
Journal of Machine Learning Research 21 (2020) 1-7 Submitted 1/18; Revised 2/20; Published 3/20

Tensor Train Decomposition on TensorFlow (T3F)

Alexander Novikov1,2 sasha.v.novikov@gmail.com
Pavel Izmailov3 pi49@cornell.edu
Valentin Khrulkov4 valentin.khrulkov@skolkovotech.ru
Michael Figurnov1 michael@figurnov.ru
Ivan Oseledets2,4 i.oseledets@skoltech.ru

1 National Research University Higher School of Economics, Moscow, Russia
2 Institute of Numerical Mathematics RAS, Moscow, Russia
3 Cornell University, Ithaca NY, USA
4 Skolkovo Institute of Science and Technology, Moscow, Russia

Editor: Alexandre Gramfort

Abstract

Tensor Train decomposition is used across many branches of machine learning. We present
T3F—a library for Tensor Train decomposition based on TensorFlow. T3F supports GPU
execution, batch processing, automatic differentiation, and versatile functionality for the
Riemannian optimization framework, which takes into account the underlying manifold
structure to construct efficient optimization methods. The library makes it easier to imple-
ment machine learning papers that rely on the Tensor Train decomposition. T3F includes
documentation, examples and 94% test coverage.

Keywords: tensor decomposition, tensor train, software, gpu, tensorflow

1. Introduction

Methods based on tensor decompositions have become ubiquitous in the machine learning
community. They are used for analyzing theoretical properties of deep networks (Cohen
et al., 2016; Cohen and Shashua, 2016; Khrulkov et al., 2017; Janzamin et al., 2015), net-
work compression (Lebedev et al., 2015; Novikov et al., 2015; Yu et al., 2017), training
probabilistic models (Anandkumar et al., 2012; Jernite et al., 2013; Song et al., 2013),
parametrizing recommender systems (Frolov and Oseledets, 2017), and many more. In this
work, we present a library for a particular tensor decomposition, namely, the Tensor Train
decomposition (Oseledets, 2011).

The Tensor Train (TT) format (Oseledets, 2011) (which is also called the Matrix Product
State (MPS) format in the physics community (Fannes et al., 1992)) is a generalization of

matrix low-rank format to higher-dimensional tensors. A tensor A ∈ Rnd
is said to be

represented in the TT-format if each of its elements can be represented as a product of
factors

Ai1...id =

r∑
α1=1

. . .

r∑
αd−1=1

G1
i1α1

G2
α1i2α2

G3
α2i3α3

. . . Gdαd−1id
,

c©2020 Alexander Novikov, Pavel Izmailov, Valentin Khrulkov, Michael Figurnov, and Ivan Oseledets.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/18-008.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/18-008.html


Novikov, Izmailov, Khrulkov, Figurnov, and Oseledets

where G1 ∈ Rn×r, G2, . . . , Gd−1 ∈ Rr×n×r, and Gd ∈ Rr×n are called TT-cores. The
number of values r the auxiliary indices αk can take is called TT-rank. It controls the
trade-off between memory/computational efficiency and the representational power of the
format. Representing tensor A via explicit enumeration of its elements requires nd scalars,
while representing it in the TT-format only requires rn(r(d− 2) + 2).

The Tensor Train decomposition is supported by many libraries (see Section 2), but
some of the recent papers that use it for machine learning purposes had to rewrite the
core functionality from scratch. We believe that this is due to the lack of a library with
simultaneous support of the following features important for machine learning research:
GPU execution, automatic differentiation, parallel processing of a batch of tensors, and
advanced support for Riemannian geometry operations—a technique for speeding up the
optimization when the parameters are constrained to have a compact Tensor Train (TT)
representation (or other constraint sets that form a smooth manifold).

In the presented library, we aim to make the results of the recent machine learning papers
utilizing the TT-format easy to reproduce and provide a flexible framework for developing
new ideas. The library is released1 under MIT license and is distributed as a PyPI package2

to simplify the installation process. The documentation is also available online3. The library
includes Jupyter notebook examples, e.g. for performing tensor completion by assuming
that the result has a low TT-rank and minimizing the residual between the tensor and the
known elements by gradient descent or by Riemannian optimization. The library supports
both graph and eager TensorFlow execution, making it easy to prototype, debug and deploy
the resulting models. The library has 94% test coverage.

2. Related Work

Many libraries implement operations for working with the TT-format. The most similar ones
to the presented library (T3F) are tntorch (Ballester-Ripoll, 2018) and TensorLy (Kossaifi
et al., 2019). The main differences between T3F and these libraries are that tntorch uses
PyTorch as a backend, T3F uses TensorFlow, and TensorLy supports PyTorch, TensorFlow
and MxNet as backends. Another difference is that neither tntorch nor TensorLy support
Riemannian optimization operations.

Other libraries include: ttpy (Oseledets, 2012), mpnum (Suess and Holzäpfel, 2017),
scikit tt (Gel et al., 2018), mpys (Alvarorga, 2017), OSMPS (Jaschke et al., 2018), evoMPS (Mil-
sted, 2011), TT-Toolbox (Oseledets et al., 2011), ITensor (Matthew Fishman and White,
2013), libtt (Matveev, 2013) and MPS (Ripoll, 2013). Unlike these libraries, T3F supports
GPU execution, automatic differentiation (including Riemannian autodiff) and batch pro-
cessing. However, some of these libraries support advanced algorithms such as DMRG (Khorom-
skij and Oseledets, 2010) or AMen (Dolgov and Savostyanov, 2014), which T3F does not.

1https://github.com/Bihaqo/t3f
2https://pypi.python.org/pypi/t3f
3https://t3f.readthedocs.io

2

https://github.com/Bihaqo/t3f
https://pypi.python.org/pypi/t3f
https://t3f.readthedocs.io


Tensor Train Decomposition on TensorFlow (T3F)

3. Implementation Details

The library provides two base classes: TensorTrain and TensorTrainBatch that support
storing one tensor in the Tensor Train format and a batch of such tensors respectively, i.e.
a list of tensors of the same shape that are supposed to be processed together. These two
classes support most of the API of tf.Tensor class (e.g. .op, .name, and .get shape()).
Under the hood, these classes are containers for the TT-cores represented as tf.Tensor

objects, plus lightweight meta-information. This design allows one to work with the TT-
cores directly if necessary. The rest of the library is a collection of functions, each taking as
an input one or two TT-objects and outputting a TT-object or a numerical value depending
on the semantics of the function. For example, the function t3f.multiply(left, right)

implements elementwise multiplication of two TT-tensors (or batches of TT-tensors) but
also supports multiplication of a TT-tensor by a number. As an output, this function
returns a TensorTrain or a TensorTrainBatch object.

A typical machine learning use case would be to initialize a random TT-matrix and
use it to define a neural network layer (using t3f.matmul(tt matrix, x) to compute the
matrix-by-vector product instead of the usual tf.matmul(matrix, x)). Then, one can
use the optimization functionality of TensorFlow to train the model with respect to its
parameters including the TT-cores of the TT-matrix (Novikov et al., 2015; Stoudenmire
and Schwab, 2016; Lebedev et al., 2015; Yang et al., 2017). See this and other example in
the documentation4.

A typical non-machine-learning use case would be finding the solution of a PDE dis-
cretized on a grid in the TT-format (Grasedyck et al., 2013; Khoromskij, 2018). One would
initialize a tensor in the TT-format and then iteratively perform the updates as a sequence of
operations on the tensor. At the end of each iteration, one would typically use the rounding
operation t3f.round(iterate, max tt rank=r), which finds the best approximation to a
TT-tensor among TT-tensors of lower TT-rank, in order to restrict the TT-rank growth.
T3F is a good fit for these applications because of the Riemannian optimization and GPU
support and it was already used by Rakhuba et al. (2019).

3.1. Batch Processing

Most operations accept broadcasting and getting a batch of TT-objects as an input. For
example, C = t3f.matmul(A, B) for a batch of TT-matrices A and a TT-matrix B will
return a batch of TT-matrices C where Ci = AiB and the result is computed in parallel across
the batch dimension. This functionality is important for efficient mini-batch processing of
large scale data sets.

3.2. Riemannian Geometry Operations

One of the advantages of the Tensor Train format is that the set of tensors of fixed TT-
rank forms a Riemannian manifold, which allows the use of Riemannian geometry ideas to
speed up tensor calculus while preserving theoretical guaranties (see Steinlechner (2016) for
more details). The T3F library has rich support for Riemannian operations, the most basic

4https://t3f.readthedocs.io/en/latest/tutorials/tensor_nets.html

3

https://t3f.readthedocs.io/en/latest/tutorials/tensor_nets.html


Novikov, Izmailov, Khrulkov, Figurnov, and Oseledets

being projecting a TT-object A (or a batch of them) onto the tangent space of another
TT-object B. We denote this projection operation by PBA.

Other supported operations are special cases of combining this basic projection operation
with non-Riemannian operations but are heavily optimized by exploiting the structure of
objects that are projected onto the same tangent space. Such operations include projecting
a weighted sum of a batch of TT-objects on a tangent space (used for efficiently computing
the Riemannian gradient on a mini-batch of objects). Mathematically, this function imple-
ments projecting a weighted sum of tensors S = PB (

∑
i ciAi). The same operation can be

implemented by a summation followed by a projection operation in asymptotic complexity
O(bdrArBn(rAb+rB)), where b is the batch-size and rA and rB are the TT-ranks of the ten-
sors A and B. But the tailored project sum operation requires only O(bdrArBn(rA + rB))
for the same operation. The idea behind project sum is to use the linearity of the projec-
tion S =

∑
i ciPBAi, and the fact that elements of the same tangent space can be added

efficiently. Other tailored operations include computing the Gram matrix of a batch of
tensors from the same tangent space and projecting the matrix-by-vector product onto a
tangent space Pb(Ac).

Additionally, T3F is the only library that supports automatic Riemannian differenti-
ation for TT-format, i.e. given a function f(X) the library can automatically (and with
optimal asymptotic complexity) find the projection of the gradient of the function on the
tangent space of the tensor X: PX

∂f
∂X . The product PTX

(
∇2f(X)

)
PTXZ of the linearized

Riemannian Hessian by a given tensor Z is also supported.

4. Benchmarking

We benchmark the basic functionality of T3F on CPU and GPU and compare its perfor-
mance against an alternative library TTPY. To reproduce the benchmark on your hardware,
see docs/benchmark folder in the T3F library.

For benchmarking, we generated a batch of 100 random TT-matrices of sizes 1010×1010

(so d = 10 and the TT-representation consists of 10 TT-cores) of TT-rank 10 and a batch of
100 random TT-vectors of size 1010× 1. We benchmarked the matrix-by-vector multiplica-
tion (‘matvec’), matrix-by-matrix multiplication (‘matmul’), computing the Frobenius norm
(‘norm’), and computing the Gram matrix of 1 or 100 TT-vectors. The results are reported
in Tbl. 1. We report that T3F is faster than TTPY for most operation and that batch
processing and GPU acceleration yield significant speedups for some operations (Tbl. 1).
Note that TTPY lacks GPU and batch processing support.

Acknowledgments

This work was partially funded by the Ministry of Science and Education of Russian
Federation as a part of Mega Grant Research Project 14.756.31.0001

4



Tensor Train Decomposition on TensorFlow (T3F)

Op
TTPY

1 object
CPU

T3F
1 object
CPU

T3F
1 object
GPU

T3F
100 objects

CPU

T3F
100 objects

GPU

matvec 11.142 1.190 0.744 1.885 0.140
matmul 86.191 9.849 0.950 17.483 1.461
norm 3.790 2.136 1.019 0.253 0.044
gram 0.145 0.606 0.973 0.021 0.001
project 116.868 3.001 13.239 1.645 0.226

Table 1: Time in ms for different operations implemented in TTPY library vs T3F on CPU
and GPU. The timing for a batch of 100 objects is reported per single object. The
comparison is made on an NVIDIA DGX-1 station with Tesla V100 GPUs (using
only 1 GPU at a time) in double precision.

References

Alvarorga. mpys: Library for MPS computations in Python, 2017. URL https://github.

com/alvarorga/mpys.

A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and L. Yi-kai. A spectral algorithm
for latent dirichlet allocation. In Advances in Neural Information Processing Systems 25,
pages 917–925. 2012.

Rafael Ballester-Ripoll. tntorch: Tensor Network Learning with PyTorch, 2018. URL https:

//github.com/rballester/tntorch.

N. Cohen and A. Shashua. Convolutional rectifier networks as generalized tensor decompo-
sitions. In International Conference on Machine Learning, pages 955–963, 2016.

N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A tensor
analysis. In Conference on Learning Theory, pages 698–728, 2016.

Sergey V Dolgov and Dmitry V Savostyanov. Alternating minimal energy methods for linear
systems in higher dimensions. SIAM Journal on Scientific Computing, 36(5):A2248–
A2271, 2014.

M. Fannes, B. Nachtergaele, and R.F. Werner. Finitely correlated states on quantum spin
chains. Comm. Math. Phys., 144(3):443–490, 1992. ISSN 0010-3616. doi: 10.1007/
BF02099178.

E. Frolov and I. Oseledets. Tensor methods and recommender systems. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 7(3), 2017.

Patrick Gel, Stefan Klus, Martin Scherer, and Feliks Nske. scikit tt: Tensor Train Toolbox,
2018. URL https://github.com/PGelss/scikit_tt.

Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature survey of low-rank
tensor approximation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

5

https://github.com/alvarorga/mpys
https://github.com/alvarorga/mpys
https://github.com/rballester/tntorch
https://github.com/rballester/tntorch
https://github.com/PGelss/scikit_tt


Novikov, Izmailov, Khrulkov, Figurnov, and Oseledets

M. Janzamin, H. Sedghi, and A. Anandkumar. Beating the perils of non-convexity: Guaran-
teed training of neural networks using tensor methods. In Advances in Neural Information
Processing Systems 28. 2015.

Daniel Jaschke, Michael L Wall, and Lincoln D Carr. Open source matrix product states:
Opening ways to simulate entangled many-body quantum systems in one dimension.
Computer Physics Communications, 225:59–91, 2018.

Y. Jernite, Y. Halpern, and D. Sontag. Discovering hidden variables in noisy-or networks
using quartet tests. In Neural Information Processing Systems (NIPS), 2013.

B. N. Khoromskij and I. V. Oseledets. DMRG+QTT approach to computation of the
ground state for the molecular Schrödinger operator. Preprint 69, MPI MIS, Leipzig,
2010.

Boris N Khoromskij. Tensor numerical methods in scientific computing, volume 19. Walter
de Gruyter GmbH & Co KG, 2018.

V. Khrulkov, A. Novikov, and I. Oseledets. Expressive power of recurrent neural networks.
arXiv preprint arXiv:1711.00811, 2017.

Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor
learning in python. Journal of Machine Learning Research, 20(26):1–6, 2019.

V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky. Speeding-up convolu-
tional neural networks using fine-tuned cp-decomposition. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2015.

E. Miles Stoudenmire Matthew Fishman and Steven R. White. itensor: An implementation
of the time dependent variational principle for matrix product states, 2013. URL http:

//itensor.org/.

Sergey Matveev. libtt library, 2013. URL https://bitbucket.org/matseralex/tt_

smoluh/src/master/libtt/.

Ashley Milsted. evoMPS: An implementation of the time dependent variational principle
for matrix product states, 2011. URL https://github.com/amilsted/evoMPS.

A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov. Tensorizing neural networks. In
Advances in Neural Information Processing Systems (NIPS), 2015.

I. V. Oseledets. Tensor-Train decomposition. SIAM J. Scientific Computing, 33(5):2295–
2317, 2011.

Ivan Oseledets. ttpy: Python implementation of the TT-Toolbox, 2012. URL https://

github.com/oseledets/ttpy.

Ivan Oseledets, Sergey V. Dolgov, Alexey Boyko, Dmitry Savostyanov, Alexander Novikov,
and Thomas Mach. TT-Toolbox: Matlab implementation of Tensor Train decomposition,
2011. URL https://github.com/oseledets/TT-Toolbox.

6

http://itensor.org/
http://itensor.org/
https://bitbucket.org/matseralex/tt_smoluh/src/master/libtt/
https://bitbucket.org/matseralex/tt_smoluh/src/master/libtt/
https://github.com/amilsted/evoMPS
https://github.com/oseledets/ttpy
https://github.com/oseledets/ttpy
https://github.com/oseledets/TT-Toolbox


Tensor Train Decomposition on TensorFlow (T3F)

Maxim Rakhuba, Alexander Novikov, and Ivan Oseledets. Low-rank riemannian eigensolver
for high-dimensional hamiltonians. Journal of Computational Physics, 396:718–737, 2019.

Juan Jos Garca Ripoll. mps: Library for the simulation of one-dimensional quantum many-
body systems, 2013. URL https://github.com/juanjosegarciaripoll/mps.

L. Song, M. Ishteva, A. Parikh, E. Xing, and H. Park. Hierarchical tensor decomposition of
latent tree graphical models. In International Conference on Machine Learning (ICML),
2013.

M. Steinlechner. Riemannian optimization for solving high-dimensional problems with low-
rank tensor structure. 2016.

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. In
Advances in Neural Information Processing Systems 29. 2016.

Daniel Suess and Milan Holzäpfel. mpnum: A matrix product representation library for
Python. Journal of Open Source Software, 2(20):465, 2017. ISSN 2475-9066. doi: 10.
21105/joss.00465. URL https://doi.org/10.21105/joss.00465.

Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural networks
for video classification. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3891–3900. JMLR. org, 2017.

R. Yu, S. Zheng, A. Anandkumar, and Y. Yue. Long-term forecasting using tensor-train
rnns. arXiv preprint arXiv:1711.00073, 2017.

7

https://github.com/juanjosegarciaripoll/mps
https://doi.org/10.21105/joss.00465

	Introduction
	Related Work 
	Implementation Details
	Batch Processing
	Riemannian Geometry Operations

	Benchmarking

