
Journal of Machine Learning Research 21 (2020) 1-37 Submitted 2/18; Revised 4/20; Published 6/20

Local Causal Network Learning for Finding
Pairs of Total and Direct Effects

Yue Liu ly199125@pku.edu.cn

Zhuangyan Fang fangzy math@pku.edu.cn

Yangbo He ∗ heyb@pku.edu.cn

Zhi Geng zhigeng@pku.edu.cn

LMAM, School of Mathematical Sciences, LMEQF, and Center of Statistical Science

Peking University

Beijing, China

Chunchen Liu chencang.lcc@alibaba-inc.com

Damo Academy, Alibaba Group

Beijing, China

Editor: Isabelle Guyon

Abstract

In observational studies, it is important to evaluate not only the total effect but also the
direct and indirect effects of a treatment variable on a response variable. In terms of local
structural learning of causal networks, we try to find all possible pairs of total and direct
causal effects, which can further be used to calculate indirect causal effects. An intuitive
global learning approach is first to find an essential graph over all variables representing
all Markov equivalent causal networks, and then enumerate all equivalent networks and
estimate a pair of the total and direct effects for each of them. However, it could be
inefficient to learn an essential graph and enumerate equivalent networks when the true
causal graph is large. In this paper, we propose a local learning approach instead. In the
local learning approach, we first learn locally a chain component containing the treatment.
Then, if necessary, we learn locally a chain component containing the response. Next, we
locally enumerate all possible pairs of the treatment’s parents and the response’s parents.
Finally based on these pairs, we find all possible pairs of total and direct effects of the
treatment on the response.

Keywords: causal networks, directed acyclic graphs, total effects, direct effects, indirect
effects

1. Introduction

In many observational studies such as sociological, epidemiological and biological studies,
we may not be dissatisfied with the association or correlation among variables; we, however,
are more interested on the total causal effect and the direct causal effect of a treatment or
an exposure variable on a response or an outcome variable (Holland, 1986; Greenland et al.,
1999; Pearl, 2000). To estimate the total causal effect of the treatment on the response, we

∗. Corresponding author.

c©2020 Yue Liu, Zhuangyan Fang, Yangbo He, Zhi Geng and Chunchen Liu.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/18-083.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/18-083.html

Liu, Fang, He, Geng, Liu

have to find a confounder set, which blocks all non-causal paths from the treatment to the
response (Pearl, 2000). Also, to estimate the direct causal effect of the treatment on the
response, we have to find a set of intermediate variables which can block all causal paths
from the treatment to the response except for the direct causal edge (Pearl, 2000).

Causal directed acyclic graphs (DAGs) are often used to describe causal relations among
variables. Given a causal DAG and a variable in this DAG, the parents of the variable in
the graph are called the direct causes of the variable (Pearl, 2000). If the underlying causal
DAG is specified, then the parent set of the treatment can be treated as the confounder set,
and the parent set of the response can be treated as the intermediate variable set. Therefore,
we can estimate the total causal effect and the direct causal effect of the treatment on the
response from observational data (Pearl, 2000). However, without prior knowledge, usually
we can only learn a set of statistically equivalent DAGs from observational data (Verma
and Pearl, 1990; Heckerman et al., 1995; Chickering, 2002a,b). These equivalent DAGs form
a Markov equivalence class and are called Markov equivalent, and can be represented by a
single graph called a essential graph (Andersson et al., 1997). Essential graphs contain both
directed and undirected edges. Unfortunately, since association does not imply causation,
those Markov equivalent DAGs may entail different causal relations. Therefore, the parent
set of the treatment and the parent set of the response may vary with the different Markov
equivalent DAGs. Nevertheless, since we know that the true causal DAG is in the Markov
equivalence class, ideally we can enumerate all equivalent DAGs and find the parents of the
treatment as well as the parents of the response to evaluate a pair of total and direct causal
effects for each of those DAGs (Lauritzen, 1999; Pearl, 2001). Collecting these effect pairs,
we obtain a set of all possible pairs of total and direct effects, which should contain the true
pair of total and direct causal effects.

There have been several approaches proposed to find the bounds or the set of all possible
total effects (Cai et al., 2008; Sjölander, 2009; Maathuis et al., 2009; Nandy et al., 2017),
but to the best of our knowledge, there is no work which discusses how to find the set of
all possible pairs of total and direct effects. To find the bound or the set of all possible
total effects, Maathuis et al. (2009) proposed an approach which first learns an essential
graph over all vertices and then locally enumerates all possible parent sets of the treatment.
This approach is often called intervention do-calculus when the DAG is absent, or IDA for
short. There are also several extensions of the original IDA. Nandy et al. (2017) proposed an
approach called joint-IDA which extends IDA to joint interventions. Perković et al. (2017)
and Fang and He (2020) extended IDA to dealing with direct causal background knowledge
and non-ancestral causal background knowledge. Liu et al. (2020) considered the efficiency
problem of the original IDA. However, all those methods need to learn an essential graph
over all vertices first.

In this paper, we want to find not only the set of all possible total effects but also the
set of all possible pairs of total and direct effects of a treatment on a response. As discussed
above, this is equivalent to finding all possible pairs of parent sets of both treatment and
response. An intuitive method for enumerating pairs of total and direct effects is to enumer-
ate all possible parent sets of the treatment and parent sets of the response separately, and
then consider the Cartesian product of the treatment’s parent sets and the response’s parent
sets. This method is a trivial extension of the IDA framework (Maathuis et al., 2009), and
thus we call it IDA-based method. However, the IDA-based method considers all combina-

2

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

tions of the treatment’s parent sets and the response’s parent sets, which may include the
pairs of the treatment’s parents and the response’s parents that are not consistent with any
Markov equivalent DAG (see Section 4.2 for more details). To address this problem, we
propose an intuitive global learning approach and a local learning approach to find all and
only those possible pairs of total and direct effects of a treatment on a response in a given
Markov equivalence class. In our approach, we assume that the underlying causal DAG is
causal sufficient and faithful to the observed distribution. In the intuitive global learning
approach, we first find a whole essential graph over all vertices, and then enumerate all
equivalent causal DAGs in the Markov equivalence class represented by the essential graph.
Finally, we find a pair of total and direct effects for each equivalent causal DAG. Since it
is very inefficient for the global learning approach to learn a whole essential graph with a
large number of vertices and enumerate all causal DAGs in the class (Spirtes et al., 2000; He
et al., 2015), we propose a local learning approach instead. In the local learning approach,
we first learn locally a chain component containing the treatment. Next, if necessary, we
learn locally a chain component containing the response. We then present an approach
for locally enumerating all possible pairs of the treatment’s parent sets and the response’s
parent sets, which only needs the neighbors of the treatment and the response, respectively.
Finally, for each enumerated parent set pair, we find a pair of total and direct effects of the
treatment on the response. The local learning approach can avoid not only learning a whole
essential graph but also enumerating all possible causal DAGs in that Markov equivalence
class.

The remainder of the paper is organized as follows. Section 2 introduces the notation
and the definitions. In Section 3, we propose several learning approaches for finding all
possible pairs of total and direct effects of a treatment on a response. In Section 4, we
illustrate and evaluate the proposed local learning approach on both synthetic data sets
and the DREAM4 data sets. Finally, some discussions are given in Section 5.

2. Notation and Definitions

In this section, we briefly introduce DAGs, the Markov equivalence class of DAGs and their
representations, and the definitions of total and direct effects of a treatment on a response. A
graph G(V,E) consists of a vertex set V and an edge set E, where V = {X1, . . . , Xn = Y }
denotes vertices or variables, specially Y denotes a response variable of interest, and E
consists of directed edges and/or undirected edges. If all edges in a graph are directed
(undirected), then the graph is called directed (undirected). For simplicity, we use Xi → Xj

and Xi −Xj to denote a directed edge and an undirected edge, respectively. Two vertices
are adjacent if they are connected by an edge. For a directed edge Xi → Xj , we say that
Xi is a parent of Xj and Xj is a child of Xi. The set of parents and children of Xi are
denoted by pa(Xi) and ch(Xi) respectively. For an undirected edge Xi −Xj , we say that
Xj is a neighbor of Xi and vice versa. The set of neighbors of Xi is denoted by ne(Xi).
A v-structure is Xi → Xj ← Xk without an edge between Xi and Xk, and Xj is called a
collider.

A path from Xi to Xj is a sequence of distinct vertices such that any two consecutive
vertices are adjacent. A directed path from Xi to Xj is a path on which all arrows are
towards Xj , and an undirected path from Xi to Xj is a path on which all edges are undi-

3

Liu, Fang, He, Geng, Liu

rected. We say that Xj is a descendant of Xi if there is a directed path from Xi to Xj ,
and Xi connects Xj if there is an undirected path from Xi to Xj . A cycle is a path from
a vertex to itself. We say that a cycle is partially directed if it consists of both undirected
edges and directed edges with the same directions. For example, X1 → X2 −X3 → X1 is
a partially directed cycle. A directed acyclic graph (DAG) is a directed graph without any
directed cycle.

The notion of d-separation induces a set of conditional independence relations encoded
in a DAG (Pearl, 1988). Two DAGs are Markov equivalent if they induce the same set
of conditional independence relations. A Markov equivalence class is denoted by a chain
graph or an essential graph which consists of both directed and undirected edges (Ander-
sson et al., 1997; Chickering, 2002b). Undirected edges in a chain graph denote the edges
whose directions cannot be determined by observational data. After deleting all directed
edges from a chain graph, we obtain several disconnected undirected subgraphs called chain
components (Andersson et al., 1997). Each chain component is a chordal graph (Blair and
Peyton, 1993; Andersson et al., 1997).

For a given DAG, based on the concept of do-calculus do(X = x) (Pearl, 2000), we
define the average total causal effect and the average direct causal effect of a treatment
variable X on a response variable Y , which are simply called the total effect and the direct
effect of X on Y .

Definition 1 (Total effect) The total effect of X on Y is defined as

TE(x;Y) =
∂E[Y |do(X = x)]

∂x
,

for all x.

For a binary X, the total effect of X on Y is defined as E[Y |do(X = 1)]−E[Y |do(X =
0)]. The parent set pa(X) of a vertex X is a sufficient confounder set for identifying the total
effect. To identify the total effect, we first find pa(X), and then estimate the total effect
TE(x;Y) by adjusting for pa(X) (Pearl, 2000). For a Gaussian graphical model described
by a DAG and a Gaussian distribution, the total effect TE(x;Y) is the coefficient βX of X
in the following regression of Y on X and pa(X)

E[Y |x, pa(x)] = β0 + βXx+ βpa(X)pa(x),

where X is not a descendant of Y . The total effect TE(x;Y) is 0 if X is a descendant of Y .
To distinguish the coefficients of X in different regressions of Y , we denote the cor-

responding conditioning sets pa(X) in the subscript of the coefficients. For example, the
above coefficient βX is denoted by βX|pa(X).

Below, blocking all directed paths from X to Y except for X → Y , we define the
controlled direct effect of X on Y as follows (Pearl, 2001).

Definition 2 (Direct effect) Let Z denote the parents of Y except for X (that is, Z =
pa(Y) \X). The controlled direct effect of X on Y under a setting do(Z = z) is defined as

DE(x;Y |z) =
∂E[Y |do(X = x, Z = z)]

∂x
.

4

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

The controlled direct effect DE(x;Y |z) is the causal effect of X on Y conditioning on
the external intervention do(Z = z) which blocks all directed paths from X to Y except
for X → Y . Generally the controlled direct effect DE(x;Y |z) is a function of x and z. For
a binary X and a discrete Z, the controlled direct effect of X on Y is defined as the set
{E[Y |do(X = 1, Z = z)] − E[Y |do(X = 0, Z = z)], ∀z}. The set Z = pa(Y) \ {X} can
block all other directed paths from X to Y . Thus, it is suffices to find pa(Y) to estimate
the direct effect DE(x;Y |z). Particularly, for a Gaussian graphical model with X → Y in
the corresponding DAG, the controlled direct effect DE(x;Y |z) is the coefficient βX|pa(Y)

in the following regression of Y

E[Y |x, pa(y)] = β0 + βX|pa(Y)x+ βZ|pa(Y)z,

where Z = pa(Y) \ {X}. In this case, the controlled direct effect DE(x;Y |z) does not
depend on z, and thus can be denoted by DE(x;Y), which is the same as the natural direct
effect defined by Pearl (2001); and further, we define the indirect effect as the difference of
the total effect and the direct effect, TE(x;Y) −DE(x;Y), which is also the same as the
natural indirect effect defined by Pearl (2001).

3. Finding All Pairs of Total and Direct Effects for a Markov Equivalence
Class

Let X be a treatment variable of interest and Y be a response variable of interest. For a
given DAG, there is a pair of total and direct effects, (TE(x;Y), DE(x;Y)). Thus, there
is a set of effect pairs for a class of Markov equivalent DAGs. Given an observational data
set, our goal is to find all effect pairs from the data set. Below we focus on the algorithms
for finding the parent set pairs (pa(X), pa(Y)) for all DAGs in the Markov equivalence class
represented by a given essential graph G∗, and the pairs of total and direct effects can be
estimated according to the definitions introduced in Section 2. A global algorithm and its
improved version will be presented first in Section 3.1 and then local learning algorithms
will be introduced in Section 3.2.

3.1. The Global Learning Approach for Finding All Pairs of Total and Direct
Effects

A global approach for finding the effect pairs has four steps: (1) learning a Markov equiv-
alence class represented by an essential graph G∗ from data, (2) enumerating all DAGs in
the Markov equivalence class, (3) finding pa(X) and pa(Y) for each equivalent DAG, and
(4) estimating an effect pair (TE(x;Y), DE(x;Y)) for each parent set pair (pa(X), pa(Y)).
We present the global algorithm in Algorithm 1.

After finding all possible parent set pairs in Algorithm 1, we need an approach for
estimating all possible effect pairs. As discussed in Section 2, If the underlying model
is linear Gaussian, then for each possible pair of parent sets (pai(X), pai(Y)), we have
TEi = βX|pai(X) and DEi = βX|pai(Y), which can be estimated with the ordinary least
squares (OLS) method.

Because the goal is to find the effect pairs of X on Y only, it may not be necessary to
globally orient all undirected edges in the learned essential graph G∗. Given an essential

5

Liu, Fang, He, Geng, Liu

Algorithm 1 A global algorithm via enumerating all DAGs in the Markov equivalence
class
Input: A treatment X, a response Y , and an essential graph G∗.
Output: All parent set pairs (pai(X), pai(Y))’s for DAGs in the class represented by G∗.

1: Enumerate all DAGs in the Markov equivalence class represented by G∗, denoted by
G1, . . . , Gm.

2: for i = 1 to m do
3: Find the parent set pair (pai(X), pai(Y)) in Gi.
4: end for
5: return The parent set pairs {(pai(X), pai(Y)),∀i = 1, . . . ,m}.

graph G∗, Algorithm 2 is proposed to improve Algorithm 1 by semi-locally orienting the
undirected edges in the chain components containing X and Y , respectively, rather than
orienting all undirected edges in the essential graph G∗ over all vertices in V .

Now we introduce some notation for Algorithm 2. Let S(Y) be a subset of ne(Y). Let
G∗S(Y)→Y be the graph obtained from G∗ by orienting Z − Y as Z → Y for each Z ∈ S(Y)

and orienting Y −W as Y → W for each W ∈ ne(Y) \ S(Y). We say that a configuration
S(Y)→ Y is valid for G∗ if there is a DAG G in the Markov equivalence class represented
by G∗ which has the same directed edges connected to Y as G∗S(Y)→Y has. Furthermore,

let S(X) be a subset of X’s neighbors in G∗S(Y)→Y , and G∗(S(Y)→Y,S(X)→X) be the graph

obtained by orienting Z−X in G∗S(Y)→Y as Z → X for each Z ∈ S(X) and orienting X−W
in G∗S(Y)→Y as X → W for each remaining neighbor W . We call (S(Y) → Y, S(X) → X)
a sequential orientation configuration of vertices Y and X in turn to G∗. Similarly, we say
that (S(Y)→ Y, S(X)→ X) is valid for G∗ if there is a DAG G in G∗ which has the same
directed edges connected to X or Y as G∗(S(Y)→Y,S(X)→X) has. If the orientation of the
directed edge between X and Y has been fixed or there is no edge between X and Y , then
G∗(S(Y)→Y,S(X)→X) is identical to G∗(S(X)→X,S(Y)→Y), meaning that the graph is not affected

by the order of applying S(Y)→ Y and S(X)→ X to G∗.

Given an essential graph G∗, Algorithm 2 first orients the undirected edges connected
to Y or X using the configurations (S(Y) → Y, S(X) → X) for all S(Y) ⊆ ne(Y) and

Algorithm 2 An improved algorithm via locally orienting the undirected edges connected
to Y or X
Input: A treatment X, a response Y , and an essential graph G∗.
Output: All parent set pairs (pai(X), pai(Y))’s for DAGs in the class represented by G∗.

1: Set k = 0.
2: for each S(Y) ⊆ ne(Y) and each S(X) ⊆ ne(X) in G∗ do
3: if the configuration (S(Y)→ Y, S(X)→ X) is valid for G∗, then
4: Set k = k+ 1, and save the parent set pair (pak(X), pak(Y)) in G∗(S(Y)→Y,S(X)→X).
5: end if
6: end for
7: return The parent set pairs {(pai(X), pai(Y)), i = 1, . . . , k}.

6

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

S(X) ⊆ ne(X). The algorithm then checks the validity of each orientation configuration.
Finally, it outputs all parent set pairs for the valid orientation configurations.

At Step 3 in Algorithm 2, it checks the validity of a configuration (S(Y)→ Y, S(X)→
X). A global method for checking the validity is to enumerate all DAGs in the Markov
equivalence class represented by G∗ and then to check whether there exists a DAG G in G∗

whose all directed edges connected to X or Y are the same as the corresponding edges in
G∗(S(Y)→Y,S(X)→X). Let p be the number of vertices in all chain components of G∗, and k
be the number of vertices of the maximum clique in these components. This global method
has a time complexity of O(k!) in the best case and O(p!) in the worst case. Thus it may
be time-consuming when p or k is sufficiently large (He et al., 2015). Below we introduce a
local approach to check the validity and further to find all pairs of total and direct effects.

3.2. The Local Learning Approach for Finding All Pairs of Total and Direct
Effects

In this section, we present a local learning approach for finding all pairs of total and direct
effects ofX on Y for all DAGs in the Markov equivalence class obtained from the distribution
of observed variables. To obtain all of these pairs, we need to check the validity of any given
configuration (S(Y) → Y, S(X) → X). For an orientation S(X) → X, Maathuis et al.
(2009) proposed a local criterion for checking its validity as follows.

Lemma 3 (Maathuis et al., 2009, Lemma 3.1, IDA) For a vertex X in an essential
graph G∗, an orientation configuration S(X) → X is valid if and only if S(X) → X does
not make any new v-structure in G∗S(X)→X .

This criterion can be used to find all valid parent sets pa(X) of X. Thus, by using the
valid parent sets, the set of all possible total effects of X on Y can be found. For the case
with multiple treatments X1, . . . , Xk, Nandy et al. (2017) proposed a criterion for finding
the set of all total effects of these treatments on a response Y . The criterion in Nandy et al.
(2017) enumerates all valid local DAGs in each of the chain components containing these
treatments and then combines these valid local DAGs together.

Now we propose a local learning approach to improve Algorithm 2 in two ways. One way
is first to locally learn the chain component containing X and then the chain component
containing Y if necessary. This approach is more efficient than learning a whole essential
graph over all vertices in V . The other way is to provide a local criterion, which only
depends on the subgraphs of the chain components over the neighbors of X (and Y if
necessary), to check the validity of any configuration (S(Y)→ Y, S(X)→ X).

3.2.1. Local Learning Algorithm for Finding Chain Components

Now we present the local learning algorithm for learning a chain component which
contains a given target vertex, such as X or Y . Denote by MB(X) the Markov blanket
(MB) of X conditioning on which X is independent of other vertices. That is, X others |
MB(X). Tsamardinos et al. (2003) proposed the IAMB algorithm to learn the Markov
blanket of a given vertex. Wang et al. (2014) proposed the MB-by-MB algorithm which
is a sequential local learning algorithm for finding the direct causes and the direct effects
of a given target vertex. Let ChComp(X) denote the local structure which consists of the

7

Liu, Fang, He, Geng, Liu

Algorithm 3 A local learning algorithm for finding the local graph ChComp(X)

Input: A vertex X.
Output: The local graph ChComp(X).

1: Set WaitQueue = X (the waiting queue of vertices whose MBs will be found).
2: Set S = ∅ (to be extended to ChComp(X)).
3: repeat
4: Pop a node Z from WaitQueue.
5: Find MB(Z) (See the IAMB algorithm in Appendix A).
6: Learn the local structure over MB(Z) ∪ {Z} using the IC algorithm (Pearl, 2000),

denoted by GMB(Z).
7: Update S by adding the new edges connected to Z in GMB(Z) and the v-structures

containing Z in GMB(Z) to S.
8: Using Meek’s approach to orient undirected edges in S (See Algorithm 9 in Appendix

A).
9: Put the vertices in MB(Z) which have never been in WaitQueue to WaitQueue.

10: Remove the vertices from WaitQueue which have no undirected paths to S.
11: until WaitQueue = ∅.
12: Let A be the vertices that have undirected paths to X, and ChComp(X) be the sub-

graphs of S which consists of all edges with at least one vertex in A.
13: return ChComp(X).

undirected subgraph containing X, that is, the chain component containing X, and the
directed edges surrounding the undirected subgraph. Algorithm 3 provides a local method
to learn the local graph ChComp(X) containing a given target vertex X.

The details of Step 5 for the IAMB algorithm and Step 8 for Meek’s approach in Al-
gorithm 3 are given by Algorithms 8 and 9 in Appendix A respectively. The local graph
ChComp(X) outputted by Algorithm 3 contains undirected edges and directed edges around
the target vertex X. Under the causal sufficiency and faithfulness assumptions (Spirtes
et al., 2000), we have the following corollary.

Corollary 4 Given a causal DAG which is causal sufficient and faithful to a probability
distribution. Suppose that all conditional independence relations are correctly checked, then
the local graph obtained by Algorithm 3 consists of the chain component which contains
vertex X and the directed edges surrounding the chain component in the essential graph
representing the Markov equivalence class containing the given causal DAG.

3.2.2. Local Approach for Finding All Effect Pairs

Given the local structure ChComp(X), we now present the local approach for finding all
pairs of total and direct effects of X on Y . For a given Y and ChComp(X), there are
four possible cases: (1) Y → X, (2) nonadjacent X and Y in ChComp(X), or Y not in
ChComp(X), (3) X → Y , and (4) X − Y . Below we discuss the method to find all pairs of
total and direct effects of X on Y for each of these four cases.

For the case (1) of Y → X in ChComp(X), there is neither any total effect nor any
direct effect of X on Y . That is, TE(x;Y) = 0 and DE(x;Y) = 0.

8

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

Algorithm 4 for the case (2) of nonadjacent X and Y in ChComp(X)

Input: A treatment X, a response Y , and ChComp(X).
Output: All valid parent sets pa(X)’s.

1: Set k = 0.
2: for each S(X) ⊆ ne(X) in ChComp(X) do
3: G∗1 = ChComp(X)S(X)→X .
4: if X is not a collider of a new v-structure in G∗1, then
5: Set k = k + 1, and save pak(X) in G∗1.
6: end if
7: end for
8: return The parent sets {pai(X), i = 1, . . . , k}.

For the case (2) of nonadjacent X and Y in ChComp(X), or Y not in ChComp(X),
there is no direct effect of X on Y . That is, DE(x;Y) = 0. We only need to find all valid
parent sets of X to find the total effect set of X on Y . To check the validity of a parent set
pak(X) in Algorithm 4, the condition at Step 3 in Algorithm 2 is replaced by the criterion
in Lemma 3 at Step 4 in Algorithm 4.

For the case (3) of X → Y in ChComp(X), we have that there is no undirected path
between X and Y since G∗ is a chain graph in which no partial directed cycles exist (An-
dersson et al., 1997). Thus X and Y separately belong to two different chain components.
The following theorem shows how to check the validity of orientations for the case where X
and Y are not contained in the same chain component.

Theorem 5 Let G∗ be an essential graph, and X and Y be two distinct vertices in G∗.
For any orientation configuration (S1(Y)→ Y, S2(X)→ X), if X and Y separately belong
to two different chain components, we have that the orientation configuration (S1(Y) →
Y, S2(X) → X) is valid with respect to G∗ if and only if both orientation configurations
(S1(Y)→ Y) and (S2(X)→ X) are valid separately with respect to G∗.

According to Theorem 5, for the case (3) of X → Y in ChComp(X), we can obtain
all valid orientation configurations (S1(Y) → Y, S2(X) → X) by enumerating all valid
orientation configurations (S1(Y) → Y) and (S2(X) → X) separately in their own chain
components. Algorithm 5 outputs all valid parent set pairs of X and Y for the case (3) of
X → Y in ChComp(X).

For the case (4) of X − Y in ChComp(X), we have X and Y in the same chain com-
ponent. Step 3 in Algorithm 2 can be replaced by checking the validity of the orientation
configuration (S(Y) → Y, S(X) → X) applied to the chain component. In this case, the
result of Theorem 5 no longer holds. That is, a configuration (S(Y)→ Y, S(X)→ X) may
not be valid even if both configurations S(Y) → Y and S(X) → X are valid separately.
Therefore, we can not use IDA criterion in Lemma 3 to check the validity of the orientation
configuration (S(Y)→ Y, S(X)→ X). This can be illustrated by the following Example 1.

Example 1 Consider the essential graph G∗ in Figure 1(a). When we apply the config-
uration (W → X) and the configuration ({U,X} → Y) separately to G∗, both configura-
tions are valid separately for G∗ since neither of them generates any new v-structure or

9

Liu, Fang, He, Geng, Liu

Algorithm 5 For the case (3) of X → Y in ChComp(X)

Input: A treatment X, a response Y , ChComp(X) and ChComp(Y).
Output: All valid parent set pairs (pai(X), pai(Y))’s.

1: Set i = 0.
2: for each S(X) ⊆ ne(X) in ChComp(X) do
3: G∗1 = ChComp(X)S(X)→X .
4: if X is not a collider of a new v-structure in G∗1, then
5: Set i = i+ 1, and save the parent pai(X) in G∗1.
6: end if
7: end for
8: Set j = 0.
9: for each S(Y) ⊆ ne(Y) in ChComp(Y) do

10: G∗1 = ChComp(Y)S(Y)→Y .
11: if Y is not a collider of a new v-structure in G∗1, then
12: Set j = j + 1, and save the parent paj(Y) in G∗1.
13: end if
14: end for
15: return The parent set pairs {(pai′(X), paj′(Y)), i′ = 1, . . . , i; j′ = 1, . . . , j}.

any cycle, see Figures 1(b) and 1(c) respectively. But when we apply the configuration
(W → X, {U,X} → Y) to G∗ simultaneously, it leads to a cyclic as shown in Figure 1(d).

X

U

Y

W

X

U

Y

W

X

U

Y

W

X

U

Y

W

(a) G∗ (b) G∗(W→X) (c) G∗({U,X}→Y) (d) G∗(W→X,{U,X}→Y)

Figure 1: An example in which both configuration (W → X) and ({U,X} → Y) are valid
separately with respect to G∗, but (W → X, {U,X} → Y) is not valid.

For the case (4), a simple method for checking the validation is that the configuration
(S(Y) → Y, S(X) → X) is valid if there is neither new v-structures nor directed cycles in
the oriented chain component. It is similar to the semi-local criterion proposed by Nandy
et al. (2017). This semi-local criterion is not efficient for a larger chain component. Below
we give a local criterion for checking the validity of a configuration (S(Y)→ Y, S(X)→ X)
based on the following theorem.

Theorem 6 Suppose that there is an undirected edge X −Y in the essential graph G∗. Let
neXY = ne(X)

⋃
ne(Y). For any orientation configuration (S(Y)→ Y, S(X)→ X) with

10

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

Algorithm 6 For the case (4) of X − Y in ChComp(X)

Input: A treatment X, a response Y , and ChComp(X).
Output: All valid parent set pairs (pai(X), pai(Y))’s.

1: Set k = 0, and orient X − Y as X → Y in ChComp(X).
2: for each S(Y) ⊆ (ne(Y) \ {X}) in ChComp(X) do
3: G∗1 = ChComp(X)S(Y)→Y .
4: if Y is not a collider of a new v-structure in G∗1, then
5: for each S(X) ⊆ (ne(X) \ {Y }) in ChComp(X) do
6: G∗2 = (G∗1)S(X)→X .
7: if X is not a collider of a new v-structure in G∗2, then
8: G′neXY = the subgraph of G∗2 over ne(X)

⋃
ne(Y).

9: if No direct cycle in G′neXY , then
10: Valid = TRUE.
11: for (each partial directed cycle in G′neXY :

X → Y → U − V1 − . . .− Vh → X where h ≥ 1), do
12: Valid = Valid ∧ (Vi is adjacent to Y in G′neXY , ∃i).
13: end for
14: if Valid, then
15: Set k = k + 1, and save the parent set pair (pak(X), pak(Y)) in G′neXY .
16: end if
17: end if
18: end if
19: end for
20: end if
21: end for
22: Return the parent set pairs {(pai(X), pai(Y)), i = 1, . . . , k}.

X ∈ S(Y), define G′neXY be the induced subgraph of G∗S(Y)→Y,S(X)→X over neXY . Then

the orientation configuration (S(Y)→ Y, S(X)→ X) is valid with respect to G∗ if and only
if the subgraph G′neXY satisfies: (1) no v-structures with collider X or Y , (2) no directed
cycle, and (3) for each partial directed cycle containing X → Y , Y is adjacent to at least 3
vertices on the cycle.

By Theorem 6, the validity of an orientation configuration (S(Y) → Y, S(X) → X)
need not be checked globally in the whole essential graph G∗ or semi-locally in the chain
component containing X and Y . However, it can be checked locally in the subgraph G′neXY
induced by neXY = ne(X)

⋃
ne(Y). Thus by Theorem 6, we give a local algorithm for

finding all parent set pairs of X and Y in Algorithm 6.

In Algorithm 6, condition (1) in Theorem 6 is checked at Steps 4 and 7, condition (2)
is checked at Step 9, and condition (3) is checked at Steps 11 to 14. At Step 11, a partial
cycle must have Y → U and Vh → X since X → Y and the undirected edges connecting Y
and the undirected edges connecting X are all oriented at Steps 3 and 6 respectively; h is
larger than or equal to 1 since X → Y → U → X for h = 0 is checked at Step 9.

11

Liu, Fang, He, Geng, Liu

Algorithm 7 The local algorithm for finding the effect pairs (T̂Ei, D̂Ei)’s

Input: : A treatment X, a response Y , and data set D.
Output: Estimates (T̂Ei, D̂Ei)’s of all effect pairs for DAGs in the class by G∗.

1: Learn ChComp(X) from D via Algorithm 3.

2: For the case (1) X ← Y , set T̂E = 0 and D̂E = 0.
3: For the case (2) without edge between X and Y ,

set D̂E = 0, call Algorithm 4 to find pai(X)’s, and find T̂Ei’s.
4: For the case (3) X → Y ,

learn ChComp(Y) from D via Algorithm 3,

then call Algorithm 5 to find (pai(X), pai(Y))’s, and find (T̂Ei, D̂Ei)’s.
5: For the case (4) X − Y , call Algorithm 6 to find (pai(X), pai(Y))’s, and find

(T̂Ei, D̂Ei)’s.

6: At the above steps, for given pai(X) and pai(Y), we find T̂Ei = β̂
(i)
X and D̂Ei = β̂

(i)
X|pa(Y)

from the models
E[Y |x, pai(X)] = β

(i)
0 + β

(i)
X x+ β

(i)
pa(X)pai(X)

and
E[Y |pai(Y)] = β

(i)
0 + β

(i)
X|pa(Y)x+ β

(i)
Z|pa(Y)Z,

respectively, where Z = pa(Y) \X.

In Algorithms 4 to 6, we need not learn a whole essential graph G∗. Instead, we only need
to learn one chain component ChComp(X) and learn another chain component ChComp(Y)
only for the case of X → Y in ChComp(X). Summarizing the algorithms for all four cases
proposed above, we now present the local learning Algorithm 7 for finding all possible pairs
of total and direct effects.

At Step 1 in Algorithm 7, we first learn ChComp(X). According to ChComp(X), we
know which one of the four cases (1) to (4) occurs. For the case (1) Y → X in ChComp(X),
both the total effect and the direct effect of X on Y are zero. For the case (2) nonadjacent
X and Y in ChComp(X), the direct effect of X on Y is 0, thus we call Algorithm 4 to find
all valid parent sets of X, which are used to estimate all possible total effects of X on Y .
Only for the case (3) X → Y in ChComp(X), we need to learn ChComp(Y). Hence we
call Algorithm 5 to find all valid parent set pairs of X and Y , which are used to estimate
all possible total and direct effect pairs. For the case (4) X − Y in ChComp(X), we call
Algorithm 6 to find all valid parent set pairs of X and Y , which are used to estimate all
possible total and direct effect pairs. At Step 6, for case (2), we estimate the total effect
of X on Y by applying the ordinary least squares method to the regression model of Y on
X and pa(X). For cases (3) and (4) we estimate the total effect of X on Y by applying
the OLS method to the regression model of Y on X and pa(X). We then estimate the
direct effect of X on Y by applying the OLS method to the regression model of Y on X
and pa(Y).

There are two advantages for Algorithm 7. One is that it only learns one or two chain
components rather than learning the whole essential graph over all vertices for estimating
the pairs of total and direct effects of a treatment X on a response Y . The other advantage

12

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

for Algorithm 7 is that it locally checks the validity of orientations of the edges connecting
X or Y rather than semi-locally checking the validity of orientations of all undirected edges
in the chain components.

At Step 1 and Step 4 of Algorithm 7, we use the local method Algorithm 3 to learn the
chain components. In fact, we can also use global learning method such as PC and GES
to learn an essential graph first, and then directly obtain the chain components of interest.
In the following remark, we show that Algorithm 3 is generally more efficient for learning
chain components.

Remark 7 We discuss the first advantage for Algorithm 7 and consider the computational
complexity of learning ChComp(X) from a data set D via Algorithm 3 in Step 1 of Algo-
rithm 7. Let |V | be the number of the vertices in V , |MB| be the number of vertices in the
maximum Markov blankets and k be the number of vertices in the maximum conditioning
set when testing for conditional independence relations. According to Tsamardinos et al.
(2006) and Wang et al. (2014), the computational complexities of Steps 5 and 6 in Algo-
rithm 3 are |MB||V | and |MB|2+k respectively. Let r be the number of local structures
to be learned in Algorithm 3, we have that the computational complexity of Algorithm 3 is
O(r|MB||V |+ r|MB|2+k). Let |PC| be the number of vertices in the largest set of parents
plus children. The complexity of the PC algorithm is O(|V |2× |PC|k). In general, the local
algorithm is faster than the PC algorithm. Consequently, when one just needs to estimate
the effect pairs for a given treatment and a given response, the local graph learning in the
first Step of Algorithm 7 is usually much faster than the PC algorithm that learns a whole
causal graph. When one tries to explore all causal effect pairs among all pairs of every
two vertices, it may be better to learn a whole causal graph using a global network learning
algorithm instead of the proposed local structure learning algorithm.

Remark 8 We consider the other advantage for Algorithm 7. When the treatment X
and response Y appear in the different chain components, we can search all valid pairs
(pa(X), pa(Y)) by finding pa(X) and pa(Y) separately using the IDA algorithm proposed
by Maathuis et al. (2009). However, the IDA algorithm is not applicable to the case where
X and Y occur in the same chain component. Algorithm 6 is proposed to find all valid
pairs (pa(X), pa(Y)) by checking the validity in a local subgraph over NX ∪NY . When the
number of Markov equivalent DAGs in the class represented by the chain components is
large, Algorithm 6 is more efficient than Algorithms 1 and 2 since latter two list all possible
equivalent DAGs.

4. Experimental Studies

In this section, we illustrate and evaluate the proposed algorithms using some specific causal
networks and some causal networks generated randomly. In Section 4.1, we first present a
toy example to illustrate how to find all possible parent set pairs of a given treatment and
a given response by the proposed local learning algorithm. We then assess the estimates of
the pairs of total and direct effects using simulated data. In Section 4.2, we use randomly
generated Gaussian graphical models and perfect oracles to test the proposed method and
the IDA-based method. The use of perfect oracles rules out the biases caused by learning
graphs. The results show that the size of the set of possible effect pairs returned by our

13

Liu, Fang, He, Geng, Liu

method is in general smaller than that returned by the IDA-based method. In Section
4.3, we further evaluate the effectiveness and efficiency of Algorithm 7 based on randomly
generated Gaussian graphical models and finite samples. Finally in Section 4.4, we apply
the proposed method on DREAM4 data sets, which are synthetic gene expression data sets
and have been widely used in the literature (Hauser and Bühlmann, 2012).

All experiments were run on a computer with Intel 2.5GHz CPU and 8 GB of memory.
The experiments in Section 4.1 were implemented in MATLAB and all the other experiments
were implemented in R. The IDA algorithm, the PC algorithm, the stable PC algorithm and
the GES algorithm were called from R package pcalg (Kalisch et al., 2012). The DREAM4
data sets were called from R package DREAM4 (Shannon, 2019).

4.1. ALARM Network: A Toy Example

In this section, we use a modified ALARM (Beinlich et al., 1989) network G to illustrate
our proposed algorithms. The graph G and its essential graph G∗ are shown in Figure 2,
where the vertices from 1 to 37 denote the variables from X1 to X37 respectively.

(a) A modified ALARM network G

(b) G∗, the essential graph of G

Figure 2: A modified ALARM network G and its essential graph G∗

14

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

Consider the following pairs of treatment and response: (X11, X10), (X6, X11), (X10, X11)
and (X5, X27), which correspond to the four cases in Algorithm 7: (1) X11 ← X10, (2) no
edge between X6 and X11, (3) X10 → X11 and (4) X5 − X27, respectively. Consider a
Gaussian graphical model of G defined as follows,

Xi =
∑

Xj∈pa(Xi)

0.5 ·Xj + εi, (1)

where {εi}1≤i≤37 are independent variables and

εi ∼
{
N(0, 1), if pa(Xi) = ∅,
N(0, 0.12), if pa(Xi) 6= ∅.

(2)

If we know the exact causal graph G, given a treatment Xi and a response Xj , we can
obtain the total and direct effects (TE,DE) of Xi on Xj via the path analysis. Below, for
each of these four cases, we first show how to learn the local graphs of the essential graph G∗

in Figure 2 locally, how to obtain all valid parent sets of treatment and response, and how
to give the corresponding pairs of total and direct effects via path analysis using the true
parameters. Then we run 100 simulations to learn these parent set pairs and to estimate
all pairs of total and direct effects via Algorithm 7 using simulated data.

For the case (1), to find effect pairs of treatment X11 on respond X10, we first learn the
chain component containing vertex X11 by calling Algorithm 3 at Step 1 of Algorithm 7.
Algorithm 3 first finds MB(X11) = {X7, X10}, and learns the local graph over MB(X11)∪
{X11} as shown in Figure 3(a). Then Algorithm 3 finds MB(X7) = {X6, X8, X10, X11} and
learns the local graph over MB(X7) ∪ {X7} as shown in Figure 3(b). Since the undirected
graph around vertex X11 is surrounded by directed edges, we obtain that ChComp(X11) is
7 → 11 ← 10 as shown in Figure 3(c). For 11 ← 10, it is the case (1) and the effect pair
(TE,DE) = (0, 0) at Step 2 of Algorithm 7. The results are shown in the block for the case
(1) in Table 1. In Table 1, ? in column 5 indicates that there is no need to find the parent
set pa(R) of the response.

For the case (2), to find effect pairs of treatment X6 on respond X11, we first find the
local graphs over MB(X6), MB(X5) and MB(X27) sequentially and then obtain the local
graph ChComp(X6) at Step 1 of Algorithm 7. The local graph ChComp(X6) is shown in
Figure 3(d). In ChComp(X6), vertex 6 does not connect vertex 11, and thus at Step 3
of Algorithm 7 we obtain that the direct effect DE of X6 on X11 is 0 (that is, DE = 0).
Then we call Algorithm 4 to find all possible parent sets of X6: {5}, ∅, {27} and {5, 27}.
For each parent set pa(X6), we obtain the true total effect by path analysis. For example,
consider the first parent set {X5}. The total effect of vertex 6 on vertex 11 is the conditional
expectation of vertex 11 given vertex 6 by adjusting for the vertex 5, which is the coefficient
βX in the following linear regression model

E(X11|X6, X5) = β
(1)
0 + β

(1)
X x6 + β

(1)
5 X5.

Applying the path analysis to the underlying DAG G, we obtain βX = 0.5 × 0.5 = 0.25,
and thus the first effect pair is (TE,DE) = (0.25, 0). Similarly, for the other parent sets ∅,
{27} and {5, 27} of vertex 6, we can get the effect pairs via the path analysis. In Table 1,
we show the pairs of total and direct effects in the block for the case (2).

15

Liu, Fang, He, Geng, Liu

(a) MB(X11) ∪ {X11} (b) MB(X7) (c) ChComp(X7)

(d) ChComp(X5),ChComp(X6) and ChComp(X27) (e) ChComp(X10)

Figure 3: The local graphs obtained via Algorithm 3

For the case (3), to find effect pairs of X10 on X11, we first find the local graphs over
MB(X10) and MB(X33) sequentially. We then obtain the local graph ChComp(X10) as
shown in Figure 3(e). In the graph ChComp(X10), we have 10 → 11 and go to Step 4 of
Algorithm 7. To obtain the effect pairs, we need to learn ChComp(X11) containing the
response X11, as shown in Figure 3(a). Then we call Algorithm 5 to find all possible parent
set pairs of vertex 10 and vertex 11: ({33}, {7, 10}) and (∅, {7, 10}). We also get that all
possible effect pairs are the same: (TE,DE) = (0.5625 = 0.5 + 0.54, 0.5) via the path
analysis, as shown in the block for the case (3) in Table 1.

For the case (4), to find effect pairs of X5 on X27, we first find the local graphs over
MB(5), MB(6) and MB(27) sequentially. Then, we obtain ChComp(X5) in Figure 4 (b).
For 5− 27 in ChComp(X5), we go to Step 5 of Algorithm 7 to find all possible parent set
pairs with setting 5 → 27: (∅, {6, 5}), ({6}, {6, 5}) and (∅, {5}). The corresponding effect
pairs are (0.75, 0.5), (0.5, 0.5) and (0.75, 0.75), respectively. Additionally, by setting 5← 27,
we have the effect pair (TE,DE) = (0, 0). All parent set pairs and all effect pairs are shown
in the block for the case (4) in Table 1.

We have shown how to find the parent set pairs of a given treatment and a given
response for four cases in Algorithm 7. It can be seen that we only need to find the chain
component containing the treatment for the cases (1), (2) and (4), and further to find the

16

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

Case T R No. pa(T) pa(R) TE DE
T̂E

Mean(Std)
D̂E

Mean(Std)

1 11 10 1 {7,10} ? 0 0 0(0) 0(0)

2 6 11

2 {5} ? .25 0 .247(.02) 0(0)

3 ∅ ? .25 0 .245(.10) 0(0)
4 {27} ? .25 0 .242(.12) 0(0)
5 {5,27} ? .25 0 .242(.13) 0(0)

3 10 11
6 {33} {7, 10} .0625 .5 .0615(.06) .500(.01)

7 ∅ {7, 10} .0625 .5 .0623(.01) .500(.01)

4 5 27

8 ∅ {6, 5} .25 .5 .251(.02) .501(.03)

9 {6} {6, 5} 0 .5 0(0) .501(.03)
10 ∅ {5} 0 .75 0(0) .751(.02)
11 {27, ?} ? 0 0 0(0) 0(0)

Table 1: Results of the modified ALARM by Algorithm 7. T denotes treatment and R re-
sponse. Each row shows a pair (pa(T), pa(R)), a pair (TE,DE), a pair (T̂E, D̂E).
We also underline the true pairs obtained from the underlying causal model.

chain component containing the response only for the case (3). Moreover, we need not find
the whole essential graph G∗ over all vertices for any case.

Now, we evaluate Algorithm 7 via 100 simulations based on the Gaussian graphical
model shown at the beginning of this section. The underlying DAG of the given graphical
model is the graph G shown in Figure 2. In Table 1, we show the true parent set pairs of
treatments and responds and the true effect pairs of treatments on responds with under-
lines. In each simulation, we first generated a sample of size 1000 from the given Gaussian
graphical model and then called Algorithm 7 to find all possible parent set pairs and the
estimates of the total and direct effects (T̂E, D̂E) for each parent set pair via the ordinary
least squares method. We give the means and the standard errors (in brackets) of estimates

of total effect T̂E and direct effect D̂E for each parent set pair via the OLS method. From
the estimates shown in Table 1, we can see that they are very close to the true values.

4.2. Evaluation with Randomly Generated Causal Models and Perfect Oracles

In this section, we use randomly generated Gaussian graphical models and perfect oracles to
test the proposed method and the IDA-based method. The use of perfect oracles guarantees
that the input graph of the IDA-based method and the chain components returned by
Algorithm 3 is identical to the underlying true ones, and thus rules out the influence of
learning graphs. The experiments were conducted as follows. We first randomly generated
causal DAGs with the number of vertices p = 50, 70 and average edge degree deg = 1, 2, 4.
Next, for each DAG G, we generated a multivariate Gaussian distribution based on the
linear structural equation model with respect to G,

Xi =
∑

Xj∈pa(Xi)

βj,i ·Xj + εi, (3)

17

Liu, Fang, He, Geng, Liu

●

●

0
5

10
15

20
25

N
um

be
r

of
 P

ai
rs

●

●

Local IDA−based

0
5

10
15

20
25

(a) Number of pairs, deg = 1

●

●●●
●●

●●●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●●●●●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●●

●●

●

●●●

●●
●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

1.
2

Total Effects

D
ire

ct
 E

ffe
ct

s

●

●●●
●●

●●●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●●●●●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●●

●●

●

●●●

●●
●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

(b) Local method, deg = 1

●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

1.
2

Total Effects

D
ire

ct
 E

ffe
ct

s

●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●●●

●

●●●● ●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●●●●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

(c) IDA-based method, deg = 1

●

●

●
●●●

●

●

●

●

0
5

10
15

20
25

N
um

be
r

of
 P

ai
rs

●

●

●
●●●

●

●

●

●

Local IDA−based

0
5

10
15

20
25

(d) Number of pairs, deg = 2

●

●

●

●
●●

●●
●

●

●

●

●

●
●●●

●●●
●●

●

●

●●●

●

●●

●

●

●

●●●

●

●

●
●

●●●
●

●

●●

●

●
●

●

●●

●

●●

●

●●●●●●

●●

●

●●●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●
●

●

●●

●

●●

●●

●●●● ●

●●●

●

●

●

●

●●●●●●

●

●●

●

●

●

●●●

●●
●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●●●

●

●●

●

●

●

●

●●

●●

●

●

●●●●●

●

●

●●●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

1.
2

Total Effects

D
ire

ct
 E

ffe
ct

s

●

●

●

●
●●

●●
●

●

●

●

●

●
●●●

●●●
●●

●

●

●●●

●

●●

●

●

●

●●●

●

●

●
●

●●●
●

●

●●

●

●
●

●

●●

●

●●

●

●●●●●●

●●

●

●●●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●
●

●

●●

●

●●

●●

●●●● ●

●●●

●

●

●

●

●●●●●●

●

●●

●

●

●

●●●

●●
●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●

●●●

●

●●

●

●

●

●

●●

●●

●

●

●●●●●

●

●

●●●

●

●

●

●

(e) Local method, deg = 2

●

●

●●

●

● ●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

● ●

●

●●

●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●●

●●

●●●● ●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

1.
2

Total Effects

D
ire

ct
 E

ffe
ct

s

●

●

●●

●

● ●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●
●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

● ●

●

●●

●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●●

●●

●●●● ●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●●

●●●●

●

●●●●●●●● ●

●

●

●

●

●

●●

●●

●●

●

●●●●

●

●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●●●●●●●

●

●●●

●

●●

●

(f) IDA-based method, deg = 2

●●

●
●
●

●

●

●

●

●●

●

●

●

●
●●

0
5

10
15

20
25

N
um

be
r

of
 P

ai
rs

●●

●
●
●

●

●

●

●

●●

●

●

●

●
●●

Local IDA−based

0
5

10
15

20
25

(g) Number of pairs, deg = 4

●
●● ●

●●●

●

●●
●

●

●●
●●

●

●●

●●●

●

●●●

●●

●●●
●

●●

●●
●

●●

●

●

●●
●

●

●

●

●
●

●●●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●●
●● ●

●

●

●

●●

●●

●

●●

●

●

●●●

●●

●

●●● ●●

●●

●

●●

●

●

●●
●

●

●●●●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●●

● ●●

●

●

●

●

●
●

●

●●●
●

●●●
●●●

●

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

1.
2

Total Effects

D
ire

ct
 E

ffe
ct

s

●
●● ●

●●●

●

●●
●

●

●●
●●

●

●●

●●●

●

●●●

●●

●●●
●

●●

●●
●

●●

●

●

●●
●

●

●

●

●
●

●●●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●●
●● ●

●

●

●

●●

●●

●

●●

●

●

●●●

●●

●

●●● ●●

●●

●

●●

●

●

●●
●

●

●●●●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●●

● ●●

●

●

●

●

●
●

●

●●●
●

●●●
●●●

●

(h) Local method, deg = 4

●
●● ●

●●●

●

●●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●
●

●●

●●
●

●●

●

●

●●
●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

● ●

●●

●

●●● ●●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

● ●

●

●

● ●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●
●●●

●

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

1.
2

Total Effects

D
ire

ct
 E

ffe
ct

s

●
●● ●

●●●

●

●●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●
●

●●

●●
●

●●

●

●

●●
●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

● ●

●●

●

●●● ●●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

● ●

●

●

● ●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●
●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●●

●●

●

●●●●

●●

●

●

●

●

●●●●

●

●●

●

●● ●●●

●

●●

●

●

●●

(i) IDA-based method, deg = 4

Figure 4: Experimental results on randomly generated causal models and perfect oracles,
with p = 50 and deg = 1, 2, 4. The first column compares the number of possible
total and direct effects pairs (T̂E, D̂E) returned by the local and the IDA-based
methods. The second and third columns show all the possible pairs returned by
the local and the IDA-based methods, respectively. Note that, the red dots in
(c), (f) and (i) are false pairs returned by the IDA-based method.

where the regression coefficients βj,i’s were independently and uniformly sampled from
[0.8, 1.2], and residuals εi’s were generated from N(0, 0.1) independently. Since we sup-
pose in this simulation that the perfect oracles are available, we directly computed the
population covariance matrix from the sampled distribution rather than estimated it from
data. Finally, we randomly picked two adjacent vertices X and Y in G, and used the pop-
ulation covariance matrix to estimate the possible pairs of total and direct causal effects of

18

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

X on Y with the IDA-based method and the proposed Algorithm 7. For each setting, the
above distribution generation procedure was repeated 100 times.

Below we only report the results for DAGs with p = 50, since the conclusions are similar
for p = 70. Figure 4 shows the results on randomly generated causal models and perfect
oracles, with p = 50 and deg = 1, 2, 4. Since perfect oracles were given, the estimated
possible total and direct causal effects pairs must include the underlying true pair. Hence,
we only studied the number of possible effect pairs estimated by the local method (Algorithm
7) and the IDA-based method. It can be easily seen from Figures 4(a), 4(d) and 4(g) that
the number of effect pairs returned by the local method is in general smaller than that
returned by the IDA-based method. The more sparse the graph is, the more effect pairs
the IDA-based method will return. In fact, as pointed in Section 1, the possible set of
effect pairs returned by the IDA-based method may contain effect pairs that never occur
in any Markov equivalent DAG. For example, comparing Figures 4(c) and 4(b), there are
many effect pairs returned by the IDA-based method are scattered on X-axis and Y-axis.
However, those effect pairs could never occur in any Markov equivalent DAG. The effect
pairs on Y-axis have zero total effects and positive direct effects, which are impossible since
in our settings all regression coefficients are positive. This implies that the total effect of
a treatment on a response should be greater than the corresponding direct effect. On the
other hand, the effect pairs on X-axis have zero direct effects and positive total effects,
which are also impossible since we only considered adjacent variables. We note that, apart
from the points on X-axis and Y-axis, there are still many pairs away from X-axis and
Y-axis which could never occur in any Markov equivalent DAG. For example, none of the
red dots in Figures 4(c), 4(f) and 4(i) is true effect pair, and some of which are not on any
axes.

4.3. Evaluation with Randomly Generated Causal Models and Finite Samples

In this section, we use randomly generated Gaussian graphical models and finite samples
to test the proposed method and the IDA-based method. The Gaussian graphical models
were generated in the same way as described in Section 4.2. For each sampled Gaussian
distribution, we further drew samples of size N = 2000, 10000. Next, we randomly chose two
adjacent vertices X and Y in G, and used the simulated data set to estimate the possible
pairs of total and direct causal effects of X on Y with the IDA-based method and the
proposed Algorithm 7. For each setting, the above data generation procedure was repeated
100 times.

As discussed in Section 3, the estimation of possible pairs of total and direct causal
effects is based on learning essential graphs (which is needed by the IDA-based method) or
chain components (which is needed by Algorithm 7). Therefore, we used PC, stable PC and
GES to learn essential graphs, and used Algorithm 3 to learn chain components. We also
considered to use PC, stable PC and GES to learn essential graphs first, and then obtain
the chain components by reading the induced subgraphs of the learned essential graphs.
For ease of presentation, we use PC-IDA, PCS-IDA and GES-IDA to denote the IDA-based
method combined with the corresponding global learning algorithms, and PC-L, PCS-L and
GES-L to denote the local method Algorithm 7 combined with the corresponding global

19

Liu, Fang, He, Geng, Liu

learning algorithms. The fully local method, which combines two local Algorithms 7 and 3,
is denoted by ‘Local’.

Apart from CPU time, we define the following three metrics to evaluate and compare
the performance of different methods. Let (TEtrue, DEtrue) denote the true pair of total
and direct effects, Strue = {(TEi, DEi)}ni=1 denote the set of possible pairs of total and
direct effects estimated with true essential graph, perfect oracles and Algorithm 2, and
Sest = {(T̂Ei, D̂Ei)}mi=1 denote the set of possible pairs of total and direct effects estimated
from data with a certain method. The first metric is called the minimum distance, which
is defined as

minDist(Sest) = min
i=1,2,...,m

√
(T̂Ei − TEtrue)2 + (D̂Ei −DEtrue)2.

Clearly, the minimum distance equals zero if and only if the true pair is included in the
estimated set of total and direct causal effect pairs. The second metric is causal mean
square error (CMSE), which is modified from the CMSE defined in Tsirlis et al. (2018) and
has the following form,

CMSE(Sest) =
1

m

m∑
i=1

[
(T̂Ei − TEtrue)2 + (D̂Ei −DEtrue)2

]
.

the CMSE can be viewed as the averaged square distance between each pair in Sest and
the true pair (TEtrue, DEtrue). However, due to the non-identifiability of the true causal
DAG, the CMSE is generally non-zero since Sest may contain more than one total and direct
causal effects pair. The last metric is set distance, which measures the distance between
the set Sest and the set Strue. Let S1 and S2 be two finite subsets of R2 with |S1| ≥ |S2|,
let F be the set of all surjections from S1 to S2. Then the set distance between S1 and S2
is defined as

setDist(S2, S1) = setDist(S1, S2) = min
f∈F

∑
s1∈S1

‖s1 − f(s1)‖2.

To evaluate a method, we need compute setDist(Sest, Strue). In Appendix, we transform
the above combinatorial minimization problem to a maximum weight matching problem of
a bipartite graph, and thus this minimization problem can be easily solved by, for example,
Kuhn-Munkres algorithm (Kuhn, 1955; Munkres, 1957).

We only present the results for p = 50. Figures 5 and 6 show experimental results
on randomly generated causal models and finite samples, with p = 50, deg = 1, 2, 4 and
N = 2000, 10000. The CPU time, minimum distance, set distance, and CMSE of different
methods are reported. In order to display the results more clearly, the outliers are not
drawn in the figures. Clearly, the CPU time of the fully local method is shorter than that
of other methods, especially when the graphs is sparse or the samples size is small. Besides,
the CPU time of PC-L (PCS-L, GES-L) is similar to that of PC-IDA (PCS-IDA, GES-IDA),
since both of these methods use the PC (stable PC, GES) algorithm to learn an essential
graph.

We next consider the effectiveness of different methods. The minimum distance of the
fully local method is better than other methods when the sample size is small and similar to

20

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

0.
1

0.
3

0.
5

T
im

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
1

0.
3

0.
5

0.
00

0.
02

0.
04

0.
06

M
in

im
um

 D
is

ta
nc

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
00

0.
02

0.
04

0.
06

0
1

2
3

4
5

S
et

 D
is

ta
nc

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0
1

2
3

4
5

0.
0

1.
0

2.
0

C
M

S
E

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
0

1.
0

2.
0

(a) deg = 1

0.
1

0.
3

0.
5

T
im

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
1

0.
3

0.
5

0.
00

0.
04

0.
08

M
in

im
um

 D
is

ta
nc

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
00

0.
04

0.
08

0
1

2
3

4
S

et
 D

is
ta

nc
e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0
1

2
3

4

0.
0

0.
5

1.
0

1.
5

C
M

S
E

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
0

0.
5

1.
0

1.
5

(b) deg = 2

0.
0

0.
5

1.
0

1.
5

T
im

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
0

0.
5

1.
0

1.
5

0.
0

1.
0

2.
0

M
in

im
um

 D
is

ta
nc

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
0

1.
0

2.
0

0
1

2
3

4
5

6
S

et
 D

is
ta

nc
e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0
1

2
3

4
5

6

0
1

2
3

4
C

M
S

E

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0
1

2
3

4

(c) deg = 4

Figure 5: Experimental results on randomly generated causal models and finite samples,
with p = 50, deg = 1, 2, 4 and N = 2000. The CPU time, minimum distance, set
distance, and CMSE of different methods are reported.

others when the sample size is large. This is because that the fully local method only needs
to learn the chain components while others need to learn an entire essential graph. Besides,
the minimum distance of PC-L (PCS-L, GES-L) is similar to that of PC-IDA (PCS-IDA,
GES-IDA) since they use the same method to learn the graphs and the set of possible effect
pairs given by PC-IDA (PCS-IDA, GES-IDA) is a super set of that given by PC-L (PCS-L,
GES-L). On the other hand, if we consider the set distance, which includes the influence of
the number of the possible effect pairs, the fully local method, PC-L, PCS-L, and GES-L all
perform significantly better than PC-IDA, PCS-IDA, and GES-IDA, since the latter three
may produce nonexistent total and direct effects pairs. Moreover, among the former four

21

Liu, Fang, He, Geng, Liu

0.
10

0.
20

0.
30

T
im

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
10

0.
20

0.
30

0.
00

0.
02

0.
04

M
in

im
um

 D
is

ta
nc

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
00

0.
02

0.
04

0
1

2
3

4
S

et
 D

is
ta

nc
e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0
1

2
3

4

0.
0

0.
5

1.
0

1.
5

2.
0

C
M

S
E

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
0

0.
5

1.
0

1.
5

2.
0

(a) deg = 1

0.
2

0.
4

0.
6

0.
8

T
im

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
2

0.
4

0.
6

0.
8

0.
00

0.
02

0.
04

M
in

im
um

 D
is

ta
nc

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
00

0.
02

0.
04

0
1

2
3

4
S

et
 D

is
ta

nc
e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0
1

2
3

4

0.
0

0.
5

1.
0

C
M

S
E

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
0

0.
5

1.
0

(b) deg = 2

0
2

4
6

8
10

T
im

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0
2

4
6

8
10

0.
0

1.
0

2.
0

M
in

im
um

 D
is

ta
nc

e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
0

1.
0

2.
0

0
1

2
3

4
S

et
 D

is
ta

nc
e

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0
1

2
3

4

0.
0

1.
0

2.
0

C
M

S
E

Lo
ca

l

P
C

−
L

P
C

S
−

L

G
E

S
−

L

P
C

−
ID

A

P
C

S
−

ID
A

G
E

S
−

ID
A

0.
0

1.
0

2.
0

(c) deg = 4

Figure 6: Experimental results on randomly generated causal models and finite samples,
with p = 50, deg = 1, 2, 4 and N = 10000. The CPU time, minimum distance,
set distance, and CMSE of different methods are reported.

methods, the fully local method is usually the best, since the fully local method only needs
to locally learn the chain components.

Finally, let us see the CMSEs of different methods. The CMSEs of the fully local
method, PC-L, PCS-L, PC-IDA, PCS-IDA are similar to each other, especially when the
graph is sparse or the sample size is small. However, the CMSEs of GES-L and GES-IDA
are usually smaller in terms of median, but the standard deviations of CMSE of GES-L and
GES-IDA are usually larger. These facts imply that GES-based methods are more sensitive
to the sample size, but in general, the estimates are more concentrated than other methods.
That is, either the possible effect pairs estimated by GES-based methods are similar to
each other, or the number of possible effect pairs are small. However, since the minimum

22

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

distances of GES-based methods are not the best, it is possible that the estimated effect
pairs of GES-based methods do not contain the true one.

4.4. Evaluation with the DREAM4 Data

In this section, we apply our method on synthetic gene expression data sets from the
DREAM4 in silico challenge. The DREAM4 data provides five data sets with both in-
terventional and observational data simulated from five possibly cyclic gene regulatory net-
works with 100 genes. The detailed descriptions of the data sets can be found at http:

//dreamchallenges.org/project/dream4-in-silico-network-challenge/. In our ex-
periments, we only used observational data in each data set, which includes 201 observations.
We also took the logarithm of each data set and then normalized each data set such that
each gene has a sample mean 0 and a sample variance 1.

−
1.

5
−

0.
5

0.
5

1.
5

Lo
g−

re
la

tiv
e

M
in

im
um

 D
is

ta
nc

e

P
C

−
L

/ L
oc

al

P
C

S
−

L
/ L

oc
al

G
E

S
−

L
/ L

oc
al

−
1.

5
−

0.
5

0.
5

1.
5

(a) Data set 1

−
1.

5
−

0.
5

0.
5

1.
5

Lo
g−

re
la

tiv
e

M
in

im
um

 D
is

ta
nc

e

P
C

−
L

/ L
oc

al

P
C

S
−

L
/ L

oc
al

G
E

S
−

L
/ L

oc
al

−
1.

5
−

0.
5

0.
5

1.
5

(b) Data set 2

−
1.

5
−

0.
5

0.
5

1.
5

Lo
g−

re
la

tiv
e

M
in

im
um

 D
is

ta
nc

e

P
C

−
L

/ L
oc

al

P
C

S
−

L
/ L

oc
al

G
E

S
−

L
/ L

oc
al

−
1.

5
−

0.
5

0.
5

1.
5

(c) Data set 3

−
1.

5
−

0.
5

0.
5

1.
5

Lo
g−

re
la

tiv
e

M
in

im
um

 D
is

ta
nc

e

P
C

−
L

/ L
oc

al

P
C

S
−

L
/ L

oc
al

G
E

S
−

L
/ L

oc
al

−
1.

5
−

0.
5

0.
5

1.
5

(d) Data set 4
−

1.
5

−
0.

5
0.

5
1.

5
Lo

g−
re

la
tiv

e
M

in
im

um
 D

is
ta

nc
e

P
C

−
L

/ L
oc

al

P
C

S
−

L
/ L

oc
al

G
E

S
−

L
/ L

oc
al

−
1.

5
−

0.
5

0.
5

1.
5

(e) Data set 5

−
2

−
1

0
1

2
3

Lo
g−

re
la

tiv
e

C
M

S
E

P
C

−
L

/ L
oc

al

P
C

S
−

L
/ L

oc
al

G
E

S
−

L
/ L

oc
al

−
2

−
1

0
1

2
3

(f) Data set 1

−
2

−
1

0
1

2
3

Lo
g−

re
la

tiv
e

C
M

S
E

P
C

−
L

/ L
oc

al

P
C

S
−

L
/ L

oc
al

G
E

S
−

L
/ L

oc
al

−
2

−
1

0
1

2
3

(g) Data set 2

−
2

−
1

0
1

2
3

Lo
g−

re
la

tiv
e

C
M

S
E

P
C

−
L

/ L
oc

al

P
C

S
−

L
/ L

oc
al

G
E

S
−

L
/ L

oc
al

−
2

−
1

0
1

2
3

(h) Data set 3

−
2

−
1

0
1

2
3

Lo
g−

re
la

tiv
e

C
M

S
E

P
C

−
L

/ L
oc

al

P
C

S
−

L
/ L

oc
al

G
E

S
−

L
/ L

oc
al

−
2

−
1

0
1

2
3

(i) Data set 4

−
2

−
1

0
1

2
3

Lo
g−

re
la

tiv
e

C
M

S
E

P
C

−
L

/ L
oc

al

P
C

S
−

L
/ L

oc
al

G
E

S
−

L
/ L

oc
al

−
2

−
1

0
1

2
3

(j) Data set 5

Figure 7: Experimental results on DREAM4 data sets.

Since the set of possible pairs of total and direct causal effects estimated by the IDA-
based method contains some nonexistent pairs, in this section we only apply the proposed
local method Algorithm 7. The required chain components were learned by Algorithm 3,

23

http://dreamchallenges.org/project/dream4-in-silico-network-challenge/
http://dreamchallenges.org/project/dream4-in-silico-network-challenge/

Liu, Fang, He, Geng, Liu

PC, stable PC, and GES, while with later three methods, we first learned an essential graph
and then obtained the chain components by reading the induced subgraphs of the learned
essential graph.

For each data set, we estimated the set of possible pairs of total and direct causal effects
of all pairs of treatment and response, that is, 100×99 = 9900 treatment-response pairs. To
evaluate and compare different methods, we estimated the true pair of total and direct causal
effects for each treatment-response pair based on the provided regulatory network, and
compared it with the estimated possible set. Two metrics, namely the minimum distance
and the CMSE, were used to evaluate the performance of different methods. Note that,
since the underlying regulatory networks may contain cycles, the perfect oracles are not
available. Thus, the set distance was not considered in the experiments.

Figure 7 reports the log-relative minimum distances and CMSEs of PC-L, PCS-L and
GES-L with respect to the fully local method, respectively, on five DREAM4 data sets. The
log-relative minimum distance of a method is defined as the log of the minimum distance
of the method minus the log of the minimum distance of the fully local method. The log-
relative CMSE is defined similarly. In terms of both metrics, on the data sets 1, 3, 4, 5, the
fully local method is not worse than PC-L and PCS-L in approximately 70%-75% cases, and
on the data sets 3, 4, 5 the fully local method is better than GES-L in approximately 70%-
75% cases since the median of ‘GES-L / Local’ is above zero. On the data set 2, the fully
local method does not outperform others. The reason could be that the chain components
learned by Algorithm 3 is not accurate enough, since the original network contains directed
cycles.

5. Conclusions and Discussions

In this paper, we propose a global learning approach and a local learning approach for finding
all possible pairs of the total and direct effects of a given treatment on a given response.
For Gaussian graphical models, we first find all possible pairs of parents of treatment and
response and then evaluate all pairs of the total and direct effects. We discuss the global
learning algorithm and its improved version which first learn an whole essential graph from
observed data, then enumerate all possible causal networks in the Markov equivalence class
represented by the essential graph, and finally find a pair of the total and direct effects for
each DAG in the class. We further propose the local learning approach in which we first
learn locally the chain components containing the treatment and the response and then
locally enumerate all possible pairs of the parent set of the treatment and the parent set
of the response in the Markov equivalence class. To check the validity of any orientation
configuration of the neighbors of the treatment and the response, we introduce a local
criterion that depends only on the subgraphs of the learned chain components over the
neighbors of the treatment and the response.

In our approaches, we require the faithfulness assumption and assume that there are
no hidden variables or selection biases. When there exist hidden variables and selection
biases, a promising future work is to study the local structure learning and the causal effect
estimation under the framework of ancestral graph Markov models (Richardson and Spirtes,
2002; Ali et al., 2005; Zhang, 2008; Malinsky and Spirtes, 2017). The Gaussian assumption is
another requirement for our approaches. The Gaussian model is only needed for estimating

24

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

total and direct effects via OLS method, but not necessary for the local structure learning.
When the variables of interest are not Gaussian, we need to further discuss the definitions
of total and direct effects and their estimations.

Acknowledgments

We would like to thank the editor and the three referees for their helpful comments and
suggestions that greatly improved the previous version of this paper. This research was
supported by National Key R&D Program of China (2018YFB1004300), 973 Program of
China (2015CB856000), NSFC (11671020, 11771028, 91630314).

Appendix A. Algorithms

In this appendix, we describe the IAMB algorithm and Meek’s orientation algorithm that
are used in Algorithm 3. Given a variable Z, Algorithm 8 finds a Markov blanket of a given
response variable T ; this algorithm can be found in Tsamardinos et al. (2003).

Algorithm 8 The IAMB algorithm (Tsamardinos et al., 2003)

Input: Treatment T , Data D of the variable set V .
Output: A Market blanket of T .

Phase I (forward)
1: Set CMB = ∅.
2: while CMB has changed, do
3: Find the variable X in V − CMB − {T} that maximizes f(X;T |CMB), where

f(X;T |CMB) is the Mutual Information between X and T given CMB.
4: if X / T |CMB then
5: Add X to CMB.
6: end if
7: end while

Phase II (backwards)
8: Remove from CMB all variables X, for which X T |(CMB − {X}).
9: return CMB.

Algorithm 9 orients some undirected edges in a graph S to directed edges using Meeks’
rules (Meek, 1995).

Appendix B. Detailed Proofs

Below, we prove Corollary 4.

Proof Let V be the vertex set of the underlying essential graph G∗, Donelist be the subset
of vertices visited by Algorithm 3 in Step 4, and S be the final graph updated by GMB(Z)

for all Z ∈ Donelist. Let ChComp(X) be a subgraph of S and ChComp(X) consists of
all edges with at least one vertex in A, where A is set of the vertices that have undirected
paths to X. We have that A is a subset of Donelist according to Algorithm 3.

25

Liu, Fang, He, Geng, Liu

Algorithm 9 Meeks’s approach used in the Step 8 in Algorithm 3

Input: A graph S and the independence set, denoted by IndSet, which is used to learn S.
Output: An oriented graph S.

1: while S has changed, do
2: For any subgraph like a → b − c in S, if a c|Sac in IndSet, and b ∈ Sac, update S

by orienting b→ c.
3: For any subgraph like a→ b→ c− a in S, update S by orienting a→ c.
4: For any subgraph like a− b,a− c→ b, and a− d→ b in S, if c d|Scd in IndSet, and

a ∈ Scd, update S by orienting a→ b.
5: end while
6: return S.

According to Theorem 1 in Wang et al. (2014), We have that all edges adjacent Z are
correct in GMB(Z) regardless of their orientations. Therefore, we have that all edges in
ChComp(X) are correct regardless of their orientations since all edges in ChComp(X) are
connected to A and A is a subset of Donelist. According to Theorem 2 in Wang et al. (2014),
we have that all v-structures in S are correct and that all v-structures which have at least
one parent contained in DoneList are discovered correctly. According to Meeks orientation
approach, we know that the directed edges in S are correctly oriented by checking the
absence of edges in S (Meek, 1995). Moreover, when DoneList equals V in Algorithm 3,
we have that the final graph S is the same as G∗. Furthermore, ChComp(X) consists of
the chain component which contains vertex X and the directed edges surrounding the chain
component when DoneList = V .

When DoneList $ V , we continue to update S by the local graph GMB(Z) for every
Z ∈ V \ Donelist, and denote the final graph as S′. Because ChComp(X) is a subgraph
of S and all undirected edges in ChComp(X) have been enveloped by directed edges in S,
we have that the undirected edges in ChComp(X) will not be oriented to directed edges
by the v-structures found in GMB(Z) for all Z ∈ V \Donelist. Moreover, as shown above,
we have that S′ is the same as G∗, so ChComp(X) has the same undirected and directed
edges connected to A as those in G∗. That is, ChComp(X) consists of the chain component
which contains vertex X and the directed edges surrounding the chain component in G∗.

Before giving the proof of Theorem 5, we give the following Lemma 9.

Lemma 9 Let G∗ be an essential graph with k chain components τ1, . . . , τk, G1 and G2 be
any two DAGs in the Markov equivalence class represented by G∗, and Gj,τi be the subgraph
of Gj over τi for any i = 1, . . . , k. Let G3 be a graph obtained from G1 by replacing G1,τi

in G1 by G2,τi. We have that G3 is a DAG in Markov equivalence class represented by G∗.

Proof Because G1 and G2 are equivalent DAGs, they have the same skeleton; thus G3 has
the same skeleton as G1. We just need to show that G3 has the same V-structures as G1

and there is no directed cycle in G3. First, because G3,τi is the same as G2,τi , and they have
the same directed edges surrounding them in G3 and G2, respectively, we have that G3 and
G2 have the same V-structures that contain at least one edge in G3,τi . And because G3 is
the same as G1 except the edges in τi, we have that G3 and G1 have the same V-structures

26

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

that do not contain edges in G3,τi . Consequently, G3 has the same V-structures as G1 since
G1 and G2 have the same V-structures.

Suppose that there is a directed cycle in G3, denoted by cycle1. Since both G1 and G3,τi

are DAGs, we have that the subgraph obtained by removing the edges in G3,τi from G3 is
also a DAG. Therefore, in the directed cycle cycle1, there exist some directed edges in G3,τi

and some directed edges out of G3,τi . Changing the directed edges of cycle1 that are in
chain components in G∗ into undirected edges, we obtain a cycle cycle2. Clearly, the cycle
cycle2 is partial directed in G∗. Since G∗ is a chain graph without partial directed cycles,
we have that G3 is a DAG.

Proof of Theorem 5 We only need to prove that {S(Y) → Y, S(X) → X} is valid if
S(Y)→ Y and S(X)→ X are valid, separately, in an essential graph G∗.

Let the chain component containing X and Y be τ1 and τ2, respectively. Because both
S(Y) → Y and S(X) → X are valid, there are two DAGs in the class represented by
G∗, denoted by G1 and G2, where G1 has the same directed edges connected to X as
G∗S(X)→X and G2 has the same directed edges connected to Y as G∗S(Y)→Y . Let G3 be a
graph obtained from G1 by replacing G1,τi in G1 by G2,τi . According to Lemma 9, G3 is
a DAG in Markov equivalence class represented by G∗. Clearly, G3 has the configuration
{S(Y)→ Y, S(X)→ X} , and so {S(Y)→ Y, S(X)→ X} is valid in G∗. �

In the remainder of this Appendix, we will prove Theorem 6 which gives the sufficient
and necessary local conditions for the validity of an orientation configuration (S(Y) →
Y, S(X) → X) applied to an essential graph G∗. The proof of the validity of (S(Y) →
Y, S(X)→ X) applied to G∗ is shown in the following sequential manner.

We first check the validity of S(Y) → Y applied to G∗ using the local criterion given
by Lemma 3. If S(Y) → Y is not valid, then (S(Y) → Y, S(X) → X) is not valid. If
S(Y) → Y is valid, then there exist some Markov equivalent DAGs in G∗ that have the
same directed edges connected to Y as G∗S(Y)→Y . Next we check the validity of S(X)→ X
applied to G∗S(Y)→Y .

Theorem 6 in He and Geng (2008) showed that the Markov equivalent DAGs obtained by
applying the orientation S(Y)→ Y to G∗ can be represented uniquely by an essential graph,
denoted by G∗∗S(Y)→Y . Let τ be chain components containing X and Y in G∗, G∗∗S(Y)→Y can

be obtained by applying Meek’s the following two rules (Meek, 1995) repeatedly to the
undirected edges in G∗S(Y)→Y : for any three vertices Z1, Z2 and Z3 ∈ τ ,

(1) (No new v-structures) if Z1 → Z2 −Z3 ∈ G∗S(Y)→Y and Z1 and Z3 are not adjacent,
then orient Z2 − Z3 as Z2 → Z3;

(2) (No cycle) if Z1 → Z2 → Z3 ∈ G∗S(Y)→Y and Z1−Z3 ∈ G∗S(Y)→Y , then orient Z1−Z3

as Z1 → Z3.

Thus we can check the validity of S(X)→ X applied to G∗∗S(Y)→Y using Lemma 3 again.

If S(Y)→ Y applied to G∗ is valid and in turn S(X)→ X applied to G∗∗S(Y)→Y is valid,

then we have that (S(Y) → Y, S(X) → X) applied to G∗ is valid. We give a summary in
the following lemma.

27

Liu, Fang, He, Geng, Liu

Lemma 10 Let G∗S(Y)→Y and G∗(S(Y)→Y,S(X)→X) be the graphs obtained by applying the

orientations S(Y)→ Y and (S(Y)→ Y, S(X)→ X) to an essential graph G∗, respectively,
and let G∗∗S(Y)→Y be the graph obtained by applying Meek’s the two rules repeatedly to the

undirected edges in G∗S(Y)→Y . We have that the orientation (S(Y)→ Y, S(X)→ X) applied
to G∗ is valid if

1. the orientation (S(Y)→ Y, S(X)→ X) makes no new v-structures in G∗(S(Y)→Y,S(X)→X),
and

2. S(X) is a subset of the neighbor set of X in G∗∗S(Y)→Y .

Proof Since the orientation (S(Y) → Y, S(X) → X) makes no new v-structures in
G∗(S(Y)→Y,S(X)→X), we have that S(Y) → Y makes no new v-structures in G∗S(Y)→Y , and

thus S(Y)→ Y is valid by Lemma 3. According to Theorem 6 in He and Geng (2008), since
G∗∗S(Y)→Y is an essential graph, S(X) is a subset of the neighbor set of X in G∗∗S(Y)→Y and

the orientation S(X) → X makes no new v-structures, we have that S(X) → X applied
to G∗∗S(Y)→Y is valid. Thus there exists a DAG, say D, in the DAG class represented by
G∗∗S(Y)→Y , which has the same directed edges connected to X or Y as G∗(S(Y)→Y,S(X)→X).
Since the class represented by G∗∗S(Y)→Y is a subset of the class represented by G∗, we have

that D is in the class of G∗, and thus the orientation (S(Y) → Y, S(X) → X) is valid for
G∗.

To check the validity of an orientation configuration (S(Y) → Y, S(X) → X) for G∗,
Theorem 6 presents the local conditions that do not need the essential graph G∗∗S(Y)→Y
obtained by applying Meek’s the two rules to G∗S(Y)→Y . Before proving Theorem 6, we
show two properties of G∗∗S(Y)→Y below.

Lemma 11 Let S(Y) → Y be a valid orientation configuration containing X ∈ S(Y) for
an essential graph G∗, τ be the chain component containing Y and G∗∗S(Y)→Y be the essential
graph obtained by applying Meek’s the two rules repeatedly to G∗S(Y)→Y . We have

1. a directed edge X → Z appears in G∗∗S(Y)→Y but not in G∗S(Y)→Y if and only if there
is a directed path from Y to Z in the induced subgraph of G∗∗S(Y)→Y over τ ; and

2. for any neighbor vertex Z of X in G∗, the directed edge Z → X does not appear in
G∗∗S(Y)→Y .

Proof For the proof of the property 1, let H = G∗S(Y)→Y , and let Hτ be the induced
subgraph of H over τ . To obtain G∗∗S(Y)→Y , we apply Meek’s these two rules repeatedly to
Hτ .

Below using the inductive method, we prove that for any directed edge (say, U → V)
in the induced subgraph of G∗∗S(Y)→Y over τ , we have either V = Y or that there exists a

directed path from Y to V . First, for any directed edge in Hτ (say, U → V), we have either
V = Y or that Y is a parent of V . Let U → V be the first edge oriented by one of the above
two rules. We have that there is a directed path from Y to V . That is, there is a directed
path from Y to the head of the new oriented edge. Suppose that there exist directed paths

28

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

from Y to each of heads of the first k oriented edges. According to Meek’s the two rules,
we have that there is a directed path from Y to the head of the (k + 1)th oriented edge.
Therefore, if a directed edge X → Z appears in G∗∗S(Y)→Y but not in G∗S(Y)→Y , then there
is a directed path from Y to Z in G∗∗S(Y)→Y .

Since G∗∗S(Y)→Y is an essential graph (He and Geng, 2008), there is no partial directed
cycle in G∗∗S(Y)→Y . If there is a directed path from Y to Z in G∗∗S(Y)→Y , then X → Y appears
in G∗∗S(Y)→Y , otherwise there is a partial directed cycle from X to itself.

For the proof of the property 2, from the proof of the property 1, in G∗∗S(Y)→Y , there
exists a directed path from Y to the head of each directed edge that is oriented by Meek’s
these two rules. Suppose that Z → X appears in G∗∗S(Y)→Y . Then there exists a directed
path from Y to X in G∗∗S(Y)→Y . That is, the essential graph G∗∗S(Y)→Y has a directed cycle
X → Y → · · · → X in the essential graph G∗∗S(Y)→Y . This supposition leads to a contradic-
tion.

Below we show the proof of Theorem 6.

Proof of Theorem 6 First, we show the necessity. That is, the three conditions in
Theorem 6 hold if the orientation configuration (S(Y) → Y, S(X) → X) is valid for G∗.
According to Lemma 3, the conditions 1 and 2 hold obviously if the orientation configuration
(S(Y) → Y, S(X) → X) is valid. Consider any partial directed cycle in G∗S(Y)→Y,S(X)→X
(say, X → Y → Z1− · · · −Zk −Z → X), where Z1, · · · , Zk are k distinct vertices. Suppose
that the condition 3 does not hold. Then we have that Y is not adjacent to Z2, · · · , Zk, Z
in G∗(S(Y)→Y,S(X)→X). Let Z(1) = Z1, Z(m) = Z and Z(1)−Z(2)− · · · −Z(m) be the shortest

sub-path from Z1 to Z, in which {Z(1), · · · , Z(m)} is a subset of {Z1, · · · , Zk, Z} and Z(i)

is not adjacent to Z(j) in G∗(S(Y)→Y,S(X)→X) for any 1 ≤ i, j ≤ m and j − i > 1. Since

the orientation configuration (S(Y)→ Y, S(X)→ X) is valid, there exists at least a DAG
(say D) that has the same directed edges connected to X or Y and the same v-structures
as G∗(S(Y)→Y,S(X)→X). Therefore Y → Z(1) → Z(2) → · · · → Z(m) appears in D since
Y → Z(1), Y is not adjacent to Z(2), and Z(i) is not adjacent to Z(i+2) for any 0 ≤ i ≤ m−2
in G∗(S(Y)→Y,S(X)→X) . That is, the DAG D has a directed cycle from X to itself. This leads
to a contradiction. Therefore, Y is adjacent to one of Z2, · · · , Zk, Z, and thus the condition
3 of Theorem 5 holds.

Now, we prove the sufficiency. That is, an orientation configuration (S(Y)→ Y, S(X)→
X) is valid if the three conditions in Theorem 6 hold. According to Lemma 10, we just
need to show that the conditions in Lemma 10 hold. The condition 1 in Lemma 10 holds
obviously. If condition 2 in Lemma 10 would not hold. That is, S(X) is not a subset of
neighbor set of X in G∗∗S(Y)→Y , then S(X) contains at least one vertex that is not a neighbor

of X in G∗∗S(Y)→Y . Let Z ∈ S(X) and let Z be not a neighbor of X in G∗∗S(Y)→Y . Moreover,

since Z is not a neighbor of X in G∗, according to (2) of Lemma 11, we have that Z is not a
parent of X in G∗∗S(Y)→Y . Consequently, X → Z appears in G∗∗S(Y)→Y . By (1) of Lemma 11,
there exists a direct path from Y to Z in G∗∗S(Y)→Y , denoted by Y → Z1 → · · · → Zk → Z.
Below, we will show that either condition 2 or condition 3 in Theorem 6 does not hold.

29

Liu, Fang, He, Geng, Liu

Notice that Z ∈ S(X). So Z → X occurs in G∗S(Y)→Y,S(X)→X . If Z is a neighbor of
Y in G∗, then X → Y → Z → X in G∗S(Y)→Y,S(X)→X forms a directed cycle, and thus
condition 2 in Theorem 6 does not hold.

If Z is not a neighbor of Y in G∗, set n be the maximum number from 1 to k such that
Zn is a neighbor of Y in G∗. Since there is a directed path from Y to Zn in G∗∗S(Y)→Y ,

we have Zn /∈ S(Y) and that Y → Zn appears in G∗S(Y)→Y . Therefore, X → Y →
Zn − · · · − Zk − Z → X is a partial directed cycle in G∗S(Y)→Y,S(X)→X . Let Z(1) = Zn,
Z(m) = Z and Z(1)− · · ·−Z(m) be the shortest sub-path of Zn− · · ·−Zk−Z. Consider the
undirected cycle X−Y −Z(1)−· · ·−Z(m)−X in G∗. Because there are no undirected edges
among Y , Z(1), · · · , Z(m) except those in the cycle, we have that X must be adjacent to each
vertex in {Y,Z(1), · · · , Z(m)}. Otherwise, the chain component containing X and Y is not
a chordal graph. Considering the partial directed cycle X → Y → Z(1) − · · · − Z(m) → X
in G∗S(Y)→Y,S(X)→X , we have that all vertices are adjacent to X and that only two vertices

(X and Z(1)) are adjacent to Y . Thus the condition 3 in Theorem 6 does not hold.
Finally, we have that the conditions in Lemma 10 hold from the conditions in Theorem

6. Thus the orientation configuration (S(Y)→ Y, S(X)→ X) is valid. �

Appendix C. Implementation Details and Additional Experiments

In this section, we discuss how to efficiently compute the set distance between two sets, and
present more simulations to illustrate the estimations of the combinations of direct, indirect
and total effects.

C.1. The Computation of Set Distance

Recall that the definition of the set distance between two sets S1 and S2 is

setDist(S2, S1) = setDist(S1, S2) = min
f∈F

∑
s1∈S1

‖s1 − f(s1)‖2, (4)

where S1 and S2 are two finite subsets of R2 with |S1| ≥ |S2|, and F is the set of all
surjections from S1 to S2. We next show that the above combinatorial minimization problem
can be transformed to a maximum weight matching problem of a bipartite graph.

Without loss of generality, we can assume that S1 = {s1,1, s1,2, ..., s1,m} and S2 =
{s2,1, s2,2, ..., s2,n}. If m > n, we add some virtual points {s2,n+1, s2,n+2, ..., s2,m} to S2 and
construct a new set S∗2 = S2 ∪ {s2,n+1, s2,n+2, ..., s2,m}, and define the distance between
s1,i ∈ S1 and a virtual point s2,n+j as

d(s1,i, s2,n+j) = min
k=1,2,...,n

‖s1,i − s2,k‖2.

Note that, the above definition may not be a ‘real’ distance. That is, one may not find
a point on R2 such that the Euclidean distances between the point and all s1,i’s equal to
d(s1,i, s2,n+j) defined above. That is why we call s2,n+j ’s virtual points. If m = n, then we
simply let S∗2 = S2.

Let M = {mi,j}m×m denote the matrix of distance between points in S1 and S∗2 , where
mi,j = ‖s1,i − s2,j‖2 if j ≤ n and mi,j = d(s1,i, s2,j) if j > n. Next, we construct a bipartite

30

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

graph B with vertices S1 ∪ S∗2 and edges s1,i − s2,j for all i, j = 1, 2, ...,m, and the weight
of s1,i − s2,j is set to be −mi,j . Then we can show that,

Proposition 12 Let w be the maximum weight of all matchings of B, then the solution of
minimization problem (4) is −w.

Proof The case where m = n is simple, thus we assume m > n in the following. Let B′ be
the bipartite graph resulted from multiplying each edge weight in B by −1. It is suffices to
prove that the minimum weight of all matchings of B, denoted by w′, equals to the solution
of minimization problem (4).

Let g be a matching of B′, then g induce a bijection from S1 to S∗2 . That is, g(s1,i) =
s2,j if s1,i and s2,j are connected in the minimum weight matching. Now, consider the
inverse image of virtual points in S2, that is, {g−1(s2,j)}j>n. For any j > n, based on
the definition of d(g−1(s2,j), s2,j), there is a point in S2, or equivalently ∃k(s2,j) < n such
that d(g−1(s2,j), s2,j) = ‖g−1(s2,j) − s2,k(s2,j)‖2. If we define a map f : S1 → S2 such that

f(s1,i) = g(s1,i) if s1,i ∈ S1 \ {g−1(s2,j)}j>n, and f(s1,i) = s2,k(g(s1,i)) otherwise, then f is a
surjection from S1 to S2 and the weight of the matching g equals to

∑
s1∈S1

‖s1 − f(s1)‖2.
Therefore, w′ ≥

∑
s1∈S1

‖s1 − f(s1)‖2.
Conversely, let

f∗ = arg min
f∈F

∑
s1∈S1

‖s1 − f(s1)‖2 ,

and let w =
∑

s1∈S1
‖s1−f∗(s1)‖2, we will construct a matching of B′ (or a bijection g from

S1 to S∗2) such that the weight of the matching is w. Let L2 = {s2,j ∈ S2 | |f∗ −1(s2,j)| > 1}.
for any s2,j ∈ L2, we claim that there at most one point in f∗ −1(s2,j), denoted by t(s2,j),
such that

‖t(s2,j)− s2,j‖2 > min
k=1,2,...,n

‖t(s2,j)− s2,k‖2.

In fact, if there is another point t′ ∈ f∗ −1(s2,j) satisfies the above condition, we can
construct another surjection f∗∗, by setting

f∗∗(t′) = arg min
s2,k,k=1,2...,n

‖t′ − s2,k‖2,

and keeping f∗∗(s1,i) = f∗(s1,i) if s1,i 6= t′. It is easy to verify that
∑

s1∈S1
‖s1−f∗∗(s1)‖2 <

w, which is contradicted to the assumption of f∗. Therefore, to construct the desired bi-
jection g, we only have to map points in f∗ −1(s2,j) \ {t′} to arbitrary different virtual
points who have not been assigned to any point in S1. Repeat the above procedure for all
points in L2, we will have a matching g such that the weight of the matching is w. Hence,
w′ ≤ w ≤

∑
s1∈S1

‖s1 − f(s1)‖2. This completes the proof.

Thus, with the help of Proposition 12, we can easily compute the set distance between
two sets.

31

Liu, Fang, He, Geng, Liu

C.2. Estimating Direct, Indirect and Total Effects

In this section, we use another example to discuss the estimations of direct, indirect and
total causal effects and evaluate Algorithm 7 in the case there are errors in structure learning
using simulation data. Indirect effects are important to understand the causal mechanism
of interest. Given a Gaussian graphical model of a DAG G, X and Y are two distinct
variables in G, and the indirect effect of X on Y is the difference of the total effect of X
on Y and the direct effect of X on Y . Let IEXY , TEXY , DEXY denote the indirect, total,
direct effects of X on Y , respectively. We can estimate IEXY as follows,

ÎEXY = T̂EXY − D̂EXY , (5)

where T̂EXY , D̂EXY are estimates of TEXY , DEXY , respectively.

(a) The underlying DAG G (b) The essential graph G∗ of G

(84 times)

(c) The graphs learned wrongly 5,6,1,1,1,1,1 times respectively in 100 simulations

(5 times) (6) (1) (1) (1) (1) (1 time)

Figure 8: Simulatoins on a Gaussian graphical model of G, the numbers on the edges in G
are the coefficients in the regression of a vertex on its parents. The graph G∗ is
the essential graph of G. The learned graphs and their frequencies (numbers in
the brackets) in 100 repetitions are shown.

Consider a DAG G in Figure 8(a), and we generate the samples from a Gaussian graph-
ical model of G according to Equations 1 and 2 except that the coefficients in the regression
in Equation 1 are replaced by the numbers on the edges of G. We draw a sample of size
1000 from this Gaussian graphical model, then learn an essential graph with these data,
and finally estimate the direct, indirect and total effects of a treatment X on a response
Y . Repeating the simulation 100 times, we report the learned graphs in Figures 8(b) and
8(c), and the estimates of causal effects in Figure 9. In 100 repetitions, we learn the under-
lying essential graph in Figure 8(b) 84 times, and the wrong essential graphs in Figure 8(c)
5,6,1,1,1,1,1 times, respectively.

The estimation of total and direct effects of a treatment on a response only uses their
parent set pairs, so the estimation does not depend on the whole structures of the learned

32

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

Vertices A B C D E F H

A ? 99 99 99 99 99 93
B 99 ? 99 99 99 92 99
C 99 99 ? 99 98 97 99
D 100 99 100 ? 95 97 100
E 91 91 91 91 ? 93 91
F 97 100 97 100 90 ? 90
H 92 92 92 92 92 99 ?

Table 2: The numbers of times that the parent set pairs are learned correctly in 100 repe-
titions for every two distinct vertices in {A,B,C,D,E, F,H}.

essential graphs in Figures 8(b) and 8(c). In Table 2, we show the numbers of times in 100
repetitions that the correct parent set pairs in the correct essential graph in Figure 8(b)
are learned for every two distinct vertices as treatment and response. Although the correct
essential graph is learned only 84 times in 100 repetitions, the correct parent set pairs are
learned more than 90 times in 100 repetitions. Below we select a specified treatment A and
a specified response B to show the sensitivity of the estimates of total, direct and indirect
effects to the wrongly learned essential graphs.

We discuss in detail the estimates of the direct, undirect and total effects of a specified
treatment A on a specified response B. In this experiment, the true direct, undirect and
total effects of A on B are 0.5, −1, and −0.5, respectively. For the underlying essential
graph in Figure 8(b), the true effect triples have four combinations of direct, undirect and
total effects: (−0.5, 0,−0.5), (0, 0, 0), (0.5, 0, 0.5), and (0.5,−1,−0.5), that are unidentifiable
by the underlying statistical distribution but correctly include the true effect combination
(0.5,−1,−0.5). We can see that among these wrongly learned essential graphs in Figure
8(c), only the last essential graph has a local subgraph over vertices (A,B,C) different
from the underlying essential graph. Thus we can also obtain the correct parent set pairs
from the wrongly learned essential graphs except for the last essential graph. For the last
learned essential graph, we have two parent set pairs: (∅, ∅) and ({C}, ∅), both of which
are included in the four parent set pairs of the correct essential graph. Thus, based on the
last learned essential graph and the distribution over A,B,C, we can recover two of four
possible combinations of causal effects, including (0.5, 0, 0.5) and (0.5,−1,−0.5). That is,
in this experiment, regardless of the bias in the estimates of causal effects, we can learn the
true combination (0.5,−1,−0.5) in all of 100 repetitions, and recover correctly four possible
combinations in 99 of 100 repetitions.

The estimates of the combinations of direct, indirect, and total causal effects of A on
B, denoted by (D̂EAB, ÎEAB, T̂EAB), are shown in Figure 9. We give a three dimensional
scatter plot of all direct, indirect and total causal effects in the left top of Figure 9. We
can see that all scatters are distributed in a plane around four points (green stars in the
plot), which represent the four possible combinations of direct, indirect, and total effects

of A on B. In Figure 9, we also provide three marginal scatter plots of (D̂EAB, T̂EAB),

(ÎEAB, T̂EAB), and (D̂EAB, ÎEAB). For each possible combination of causal effects, the
mean (µ̂) and the standard deviation (σ̂) of the corresponding estimates are calculated and

33

Liu, Fang, He, Geng, Liu

Figure 9: The scatter plots of the estimates of causal effects of A on B in 100 repetitions.
The estimates (gray points) and the corresponding interval (mean ± double
standard deviation, blue rectangle or line), the true causal effects (red box), the
possible unidentifiable causal effects (green star) are shown.

an estimate interval µ̂ ± 2σ̂ is given by blue rectangles or lines. We can see that these
intervals are quite small and centered around the possible unidentifiable causal effects.

References

Ayesha R Ali, Thomas S Richardson, Peter Spirtes, and Jiji Zhang. Towards characterizing
Markov equivalence classes for directed acyclic graphs with latent variables. In Proceedings
of the Twenty-First Conference on Uncertainty in Artificial Intelligence, pages 10–17.
AUAI press, 2005.

Steen A. Andersson, David Madigan, and Michael D. Perlman. A characterization of Markov
equivalence classes for acyclic digraphs. The Annals of Statistics, 25(2):505–541, 04 1997.

Ingo A. Beinlich, H. J. Suermondt, R. Martin Chavez, and Gregory F. Cooper. The ALARM
monitoring system: A case study with two probabilistic inference techniques for belief
networks. In AIME 89, pages 247–256. Springer Berlin Heidelberg, 1989.

Jean R. S. Blair and Barry Peyton. An introduction to chordal graphs and clique trees.
In Graph Theory and Sparse Matrix Computation, pages 1–29, New York, NY, 1993.
Springer New York.

34

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

Zhihong Cai, Manabu Kuroki, Judea Pearl, and Jin Tian. Bounds on direct effects in the
presence of confounded intermediate variables. Biometrics, 64(3):695–701, 2008.

David M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal
of Machine Learning Research, 2(Feb):445–498, 2002a.

David M. Chickering. Optimal structure identification with greedy search. Journal of
Machine Learning Research, 3(Nov):507–554, 2002b.

Zhuangyan Fang and Yangbo He. IDA with background knowledge. In Proceedings of the
Thirty-sixth Conference on Uncertainty in Artificial Intelligence. PMLR, 2020.

Sander Greenland, Judea Pearl, and James M. Robins. Causal diagrams for epidemiologic
research. Epidemiology, 10:37–48, 1999.

Alain Hauser and Peter Bühlmann. Characterization and greedy learning of interventional
Markov equivalence classes of directed acyclic graphs. Journal of Machine Learning
Research, 13(Aug):2409–2464, 2012.

Yangbo He and Zhi Geng. Active learning of causal networks with intervention experiments
and optimal designs. Journal of Machine Learning Research, 9(Nov):2523–2547, 2008.

Yangbo He, Jinzhu Jia, and Bin Yu. Counting and exploring sizes of Markov equivalence
classes of directed acyclic graphs. Journal of Machine Learning Research, 16:2589–2609,
2015.

David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 20(3):197–243,
1995.

Paul W. Holland. Statistics and causal inference. Journal of the American Statistical
Association, 81(396):945–960, 1986.

Markus Kalisch, Martin Mächler, Diego Colombo, Marloes H. Maathuis, and Peter
Bühlmann. Causal inference using graphical models with the R package pcalg. Jour-
nal of Statistical Software, 47(11):1–26, 2012.

Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1?2):83–97, 1955.

Steffen L. Lauritzen. Causal inference from graphical models. In Complex Stochastic Sys-
tems, pages 63–107. Chapman and Hall/CRC Press, 1999.

Yue Liu, Zhuangyan Fang, Yangbo He, and Zhi Geng. Collapsible IDA: Collapsing parental
sets for locally estimating possible causal effects. In Proceedings of the Thirty-sixth Con-
ference on Uncertainty in Artificial Intelligence. PMLR, 2020.

Marloes H. Maathuis, Markus Kalisch, and Peter Bühlmann. Estimating high-dimensional
intervention effects from observational data. The Annals of Statistics, 37(6A):3133–3164,
12 2009.

35

Liu, Fang, He, Geng, Liu

Daniel Malinsky and Peter Spirtes. Estimating bounds on causal effects in high-dimensional
and possibly confounded systems. International Journal of Approximate Reasoning, 88:
371 – 384, 2017.

Christopher Meek. Causal inference and causal explanation with background knowledge.
In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages
403–410. Morgan Kaufmann Publishers Inc., 1995.

James Munkres. Algorithms for the assignment and transportation problems. Journal of
the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

Preetam Nandy, Marloes H. Maathuis, and Thomas S. Richardson. Estimating the effect
of joint interventions from observational data in sparse high-dimensional settings. The
Annals of Statistics, 45(2):647–674, 04 2017.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
2000.

Judea Pearl. Direct and indirect effects. In Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, pages 411–420. Morgan Kaufmann Publishers Inc.,
2001.

Emilija Perković, Markus Kalisch, and Marloes H Maathuis. Interpreting and using
CPDAGs with background knowledge. In Proceedings of the Thirty-Third Conference
on Uncertainty in Artificial Intelligence. AUAI press, 2017.

Thomas Richardson and Peter Spirtes. Ancestral graph Markov models. The Annals of
Statistics, 30(4):962–1030, 08 2002.

Paul Shannon. DREAM4: Synthetic Expression Data for Gene Regulatory Network Infer-
ence from the 2009 DREAM4 challenge, 2019. R package version 1.20.0.

Arvid Sjölander. Bounds on natural direct effects in the presence of confounded intermediate
variables. Statistics in Medicine, 28(4):558–571, 2009.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, Prediction, and Search.
MIT Press, second edition, 2000.

Ioannis Tsamardinos, Constantin F. Aliferis, and Alexander R. Statnikov. Algorithms for
large scale Markov blanket discovery. In Proceedings of the Sixteenth International Florida
Artificial Intelligence Research Society Conference, pages 376–381. AAAI Press, 2003.

Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min hill-
climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31–78,
Oct 2006.

36

Local Causal Network Learning for Finding Pairs of Total and Direct Effects

Konstantinos Tsirlis, Vincenzo Lagani, Sofia Triantafillou, and Ioannis Tsamardinos. On
scoring maximal ancestral graphs with the max-min hill climbing algorithm. International
Journal of Approximate Reasoning, 102:74 – 85, 2018.

Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. In Proceedings
of the Sixth Conference on Uncertainty in Artificial Intelligence, pages 220–227. Elsevier
Science Inc., 1990.

Changzhang Wang, You Zhou, Qiang Zhao, and Zhi Geng. Discovering and orienting the
edges connected to a target variable in a DAG via a sequential local learning approach.
Computational Statistics & Data Analysis, 77:252 – 266, 2014.

Jiji Zhang. On the completeness of orientation rules for causal discovery in the presence of
latent confounders and selection bias. Artificial Intelligence, 172(16):1873 – 1896, 2008.

37

	Introduction
	Notation and Definitions
	Finding All Pairs of Total and Direct Effects for a Markov Equivalence Class
	The Global Learning Approach for Finding All Pairs of Total and Direct Effects
	The Local Learning Approach for Finding All Pairs of Total and Direct Effects
	Local Learning Algorithm for Finding Chain Components
	Local Approach for Finding All Effect Pairs

	Experimental Studies
	ALARM Network: A Toy Example
	Evaluation with Randomly Generated Causal Models and Perfect Oracles
	Evaluation with Randomly Generated Causal Models and Finite Samples
	Evaluation with the DREAM4 Data

	Conclusions and Discussions
	Algorithms
	Detailed Proofs
	Implementation Details and Additional Experiments
	The Computation of Set Distance
	Estimating Direct, Indirect and Total Effects

