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Abstract

This paper develops deterministic upper and lower bounds on the influence measure in
a network, more precisely, the expected number of nodes that a seed set can influence
in the independent cascade model. In particular, our bounds exploit r-nonbacktracking
walks and Fortuin—Kasteleyn—Ginibre (FKG) type inequalities, and are computed by
message passing algorithms. Further, we provide parameterized versions of the bounds
that control the trade-off between efficiency and accuracy. Finally, the tightness of the
bounds is illustrated on various network models.

Keywords: Influence Estimation, Nonbacktracking Walk, Message Passing, Social Net-
works, Independent Cascade Model

1. Introduction

Social interaction is a building block of the society. Through interacting with each other,
people exchange their information, ideas, opinions, etc. and influence one another. Influence
propagation is a study which investigates how influence spread given a social network from
initially influenced nodes, called seeds, in the network. Studying how influence spreads in
a network allows us to answer many important questions in a broad range of fields, such
as viral marketing (Leskovec et al., 2007), sociology (Granovetter, 1978; Lopez-Pintado
and Watts, 2008; Watts, 2002), communication (Khelil et al., 2002), epidemiology (Shulgin
et al., 1998), and social network analysis (Yang and Counts, 2010).

With the advent of the Internet and the availability of large data on social networks,
influence propagation is becoming the center of interests in machine learning and data
mining community. The community has proposed several different mathematical models
to abstractize influence propagation in the real world, and one of the most widely adopted
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models is the independent cascade model (ICM). In this model, a network is defined as
a directed graph G = (V, E) where every edge is given transmission probability. Each
edge decides its state, live or not, with a Bernoulli trial with the success rate equals to its
transmission probability. Then, the influence propagation starts from the initially influenced
nodes, called the seeds, and spreads along the live edges. A node is influenced if it is
reachable from the seeds with the live edges.

While various important information can be extracted by studying ICM, the most funda-
mental and essential problem in influence propagation is to find the influence, the expected
number of influenced nodes given a network and a set of initially influenced nodes. Un-
fortunately, computing the influence of a network in ICM is proven to be #P hard (Wang
et al., 2012) and thus many previous works have used Monte Carlo (MC) simulations to
estimate the true influence (Kempe et al., 2003; Chen et al., 2009). Despite its simplicity,
approximating the influence via MC simulations can be computationally expensive. MC
approximation requires O(|V|?) trials to concentrate and each trial requires O(|V| + |E|)
computation. Considering that modern real-world networks often have multiple millions of
nodes, this amount of computation quickly becomes unreasonable.

To overcome the limitations of Monte Carlo simulations, many researchers have been
taking both algorithmic and theoretical approaches to approximate the influence of given
seeds in a network. Chen and Teng (Chen and Teng, 2017) provided a probabilistic guaran-
tee on estimating the influence of a single seed with a relative error bound with the expected
running time O(¢(|V| + |E|)|V|log [V|/?), such that with probability 1 — 1/n, for all node
v, the computed influence of v has relative error at most . Draief et al., (Draief et al.,
2006) introduced an upper bound for the influence of any set of seeds by using the spectral
radius of the adjacency matrix. Tighter upper bounds were later suggested in (Lemonnier
et al., 2014) which relate the ratio of influenced nodes in a network to the spectral radius of
the so-called Hazard matrix. Further, improved upper bounds which account for sensitive
edges were introduced in (Lee et al., 2016). In contrast, there has been little work on finding
a tight lower bound for the influence. An exception is a work by Khim et al. (Khim et al.,
2016), where the lower bound is obtained by only considering the influence through the
paths whose length is no more than a parameter m.

In this article, we extend the results in the paper (Abbe et al., 2017) and propose upper
and lower bounds on the influence using nonbacktracking walks and Fortuin—Kasteleyn—
Ginibre (FKG) type inequalities. FKG inequality is useful to prove correlation between
non-decreasing functions, which is instrumental in influence propagation since the probabil-
ity that a node is influenced is non-decreasing with respect to the partial order of random
variables describing the states of the edges. The bounds can be efficiently obtained by
message passing algorithms. This shows that nonbacktracking walks can also impact influ-
ence propagation, making another case for the use of nonbacktracking walks in graph and
network problems as in (Krzakala et al., 2013; Karrer et al., 2014; Bordenave et al., 2015;
Abbe and Sandon, 2015), discussed later in the paper. Next, we show that the proposed
upper bound is monotone and submodular. This property allows us to use the upper bound,
rather than some approximations, when greedily finding a set of seeds that maximizes the
influence. Further, we provide parametrized versions of the bounds that can adjust the
trade-off between the efficiency and the accuracy of the bounds.



GENERALIZED NONBACKTRACKING BOUNDS ON THE INFLUENCE

2. Background

We introduce here the independent cascade model and provide background for the main
results.

Definition 1 (Independent Cascade Model). Consider a directed graph G = (V, E) with
V| = n, a transmission probability matriz B € [0,1]"*™, and a seed set Sy C V. For any
u €V, let N*(u) be the set of out-neighbors of node u. The independent cascade model
IC(G, B) sequentially generates the influenced set Sy C V' starting from the seed set Sy for
each step t > 1 as follows. At the beginning of step t, S is initialized to be an empty set.
Then, each node u € Sy_1 attempts to influence v € Nﬂu)\Uf;(l)Si with probability By, i.e.,
node u influences its uninfluenced out-neighbor v with probability By,. If v is influenced as
a result of the attempts, add v to Sy. At the end of step t, S; contains all nodes that are
influenced during step t. The process stops at T if St = 0 at the end of the step t = T. The
set of the influenced nodes at the end of propagation is defined as S = U;TF:_OlSt.

We often refer an edge (u,v) being live if node u influences node v. The independent
cascade model is equivalent to the live-edge graph model, where the influence happens at
once, rather than sequentially. The live-edge graph model first decides the state of every
edge with a Bernoulli trial, i.e., edge (u,v) becomes live independently with probability
Byy. Then, the set of the influenced nodes is defined as the nodes that are reachable from
at least one of the seeds by the live edges.

Definition 2 (Influence). The expected number of nodes that are influenced at the end of
the propagation process is called the influence (rather than the expected influence, with a
slight abuse of terminology) of a seed set Sy on IC(G, B), and is defined as

o(Sy) = Z P(v is influenced).

veV

It is shown in (Wang et al., 2012) that computing the influence o(Sp) in the independent
cascade model IC(G, B) is #P-hard, even with a single seed, i.e., |Sg| = 1.

Next, we define nonbacktracking (NB) walks on a directed graph. Nonbacktracking
walks have been used for studying the characteristics of networks. To the best of our
knowledge, the use of NB walks in the context of epidemics was first introduced in the
paper of Karrer et al. (Karrer and Newman, 2010) and later applied to percolation in (Karrer
et al., 2014). In particular, Karrer et al. reformulate the spread of influence as a message
passing process and demonstrate how the resulting equations can be used to calculate an
upper bound on the number of nodes that are susceptible at a given time. As we shall
see, we take a different approach to the use of the NB walks, which focuses on the effective
contribution of a node in influencing another node and accumulates such contributions
to obtain upper and lower bounds. More recently, nonbacktracking walks are used for
community detection (Krzakala et al., 2013; Bordenave et al., 2015; Abbe and Sandon,
2015).

Definition 3 (Nonbacktracking Walk). Let G = (V. E) be a directed graph. A nonback-
tracking walk of length k is defined as w®) = (v, v1,...,v), wherev; € V and (vi—1,v;) € E
for all i € [k], and vi—1 # viy1 for alli € [k —1].
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We next recall a key inequality introduced by Fortuin et. al (Fortuin et al., 1971).

Theorem 1 (FKG Inequality). Let (I, <) be a distributive lattice, where T' is a finite
partially ordered set, ordered by <, and let p be a positive measure on I' satisfying the
following condition: for all x,y € T,

Ay vy) > p@)uly),

where t Ny =max{z €T :z 2 z,z2 <y} andxVy=min{z €' :y < z,y < z}. Let f and
g be both increasing (or both decreasing) functions on I'. Then,

Q@)Y f@g@u@) = O f@)u@)Y g@n(z)).

zel zel zel zel

3. Nonbacktracking Upper Bounds

In this section, we present three types of nonbacktracking upper bounds on the influence in
the independent cascade model and explain the motivations and intuitions of the bounds.
The bounds use nonbacktracking walks and FKG inequalities and are computed efficiently
by message passing algorithms. The proposed upper bounds listed below have varying
efficiency and accuracy trade-offs.

e Nonbacktracking upper bound (NB-UB)
e Tunable nonbacktracking upper bound (tNB-UB)

e r-nonbacktracking upper bound (rNB-UB)

In particular, the nonbacktracking upper bound on a network based on a graph G(V, E)
runs in O(|V|? 4 |V||E|), whereas Monte Carlo simulation would require O(|V|? + [V || E|)
computations without knowing the variance of the influence, which is harder to estimate
than the influence. The reason for the large computational complexity of MC is that in order
to ensure that the standard error of the estimation does not grow with respect to |V|, MC
requires O(]V|?) computations. Hence, for large networks, where MC may not be feasible,
our algorithms can still provide bounds on the influence. Furthermore, the proposed upper
bound is monotone and submodular, so that it can be used in place of MC approximation
in greedy algorithm for influence maximization problem. Details of the greedy algorithm in
influence maximization problem can be found in (Kempe et al., 2003).

The tunable nonbacktracking upper bound better accounts for the sensitive (as defined
in (Lee et al., 2016)) edges near the seeds. However, for large values of ¢, it may result in
exponential computational complexity for dense networks.

The r-nonbacktracking upper bound generalizes the nonbacktracking upper bound by
considering r-nonbacktracking walks, i.e., avoiding cycles of length r rather than just back-
tracking, and runs in O((|V| + |E|)|[V["~1).

This section is organized as follows. First, sections 3.1 through 3.3 present the definition
of each proposed upper bound followed by an efficient algorithm to compute the bound and
its computational complexity. Next, section 3.4 shows how each upper bound is computed
on a small example network and compares the bounds with the influence.



GENERALIZED NONBACKTRACKING BOUNDS ON THE INFLUENCE

3.1. Nonbacktracking Upper Bound (NB-UB)

We start by defining the following terms for the independent cascade model IC(G, B),
where G = (V, E) and |V | =n.

Definition 4. For any v € V, we define the set of in-neighbors N~ (v) = {u € V : (u,v) €
E} and the set of out-neighbors N*(v) = {u €V : (v,u) € E}.

Definition 5. For any v € V and l € [n — 1], the set P,(Sy—v) is defined as the set of all
paths with length I from any seed s € Sy to v. We call a path P is live iff every edge in
P is live. Forl =0, we define Py(Sy—v) as the set (of size one) of the zero-length path
containing node v and assume the path P € Py(So—v) is live iff v € Sp.

Definition 6. For anyv € V andl € {0,...,n— 1}, we define

p(v) = P(v is influenced)
n(v) = P(Upep sy {P is live})
p(u—v) = P(Upep,(Sy), Pl P is live and edge (u,v) is live})

In other words, p;(v) is the probability that node v is influenced by live paths of length
[, i.e., there exists a live path of length [ from a seed to v, and p;(u—v) is the probability
that v is influenced by node u with live paths of length [ + 1, i.e., there exists a live path of
length [ 4+ 1 from a seed to v that ends with edge (u,v).

Lemma 1. For anyv €V,

For anyv eV andl € [n—1],

p) < 1— J[ (A=palu—v)). (2)

ueN~(v)

Lemma 1, which can be proved by FKG inequalities, suggests that given p;_1(u — v),
we may compute an upper bound on the influence. Ideally, p;_1(u— v) can be computed
by considering all paths that end with (u,v) having length [. However, this results in
exponential complexity O(nt), as | goes up to n — 1. Thus, in Definition 7, we present an
efficient way to compute an upper bound UB;_;(u—v) on p;_1(u—v), which in turns gives
an upper bound UB;(v) on p;(v), with the following recursion formula.

Definition 7. For alll € {0,...,n—1} and u,v € V such that (u,v) € E, UB;(u) € [0,1]
and UBj(u—wv) € [0, 1] are defined recursively as follows.
Initial condition: For every s€Sy, ste Nt(s), ueV\Sy, and ve N*(u),

UBO(S) 1, UBQ(S—>$+) = B .+ (3)
UBy(u) =0, UBg(u—v) =0. (4)
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Recursion: For every l € [n—1], s € Sy, st € NT(s), s~ € N (s), ue V\Sy, and
ve NT(u)\So,

UBy(s) = 0, UB(s—s7) = 0, UBy(s~ —s) =0 -
UBj(u) =1— J] (1 - UBi_1(w—u)) ©
weN~ (u)
__1-UBW) -
UBy(usv) = 4 P~ Tomto ) F0ENT (W) .
By UB; (u), otherwise.

Equation (5) follows from that for any seed node s € Sy and for all I > 0, the probabilities
pi(s) =0, pi(s —st) =0, and p(s~ — s) = 0. A naive way to compute UB;(u — v) is
UBj(u — v) = BuyUBj_1(u), but this results in an extremely loose bound due to the
backtracking. For a tighter bound, we use nonbacktracking in Equation (7), i.e., when
computing UB;(u—v), we ignore the contribution of UB;_;(v—u).

Finally, an upper bound on the probability that node v is influence at the end of prop-
agation is computed by UB(v) = (1 — ?;01(1 — UB;(v))). The following theorem shows
that the summation of UB(v) for v € V results in an upper bound on the influence.

Theorem 2 (Nonbacktracking Upper Bound (NB-UB)). For any independent cascade
model IC(G, B) and a seed set Sy CV,

n—1
o(So) < Y (1-[[1-UBi(v)) = o7 (S0), (8)
veV =0

where UB;(v) is obtained recursively as in Definition 7.

The Nonbacktracking Upper Bound is monotone and submodular. Therefore, it can
be used in place of approximations on the influence in various greedy algorithms for the
influence maximization problem.

Theorem 3. For any independent cascade model IC(G,B), the nonbacktracking upper
bound o : 2V —[0,|V|] is monotone and submodular.

Next, we present Nonbacktracking Upper Bound (NB-UB) algorithm which computes
UBy(v) and UB;(u—v) by message passing. At the [-th iteration, the variables in NB-UB
have the following meanings.

- S} is the set of nodes that are considered in computation at the I-th iteration.
- Meurr(v) = {(w,UBj—1(uw — v)) : w is an in-neighbor of v and v € S;_1} contains the

current messages to node v and their sources, where the source is an in-neighbor u of v
that is in S;_; and the message is the upper bound UB;_1(u—v).

- MSrc(v) = {u : u is a in-neighbor of v and u € S;_;1} is the set of in-neighbors of v in
Si—1.

- Meurr(v)[u] = UBj_1(u—v) is the current message from u to v.

« Mpext(v) = {(u, UB;(u — v)) : u is an in-neighbor of v and u € S;} contains the set of
messages to node v and their sources for the algorithm to use next.



GENERALIZED NONBACKTRACKING BOUNDS ON THE INFLUENCE

Algorithm 1 Nonbacktracking Upper Bound (NB-UB)

Initialize: UB;(v) =0forall0</<n—-landveV
Initialize: Insert (s,1) to Mpext(s) for all s € S
for{=0ton—1do
for u € S; do
Mcurr(u) = Mnext(u)
Clear Mpext(u)
UB;(u) = ProcessIncomingMsgys(Mcur(u))

for u € S; do
for v € N*(u) \ Sp do

Si41.insert(v)

if v € MSrc(u) then
UB;(u—v) = GenerateOutgoingMsgyp(Mcur (u)[v], UBj(u), Byy)
Myext (v).insert((u, UB;(u—v))).

else
UB;(u—v) = GenerateOutgoingMsgy; (0, UB;(u), Byy)
Miext (v).insert((u, UB;(u—wv))).

Output: UB;(u) for all [, u

At the beginning, every seed node s € Sy is initialized such that Meue(s) = {(s,1)}
in order to satisfy the initial condition, UBgy(s) = 1. For [-th iteration, every node u in
S; is processed as follows. First, ProcessIncomingMsgys(Mcyrr(u)) computes UB;(u) as in
Equation (6). Second, u passes a message to its neighbor v € N*(u) \ Sp along the edge
(u,v), and v stores (inserts) the message in Myext(v) in preparation for the next iteration.
The message contains 1) the source of the message, u, and 2) the upper bound, UB;(u—v),
which is computed as in Equation (7), by the function GenerateOutgoingMsgyy. Finally,
the algorithm outputs UB;(u) for all w € V and [ € {0,...,n—1}, and the upper bound
ot (Sp) is computed by Equation (8).

Computational complexity: Notice that for each iteration [ € {0, ... ,n—1}, the algo-
rithm accesses at most n nodes, and for each node v, the functions ProcessIncomingMsg,
and GenerateQutgoingMsgy, are computed in O(deg(v)) and O(1), respectively. Therefore,
the worst case computational complexity is O(|V|? + [V||E|).

3.2. Tunable Nonbacktracking Upper Bound (tNB-UB)

One key observation on NB-UB is that when computing the nonbacktracking upper bound
UB;(v) recursively on [, the computations with small I’s are more important than the
ones with larger I’s since UB;(v) is a function of UB;_;(u) for some uw € V. In other
words, computing loose bounds UB;(v) for smaller | hurts the accuracy of the bound on
the influence more than computing loose bounds for larger [, because the effect of loose
UB;(v) with smaller [ builds up more in the final bound o (Spy). Therefore, we propose a
parameterized upper bound tNB-UB that computes p;(v) up to [ <t precisely.

As shown in Algorithm 2, tNB-UB inputs the parameter ¢, which indicates the maximum
length of the paths that the algorithm finds to compute the exact, rather than the upper
bound on, probability of influence. That is, the algorithm computes p<¢(u) that node u is
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influenced by live paths whose length is less than or equal to ¢.

p<t(u) = P(Upciut_ pi(Spouy { P is live}). (9)

Then, we start (non-parameterized) NB-UB algorithm from [ = ¢ + 1 with the new initial
conditions: for all u € V and v € Nt (u),

UB¢(u) = p<i(u) (10)
UB¢(u—v) = pr(u—v) (11)

Finally, the upper bound tNB-UB is computed as ) (1 — ?:_tl(l — UB;(v))).

Algorithm 2 Tunable nonbacktracking upper bound (tNB-UB)

parameter: non-negative integer t <n —1
Initialize: UB;(v) =0forallt </ <n—-1landveV
for u € V do
UB4(u) = p<i(u)
for v € N*(u)\ So do
if pi(u—v) > 0 then
Si41.insert(v)
Mext (v).insert(u, ps(u—v))
for!=t+1ton—1do
for v € S; do
Mcurr(u) = Mnext(u)
Clear Myext (1)
UB;(u) = ProcessIncomingMsgyg(Mcurr(®))

for v € S; do
for v € N*(u) \ Sp do

Sp41.insert(v)

if v € Mceyr(u) then
UB;(u—v) = GenerateOutgoingMsgys(Mcurr(u)[v], UB;(u), Byy)
Myext (v).insert((u, UB;(u—wv))).

else
UB;(u—v) = GenerateOutgoingMsg; (0, UB;(u), Byy)
Mpext (v).insert((u, UB;(u—v))).

Output: UBy(u) foralll = {t,t+1,...,n—1},ueV

For larger values of t, the algorithm results in tighter upper bounds, while the compu-
tational complexity may increase exponentially for dense networks. Thus, this method is
most applicable in sparse networks, where the degree of each node is bounded.

3.3. rNonbacktracking Upper Bound (rNB-UB)

In this section, we generalize the nonbacktracking upper bound by considering r-nonbacktracking
walks, i.e., avoiding cycles of length r rather than just backtracks. The r-nonbacktracking
upper bound is not necessarily a tNB-UB which computes p<;(v) for all v € V exactly, even

in case of r =t.
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Definition 8. Consider a directed graph G = (V, E). For any integerr > 1 and nodew € V,
let P_1(-—wu) be the set of all paths of length r — 1 ending at node u and P,_1(u—-) be
the set of all paths of length r — 1 starting from node u. To simplify the notation, we use
P._1(S—") for a set of nodes S to denote the set of all paths of length r — 1 starting from
any one of the nodes in S.

For two same length paths P = (v1,...,v,) and Q = (u1,...,u,), we use the notation
P ~ Q when viy1 = u; for all i € [r — 1] and v1 # wu,. In other words, P ~ Q iff
(v1,v2 = U1,...,0p = Up_1,U) IS a path of length r.

For two paths P = (vo,...,v,) and Q = (u1,...,u,), we use the notation Q C P when
v; = u; for alli € [r]. That is, Q is a subpath of P which is obtained by removing the first
node vy from P. Also, let P—Q = (vg,v1) be the edge in path P but not in path Q.

Recall that NB-UB computes the upper bounds UB;(u) on p;(u) and UB;(u — v) on
pi(u—v) recursively. Similarly, INB-UB computes the upper bounds UB;(u) and UB;(u, P)
recursively, as defined in Definition 9. UB;(u, P) is analogous to UB;(u— v), since UB;(u, P)
provides the effective influence of u along the path P whereas UB;(u— v) gives the effective
influence of u along the edge (u,v).

Definition 9 (r-Nonbacktracking Upper Bound (rNB-UB)). For all I € {0,...,n—1},
u€V and P € P,_i(u—-), we define UB;(u) € [0,1] and UBy(u, P) € [0,1] as follows,
using function f defined later in Definition 10.

Initial condition: For every | <r —1 and ueV,

UBi(u) = f(Upep,(seu) (P 1)) (12)
For every P € P._1(s—-) and s € Sy,
UB,_1(s, P) = 1. (13)

Recursion: For every 1€ {r,...,n — 1}, s€ Sy, u,z€V\Sy, veE N"(u)\So, and Q €
PT_1<’U—>~),

UB;(s) = 0,UB(s, P) =0 for any path P (14)

UB(v,Q) =1~ [] (1 = BuwUBi_1(u, P)) (15)
PrQ

UBi(2) = f(Upe(prep,_i(y — a)vyev\so} (P UBi(y, P))). (16)

Equation (12) computes the upper bounds on the probability that node u is influenced
by at least one length [ path, for each | < r — 1. To provide the initial values, we set
UB,_1(s, P) = 1 indicating that the probability of a seed node s being influenced equals
to 1. In the recursion steps, Equation (15) computes UB;(v, Q) the upper bound on the
probability that the starting node v of path @ is influenced. Note that the upper bound
UBy(v, Q) # UB;_(_1)(v), since UB;(v, @) is the upper bound on the probability that node
v is influenced by a path of length [ — (r — 1) that does not contain any node in @), whereas
UB;_(,—1)(v) is the upper bound on the probability that node v is influenced by any path
of length { — (r — 1). Note that given path @, the starting node v is deterministic. We use
UBy (v, Q) instead of UB;(Q) in order to emphasize that the bound is for node v of path Q.
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Finally, Equation (16) computes UB;(x), the upper bound on the probability that node x
is influenced by at least one r-nonbacktracking walks of length [ by the function f. In the
following, we define the function f.

Definition 10. Consider a directed graph G = (V, E) and a non-negative integer r. The
function f takes input P") = {Py,..., Py} and (") = {xgl), .. ,l‘grl}, where P\") is a set
of length r paths in G ending at the same node, say v, and z") is the set of real numbers in

[0,1] associated with the paths. When the input is the empty sets, f(0,0) = 0. Otherwise,
f(P(T),a;(T)) computes the output by the following recursion. For every i € [r] from r to 1,

PV — (PP CPPecPY} (17)
and for every P’ € Pt~

20D = - 1— Bl 18
P P
Pe{P:P'CP,PcP®}

where e = P—P' and B, is the transmission probability of edge e. By the definition of P("),
the set P has only one element which is the path Py = (v) of length 0 containing node v.

Therefore, at the end of the recursion, i = 1, it computes the final output ngo) € [0,1].

We next illustrates how to compute the function f in a small example. Consider a
directed graph G where all edges have the same transmission probability p. Let the function
f take the inputs P® = {(a,b,¢,d), (a, f,c,d), (e, f,c,d)} and f&) = {1,1,1}. Then,
P® = {(b,c,d),(f,c,d)} since (b,c,d) T (a,b,c,d) and (f,e,d) C (a, f,c,d), (e, f, ¢, d).
Likewise, P = {(¢,d)} as (c,d) C (b,c,d), (f,c,d) and PO = {(d)} as (d) = (c,d). In
figure 1, it shows the sets PG .. PO in a radix tree structure. With the radix tree,
we can easily find the set {P : P’ = P,P € P®} by accessing the descendants of the
path P’. For example, path P’ = (f,¢,d) in the radix tree has two descendants a and
e, where each corresponds to the path (a, f,c,d) and (e, f,¢,d). This illustrates the set
{P:(f,c,d) = P,P e P} ={(a, f, cd), e, f,cd)}.

Figure 1: An example of radix tree structure
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The function f computes the output recursively from r = 3 to 1.

f((bQ,)c,d) = 1- H (1—pf1(33)>:p
Pe{(a,b,c,d)}

f((?,)c,d) = 1= I1 (1-pfp)) =2p
Pe{(a,f,c,d),(e,f,c,d)}
fom = 1- 11 (1—pfS)) =3p" — p* — 2p' +1°

Pe{(b,c,d),(f,c,d)}

fg = 1= I a-pr)=3"—p' = 2" +".
Pe{(c,d)}

We use the function f to compute the upper bound UB;(v) in each step, instead of using
Lemma 1, Equation (2) as in NB-UB. This results in a tighter upper bound since Equation
(2) bounds the union of events that node v is influenced by at least one of the walks by
treating each walk independent whereas f accounts for the dependencies among the walks.
Also, this function ensures that r-nonbacktracking upper bound is smaller than or equal to
r’-nonbacktracking upper bound when r > 7’

Theorem 4. For any independent cascade model IC(G,B), a seed set Sy C V and an
integer r > 2,

n—1
o(So) < Y (1 ][~ UBi(v)) =0/ (S0) < o™ (S0), (19)
veV =0

where UB;(v) is obtained recursively as in Definition 9.

Next, we present the r-Nonbacktracking Upper Bound (rNB-UB) algorithm which com-
putes UB;(v) and UB,(v, P) by message passing. At the [-th iteration, the variables in
rNB-UB have the following meanings.

- 5] represents the set of nodes that are used in the computations at the [-th iteration.

- Meurr(w) = {(P,UB;_1(-,P)) : P € P,_1(-—u) and u € S;_1} is the set of messages
that node u received in the previous step. The message contains a (r — 1)-length path
ending at node u and the bound associated with the path.

- Mpext(u) = {(P,UBy(-,P)) : P € P,_1(- > u) and u € S;} is the set messages that
node u receive in the current iteration. The message contains a (r — 1)-length path
ending at u and the bound associated with the path.

At the beginning, the first » — 1 upper bounds for each node are computed as well as
UB,_1(s, P) for all s € Sy and P € P,_1(Sy— -) to satisfy the initial condition in Defini-
tion 9. For each [-th iteration, the algorithm processes every node u in .S; as follows. First,
f(Meurr(u)) computes the upper bound UB;(u) as in Equation (16) defined in Definition 10.
Second, u transmits a message to its neighbor v € N*(u) \ Sp, and v stores (inserts) the
message in Mpext(v) for the next iteration. The message contains 1) the path @ of length
r — 1 ending at node v which satisfies P ~ @, and 2) UB;(v2, @), which is computed as in

11
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Algorithm 3 r-nonbacktracking upper bound (rNB-UB)
parameter: non-negative integer 2 <r <n —1
Initialize: UB;(v) =0forall0<!/<n—-1landveV
for{=0tor—2do

for u € V do
UB(u) = f(Upep(spm) (£, 1)),V I <7 =1
for s € Sy do
for P = (p1,...,pr =u) € P._1(s—-) do
UBT_l(S, P) =1
Mpext (u).insert (P, UB,_1(s, P))
Sy—_1.insert(u)
forl=r—1ton—1do
for u € S; do
Mcurr(u) = Mnext(u)
Clear Myext (u)
UBZ(U) = f(MCurr(u))
for v € S; do
for Q= (q1,...,¢ =v)€{Q :P~Q',P € P._1(-—u)} do
UB;(¢q1,Q) = rGenerateOutgoingMsgyp(Meur (¢)
Myext (v).insert(Q, UB;(q1, Q))
Sp41.insert(v)
Output: UBj(u) forall 0 <i<n—-1,ueV

Equation (15), by the function rGenerateOutgoingMsg,;. Note that vy is the start node of
path @, which is the second node in path P. Finally, the algorithm outputs UB;(u) for all
uw €V and 1€{0,...,n—1}, and the upper bound o, (Sy) is computed by Equation (19).

Computational complexity: To compute f, we first generate a radix tree using the
input paths then compute the output from the leaves. Generating the radix tree takes
O(rM) where r — 1 is the length of the paths and M is the number of paths since inserting
a path in a radix tree takes O(r). Then, we start the computation from the leaves to
the root accessing each node once. Therefore, computing f takes O(rM). Note that for
every [ > r and u € V, there are at most |deg(u)|V|" 2| elements in Meurr(u), since
Meurr(u) may contain all paths of length r — 1 ending at node u. Therefore, function f takes
O(deg(u)|V|"=2). To find the set {Q' : P ~ @', P € P,_1(-—u)}, for every P € P,_1(-—u),
check if adding an out-neighbor of node u to the end of path P forms a length r path. This
takes O(deg(p,)). We pre-compute this process for every path of length r — 1, which takes
O((|E|+ |[VIV]"~1). In the algorithm, we compute function f at most (n —7)n times and
pre-compute the relationships P ~ () once, resulting the overall computational complexity
O((|B|+ VIV,

3.4. Comparisons of the Upper Bounds

In this section, we compare the three types of nonbacktracking upper bounds, NB-UB, tNB-
UB, and rNB-UB, in a small independent cascade model. The model IC(G, B) is defined

12
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| Nonbacktracking Upper Bound (NB-UB)

Process ¢
{etword =1 T
_ Mnx(') UB3z(c—>b) =p
Graph G = (V, E) rocess ext 3
§ Mo @) ((@p)) Dle 320
c Mpext() | UBy(b>a) =0 UB;(c) 4
UBy(b - ¢) = P22 Process d
OIS ) I () I
1 Mhpext (+) UB3(d » b) =p
® L Next, process {c,d} UB3(d > ¢) =0
a b d e UBy(d > ¢) = p*
=2 UB3(d) p
Transmission probability matrix —% c Procjess R
P =pA
Seed set . Meyrr(€) {(b,p*)} Meyrr(€) {(d.p*)}
Mpext() | UBy(c = b) =0 Mpext(') | UBz(e > d) =0
So = {a} UB,(c > d) =p? UB;(e) p®
UB,(c) p? Next, process {b, e}
=0
Process d —l=4
Process a My (d) {(b,p*)} Process b
Meyrr(@) {(a,1)} Mpext (+) UB,(d » b) =0 Meurr(B) {(C'P4), (d:p4)}
Mhpext (*) UBy(a—>hb)=p UB,(d = ¢) = P3 UB,4(b) 2P4 - pg
UBy(a) 1 @ UB,(d —’ze) =p* Process e
UB,(d 2 Mayrr () ("
curr .21}
Next, process {b} Next, process {c, d, e} UB,(e) p*

Figure 2: The step-wise illustration of NB-UB algorithm on the example network.

on an bidirected graph G = (V, E), where V = {a,b,c,d, e}, Sy = {a}, and every edge has

the same transmission probability p.

In Figure 2, we describe how NB-UB algorithm runs on the network IC(G, B). Since
|[V| = 5, the algorithm iterates from [ = 0 to [ = 4. On each step, it processes the nodes
in the set .5; and passes the messages generated by them. For example, at [ = 3, the nodes

in S3 = {¢,d,e} are processed. From previous iteration ! = 2, node ¢ sent the message
(¢,UB2(c—d)) to d, and node d sent the message (d, UBa2(d—c)) to ¢ and (d, UBa(d—e€))

to e. Thus,

and the nodes ¢, d, e are processed as follows. First, compute the upper bounds at the step

l=3as

UB;(c)
UBj3(d)
UB3(e)

ProcessIncomingMsgys(Meur(c)) = p

{(d, UB2(d—¢))} = {(d.p")}
{(c, UBa(c—=d))} = {(c,p")}
{(d, UB2(d—e))} = {(d, ")}

ProcessIncomingMsgys(Meur(d)) = p?

ProcessIncomingMsgy,(Mcun(€)) = p°.

13
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Next, each node computes the messages for its out-neighbors.

UB3(c—b) = GenerateOutgoingMsgy,(0,UB;3(c), Bw)
cb( 1-0 ) p
UB3(c—d) = GenerateOutgoingMsgy,(UBa(d—c), UB3(c), Bed)
1-— UB3(C)
= Buyl- ———39 y_g
all == UBg(d—>c))
UB3(d—b) = GenerateOutgoingMsgy,(0, UB3(d), Bap)
1 —-UBs3(d
= Ba(l - 1_8()) =p'
UB3(d—¢) = GenerateOutgoingMsgyy(UBa(c—d), UB3(d), Bac)
1 — UBs3(d)
— Bu(1- —0
ol == UBg(C—)d))
UB3(d—e) = GenerateOutgoingMsgys(0, UB3(d), Bae)
1—-UBs(d
= Bde(l—l_g( )= pt
UB3(e—d) = GenerateOutgoingMsgyz(UBa(d—e),UB3(d), Beq)
1 — UB3(d)
= Be 1 — - 0. 20
al 1—UB2(d—>e)) (20)

Then, node ¢ send message (b, UB3(c—b)) to b, and node d send messages (d, UB3(d—))
to b and (d, UB3(d—e€)) to e, concluding the process of the [ = 3 step.

’ Tunable Nonbacktracking Upper Bound (tNB-UB), t=3 ‘

4l Initialize: t =3 =4
c
G=(V,E) Node a Node b
Pe3(Sq — @) {(@)} P<3(Sq = b) {(a,b)}
UB3(a) 1 UB;(b) p
Mpext (") none Mpexe (1) none Process e
a b d e Meyrr(e) {(q, P4)}
Node d Node e UB,(e) »*
Node ¢ Ps3(Sq = d)|{(a,b,d), (a,b,c,d)} P3(Sq =€) {(@,b,d,e)}
P3(So = o) [{(abc),(abd o)} _ UB3(d) p*+p3—p* UBz(e) p®
UB3(c) p*+p3 —p* Mpext(*) UB3(d > b) =0 Mpext (1) UBz(e »d) =0
Mpext() | UBz(c = b) =0 UB3(d > ¢)=0
UBy(c > d) =0 UB;(d - e) = p* Next, process {e}

Figure 3: The step-wise illustration of tNB-UB algorithm on the example network.

Next, we show the process of tNB-UB in the same network when ¢t = 3 in Figure 3. As
the first step, tNB-UB finds all paths from the seed a having the length less than or equal
to 3. Then, for each node u € {a,b,c,d, e}, it computes the exact probability UBs(u) that
the node is influenced through a path of length less than or equal to 3. For example,

UBs(d) = P(Path (a,b,d) is live or Path (a,b, ¢, d) is live)

p*+p* —ph

14
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To initialize the process, tNB-UB computes UB3(u — v), the probability that node v is
influenced directly by u with a live path of length 4 from the seed a. For node d, there is
a path (a,b,c,d) of length 3 from the seed, so we compute UB3(d — v) for its neighbors
{b,c,e}. Notice that there is no path from a that ends with (d,b) with length 4 neither
a path from a that ends with (d, ¢) with length 4. However, (a,b,c,d,e) is a path from a
ending with (d,e). Thus,

UB3(d—b) =
UB3(d—c) = 0
UB3(d—e) = P(Path (a,b,c,d,e) is live) = p.

After the initialization, tNB-UB repeats the same process as NB-UB from [ = t + 1 to
[l=n—1.

| r-Nonbacktracking Upper Bound (rNB-UB) | —1=3
rETE—— Process ¢
—_7 =2 Meuer(€) {((b,d, c),p)}
4 Mnext(') none
G=W,E) UB;(c) p?
Process ¢ Process d
PS ® Meyrr(€) {((a,b,c), D} Mcurr(d) {((b' c,d), p)}
a b d e MnexE(')) UB;(b, b.c, d)=p Mpext() | UBa4(c, (¢, d, €)) = p?
UB,(c p
UB;(d 3
Processl =0 {d) P
Py(sq =) {(@)} Process e
UB, (@) 1 Process d Marr(e) [ {((b.d,e),p)}
My (d) {((a,b,d), 1)} Mpext () none
Processl =1 Mnext(") | UB3(b,(b,d,c)) =p UB5(e) p3
Py (sq =) {(a, b)} UB;(b, (b'f' e)=p Next, process {e}
UB, (b) D UB,(d) 4 )
Mpexc(") | UB2(a, (@, b,c)) = 1 =4
UB(a,(a,b,d)) =1 4 Process e
Next, process {e.de} || Mo ((cd.e).p™))
Next, process {c,d} UB,(e) p*

Figure 4: The step-wise illustration of rNB-UB algorithm on the example network.

In Figure 4, we illustrate TNB-UB in the same example network. For the initialization,
rNB-UB computes UB;(v) for all i € {0,...,7 —2} = {0,1} and v € {a,b,c,d,e}. Since
there is only one length 0 path from the seed a, we have P = (a), UBg(a) = 1 and
UBy(v) = 0,Vv € {b,c,d, e}. Similarly, UB;(b) = p and UB;(v) = 0,Vv € {a,c¢,d,e}. Then,
the algorithm finds all paths from the seed a with length » — 1 = 2 and sends messages
(P, UB2(a, P) = 1) to the end node of the each path. In this network, there are two paths of
length 2, (a, b, c) and (a,b,d). Thus, rNB-UB sends ((a, b, ¢), 1) to node ¢ and ((a, b,d), 1) to
node d. From [ = r—1 to n—1, each node v in set S; first computes the upper bound UB;(v)
by the function f in Definition 10. For example, at | = 2, nodes in S = {c¢,d} compute
the following upper bounds. Since both My (¢) = {(a, b, ¢), 1} and Meyr(d) = {(a,b,d), 1}
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have only one element each,

UBa(c) = 1~ (1—p(1 — (1 - p))) = p*
UBa(d) =1 — (1 - p(1 — (1 —p))) = p*

Next, each node in set S; checks whether adding its out-neighbor to the previously received
messages’ paths forms a path or not. If so, send a message to the neighbor with the updated
path and value. For example, node ¢ has the message ((a,b,c),1) from | = 1 step. For node
¢’s two out-neighbors b and d, adding d forms a path but not adding b. Thus, node ¢ sends
the message ((b, ¢, d),p) to node d, where (b, ¢, d) is length 2 sub-path of the path (a,b, ¢, d)
ending at node d. Similarly, d sends the message ((b,d,c),p) to node ¢ and ((b,d,e),p) to
node e, concluding the [ = 2 step.

Now, we compare the three upper bounds, NB-UB, tNB-UB, and rNB-UB, on the
example graph G to the exact influence o.

o = 1+p+@*+p°—p" )+ @*+p° —p") + (@ +p" —p°)

= 1+p+20°+3p° —p' —p°

ot = 1+ @+20" =20° >+ ") + 0* +0° = 1°) + (0P +0* = P°) + 0° + 1" D)
= 1+p+20°+3p° +3p" —4p° —p" —p° +p’

of = 14+p+ @+ —p)+ "+ —p") + @ +p' —p")
= 1+p+2p°+3p° —p' —p'

of = 14+p+ @+ —0°)+ 0 +0° = 0°) + (° +p' —p")

= 14+p+20°+3p°+p* —2p° —p”

The tunable upper bound at+ with ¢ = 3 results in the tightest bound. tNB-UB computes
the influence probability for nodes a, b, ¢ and d exactly, since they can only be influenced
by a path with length less than or equal to 3. The r-nonbacktracking bound o, with r = 3
avoids all triangles when computing the bound. Thus, it only considers paths rather than
walks. However, rNB-UB is still not exact, because it assumes the independence among the
events that a node is influenced by a length [ path, for all [ < n — 1. The nonbacktracking
bound o1 results in the worst bound. The bound not only assumes the independence as in
rNB-UB, but also considers all walks that include the triangle formed by nodes b, ¢ and d.

4. Nonbacktracking Lower Bounds

In this section, we introduce a nonbacktracking lower bound on the influence in the inde-
pendent cascade model. The bound uses nonbacktracking walks and is computed efficiently
by message passing algorithms in O(|V| + |E|). Similar to nonbacktracking upper bound,
we also present a parameterized version of the lower bound, tunable nonbacktracking lower
bound.

Furthermore, from the proposed upper o™ and lower 0~ bounds on the expected number
of influenced nodes, we can compute an upper bound on the variance given by (¢ —07)?/4.
This could be used to estimate the number of computations needed by MC simulations.
Computing the upper bound on the variance with the proposed bounds can be done in
O(|[V|? + |V||E|), whereas computing the variance with MC requires O(|V|> + |V|*|E]).
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This section is organized as follows. First, sections 4.1 and 4.2 shows the definitions
of the proposed lower bounds and efficient algorithms to compute them. Next, section 4.3
shows how each lower bound is computed on a small example network and compares the
bounds with the influence.

4.1. Nonbacktracking Lower Bound (NB-LB)

A naive way to compute a lower bound on the influence of a seed set Sy in a network
IC(G, B) is to reduce the network to a (spanning) tree network, by removing edges. Then,
since there is a unique path from a node to another, we can compute the influence of the
tree network, which is a lower bound on the influence in the original network, in O(|V]). We
take this approach of generating a subnetwork from the original network, yet we avoid the
significant gap between the bound and the influence by considering the following directed
acyclic subnetwork, in which there is no backtracking walk.

Definition 11 (Min-distance Directed Acyclic Subnetwork). Consider an independent cas-
cade model IC(G,B), where G = (V,E) and |V| = n, and a seed set Sy C V. Let
d(Sp,v) := mingeg, d(s,v), i.e., the minimum distance from a seed in Sp to v. A minimum-
distance directed acyclic subnetwork (MDAS), IC(G', B'), where G' = (V', E'), is obtained
as follows.

= {v1,...,vn} is an ordered set of nodes such that for every i < j, d(So,v;) < d(So,v;).

- E' = {(vi,v;) € E i < j}, i.e., E' is obtained from E by removing edges whose source
node comes later in the order than its destination node.

© By, = Buy,, if (vi,v5) € B, and By, =0, otherwise.

VU

If there are multiple ordered sets of vertices satisfying the condition, we may choose
one arbitrarily. While any of the ordered sets satisfying the condition results in a lower
bound, the tightness of the bound can varies depending on the ordered set chosen for the
computation. This is further explained in 4.3 with an example.

For any k € [n], let p(vg) be the probability that vy € V' is influenced in MDAS,
IC(G', B'). Since p(vg) is equivalent to the probability of the union of the events that an
in-neighbor u; € N~ (vg) influences vy, p(vg) can be computed by the principle of inclusion
and exclusion. Thus, we may compute a lower bound on p(vy), using Bonferroni inequalities,
if we know the probabilities that in-neighbors u and v both influences vy, for every pair
u,v € N~ (vy). However, computing such probabilities can take O(k*). Hence, we present
LB(vg) which efficiently computes a lower bound on p(vy) by the following recursion.

Definition 12. For all vy, € V', LB(vg) € [0, 1] is defined by the recursion on k as follows.
Initial condition: For every vs € Sy,

LB(vs) = 1. (21)
Recursion: For every vy, € V'\ Sp,
m* i—1
=> | Bl IBu)(1 > Bl.,) | (22)
=1 7=1
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where N~ (vg) = {u1,...,um} is the ordered set of in-neighbors of vy in IC(G',B') and
m*=max{m' < m: Z;n:l;l Bl , <1}

UGV
Remark. Since the i-th summand in Equation (22)' can use 23;21 B&jvk, which is
already computed in (i —1)-th summand, to compute Z;;l B{Ljvk, the summation takes

at most O(deg(vx)). Note that Equation (22) is formulated so that the computational
complexity is minimized. However, we may use some other equations to achieve the lower
bound property.

Theorem 5 (Nonbacktracking Lower Bound (NB-LB)). For any independent cascade model
IC(G, B), a seed set Sy and its MDAS, IC(G', B),

a(So) > Y LB(ux) = 0 (So), (23)

v eV’
where LB(vy) is obtained recursively as in Definition 12.

Next, we present Nonbacktracking Lower Bound (NB-LB) algorithm which efficiently
computes LB(vg). At k-th iteration, the variables in NB-LB represent the followings.
- M(vg) = {(LB(v)), By,.,) : vj is an in-neighbor of vy}, set of pairs (incoming message
from an in-neighbor v; to vy, the transmission probability of edge (vj,vy)).

Algorithm 4 Nonbacktracking Lower Bound (NB-LB)

Input: directed acyclic network IC(G’, B')
Initialize: 0~ =0
Initialize: Insert (1,1) to M(v;) for all v; € S
for k=1tondo
LB(vi) = ProcessIncomingMsg; »(M(uvg))
o~ += LB(v)
for v; € N+(Uk) \ Sp do
M(v;).insert((LB(vg), By, ,,))

VLU

Output: o~

At the beginning, every seed node s € Sy is initialized such that M(s) = {(1,1)}
in order to satisfy the initial condition, LB(s) = 1. For each k-th iteration, node vy is
processed as follows. First, LB(vg) is computed as in the Equation (22), by the function
ProcessIncomingMsg,y, and added to o~. Second, vy passes the message (LB(vy), By, ,,) to
its out-neighbor v; € N (vg)\ So, and v; stores (inserts) it in M(v;). Finally, the algorithm
outputs o, the lower bound on the influence.

Computational complexity: Obtaining an arbitrary directed acyclic subnetwork
from the original network takes O(|V| + |E|). Next, the algorithm iterates through the
nodes V' ={vy,...,v,}. For each node vy, ProcessIncomingMsg;; takes O(deg(vy)) and
v, sends messages to its out-neighbors in O(deg(vy)). Hence, the worst case computational

complexity is O(|V| + |E).
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4.2. Tunable Nonbacktracking Lower Bound (tNB-LB)

The first step of tunable NB-LB is the same as NB-LB, which is to order the vertex set
as V' = {v1,...,v,} to satisfy P(Sp,v;) < P(Sp,v;), for every i < j. Next, given a non-
negative integer parameter ¢ < n, we obtain a t-size subnetwork IC(G[V;], B[V4]) and a new
seed set Sp N Vi, where G[V;] is the vertex-induced subgraph which is induced by the set
of nodes V; = {wy,..., v}, and B[V{] is the corresponding transmission probability matrix.
For each v; € V4, we compute the exact probability p;(v;) that node v; is influenced from the
new seed set SoNV; in the subnetwork IC(G[Vi], B[V;]). Then, we start (non-parameterized)
NB-LB algorithm from k& =t + 1 with the new initial condition: for all k£ < ¢,

LB(vk) = pe(vk)- (24)

Finally, tNB-LB computes the lower bound as kaevl LB(vg).

Algorithm 5 Tunable nonbacktracking lower bound (tNB-LB)

parameter: non-negative integer ¢t < n
Initialize: 0= =0
for k=1tot do
LB(vy) = pe(vy)
o~ += LB(v)
for v; € {NT*(vy) N{v;:j>t}} do
M(v;).insert((LB(vg), By, .,))
for k=t+1tondo
LB(vy) = ProcessIncomingMsg; z(M(vg))
o~ += LB(v)
for v; € N+(1}k> \ Sp do
M(v;).insert ((LB(vg), By, ,.))

VEU;

Output: o~

For larger ¢, the algorithm results in a tighter bound. However, the computational
complexity may increase exponentially with respect to ¢. To avoid such large computational
complexity, the algorithm can adopt Monte Carlo simulations on the subnetwork. However,
this modification results in probabilistic lower bounds, rather than theoretically guaranteed
lower bounds. Nonetheless, this can still give a significant improvement, because the Monte
Carlo simulations on a smaller network require less computation to stabilize the estimation.

4.3. Illustration of Nonbacktracking Lower Bounds (NB-LB)

In Figure 5, we show step-wise lower bound computation by NB-LB on a small network
IC(G, B) defined on an bidirected graph G = (V, E), where V = {a,b,¢,d}, Sy = {a}, and
every edge has the same transmission probability p. For each k, Table 1 shows the values of
the key variables, M(v), LB(v), and (LB(vy), By, ,,) for the out-neighbors v; € N (vy)\ So,
and shows the change in o7
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____________________________________________________________________________________________________

Figure 5: The step-wise illustration of NB-LB on the example network.

k=1 k=2 k=3 k=4
Vi a b c d
M () {1, 1)} {(1,p)} {(,p), (p.p)} {(p+p>—1p° p)}
LB (vy) 1 P p+p° —p’ P’ +p’ —p
N*(vk) \ So {b, ¢} {c} {d} @
(LB(vk), By,o,) to v | (1,p) toband ¢ | (p,p) toc | (p+p° —p°,p) tod
o~ 1 1+p 1+2p+9p*>—p° 1+ 2p+2p* — p*

Table 1: The values of the key variables in NB-LB on the example network in Figure 5.

We obtain MDAS from the network as follows. Since d(Sp,a) = 0, d(So, b) = d(So,c) =1
and d(Sp,d) = 2, we order the vertices as {v1 =a,ve =b,v3=c,vs =d} so that d(Sp,v;) <
d(So,vj), for every i < j.

NB-LB algorithm processes the nodes {v; = a, vy = b, v3 = ¢,v4 = d} sequentially. For
example, at k=3, node c is processed. During the previous step at k = 1, node a sent the
message (LB(a), B.,.) to node ¢, and at k = 2, node b sent the message (LB(b), B;_.) to node
c. Thus, node ¢ has the message:

M(c) = {(LB(a), By.), (LB(b), By.)} = {(1,p), (p,p)}-
Then, it computes LB(c) with the function ProcessIncomingMsg; ;.

LB(c) = ProcessIncomingMsg;;(M(c))
= By LB(a) + By LB(b)(1 - By.) = p+p° = p.

Recall that o~ = 1 + p, at the end of the iteration k& = 2. Thus, at k = 3,

o =14+p+LB(c)=1+2p+p* —p>.
Next, since N*(c) \ Sp = {d}, node c sends the message (LB(c), Beq) = (p + p*> — p,p)
to node d, concluding the process of the £ = 3 step. At k = 4, the algorithm computes
LB(d) = p(p + p? — p?) and the final lower bound:

o =142+ p>—p*+1LB(d) =1+2p+2p° —p*.

For this example network, there is another MDAS that satisfies the condition in 11 with
the ordered vertices {v; = a,ve = ¢,v3 = b,vy = d}. We can also obtain a lower bound
using this MDAS, which is 1 + 2p 4+ 2p? — p3. Notice that this value is different from the
lower bound we computed above but still is a lower bound for the expected number of the
influenced nodes.
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Next, we compute tNB-LB on the same network with ¢ = 3. First, for K =1 to k = 3,
the probabilities that nodes a, b, ¢ are influenced are exactly computed as follows.

LB(a) = 1
LB(b) = p+p°—p°
LB(c) = p+p*—p°

Then, for k = 4, the algorithm computes the message M(d) = {(LB(c), B.;)} and, in turns,
the lower bound LB(d) = B!,LB(c) = p(p + p* — p*). Thus, the final lower bound is

at_:1—|—2p—|—3p2—p3—p4.

Finally, we compare the lower bounds to the influence.

o = 1+2p+3p°—p° —p
o = 1+2p+2p27p4
o, = 1+2p+3p? —p> —p?

As expected, tNB-LB results in a tighter lower bound than NB-LB. In fact, tNB-LB is the
same as the influence since node d can only be influenced through node ¢ whose probability
of being influenced is exactly computed in tNB-LB with ¢t = 3.

5. Experimental Results

In this section, we evaluate NB-UB and NB-LB in independent cascade models on a variety
of classical synthetic networks.

Network Generation. We consider 4 classical random graph models with the parame-
ters shown as follows: Erdos Renyi random graphs with FR(n = 1000, p = 0.003), scale-free
networks SF(n = 1000, = 2.5), random regular graphs Reg(n = 1000,d = 3), and ran-
dom tree graphs with power-law degree distributions 7'(n = 1000, « = 3). For each graph
model, we generate 100 networks IC(G,pA) and a seed as follows. The bidirected graph
G is defined on the largest connected component of a graph drawn from the graph model,
the seed node s is a randomly selected vertex, and A is the adjacency matrix of G. The
corresponding IC model has the same transmission probability p for every edge.

Evaluation of Bounds. For each generated network, we compute the following quan-
tities for each p € {0.1,0.2,...,0.9}.

- Ome: the estimation of the influence with 106 Monte Carlo simulations.
- o": the upper bound obtained by NB-UB.

: a;;,ec: the spectral upper bound by (Lemonnier et al., 2014).

- 0~ : the lower bound obtained by NB-LB.

O probt the probabilistic lower bound obtained by 10 Monte Carlo simulations.

There has not been any tight lower bound for general networks. The lower bound intro-
duced in (Khim et al., 2016) is efficient and tight for tree networks. However, for general
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Figure 6: (a) The average relative gap of the upper bounds: NB-UB and the spectral upper bound
in (Lemonnier et al., 2014) for various types of networks.
(b) The average relative gap of the lower bounds: NB-LB and the probabilistic lower bound computed

by MC simulations for various types of networks.
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networks, since it considers all paths of length k& € {0, 1,...,m} for some m € [n], the com-
putational complexity is O(|V|™) which is greater than the computational complexity of
the nonbacktracking lower bound for any m > 2. Therefore, the probabilistic lower bound
is chosen for the experiments. The sample size of 10 is determined to exceed the com-
putational complexity of NB-LB algorithm. In Figure 6, we compare the average relative
gap of the bounds for every network model and for each transmission probability, where
the true value is assumed to be o,,.. For example, the average relative gap of NB-UB
for 100 Erdos Renyi networks {N; }g% with the transmission probability p is computed by

s 2 ie[100] JJF[/\CGAL:—W, where o [N;] and o,.[N;] denote NB-UB and the MC estima-
tion, respectively, for the network N;.

Results. Figure 6 shows that NB-UB outperforms the upper bound in (Lemonnier
et al., 2014) for the Erdos-Renyi and random bidirected 3-regular networks, and performs
comparably for the scale-free networks. Also, NB-LB gives tighter bounds than the MC
bounds on the Erdos-Renyi, scale-free, and random regular networks when the transmission
probability is small, p < 0.4. NB-UB and NB-LB compute the exact influence for the tree
networks since both algorithms avoid backtracking walks.

Next, we show the bounds on exemplary networks.
5.1. Upper Bounds
Upper bounds of the influence
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Figure 7: The figure compares various upper bounds on the influence in the 3-regular network in
section 5.1. The MC upper bounds are computed with various simulation sizes and shown with
the data points indicated with MC(N), where N is the number of simulations. The spectral upper
bound in (Lemonnier et al., 2014) is shown in red line, and NB-UB is shown in green line.

In order to illustrate typical behavior of the bounds, we have chosen the network in
Figure 7 as follows. First, we generate 100 random 3-regular graphs G with 1000 nodes and
assign a random seed s. Then, the corresponding IC model is defined as IC(G, B = pA).
For each network, we compute NB-UB and MC estimation. Then, we compute the score for
each network, where the score is defined as the sum of the square differences between the
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upper bounds and MC estimations over the transmission probability p € {0.1,0.2,...,0.9}.
Finally, a graph whose score is the median from all 100 scores is chosen for Figure 7.

In figure 7, we compare 1) the upper bounds introduced (Lemonnier et al., 2014) and 2)
the probabilistic upper bounds obtained by Monte Carlo simulations with 99% confidence
level, to NB-UB. The MC upper bounds are computed with the various sample sizes N €
{5,10, 30, 300,3000}. It is evident from the figure that a larger sample size provides a tighter
probabilistic upper bound. NB-UB outperforms the bound by (Lemonnier et al., 2014) and
the probabilistic MC bound when the transmission probability is relatively small. Further,
it shows a similar trend as the MC simulations with large sample size.

Next, we show r-nonbacktracking upper bounds on a small world graph G = SW(n, k, q)
where n = 1000 is the number of nodes in the network, £ = 4 is the number of neighbors of
each node, and ¢ = 0.01 is the re-wiring probability. The IC model on the small world graph
G is defined as IC(G, B = pA), where A is the adjacency matrix of G, p is the transmission
probability for every edge, and the seed node s is chosen arbitrarily.

Upper bounds of the influence
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Transmission probability
—r=2 r=3 r=4 r=5 —-—MC

Figure 8: The figure compares r-nonbacktracking upper bounds with various values of r in a small
world network. The MC estimation with simulation size 10° is computed for comparison.

In Figure 8, we compare the r-nonbacktracking upper bounds with r € {2,3,4,5} to MC
estimation. For p < 0.32, all upper bounds are very close to the influence, and for p > 0.42
the upper bounds with r < 5 become close to the maximum value, 1000. Therefore, we show
the bounds for p € [0.32,0.42]. Note that when r = 2, the r-nonbacktracking upper bound
(rNB-UB) is the nonbacktracking upper bound (NB-UB). By avoiding r = 3 backtracking
walks (triangles) in addition to backtracking walks, the upper bound is significantly im-
proved. The same applies to r = 4, 5 nonbacktracking bounds. As r increases, the bounds
get tighter and closer to the estimated influence. It is worth noting that while the upper
bound results in deterministic, as opposed to probabilistic, upper bound, the computational
complexity for r > 4 exceed the complexity of MC approximation.
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5.2. Lower Bounds

Lower bounds of the influence
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Figure 9: The figure shows lower bounds on the influence of a scale-free network in section 5.2.
The probabilistic lower bounds are obtained by MC with various simulation sizes. The data points
indicated with MC(N) are obtained by N number of simulations. NB-LB is shown in green line.

In this section, we show lower bounds on an exemplary network. We adopt a similar
selection process as described in Section 5.1 but with the scale-free networks, with 3000
nodes and o = 2.5.

We compare probabilistic lower bounds obtained by MC with 99% confidence level to
NB-LB. The bounds from Monte Carlo simulations are computed with various sample sizes
N € {5,12,30,300,3000}, which accounts for a constant, log(|V]), 0.01|V], 0.1]V|, and
|V|. NB-LB outperforms the probabilistic bounds by MC with small sample sizes. Recall
that the computational complexity of NB-LB is O(|V| + |E|), which is the computational
complexity of a constant number of Monte Carlo simulations. In Figure 9, it shows that NB-
LB is tighter than the probabilistic lower bounds with the same computational complexity.

6. Conclusion

We propose both upper and lower bounds on the influence in the independent cascade
models and provide algorithms to efficiently compute the bounds. The proposed upper
bound is monotone and submodular. We extend the results by proposing tunable bounds
which can adjust the trade-off between the efficiency and the accuracy and by using r-
nonbacktracking walks instead of (2-)nonbacktracking walks. Finally, the tightness and the
performance of bounds are shown with the experimental results.
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Appendix A. Proof of Theorem 2

We start by defining the following events for the independent cascade model IC(G, B),
where G = (V, E) and |V| = n, and a seed set Sp C V.

Definition 13. For any u,v € V, 1 €{0,...,n—1}, and S CV, we define
A(w) = {v is influenced}

Ai(v) = Upep(sy — w{P is live}
A(u—v) = Upep Sy — u), Pl P 18 live and edge (u,v) is live}
Ais(v) = Upe{prep (s — v):P'#wywesi{ P is live}.

In other words, A;(v) is the event that node v is influenced by live paths of length [,
Aj(u— v) is the event that v is influenced by node u with live paths of length [ + 1, i.e.,
there exists a live path of length [ + 1 from a seed to v that ends with edge (u,v), and
A; s(v) is the event that node v is influenced by length [ live paths which do not include
any node in S. Note that for any pair of events (A, B), we use the notation AB for AN B.

Lemma 1. For anyv €V,

n—1

plv) < 1-JJ0-mp)).

1=0
For anyv €V andl € {0,...,n—1},
pl) < 1— J[ @-pu—v).
ueN~(v)
Proof. Recall that p(v) = P(A(v)), pi(v) = P(4;(v)), and pj(u—v) = P(Aj(u—v)).

pv) = PUS A(v))
= 1-P(N5 Av))

n—1
< 1- [P (25)
=0
n—1
= 1-JJ0 - p()).
=0

Equation (25) follows from positive correlation among the events A;(v)¢ for all v € V,
which can be proved by FKG inequality. Similarly,
p(v) = P(Uuen-()yAi(u—v))
= 1- P(ﬂueNf(v)Al(u%’U)C)
< 1- J] PAu—v)°)

ueN~(v)

= 1- [] a-nlu-v). (26)

ueN~(v)
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Theorem 2. For any independent cascade model IC(G, B) and a seed set Sy C 'V,

n—1
o(S0) < S J[(1-UBw) =" (S0), (27)
veV =0

where UB;(v) is obtained recursively as in Definition 7.

Proof. We provide proof by induction. The initial condition, for [ = 0, can be easily checked.
For every s€Sy, ste NT(s), ueV\Sp, and ve N (u),

po(s) =1 < UBg(s) =1
po(s—sT) = Byt < UBg(s—sT) = Byt
po(u) =0 < UBg(u) =0
po(u—v) =0 < UBg(u—wv)=0.

For each [ < L, assume that p;(v) < UB;(v) and p;(u—v) < UBj(u—wv) for all u,v € V.

Since pi(s) = p(s = sT) = p(s~ —s) =0 forevery I > 1, s€ Sy, ste€ Nt(s), and
s~e N~ (s), it is sufficient to show pr41(v) < UBr41(v) and pryi(u—v) < UBpi1(u—v)
for all ue V\Sy, and ve N*(u),

For any v € V'\ Sy,

pr1(v) = P(UueN*(v)EuUAL,{v}(u))a

where E,, denotes the event that edge (u,v) is live, i.e., P(Ey,) = Byy. Thus,

pri1(v) = 1—=P(Nuen—)(BuwAr (o (1))
< 1- J[ (—PBuwALpy @) (28)
ueN~(v)
= 1- H (1 —pr(u—w))
u€EN~(v)
< 1- J] (-UBL(u—v))=TUBr(v), (29)
ueN~(v)

where Equation (28) is obtained by the positive correlation among the events E,, A Ly{v}(u),
and Equation (29) comes from the assumption.

For any v € V'\ Sy and w € N T (v),

pL_H(U—H.U) = P(vaAL—i—l,{w}(U))
= vaP(AL—l—l,{w}(U))' (30)
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Equation (30) follows from the independence between the events Ey,, and A g3 (v)-
If we N~ (v),

prt1(v—=w) = BuwP(Uuen- )\ fw} BuvAL {v,w) (@)

IN

Byw | 1— H (1 - P(EuvAL,{v,w} (u)))
uweN~ (v)\{w}

IN

Bow [ 1- H(lpL(qu))) (31)

ueN~ (v)\{w}

< Buw |1- H(l—UBL(u%v)) ,
ue€N~(v)\{w}

Equation (31) holds, since the two events satisfy EuyAr (v} (u) € BuwAr vy (u).
Recall that, if w € N~ (v),

1-UB v
UBrii(v—w) = Byw(l— . UBLZ;LQ)J))
= Buw(l- ][] (1-UBL(u—v))).
uEN~(v)\{w}

Thus, pr+1(v—w) < UBLy(v—w), for all w € NT(v) N N~ (v).

If wé¢ N~ (v),
pry1(v—w) = BﬂwP(UUEN—(v)Em)AL,{v,w}(u))
< By [1-]] (1 -UBL(u—v))
ueN~(v)

= vaUBL_H(U) = UBL+1(U—>’UJ).

Hence, pr11(v—w) < UBL41(v—w), for all w € N (v), concluding the proof.
Finally, by Lemma 1,

n—1
o5 < Sa-JJa-mw))
veV =0
n—1
< Z(l - H(l —UBy(v))) = 07 (o).
veV =0

Appendix B. Proof of Theorem 3

Theorem 3. For any independent cascade model IC(G,B), the nonbacktracking upper
bound ot : 2V —0,|V|] is monotone and submodular.
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Recall that

ot(S0) =Y (1— ] (1-UByv))
veV le[n—1]
UBj(u)=1— [] (1-UBi(w—u))
weN~ (u)

UBj(u—v) = By, (1 - H (1- UBll(UJ—HL))>

weN~ (u)\{v}

Since the summation of submodular functions is also submodular, it remains to prove
that (1 —J[;ep,—1)(1 = UBi(v))) is submodular. Note that Be and N~ (v) for any e € E and
v € V is independent of the seed set and that UBg(u—v) for any u,v € V is constant, so
it is equivalent to prove the following statement.

Claim 1. If f;(S) € [0,1] for all i € [m] is monotone and submodular, then 1 — ];cp, (1 —
fi(S)) is also monotone and submodular.

Proof. We provide a proof by induction. The initial condition holds for k£ = 1.
Assume that 1—]];c,_y)(1— fi(5)) is monotone (non decreasing) and submodular for some
k <m. Let gp—1(A) =1 —JLep_1y(1 = fi(A)). Then, forany ACBCV and s €V,

gr-1(AU{s}) = ge-1(A) = gr-1(BU {s}) — gi-1(B) (32)
and
fr(AU{s}) = fi(4) > fi(BU {s}) — fr(B). (33)
By definition,
gr(A) =1 — (1 = ge—1(A))(1 — fr(A)). (34)

gk is monotone as:

g(AU{s}) = 1—(1—ge1(AU{s}))(1— fr(AU{s}))
> 1—(1—gr-1(A)(1 = fi(A4)) = gx(4) (35)

Next, to prove submodularity, we want to show:

(1 =gr-1(A)(A = fe(A) = (1 = ge-1(AU{s}))(1 = fr(AU{s}))
> (1= gr1(B)(A = fi(B)) = (L = gp1(BU{s}))(1 = fu(BU{s})).  (36)

To simplify, for any ¢ € [m] and S C V, let (1 — ¢;(S)) = gi(S) and (1 — fi(S)) = f/(5).
Then, Equation(32) and (33) become

gr1(A) = g1 (AU{s}) > g, 1(B) — gp 1 (BU{s})
fi(A) = fr(AU{s}) = fi(B) = fr(BU{s})
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and Equation(36) is equivalent to

Ir—1(A) fr(A) = g1 (AU {s}) fL(AU {s}) = g3_1(B) fr(B) — gp—1(B U {s}) fr(B U {s}).
Let g;,_(B) — g, (BU{s}) = ¢4 and f.(B) — fL(BU{s}) = d¢. Note that as f and g are
non-decreasing, d4, > 0 and 6y > 0. Then,

Ir—1(A)f(A) = gy (AU {s}) fr(AU {s})

> (gr—1(AU{s}) +5) (fr(AU{s}) +d5) — gp_1 (AU {s}) (AU {s})

= 070g + g f1(AU{s}) + 07951 (AU {s})

> 070y + dg fr(B U {s}) + 0791 (BU{s})

= gr-1(B) fr(B) — gp—1 (B U {s}) fr(BU {s})

Appendix C. Proof of Theorem 4

To prove Theorem 4, we first introduce the following events in IC(G, B) where G = (V, E)
and |V] =n.

Definition 14. For anyv eV, 1 € {0,...,n—1}, we define
A(w) = {v is influenced}
A(P) = {P is live}
Ai(v) = Upep(sy - vw{P is live} = Upep,(s, — ) A(P).

For any2 <r<n and P € P,_i(v—-), let Aj(v, P) be the event that node v is influenced
by a live path of length | — (r — 1) that does not include any node in path P.

Next, we recall Definition 9 and Theorem 4.

Definition 9. For alll € {0,...,n—1}, u € V and P € P._1(u—-), UBy(u) € [0,1] and
UB;(u, P) € [0,1] are defined recursively as follows.
Initial condition: For every | <r —1 and ueV,

UB,(u) = f(Upep,(sy - w) (P 1))
For every P € P,_1(s—-) and s € Sp,
UB,_(s, P) = 1.

Recursion: For every 1€ {r,...,n — 1}, s€ Sy, u,z€V\Sy, veE N(u)\So, and Q €
Pr_l(’l)—)'),
UB;(s) = 0,UBy(s, P) =0 for any path P

UBy(v,Q) =1— [] (1 = BuwUBi_1(u, P))
PrQ
UB;(7) = f(Upe{prep,_i(y — )vyevi\So} (P UBi(y, P)))
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Theorem 4. For any independent cascade model IC(G,B), a seed set Sp C V and an
integer v > 2,

o5 < 30— [0 UBiw)) = o7 (S0) < o (50) (37)
veV =0

where UBy(v) is obtained recursively as in Definition 9.

P?"OOf. First, let p(’l)) = P(A(’U)), p(P) = P(A(P))a pl('U) = P(Al(v))a and pl(v7p) =
P(A;(v, P)). By Lemma 1, it is sufficient to show p;(v) < UB,(v) for all v € V and
1 €{0,1,...,n —1}. We provide proof by induction on .

The initial condition can be easily checked. For every [ <r —1,u€V, ve NT(u) and
s € Sy,

pi(u) = P(Upep, (s, — wA(P)) < fF(Upep, sy — uw) (P 1)) = UB(u).
For every P € P,_1(s—") and s € S,
pr—1(s,P) =1 <UB,_1(s,P) = 1.

Next, for each | < L, assume that p;(v) < UB,;(v) and p;(v, P) < UB;(v, P) for every
veVand Pe P._1(v—-). Foreveryl >r, s € Sy and P € P,_1(s— "), pi(s) = 0 and
pi(s, P) = 0, since a seed cannot be influenced again by other seeds and cannot influence
other nodes after the first step [ = 0. Therefore, to conclude the proof, it is sufficient
to show pr4+1(v) < UBr4i(v) and pr41(v, P) < UBr41(v, P) for every v € V \ Sy and
P e Prfl(’u—%).

For any w,v € V\ Sy, P € P,_1(u— -), and @ € P._1(v — -) such that P ~ @,
let P = (u = wuy,...,ux) and Q = (v = vy,...,v;). Recall that if P ~ Q, (u,v,us =
Vy..., U = Vgp_1,Vk) is a path of length r. Then, for any P ~ @, Ar(u,P) contains all
events that an in-neighbor v of node v is influenced by a live path that does not contain
any node in path P = (u,v,v,...,vk_1). Notice that the event Az41(v, Q) is the union of
events that an in-neighbor u of node v is influenced by a live path that does not contain
any node in path @ = (v,ve,...,vx) and edge (u,v) is live. In other words, A7 (v, Q) =
Unen— () BuwAL(u, PUQ), where PUQ = (u,v,u3 = v2...,u = Vg_1,V) and By, is the
event that edge (u,v) is live. Thus, Ar41(v, Q) C UpgFEuvAr(u, P), which implies

pr+1(v,Q) < P(UpgEwAL(y, P)).

By the positive correlation among the events Fy, Ar(u, P),

prn@Q < 1- [[ Q- PuP(ALu,P))
P~Q

< 1- J] (= PuUBL(w, P)) = UBL1(v,Q), (38)
P~Q

where Equation (38) follows from the assumption.
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For any x € V' \ Sp,

pr+1(r) = P(Upep,, (o — 2)A(P))
< P(Upe{prep,_i(y — a)vyev\So} AL+1(y, P)A(P)) (39)
< f(Upetprep,_i(y = 2)vyev\so} (P pL+1(y, P))) (40)
< f(Upetprer,_i(y — )vyev\so} (P UBL11(y, P))) (41)
= UBp4i(x).

Equation (39) follows from UPGPL+1(SO*>I)A(P) - UPG{P’EPT71(y %):VyEV\SQ}AIrFl(y?P)
since the right hand side also includes events that y is influenced by a walk rather than a
path. Equation (40) holds because the function f computes the upper bound rather than
the exact probability of the input events, and Equation (41) comes from the assumption.

Therefore, pr+1(v,Q) < UBr4+1(v,Q) and pryi1(x) < UBr41(z), concluding the proof
by induction. Then, by Lemma 1,

n—1
a(So) < Y (=TI -m@))
veV =0
n—1
< > (- J[=UB() = o, (S0).
veV =0

Appendix D. Proof of Theorem 5

Theorem 5. For any independent cascade model IC(G, B) and a seed set Sy and their
MDAS IC(G', B'),

0) > Y LB(wx) = o (S0), (42)

v eV’

where LB(vg) is obtained recursively as in Definition 12.

Proof. We provide proof by induction. For any vy € V', let A(vi) be the event that node
vy is influenced in MDAS IC(G', B'), and for every edge (vj,vx), let B, ,, be the event
that edge (v, vg) is live, i.e., P(Ey,v,) = By ,,- Recall that p(vg) = P(A(v)).

The initial condition & = 1 holds, since p(v1) =1 > LB(v1) = 1 (v is a seed). Now, for
every k < K, assume p(vg) > LB(vy).

Then, for node v 41,

p(UK-H) = P(UUjGN_(UK+1)EUij+1A(Uj))'
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We re-label vertices in N~ (vky1) = {u1,..., Upx41)} Wwhere m(K + 1) = in-deg(vi41),
and let Q;x+1 = B!, . Then, for any integer m < m(K + 1),

U VK +1

p('UK+1) = P(Ui:]_ UWKHA(ui»

m m t1—1

> Z P(EuivK+1A(ui)) - Z P(Eui'UK+1A(ui)E'U«j'UK+1A(uj)) (43)
i=1 i=1 j=1
m m 1—1

= Y QiknP(Aw) = DD Qirt1Qirr1P(A(u) A(uy)) (44)
i=1 i=1 j—l

> Y QikP(4 Z Qjk+1)- (45)
=1

Equation (43) follows from the principle of inclusion and exclusion. Equation (44) results
from the Independence between the event that an edge ending with vg 41 is live and the
event that a node v; is influenced where i < K + 1. Equation (45) holds since P(A(u;)) >
P(A(ui) A(uy)).

Now, define m* = max{m’ < m(K + 1) : Z;’il_l Qjk+1 < 1}. Then,

m* i—1
p(vgy1) = Z Qi +1P(A(uy))(1 — Z Qjk+1)
pat jfl

> Z QZK+1LB 'LLZ Z Q]K+1 (46)

= LB(UK+1).

Equation (46) follows since 1 — 23;11 Qjk+1 = 0 for all © < m* by the definition of m*.
Thus, p(v;) > LB(v;) for all v; € V', concluding the induction proof.

Finally,
o(50) = S ) (47)
=1
> ZLB(’UZ‘):O'f(So).
i=1

Equation (47) holds since its right hand side equals to the influence of the subnetwork,
IC(G',B"). |
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