was defined
in Section 3). Here, the proportionality is with respect to θ, and it hides an additive constant
which is technically infinity6. This is effectively the same objective that is minimized in
standard maximum likelihood learning.

6. The constant corresponds to the differential entropy of the Dirac delta distribution centered at y. One
can think of this as approaching infinity under the limit-based definition of the Dirac.

8

New Insights and Perspectives on the Natural Gradient Method

This kind of objective function fits into the general supervised learning framework de-
scribed in Section 3 as follows. We define the learned conditional distribution Py|x(θ) to
be the composition of the deterministic prediction function f(x, θ) (which may be a neural
network), and an “output” conditional distribution Ry|z (with associated density function
r(y|z)), so that

Py|x(θ) = Ry|f(x,θ) .

We then define the loss function as L(y, z) = − log r(y|z).
Given a loss function L which is not explicitly defined this way one can typically still find

a corresponding R to make the definition apply. In particular, if exp(−L(y, z)) has the same
finite integral w.r.t. y for each z, then one can define R by taking r(y|z) ∝ exp(−L(y, z)),
where the proportion is w.r.t. both y and z.

5. Various Definitions of the Natural Gradient and the Fisher
Information Matrix

The Fisher information matrix F of Px,y(θ) w.r.t. θ (aka the “Fisher”) is given by

F = EPx,y

[
∇ log p(x, y|θ)∇ log p(x, y|θ)>

]
(3)

= −EPx,y
[
Hlog p(x,y|θ)

]
. (4)

where gradients and Hessians are taken w.r.t. θ. It can be immediately seen from the first of
these expressions for F that it is positive semi-definite (PSD) (since it’s the expectation of
something which is trivially PSD, a vector outer-product). And from the second expression
we can see that it also has the interpretation of being the negative expected Hessian of
log p(x, y|θ).

The usual definition of the natural gradient (Amari, 1998) which appears in the literature
is

∇̃h = F−1∇h ,

where F is the Fisher and h is the objective function.
Because p(x, y|θ) = p(y|x, θ)q(x), where q(x) doesn’t depend on θ, we have

∇ log p(x, y|θ) = ∇ log p(y|x, θ) +∇ log q(x) = ∇ log p(y|x, θ) ,

and so F can also be written as the expectation (w.r.t. Qx) of the Fisher information matrix
of Py|x(θ) as follows:

F = EQx

[
EPy|x

[
∇ log p(y|x, θ)∇ log p(y|x, θ)>

]]
or F = −EQx

[
EPy|x

[
Hlog p(y|x,θ)

]]
.

In Amari (1998), this version of F is computed explicitly for a basic perceptron model
(basically a neural network with 0 hidden layers) in the case where Qx = N(0, I). However,
in practice the real q(x) may not be directly available, or it may be difficult to integrate
Hlog p(y|x,θ) over Qx. For example, the conditional Hessian Hlog p(y|x,θ) corresponding to a

9

Martens

multi-layer neural network may be far too complicated to be analytically integrated, even
for a very simple Qx. In such situations Qx may be replaced with its empirical version Q̂x,
giving

F =
1

|S|
∑
x∈Sx

EPy|x

[
∇ log p(y|x, θ)∇ log p(y|x, θ)>

]
or F = − 1

|S|
∑
x∈Sx

EPy|x
[
Hlog p(y|x,θ)

]
.

This is the version of F considered in Park et al. (2000).
From these expressions we can see that when L(y, z) = − log r(y|z) (as in Section 4),

the Fisher has the interpretation of being the expectation under Px,y of the Hessian of
L(y, f(x, θ)):

F =
1

|S|
∑
x∈Sx

EPy|x
[
HL(y,f(x,θ))

]
.

Meanwhile, the Hessian H of h is also given by the expected value of the Hessian of
L(y, f(x, θ)), except under the distribution Q̂x,y instead of Px,y (where Q̂x,y is given by
the density function q̂(x, y) = q̂(y|x)q̂(x)). In other words

H =
1

|S|
∑
x∈Sx

EQ̂x,y
[
HL(y,f(x,θ))

]
.

Thus F and H can be seen as approximations of each other in some sense.

6. Geometric Interpretation

The negative gradient −∇h can be interpreted as the steepest descent direction for h in the
sense that it yields the greatest instantaneous rate of reduction in h per unit of change in
θ, where change in θ is measured using the standard Euclidean norm ‖ · ‖. More formally
we have

−∇h
‖∇h‖

= lim
ε→0

1

ε
arg min
d:‖d‖≤ε

h(θ + d) .

This interpretation highlights the strong dependence of the gradient on the Euclidean ge-
ometry of the parameter space (as defined by the norm ‖ · ‖).

One way to motivate the natural gradient is to show that it (or more precisely its
negation) can be viewed as a steepest descent direction, much like the negative gradient
can be, except with respect to a metric that is intrinsic to the distributions being modeled,
as opposed to the default Euclidean metric which is tied to the given parameterization. In
particular, the natural gradient can be derived by adapting the steepest descent formulation
to use an alternative definition of (local) distance based on the “information geometry”
(Amari and Nagaoka, 2000) of the space of probability distributions. The particular distance
function7 which gives rise to the natural gradient turns out to be

KL(Px,y(θ + d)‖Px,y(θ)) .

7. Note that this is not a formal “distance” function in the usual sense since it is not symmetric.

10

New Insights and Perspectives on the Natural Gradient Method

To formalize this, one can use the well-known connection between the KL divergence
and the Fisher, given by the Taylor series approximation

KL(Px,y(θ + d)‖Px,y(θ)) =
1

2
d>Fd+O(d3) ,

where “O(d3)” is short-hand to mean terms that are order 3 or higher in the entries of
d. Thus, F defines the local quadratic approximation of this distance, and so gives the
mechanism of local translation between the geometry of the space of distributions, and that
of the original parameter space with its default Euclidean geometry.

To make use of this connection, Arnold et al. (2011) proves for general PSD matrices A
that

−A−1∇h
‖∇h‖A−1

= lim
ε→0

1

ε
arg min
d:‖d‖A≤ε

h(θ + d) ,

where the notation ‖v‖B is defined by ‖v‖B =
√
v>Bv. Taking A = 1

2F and using the
above Taylor series approximation to establish that

KL(Px,y(θ + d)||Px,y(θ))→
1

2
d>Fd =

1

2
‖d‖2F

as ε→ 0, (Arnold et al., 2011) then proceed to show that

−
√

2
∇̃h

‖∇h‖F−1

= lim
ε→0

1

ε
arg min

d : KL(Px,y(θ+d)‖Px,y(θ))≤ε2
h(θ + d) ,

(where we recall the notation ∇̃h = F−1∇h).

Thus the negative natural gradient is indeed the steepest descent direction in the space of
distributions where distance is measured in small local neighborhoods by the KL divergence.

Note that both F and ∇̃h are defined in terms of the standard basis in θ-space, and
so obviously depend on the parameterization of h. But the KL divergence does not, and
instead only depends on the form of the predictive distribution Py|x. Thus, the direction in

distribution space defined implicitly by ∇̃h will be invariant to our choice of parameteriza-
tion (whereas the direction defined by ∇h will not be, in general).

By using the smoothly varying PSD matrix F to locally define a metric tensor at ev-
ery point in parameter space, a Riemannian manifold can be generated over the space of
distributions. Note that the associated metric of this space won’t be the square root of
the KL divergence (this isn’t even a valid metric), although it will be “locally equivalent”
to it in the sense that the two functions will approximate each other within a small local
neighborhood.

7. 2nd-order Optimization

The basic idea in 2nd-order optimization is to compute the update δ to θ ∈ Rn by minimizing
some local quadratic approximation or “model” Mk(δ) of h(θk + δ) centered around the

11

Martens

current iterate θk. That is, we compute δ∗k = arg minδMk(δ) and then update θ according
to θk+1 = θk + αkδ

∗
k, where Mk(δ) is defined by

Mk(δ) =
1

2
δ>Bkδ +∇h(θk)

>δ + h(θk) ,

and where Bk ∈ Rn×n is the “curvature matrix”, which is symmetric. The “sub-problem”
of minimizing Mk(δ) can be solved exactly by solving the n× n dimensional linear system
Bkδ = −∇h, whose solution is δ∗ = −B−1k ∇h when Bk is positive definite.

Gradient descent, the canonical 1st-order method, can be viewed in the framework of
2nd-order methods as making the choice Bk = βI for some β, resulting in the update
δ∗k = − 1

β∇h(θk). In the case where h is convex and Lipschitz-smooth8 with constant L, a
safe/conservative choice that will ensure convergence with αk = 1 is β = L (e.g. Nesterov,
2013). The intuition behind this choice is that B will act as a global upper bound on the
curvature of h, in the sense that Bk = LI � H(θ)9 for all θ, so that δ∗k never extends past
the point that would be safe in the worst-case scenario where the curvature is at its upper
bound L the entire way along δ∗. More concretely, one can show that given this choice of
β, Mk(δ) upper bounds h(θk + δ), and will therefore never predict a reduction in h(θk + δ)
where there is actually a sharp increase (e.g. due to h curving unexpectedly upward on the
path from θk to θk + δ). Minimizing Mk(δ) is therefore guaranteed not to increase h(θk + δ)
beyond the current value h(θk) since Mk(0) = h(θk). But despite these nice properties, this
choice will almost always overestimate the curvature in most directions, leading to updates
that move unnecessarily slowly along directions of consistent low curvature.

While neural networks haven’t been closely studied by optimization researchers until
somewhat recently, many of the local optimization issues related to neural network learning
can be seen as special cases of problems which arise more generally in continuous optimiza-
tion. For example, tightly coupled parameters with strong local dependencies, and large
variations in scale along different directions in parameter space (which may arise due to
the “vanishing gradient” phenomenon (Hochreiter et al., 2000)), are precisely the sorts of
issues for which 2nd-order optimization is well suited. Gradient descent on the other hand
is well known to be very sensitive to such issues, and in order to avoid large oscillations
and instability must use a learning rate which is inversely proportional to L. 2nd-order
optimization methods provide a much more powerful and elegant solution to the problem of
variations in scale/curvature along different directions by selectively re-scaling the gradient
along different eigen-directions of the curvature matrix Bk according to their associated
curvature (eigenvalue), instead of employing a one-size-fits-all curvature estimate.

In the classical Newton’s method we take Bk = H(θk), in which case Mk(δ) becomes
the 2nd-order Taylor-series approximation of h centered at θk. This choice gives us the
most accurate local model of the curvature possible, and allows for rapid exploration of
low-curvature directions and thus faster convergence.

Unfortunately, naive implementations of Newton’s method can run into numerous prob-
lems when applied to neural network training objectives, such as H being sometimes in-
definite (and thus Mk(δ) being unbounded below in directions of negative curvature) and
related issues of “model trust”, where the method implicitly trusts its own local quadratic

8. By this we mean that ‖∇h(θ)−∇h(θ′)‖ ≤ L‖θ − θ′‖ for all θ and θ′.
9. Here we define A � C to mean that A− C is PSD.

12

New Insights and Perspectives on the Natural Gradient Method

model of the objective too much, causing it to propose very large updates that may actu-
ally increase the h. These problems are usually not encountered with first order methods,
but only because they use a very conservative local model that is intrinsically incapable
of generating large updates. Fortunately, using the Gauss-Newton approximation to the
Hessian (as discussed in Section 8), and/or applying various update damping/trust-region
techniques (as discussed in Section 10), the issue of model trust issue in 2nd-order methods
can be mostly overcome.

Another important issue preventing the naive application of 2nd-order methods to neural
networks is the typically very high dimensionality of the parameter space (n), which pro-
hibits the calculation/storage/inversion of the n2-entry curvature matrix Bk. To address
this, various approximate Newton methods have been developed within the optimization and
machine learning communities. These methods work by approximating Bk with something
easier to compute/store/invert such as a low-rank or diagonal matrix, or by performing only
approximate/incomplete optimization of Mk(δ). A survey of such methods is outside the
scope of this report, but many good references and reviews are available (e.g. Nocedal and
Wright, 2006; Fletcher, 2013). Martens (2016) reviews these approaches specifically in the
context of neural networks.

Finally, it is worth observing that the local optimality of the Hessian-based 2nd-order
Taylor series approximation to h won’t necessarily yield the fastest possible optimization
procedure, as it is possible to imagine quadratic models that take a “longer view” of the
objective. (As an extreme example, given knowledge of a global minimizer θ∗ of h, one
could construct a quadratic model whose minimizer is exactly θ∗ but which is a very poor
local approximation to h(θ).) It is possible that the Fisher might give rise to such quadratic
models, which would help explain its observed superiority to the Hessian in neural network
optimization (Schraudolph, 2002; Martens, 2010; Vinyals and Povey, 2012). We elaborate
more on this speculative theory in Section 8.1.

8. The Generalized Gauss-Newton Matrix

This section discusses the Generalized Gauss-Newton matrix of Schraudolph (2002), and
justifies its use as an alternative to the Hessian. Its relevance to our discussion of natural
gradient methods will be made clear later in Section 9, where we establish a correspondence
between this matrix and the Fisher.

The classical Gauss-Newton matrix (or more simply the Gauss-Newton matrix) is the
curvature matrix G which arises in the Gauss-Newton method for non-linear least squares
problems (e.g. Dennis Jr and Schnabel, 1996; Ortega and Rheinboldt, 2000; Nocedal and
Wright, 2006). It is applicable to our standard neural network training objective h in the
case where L(y, z) = 1

2‖y − z‖
2, and is given by

G =
1

|S|
∑

(x,y)∈S

J>f Jf ,

where Jf is the Jacobian of f(x, θ) w.r.t. the parameters θ. It is usually defined as a modified
version of the Hessian H of h (w.r.t. θ), obtained by dropping the second term inside the

13

Martens

sum in the following expression for H:

H =
1

|S|
∑

(x,y)∈S

J>f Jf − m∑
j=1

[y − f(x, θ)]jH[f]j

 ,

where H[f]j is the Hessian (w.r.t. θ) of the j-th component of f(x, θ). We can see from this
expression that G = H when y = f(x, θ). And more generally, if the y’s are well-described
by the model f(x, θ) + ε for i.i.d. noise ε then G = H will hold approximately.

An alternative way to derive the classical Gauss-Newton is to simply replace the non-
linear function f(x, θ) by its own local linear approximation, centered at the current iterate
θk. In particular, we replace f by f̃(x, θ) = Jf · (θ − θk) + f(x, θk) so that h becomes a
quadratic function of θ, with derivative ∇h(θk) and Hessian given by G.

Beyond the fact that the resulting matrix is PSD and has other nice properties discussed
below, there doesn’t seem to be any obvious justification for linearizing f (or equivalently,
dropping the corresponding term from the Hessian). It’s likely that the reasonableness of
doing this depends on problem-specific details about L and f , and how the curvature matrix
will be used by the optimizer. In Subsection 8.1.3 we discuss how linearizing f might be
justified, specifically for wide neural networks, by some recent theoretical analyses.

Schraudolph (2002) showed how the idea of the Gauss-Newton matrix can be generalized
to the situation where L(y, z) is any loss function which is convex in z. The generalized
formula for G is

G =
1

|S|
∑

(x,y)∈S

J>f HLJf , (5)

where HL is the Hessian of L(y, z) w.r.t. z, evaluated at z = f(x, θ). Because L(y, z) is
convex in z, HL will be PSD for each (x, y), and thus so will G. We will call this G the
Generalized Gauss-Newton matrix (GGN). (Note that this definition is sensitive to where
we draw the dividing line between the loss function L and the network itself (i.e. z), in
contrast to the definition of the Fisher, which is invariant to this choice.)

Analogously to the case of the classical Gauss-Newton matrix (which assumed L(y, z) =
1
2‖y − z‖

2), the GGN can be obtained by dropping the second term inside the sum of the
following expression for the Hessian H:

H =
1

|S|
∑

(x,y)∈S

J>f HLJf +

m∑
j=1

[
∇zL(y, z)|z=f(x,θ)

]
j
H[f]j

 . (6)

Here ∇zL(y, z)|z=f(x,θ) is the gradient of L(y, z) w.r.t. z, evaluated at z = f(x, θ). Note if

we have for some local optimum θ∗ that
[
∇zL(y, z)|z=f(x,θ∗)

]
j
≈ 0 for each (x, y) and j,

which corresponds to the network making an optimal prediction for each training case over
each dimension, then G(θ∗) = H(θ∗). In such a case, the behavior of a 2nd-order optimizer
using G will approach the behavior of standard Newton’s method as it converges to θ∗. A

weaker condition implying equivalence is that 1
Sy(x)

∑
y∈Sy(x)

[
∇zL(y, z)|z=f(x,θ∗)

]
j
≈ 0 for

all x ∈ Sx and j, where Sy(x) denotes the set of y’s s.t. (x, y) ∈ S, which corresponds to the

14

New Insights and Perspectives on the Natural Gradient Method

network making an optimal prediction for each x in the presence of intrinsic uncertainty
about the target y. (This can be seen by noting that H[f]j doesn’t depend on y.)

Like the Hessian, the GGN can be used to define a local quadratic model of h, as given
by:

Mk(δ) =
1

2
δ>G(θk)δ +∇h(θk)

>δ + h(θk) .

In 2nd-order methods based on the GGN, parameter updates are computed by minimizing
Mk(δ) w.r.t. δ. The exact minimizer10 δ∗ = −G(θk)

−1∇h(θk) is often too difficult to
compute, and so practical methods will often only approximately minimize Mk(δ) (e.g
Dembo et al., 1982; Steihaug, 1983; Dennis Jr and Schnabel, 1996; Martens, 2010; Vinyals
and Povey, 2012).

Since computing the whole matrix explicitly is usually too expensive, the GGN is typi-
cally accessed via matrix-vector products. To compute such products efficiently one can use
the method of Schraudolph (2002), which is a generalization of the well-known method for
computing such products with the classical Gauss-Newton (and is also related to the Tan-
gentProp method of Simard et al. (1992)). The method is similar in cost and structure to
standard backpropagation, although it can sometimes be tricky to implement (see Martens
and Sutskever (2012)).

As pointed out in Martens and Sutskever (2011), the GGN can also be derived by a
generalization of the previously described derivation of the classical Gauss-Newton matrix
to the situation where L is an arbitrary convex loss. In particular, if we substitute the
linearization f̃ for f in h as before (where f̃(x, θ) = Jf · (θ−θi)+f(x, θi) is the linearization
of f), it is not difficult to see that the Hessian of the resulting modified h will be equal to
the GGN.

Schraudolph (2002) advocated that when computing the GGN, L and f be redefined
so that as much as possible of the network’s computation is performed within L instead
of f , while maintaining the convexity of L. This is because, unlike f , L is not linearly
approximated in the GGN, and so its associated second-order derivative terms are faithfully
captured. What this almost always means in practice is that what is usually thought of as
the final non-linearity of the network (i.e. φ`) is folded into L, and the network itself just
computes the identity function at its final layer. Interestingly, in many natural situations
which occur in practice, doing this gives a much simpler and more elegant expression for
HL. Exactly when and why this happens will be made clear in Section 9.

8.1 Speculation on Possible Advantages of the GGN Over the Hessian

8.1.1 Qualitative Observations

Unlike the Hessian, the GGN is positive semi-definite (PSD). This means that it never
models the curvature as negative in any direction. The most obvious problem with nega-
tive curvature is that the quadratic model will predict an unbounded improvement in the
objective for moving in the associated directions. Indeed, without the use of some kind
of trust-region or damping technique (as discussed in Section 10), or pruning/modification

10. This formula assumes G(θk) is invertible. If it’s not, the problem will either be unbounded, or the
solution can be computed using the pseudo-inverse instead.

15

Martens

of negative curvature directions (Vinyals and Povey, 2012; Dauphin et al., 2014), or self-
terminating Newton-CG scheme (Steihaug, 1983), the update produced by minimizing the
quadratic model will be infinitely large in such directions.

However, attempts to use such methods in combination with the Hessian have yielded
lackluster results for neural network optimization compared to methods based on the GGN
(Martens, 2010; Martens and Sutskever, 2012; Vinyals and Povey, 2012). So what might be
going on here? While the true curvature of h(θ) can indeed be negative in a local neighbor-
hood (as measured by the Hessian), we know it must quickly become non-negative as we
travel along any particular direction, given that our loss L(y, z) is convex in z and bounded
below. Meanwhile, positive curvature predicts a quadratic penalty, and in the worst case
merely underestimates how badly the objective will eventually increase along a particular
direction. We can thus say that negative curvature is somewhat less “trustworthy” than
positive curvature for this reason, and speculate that a 2nd-order method based on the
GGN won’t have to rely as much on trust-regions etc (which restrict the size of the update
and slow down performance) to produce reliable updates.

There is also the issue of estimation from limited data. Because contributions made to
the GGN for each training case and each individual component of f(x, θ) are PSD, there can
be no cancellation between positive and negative/indefinite contributions. This means that
the GGN can be more robustly estimated from subsets of the training data than the Hessian.
(By analogy, consider how much harder it is to estimate the scale of the mean value of a
variable when that variable can take on both positive and negative values, and has a mean
close to 0.) This property also means that positive curvature from one case or component
will never be cancelled out by negative curvature from another case or component. And if
we believe that negative curvature is less trustworthy than positive curvature over larger
distances, this is probably a good thing.

Despite these nice properties, the GGN is notably not an upper bound on the Hessian
(in the PSD sense), as it fails to model all of the positive curvature contained in the
latter. But crucially, it only fails to model the (positive or negative) curvature coming from
the network function f(x, θ), as opposed to the curvature coming from the loss function
L(y, z). (To see this, recall the decomposition of the Hessian from eqn. 6, noting that the
term dropped from the Hessian depends only on the gradients of L and the Hessian of
components of f .) Curvature coming from f , whether it is positive or negative, is arguably
less trustworthy/stable across long distance than curvature coming from L, as argued below.

8.1.2 A More Detailed View of the Hessian vs the GGN

Consider the following decomposition of the Hessian, which is a generalization of the one
given in eqn. 6:

H =
1

|S|
∑

(x,y)∈S

J>f HLJf + C + C> +
∑̀
i=1

mi∑
j=1

[∇aiL(y, f)]j J
>
siH[φi(si)]jJsi

 .

Here, ai, φi and si are defined as in Section 2, ∇aiL(y, f) is the gradient of L(y, f) w.r.t. ai,
H[φi(si)]j is the Hessian of φi(si) (i.e. the function which computes ai) w.r.t. si, Jsi is the

16

New Insights and Perspectives on the Natural Gradient Method

Jacobian of si (viewed as a function of θ and x) w.r.t. θ, and C is given by

C =


Ja0 ⊗∇s1L(y, f)
Ja1 ⊗∇s2L(y, f)

...
Ja` ⊗∇s`−1

L(y, f)

 ,

where ⊗ denotes the Kronecker product.

The C +C> term represents the contribution to the curvature resulting from the inter-
action of the different layers. Even in a linear network, where each φi computes the identity
function, this is non-zero, since f will be an order ` multilinear function of the parameters.
We note that since ai doesn’t depend on Wj for j > i, C will be block lower-triangular,
with blocks corresponding to the Wi’s.

Aside from C + C>, the contribution to the Hessian made by f comes from a sum of
terms of the form [∇aiL(y, f)]j J

>
siH[φi(si)]jJsi . These terms represent the curvature of the

activation functions, and will be zero in a linear network (since we would have H[φi(si)]j = 0).
It seems reasonable to suspect that the sign of these terms will be subject to rapid and
unpredictable change, resulting from sign changes in both H[φi(si)]j and [∇aiL(y, f)]j . The
former is the “local Hessian” of φi, and will change signs as the function φi enters its
different convex and concave regions (φi is typically non-convex). [∇aiL(y, f)]j meanwhile
is the loss derivative w.r.t. that unit’s output, and depends on the behavior of all of the
layers above ai, and on which “side” of the training target the network’s current prediction
is (which may flip back and forth at each iteration).

This is to be contrasted with the term J>f HLJf , which represents the curvature of the
loss function L, and which remains PSD everywhere (and for each individual training case).
Arguably, this term will be more stable w.r.t. changes in the parameters, especially when
averaged over the training set.

8.1.3 Some Insights From Other Works

In the case of the squared error loss L(y, z) = 1
2‖y−z‖

2 (which means that the GGN reduces
to the standard Gauss-Newton matrix) with m = 1, Chen (2011) established that the GGN
is the unique matrix which gives rise to a local quadratic approximation of L(y, f(x, θ))
which is both non-negative (as L itself is), and vanishing on a subspace of dimension n− 1
(which is the dimension of the manifold on which L itself vanishes). Notably, the quadratic
approximation produced using the Hessian need not have either of these properties. By
summing over output components and averaging over the training set S, one should be able
to generalize this result to the entire objective h(θ) with m ≥ 1. Thus, we see that the
GGN gives rise to a quadratic approximation which shares certain global characteristics
with the true h(θ) that the 2nd-order Taylor series doesn’t, despite being a less precise
approximation to h(θ) in a strictly local sense.

Botev et al. (2017) observed that for networks with piece-wise linear activation functions,
such as the popular RELUs (given by [φi(si)]j = max([si]j , 0)), the GGN and the Hessian
will coincide on the diagonal blocks whenever the latter is well-defined. This can be seen
from the above decomposition of H by noting that C + C> is zero on the diagonal blocks,

17

Martens

and that for piece-wise linear activation functions we have H[φi(si)]j = 0 everywhere that
this quantity exists (i.e. everywhere except the “kinks” in the activation functions).

Finally, under certain realistic assumptions on the network architecture and initialization
point, and a lower bound on the width of the layers, recent results have shown that the f
function for a neural network behaves very similarly to its local linear approximation (taken
at the initial parameters) throughout the entirety of optimization. This happens both for
gradient descent (Du et al., 2018; Jacot et al., 2018; Lee et al., 2019), and natural gradient
descent / GGN-based methods (Zhang et al., 2019; Cai et al., 2019), applied to certain
choices for L. Not only does this allow one to prove strong global convergence guarantees
for these algorithms, it lends support to the idea that modeling the curvature in f (which
is precisely the part of the Hessian that the GGN throws out) may be pointless for the
purposes of optimization in neural networks, and perhaps even counter-productive.

9. Computational Aspects of the Natural Gradient and Connections to
the Generalized Gauss-Newton Matrix

9.1 Computing the Fisher (and Matrix-Vector Products With It)

Note that

∇ log p(y|x, θ) = J>f ∇z log r(y|z) ,

where Jf is the Jacobian of f(x, θ) w.r.t. θ, and ∇z log r(y|z) is the gradient of log r(y|z)
w.r.t. z, evaluated at z = f(x, θ) (with r defined as near the end of Section 4).

As was first shown by Park et al. (2000), the Fisher information matrix is thus given by

F = EQx

[
EPy|x

[
∇ log p(y|x, θ)∇ log p(y|x, θ)>

]]
= EQx [EPy|x [J>f ∇z log r(y|z)∇z log r(y|z)>Jf]]

= EQx [J>f EPy|x [∇z log r(y|z)∇z log r(y|z)>]Jf] = EQx [J>f FRJf] ,

where FR is the Fisher information matrix of the predictive distribution Ry|z at z = f(x, θ).
FR is itself given by

FR = EPy|x [∇z log r(y|z)∇z log r(y|z)>] = ERy|f(x,θ) [∇z log r(y|z)∇z log r(y|z)>]

or

FR = −ERy|f(x,θ) [Hlog r(y|z)] ,

where Hlog r(y|z) is the Hessian of log r(y|z) w.r.t. z, evaluated at z = f(x, θ).

Note that even if Qx’s density function q(x) is known, and is relatively simple, only for
certain choices of Ry|z and f(x, θ) will it be possible to analytically evaluate the expectation
w.r.t. Qx in the above expression for F . For example, if we take Qx = N (0, I), Ry|z =
N (z, σ2), and f to be a simple neural network with no hidden units and a single tan-sigmoid
output unit, then both F and its inverse can be computed efficiently (Amari, 1998). This
situation is exceptional however, and for even slightly more complex models, such as neural

18

New Insights and Perspectives on the Natural Gradient Method

networks with one or more hidden layers, it has never been demonstrated how to make such
computations feasible in high dimensions.

Fortunately the situation improves significantly if Qx is replaced by Q̂x, as this gives

F = EQ̂x [J>f FRJf] =
1

|S|
∑
x∈Sx

J>f FRJf , (7)

which is easy to compute assuming FR is easy to compute. Moreover, this is essentially
equivalent to the expression in eqn. 5 for the generalized Gauss-Newton matrix (GGN),
except that we have the Fisher FR of the predictive distribution (Ry|z) instead of Hessian
HL of the loss (L) as the “inner” matrix.

Eqn. 7 also suggests a straightforward and efficient way of computing matrix-vector
products with F , using an approach similar to the one in Schraudolph (2002) for comput-
ing matrix-vector products with the GGN. In particular, one can multiply by Jf using a
linearized forward pass (aka forward-mode automatic differentiation), then multiply by FR
(which will be easy if Ry|z is sufficiently simple), and then finally multiply by J>f using
standard backprop.

9.2 Qualified Equivalence of the GNN and the Fisher

As we shall see in this subsection, the connections between the GGN and Fisher run deeper
than just similar expressions and algorithms for computing matrix-vector products.

In Park et al. (2000) it was shown that if the density function of Ry|z has the form
r(y|z) =

∏m
j=1 c(yj − zj) where c(a) is some univariate density function over R, then

F is equal to a re-scaled11 version of the classical Gauss-Newton matrix for non-linear
least squares, with regression function given by f . And in particular, the choice c(a) =
exp(−a2/2) turns the learning problem into non-linear least squares, and F into the classi-
cal Gauss-Newton matrix.

Heskes (2000) showed that the Fisher and the classical Gauss-Newton matrix are equiv-
alent in the case of the squared error loss, and proposed using the Fisher as an alternative
to the Hessian in more general contexts. Concurrently with this work, Pascanu and Bengio
(2014) showed that for several common loss functions like cross-entropy and squared error,
the GGN and Fisher are equivalent.

We will show that in fact there is a much more general equivalence between the two
matrices, starting from the observation that the expressions for the GGN in eqn. 5 and
Fisher in eqn. 7 are identical up to the equivalence of HL and FR.

First, note that L(y, z) might not even be convex in z, so that it wouldn’t define a valid
GGN matrix. But even if L(y, z) is convex in z, it won’t be true in general that FR = HL,
and so the GGN and Fisher will differ. However, there is an important class of Ry|z’s for
which FR = HL will hold, provided that we have L(y, z) = − log r(y|z) (putting us in the
framework of Section 4).

Notice that FR = −ERy|f(x,θ) [Hlog r(y|z)], and HL = −Hlog r(y|z) (which follows from
L(y, z) = − log r(y|z)). Thus, the two matrices being equal is equivalent to the condition

ERy|f(x,θ) [Hlog r(y|z)] = Hlog r(y|z) . (8)

11. The re-scaling constant will be determined by the properties of c(a).

19

Martens

While this condition may seem arbitrary, it is actually very natural and holds in the
important case where Ry|z corresponds to an exponential family model with “natural”
parameters given by z. Stated in terms of equations this condition is

log r(y|z) = z>T (y)− logZ(z)

for some function T (y), where Z(z) is the normalizing constant/partition function. In this
case we have Hlog r(y|z) = −HlogZ (which doesn’t depend on y), and so eqn. 8 holds trivially.

Examples of such Ry|z’s include:

• multivariate normal distributions where z parameterizes only the mean µ

• multivariate normal distributions where z is the concatenation of Σ−1µ and the vec-
torization of Σ−1

• multinomial distributions where the softmax of z is the vector of probabilities for each
class

Note that the loss function L corresponding to the multivariate normal is the familiar
squared error, and the loss corresponding to the multinomial distribution is the familiar
cross-entropy.

Interestingly, the relationship observed by Ollivier et al. (2018) between natural gradient
descent and methods based on the extended Kalman filter for neural network training relies
on precisely the same condition on Ry|z. This makes intuitive sense, since the extended
Kalman filter is derived by approximating f as affine and then applying the standard
Kalman filter for linear/Gaussian systems (which implicitly involves computing a Hessian
of a linear model under a squared loss), which is the same approximation that can be used
to derive the GGN from the Hessian (see Section 8).

As discussed in Section 8, when constructing the GGN one must pay attention to how
f and L are defined with regards to what parts of the neural network’s computation are
performed by each function (this choice is irrelevant to the Fisher). For example, the softmax
computation performed at the final layer of a classification network is usually considered
to be part of the network itself and hence to be part of f . The output f(x, θ) of this
computation are normalized probabilities, which are then fed into a cross-entropy loss of
the form L(y, z) = −

∑
j yj log zj . But the other way of doing it, which Schraudolph (2002)

recommends, is to have the softmax function be part of L instead of f , which results in a
GGN which is slightly closer to the Hessian due to “less” of the computational pipeline being
linearized before taking the 2nd-order Taylor series approximation. The corresponding loss
function is L(y, z) = −

∑
j yjzj+log(

∑
j exp(zj)) in this case. As we have established above,

doing it this way also has the nice side effect of making the GGN equivalent to the Fisher,
provided that Ry|z is an exponential family model with z as its natural parameters.

This (qualified) equivalence between the Fisher and the GGN suggests how the GGN
can be generalized to cases where it might not otherwise be well-defined. In particular, it
suggests formulating the loss as the negative log density for some distribution, and then
taking the Fisher of this distribution. Sometimes, this might be as simple as defining
r(y|z) ∝ exp(−L(y, z)) as per the discussion at the end of Section 4.

20

New Insights and Perspectives on the Natural Gradient Method

For example, suppose our loss is defined as the negative log probability of a multi-variate

normal distribution Ry|z = N(µ, σ2) parameterized by µ and γ = log σ2 (so that z =

[
µ
γ

]
).

In other words, suppose that

L(y, z) = − log r(y|z) ∝ 1

2
γ +

1

2 exp(γ)
(x− µ)2 .

In this case the loss Hessian is equal to

HL =
1

exp(γ)

[
1 x− µ

x− µ 1
2(x− µ)2

]
.

It is not hard to verify that this matrix is indefinite for certain settings of x and z (e.g.
x = 2, µ = γ = 0). Therefore, L is not convex in z and we cannot define a valid GGN
matrix from it.

To resolve this problem we can use the Fisher FR in place of HL in the formula for the
GGN, which by eqn. 7 yields F . Alternatively, we can insert reparameterization operations
into our network to transform µ and γ into the natural parameters µ

σ2 = µ
exp(γ) and − 1

2σ2 =

− 1
2 exp(γ) , and then proceed to compute the GGN as usual, noting that HL = FR in this

case, so that HL will be PSD. Either way will yield the same curvature matrix, due to the
above discussed equivalence of the Fisher and GGN matrix for natural parameterizations.

10. Constructing Practical Natural Gradient Methods, and the Critical
Role of Damping

Assuming that it is easy to compute, the simplest way to use the natural gradient in
optimization is to substitute it in place of the standard gradient within a basic gradient
descent approach. This gives the iteration

θk+1 = θk − αk∇̃h(θk) , (9)

where {αk}k is a schedule of step-sizes/learning-rates.
Choosing the step-size schedule can be difficult. There are adaptive schemes which

are largely heuristic in nature (Amari, 1998) and some non-adaptive prescriptions such as
αk = ρ/k for some constant ρ, which have certain theoretical convergence guarantees in the
stochastic setting, but which won’t necessarily work well in practice.

In principle, we could apply the natural gradient method with infinitesimally small
steps and produce a smooth idealized path through the space of realizable distributions.
But since this is usually impossible in practice, and we don’t have access to any other
simple description of the class of distributions parameterized by θ that we could work with
more directly, our only option is to take non-negligible discrete steps in the given parameter
space12.

12. In principle, we could move to a much more general class of distributions, such as those given by some
non-parametric formulation, where we could work directly with the distributions themselves. But even
assuming such an approach would be practical from a computational efficiency standpoint, we would lose
the various advantages that we get from working with powerful parametric models like neural networks.
In particular, we would lose their ability to generalize to unseen data by modeling the “computational
process” which explains the data, instead of merely using smoothness and locality to generalize.

21

Martens

Figure 1: A typical situation encountered when performing large discrete updates in the original
parameter space. The red arrow is the natural gradient direction (given by the vector
∇̃h in parameter space) and the black arrow is the path generated by taking θ − α∇̃h
for α ∈ [0, 1].

The fundamental problem with simple schemes such as the one in eqn. 9 is that they
implicitly assume that the natural gradient is a good direction to follow over non-negligible
distances in the original parameter space, which will not be true in general. Traveling along
a straight line in the original parameter space will not yield a straight line in distribution
space, and so the resulting path may instead veer far away from the target that the natural
gradient originally pointed towards. This is illustrated in Figure 1.

Fortunately, we can exploit the (qualified) equivalence between the Fisher and the GGN
in order to produce natural gradient-like updates which will often be appropriate to take
with αk = 1. In particular, we know from the discussion in Section 8 that the GGN matrix
G can serve as a reasonable proxy for the Hessian H of h, and may even be superior in
certain contexts. Meanwhile, the update δ produced by minimizing the GGN-based local
quadratic model Mk(δ) = 1

2δ
>G(θk)δ + ∇h(θk)

>δ + h(θk) is given by −G(θk)
−1∇h(θk),

which will be equal to the negative natural gradient when F = G. Thus, the (negative)
natural gradient, with scaling factor α = 1, can be seen as the optimal update according
to a particular local 2nd-order approximation of h. And just as in the case of other 2nd-
order methods, the break-down in the accuracy of this quadratic approximation over long
distances, combined with the potential for the natural gradient to be very large (e.g. when
F contains some very small eigenvalues), can often lead to very large and very poor update
proposals. Simply re-scaling the update by reducing α may be too crude a mechanism to
deal with this subtle problem, as it will affect all eigen-directions (of F) equally, including
those in which the natural gradient is already sensible, or even overly conservative.

Instead, the connection between natural gradient descent and 2nd-order methods moti-
vates the use of “update damping” techniques that have been developed for the latter, which
work by constraining or penalizing the solution for δ in various ways during the optimization

22

New Insights and Perspectives on the Natural Gradient Method

of Mk(δ). Examples include Tikhonov regularization/damping and the closely related trust-
region method (e.g. Tikhonov, 1943; Moré and Sorensen, 1983; Conn et al., 2000; Nocedal
and Wright, 2006), and other ones such as the “structural damping” approach of Martens
and Sutskever (2011), or the approach present in Krylov Subspace Descent (Vinyals and
Povey, 2012). See Martens and Sutskever (2012) for an in-depth discussion of these and
other damping techniques in the context of neural network optimization.

This idea is supported by practical experience in neural network optimization. For
example, the Hessian-free optimization approach of Martens (2010) generates its updates
using a Tikhonov damping scheme applied to the exact GGN matrix (which was equivalent
to the Fisher in that work). These updates, which can be applied with a step-size of 1, make
a lot more progress optimizing the objective than updates computed without any damping
(which must instead rely on a carefully chosen step-size to even be feasible).

It is worth pointing out that other interpretations of natural gradient descent can also
motivate the use of damping/regularization terms. In particular, Ollivier et al. (2018) has
shown that online natural gradient descent, with a particular flavor of Tikhonov regulariza-
tion, closely resembles a certain type of extended Kalman filter-based training algorithm for
neural networks (Singhal and Wu, 1989; Ruck et al., 1992), where θ is treated as an evolving
hidden state that is estimated by the filter (using training targets as noisy observations and
inputs as control signals).

11. The Empirical Fisher

An approximation of the Fisher known as the “empirical Fisher” (Schraudolph, 2002), which
we denote by F̄ , is commonly used in practical natural gradient methods. It is obtained
by taking the inner expectation of eqn. 3 over the target distribution Qx,y (or its empirical
surrogate Q̂x,y) instead of the model’s distribution Px,y.

In the case where one uses Q̂x,y, this yields the following simple form:

F̄ = EQ̂x,y

[
∇ log p(x, y|θ)∇ log p(x, y|θ)>

]
= EQ̂x

[
EQ̂y|x

[
∇ log p(y|x, θ)∇ log p(y|x, θ)>

]]
=

1

|S|
∑

(x,y)∈S

∇ log p(y|x, θ)∇ log p(y|x, θ)> .

This matrix is often incorrectly referred to as the Fisher, or even the Gauss-Newton,
even though it is not equivalent to either of these matrices in general.

11.1 Comparisons to the Standard Fisher

Like the Fisher F , the empirical Fisher F̄ is PSD. But unlike F , it is essentially free to
compute, provided that one is already computing the gradient of h. And it can also be
applied to objective functions which might not involve a probabilistic model in any obvious
way.

Compared to F , which is of rank ≤ |S| rank(FR), F̄ has a rank of ≤ |S|, which can make
it easier to work with in practice. For example, the problem of computing the diagonal (or
various blocks) is easier for the empirical Fisher than it is for higher rank matrices like the

23

Martens

standard Fisher (Martens et al., 2012). This has motivated its use in optimization methods
such as TONGA (Le Roux et al., 2008), and as the diagonal preconditioner of choice in
the Hessian-free optimization method (Martens, 2010). Interestingly however, there are
stochastic estimation methods (Chapelle and Erhan, 2011; Martens et al., 2012) which can
be used to efficiently estimate the diagonal (or various blocks) of the standard Fisher F , and
these work quite well in practice. (These include the obvious method of sampling y’s from
the model’s conditional distribution and computing gradients from them, but also includes
methods based on matrix factorization and random signs. See Martens et al. (2012) for
comparative analysis of the variance of these methods.)

Despite the various practical advantages of using F̄ , there are good reasons to use true
Fisher F instead of F̄ whenever possible. In addition to Amari’s extensive theory developed
for the exact natural gradient (which uses F), perhaps the best reason for using F over F̄
is that F turns out to be a reasonable approximation/substitute to the Hessian H of h in
certain important special cases, which is a property that F̄ lacks in general.

For example, as discussed in Section 5, when the loss is given by − log p(y|x) (as in
Section 4), F can be seen as an approximation of H, because both matrices have the
interpretation of being the expected Hessian of the loss under some distribution. Due to
the similarity of the expression for F in eqn. 3 and the one above for F̄ , it might be tempting
to think that F̄ is given by the expected Hessian of the loss under Q̂x,y (which is actually
the formula for H) in the same way that F is given by eqn. 4. But this is not the case in
general.

And as we saw in Section 9, given certain assumptions about how the GGN is computed,
and some additional assumptions about the form of the loss function L, F turns out to be
equivalent to the GGN. This is very useful since the GGN can be used to define a local
quadratic approximation of h, whereas F normally doesn’t have such an interpretation.
Moreover, Schraudolph (2002) and later Martens (2010) compared F̄ to the GGN and
observed that the latter performed much better as a curvature matrix within various neural
network optimization methods.

As concrete evidence for why the empirical Fisher is, at best, a questionable choice
for the curvature matrix, we will consider the following example. Set n = 1, f(x, θ) = θ,
Ry|z = N (z, 1), and S = {(0, 0)}, so that h(θ) is a simple convex quadratic function of θ,

given by h(θ) = 1
2θ

2. In this example we have that ∇h = θ, F̄ = θ2, while F = 1. If we
use F̄ ξ as our curvature matrix for some exponent 1

2 ≤ ξ ≤ 1, then it is easy to see that an
iteration of the form

θk+1 = θk − αk(F̄ (θk)
ξ)−1∇h(θk) = θk − αk(θ2k)−ξθk = (1− αk|θk|−2ξ)θk

will fail to converge to the minimizer (at θ = 0) unless ξ < 1 and the step-size αk goes to 0
sufficiently fast. And even when it does converge, it will only be at a rate comparable to the
speed at which αk goes to 0, which in typical situations will be either O(1/k) or O(1/

√
k).

Meanwhile, a similar iteration of the form

θk+1 = θk − αkF−1∇h(θk) = θk − αkθk = (1− αk)θk ,

which uses the exact Fisher F as the curvature matrix, will experience very fast linear
convergence13 with rate |1− α|, for any fixed step-size αk = α satisfying 0 < α < 2.

13. Here we mean “linear” in the classical sense that |θk − 0| ≤ |θ0 − 0||1− α|k.

24

New Insights and Perspectives on the Natural Gradient Method

It is important to note that this example uses a noise-free version of the gradient,
and that this kind of linear convergence is (provably) impossible in most realistic stochas-
tic/online settings. Nevertheless, we would argue that a highly desirable property of any
stochastic optimization method should be that it can, in principle, revert to an optimal (or
nearly optimal) behavior in the deterministic setting. This might matter a lot in practice,
since the gradient may end up being sufficiently well estimated in earlier stages of optimiza-
tion from only a small amount of data (which is a common occurrence in our experience),
or in later stages provided that larger mini-batches or other variance-reducing procedures
are employed (e.g. Le Roux et al., 2012; Johnson and Zhang, 2013). More concretely, the
pre-asymptotic convergence rate of stochastic 2nd-order optimizers can still depend strongly
on the choice of the curvature matrix, as we will show in Section 14.

11.2 A Discussion of Recent Diagonal Methods Based on the Empirical Fisher

Recently, a spate of stochastic optimization methods have been proposed that are all based
on diagonal approximations of the empirical Fisher F̄ . These include the diagonal version
of AdaGrad (Duchi et al., 2011), RMSProp (Tieleman and Hinton, 2012), Adam (Ba and
Kingma, 2015), etc. Such methods use iterations of the following form (possibly with some
slight modifications):

θk+1 = θk − αk(Bk + λI)−ξgk(θk) , (10)

where the curvature matrix Bk is taken to be a diagonal matrix diag(uk) with uk adapted
to maintain some kind of estimate of the diagonal of F̄ (possibly using information from
previous iterates/mini-batches), gk(θk) is an estimate of ∇h(θk) produced from the current
mini-batch, αkk is a schedule of step-sizes, and 0 < λ and 0 < ξ ≤ 1 are hyperparameters
(discussed later in this section).

There are also slightly more sophisticated methods (Schaul et al., 2013; Zeiler, 2013)
which use preconditioners that combine the diagonal of F̄ with other quantities (such as
an approximation of the diagonal of the Gauss-Newton/Fisher in the case of Schaul et al.
(2013)) in order to correct for how the empirical Fisher doesn’t have the right “scale” (which
is ultimately the reason why it does poorly in the example given at the end of Section 11.1).

A diagonal preconditioner (Nash, 1985) of the form used in eqn. 10 was also used by
(Martens, 2010) to accelerate the conjugate gradient (CG) sub-optimizations performed
within a truncated-Newton method (using the GGN matrix). In the context of CG, the
improper scale of F̄ is not as serious an issue due to the fact that CG is invariant to the
overall scale of its preconditioner (since it computes an optimal “step-size” at each step
which automatically adjusts for the scale). However, it still makes more sense to use the
diagonal of the true Fisher F as a preconditioner, and thanks to the method proposed by
Chapelle and Erhan (2011), this can be estimated efficiently and accurately.

The idea of using the diagonal of F , F̄ , or the Gauss-Newton as a preconditioner for
stochastic gradient descent (SGD) and was likely first applied to neural networks with the
work of Lecun and collaborators (Becker and LeCun, 1989; LeCun et al., 1998), who pro-
posed an iteration of the form in eqn. 10 with ξ = 1 where uk approximates the diagonal of
the Hessian or the Gauss-Newton matrix (which as shown in Section 9, is actually equiva-
lent to F for the common squared-error loss). Following this work, various neural network

25

Martens

optimization methods have been developed over the last couple of decades that use diag-
onal, block-diagonal, low-rank, or Krylov-subspace based approximations of F or F̄ as a
curvature matrix/preconditioner. In addition to methods based on diagonal approxima-
tions already mentioned, some methods based on non-diagonal approximations include the
method of Park et al. (2000), TONGA (Le Roux et al., 2008), Natural Newton (Le Roux
and Fitzgibbon, 2010), HF (Martens, 2010), KSD (Vinyals and Povey, 2012) and many
more.

The idea of computing an estimate of the (empirical) Fisher using a history of previous
iterates/mini-batches also appeared in various early works. The particular way of doing
this proposed Duchi et al. (2011), which is to use an equally weighted average of all past
gradients, was motivated from a regret-based asymptotic convergence analysis and tends not
to work well in practice (Tieleman and Hinton, 2012). The traditional and more intuitive
approach of using an exponentially decayed running average (e.g. LeCun et al., 1998; Park
et al., 2000) works better, at least pre-asymptotically, as it is able to naturally “forget” very
old contributions to the estimate (which are based on stale parameter values).

It is important to observe that the way F̄ is estimated can affect the convergence char-
acteristics of an iteration like eqn. 10 in subtle but important ways. For example, if F̄ is
estimated using gradients from previous iterations, and especially if it is the average of all
past gradients (as in AdaGrad), it may shrink sufficiently slowly that the convergence issues
seen in the example at the end of Section 11.1 are avoided. Moreover, for reasons related
to this phenomenon, it seems likely that the proofs of regret bounds in Duchi et al. (2011)
and the related work of Hazan et al. (2007) could not be modified to work if the exact F̄ ,
computed only at the current θ, were used. Developing a better understanding of this is-
sue, and the relationship between methods developed in the online learning literature (such
as AdaGrad), and classical stochastic 2nd-order methods based on notions of curvature,
remains an interesting direction for future research.

11.3 The Constants λ and ξ

The constants λ and ξ present in eqn. 10 are often thought of as fudge factors designed
to correct for the “poor conditioning” (Becker and LeCun, 1989) of the curvature matrix,
or to guarantee boundedness of the updates and prevent the optimizer from “blowing up”
(LeCun et al., 1998). However, these explanations are oversimplifications that reference the
symptoms instead of the cause. A more compelling and functional explanation, at least in
the case of λ, comes from viewing the update in eqn. 10 as being the minimizer of a local
quadratic approximation Mk(δ) = 1

2δ
>Bkδ + ∇h(θk)

>δ + h(θk) to h(θk + δ), as discussed
in Section 10. In this view, λ plays the role of a Tikhonov damping parameter (Tikhonov,
1943; Conn et al., 2000; Nocedal and Wright, 2006; Martens and Sutskever, 2012) which
is added to Bk in order to ensure that the proposed update stays within a certain region
around zero in which Mk(δ) remains a reasonable approximation to h(θk + δ). Note that
this explanation implies that no single fixed value of λ will be appropriate throughout the
entire course of optimization, since the local properties of the objective will change, and so
an adaptive adjustment scheme, such as the one present in HF (Martens, 2010) (which is
based on the Levenberg-Marquardt method), should be used.

26

New Insights and Perspectives on the Natural Gradient Method

The use of the exponent ξ = 3/4 first appeared in HF as part of its diagonal pre-
conditioner for CG, and was justified as a way of making the curvature estimate “more
conservative” by making it closer to a multiple of the identity, to compensate for the diag-
onal approximation being made (among other things). Around the same time, Duchi et al.
(2011) proposed to use ξ = 1/2 within an update of the form of eqn. 10, which was required
in order to prove certain regret bounds for non-strongly-convex objectives.

To shed some light on the question of ξ, we can consider the work of Hazan et al. (2007),
who like Duchi et al. (2011), developed and analyzed an online approximate Newton method
within the framework of online convex optimization. Like the non-diagonal version of Ada-
Grad, the method proposed by Hazan et al. (2007) uses an estimate of the empirical Fisher
F̄ computed as the average of gradients from all previous iterations. While impractical for
high dimensional problems like any non-diagonal method is (or at least, one that doesn’t
make some other strong approximation of the curvature matrix), this method achieves a
better bound on the regret to what Duchi et al. (2011) was able to show for AdaGrad
(O(log(k)) instead of O(

√
k), where k is the total number of iterations), which was possible

in part due to the use of stronger hypotheses about the properties of h (e.g. that for each x
and y, L(y, f(x, θ)) is a strongly convex function of θ). Notably, this method uses ξ = 1, just
as in standard natural gradient descent, which provides support for such a choice, especially
since the h used in neural networks will typically satisfy these stronger assumptions in a
local neighborhood of the optimum, at least when standard `2 regularization is used.

However, it is important to note that Hazan et al. (2007) also proves a O(log(k)) bound
on the regret for a basic version of SGD, and that what actually differentiates the various
methods they analyze is the constant hidden in the big-O notation, which is much larger for
the version of SGD they consider than for their approximate Newton method. In particular,
the former depends on a quantity which grows with the condition number of the Hessian
H at θ∗ while the latter does not, in a way that echos the various analyses performed on
stochastic gradient descent and stochastic approximations of Newton’s method in the more
classical “local-convergence” setting (e.g. Murata, 1998; Bottou and LeCun, 2005).

12. A Critical Analysis of Parameterization Invariance

One of the main selling points of the natural gradient method is its invariance to reparame-
terizations of the model. In particular, the smooth path through the space of distributions
generated by the idealized natural gradient method with infinitesimally small steps will be
invariant to any smooth invertible reparameterization of the f .

More precisely, it can be said that this path will be the same whether we use the
default parameterization (given by Py|x(θ)), or parameterize our model as Py|x(ζ(γ)), where
ζ : Rn → Rn is a smooth invertible “reparameterization function” which relates θ to γ as
θ = ζ(γ).

In this section we will examine this “smooth path parameterization invariance” property
more closely in order to answer the following questions:

• How can we characterize it using only basic properties of the curvature matrix?

• Is there an elementary proof that can be applied in a variety of settings?

27

Martens

• What other kinds of curvature matrices give rise to it, and is the Hessian included
among these?

• Will this invariance property imply that practical optimization algorithms based on
the natural gradient (i.e. those that use large steps) will behave in a way that is
invariant to the parameterization?

Let ζ be as above, and let dθ and dγ be updates given in θ-space and γ-space (resp.).
Additively updating γ by dγ and translating it back to θ-space via ζ gives ζ(γ + dγ).
Measured by some non-specific norm ‖ · ‖, this differs from θ + dθ by:

‖ζ(γ + dγ)− (θ + dθ)‖ .

This can be rewritten and bounded as

‖(ζ(γ + dγ)− (ζ(γ) + Jζdγ)) + (Jζdγ − dθ)‖ ≤ ‖ζ(γ + dγ)− (ζ(γ) + Jζdγ)‖+ ‖Jζdγ − dθ‖ ,
(11)

where Jζ is the Jacobian of ζ, and we have used θ = ζ(γ).
The first term on the RHS of eqn. 11 measures the extent to which ζ(γ + dγ) fails to

be predicted by the first-order Taylor series approximation of ζ centered at γ (i.e. the local
affine approximation of ζ at γ). This quantity will depend on the size of dγ , and the amount
of curvature in γ. In the case where ζ is affine, it will be exactly 0. We can further bound
it by applying Taylor’s theorem for each component of ζ, which gives

‖ζ(γ + dγ)− (ζ(γ) + Jζdγ)‖ ≤ 1

2

∥∥∥∥∥∥∥∥∥


d>γ H[ζ]1(γ + c1dγ)dγ
d>γ H[ζ]2(γ + c2dγ)dγ

...
d>γ H[ζ]n(γ + cndγ)dγ


∥∥∥∥∥∥∥∥∥ (12)

for some ci ∈ (0, 1). If we assume that there is some C > 0 so that for all i and γ,
‖H[ζ]i(γ)‖2 ≤ C, then using the fact that |d>γ H[ζ]i(γ+ cndγ)dγ | ≤ 1

2‖H[ζ]i(γ+ cidγ)‖2‖dγ‖2,
we can further upper bound this by 1

2C
√
n‖dγ‖2.

The second term on the RHS of eqn. 11 will be zero when

Jζdγ = dθ , (13)

which (as we will see) is a condition that is satisfied in certain natural situations. A slightly
weakened version of this condition is that Jζdγ ∝ dθ. Because we have

lim
ε→0

ζ(γ + εdγ)− ζ(γ)

ε
= Jζdγ

this condition can thus be interpreted as saying that dγ , when translated appropriately via
ζ, points in the same direction away from θ that dθ does. In the smooth path case, where
the optimizer only moves an infinitesimally small distance in the direction of dγ (or dθ)
at each iteration before recomputing it at the new γ (or θ), this condition is sufficient to
establish that the path in γ space, when mapped back to θ space via the ζ function, will be

28

New Insights and Perspectives on the Natural Gradient Method

the same as the path which would have been taken if the optimizer had worked directly in
θ space.

However, for a practical update scheme where we move the entire distance of dγ or dθ
before recomputing the update vector, such as the one in eqn. 9, this kind of invariance will
not strictly hold even when Jζdγ = dθ. But given that Jζdγ = dθ, the per-iteration error
will be bounded by the first term on the RHS of eqn. 11, and will thus be small provided
that dγ is sufficiently small and ζ is sufficiently smooth (as shown above).

Now, suppose we generate the updates dθ and dγ from curvature matrices Bθ and Bγ
according to dθ = −αB−1θ ∇h and dγ = −αB−1γ ∇γh, where ∇γh is the gradient of h(ζ(γ))

w.r.t. γ. Then noting that ∇γh = J>ζ ∇h, the condition in eqn. 13 becomes equivalent to

JζB
−1
γ J>ζ ∇h = B−1θ ∇h .

For this to hold, a sufficient condition is that B−1θ = JζB
−1
γ J>ζ . Since Jζ is invertible

(because ζ is) an equivalent condition is

J>ζ BθJζ = Bγ . (14)

The following theorem summarizes our results so far.

Theorem 1. Suppose that θ = ζ(γ) and Bθ and Bγ are invertible matrices satisfying

J>ζ BθJζ = Bγ

Then we have that additively updating θ by dθ = −αB−1θ ∇h is approximately equivalent
to additively updating γ by dγ = −αB−1γ ∇γh, in the sense that ζ(γ + dγ) ≈ θ + dθ, with
error bounded according to

‖ζ(γ + dγ)− (θ + dθ)‖ ≤ ‖ζ(γ + dγ)− (ζ(γ) + Jζdγ)‖ .

Moreover, this error can be further bounded as in eqn. 12, and will be exactly 0 if ζ is affine.
And if there is a C ≥ 0 such that ‖H[ζ]i(γ)‖2 ≤ C for all i and γ, then we can even further

bound this as 1
2C
√
n‖dγ‖2.

Because the error bound is zero when ζ is affine, this result will trivially extend to entire
sequences of arbitrary number of steps for such ζ’s. And in the more general case, since
the error scales as α2, we can obtain equivalence of sequences of T/α steps in the limit
as α → 0. Because the length of the updates scale as α, and we have T/α of them, the
sequences converges to smooth paths of fixed length in the limit. The following corollary
establishes this result, under a few additional (mild) hypotheses. Its proof is in Appendix
E.

Corollary 2. Suppose that Bθ and Bγ are invertible matrices satisfying

J>ζ BθJζ = Bγ

for all values of θ. Then the path followed by an iterative optimizer working in θ-space
and using additive updates of the form dθ = −αB−1θ ∇h is the same as the path followed
by an iterative optimizer working in γ-space and using additive updates of the form dγ =
−αB−1γ ∇γh, provided that the optimizers use equivalent starting points (i.e. θ0 = ζ(γ0)),
and that either

29

Martens

• ζ is affine,

• or dθ/α is uniformly continuous as a function of θ, dγ/α is uniformly bounded (in
norm), there is a C as in the statement of Theorem 1, and α→ 0.

Note that in the second case we allow the number of steps in the sequences to grow pro-
portionally to 1/α so that the continuous paths they converge to have non-zero length as
α→ 0.

So from these results we see that natural gradient-based methods that take finite steps
will not be invariant to smooth invertible reparameterizations ζ, although they will be
approximately invariant, and in a way that depends on the degree of curvature of ζ and the
size α of the step-size.

12.1 When is the Condition J>ζ BθJζ = Bγ Satisfied?

Suppose the curvature matrix Bθ has the form

Bθ = EDx,y [J
>
f AJf] ,

where Dx,y is some arbitrary distribution over x and y (such as the training distribution),
and A ∈ Rm×m is an invertible matrix-valued function of x, y and θ, whose value is pa-
rameterization invariant (i.e. its value depends only on the value of θ that a given γ maps
to under the γ parameterization). Note that this type of curvature matrix includes as spe-
cial cases the Generalized Gauss-Newton (whether or not it’s equivalent to the Fisher), the
Fisher, and the empirical Fisher (discussed in Section 11).

To obtain the analogous curvature matrix Bγ for the γ parameterization we replace f
by f ◦ ζ which gives

Bγ = EDx,y [J
>
f◦ζ AJf◦ζ] .

Then noting that Jf◦ζ = JfJζ , where Jζ is the Jacobian of ζ, we have

Bγ = EDx,y [(JfJζ)
>A(JfJζ)] = J>ζ EDx,y [J

>
f AJf]Jζ = J>ζ BθJζ .

(Here we have used the fact that the reparameterization function ζ is independent of x and
y.) Thus, this type of curvature matrix satisfies the sufficient condition in eqn. 14.

The Hessian on the other hand does not satisfy this sufficient condition, except in certain
special cases. To see this, note that taking the curvature matrix to be the Hessian gives

Bγ = J>ζ HJζ +
1

|S|
∑

(x,y)∈S

n∑
j=1

[∇h]jH[ζ]j ,

where H = Bθ is the Hessian of h w.r.t. θ. Thus, when the curvature matrix is the Hessian,
the sufficient condition J>ζ BθJζ = J>ζ HJζ ∝ Bγ holds if and only if

1

|S|
∑

(x,y)∈S

n∑
j=1

[∇h]jH[ζ]j = J>ζ HJζ ,

30

New Insights and Perspectives on the Natural Gradient Method

where ∇L is the gradient of L(y, z) w.r.t. z (evaluated at z = f(x, θ)), and we allow a
proportionality constant of 0. Rearranging this gives

1

|S|
∑

(x,y)∈S

n∑
j=1

[∇h]jJ
−>
ζ H[ζ]jJ

−1
ζ = H .

This relation is unlikely to be satisfied unless the left hand side is equal to 0. One
situation where this will occur is when H[ζ]j = 0 for each j, which holds when [ζ]j is an
affine function of γ. Another situation is where we have ∇h = 0 for each (x, y) ∈ S.

13. A New Interpretation of the Natural Gradient

As discussed in Section 10, the negative natural gradient is given by the minimizer of a
local quadratic approximation M(δ) to h whose curvature matrix is the Fisher F . And if
we have that the gradient ∇h and F are computed on the same set S of data points, M(δ)
can be written as

M(δ) =
1

2
δ>Fδ +∇h>δ + h(θ)

=
1

|S|
∑

(x,y)∈S

[
1

2
δ>J>f FRJfδ + (J>f ∇z log r(y|z))>δ

]
+ h(θ)

=
1

|S|
∑

(x,y)∈S

[
1

2
(Jfδ)

>FR(Jfδ) +∇z log r(y|z)>FR−1FR(Jfδ)

+
1

2
(∇z log r(y|z))>F−1R FRF

−1
R ∇z log r(y|z)

−1

2
(∇z log r(y|z))>F−1R FRF

−1
R ∇z log r(y|z)

]
+ h(θ)

=
1

|S|
∑

(x,y)∈S

1

2
(Jfδ + F−1R ∇z log r(y|z))>FR(Jfδ + F−1R ∇z log r(y|z)) + c

=
1

|S|
∑

(x,y)∈S

1

2
‖Jfδ + F−1R ∇z log r(y|z)‖2FR + c ,

where FR is the Fisher of the predictive distribution Ry|z (as originally defined in Section

9), ‖v‖FR =
√
v>FRv, and c = h(θ) − 1

2(
∑

(x,y)∈S ∇z log r(y|z)>F−1R ∇z log r(y|z))/|S| is a
constant (independent of δ).

Note that for a given (x, y) ∈ S, F−1R ∇z log r(y|z) can be interpreted as the natural
gradient direction in z-space for an objective corresponding to the KL divergence between
the predictive distribution Ry|z and a delta distribution on the given y. In other words, it
points in the direction which moves Ry|z most quickly towards to said delta distribution, as
measured by the KL divergence (see Section 6). And assuming that the GGN interpretation
of F holds (as discussed in Section 9), we know that it also corresponds to the optimal change
in z according to the 2nd-order Taylor series approximation of the loss function L(y, z).

Thus, M(δ) can be interpreted as the sum of squared distances (as measured using the
Fisher metric tensor) between these “optimal” changes in the z’s, and the changes in the z’s

31

Martens

which result from adding δ to θ, as predicted using 1st-order Taylor-series approximations
to f .

In addition to giving us a new interpretation for the natural gradient, this expression also
gives us an easy-to-compute bound on the largest possible improvement to h (as predicted
by M(δ)). In particular, since the squared error terms are non-negative, we have

M(δ)− h(θ) ≥ − 1

2|S|
∑

(x,y)∈S

∇z log r(y|z)>F−1R ∇z log r(y|z) .

Given FR = HL, this quantity has the simple interpretation of being the optimal improve-
ment in h (as predicted by a 2nd-order order model of L(y, z) for each case in S) achieved
in the hypothetical scenario where we can change the z’s independently for each case.

The existence of this bound shows that the natural gradient can be meaningfully defined
even when F−1 may not exist, provided that we compute F and ∇h on the same data, and
that each FR is invertible. In particular, it can be defined as the minimizer of M(δ) that has
minimum norm (which must exist since M(δ) is bounded below), which in practice could
be computed by using the pseudo-inverse of F in place of F−1. Other choices are possible,
although care would have to be taken to ensure invariance of the choice with respect to
parameterization.

14. Asymptotic Convergence Speed

14.1 Amari’s Fisher Efficiency Result

A property of natural gradient descent which is frequently referenced in the literature is
that it is “Fisher efficient”. In particular, Amari (1998) showed that an iteration of the
form

θk+1 = θk − αkg̃k(θk) (15)

when applied to an objective of the form discussed in Section 4, with αk shrinking as 1/k,
and with g̃k(θk) = F−1gk(θk) where gk(θk) is a stochastic estimate of ∇h(θk) (from a single
training case), will produce an estimator θk which is asymptotically “Fisher efficient”. This
means that θk will tend to an unbiased estimator of the global optimum θ∗ of h(θ), and
that its expected squared error matrix (which tends to its variance) will satisfy

E[(θk − θ∗)(θk − θ∗)>] =
1

k
F (θ∗)−1 +O

(
1

k2

)
, (16)

which is (asymptotically) the smallest14 possible variance matrix that any unbiased estima-
tor computed from k training cases can have, according to the Cramér-Rao lower bound15.

14. With the usual definition of � for matrices: A � C iff C −A is PSD.
15. Note that to apply the Cramér-Rao lower bound in this context one must assume that the training data

set, on which we compute the objective (and which determines θ∗), is infinitely large, or more precisely
that its conditional distribution over y has a density function. For finite training sets one can easily obtain
an estimator with exactly zero error for a sufficiently large k (assuming a rich enough model class), and
so these requirements are not surprising. If we believe that there is a true underlying distribution of the

32

New Insights and Perspectives on the Natural Gradient Method

This result can also be straightforwardly extended to handle the case where gk(θk) is
computed using a mini-batch of size m (which uses m independently sampled cases at each
iteration), in which case the above asymptotic variance bound becomes

1

mk
F (θ∗)−1 +O

(
1

k2

)
,

which again matches the Cramér-Rao lower bound.

Note that all expectations in this section will be taken with respect to all random vari-
ables, both present and historical (i.e. from previous iterations). So for example, E[θk] is
computed by marginalizing over the distribution of gi for all i < k. If “θ” appears inside
an expectation without a subscript then it is not an iterate of the optimizer and is instead
just treated as fixed non-stochastic value.

This result applies to the version of natural gradient descent where F is computed using
the training distribution Q̂x and the model’s conditional distribution Py|x (see Section 5).
If we instead consider the version where F is computed using the true data distribution Qx,
then a similar result will still apply, provided that we sample x from Qx and y from Qy|x
when computing the stochastic gradient gk(θk), and that θ∗ is defined as the minimum of
the idealized objective KL(Qx,y‖Px,y(θ)) (see Section 4).

While this Fisher efficiency result would seem to suggest that natural gradient descent
is the best possible optimization method in the stochastic setting, it unfortunately comes
with several important caveats and conditions, which we will discuss. (Moreover, as we will
later, it is also possessed by much simpler methods, and so isn’t a great justification for the
use of natural gradient descent by itself.)

Firstly, the proof assumes that the iteration in eqn. 15 eventually converges to the global
optimum θ∗ (at an unspecified speed). While this assumption can be justified when the
objective h is convex (provided that αk is chosen appropriately), it won’t be true in general
for non-convex objectives, such as those encountered in neural network training. In practice
however, a reasonable local optimum θ∗ might be a good enough surrogate for the global
optimum, in which case a property analogous to Fisher efficiency may still hold, at least
approximately.

Secondly, it is assumed in Amari’s proof that F is computed using the full training
distribution Q̂x, which in the case of neural network optimization usually amounts to an
entire pass over the training set S. So while the proof allows for the gradient ∇h to be
stochastically estimated from a mini-batch, it doesn’t allow this for the Fisher F . This is a
serious challenge to the idea that (stochastic) natural gradient descent gives an estimator
which makes optimal use of the training data that it sees. And note that while one can

data that has a density function, and from which the training set is just a finite collection of samples,
then Cramér-Rao can be thought of as applying to the problem of estimating the true parameters of
this distribution from said samples (with F computed using the true distribution), and will accurately
bound the rate of convergence to the true parameters until we start to see samples repeat. After that
point, convergence to the true parameters will slow down and eventually stop, while convergence on the
training objective may start to beat the bound. This of course implies that any convergence on the
training set that happens faster than the Cramér-Rao bound will necessarily correspond to over-fitting
(since this faster convergence cannot happen for the test loss).

33

Martens

approximate F using minibatches from S, which is a solution that often works well in
practice (especially when combined with a decayed-averaging scheme16), a Fisher efficiency
result like the one proved by Amari (1998) will likely no longer hold. Investigating the
manner and degree in which it may hold approximately when F is estimated in this way is
an interesting direction for future research.

A third issue with Amari’s result is that it is given in terms of the convergence of θk (as
measured by the Euclidean norm) instead of the objective function value, which is arguably
much more relevant. Fortunately, it is straightforward to obtain the former from the latter.
In particular, by applying Taylor’s theorem and using ∇h(θ∗) = 0 we have

h(θk)− h(θ∗) =
1

2
(θk − θ∗)>H∗(θk − θ∗) +∇h(θ∗)>(θk − θ∗) +O

(
(θk − θ∗)3

)
=

1

2
(θk − θ∗)>H∗(θk − θ∗) +O

(
(θk − θ∗)3

)
, (17)

where H∗ = H(θ∗) and O
(
(θk − θ∗)3

)
is short-hand to mean a function which is cubic in

the entries of θk − θ∗. From this it follows17 that

E[h(θk)]− h(θ∗) =
1

2
E
[
(θk − θ∗)>H∗(θk − θ∗)

]
+ E

[
O
(
(θk − θ∗)3

)]
=

1

2
tr
(
H∗ E

[
(θk − θ∗)(θk − θ∗)>

])
+ E

[
O
(
(θk − θ∗)3

)]
=

1

2k
tr
(
H∗F (θ∗)−1

)
+ E

[
O
(
(θk − θ∗)3

)]
=

n

2k
+ o

(
1

k

)
, (18)

where we have used H∗ = F (θ∗), which follows from the “realizability” hypothesis used to
prove the Fisher efficiency result (see below). Note that while this is the same convergence
rate (O(1/k)) as the one which appears in Hazan et al. (2007) (see our Section 11), the
constant is much better. However, the comparison is slightly unfair, as Hazan et al. (2007)
doesn’t require that the curvature matrix be estimated on the entire data set (as discussed
above).

The fourth and final caveat of Amari’s Fisher efficiency result is that Amari’s proof
assumes that the training distribution Q̂x,y and the optimal model distribution Px,y(θ

∗)
coincide, a condition called “realizability” (which is also required in order for the Cramér-
Rao lower bound to apply). This essentially means that the model perfectly captures the

16. By this we mean a scheme which maintains an estimate where past contributions decay exponentially
at some fixed rate. In other words, we estimate F at each iteration as (1 − β)Fnew + βFold for some
0 < β < 1 where Fnew is the Fisher as computed on the current mini-batch (for the current setting of
θ), and Fold is the old estimate (which will be based on stale θ values).

17. The last line of this derivation uses E
[
O

(
(θk − θ∗)3

)]
= o(1/k), which is an (unjustified) assumption

that is used in Amari’s proof. This assumption has intuitive appeal since E
[
O

(
(θk − θ∗)2

)]
= O(1/k),

and so it makes sense that E
[
O

(
(θk − θ∗)3

)]
would shrink faster. However, extreme counterexamples

are possible which involve very heavy-tailed distributions on θk over unbounded regions. By adding some
mild hypotheses such as θk being restricted to some bounded region, which is an assumption frequently
used in the convex optimization literature, it is possible to justify this assumption rigorously. Rather than
linger on this issue we will refer the reader to Bottou and LeCun (2005), which provides a more rigorous
treatment of these kinds of asymptotic results, using various generalizations of the big-O notation.

34

New Insights and Perspectives on the Natural Gradient Method

training distribution at θ = θ∗. This assumption is used in Amari’s proof of the Fisher
efficiency result to show that the Fisher F , when evaluated at θ = θ∗, is equal to both
the empirical Fisher F̄ and the Hessian H of h. (These equalities follow immediately from
Q̂x,y = Px,y(θ

∗) using the forms of the Fisher presented in Section 5.) Note that realizability
is a subtle condition. It can fail to hold if the model isn’t powerful enough to capture the
training distribution. But also if the training distribution is a finite set of pairs (x, y) and
the model is powerful enough to perfectly capture this (as a Delta distribution), in which
case F (θ∗) is no longer well-defined (because its associated density function isn’t), and
convergence faster than the Cramér-Rao bound becomes possible.

It is not clear from Amari’s proof what happens when this correspondence fails to hold
at θ = θ∗, and whether a (perhaps) weaker asymptotic upper bound on the variance might
still be provable. Fortunately, various authors (Murata, 1998; Bottou and LeCun, 2005;
Bordes et al., 2009) building on early work of Amari (1967), provide some further insight
into this question by studying asymptotic behavior of general iterations of the form18

θk+1 = θk − αkB−1k gk(θk) , (19)

where Bk = B is a fixed19 curvature matrix (which is independent of θk and k), and where
gk(θk) is a stochastic estimate of ∇h(θk).

In particular, Murata (1998) gives exact (although implicit) expressions for the asymp-
totic mean and variance of θk in the above iteration for the case where αk = 1/(k + 1)
or αk is constant. These expressions describe the (asymptotic) behavior of this iteration
in cases where the curvature matrix B is not the Hessian H or the Fisher F , covering the
non-realizable case, as well as the case where the curvature matrix is only an approximation
of the Hessian or Fisher. Bordes et al. (2009) meanwhile gives expressions for E[h(θk)] in
the case where αk shrinks as 1/k, thus generalizing eqn. 18 in a similar manner.

In the following subsections we will examine these results in more depth, and improve on
those of Bordes et al. (2009) (at least in the quadratic case) by giving an exact asymptotic
expression for E[h(θk)]. We will also analyze iterate averaging (aka Polyak averaging ; see
Section 14.3) in the same setting.

Some interesting consequences of this analysis are discussed in Sections 14.2.1 and 14.3.1.
Of particular note is that for any choice of B, E[h(θk)] − h(θ0) can be expressed as a sum
of two terms: one that scales as O(1/k) and doesn’t depend on the starting point θ0, and
one that does depend on the starting point and scales as O(1/k2) or better. Moreover,
the first term, which is asymptotically dominant, carries all the dependence on the noise
covariance, and crucially isn’t improved by the use of a non-trivial choices for B such as
F or H, assuming the use of Polyak averaging. Indeed, if Polyak averaging is used, this
term matches the Cramér-Rao lower bound, and thus even plain stochastic gradient descent
becomes Fisher efficient! (This also follows from the analysis of Polyak and Juditsky (1992).)
Meanwhile, if learning rate decay is used instead of Polyak averaging, one can improve the
constant on this term by using 2nd-order methods, although not the overall 1/k rate.

18. Note that some authors define Bk to be the matrix that multiplies the gradient, instead of its inverse
(as we do instead).

19. Note that for a non-constant Bk where B−1
k converges sufficiently quickly to a fixed B−1 as θk converges

to θ∗, these analyses will likely still apply, at least approximately.

35

Martens

While these results strongly suggest that 2nd-order methods like natural gradient descent
won’t be of much help asymptotically in the stochastic setting, we argue that the constant
on the starting point dependent O(1/k2) term can still be improved significantly through
the use of such methods, and this term may matter more in practice given a limited iteration
budget (despite being negligible for very large k).

14.2 Some New Results Concerning Asymptotic Convergence Speed of
General Stochastic 2nd-order Methods

In this subsection we will give two results which characterize the asymptotic convergence
of the stochastic iteration in eqn. 19 as applied to the convex quadratic objective h(θ) =
1
2(θ − θ∗)>H∗(θ − θ∗) (whose minimizer is θ∗). The proofs of both results are in Appendix
B.

We begin by defining

Σg(θ) = Var(g(θ)) = E
[
(g(θ)− E[g(θ)])(g(θ)− E[g(θ)])>

]
,

where g(θ) denotes the random variable whose distribution coincides with the conditional
distribution of gk(θk) given θk. Note that this notation is well-defined as long as gk(θk)
depends only on the value of θk, and not on k itself. (This will be true, for example, if the
gk(θk)’s are generated by sampling a fixed-size mini-batch of iid training data.)

To simplify our analysis we will assume that Σg(θ) is constant with respect to θ, allowing
us to write it simply as Σg. While somewhat unrealistic, one can reasonably argue that this
assumption will become approximately true as θ converges to the optimum θ∗. It should be
noted that convergence of stochastic optimization methods can happen faster than in our
analysis, and indeed than is allowed by the Cramér-Rao lower bound, if Σg(θ) approaches
0 sufficiently fast as θ goes to θ∗ . This can happen if the model can obtain zero error on
all cases in the training distribution (e.g Loizou and Richtárik, 2017), a situation which is
ruled out by the hypothesis that this distribution has a density function (as is required by
Cramér-Rao). But it’s worth observing that this kind of faster convergence can’t happen
on the test data distribution (assuming it satisfies Cramér-Rao’s hypotheses), and thus will
only correspond to faster over-fitting.

Before stating our first result we will define some additional notation. We denote the
variance of θk by

Vk = Var(θk) = E
[
(θk − E[θk])(θk − E[θk])

>
]

.

And we define the following linear operators20 that map square matrices to matrices of the
same size:

Ξ(X) = B−1H∗X +
(
B−1H∗X

)>
= B−1H∗X +XH∗B−1 , and

Ψβ(X) =
(
I − βB−1H∗

)
X
(
I − βB−1H∗

)>
.

20. Note that these operators are not n×n matrices themselves, although they can be represented as n2×n2

matrices if we vectorize their n × n matrix arguments. Also note that such operators can be linearly
combined and composed, where we will use the standard± notation for linear combination, multiplication
for composition, and where I will be the identity operator. So, for example, (I+Ξ2)(X) = X+Ξ(Ξ(X)).

36

New Insights and Perspectives on the Natural Gradient Method

We also define

U = B−1ΣgB
−1

for notational brevity, as this is an expression which will appear frequently. Finally, for an
n-dimensional symmetric matrix A we will denote its i-th largest eigenvalue by λi(A), so
that λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A).

The following theorem represents a more detailed and rigorous treatment of the type of
asymptotic expressions for the mean and variance of θk given by Murata (1998), although
specialized to the quadratic case. Note that symbols like V∞ have a slightly different
meaning here than in Murata (1998).

Theorem 3. Suppose that θk is generated by the stochastic iteration in eqn. 19 while opti-
mizing a quadratic objective h(θ) = 1

2(θ − θ∗)>H∗(θ − θ∗).
If αk is equal to a constant α satisfying αλ1(B

−1H∗) ≤ 1, then the mean and variance
of θk are given by

E[θk] = θ∗ + (I − αB−1H∗)k(θ0 − θ∗)

Vk =
(
I − Λk

)
(V∞) ,

where Λ = Ψα and V∞ = α2 (I − Λ)−1 (U).
If on the other hand we have αk = 1/(k+a+1) for some a ≥ 1, with b ≡ λn

(
B−1H∗

)
> 1

2
and λ1

(
B−1H∗

)
≤ a+ 1, then the mean and variance of θk are given by

E[θk] = θ∗ +

k−1∏
j=0

(
I − αjB−1H∗

)
(θ0 − θ∗)

Vk =
1

k + a
(Ξ− I)−1 (U) + Ek ,

where Ek is a matrix valued “error” that shrinks as 1/k2.

Remark 4. Due to the properties of quadratic functions, and the assumptions of constant
values for B and Σg, one could state and/or prove this theorem (and the ones that follow)
while taking one of H∗, B, or Σg to be the identity matrix, without any loss of generality.
This is due to the fact that optimizing with a preconditioner is equivalent to optimizing a
linearly-reparameterized version of the objective with plain stochastic gradient descent.

One interesting observation that we can immediately make from Theorem 3 is that, at
least in the case where the objective is a convex quadratic, E[θk] progresses in a way that
is fully independent of the distribution of noise in the gradient estimate (which is captured
by the Σg matrix). Indeed, it proceeds as θk itself would in the case of fully deterministic
optimization. It is only the variance of θk around E[θk] that depends on the gradient
estimator’s noise.

To see why this happens, note that if h(θ) is quadratic then ∇h(θ) will be an affine
function, and thus will commute with expectation. This allows us to write

E[g(θk)] = E[∇h(θk)] = ∇h(E[θk]) .

37

Martens

Provided that αk doesn’t depend on θk in any way (as we are implicitly assuming), we then
have

E[θk+1] = E[θk − αkB−1g(θk)] = E[θk]− αkB−1∇h(E[θk]) ,

which is precisely the deterministic version of eqn. 19, where we treat E[θk] as the parameter
vector being optimized].

While Theorem 3 provides a detailed picture of how well θ∗ is estimated by θk, it doesn’t
tell us anything directly about how quickly progress is being made on the objective, which
is arguably a much more relevant concern in practice. Fortunately, as observed by Murata
(1998), we have the basic identity (proved for completeness in Appendix A):

E
[
(θk − θ∗)(θk − θ∗)>

]
= Vk + (E[θk]− θ∗)(E[θk]− θ∗)> .

And it thus follows that

E[h(θk)]− h(θ∗) =
1

2
tr
(
H∗ E

[
(θk − θ∗)(θk − θ∗)>

])
=

1

2
tr
(
H∗
(
Vk + (E[θk]− θ∗)(E[θk]− θ∗)>

))
=

1

2
tr (H∗Vk) +

1

2
tr
(
H∗(E[θk]− θ∗)(E[θk]− θ∗)>

)
(20)

which allows us to relate the convergence of E[θk] (which behaves like θk in the deterministic
version of the algorithm) and the size/shape of the variance of θk to the convergence of
E[h(θk)]. In particular, we see that in this simple case where h(θ) is quadratic, E[h(θk)]−
h(θ∗) neatly decomposes as the sum of two independent terms that quantify the roles of
these respective factors in the convergence of E[h(θk)] to h(θ∗).

In the proof of the following theorem (which is in the appendix), we will use the above
expression and Theorem 3 to precisely characterize the asymptotic convergence of E[h(θk)].
Note that while Murata (1998) gives expressions for this as well, they cannot be directly
evaluated except in certain special cases (such as when B = H), and only include the
asymptotically dominant terms.

Theorem 5. Suppose that θk is generated by the stochastic iteration in eqn. 19 while opti-
mizing a quadratic objective h(θ) = 1

2(θ − θ∗)>H∗(θ − θ∗).
If αk is equal to a constant α satisfying αλ1(B

−1H∗) ≤ 1, then the expected objective
E[h(θk)] satisfies

l(k) ≤ E[h(θk)]− h(θ∗) ≤ u(k) ,

where

u(k) =
[
1− (1− ε1)2k

] α
4

tr

((
B − α

2
H∗
)−1

Σg

)
+ (1− ε2)2k h(θ0)

and

l(k) =
[
1− (1− ε2)2k

] α
4

tr

((
B − α

2
H∗
)−1

Σg

)
+ (1− ε1)2k h(θ0) ,

38

New Insights and Perspectives on the Natural Gradient Method

with ε1 = λ1(C) = αλ1
(
B−1H∗

)
and ε2 = λn(C) = αλn

(
B−1H∗

)
.

If on the other hand we have αk = 1/(k+a+1) for some a ≥ 1, with b ≡ λn
(
B−1H∗

)
> 1

2
and λ1

(
B−1H∗

)
≤ a+ 1, then the expected objective satisfies

l(k) ≤ E[h(θk)]− h(θ∗) ≤ u(k) ,

where

u(k) =
1

4(k + a)
tr

((
B−1 − 1

2
H∗−1

)−1
U

)
+

ν(a)k

4(k + a)3
tr

((
B−1 − 1

2
H∗−1

)−1
Ψ1(U)

)

+ h(θ0)

(
1 + a

k + a

)2b

and

l(k) =
1

4(k + a)
tr

((
B−1 − 1

2
H∗−1

)−1
U

)
− 1

4a

(
1 + a

k + a

)2b

tr

((
B−1 − 1

2
H∗−1

)−1
U

)
,

where ν(a) = (a+ 2)3/(a(a+ 1)2).

14.2.1 Some Consequences of Theorem 5

In the case of a fixed step-size αk = α, Theorem 5 shows that E[h(θk)] will tend to the
constant

h(θ∗) +
α

4
tr

((
B − α

2
H∗
)−1

Σg

)
.

The size of this extra additive factor is correlated with the step-size α and gradient noise
covariance Σg. If the covariance or step-sizes are small enough, it may not be very large in
practice.

Moreover, one can use the fact that the iterates {θk}∞k=1 are (non-independent) asymp-
totically unbiased estimators of θ∗ to produce an asymptotically unbiased estimator with
shrinking variance by averaging them together. This is done in the Polyak Averaging
method (e.g. Polyak and Juditsky, 1992), which we analyze in Section 14.3.

In the scenario where αk = 1/(k+a+ 1), if one performs stochastic 2nd-order optimiza-
tion with B = H∗ (so that b = 1) and any a ≥ 1, Theorem 5 gives that

E[h(θk)]− h(θ∗) ≤ 1

2(k + a)
tr
(
H∗−1Σg

)
+ h(θ0)

(
1 + a

k + a

)2

(where we have used the fact that Ψ1 = 0 when B = H∗). And if one considers the scenario
corresponding to 1st-order optimization where we take B = λn(H∗)I (so that b = 1) and
a = κ(H∗), where κ(H∗) = λ1(H

∗)/λn(H∗) is the condition number of H∗, we get

E[h(θk)]− h(θ∗) ≤
(

1

4(k + κ(H∗))
+O

(
1

(k + κ(H∗))2

))
1

λn(H∗)

· tr

((
I − λn(H∗)

2
H∗−1

)−1
Σg

)
+ h(θ0)

(
1 + κ(H∗)

k + κ(H∗)

)2

.

39

Martens

In deriving this we have applied Lemma 20 while exploiting the fact that Ψ1(U) � U (i.e.
U −Ψ1(U) is PSD).

These two bounds can be made more similar looking by choosing a = κ(H∗) in the first
one. (However this is unlikely to be the optimal choice in general, and the extra freedom in
choosing a seems to be one of the advantages of using B = H∗.) In this case, the starting-
point dependent terms (which are noise independent) seem to exhibit the same asymptotics,
although this is just an artifact of the analysis, and it is possible to obtain tighter bounds on
these terms by considering the entire spectrum instead of just the most extreme eigenvalue
(as was done in eqn. 37 while applying Lemma 18).

The noise-dependent terms, which are the ones that dominate asymptotically as k →∞
and were derived using a very tight analysis (and indeed we have a matching lower bound
for these), exhibit a more obvious difference in the above expressions. To compare their
sizes we can apply Lemma 18 to obtain the following bounds (see Appendix C):

1

2λ1 (H∗)
tr(Σg) ≤

1

2
tr
(
H∗−1Σg

)
≤ 1

2λn (H∗)
tr(Σg)

and

1

4λn(H∗)
tr(Σg) ≤

1

4λn(H∗)
tr

((
I − λn(H∗)

2
H∗−1

)−1
Σg

)
≤ 1

2λn(H∗)
tr(Σg) .

Because the lower bound is much smaller in the B = H∗ case, these bounds thus allow for the
possibility that the noise dependent term will be much smaller in that case. A necessary
condition for this to happen is that H∗ is ill-conditioned (so that λ1 (H∗) � λn (H∗)),
although this alone is not sufficient.

To provide an actual concrete example where the noise-dependent term is smaller, we
must make further assumptions about the nature of the gradient noise covariance matrix
Σg. As an important example, we consider the scenario where the stochastic gradients are
computed using (single) randomly sampled cases from the training set S, and where we are
in the realizable regime (so that H∗ = F̄ ∗ = Σg; see Section 14.1). When B = H∗, the
constant on the noise dependent term will thus scale as

1

2
tr
(
H∗−1Σg

)
=

1

2
tr
(
H∗−1H∗

)
=
n

2
,

while if B = λn(H∗)I it will scale as

1

4λn(H∗)
tr

((
I − λn(H∗)

2
H∗−1

)−1
Σg

)
=

1

4λn(H∗)
tr

((
I − λn(H∗)

2
H∗−1

)−1
H∗

)

=
1

4λn(H∗)

n∑
i=1

λi(H
∗)

1− λn(H∗)
2λi(H∗)

=
1

4

n∑
i=1

ri

1− 1
2ri

,

where we have defined ri = λi(H
∗)/λn(H∗). (To go from the first to the second line we

have used the general fact that for any rational function g the i-th eigenvalue of g(H∗) is
given by g(λi). And also that the trace is the sum of the eigenvalues.)

40

New Insights and Perspectives on the Natural Gradient Method

Observing that 1 ≤ ri, we thus have ri ≤ ri/(1 − 1/(2ri)), from which it also follows
that

1

4

tr(H∗)

λn(H∗)
=

1

4

n∑
i=1

ri ≤
1

4

n∑
i=1

ri

1− 1
2ri

.

and

n

2
≤ 2 · 1

4

n∑
i=1

ri

1− 1
2ri

.

From these bounds we can see that noise scaling in the B = H∗ case is no worse than
twice that of the B = λn(H∗)I case. And it has the potential to be much smaller, such

as when tr(H∗)
λn(H∗)

� n, or when the spectrum of H∗ covers a large range. For example, if

λi(H
∗) = n− i+ 1 then the noise scales as Ω(n2/k) in the B = λn(H∗)I case.

14.2.2 Related Results

The related result most directly comparable to Theorem 5 is Theorem 1 of Bordes et al.
(2009), which provides upper and lower bounds for E[h(θk)] − h(θ∗) in the case where
αk = 1/(k + a+ 1) and λn

(
B−1H∗

)
> 1/2. In particular, using a different technique from

our own, Bordes et al. (2009) show that21

1

k
· tr(H∗U)

4
(
λ1(B−1H∗)− 1

2

) + o

(
h(θ0)

k

)
≤ E[h(θk)]− h(θ∗) ≤ 1

k
· tr(H∗U)

4
(
λn(B−1H∗)− 1

2

)
+ o

(
h(θ0)

k

)
.

This result is more general in the sense that it doesn’t assume the objective is quadratic.
However, it is also far less detailed than our result, and in particular doesn’t describe the
asymptotic value of E[h(θk)] − h(θ∗), instead only giving (fairly loose) upper and lower
bounds on it. It can be obtained from our Theorem 5, in the quadratic case, by a straight-
forward application of Lemma 18.

There are other relevant results in the vast literature on general strongly convex func-
tions, such as Kushner and Yin (2003) and the references therein, and Moulines and Bach
(2011). These results, while usually only presented for standard stochastic gradient descent,
can be applied to the same setting considered in Theorem 5 by performing a simple linear
reparameterization. A comprehensive review of such results would be outside the scope of
this report, but to the best of our knowledge there is no result which would totally subsume
Theorem 5 for convex quadratics. The bounds in Moulines and Bach (2011) for example,
are more general in a number of ways, but also appear to be less detailed than ours, and
harder to interpret.

21. Note that the notation ‘B’ as it is used by Bordes et al. (2009) means the inverse of the matrix B as it
appears in this paper. And while Bordes et al. (2009) presents their bounds with F̄ in place of Σg, these
are the same matrix when evaluated at θ = θ∗ as we have E[g(θ∗)] = 0 (since θ∗ is a local optimum).

41

Martens

14.3 An Analysis of Averaging

In this subsection we will extend the analysis from Subsection 14.2 to incorporate basic
iterate averaging of the standard type (e.g. Polyak and Juditsky, 1992). In particular, we
will bound E[h(θ̄k)] where

θ̄k =
1

k + 1

k∑
i=0

θi .

Note that while this type of averaging leads to elegant bounds (as we will see), a form of
averaging based on an exponentially-decayed moving average typically works much better
in practice. This is given by

θ̄k = (1− βk)θk + βkθ̄k−1 θ̄0 = θ0

for βk = min{1− 1/k, βmax} with 0 < βmax < 1 close to 1 (e.g. βmax = 0.99). This type of
averaging has the advantage that it more quickly “forgets” the very early θi’s, since their
“weight” in the average decays exponentially. However, the cost of doing this is that the
variance will never converge exactly to zero, which arguably matters more in theory than
it does in practice.

The main result of this subsection, which is proved in Appendix B, is stated as follows:

Theorem 6. Suppose that θk is generated by the stochastic iteration in eqn. 19 with constant
step-size αk = α while optimizing a quadratic objective h(θ) = 1

2(θ−θ∗)>H∗(θ−θ∗). Further,

suppose that αλ1(B
−1H∗) < 1, and define θ̄k = 1

k+1

∑k
i=0 θi. Then we have the following

bound:

E[h(θ̄k)]− h(θ∗) ≤ min

{
1

2(k + 1)
tr
(
H∗−1Σg

)
,
α

4
tr

((
B − α

2
H∗
)−1

Σg

)}
+ min

{
1

2(k + 1)2α2

∥∥∥H∗−1/2B(θ0 − θ∗)
∥∥∥2 ,

1

2(k + 1)α

∥∥∥B1/2(θ0 − θ∗)
∥∥∥2 , h(θ0)

}
.

Note that this bound can be written asymptotically (k →∞) as

E[h(θ̄k)]− h(θ∗) ≤ O
(

1

2(k + 1)
tr
(
H∗−1Σg

))
,

which notably doesn’t depend on either α or B.
This is a somewhat surprising property of averaging to be sure, and can be intuitively ex-

plained as follows. Increasing the step-size along any direction d (as measured by αd>B−1d)
will increase the variance in that direction for each iterate (since the step-size multiplies
the noise in the stochastic gradient estimate), but will also cause the iterates to decorrelate
faster in that direction (as can be seen from eqn. 39). Increased decorrelation in the iterates
leads to lower variance in their average, which counteracts the aforementioned increase in
the variance. As it turns out, these competing effects will exactly cancel in the limit, which
the proof of Theorem 6 rigorously establishes.

42

New Insights and Perspectives on the Natural Gradient Method

14.3.1 Some Consequences of Theorem 6

In the case of stochastic 2nd-order optimization of a convex quadratic objective where we
take B = H∗ (which allows us to use an α close to 1) this gives

E[h(θ̄k)]− h(θ∗) ≤
tr
(
H∗−1Σg

)
2(k + 1)

+
h(θ0)

(k + 1)2α2
.

Then choosing the maximum allowable value of α this becomes

E[h(θ̄k)]− h(θ∗) ≤
tr
(
H∗−1Σg

)
2(k + 1)

+
h(θ0)

(k + 1)2
,

which is a similar bound to the one described in Section 14.2.1 for stochastic 2nd-order
optimization (with B = H∗) using an annealed step-size αk = 1/(k + 1).

For the sake of comparison, applying Theorem 6 with B = I gives

E[h(θ̄k)]− h(θ∗) ≤
tr
(
H∗−1Σg

)
2(k + 1)

+

∥∥∥H∗−1/2(θ0 − θ∗)∥∥∥2
2(k + 1)2α2

(21)

under the assumption that αλ1(H
∗) < 1. For the maximum allowable value of α this

becomes

E[h(θ̄k)]− h(θ∗) ≤
tr
(
H∗−1Σg

)
2(k + 1)

+
λ1(H

∗)2
∥∥∥H∗−1/2(θ0 − θ∗)∥∥∥2
2(k + 1)2

.

An interesting observation we can make about these bounds is that they do not demon-
strate any improvement through the use of 2nd-order optimization on the asymptotically
dominant noise-dependent term in the bound (a phenomenon first observed by Polyak and
Juditsky (1992) in a more general setting). Moreover, in the case where the stochastic
gradients (the gk(θk)’s) are sampled using random training cases in the usual way so that
Σg = F̄ (θ), and the realizability hypothesis is satisfied so that H∗ = F (θ∗) = F̄ (θ∗) (see
Section 14.1), we can see that simple stochastic gradient descent with averaging achieves a
similar asymptotic convergence speed (given by n/(k + 1) + o(1/k)) to that possessed by
Fisher efficient methods like stochastic natural gradient descent (c.f. eqn. 18), despite not
involving the use of curvature matrices!

Moreover, in the non-realizable case, 1/(2k) tr
(
H∗−1Σg

)
turns out to be the same

asymptotic rate as that achieved by the “empirical risk minimizer” (i.e. the estimator
of θ that minimizes the expected loss over the training cases processed thus far) and is thus
“optimal” in a certain strong sense for infinite data sets. See Frostig et al. (2014) for a good
recent discussion of this.

However, despite these observations, these bounds do demonstrate an improvement to
the noise-independent term (which depends on the starting point θ0) through the use of
2nd-order optimization. When H∗ is ill-conditioned and θ0 − θ∗ has a large component in
the direction of eigenvectors of H∗ with small eigenvalues, we will have

λ1(H
∗)2‖H∗−1/2(θ0 − θ∗)‖2 � h(θ0) .

43

Martens

Crucially, this noise-independent term may often matter more in practice (despite being
asymptotically negligible), as the LHS expression may be very large compared to Σg, and
we may be interested in stopping the optimization long before the more slowly shrinking
noise-dependent term begins to dominate asymptotically (e.g. if we have a fixed iteration
budget, or are employing early-stopping). This is especially likely to be the case if the
gradient noise is low due to the use of large mini-batches.

It is also worth pointing out that compared to standard stochastic 2nd-order opti-
mization with a fixed step-size (as considered by the first part of Theorem 5), the noise-
independent term shrinks much more slowly when we use averaging (quadratically vs expo-
nentially), or for that matter when we use an annealed step-size αk = 1/(k+ 1) with b > 1.
This seems to be the price one has to pay in order to ensure that the noise-dependent term
shrinks as 1/k. (Although in practice one can potentially obtain a more favorable depen-
dence on the starting point by adopting the “forgetful” exponentially-decaying variant of
averaging discussed previously.)

14.3.2 Related Results

Under weaker assumptions about the nature of the stochastic gradient noise, Polyak and
Juditsky (1992) showed that

E
[
(θ̄k − θ∗)(θ̄k − θ∗)>

]
=

1

k + 1
H∗−1/2ΣgH

∗−1/2 + o

(
1

k

)
,

which using the first line of eqn. 20 yields

E[h(θ̄k)]− h(θ∗) =
tr
(
H∗−1Σg

)
2(k + 1)

+ o

(
1

k

)
.

While consistent with Theorem 6, this bound gives a less detailed picture of convergence,
and in particular fails to quantify the relative contribution of the noise-dependent and
independent terms, and thus doesn’t properly distinguish between the behavior of stochastic
1st or 2nd-order optimization methods (i.e. B = I vs B = H∗).

Assuming a model for the gradient noise which is consistent with linear least-squares
regression and B = I, Défossez and Bach (2014) showed that

E[h(θ̄k)]− h(θ∗) ≈
tr
(
H∗−1Σg

)
k + 1

+

∥∥∥H∗−1/2(θ0 − θ∗)∥∥∥2
(k + 1)2α2

holds in the asymptotic limit as α→ 0 and k →∞.

This expression is similar to the one generated by Theorem 6 (see eqn. 21), although
it only holds in the asymptotic limit of small α and large k, and assumes a particular θ-
dependent form for the noise (arising in least-squares linear regression), which represents
neither a subset nor a super-set of our general θ-independent formulation. An interesting
question for future research is whether Theorem 3 could be extended in way that would
allow Σg to vary with θ, and whether this would allow us to prove a more general version
of Theorem 6 that would cover the case of linear least-squares.

44

New Insights and Perspectives on the Natural Gradient Method

A result which is more directly comparable to our Theorem 6 is “Theorem 3” of Flam-
marion and Bach (2015), which when applied to the same general case considered in Theo-
rem 6 gives the following upper bound (assuming that B = I22 and αλ1(H

∗) ≤ 1):

E[h(θ̄k)]− h(θ∗) ≤ 4α tr(Σg) +
‖θ0 − θ∗‖2

(k + 1)α
.

Unlike the bound proved in Theorem 6, this bound fails to establish that E[h(θ̄k)] even
converges, since the term 4α tr(Σg) is constant in k.

There are other older results in the literature analyzing averaging in general settings,
such as those contain in Kushner and Yin (2003) and the references therein. However, to
the best of our knowledge there is no result in the literature which would totally subsume
Theorem 6 for the case of convex quadratics, particularly with regard to the level of detail
in the non-asymptotically-dominant terms of the bound (which is very important for our
purposes here).

15. Conclusions and Open Questions

In this report we have examined several aspects of the natural gradient method, such as its
relationship to 2nd-order methods, its local convergence speed, and its invariance properties.

The link we have established between natural gradient descent and (stochastic) 2nd-
order optimization with the Generalized Gauss-Newton matrix (GGN) provides intuition
for why it might work well with large step-sizes, and gives prescriptions for how to make it
work robustly in practice. In particular, we advocate viewing natural gradient descent as a
GGN-based 2nd-order method in disguise (assuming the equivalence between the Fisher and
GGN holds), and adopting standard practices from the optimization literature to ensure
fast and robust performance, such as trust-region/damping/Tikhonov regularization, and
Levenberg-Marquardt adjustment heuristics (Moré, 1978).

However, even in the case of squared loss, where the GGN becomes the standard Gauss-
Newton matrix, we don’t yet have a completely rigorous understanding of 2nd-order opti-
mization with the GGN. A completely rigorous account of its global convergence remains
elusive (even if we can assume convexity), and convergence rate bounds such as those proved
in Section 14 don’t even provide a complete picture of its local convergence properties.

Another issue with these kinds of local convergence bounds, which assume the objective
is quadratic (or is well-approximated as such), is that they are always improved by using the
Hessian instead of the GGN, and thus fail to explain the empirically observed superiority
of the GGN over the Hessian for neural network training. This is because they assume that
the objective function has constant curvature (given by the Hessian at the optimum), so
that optimization could not possibly be helped by using an alternative curvature matrix
like the GGN. And for this reason they also fail to explain why damping methods are so
crucial in practice.

22. Note that the assumption that B = I doesn’t actually limit this result since stochastic 2nd-order opti-
mization of a quadratic using a fixed B can be understood as stochastic gradient descent applied to a
transformed version of the original quadratic (with an appropriately transformed gradient noise matrix
Σg).

45

Martens

Moreover, even just interpreting the constants in these bounds can be hard when using
the Fisher or GGN. For example, if we pay attention only to the noise-independent/starting
point-dependent term in the bound from Theorem 6, which is given by

1

2(k + 1)2α2

∥∥∥H∗−1/2B(θ0 − θ∗)
∥∥∥2 ,

and plug in B = F and the maximum-allowable learning rate α = 1/λ1(B
−1H∗), we get

the somewhat opaque expression

λ1(F
−1H∗)2

2(k + 1)2

∥∥∥H∗−1/2F (θ0 − θ∗)
∥∥∥2 .

It’s not immediately obvious how we can further bound this expression in the non-realizable
case (i.e. where we don’t necessarily have F = H∗) using easily accessible/interpretable
properties of the objective function. This is due to the complicated nature of the relation-
ship between the GGN and Hessian, which we haven’t explored in this report beyond the
speculative discussion in Section 8.1.

Finally, we leave the reader with a few open questions.

• Can the observed advantages of the GGN vs the Hessian be rigorously justified for
neural networks (assuming proper use of damping/trust-regions in both cases to deal
with issues like negative curvature)?

• Are there situations where the Fisher and GGN are distinct and one is clearly prefer-
able over the other?

• When will be pre-asymptotic advantage of stochastic 2nd-order methods vs SGD with
Polyak averaging matter in practice? And can this be characterized rigorously using
accessible properties of the target objective?

Acknowledgments

We gratefully acknowledge support from Google, DeepMind, and the University of Toronto.
We would like to thank Léon Bottou, Guillaume Desjardins, Alex Botev, and especially the
very thorough anonymous JMLR reviewers for their useful feedback on earlier versions of
this manuscript.

46

New Insights and Perspectives on the Natural Gradient Method

Appendix A. Proof of Basic Identity from Murata (1998)

Proposition 7. Given the definitions of Section 14 we have

E
[
(θk − θ∗)(θk − θ∗)>

]
= Vk + (E[θk]− θ∗)(E[θk]− θ∗)> .

Proof We have

E
[
(θk − θ∗)(θk − θ∗)>

]
= E

[
(θk − E[θk] + E[θk]− θ∗)(θk − E[θk] + E[θk]− θ∗)>

]
= E

[
(θk − E[θk])(θk − E[θk])

>
]

+ E
[
(E[θk]− θ∗)(θk − E[θk])

>
]

+ E
[
(θk − E[θk])(E[θk]− θ∗)>

]
+ E

[
(E[θk]− θ∗)(E[θk]− θ∗)>

]
= Vk + (E[θk]− θ∗) E [(θk − E[θk])]

>

+ E [(θk − E[θk])] (E[θk]− θ∗)> + (E[θk]− θ∗)(E[θk]− θ∗)>

= Vk + (E[θk]− θ∗)(E[θk]− θ∗)> ,

where we have used E [(θk − E[θk])] = E[θk]− E[θk] = 0.

Appendix B. Proofs of Convergence Theorems

In this section we will prove Theorems 3, 5, and 6.
To begin, we recall the following linear operator definitions from the beginning of Section

14.2:

Ξ(X) = B−1H∗X +
(
B−1H∗X

)>
= B−1H∗X +XH∗B−1 ,

Ψβ(X) =
(
I − βB−1H∗

)
X
(
I − βB−1H∗

)>
= I − βΞ(X) + β2Ω(X) ,

to which we add

Ω(X) = B−1H∗X
(
B−1H∗

)>
= B−1H∗XH∗B−1 .

We note that

Ξ(Ω(X)) = B−1H∗
(
B−1H∗XH∗B−1

)
+
(
B−1H∗XH∗B−1

)
H∗B−1

= B−1H∗
(
B−1H∗X +XH∗B−1

)
H∗B−1

= Ω(Ξ(X))

and so Ω and Ξ commute as operators. And because the remaining operators defined above
are all linear combinations of these, it follows that they all commute with each other.

According to eqn. 19 we have

θk+1 − θ∗ = θk − αkB−1gk(θk)− θ∗

= θk − θ∗ − αkB−1(∇h(θk) + εk(θk))

= θk − θ∗ − αkB−1H∗(θk − θ∗)− αkB−1εk(θk)
= (I − αkB−1H∗)(θk − θ∗)− αkB−1εk(θk) , (22)

47

Martens

where we have defined εk(θk) = gk(θk) − ∇h(θk) and used ∇h(θk) = H∗(θk − θ∗). Taking
the expectation of both sides while using E [εk(θk)] = 0 we get

E[θk+1]− θ∗ = (I − αkB−1H∗)(E[θk]− θ∗) .

Iterating this we get

E[θk]− θ∗ =
k−1∏
j=0

(
I − αjB−1H∗

)
(θ0 − θ∗) . (23)

Then observing that Var(θk − θ∗) = Var(θk) = Vk for all k, and exploiting the uncorre-
latedness of θk and εk(θk), we can take the variance of both sides of eqn. 22 to get that Vk
evolves according to

Vk+1 = Var((I − αkB−1H∗)(θk − θ∗)) + Var(αkB
−1εk(θk))

= (I − αkB−1H∗)Vk(I − αkB−1H∗)> + α2
kB
−1ΣgB

−1

= Λk(Vk) + α2
kU ,

where we have defined

U = B−1ΣgB
−1 , and

Λk = Ψαk .

This recursion for Vk will be central in our analysis.

B.1 The Constant αk = α Case

In this subsection we will prove the claims made in Theorems 3 and 5 pertaining to the case
where:

• αk = α for a constant α, and

• αλ1(B−1H∗) ≤ 1.

To begin, we define the notation Λ = Ψα.

Corollary 8. The operator I −Λ has all positive eigenvalues and is thus invertible. More-
over, we have

(I − Λ)−1 =

∞∑
i=0

Λi .

And so if X is a PSD matrix then (I − Λ)−1 (X) is as well.

Proof Let D = I − αB−1H∗, so that Λ(X) = DXD>.
The eigenvalues of B−1H∗ are the same as those of B−1/2H∗B−1/2 (since the matrices

differ by a similarity transform), and are thus real-valued and positive. Moreover, the
minimum eigenvalue of D is λn(D) = 1−αλ1(B−1H∗) ≥ 0, and the maximum eigenvalue is
λ1(D) = 1− αλn(B−1H∗) < 1, where we have used λn(B−1H∗) = λn(B−1/2H∗B−1/2) > 0
(both H∗ and B are positive definite).

The claim then follows by an application of Lemma 21.

48

New Insights and Perspectives on the Natural Gradient Method

Lemma 9. The variance matrix Vk is given by the formula

Vk =
(
I − Λk

)
(V∞) ,

where V∞ = α2(I − Λ)−1(U).

Proof By expanding the recursion for Vk we have

Vk = α2
k−1∑
i=0

Λi(U).

And Corollary 8 tells us that

(I − Λ)−1 =

∞∑
i=0

Λi.

Thus, we can write:

k−1∑
i=0

Λi =

∞∑
i=0

Λi −
∞∑
i=k

Λi

=

∞∑
i=0

Λi − Λk
∞∑
i=0

Λi

= (I − Λk)(I − Λ)−1.

We thus conclude that

Vk = α2
k−1∑
i=0

Λi(U) = α2(I − Λk)(I − Λ)−1(U) = (I − Λk)(V∞),

as claimed.

Proposition 10. For any appropriately sized matrix X we have

tr
(
H∗ (I − Λ)−1 (X)

)
=

1

2α
tr

((
B − α

2
H∗
)−1

BXB

)
.

Proof

Let Y = (I − Λ)−1 (X), so that (I − Λ) (Y) = X. Written as a matrix equation this is

αB−1H∗Y + αY H∗B−1 − α2B−1H∗Y H∗B−1 = X .

Left and right multiplying both sides by B we have

αH∗Y B + αBY H∗ − α2H∗Y H∗ = BXB .

49

Martens

This can be written as A>P + PA+Q = 0, where

A = Y H∗

P = α
(
B − α

2
H∗
)

Q = −BXB .

In order to compute tr(H∗Y) we can thus apply Lemma 17. However, we must first
verify that our P is invertible. To this end we will show that B − α

2H
∗ is positive definite.

This is equivalent to the condition that B−1/2(B − α
2H
∗)B−1/2 = I − α

2B
−1/2H∗B−1/2 is

positive definite, or in other words that λ1(B
−1/2H∗B−1/2) = λ1(B

−1H∗) < 2. This is true
by hypothesis (indeed, we are assuming αλ1(B

−1H∗) < 1).
By Lemma 17 it thus follows that

tr(H∗Y) = tr(Y H∗) = tr(A) = −1

2
tr(P−1Q) =

1

2α
tr

((
B − α

2
H∗
)−1

BXB

)
.

Lemma 11. The expected objective value satisfies

l(k) ≤ E[h(θk)]− h(θ∗) ≤ u(k) ,

where

u(k) =
[
1− (1− ε1)2k

] α
4

tr

((
B − α

2
H∗
)−1

Σg

)
+ (1− ε2)2k h(θ0)

and

l(k) =
[
1− (1− ε2)2k

] α
4

tr

((
B − α

2
H∗
)−1

Σg

)
+ (1− ε1)2k h(θ0) ,

with ε1 = λ1(C) = αλ1
(
B−1H∗

)
and ε2 = λn(C) = αλn

(
B−1H∗

)
.

Proof Note that for any appropriately sized matrix X we have

H∗1/2Λ(X)H∗1/2 = H∗1/2
(
(I − αB−1H∗)X(I − αH∗B−1)

)
H∗1/2

=
(

(I − αH∗1/2B−1H∗1/2)H∗1/2XH∗1/2(I − αH∗1/2B−1H∗1/2)
)

= Λ̃
(
H∗1/2XH∗1/2

)
,

where we have defined

Λ̃(Y) = (I − C)Y (I − C)> = (I − C)Y (I − C)

with

C = αH∗1/2B−1H∗1/2 .

50

New Insights and Perspectives on the Natural Gradient Method

Applying this repeatedly we obtain

H∗1/2Λk(X)H∗1/2 = Λ̃k(H∗1/2XH∗1/2) .

Then, using the expression for Vk from Lemma 9, it follows that

H∗1/2VkH
∗1/2 = H∗1/2

(
V∞ − Λk(V∞)

)
H∗1/2

= H∗1/2
(
I − Λk

)
(V∞)H∗1/2

=
(
I − Λ̃k

)
(H∗1/2V∞H

∗1/2) . (24)

And thus

1

2
tr (H∗Vk) =

1

2
tr
(
H∗1/2VkH

∗1/2
)

=
1

2
tr
(
H∗1/2V∞H

∗1/2
)
− 1

2
tr
(

Λ̃k(H∗1/2V∞H
∗1/2)

)
. (25)

Next, we observe that for any matrix X

tr
(

Λ̃k(X)
)

= tr
(

(I − C)kX(I − C)k
)

= tr
(

(I − C)2kX
)

. (26)

Because the eigenvalues of a product of square matrices are invariant under cyclic per-
mutation of those matrices, we have λ1(C) = λ1(αH

∗1/2B−1H∗1/2) = αλ1(B
−1H∗) ≤ 1

so that I − C is PSD, and it thus follows that λi((I − C)2k) = (1 − λn−i+1(C))2k. Then,
assuming that X is also PSD, we can use Lemma 18 to get

(1− λ1(C))2k tr(X) ≤ tr
(

(I − C)2kX
)
≤ (1− λn(C))2k tr(X) .

Applying this to eqn. 25 we thus have the upper bound

1

2
tr (H∗Vk) ≤

(
1− (1− λ1(C))2k

) 1

2
tr(H∗V∞) , (27)

and the lower bound

1

2
tr (H∗Vk) ≥

(
1− (1− λn(C))2k

) 1

2
tr(H∗V∞) . (28)

From Lemma 9, V∞ is given by V∞ = α2(I − Λ)−1(B−1ΣgB
−1). Thus, by Proposition

10 we have

tr(H∗V∞) = α2 1

2α
tr

((
B − α

2
H∗
)−1

BB−1ΣgB
−1B

)
=
α

2
tr

((
B − α

2
H∗
)−1

Σg

)
. (29)

Next, we will compute/bound the term tr
(
H∗(E[θk]− θ∗)(E[θk]− θ∗)>

)
.

51

Martens

From eqn. 23 we have

E[θk]− θ∗ = (I − αB−1H∗)k(θ0 − θ∗) .

Then observing

H∗1/2(I − αB−1H∗) =
(
I − αH∗1/2B−1H∗1/2

)
H∗1/2 = (I − C)H∗1/2

and applying this recursively, it follows that

H∗1/2(E[θk]− θ∗) = H∗1/2(I − αB−1H∗)k(θ0 − θ∗)

= (I − C)kH∗1/2(θ0 − θ∗) . (30)

Thus we have

1

2
tr
(
H∗(E[θk]− θ∗)(E[θk]− θ∗)>

)
=

1

2
tr
(
H∗1/2(E[θk]− θ∗)(E[θk]− θ∗)>H∗1/2

)
=

1

2
tr
(

(I − C)kH∗1/2(θ0 − θ∗)(θ0 − θ∗)>H∗1/2(I − C)k
>)

=
1

2
tr
(

(I − C)2k
(
H∗1/2(θ0 − θ∗)(θ0 − θ∗)>H∗1/2

))
.

Applying Lemma 18 in a similar manner to before, and using the fact that

h(θ) =
1

2
(θ − θ∗)>H∗(θ − θ∗) =

1

2
tr
(
H∗1/2(θ0 − θ∗)(θ0 − θ∗)>H∗1/2

)
,

we have the upper bound

1

2
tr
(
H∗(E[θk]− θ∗)(E[θk]− θ∗)>

)
≤ (1− λn (C))2k h(θ0) , (31)

and the lower bound

1

2
tr
(
H∗(E[θk]− θ∗)(E[θk]− θ∗)>

)
≥ (1− λ1 (C))2k h(θ0) . (32)

Combining eqn. 20, eqn. 27, eqn. 28, eqn. 29, eqn. 31, and eqn. 32 yields the claimed
bound.

B.2 The αk = 1/(k + a+ 1) Case

In this subsection we will prove the claims made in Theorems 3 and 5 pertaining to the case
where

• αk = 1/(k + a+ 1),

• b = λn
(
B−1H∗

)
> 1/2, and

• λ1
(
B−1H∗

)
≤ a+ 1.

52

New Insights and Perspectives on the Natural Gradient Method

Corollary 12. The operator Ξ−I has all positive eigenvalues and is thus invertible. More-
over, if X is a PSD matrix then (Ξ− I)−1 (X) is as well.

Proof We note that the operator Ω(X) = B−1H∗XH∗B−1 is represented by the matrix
B−1H∗ ⊗ B−1H∗. Because Kronecker products respect eigenvalue decompositions, the
eigenvalues of this matrix are given by {λi(B−1H∗)λj(B−1H∗) | 0 ≤ i, j ≤ n}, and are
thus all positive. (Because both H∗ and B are positive definite, the eigenvalues of B−1H∗

are all positive.) Thus, Ω−1 exists and has all positive eigenvalues. And observing that
(Ω−1)(X) = H∗−1BXBH∗−1, we see that Ω−1 preserves PSD matrices.

Define the operator Φ(X) = Ω−1 ((Ξ− I)(X)). Because Ω−1 has all positive eigenvalues
and commutes with Ξ, Φ will have all positive eigenvalues if and only if Ξ−I does. Moreover,
because Ω−1 is a bijection from the set of PSD matrices to itself, Φ−1 will map PSD matrices
to PSD matrices if and only if (Ξ− I)−1 does.

With these facts in hand it suffices to prove our various claims about the operator Φ.
Note that

Ω−1 ((Ξ− I)(X)) = Ω−1
(
B−1H∗X +XH∗B−1 −X

)
= XBH∗−1 +H∗−1BX −H∗−1BXBH∗−1

= X − (I −H∗−1B)X(I −H∗−1B)>

= X −DXD> ,

where we have defined D = I −H∗−1B.
The eigenvalues of H∗−1B are the same as those of B1/2H∗−1B1/2 (since the matrices

differ by a similarity transform), and are thus real-valued and positive. Moreover, they
are the inverse of those of B−1H∗. So the minimum eigenvalue of D is λn(D) = 1 −
λ1(H

∗−1B) = 1 − 1/λn(B−1H∗) ≥ 1 − 1/0.5 = −1. And the maximum eigenvalue of D is
just λn(D) = 1− λn(H∗−1B) ≤ 1.

Lemma 21 is therefore applicable to Φ and the claim follows.

Lemma 13. For all k ≥ 0

Vk =
1

k + a
(Ξ− I)−1 (U) + Ek ,

where Ek is a matrix-valued “error” defined by the recursion

Ek+1 = Λk(Ek) +
1

(k + a)(k + a+ 1)2
Z E0 = −1

a
(Ξ− I)−1 (U) ,

with Z = (Ξ− I)−1 Ψ1(U).

Proof We will proceed by induction on k.
Observe that V0 = Var(θ0) = 0, and that this agrees with our claimed expression for Vk

when evaluated at k = 0:

V0 =
1

0 + a
(Ξ− I)−1 (U) + E0

=
1

a
(Ξ− I)−1 (U)− 1

a
(Ξ− I)−1 (U) = 0 .

53

Martens

For the inductive case, suppose that Vk = 1
k+a (Ξ− I)−1 (U) + Ek for some k.

Observe that for any i > 0

1

i
− 1

i(i+ 1)
=

(i+ 1)− 1

i(i+ 1)
=

i

i(i+ 1)
=

1

i+ 1
,

from which it follows that

1

k + a
− 1

(k + a)(k + a+ 1)
=

1

k + a+ 1
,

and thus also

1

(k + a)(k + a+ 1)
− 1

(k + a)(k + a+ 1)2
=

1

(k + a+ 1)2
.

By definition, we have Ψ1 = I − Ξ + Ω, which implies

(Ξ− I)−1 Ψ1 = (Ξ− I)−1 Ω− I ,

and so Z =
(

(Ξ− I)−1 Ω− I
)

(U).

Using the above expressions and the fact that the various linear operators commute we
have

Vk+1 = Λk(Vk) + α2
kU

= Λk(Vk) +
1

(k + a+ 1)2
U

= Λk

(
1

k + a
(Ξ− I)−1 (U) + Ek

)
+

1

(k + a+ 1)2
U

= Λk

(
1

k + a
(Ξ− I)−1 (U)

)
+

(
1

(k + a)(k + a+ 1)
− 1

(k + a)(k + a+ 1)2

)
(U) + Λk(Ek)

= (Ξ− I)−1
(

1

k + a
Λk +

1

(k + a)(k + a+ 1)
(Ξ− I)− 1

(k + a)(k + a+ 1)2
Ω

)
(U)

+
1

(k + a)(k + a+ 1)2

(
(Ξ− I)−1 Ω− I

)
(U) + Λk(Ek)

= (Ξ− I)−1
(

1

k + a
Λk +

1

(k + a)(k + a+ 1)
(Ξ− I)− 1

(k + a)(k + a+ 1)2
Ω

)
(U) + Ek+1 .

Next, observing that

1

k + a
Λk +

1

(k + a)(k + a+ 1)
(Ξ− I)− 1

(k + a)(k + a+ 1)2
Ω

=
1

k + a
I − 1

(k + a)(k + a+ 1)
Ξ +

1

(k + a)(k + a+ 1)2
Ω

+
1

(k + a)(k + a+ 1)
(Ξ− I)− 1

(k + a)(k + a+ 1)2
Ω

=

(
1

k + a
− 1

(k + a)(k + a+ 1)

)
I

=
1

k + a+ 1
I ,

54

New Insights and Perspectives on the Natural Gradient Method

our previous expression for Vk+1 simplifies to

Vk+1 = (Ξ− I)−1
(

1

k + a+ 1
I

)
(U) + Ek+1

=
1

k + a+ 1
(Ξ− I)−1 (U) + Ek+1 .

Proposition 14. For any appropriately sized matrix X we have

tr
(
H∗ (Ξ− I)−1 (X)

)
=

1

2
tr

((
B−1 − 1

2
H∗−1

)−1
X

)
.

Proof

Let Y = (Ξ− I)−1 (X), so that (Ξ− I) (Y) = X. Written as a matrix equation this is

B−1H∗Y + Y H∗B−1 − Y = X .

And rearranging this becomes

Y H∗
(
B−1 − 1

2
H∗−1

)
+

(
B−1 − 1

2
H∗−1

)
H∗Y −X = 0 ,

which is of the form A>P + PA+Q = 0 with

A = H∗Y

P =

(
B−1 − 1

2
H∗−1

)
Q = −X ,

In order to compute tr(H∗Y) we can thus apply Lemma 17. However, we must first
verify that our P is invertible. To this end we will show that B−1− 1

2H
∗−1 is positive definite.

This is equivalent to the condition that H∗1/2(B−1− 1
2H
∗−1)H∗1/2 = H∗1/2B−1H∗1/2− 1

2I

is positive definite, or in other words that λn(H∗1/2B−1H∗1/2) = λn(B−1H∗) > 1/2, which
is true by hypothesis.

Thus Lemma 17 is applicable, and yields

tr(H∗Y) = tr(A) = −1

2
tr(P−1Q) =

1

2
tr

((
B−1 − 1

2
H∗−1

)−1
X

)
.

55

Martens

Lemma 15. For Ek as defined in Lemma 13 we have the following upper and lower bounds:

tr(H∗Ek) ≤
ν(a)k

2(k + a)3
tr

((
B−1 − 1

2
H∗−1

)−1
Ψ1(U)

)

and

tr(H∗Ek) ≥ −
1

2a

(
a+ 1

k + a

)2b

tr

((
B−1 − 1

2
H∗−1

)−1
U

)
,

where ν(a) = (a+ 2)3/(a(a+ 1)2).

Proof

Recall that E0 = − 1
a (Ξ− I)−1 (U) and Z = (Ξ− I)−1 Ψ1(U).

Observing that Ψ1 preserves PSD matrices, that U is PSD, and that if a linear opera-
tor preserves PSD matrices it also preserves negative semi-definite (NSD) matrices (which
follows directly from linearity), we can then apply Corollary 12 to get that E0 is NSD and
Z is PSD.

Define Fk by

Fk+1 = Λk(Fk) +
1

(k + a)(k + a+ 1)2
Z F0 = 0 ,

and Dk by

Dk+1 = Λk(Dk) D0 = E0 .

Because Λk preserves PSD (and NSD) matrices like Ψ1 does, and PSDness is preserved
under non-negative linear combinations, it’s straightforward to show that Dk � Ek � Fk
and Fk � 0 � Dk for all k (where X � Y means that Y −X is PSD). It thus follows that
tr(H∗Dk) ≤ tr(H∗Ek) ≤ tr(H∗Fk).

Note that for any appropriately sized matrix X we have

H∗1/2Λk(X)H∗1/2 = H∗1/2
(
(I − αkB−1H∗)X(I − αkH∗B−1)

)
H∗1/2

=
(

(I − αkH∗1/2B−1H∗1/2)H∗1/2XH∗1/2(I − αkH∗1/2B−1H∗1/2)
)

= Λ̃k

(
H∗1/2XH∗1/2

)
,

where we have defined

Λ̃(Y) = (I − Ck)Y (I − Ck)> = (I − Ck)Y (I − Ck)

with

Ck = αkH
∗1/2B−1H∗1/2 .

56

New Insights and Perspectives on the Natural Gradient Method

It thus follows that

tr(H∗Λk(X)) = tr
(
H∗1/2Λk(X)H∗1/2

)
= tr

(
(I − Ck)H∗1/2XH∗1/2(I − Ck)

)
= tr

(
(I − Ck)2H∗1/2XH∗1/2

)
.

Because the eigenvalues of a product of square matrices are invariant under cyclic per-
mutation of those matrices, we have λ1(Ck) = λ1(αkH

∗1/2B−1H∗1/2) = αkλ1(B
−1H∗) ≤

1
a+1λ1(B

−1H∗) ≤ 1 so that I − Ck is PSD, and it thus follows that λi((I − Ck)
2) =

(1− λn−i+1(Ck))
2. Then assuming X is also PSD we can use Lemma 18 to get

tr
(

(I − Ck)2H∗1/2XH∗1/2
)
≤ λ1

(
(I − Ck)2

)
tr(H∗1/2XH∗1/2)

=

(
1− b

k + a+ 1

)2

tr(H∗X) ,

where we have defined b = λn(B−1H∗).
From this it follows that

tr(H∗Fk+1) = tr

(
H∗
(

Λk(Fk) +
1

(k + a)(k + a+ 1)2
Z

))
= tr(H∗Λk(Fk)) +

1

(k + a)(k + a+ 1)2
tr(H∗Z)

≤
(

1− b

k + a+ 1

)2

tr(H∗Fk) +
1

(k + a)(k + a+ 1)2
tr(H∗Z) .

Iterating this inequality and using the fact that F0 = 0 we thus have

tr(H∗Fk) ≤ tr(H∗F0)
k−1∏
j=0

(
1− b

j + a+ 1

)2

+ tr(H∗Z)
k−1∑
i=0

1

(i+ a)(i+ a+ 1)2

k−1∏
j=i+1

(
1− b

j + a+ 1

)2

= tr(H∗Z)
k−1∑
i=0

1

(i+ a)(i+ a+ 1)2

k−1∏
j=i+1

(
1− b

j + a+ 1

)2

.

Then applying Proposition 23 we can further upper bound this by

ν(a)k

(k + a)3
tr(H∗Z) ,

where ν(a) = (a+ 2)3/(a(a+ 1)2).
Recalling the definition Z = (Ξ− I)−1 Ψ1(U) and applying Proposition 14, we have

tr (H∗Z) = tr
(
H∗ (Ξ− I)−1 Ψ1(U)

)
=

1

2
tr

((
B−1 − 1

2
H∗−1

)−1
Ψ1(U)

)
.

57

Martens

And so in summary we have

tr(H∗Ek) ≤ tr(H∗Fk) ≤
ν(a)k

2(k + a)3
tr

((
B−1 − 1

2
H∗−1

)−1
Ψ1(U)

)
.

It remains to establish the claimed lower bound.
For NSD matrices X, Corollary 19 tells us that

tr
(

(I − Ck)2H∗1/2XH∗1/2
)
≥ λ1

(
(I − Ck)2

)
tr(H∗1/2XH∗1/2)

=

(
1− b

k + a+ 1

)2

tr(H∗X) .

From this it follows that

tr(H∗Dk+1) = tr (H∗ (Λk(Dk))) ≥
(

1− b

k + a+ 1

)2

tr(H∗Dk) .

Iterating this inequality and using the fact that D0 = E0 we thus have

tr(H∗Dk) ≥ tr(H∗D0)
k−1∏
j=0

(
1− b

j + a+ 1

)2

= tr(H∗E0)

k−1∏
j=0

(
1− b

j + a+ 1

)2

.

Then applying Proposition 23 we can further lower bound this by(
a+ 1

k + a

)2b

tr(H∗E0) .

By the definition of E0 and Proposition 14 we have

tr(H∗E0) = −1

a
tr
(
H∗ (Ξ− I)−1 (U)

)
= − 1

2a
tr

((
B−1 − 1

2
H∗−1

)−1
U

)
,

and so in summary our lower bound is

tr(H∗Ek) ≥ tr(H∗Dk) ≥ −
1

2a

(
a+ 1

k + a

)2b

tr

((
B−1 − 1

2
H∗−1

)−1
U

)
.

Lemma 16. The expected objective value satisfies

l(k) ≤ E[h(θk)]− h(θ∗) ≤ u(k) ,

58

New Insights and Perspectives on the Natural Gradient Method

where

u(k) =
1

4(k + a)
tr

((
B−1 − 1

2
H∗−1

)−1
U

)
+

ν(a)k

4(k + a)3
tr

((
B−1 − 1

2
H∗−1

)−1
Ψ1(U)

)

+ h(θ0)

(
a+ 1

k + a

)2b

and

l(k) =
1

4(k + a)
tr

((
B−1 − 1

2
H∗−1

)−1
U

)
− 1

4a

(
a+ 1

k + a

)2b

tr

((
B−1 − 1

2
H∗−1

)−1
U

)
,

where ν(a) = (a+ 2)3/(a(a+ 1)2).

Proof
From eqn. 20 we have

E[h(θk)]− h(θ∗) =
1

2
tr (H∗Vk) +

1

2
tr
(
H∗(E[θk]− θ∗)(E[θk]− θ∗)>

)
. (33)

By the expression for Vk from Lemma 13 we have that

1

2
tr (H∗Vk) =

1

2
tr

(
H∗
(

1

k + a
(Ξ− I)−1 (U) + Ek

))
=

1

2(k + a)
tr
(
H∗
(

(Ξ− I)−1 (U)
))

+
1

2
tr (H∗Ek) . (34)

Applying Proposition 14 we have that the first term above is given by

1

2(k + a)
tr
(
H∗
(

(Ξ− I)−1 (U)
))

=
1

4(k + a)
tr

((
B−1 − 1

2
H∗−1

)−1
U

)
. (35)

And by Lemma 15, the second term is lower and upper bounded as follows:

− 1

4a

(
a+ 1

k + a

)2b

tr

((
B−1 − 1

2
H∗−1

)−1
U

)
≤ 1

2
tr(H∗Ek)

≤ ν(a)k

4(k + a)3
tr

((
B−1 − 1

2
H∗−1

)−1
Ψ1(U)

)
,

(36)

where ν(a) = (a+ 2)3/(a(a+ 1)2).
It remains to compute/bound the term tr

(
H∗(E[θk]− θ∗)(E[θk]− θ∗)>

)
. From eqn. 23

we have

E[θk]− θ∗ =

k−1∏
j=0

(
I − αjB−1H∗

)
(θ0 − θ∗) .

59

Martens

Observing

H∗1/2(I − αiB−1H∗) = (I − αiH∗1/2B−1H∗1/2)H∗1/2

it follows that

H∗1/2(E[θk]− θ∗) = H∗1/2
k−1∏
j=0

(
I − αjB−1H∗

)
(θ0 − θ∗)

=
k−1∏
j=0

(
I − αjH∗1/2B−1H∗1/2

)
H∗1/2(θ0 − θ∗)

= ψk

(
H∗1/2B−1H∗1/2

)
H∗1/2(θ0 − θ∗) ,

where ψk is a polynomial defined by

ψk(x) =

k−1∏
j=0

(1− αjx) =

k−1∏
j=0

(
1− x

j + a+ 1

)
.

In the domain 0 ≤ x ≤ a+1 we have that ψk(x) is a decreasing function of x. Moreover,
for x’s in this domain Proposition 23 says that

ψk(x) ≤
(
a+ 1

k + a

)x
.

So because the eigenvalues of ψk(X) for any matrix X are given by {ψk(λi(X))}i, and
λ1(B

−1H∗) ≤ a+ 1 by hypothesis, it thus follows that

λ1

(
ψk

(
H∗1/2B−1H∗1/2

))
= ψk

(
λn

(
H∗1/2B−1H∗1/2

))
= ψk

(
λn
(
B−1H∗

))
≤
(
a+ 1

k + a

)b
.

And so by Lemma 18 we have that

1

2
tr
(
H∗(E[θk]− θ∗)(E[θk]− θ∗)>

)
=

1

2
tr
(
H∗1/2(E[θk]− θ∗)(E[θk]− θ∗)>H∗1/2

)
=

1

2
tr

(
ψk

(
H∗1/2B−1H∗1/2

)2 (
H∗1/2(θ0 − θ∗)(θ0 − θ∗)>H∗1/2

))
≤ λ1

(
ψk

(
H∗1/2B−1H∗1/2

))2 1

2
tr
(
H∗1/2(θ0 − θ∗)(θ0 − θ∗)>H∗1/2

)
(37)

= λ1

(
ψk

(
H∗1/2B−1H∗1/2

))2 1

2
(θ0 − θ∗)>H∗(θ0 − θ∗)

≤
(
a+ 1

k + a

)2b

h(θ0) .

Combining eqn. 33, eqn. 34, eqn. 35, eqn. 36 and the above bound the claimed result
follows.

60

New Insights and Perspectives on the Natural Gradient Method

B.3 Proof of Theorem 6

Theorem. Suppose that θk is generated by the stochastic iteration in eqn. 19 with constant
step-size αk = α while optimizing a quadratic objective h(θ) = 1

2(θ − θ∗)>H∗(θ − θ∗).

Further more, suppose that αλ1(B
−1H∗) < 1, and define θ̄k = 1

k+1

∑k
i=0 θi. Then we have

the following bound:

E[h(θ̄k)]− h(θ∗) ≤ min

{
1

2(k + 1)
tr
(
H∗−1Σg

)
,
α

4
tr

((
B − α

2
H∗
)−1

Σg

)}
+ min

{
1

2(k + 1)2α2

∥∥∥H∗−1/2B(θ0 − θ∗)
∥∥∥2 ,

1

2(k + 1)α

∥∥∥B1/2(θ0 − θ∗)
∥∥∥2 , h(θ0)

}
.

Proof

To begin, we observe that, analogously to eqn. 20,

E[h(θ̄k)]− h(θ∗) =
1

2
tr
(
H∗V̄k

)
+

1

2
tr
(
H∗
(
E[θ̄k]− θ∗

) (
E[θ̄k]− θ∗

)>)
, (38)

where

V̄k = Var(θ̄k) = Cov(θ̄k, θ̄k) = E
[(
θ̄k − E[θ̄k]

) (
θ̄k − E[θ̄k]

)>]
.

Our first major task is to find an expression for V̄k in order to bound the term 1
2 tr

(
H∗V̄k

)
.

To this end we observe that

V̄k =
1

(k + 1)2

k∑
i=0

k∑
j=0

Cov(θi, θj) .

For j > i we have

Cov (θi, θj) = Cov
(
θi, θj−1 − αB−1gj−1(θj−1)

)
= Cov (θi, θj−1)− αCov (θi, gj−1(θj−1))B

−1 ,

where

Cov (θi, gj−1(θj−1)) = E
[
(θi − E[θi])(gj−1(θj−1)− E[gj−1(θj−1)])

>
]

= Eθi,θj−1

[
Egj−1(θj−1)|θj−1

[
(θi − E[θi])(gj−1(θj−1)− E[gj−1(θj−1)])

>
]]

= Eθi,θj−1

[
(θi − E[θi])(∇h(θj−1)− E[gj−1(θj−1)])

>
]

= E
[
(θi − E[θi])(∇h(θj−1)− E[gj−1(θj−1)])

>
]

.

Here we have used the fact that gj−1(θj−1) is conditionally independent of θi given θj−1 for
j − 1 ≥ i (which allows us to take the conditional expectation over gj−1(θj−1) inside), and
is an unbiased estimator of ∇h(θj−1).

61

Martens

Then, noting that E[gj−1(θj−1)] = E[∇h(θj−1)] = E[H∗(θj−1 − θ∗)] = H∗(E[θj−1]− θ∗),
we have

∇h(θj−1)− E[gj−1(θj−1)] = H∗(θj−1 − θ∗)−H∗(E[θj−1]− θ∗)
= H∗(θj−1 − E[θj−1])

so that

Cov (θi, gj−1(θj−1)) = E
[
(θi − E[θi])(∇h(θj−1)− E[gj−1(θj−1)])

>
]

= E
[
(θi − E[θi])(H

∗(θj−1 − E[θj−1]))
>
]

= E
[
(θi − E[θi])(θj−1 − E[θj−1])

>
]
H∗ = Cov(θi, θj−1)H

∗ .

From this we conclude that

Cov (θi, θj) = Cov (θi, θj−1)− αCov (θi, gj−1(θj−1))B
−1

= Cov (θi, θj−1)− αCov(θi, θj−1)H
∗B−1

= Cov (θi, θj−1)
(
I − αB−1H∗

)>
.

Applying this recursively we have that for j ≥ i

Cov (θi, θj) = Vi
(
I − αB−1H∗

)j−i>
. (39)

Taking transposes and switching the roles of i and j we similarly have for i ≥ j that

Cov (θi, θj) =
(
I − αB−1H∗

)i−j
Vj .

Thus, we have the following expression for the variance V̄k of the averaged parameter
θ̄k:

V̄k =
1

(k + 1)2

k∑
i=0

k∑
j=0

Cov(θi, θj)

=
1

(k + 1)2

k∑
i=0

 i∑
j=0

(
I − αB−1H∗

)i−j
Vj +

k∑
j=i+1

Vi
(
I − αB−1H∗

)j−i> ,

which by reordering the sums and re-indexing can be written as

V̄k =
1

(k + 1)2

k∑
i=0

 i∑
j=0

(
I − αB−1H∗

)j
Vi +

k−i∑
j=1

Vi
(
I − αB−1H∗

)j> .

Having computed V̄k we now deal with the term 1
2 tr

(
H∗V̄k

)
. Observing that

H∗1/2(I − αB−1H∗) =
(
I − αH∗1/2B−1H∗1/2

)
H∗1/2 = (I − C)H∗1/2 ,

62

New Insights and Perspectives on the Natural Gradient Method

where C = αH∗1/2B−1H∗1/2, we have

H∗1/2V̄kH
∗1/2 =

1

(k + 1)2

k∑
i=0

 i∑
j=0

(I − C)j (H∗1/2ViH
∗1/2) +

k−i∑
j=1

(H∗1/2ViH
∗1/2) (I − C)j

 .

It thus follows that

1

2
tr
(
H∗V̄k

)
=

1

2
tr
(
H∗1/2V̄kH

∗1/2
)

=
1

2(k + 1)2

k∑
i=0

tr

 i∑
j=0

(I − C)j +
k−i∑
j=1

(I − C)j

H∗1/2ViH
∗1/2

 .

Recall that from eqn. 24 we have

H∗1/2ViH
∗1/2 =

(
I − Λ̃i

)
(H∗1/2V∞H

∗1/2) ,

where Λ̃(Y) = (I − C)Y (I − C)> = (I − C)Y (I − C).
Plugging this into the previous equation, using the definition of Λ̃, and the fact that

various powers of C commute, we have

1

2
tr
(
H∗V̄k

)
=

1

2(k + 1)2
tr

 k∑
i=0

 i∑
j=0

(I − C)j +

k−i∑
j=1

(I − C)j

(I − Λ̃i
)(

H∗1/2V∞H
∗1/2

)
=

1

2(k + 1)2
tr

 k∑
i=0

 i∑
j=0

(I − C)j +

k−i∑
j=1

(I − C)j

(I − (I − C)2i
)
H∗1/2V∞H

∗1/2

 .

(40)

Because C and I−C are PSD (which follows from the hypothesis λ1(C) = αλ1(B
−1H∗) <

1), we have the following basic matrix inequalities:

i∑
j=0

(I − C)j +
k−i∑
j=1

(I − C)j � 2
∞∑
j=0

(I − C)j − I = 2C−1 − I (41)

i∑
j=0

(I − C)j +

k−i∑
j=1

(I − C)j � (k + 1)I (42)

k∑
i=0

(
I − (I − C)2i

)
� (k + 1)I , (43)

where X � Y means that Y −X is PSD.
As the right and left side of all the previously stated matrix inequalities are commuting

matrices (because they are all linear combinations of powers of C, and thus share their
eigenvectors with C), we can apply Lemma 20 to eqn. 40 to obtain various simplifying
upper bounds on 1

2 tr
(
H∗V̄k

)
.

63

Martens

Applying Lemma 20 using eqn. 41 and then eqn. 43 gives the upper bound

1

2
tr
(
H∗V̄k

)
≤ 1

2(k + 1)2
tr
((

2C−1 − I
)

(k + 1)I H∗1/2V∞H
∗1/2

)
=

1

k + 1
tr

((
1

α
B − 1

2
H∗
)
V∞

)
,

where we have used H∗1/2C−1H∗1/2 = H∗1/2
(
αH∗1/2B−1H∗1/2

)−1
H∗1/2 = 1

αB.

Or we can apply the lemma using eqn. 42 and then eqn. 43, which gives a different upper
bound of

1

2
tr
(
H∗V̄k

)
≤ 1

2(k + 1)2
tr
(

(k + 1)I (k + 1)I H∗1/2V∞H
∗1/2

)
≤ 1

2
tr (H∗V∞)

=
α

4
tr

((
B − α

2
H∗
)−1

Σg

)
,

where we have used eqn. 29 on the last line.
Applying these bounds to eqn. 40 yields

1

2
tr
(
H∗V̄k

)
≤ min

{
1

k + 1
tr

((
1

α
B − 1

2
H∗
)
V∞

)
,
α

4
tr

((
B − α

2
H∗
)−1

Σg

)}
. (44)

To compute tr
((

1
αB −

1
2H
∗)V∞), we begin by recalling the definition V∞ = α2 (I − Λ)−1 (U).

Applying the operator (I − Λ) to both sides gives (I − Λ) (V∞) = α2(U), which corresponds
to the matrix equation

αB−1H∗V∞ + αV∞H
∗B−1 − α2B−1H∗V∞H

∗B−1 = α2U = α2B−1ΣgB
−1 .

Left and right multiplying both sides by 1
αB gives

1

α
H∗V∞B +

1

α
BV∞H

∗ −H∗V∞H∗ = Σg ,

which can be rewritten as(
1

α
B − 1

2
H∗
)
V∞H

∗ +H∗V∞

(
1

α
B − 1

2
H∗
)

= Σg .

This is of the form A>P + PA+Q = 0 where

A = V∞

(
1

α
B − 1

2
H∗
)

P = H∗

Q = −Σg .

Applying Lemma 17 we get that

tr

((
1

α
B − 1

2
H∗
)
V∞

)
= tr(A>) = tr(A) =

1

2
tr(P−1Q) =

1

2
tr
(
H∗−1Σg

)
. (45)

64

New Insights and Perspectives on the Natural Gradient Method

It remains to bound the term 1
2 tr

(
H∗(E[θ̄k]− θ∗)(E[θ̄k]− θ∗)>

)
.

First, we observe that by Theorem 3

E[θ̄k]− θ∗ =
1

k + 1

k∑
i=0

(E[θi]− θ∗) =
1

k + 1

k∑
i=0

(
I − αB−1H∗

)i
(θ0 − θ∗) .

Applying eqn. 30 then gives

H∗1/2
(
E[θ̄k]− θ∗

)
=

1

k + 1

k∑
i=0

(I − C)iH∗1/2(θ0 − θ∗) .

And thus we have

1

2
tr
(
H∗
(
E[θ̄k]− θ∗

) (
E[θ̄k]− θ∗

)>)
=

1

2
tr
(
H∗1/2

(
E[θ̄k]− θ∗

) (
E[θ̄k]− θ∗

)>
H∗1/2

)
=

1

2(k + 1)2
tr

((
k∑
i=0

(I − C)i
)
H∗1/2(θ0 − θ∗)(θ0 − θ∗)>H∗1/2

(
k∑
i=0

(I − C)i
))

.

(46)

Similarly to eqn. 41–43 we have the following matrix inequalities

k∑
i=0

(I − C)i �
∞∑
i=0

(I − C)i = C−1 (47)

k∑
i=0

(I − C)i � (k + 1)I . (48)

Applying Lemma 20 using eqn. 47 twice we obtain an upper bound on the RHS of
eqn. 46 of

1

2(k + 1)2
tr
(
C−1 H∗1/2(θ0 − θ∗)(θ0 − θ∗)>H∗1/2 C−1

)
=

1

2(k + 1)2α2

∥∥∥H∗−1/2B(θ0 − θ∗)
∥∥∥2 .

Applying the lemma using eqn. 47 and eqn. 48 gives a different upper bound of

1

2(k + 1)2
tr
(
C−1 H∗1/2(θ0 − θ∗)(θ0 − θ∗)>H∗1/2 (k + 1)I

)
=

1

2(k + 1)α

∥∥∥B1/2(θ0 − θ∗)
∥∥∥2 .

And finally, applying the lemma using eqn. 48 twice gives an upper bound of

1

2(k + 1)2
tr
(

(k + 1)I H∗1/2(θ0 − θ∗)(θ0 − θ∗)>H∗1/2 (k + 1)I
)

= h(θ0) .

Combining these various upper bounds gives us

1

2
tr
(
H∗(E[θ̄k]− θ∗)(E[θ̄k]− θ∗)>

)
≤ min

{
1

2(k + 1)2α2

∥∥∥H∗−1/2B(θ0 − θ∗)
∥∥∥2 , 1

2(k + 1)α

∥∥∥B1/2(θ0 − θ∗)
∥∥∥2 , h(θ0)

}
.

(49)

The result now follows from eqn. 38, eqn. 44, eqn. 45, and eqn. 49.

65

Martens

Appendix C. Derivations of Bounds for Section 14.2.1

By Lemma 18

tr
(
H∗−1Σg

)
≥ λn

(
H∗−1

)
tr(Σg) =

1

λ1 (H∗)
tr(Σg)

and

tr
(
H∗−1Σg

)
≤ λ1

(
H∗−1

)
tr(Σg) =

1

λn (H∗)
tr(Σg) ,

so that

1

2λ1 (H∗)
tr(Σg) ≤

1

2
tr
(
H∗−1Σg

)
≤ 1

2λn (H∗)
tr(Σg) .

Meanwhile, by Lemma 18

tr

((
I − λn(H∗)

2
H∗−1

)−1
Σg

)
≥ λn

((
I − λn(H∗)

2
H∗−1

)−1)
tr(Σg)

=
1

λ1

(
I − λn(H∗)

2 H∗−1
) tr(Σg)

=
1

1− λn(H∗)
2 λn(H∗−1)

tr(Σg)

=
1

1− 1
2κ(H∗)

tr(Σg) ≥ tr(Σg) ,

where κ(H∗) = λ1(H
∗)/λn(H∗) is the condition number of H∗. Similarly, by Lemma 18 we

have

tr

((
I − λn(H∗)

2
H∗−1

)−1
Σg

)
≤ λ1

((
I − λn(H∗)

2
H∗−1

)−1)
tr(Σg)

=
1

λn

(
I − λn(H∗)

2 H∗−1
) tr(Σg)

=
1

1− λn(H∗)
2 λ1(H∗

−1)
tr(Σg)

=
1

1− λn(H∗)
2λn(H∗)

tr(Σg) = 2 tr(Σg) ,

and thus

1

4λn(H∗)
tr(Σg) ≤

1

4λn(H∗)
tr

((
I − λn(H∗)

2
H∗−1

)−1
Σg

)
≤ 1

2λn(H∗)
tr(Σg) .

66

New Insights and Perspectives on the Natural Gradient Method

Appendix D. Some Self-contained Technical Results

Lemma 17. Suppose A>P +PA+Q = 0 is a matrix equation where P is invertible. Then
we have

tr(A) = −1

2
tr(P−1Q) .

Proof Pre-multiplying both sides of A>P+PA+Q = 0 by P−1 and taking the trace yields
tr(P−1A>P) + tr(A) + tr(P−1Q) = 0. Then noting that tr(P−1A>P) = tr(PP−1A>) =
tr(A>) = tr(A) this becomes 2 tr(A) + tr(P−1Q) = 0, from which the claim follows.

Lemma 18 (Adapted from Lemma 1 from Wang et al. (1986)). Suppose X and S are n×n
matrices such that S is symmetric and X is PSD. Then we have

λn(S) tr(X) ≤ tr(SX) ≤ λ1(S) tr(X) .

Corollary 19. Suppose X and S are n × n matrices such that S is symmetric and X is
negative semi-definite (NSD). Then we have

λ1(S) tr(X) ≤ tr(SX) ≤ λn(S) tr(X) .

Proof Because X is NSD, −X is PSD. We can therefore apply Lemma 18 to get that

λn(S) tr(−X) ≤ tr(S(−X)) ≤ λ1(S) tr(−X) ,

or in other words

−λn(S) tr(X) ≤ − tr(SX) ≤ −λ1(S) tr(X) .

Multiplying by −1 this becomes

λn(S) tr(X) ≥ tr(SX) ≥ λ1(S) tr(X) .

Lemma 20. If A, S, T , and X are matrices such that A, S and T commute with each
other, S � T (i.e. T − S is PSD), and A and X are PSD, then we have

tr(ASX) ≤ tr(ATX) .

Proof Since A, S and T are commuting PSD matrices they have the same eigenvectors,
as does A1/2 (which thus also commutes).

Meanwhile, S � T means that T − S is PSD, and thus so is A1/2(T − S)A1/2. Because
the trace of the product of two PSD matrices is non-negative (e.g. by Lemma 18), it fol-
lows that tr((A1/2(T − S)A1/2)X) ≥ 0. Adding tr(A1/2SA1/2X) to both sides of this we
get tr(A1/2TA1/2X) ≥ tr(A1/2SA1/2X). Because A1/2 commutes with T and S we have
tr(A1/2TA1/2X) = tr(ATX) and tr(A1/2SA1/2X) = tr(ASX), and so the result follows.

67

Martens

Lemma 21. Suppose D is a matrix with real eigenvalues bounded strictly between −1 and
1. Define the operator Φ(X) = X −DXD>. Then Φ has positive eigenvalues and is thus
invertible. Moreover, we have

Φ−1(X) =
∞∑
i=0

DiX(Di)> .

And so if X is a PSD matrix then Φ−1(X) is as well.

Proof The linear operator Φ can be expressed as a matrix using Kronecker product notation
as I − D ⊗ D. See Van Loan (2000) for a discussion of Kronecker products and their
properties.

Because Kronecker products respect eigenvalue decompositions, the eigenvalues of D⊗D
are given by {λi(D)λj(D) | 0 ≤ i, j ≤ n}. By hypothesis, the eigenvalues of D are real and
bounded strictly between −1 and 1, and it therefore follows that the eigenvalues of D ⊗D
have the same property. From this it immediately follows that the eigenvalues of I−D⊗D
are all > 0, and thus I −D ⊗D is invertible.

Moreover, because of these bounds on the eigenvalues for D ⊗D, we have

(I −D ⊗D)−1 =

∞∑
i=0

(D ⊗D)i =

∞∑
i=0

(Di ⊗Di) .

Translating back to operator notation this is

Φ−1(X) =
∞∑
i=0

DiX(Di)> .

For any PSD matrix X this is a sum (technically a convergent series) of self-evidently
PSD matrices, and is therefore PSD itself.

Proposition 22. Let Hn be the n-th Harmonic number, defined by Hn =
∑n

i=1
1
i . For any

integers n1 ≥ n2 ≥ 1 we have

Hn1 −Hn2 ≥ log(n1)− log(min{n2 + 1, n1}) .

Proof An inequality for Hn due to Young (1991) is

log(n) + γ +
1

2(n+ 1)
≤ Hn ≤ log(n) + γ +

1

2n
,

where γ is the Euler-Mascheroni constant.
In particular, we have

Hn1 ≥ log(n1) + γ +
1

2(n1 + 1)
≥ log(n1) + γ ,

68

New Insights and Perspectives on the Natural Gradient Method

and

Hn2+1 ≤ log(n2 + 1) + γ +
1

2(n2 + 1)
≤ log(n2 + 1) + γ +

1

n2 + 1
,

which implies

Hn2 ≤ log(n2 + 1) + γ .

Taking the difference of the two inequalities yields

Hn1 −Hn2 ≥ log(n1)− log(n2 + 1) .

Noting that min{n2 + 1, n1} = n1 if and only if n1 = n2, and that in such a case we
have Hn1 −Hn2 = 0, the result follows.

Proposition 23. Suppose 0 ≤ i ≤ k − 1 for integers i and k, and b is a non-negative real
number.

For any non-negative integer i such that b ≤ i+ a+ 1 we have

k−1∏
j=i

(
1− b

j + a+ 1

)
≤
(
i+ a+ 1

k + a

)b
.

And for b ≤ a+ 2 we have

k−1∑
i=0

1

(i+ a)(i+ a+ 1)2

k−1∏
j=i+1

(
1− b

j + a+ 1

)2

≤ ν(a)k

(k + a)3
,

where ν(a) = (a+ 2)3/(a(a+ 1)2).

Proof It is a well-known fact that for 0 ≤ y ≤ 1

1− y ≤ exp(−y) .

For all j ≥ i we have 0 ≤ b
j+a+1 ≤ 1 (since 0 ≤ b ≤ i+ a+ 1 ≤ j + a+ 1), and so

1− b

j + a+ 1
≤ exp

(
− b

j + a+ 1

)
.

69

Martens

From this inequality and Proposition 22 it follows that

k−1∏
j=i

(
1− b

j + a+ 1

)
≤

k−1∏
j=i

exp

(
− b

j + a+ 1

)

= exp

−b k−1∑
j=i

1

j + a+ 1


= exp (−b(Hk+a −Hi+a))

≤ exp (−b (log(k + a)− log(min{i+ a+ 1, k + a})))

=

(
min{i+ a+ 1, k + a}

k + a

)b
≤
(
i+ a+ 1

k + a

)b
.

Squaring both sides of the penultimate version of the above inequality it follows that

k−1∑
i=0

1

(i+ a)(i+ a+ 1)2

k−1∏
j=i+1

(
1− b

j + a+ 1

)2

≤
k−1∑
i=0

1

(i+ a)(i+ a+ 1)2

(
min{i+ a+ 2, k + a}

k + a

)2b

=
1

(k + a)2b

k−1∑
i=0

(min{i+ a+ 2, k + a})3

(i+ a)(i+ a+ 1)2
(min{i+ a+ 2, k + a})2b−3

≤ 1

(k + a)2b

k−1∑
i=0

ν(a) (min{i+ a+ 2, k + a})2b−3

≤ ν(a)

(k + a)2b

k−1∑
i=0

(k + a)2b−3 =
ν(a)

(k + a)2b
k · (k + a)2b−3 =

ν(a)k

(k + a)3
,

where ν(a) = (a+ 2)3/(a(a+ 1)2), which is the second claimed inequality.

Appendix E. Proof of Corollary 2

Corollary. Suppose that Bθ and Bγ are invertible matrices satisfying

J>ζ BθJζ = Bγ

for all values of θ. Then the path followed by an iterative optimizer working in θ-space
and using additive updates of the form dθ = −αB−1θ ∇h is the same as the path followed
by an iterative optimizer working in γ-space and using additive updates of the form dγ =
−αB−1γ ∇γh, provided that the optimizers use equivalent starting points (i.e. θ0 = ζ(γ0)),
and that either

70

New Insights and Perspectives on the Natural Gradient Method

• ζ is affine,

• or dθ/α is uniformly continuous as a function of θ, dγ/α is uniformly bounded (in
norm), there is a C as in the statement of Theorem 1, and α→ 0.

Note that in the second case we allow the number of steps in the sequences to grow pro-
portionally to 1/α so that the continuous paths they converge to have non-zero length as
α→ 0.

Proof In the case where ζ is affine the result follows immediately from Theorem 1, and so
it suffices to prove the second case.

We will denote by θ0, θ1, ..., and γ0, γ1, ... the sequences of iterates produced by each
optimizer. Meanwhile, dθ0 , dθ1 , ... and dγ0 , dγ1 , ... will denote the sequences of their updates.

By the triangle inequality

‖ζ(γk+1)− θk+1‖ = ‖ζ(γk + dγk)− (θk + dθk)‖
= ‖ζ(γk + dγk)− (ζ(γk) + dζ(γk)) + (ζ(γk) + dζ(γk))− (θk + dθk)‖
= ‖ζ(γk + dγk)− (ζ(γk) + dζ(γk)) + (ζ(γk)− θk) + (dζ(γk) − dθk)‖
≤ ‖ζ(γk + dγk)− (ζ(γk) + dζ(γk))‖+ ‖ζ(γk)− θk‖+ ‖dζ(γk) − dθk‖ .

By Theorem 1, we can upper bound the first term on the RHS by 1
2C
√
n‖dγk‖2. Using

the hypothesis ‖dγ/α‖ ≤ D for all γ for some universal constant D, this is further bounded
by 1

2α
2CD2√n ≡ α2E, where E is a universal constant. And by the hypothesized uni-

form continuity of dθ/α (as a function of θ) there exists a universal constant U such that
‖dζ(γk)/α − dθk/α‖ ≤ U‖ζ(γk) − θk‖, which gives a bound of αU‖ζ(γk) − θk‖ on the third
term.

In summary, we now have

‖ζ(γk+1)− θk+1‖ ≤ α2E + ‖ζ(γk)− θk‖+ αU‖ζ(γk)− θk‖ = α2E + (1 + αU)‖ζ(γk)− θk‖ .
(50)

Starting from ‖ζ(γ0)− θ0‖ = 0 (which is true by hypothesis) and applying this formula
recursively, we end up with the geometric series formula

‖ζ(γk)− θk‖ ≤ α2E
k−1∑
i=0

(1 + αU)i = α2E

(
(1 + αU)k − 1

αU

)
.

Because each step scales as α, sequences of length T/α will converge to continuous paths
of a finite non-zero length (that depends on T) as α→ 0. Noting that limα→0(1+αU)T/α =
exp(UT) (which is a standard result), it follows that the RHS of eqn. 50 converges to zero
as α → 0 for k = T/α, and indeed for all natural numbers k ≤ T/α. Thus we have for all
k ≤ T/α

lim
α→0
‖ζ(γk)− θk‖ = 0 ,

which completes the proof.

71

Martens

References

S. Amari. Theory of adaptive pattern classifiers. IEEE Transactions on Electronic Com-
puters, 16(3):299–307, 1967.

S. Amari and H. Nagaoka. Methods of Information Geometry, volume 191 of Translations
of Mathematical monographs. Oxford University Press, 2000.

S.-I. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):
251–276, 1998.

S.-i. Amari and A. Cichocki. Adaptive blind signal processing-neural network approaches.
Proceedings of the IEEE, 86(10):2026–2048, 1998.

S.-i. Amari and H. Nagaoka. Methods of information geometry, volume 191. American
Mathematical Soc., 2007.

L. Arnold, A. Auger, N. Hansen, and Y. Ollivier. Information-geometric optimization
algorithms: A unifying picture via invariance principles. 2011.

J. Ba and D. Kingma. Adam: A method for stochastic optimization. In ICLR, 2015.

S. Becker and Y. LeCun. Improving the convergence of back-propagation learning with
second order methods. In D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski, edi-
tors, Proceedings of the 1988 Connectionist Models Summer School, pages 29–37. Morgan
Kaufmann, 1989.

A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful Quasi-Newton Stochastic Gradi-
ent Descent. Journal of Machine Learning Research, 10:1737–1754, 2009.

A. Botev, H. Ritter, and D. Barber. Practical gauss-newton optimisation for deep learning.
arXiv preprint arXiv:1706.03662, 2017.

L. Bottou and Y. LeCun. On-line learning for very large data sets. Appl. Stoch. Model.
Bus. Ind., 21(2):137–151, Mar. 2005. ISSN 1524-1904.

T. Cai, R. Gao, J. Hou, S. Chen, D. Wang, D. He, Z. Zhang, and L. Wang. A gram-gauss-
newton method learning overparameterized deep neural networks for regression problems.
arXiv preprint arXiv:1905.11675, 2019.

O. Chapelle and D. Erhan. Improved Preconditioner for Hessian Free Optimization. In
NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

P. Chen. Hessian matrix vs. gauss–newton hessian matrix. SIAM Journal on Numerical
Analysis, 49(4):1417–1435, 2011.

A. R. Conn, N. I. Gould, and P. L. Toint. Trust region methods. SIAM, 2000.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization. In
Advances in neural information processing systems, pages 2933–2941, 2014.

72

New Insights and Perspectives on the Natural Gradient Method

A. Défossez and F. Bach. Constant step size least-mean-square: Bias-variance trade-offs
and optimal sampling distributions. 2014.

R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact newton methods. SIAM Journal
on Numerical analysis, 19(2):400–408, 1982.

J. E. Dennis Jr and R. B. Schnabel. Numerical methods for unconstrained optimization and
nonlinear equations, volume 16. Siam, 1996.

G. Desjardins, K. Simonyan, R. Pascanu, and K. Kavukcuoglu. Natural neural networks.
In Advances in Neural Information Processing Systems, pages 2071–2079, 2015.

S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of
deep neural networks. arXiv preprint arXiv:1811.03804, 2018.

J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

N. Flammarion and F. Bach. From averaging to acceleration, there is only a step-size. 2015.

R. Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

R. Frostig, R. Ge, S. M. Kakade, and A. Sidford. Competing with the empirical risk
minimizer in a single pass. 2014.

R. Grosse and R. Salakhudinov. Scaling up natural gradient by sparsely factorizing the
inverse fisher matrix. In Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), pages 2304–2313, 2015.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex opti-
mization. Maching Learning, 69(2-3):169–192, Dec. 2007.

T. Heskes. On “natural” learning and pruning in multilayered perceptrons. Neural Com-
putation, 12(4):881–901, 2000.

S. Hochreiter, F. F. Informatik, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient Flow
in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies. In J. Kolen and
S. Kremer, editors, Field Guide to Dynamical Recurrent Networks. IEEE Press, 2000.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in neural information processing systems, pages 8571–
8580, 2018.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems (NIPS), pages 315–323,
2013.

H. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and appli-
cations, volume 35. Springer Science & Business Media, 2003.

73

Martens

N. Le Roux and A. Fitzgibbon. A fast natural Newton method. In Proceedings of the 27th
International Conference on Machine Learning (ICML), 2010.

N. Le Roux, P.-a. Manzagol, and Y. Bengio. Topmoumoute online natural gradient algo-
rithm. In Advances in Neural Information Processing Systems 20, pages 849–856. MIT
Press, 2008.

N. Le Roux, M. W. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In Advances in Neural Information Processing
Systems (NIPS), pages 2672–2680, 2012.

Y. LeCun, L. Bottou, G. Orr, and K. Müller. Efficient backprop. Neural networks: Tricks
of the trade, pages 546–546, 1998.

J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington.
Wide neural networks of any depth evolve as linear models under gradient descent. In
Advances in neural information processing systems, pages 8570–8581, 2019.

K. Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of applied mathematics, 2(2):164–168, 1944.

N. Loizou and P. Richtárik. Momentum and stochastic momentum for stochastic gradient,
newton, proximal point and subspace descent methods. arXiv preprint arXiv:1712.09677,
2017.

D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

J. Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th Inter-
national Conference on Machine Learning (ICML), 2010.

J. Martens. Second-order optimization for neural networks. PhD thesis, University of
Toronto, 2016.

J. Martens and R. Grosse. Optimizing neural networks with Kronecker-factored approxi-
mate curvature. In Proceedings of the 32nd International Conference on Machine Learning
(ICML), 2015.

J. Martens and I. Sutskever. Learning recurrent neural networks with hessian-free optimiza-
tion. In Proceedings of the 28th International Conference on Machine Learning (ICML),
pages 1033–1040, 2011.

J. Martens and I. Sutskever. Training deep and recurrent networks with Hessian-free opti-
mization. In Neural Networks: Tricks of the Trade, pages 479–535. Springer, 2012.

J. Martens, I. Sutskever, and K. Swersky. Estimating the hessian by backpropagating
curvature. In Proceedings of the 29th International Conference on Machine Learning
(ICML), 2012.

J. Moré. The Levenberg-Marquardt algorithm: implementation and theory. Numerical
analysis, pages 105–116, 1978.

74

New Insights and Perspectives on the Natural Gradient Method

J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM Journal on Scientific
and Statistical Computing, 4(3):553–572, 1983.

E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic approximation algo-
rithms for machine learning. In Advances in Neural Information Processing Systems,
pages 451–459, 2011.

N. Murata. A statistical study of on-line learning. In D. Saad, editor, On-line Learning in
Neural Networks, pages 63–92. Cambridge University Press, 1998.

S. G. Nash. Preconditioning of truncated-newton methods. SIAM Journal on Scientific
and Statistical Computing, 6(3):599–616, 1985.

Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

J. Nocedal and S. J. Wright. Numerical optimization. Springer, 2. ed. edition, 2006.

Y. Ollivier. Riemannian metrics for neural networks i: feedforward networks. Information
and Inference, 4(2):108–153, 2015.

Y. Ollivier et al. Online natural gradient as a kalman filter. Electronic Journal of Statistics,
12(2):2930–2961, 2018.

J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in several
variables. SIAM, 2000.

H. Park, S.-I. Amari, and K. Fukumizu. Adaptive natural gradient learning algorithms for
various stochastic models. Neural Networks, 13(7):755–764, Sept. 2000.

R. Pascanu and Y. Bengio. Revisiting natural gradient for deep networks. In ICLR, 2014.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7):1180–1190, 2008.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM J. Control Optim., 30(4), July 1992.

D. W. Ruck, S. K. Rogers, M. Kabrisky, P. S. Maybeck, and M. E. Oxley. Comparative
analysis of backpropagation and the extended kalman filter for training multilayer per-
ceptrons. IEEE Transactions on Pattern Analysis & Machine Intelligence, (6):686–691,
1992.

T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning rates. In Proceedings of the
30th International Conference on Machine Learning (ICML), 2013.

N. N. Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 14, 2002.

P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent prop-a formalism for specifying
selected invariances in an adaptive network. In Advances in neural information processing
systems, pages 895–903, 1992.

75

Martens

S. Singhal and L. Wu. Training multilayer perceptrons with the extended kalman algorithm.
In Advances in neural information processing systems, pages 133–140, 1989.

T. Steihaug. The conjugate gradient method and trust regions in large scale optimization.
SIAM Journal on Numerical Analysis, 20(3):626–637, 1983.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning,
2012.

A. N. Tikhonov. On the stability of inverse problems. In Dokl. Akad. Nauk SSSR, volume 39,
pages 195–198, 1943.

C. F. Van Loan. The ubiquitous kronecker product. Journal of computational and applied
mathematics, 123(1-2):85–100, 2000.

O. Vinyals and D. Povey. Krylov subspace descent for deep learning. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

S.-D. Wang, T.-S. Kuo, and C.-F. Hsu. Trace bounds on the solution of the algebraic
matrix Riccati and Lyapunov equation. Automatic Control, IEEE Transactions on, 31
(7):654–656, 1986.

R. M. Young. Euler’s constant. The Mathematical Gazette, 75(472):187–190, 1991.

M. D. Zeiler. ADADELTA: An adaptive learning rate method. 2013.

G. Zhang, J. Martens, and R. B. Grosse. Fast convergence of natural gradient descent
for over-parameterized neural networks. In Advances in Neural Information Processing
Systems, pages 8080–8091, 2019.

76

	Introduction and Overview
	Neural Networks
	Supervised Learning Framework
	KL Divergence Objectives
	Various Definitions of the Natural Gradient and the Fisher Information Matrix
	Geometric Interpretation
	2nd-order Optimization
	The Generalized Gauss-Newton Matrix
	Computational Aspects of the Natural Gradient and Connections to the Generalized Gauss-Newton Matrix
	Constructing Practical Natural Gradient Methods, and the Critical Role of Damping
	The Empirical Fisher
	A Critical Analysis of Parameterization Invariance
	A New Interpretation of the Natural Gradient
	Asymptotic Convergence Speed
	Conclusions and Open Questions
	Proof of Basic Identity from Murata
	Proofs of Convergence Theorems
	Derivations of Bounds for Section 14.2.1
	Some Self-contained Technical Results
	Proof of Corollary 2

