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Abstract

Consider an unknown smooth function f : [0,1]¢ — R, and assume we are given n noisy
mod 1 samples of f,i.e.,y; = (f(x;)+n;) mod 1, for x; € [0,1]?, where n; denotes the noise.
Given the samples (x;,y;)_;, our goal is to recover smooth, robust estimates of the clean
samples f(x;) mod 1. We formulate a natural approach for solving this problem, which
works with angular embeddings of the noisy mod 1 samples over the unit circle, inspired by
the angular synchronization framework. This amounts to solving a smoothness regularized
least-squares problem — a quadratically constrained quadratic program (QCQP) — where
the variables are constrained to lie on the unit circle. Our proposed approach is based
on solving its relaxation, which is a trust-region sub-problem and hence solvable efficiently.
We provide theoretical guarantees demonstrating its robustness to noise for adversarial, as
well as random Gaussian and Bernoulli noise models. To the best of our knowledge, these
are the first such theoretical results for this problem. We demonstrate the robustness and
efficiency of our proposed approach via extensive numerical simulations on synthetic data,
along with a simple least-squares based solution for the unwrapping stage, that recovers
the original samples of f (up to a global shift). It is shown to perform well at high levels
of noise, when taking as input the denoised modulo 1 samples.

Finally, we also consider two other approaches for denoising the modulo 1 samples that
leverage tools from Riemannian optimization on manifolds, including a Burer-Monteiro
approach for a semidefinite programming relaxation of our formulation. For the two-
dimensional version of the problem, which has applications in synthetic aperture radar
interferometry (InSAR), we are able to solve instances of real-world data with a million
sample points in under 10 seconds, on a personal laptop.

Keywords: quadratically constrained quadratic programming (QCQP), trust-region sub-
problem, angular embedding, phase unwrapping, semidefinite programming, angular syn-

chronization.
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1. Introduction

In many domains of science and engineering, one is given access to noisy samples of a signal
f, and the goal is to recover the original clean samples. The signal f is typically smooth in
some sense, and one would like to have an algorithm that is not only robust to noise, but
also outputs smooth estimates. More formally, we can think of the signal f : R¢ — R for
which we are typically given samples f(x;); i = 1,...,n for x; € U for a compact U C R
Perhaps one of the most important applications of this problem arises in image denoising,
with a rich body of literature (see for eg., Elad and Aharon (2006); Lou et al. (2010)).

Interestingly, there are applications where one does not observe the samples directly,
but only the modulo samples of f, i.e., f(x;) mod ¢ for some ¢ € R*. For instance, when
¢ =1, f(x) mod 1 simply corresponds to the fractional part of f(x). Such measurements
are typically obtained due to constraints on the sampling hardware, or due to physical
constraints imposed by the specific nature of the problem. To see this, we discuss two
important applications below.

Self-reset analog-to-digital converters (ADCs). Traditional ADCs have voltage lim-
its in place that cut off the signal, i.e., saturate, whenever the signal value lies outside the
limits. Recently, a new generation of ADCs have adopted a different approach to this prob-
lem, wherein they simply reset the signal value to the other threshold value (Kester (2009);
Rhee and Joo (2003); Kavusi and Abbas (2004); Sasagawa et al. (2016); Yamaguchi et al.
(2016)). For example, if the voltage range is [0,b], the reset operation simply corresponds
to a modulo b operation on the signal value. This especially helps in working with signals
whose dynamic range is much larger than what can be handled by a standard ADC. This
signal acquisition mechanism was the main motivation behind the recent work of Bhandari
et al. (2017) (also covered in the medial), wherein the authors derived conditions for exact
recovery of a band limited function from its samples, in the noiseless setting (Bhandari
et al., 2017, Theorem 1). Let us note that band limitedness is implicitly a smoothness as-
sumption on f, such an assumption being clearly necessary in order to be able to provably
recover the original (unwrapped) samples of f.

Phase unwrapping. Phase unwrapping refers to the problem of recovering the original
phase values of a signal ¢ (at different spatial locations), from their modulo 27 (in radians)
versions. The case where ¢ : R> — R has received considerable attention, in particular due
to important applications arising for instance in synthetic aperture radar interferometry (In-
SAR) (Graham (1974); Zebker and Goldstein (1986)), magnetic resonance imaging (MRI)
(Hedley and Rosenfeld (1992); Lauterbur (1973)), optics (Venema and Schmidt (2008)),
diffraction tomography (Pratt and Worthington (1988)) and non destructive testing of com-
ponents (Paoletti et al. (1994); Hung (1996)), to name a few. Generally speaking, remote
sensing systems typically obtain information about the structure of an object by measuring
the phase coherence between the transmitted and scattered waveforms. For instance, in
radar interferometry, information about the terrain elevation is inherently present in the
phase values. In MRI, information regarding the velocity of blood flow or the position of
veins in tissues can be obtained from the phase values. The higher-dimensional case has
received comparatively less attention. The three-dimensional version of the problem has

1. http://news.mit.edu/2017/ultra-high-contrast-digital-sensing-cameras-0714
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applications in 3D MRI imaging (Jenkinson (2003)) and radar interferometry (Hooper and
Zebker (2007); Osmanoglu et al. (2014)). Lastly, some papers have also formulated methods
for the general d dimensional case (Jenkinson (2003); Fang et al. (2006)).

Our work can also be placed in the context of denoising smooth functions taking values in
a nonlinear space. Rahman et al. (2005) considered multiscale representations for manifold-
valued data observed on equispaced grids and taking values on manifolds such as the sphere
S2, the special orthogonal group SO(3) or the Special Euclidean Group SE(3). They
proposed a method that generalizes wavelet analysis from the traditional setting where
functions defined on the equispaced values in a cartesian grid no longer take simple values
such as numerical array, but rather arrays whose entries have highly structured values
obeying nonlinear constraints, and show that such representations are successful in tasks
such as denoising, compression or contrast enhancement.

As a word of caution to the reader, we note that this problem is different from the
celebrated phase retrieval, a classical problem in optics that has attracted a surge of interest
in recent years (see Candes et al. (2013); Jaganathan et al. (2015)). There, one attempts
to recover an unknown signal from the magnitude (intensity) of its Fourier transform. Just
like phase retrieval, the recovery of a function from mod 1 measurements is, by its very
nature, an ill-posed problem, and one needs to incorporate prior structure on the signal.
In our case is smoothness of f (in an analogous way to how enforcing sparsity renders the
phase retrieval problem well-posed). While there have been a variety of approaches to phase
retrieval, recent progress in the compressed sensing and convex optimization-based signal
processing have inspired new potential research directions. The approach we pursue in this
paper is inspired by developments in the trust region sub-problem (Adachi et al. (2017))
and group synchronization (Singer (2011); Cucuringu (2016)) literatures.

Overview of approach and contributions. At a high level, one would like to recover
denoised samples (i.e., smooth, robust estimates) of f from its noisy mod 1 versions. A
natural approach to tackle this problem is the following two-stage method. In the first
stage, one recovers denoised mod 1 samples of f, while in the (unwrapping) second stage,
one uses these samples to recover the original real-valued samples of f. In this paper, we
mainly focus on the first stage, which is a challenging problem in itself. To the best of our
knowledge, we provide the first algorithm for denoising mod1 samples of a function, which
comes with robustness guarantees. In particular, we make the following contributions?.

1. We formulate a general framework for denoising the modl samples of f which in-
volves mapping the noisy mod 1 values (lying in [0, 1)) to the angular domain (i.e. in
[0,27))) and solving a smoothness regularized least-squares problem. This amounts to
a quadratically constrained quadratic program (QCQP) with non-convex constraints
wherein the variables are required to lie on the unit circle. We consider solving a
relaxation of this QCQP which is a trust-region sub-problem, and hence solvable effi-
ciently.

2. A preliminary version of this paper containing the results of Sections 4, 5 and parts of Section 8 will appear
in AISTATS 2018 (Cucuringu and Tyagi (2018)). This is a significantly expanded version containing
additional theoretical results, numerical experiments and a detailed discussion.
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2. We provide a detailed theoretical analysis for the above approach, proving its robust-
ness to noise for different noise models, provided the noise level is not large. Specif-
ically, for d = 1, we show this for arbitrary bounded noise (see (2.3),(5.1), Theorem
5), Bernoulli-uniform noise (see (2.4), Theorem 11) and Gaussian noise (see (2.5),
Theorem 14). For the multivariate case d > 1, we show this for arbitrary bounded
noise (see Theorem 16).

3. We test the above trust-region based method on synthetic data which demonstrates
that it performs well for reasonably high levels of noise. To complete the picture,
we also implement the second stage with a simple least-squares based method for
recovering the (real-valued) samples of f, and show that it performs surprisingly well
via extensive simulations.

4. Finally, we also consider two other approaches for denoising the modulo 1 samples
that leverage tools from Riemannian optimization on manifolds (Absil et al. (2007)).
The first one is based on a semidefinite programming (SDP) relaxation of the QCQP
which we solve via the Burer-Monteiro approach. The second one involves solving the
original QCQP by optimizing over the manifold associated with the constraints. We
implement both approaches using the Manopt toolbox (Boumal et al. (2014)), and
highlight their scalability and robustness to noise via extensive experiments on the
two-dimensional version of the problem. In particular, we are able to solve instances
of real-world problems containing a million samples in under 10 seconds on a personal
laptop.

Outline of paper. Section 2 formulates the problem formally, and introduces notation for
the d = 1 case. Section 3 sets up the mod 1 denoising problem as a smoothness regularized
least-squares problem in the angular domain which is a QCQP. Section 4 describes its
relaxation to a trust-region sub-problem, and some simple approaches for unwrapping, i.e.,
recovering the samples of f, along with our complete two-stage algorithm. Section 5 contains
approximation guarantees for the arbitrary bounded noise model for the trust region based
relaxation for recovering the denoised mod1 samples of f (when d = 1). Section 6 contains
similar results for two random noise models (Gaussian and Bernoulli-uniform). Section
7 discusses the generalization of our approach to the multivariate setting when d > 1,
along with approximation guarantees for the bounded noise model. Section 8 contains
experiments on synthetic data with d = 1 for different noise models, as well a comparison
with the algorithm of Bhandari et al. (2017). In Section 9, we describe two other approaches
based on optimization on manifolds for denoising the modulo 1 samples. It also contains
experiments involving these approaches for the d = 2 setting, on synthetic and real-world
data. Section 10 surveys a number of related approaches and applications, with a focus
on those arising in the phase unwrapping literature. Section 11, summarizes our findings,
and also contains a discussion of possible future research directions. Finally, the Appendix
contains supplementary material related to proofs and additional numerical experiments.
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2. Problem setup

We begin with the problem setup for the univariate case d = 1, as much of the analysis
in the ensuing sections is for this particular setting. The multivariate case where d > 1 is
treated separately in Section 7.
Consider a smooth, unknown function f : [0,1] — R, and a uniform grid on [0, 1],
i—1

O=x1 <29 < - <xp =1 with z; = T (2.1)
n_

We assume that we are given mod I samples of f on the above grid. Note that for each
sample we can decompose the function as

f(zi) =qi+ri €R, (2.2)

with ¢; € Z and r; € [0,1), we have r; = f(z;) mod 1. The modulus is fixed to 1 without

loss of generality since £2ods — { mod 1. This is easily seen by writing f = sq + r, with

S
q € Z, and observing that g mod 1 = % mod 1= = fmods “yp particular, we assume

that the mod 1 samples are noisy, and consider the following three noise models.

1. Arbitrary bounded noise

2. Bernoulli-Uniform noise

{f(“”) mod 15 w.pl=p i o1 (2.4)

vi= ~U[0,1] ; wpp

Hence for some parameter p € (0,1) we either observe the clean sample with proba-
bility 1 — p, or some garbage value generated uniformly at random in [0, 1].

3. Gaussian noise
where n; ~ N(0,0?) i.i.d.

We will denote f(x;) by f; for convenience. Our aim is to recover smooth, robust estimates
(up to a global shift) of the original samples (f;)_; from the measurements (x;,y;);,. We
will assume f to be Holder continuous meaning that for constants M > 0, a € (0, 1],

[f(z) = fy)l < Mz —y[*  Va,yel0,1] (2.6)
The above assumption is quite general and reduces to Lipschitz continuity when o = 1.

Notation. Scalars and matrices are denoted by lower case and upper cases symbols re-
spectively, while vectors are denoted by lower bold face symbols. Sets are denoted by
calligraphic symbols (eg., N), with the exception of [n] = {1,...,n} for n € N. The imag-
inary unit is denoted by ¢ = /—1. The notation introduced throughout Sections 3 and 4
is summarized in Table 1. We will denote the ¢, (1 < p < 0o) norm of a vector x € R" by
| x ||, (defined as (3=, |2i|P)/P). In particular, || X ||loo:= max; |z;|. For a matrix A € R™*™,
we will denote its spectral norm (i.e., largest singular value) by || A || and its Frobenius
norm by || A ||p (defined as (3, ; Aﬁj)lﬂ). For a square matrix, we denote its trace by

tr(-).
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Figure 1: Motivation for the angular embedding approach.

3. Smoothness regularized least-squares in the angular domain
Our algorithm essentially works in two stages.

1. Denoising stage. Our goal here is to denoise the mod 1 samples, which is also the
main focus of this paper. In a nutshell, we map the given noisy mod 1 samples to points
on the unit complex circle, and solve a smoothness regularized, constrained least-
squares problem. The solution to this problem, followed by a simple post-processing
step, yields the final denoised mod 1 samples of f.

2. Unwrapping stage. The second stage takes as input the above denoised mod 1
samples, and produces an estimate of the original real-valued samples of f (up to a
global shift).

We start the denoising stage by mapping the mod 1 samples to the angular domain, with
h; = exp(2mef;) = exp(2mer;), z = exp(2mey;), (3.1)

denoting the respective representations of the clean mod 1 and noisy mod 1 samples on the
unit circle in C, where the first equality is due to the fact that f; = ¢; +r;, with ¢; € Z. The
choice of representing the mod 1 samples in (3.1) is very natural for the following reason.
For points x;, z; sufficiently close, the samples f;, f; will also be close (by Hélder continuity
of f). While the corresponding wrapped samples f; mod 1, f; mod 1 can still be far apart,
the complex numbers exp(:27 f;) and exp(:27f;) will necessarily be close to each other?.
This is illustrated in the toy example in Figure 1.

Figure 2 is the analogue of Figure 1, but for a noisy instance of the problem, making
the point that the angular embedding facilitates the denoising process. For points x;, x;
sufficiently close, the corresponding samples f;, f; will also be close in the real domain, by
Holder continuity of f. When measurements get perturbed by noise, the distance in the
real domain between the noisy mod 1 samples can greatly increase and become close to 1
(in this example, the point B gets perturbed by noise, hits the “floor” and “resets” itself).
However, in the angular embedding space, the two points still remain close to each other,
as depicted in Figure 2c.

3. Indeed, |exp(e2fi) —exp(e2mf;)| = |1 —exp(2n(f; — fi))| = 2[sin(x(f; — fi))| < 27[f; — fi| (since
|sinz| < |z| Yz € R).
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Figure 2: Motivation for the angular embedding approach. Noise perturbations may take
nearby points (mod 1 samples) far away in the real domain, yet the points will

remain close in the angular domain.

Consider an undirected graph G = (V, E) with V = {1,2,...,n} where index i corre-
sponds to the point x; on our grid, and F = {{i,j5} : 4,5 € V,i # j,|i — j| < k} denotes
the set of edges for a suitable parameter £ € N. A natural approach for recovering smooth

estimates of (h;)I"; would be to solve the following optimization problem
n

\—12 gi =z + X > g — g5l

=1

{ijteE
Here, A > 0 is a regularization parameter, which along with k, controls the smoothness of
the solution. We denote by L € R™*™ the Laplacian matrix associated with G, defined as

min (3.2)
917~~~:gn€(c§|gi

deg(i)v =7,
Lij=4{ -1, {ij}eE, (3.3)
0, otherwise.
Denoting g = [g1 g2 ... gn]? € C", the second term in (3.2) can be simplified to
(3.4)

MDD deg@)gil* =D (9ig; +9i9) | = &*Le.
1% {i,7}€E
2,)T € C", we can further simplify the first term in (3.2) as

Next, denoting z = [21 22 ...
n
> (lgil* + 12 = gizf — g7 =) (3.5)

n
D olgi—al® =
=1 =1

= 2n — 2Re(g"z). (3.6)

This gives us the following equivalent form of (3.2)
min  Ag*Lg — 2Re(g"z). (3.7)
gelmgi|=1
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Symbol Description

unknown real-valued function
clean f mod 1
clean reminder g = f — r
noisy f mod 1

clean signal in angular domain
noisy signal in angular domain
free complex-valued variable

real-valued version of h
real-valued version of z
real-valued version of g

n x n Laplacian matrix of graph G
2n x 2n block diagonal version of L

ol TR S [ S = DS B

Table 1: Summary of frequently used symbols in the paper.

4. A trust-region based relaxation for denoising modulo 1 samples

The optimization problem in (3.7) is over a non-convex set C, := {g € C": |g;| = 1}. In
general, the problem mingec, g*Ag, where A € C"*" is positive semidefinite, is known to
be NP-hard (Zhang and Huang, 2006, Proposition 3.3). Note that we can get rid of the
linear term 2Re(g*z) by rewriting (3.7) as

w1l 2 ][] (4.1)

The quadratic term in (4.1) is Hermitian, and is of course structured, as L is the Laplacian
of a nearest neighbor graph. However the complexity of (4.1) is still unclear. As pointed
out by a reviewer of a preliminary version of this paper (Cucuringu and Tyagi (2018)), one
possible approach is to discretize the angular domain, and solve (3.7) approximately via
dynamic programming. Since the graph G has tree-width &, the computational cost of this
approach may be* exponential in .

Our approach is to relax the constraints corresponding to C,, to one where the points
lie on a sphere of radius n, which amounts to the following optimization problem

min  Ag"Lg — 2Re(g"z). (4.2)
geC™:gl3=n

It is straightforward to reformulate (4.2) in terms of real variables. We do so by introducing
the following notation for the real-valued versions of the variables h (clean signal), z (noisy
signal), and g (free variable)

(B0 - () - )

4. Note that naive dynamic programming will have a running time that is exponential in k. However, it is
unclear whether this exponential dependence on k is unavoidable.
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and the corresponding block-diagonal Laplacian

- AL 0 . 10 2nXx2n
() () Yo emmen ()

In light of this, the optimization problem (4.2) can be equivalently formulated as

min  g! Hg — 28"z, (4.5)
gER?™:(|g||3=n

which is formally shown in the appendix for completeness. Let us note that the Lapla-
cian matrix L is positive semi-definite (p.s.d), with its smallest eigenvalue A\;(L) = 0 with
multiplicity 1 (since G is connected). Therefore, H is also p.s.d, with smallest eigenvalue
A1(H) = 0 with multiplicity 2.

The optimization problem (4.5) is actually an instance of the so-called trust-region sub-
problem (TRS) with equality constraint (which we denote by T'SR— from now on), where
one minimizes a general quadratic function (not necessarily convex), subject to a sphere
constraint. For completeness, we also mention the closely related trust-region sub-problem
with inequality constraint (denoted by T'SR<), where we have a f3 ball constraint. There
exist several algorithms that efficiently solve T'SR< (Sorensen (1982); More and Sorensen
(1983); Rojas et al. (2001); Rendl and Wolkowicz (1997); Gould et al. (1999); Adachi et al.
(2017)), and also some which explicitly solve T'SR— (Hager (2001); Adachi et al. (2017)).
In particular, Adachi et al. (2017) recently showed that trust-region sub-problems can be
solved to high accuracy via a single generalized eigenvalue problem. The computational
complexity is O(n3) in the worst case, but improves when the matrices involved are sparse.
In our case, the Laplacian is sparse when k is not large. In the experiments, we employ
their algorithm for solving (4.5).

Remark 1 We remark that the TSR— formulation is just one possible relaxation. One
could also, for instance, consider a semidefinite programming based relazation for the QCQP.
We discuss this in Section 9, and solve it numerically via the Burer-Monteiro approach.
Moreover, we also consider solving the original QCQP (3.7) using tools from optimization
on manifolds (Absil et al. (2007)), as Cy, is a manifold (Absil et al. (2008)).

Remark 2 Note that (3.7) is similar to the angular synchronization problem (see for eg.,
Singer (2011)) as they both optimize a quadratic form subject to entries lying on the unit
circle. The fundamental difference is that the matriz in the quadratic term in synchroniza-
tion is formed using the given noisy pairwise angle offsets (embedded on the unit circle), and
thus depends on the data. In our setup, the quadratic term is formed using the Laplacian of
the smoothness regqularization graph, and thus is independent of the given data (noisy mod
1 samples).

Rather surprisingly, one can fully characterize® the solutions to both TSR_ and T'SR<.
The following Lemma 3 characterizes the solution for (4.5); it follows directly from (Sorensen,
1982, Lemma 2.4, 2.8) (see also (Hager, 2001, Lemma 1)).

5. Discussed in detail in the appendix for completeness.

10
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Lemma 3 g is a solution to (4.5) iff || g ||3= n and 3p* such that (a) 2H + p*I = 0 and
(b) (2H + p*I1)g = 2z. Moreover, if 2H + u*I = 0, then the solution is unique.

Let {)‘j(H)}§Z1> with A\ (H) < Ao(H) < -+ Xagp(H), and {qj}iil denote the eigenvalues,
respectively eigenvectors, of H. Note that A\;(H) = A\o(H) = 0, and A3(H) > 0, since G is
connected. Let us denote the null space of H by N(H), so N(H) = span{qi,q2}. Next,
we analyze the solution to (4.5) with the help of Lemma 3, by considering the following two
cases.

Case 1. z / N(H). The solution is given by

&) =220 + p'1) 'z =2 aj. (4.6)

for a unique u* € (0,00) satisfying || g(u*) ||3= n. Indeed, denoting é(u) =| g(x) |13=

4 ZJ 1 2>\+J)>+u)2’ we can see that ¢(u) has a pole at 1 = 0 and decreases monotonically

to 0 as u — oo. Hence, there exists a unique p* € (0,00) such that || g(u*) [|3= n. The
solution g(x*) will be unique by Lemma 3, since 2H + p*I = 0 holds.
Case 2. z | N(H). This second scenario requires additional attention. To begin with,

note that )
_ Z q] _ E <ivqj>2
42 Z X (H)?2 (4.7)
=3

is now well defined, i.e., 0 is not a pole of qb(,u,) anymore. If ¢(0) > n, then as before,
we can again find a unique p* € (0,00) satisfying ¢(u*) = n. The solution is given by
g(p*) = 2(2H + p*I1)~'z and is unique since 2H + p*I = 0 (by Lemma 3).

In case ¢(0) < n, we set u* = 0 and define our solution to be of the form

g0,v)=(H)'z+60v; veN(H),|vV]|=1, (4.8)

where T denotes pseudo-inverse and ¢ € R. In particular, for any given v € N(H),||v]e2=1,
we obtain g(6*,v),g(—#*,v) as the solutions to (4.5), with £6* being the solutions to the
equation

180, v) [3=n< | (H)'z|5+6° =n (4.9)
——

Hence the solution is not unique if ¢(0) < n.

4.1. Recovering the denoised mod 1 samples

The solution to (4.5) is a vector g € R?*. Let g € C" be the complex representation of
g as per (4.3), so that g = [Re(g)” Im(g)”]”. Denoting §; € C to be the i*" component
of g, note that |g;| is not necessarily equal to one. On the other hand, recall that h; =
exp (27 f; mod 1), Vi =4,...,n for the ground truth h € C". We obtain our final estimate
fi mod 1 to f; mod 1 by projecting g; onto the unit complex disk

eXp(LQTI‘(ﬁ‘ mod 1)) =—=; i=1,...,n. (4.10)

11
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In order to measure the distance between ﬁ mod 1 and f; mod 1, we will use the so-called
wrap-around distance on [0, 1] denoted by d,, : [0, 1]? — [0, 1/2], where

dw(tl,tz) = min{|t1—t2\,1— |t1—t2|}, (411)

for t1,t2 € [0, 1]. We will now show that if g; is sufficiently close to h; for each i =1,...,n,
then each d,,(f; mod 1, f; mod 1) will be correspondingly small. This is stated precisely in
the following lemma.

Lemma 4 For 0 < e < 1/2, let |g; — hi| < € hold for each i = 1,...,n. Then, for each
1=1,...,n

-~ 1
dy(fi mod 1, f; mod 1) < * sin~! <1 ‘ ) . (4.12)
Y

— €

Proof To begin with, note that |[g; — h;| < € implies |g;| € [1 — €,1 4 €|. This means that
[g:| > 0 holds if € < 1. Consequently, we obtain

‘—‘———Jrh— hi (4.13)
Igz Igz Igz Igzl
_ —1
1| 91|
< ? < 2 (4.15)
l9s] — 1—¢

We will now show that provided 0 < e < 1/2 holds, then (4.15) implies the bound (4.12).
Indeed, from the definition of h;, and of g;/|g;| (from (4.10)), we have

|g@| = |exp(:27(f; mod 1)) — exp(:27(f; mod 1)) (4.16)
= |1 — exp(:27(f; mod 1 — f; mod 1)) (4.17)
= 2|sin[r (f; mod 1 — f; mod 1)]| (4.18)
e(-1,1)
= 2sin[r|(f; mod 1 — f; mod 1)|] (4.19)
= 2sin[r(1 — |(f; mod 1 — f; mod 1)])]. (4.20)

Then, (4.12) follows from (4.20), (4.15) and by noting that 0 < ¢/(1—¢) < 1for 0 < e < 1/2.
|

4.2. Unwrapping stage and main algorithm

Having recovered the denoised mod 1 samples ﬁ mod 1 for ¢ =1,...,n, we now move onto
the next stage of our method where the goal is to recover the samples f, for which we
discuss two possible approaches.

1. Quotient tracker (QT) method. The first approach for unwrapping the mod 1
samples is perhaps the most natural one. It is based on the idea that, provided the denoised

12
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mod 1 samples are very close estimates to the original clean mod 1 samples, then we can
sequentially find the quotient terms, by checking whether | fl+1 mod 1 — fl mod 1| > ¢, for
a suitable threshold parameter ¢ € (0,1). More formally, after initializing g; = 0, consider
the rule

Gi+1 = @; + signg(fi+1 mod 1 — f; mod 1);

-1 t>¢
sign () = 0; |t]<¢ . (4.21)
I t<—(¢

Clearly, if ﬁ mod 1 ~ f; mod 1 for each i, then for n sufficiently large, the procedure (4.21)
will result in correct recovery of the quotients. However, as illustrated in Figure 3, it is
also obviously sensitive to noise, and hence would not be a robust solution for high levels
of noise.

2. Ordinary least-squares (OLS) based method. A robust alternative to the
aforementioned approach is based on directly recovering the function via a simple least-
squares problem. Recall that in the noise-free case, f; = ¢; + 14, ¢; € Z,r; € [0,1), and
consider, for a pair of nearby points 4, j, the difference

fi—fi=a—q +mri—rj. (4.22)

The OLS formulation we solve stems from the observation that, if |r; —r;| < ¢ for a small ,
then ¢; = ¢;. This intuition can be easily gained from the top plots of Figure 4, especially 4a,
which pertains to the noisy case (but in the low noise regime v = 0.15), that plots l;y; — ;
versus y; — ¥i+1, where [; denotes the noisy quotient of sample 7, and y; the noisy remainder.
For small enough |y; — yit+1|, we observe that |l;+; — ;| = 0. Whenever y; — yi+1 > (, we
see that [;11 — [; = 1, while y; — y;41 < —(, indicates that ;41 — [; = —1. Throughout all
our experiments we set ( = 0.5. In Figure 23 we also plot the true quotient ¢, which can
be observed to be piecewise constant, in agreement with our above intuition.

For a graph® G = (V, E) with k € N, and for a suitable threshold parameter ¢ € (0,1),
this intuition leads us to estimate the function values f; as the least-squares solution to an
overdetermined system of linear equations without involving the quotients g1, . . ., g,,. To this
end, we consider a linear system of equations involving the differences f; — f;, V{i,j} € E

fi—fi=l—1lj+vyi—y; =sign:(vi — y;) +vi — Yy, (4.23)

and solve it in the least-squares sense. (4.23) is analogous to (4.21), except that we now
recover (f;)i~, collectively as the least-squares solution to (4.23). Denoting by 7" the least-
squares matrix associated with the overdetermined linear system (4.23), b; ; = signc(yi —

~

y]) +vi — yj, and ﬁ g ﬁ J/‘Z, the system of equations can be written as Tf = b where
f b € RIEl. Note that the matrix T is sparse with only two non-zero entries per row, and
that the all-ones vector 1 = (1,1,...,1)7 lies in the null space of T, i.e., T1 = 0. Therefore,
we will find the minimum norm least-squares solution to (4.23), and recover f;’s only up to
a global shift. We remark that the above line of thought, initiated by (4.22) is very similar

6. In the sequel, we will consider the same graph G as for the denoising stage. But this is of course not
necessary, one can consider a different graph here as well.

13
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[—clean function (f)
9 [|—noisy function

— noisy f mod 1 (y)
g [|—true quotient (q)
— =i Yin

- - recovered quotient

0.1 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
x x

(@) QCQP + QT: 0 =0.05,  (b) QCQP + QT: 0 =0.10,  (c) QCQP + QT: o = 0.15,
RMSE=0.141 RMSE=0.206 RMSE=1.008

10 i

01 02 03 04 05 06 07 08 09
x

10 T

0.1 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 0.1 02 03 04 05 06 07 08 09
x x X

(d) QCQP + OLS: 0 =0.05,  (e) QCQP + OLS: o = 0.10, (f) QCQP + OLS: 0 = 0.15,
RMSE=0.141 RMSE=0.206 RMSE=0.646

Figure 3: Recovery of the estimated quotient at each sample point, via the Quotient Tracker
(QT) algorithm (4.21) and the Ordinary Least Squares (OLS) (4.23), when the
input is given by the denoised modulo samples produced by our QCQP method
in Algorithm 1, for which the unwrapping stage is performed via OLS (4.23).
Different columns pertain to varying levels of noise under the Gaussian noise
model. We keep fixed A = 0.1, and £ = 3. We also plot the difference between
consecutive noisy mod 1 measurements, d; = y; — ¥;+1, highlighting the fact that
QT lacks robustness at high levels of noise.

to Step 3 of the ASAP algorithm introduced by Cucuringu et al. (2012a) (Section 3.3)
in the context of the graph realization problem, that performed synchronization over R?
to estimate the unknown translations. Algorithm 1 summarizes our two-stage method for
recovering the samples of f (up to a global shift). Figure 4 shows additional noisy instances
of the Uniform noise model. The scatter plots on the first row show that, as the noise level
increases, the function (4.21) will produce more and more errors in (4.23). The remaining
plots show the corresponding f mod 1 signal (clean, noisy, and denoised via Algorithm 1)
for three levels of noise.

5. Analysis for the arbitrary bounded noise model
This section provides approximation guarantees for the solution g € R?” to (4.5) for the

arbitrary bounded noise model (2.3). In particular, we consider a slightly modified version

14
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Figure 4: Noisy instances of the Uniform noise model (n = 500). Top row (a)-(c) shows

scatter plots of change in y (the observed noisy f mod 1 values) versus change in [

(the noisy quotient). Plots (d)-(f) show the clean f mod 1 values (blue), the noisy

f mod 1 values (cyan) and the denoised (via QCQP) f mod 1 values (red), for

increasing levels of noise. QCQP denotes Algorithm 1 without the unwrapping

stage performed by OLS (4.23).
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Algorithm 1 Algorithm for recovering the samples f;
1: Input: (y;)_; (noisy mod 1 samples), k, A\, n, G = (V, E).
2: Output: Denoised mod 1 samples ﬁ mod1l;t=1,...,n
// STAGE 1: RECOVERING DENOISED mod 1 SAMPLES OF f.
3: Form H € R*2" using A, L as in (4.4).
4: Form z = [Re(z)'Im(z)?]" € R?" as in (4.3).
5: Obtain g € R?" as the solution to (4.5), i.e

— argmin g’ Hg — 2g'%.
geR?™:||g[l53=n

o1y

6: Obtain g € C" from g where g = [Re(g )TIm( )T]T.
7. Recover f; mod 1 € [0,1) from £ @ ,n, as in (4.10).
// STAGE 2: RECOVERING DENOISED REAL VALUED SAMPLES OF f.
s: Input: (f; mod D, (den01sed mod 1 samples) G=(V,E), (€ (0,1).
9: Output: Denoised samples f,, i=1,.
10: Obtain (f;)!_, via the Quotient Tracker (QT) or OLS based method for suitable thresh-
old ¢.

of this model, assuming
|2~ B 2= 0v/n (5.1)

holds true for some & € [0,1]. This is reasonable, since || Z — h [|2< 2y/n holds in general
by triangle inequality. Also, note for (2.3) that |z; — h;| = 2|sin(7(d; mod 1))| < 27|é;|, and
thus || Z — h ||2=|| z — h ||2< 27 max;(|6;])/n. Hence, while a small enough uniform bound
on max;(|d;|) would of course imply (5.1), however, clearly (5.1) can also hold even if some
of the §;’s are large.

Theorem 5 Under the above notation and assumptions, consider the arbitrary bounded
noise model in (2.3), with z satisfying || z —h ||2< dv/n for 6 € [0,1]. Let n > 2, and let
N (H) denote the null space of H.

1. If z Y N(H) then g is the unique solution to (4.5) satisfying

_ 30 A2 M2 (2k)2e+1 1
(h,g) >1—— — (2%) (

1 T
2 n2a (4Nk +1)2 HZ> - (62)

2n

S

2. Ifz L N(H) and A < ﬁ then g is the unique solution to (4.5) satisfying
1 — 2M2 2% 2a+1 1 1
Lhgz1- 2 ATMOWET ( THz>
n 2 n (1 44Xk — 40ksin® (£))? \2n
(5.3)

The following useful Corollary of Theorem 5 is a direct consequence of the fact that
1/(2n)z" Hz > 0 for all z € R?", since H is positive semi-definite.

16
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Corollary 6 Consider the arbitrary bounded noise model defined in (2.3), with z satisfying
|z—h < éy/n for s €[0,1]. Let n > 2. If A < 7= then g is the unique solution to (4.5)
satisfying
BN 36 A2 M2 (2k)2e+1
“hE)=1-2 - ) nitiey

n 2 n2a

(5.4)

Let us note that the above bounds are meaningful only when § is small enough, specifi-
cally 6 < 2/3. Before presenting the proof of Theorem 5, some remarks are in order.

1. Theorem 5 give us a lower bound on the correlation between h,g € R2?", where
clearly, %<I—1, g) € [~1,1]. Note that the correlation improves when the noise term §
decreases, as one would expect. The term % effectively arises on account
of the smoothness of f, and is an upper bound on the term %ETH h (made clear in
Lemma 8). Hence, as the number of samples increases, %ETH h goes to zero at the
rate n~2% (for fixed k, \). Also note that the lower bound on %(fl, g) readily implies

the £5 norm bound || g — h ||3= O(6n + n'—2%).

2. The term 4~ z! HZ represents the smoothness of the observed noisy samples. While an
increasing amount of noise Would usually render z to be more and more non-smooth,
and thus typically increase 2 z! Hz, note that this would be met by a corresponding
increase in d, and hence the lower bound on the correlation would not necessarily
improve.

3. It is easy to verify that (5.1) implies (z,h)/n > 1 — % — g. Thus for z, which
is feasible for (4.5), we have a bound on correlation Wh1ch is better than the bound
in Corollary 6 by a d + O(n~2%) term. However, the solution g to (4.5) is a smooth
estimate of h (and hence more interpretable), while z is typically highly non-smooth.

Proof [Proof of Theorem 5| The proof of Theorem 5 relies heavily on Lemma 7 outlined
below.

Lemma 7 Consider the arbitrary bounded noise model in (2.3), with z satisfying || z — h ||2<
5y/n for § € [0,1]. Any solution g to (4.5) satisfies

]. — ~ 36 1 =T - ]_ ~T ~
—hg>1-2—- — —g Hg. .
n(h,g) 1 5 2nh Hh + 5,8 Hg (5.5)
Proof To begin with, note that
_ ot _r 5n
| z—h|2< dvn < (z,h) Zn—T. (5.6)
Since h € R?" is feasible for (4.5), we get
h”Hh—2(h,z) > g Hg— 2(g,2) (5.7)
~ 1- = lar_ ~
& (8.2) > (h,z) - Jh"Hh+ 5gTHg (5.8)
n lopo o laro o
> — 2” — 5hTHE + §gTHg (from (5.6)) (5.9)
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Moreover, we can upper bound (g, z) as follows.
)

<|lgllzll z—h|2 +(g,h) (Cauchy-Schwarz) (5.11)
< VA(AS) + (@ B)  (from (5.6)). (5.12)
Plugging (5.12) in (5.9) and using 62 < § for § € [0, 1] completes the proof. [ |

We now upper bound the term iBTH h in (5.5) using the Holder continuity of f. This is
formally shown below in Lemma 8.

Lemma 8 Forn > 2, it holds true that

)\7T2M2(2k‘)2a+1
n2a ’

1 _ _
%hTHh < (5.13)

where a € (0,1] and M > 0 are related to the smoothness of f and defined in (2.6), and
A > 0 is the regularization parameter in (3.2).

Proof Denoting h = (h;...h,)T € C" to be the complex valued representation of h € R??
as per (4.3), clearly

1 op - 1 A A
—hTHh = —h*(\L)h = =~ E’ < Mg 2 14
2n 2n (AL) 2n [hi = hyl” < 2n| |{£?§E‘hz Pl (5.14)

{i,J}€E
where the first equality is shown in Appendix A. Since for each i € V' we have deg(i) < 2k,

hence |E| = (1/2) >,y deg(i) < kn. Next, for any {4, j} € E note that by Holder continuity
of f we have

E\“ 2k\ ¢

Cfl <Mz -zl <M ([ ——) <M (=), 5.15
= 5= Ml <0 (20 < (%) (5.15)

if n > 2 (since then n — 1 > n/2). Finally, we can bound |h; — hj| as follows.
[hi = hj| = [1 — exp(e27(fj — fi))] (5.16)
— 2fsin(f; - fi) (5.17)
<27|f; — fil (since [sinz| < |z|; Vo € R) (5.18)

2m M (2k)“

< Wn(a) (using (5.15)). (5.19)
Plugging (5.19) in (5.14) with the bound |E| < kn yields the desired bound. [ |

Lastly, we lower bound the term %QTH g in (5.5) using knowledge of the structure of the
solution g. This is outlined below as Lemma 9.

Lemma 9 Denoting N(H) to be the null space of H, the following holds for the solution
g to (4.5).

1. Ifz ) N(H) then g is unique and

> L (1‘THZ) : (5.20)

~T
e H
& (1+4xk)2 \2n

1)

1
2n

18
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2. Ifz L N(H) and X < 2, then g is unique and

> L (lzTHz> : (5.21)

~T
& H 2 (7 2\ 2n
(1+4)\k—4)\ksm (%))

1)

1
2n

Proof Let {)\](H)}fil (with \(H) < Ao(H) < ---) and {qj}?.il denote the eigenvalues
and eigenvectors respectively for H. Also, let 0 = 1(L) < f2(L) < B3(L) < --- < Br(L)
denote the eigenvalues of the Laplacian L. Note that 52(L) > 0 since G is connected. By
Gershgorin’s disk theorem, it is easy to see” that 3,(L) < 4k for the graph G. Hence,

0:>\1(H):/\2(H) <)\3<H)§ S/\Qn(H) < 4\k (5.22)
and N (H) = span{qi,q2}. We now consider the two cases separately below.

1. Consider the case where z £ N'(H). We know that g = 2(2H + p*I)~'z for a unique
p* € (0,00) (and so g is the unique solution to (4.5) by Lemma 3 since 2H 4 p*I > 0)
satisfying

P IS LT (5.23)
=L ox () +

Since A\;(H) > 0 for all j, we obtain from (5.23) that

on (z,q;)* 4n
n<4 ’ = — pt <2, (5.24)
; (w)? (w*)?

Note that equality holds in (5.24) if z € N'(H). We can now lower bound ﬁéTH g as

follows
L 8T hg = 25T ol + D) HH + D)z (5.25)
5,8 Hg= 2 I It z -
2n _
n 2= @A (H) + )2
9 2n
> ——— % (z,q;)°\;(H) (f 22),(5.24 2
> n(gAkH)z;@,qﬁ j(H) - (from (5.22), (5.24)) (5.27)
1 1 oo
=—-=|—2 HzZ ). 2
(INk +1)2 <2nz Z> (5:28)
2. Let us now consider the case where z L N(H). Denote
S e (7)) o (z,qp)?
o) = 8w IP=4y —2FL _ —4y UL 5.29
() =800 =42 Gy = 2 vy () + (5:29)

7. Denote L;; to be the (3, j)th entry of L. Then by Gershgorin’s disk theorem, we know that each eigenvalue
lies in (J2", sz : |z — Li| < D i \L”|} Since Li; < 2k and >°,_; |Li;| < 2k holds for each 4, the claim

follows.
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Observe that ¢ does not have a pole at 0 anymore, ¢(0) is well defined. In order to
have a unique g, it is sufficient if $(0) > n holds. Indeed, we would then have a unique
p* € (0,00) such that || g(u*) ||3= n. Consequently, g(x*) will be the unique solution
to (4.5) by Lemma 3 since 2H + p*I > 0. Now let us note that

N

n

Z, J n
Z Ni(H)? — 16)\2k2 (5-30)

Jj=3

since A\j(H) < 4\k for all j (recall (5.22)). Therefore clearly, the choice A < +- implies
#»(0) > n, and consequently that the solution g is unique. Assuming \ < g5 holds, we
can derive an upper bound on p* as follows

2n _
_ (z,q;)? (z qj 3 4n
"= i + 42 @) + P~ @) T O

= it <2 2X\3(H). (5.32)

Hence p* € (0,2 — 2A3(H)) when A < . We can now lower bound g Hg in the
same manner as before

g HE = ol Q1) HQH + 1) 2 (5.33)
B ii (;ij?ﬁjﬁ(f; (5.34)

n(SNk + 2 2_ 2hg (H))? §<z, q;)?N\;(H)  (from(5.22), (5.32))  (5.35)

T+ 4k : s(H))? <21nZTHZ> : (5.36)

It remains to lower bound A\3(H) = AB2(L). We do this by using the following result
of Fiedler (1973) (adjusted to our notation) for lower bounding the second smallest
eigenvalue of the Laplacian of a simple graph.

Theorem 10 (Fiedler (1973)) Let G be a simple graph of order n other than a
complete graph, with vertexr connectivity k(G) and edge connectivity x'(G). It holds
true that

2k (G)(1 — cos(m/n)) < Ba2(L) < K(G) < K'(G). (5.37)

The graph G in our setting has x(G) = k. Indeed, there does not exist a vertex cut
of size k — 1 or less, but there does exist a vertex cut of size k. This in turn implies
that «'(G) > k, and Theorem 10 yields
Bo(L) > 2k(1 — cos(m/n)) = 4k sin’ (;) . (5.38)
n
Hence A\3(H) > 4k sin? (%) Plugging this in to (5.32) completes the proof.
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This completes the proof of Theorem 5. |

6. Analysis for random noise models

We now analyze two random noise models, namely the Bernoull-Uniform model described
in (2.4), and the Gaussian noise model described in (2.5).

6.1. Analysis for the Bernoulli-Uniform random noise model

Let uy,...,u, ~ UJ0,1] i.i.d, where U[0, 1] denotes the uniform distribution over [0, 1]. Also,
let 51, Bo, ..., By be i.i.d Bernoulli random variables where 8; = 1 with probability p, and 0
with probability 1 — p, for some p € [0,1]. Then (2.4) is equivalent to

yl—{ w o ff=1 1=1,...,n. (6.1)

The following theorem is our main result for this noise model.

Theorem 11 Consider the Bernoulli-Uniform noise model in (6.1) for some p € [0,1]. If

A< ﬁ then g is the unique solution to (4.5). Moreover, assuming n > 2, then for any

e € (0,1/2) satisfying p+ e < 1/2 and absolute constants ¢, > 0, the following is true.

. pte  Me(1-e¢) A2 M2 (2k) 2+ (1-p)?
th.g)=1- (3 V72 6k + 1)2p> N n2e <1 4k + 1)2>
(6.2)

1.

S|

with probability at least

I \2.2 2.2 ) 2
e exp (_601?6”) Jexp <_06 p n) eexp (fpn(lff)) (6.3)

512 2304

1=~ p+e A2 M2 (2k)2+L
—(h,g)>1-(3 — 6.4
—(h,g) > ( Vo ) —3a (6.4)

with probability at least

d(1—p)2%ein
1—e-exp <_16> . (6.5)
Both (6.2) and 6.4 give lower bounds on the correlation between h,g, holding with high
probability over the randomness of the noise samples provided p is small enough. However,
note that the bound in (6.2) is strictly better than that in (6.4), albeit with a worse bound
on success probability. The usefulness of (6.2) is seen when p = ©(1) and for large n, in
which case (6.2) will hold with a sufficiently large probability, thus giving a better result
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than (6.4). In contrast, the bound in (6.4) is useful for all values of p € [0,1/2), and
moderately large values of n. This is especially important when p is close to 0 and n is
moderately large. In that scenario, the bound on the success probability for (6.2) becomes
trivial.

Proof [Proof of Theorem 11] Our starting point is the following (slightly restricted) version
of Theorem 5, which follows in a straightforward manner from Lemma 7 and Lemma 9.

Theorem 12 Consider the arbitrary bounded noise model defined in (2.3), with z satisfying
| Z2—h|]2< dy/n for § € [0,1]. If A < £z, then g is the unique solution to (4.5) satisfying

o 36 1 - 1 1
hg>1-——- —h"Hh+ —— (| —z"Hz ). .
thg)21-5 -5 ATEwIYE <2nz Z) 00

S|

Next, let us recall from (3.1) that z; = exp(¢27y;), and so (z;)]_; are independent, complex-
valued random variables. Consequently, we can upper bound the noise term parameter 4,
and lower bound the quadratic form %ZTH z, w.h.p. This is stated precisely in the following
Proposition.

Proposition 13 Consider the Bernoulli-Uniform noise model in (6.1) for some p € [0, 1].
For absolute constants ¢, > 0, the following is true.

1. For any e € (0,1),

1 7. Apk(l—c¢) N

—z"Hz> ———> +(1—p)*—h" Hh 6.7
Al H7 > (=P (6.7)
holds with probability at least

2, 2 )2 2
ce*pn dpn(l —¢)

1—dexp (- ~ 2. AP e )

eXp< 512) ‘ eXp< 2304 >

2. For any ¢ € (0,1),
|z —hl2< v2(p+e)vn (6.8)

. . c/(1—p)3e3n
holds with probability at least 1 — e - exp | ———5— ).

The proof is deferred to Appendix D. Observe from (6.8) and Theorem 12 that § =

2(p+¢) € [0,1] if p+¢e < 1/2. Part 1 of Theorem 11 follows by applying the union
bound to the two events in Proposition 13, and combining it with Theorem 12 and Lemma
8. To prove part 2 of Theorem 11, we simply use the fact %ZTHZ > 0 (since H is p.s.d)
in Theorem 12, and then combine it with part 2 of Proposition 13 and Lemma 8. This
completes the proof. [ ]
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6.2. Analysis for Gaussian noise model

We now analyze the Gaussian noise model in (2.5). Recall that y; = (f(z;) +7;) mod 1
where 1; ~ N'(0,0?%) i.i.d for i = 1,...,n. The following theorem is our main result for this
noise model.

Theorem 14 Consider the Gaussian noise model in (2.5) for some 0 > 0. If A < ﬁ then
g is the unique solution to (4.5). Moreover, assuming n > 2, then for any ¢ € (0,1/2)
satisfying (1 — 5)6_2“2“2 > 1/2, and absolute constants ¢, > 0, the following is true.

1.

S8z 1 3\/(1 - _5)6_% o 6(4)\211 (= -y

A 2M2 2% 2a+1 —4r252
_ AmTME(2k) <1— ¢ (6.9)

n2a (A\k + 1)2

with probability at least

(1 - 2 1— —4n262\4 4An202 2 1— —4n202\4
1—Qeexp< ol &) ¢ Jle n| —4exp _cs( ¢ )'n

2304 1024
—e-exp (W) . (6.10)

2.
. 3\/(1 (1 —28)6_2“2"2) B )\7T2M721(2ik)2°‘+1 o)

with probability at least

2.2

! _—4rm“o 2
| e exp <_4> | 6.12)

The statement of Theorem 14 is very similar in flavour, to that of Theorem 11. Indeed, the
correlation lower bounds hold provided the noise level (dictated by o) is sufficiently small.
Furthermore, note that the bound in (6.9) is strictly better than that in (6.11), albeit with
a worse success probability. If o = (1), and n is sufficiently large, then (6.9) is a better
bound than (6.11), both holding with respectively high probabilities. On the other hand,
(6.11) is meaningful for all admissible values of o (satisfying (1 — &)e~2m7" > 1/2), and
moderately large n. In comparison, if for instance o =~ 0 and n is moderately large, then
the success probability lower bound for the event (6.9) becomes trivial.

Proof [Proof of Theorem 14| Our starting point is Theorem 12 as before. The following
Proposition is an analogous version of Proposition 13 for the Gaussian noise model, where
we upper bound the noise term parameter 9§, and lower bound the quadratic form 21 z'Hz,

2n
w.h.p.
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Proposition 15 Consider the Gaussian noise model in (2.5). For absolute constants ¢,c’ >
0, the following is true.

1. For any e € (0,1),

1 67471'202

)\k 2 2
T rr— —4m20%\2 T
—z " Hz > —(1 — 1-— —+ h' Hh 6.13
2n Z= 6 ( 6)( € ) 2n ( )

holds with probability at least

_/1_ 21_ —4m202\4 4n202 21_ —4r202\4
1—2eexp< ol &) ¢ Sle n| —4exp —C€< c )'n .

2304 1024
(6.14)

2. For any ¢ € (0,1),

| 2 =R [lo< /21— (1 - 2)e2*) v/ (6.15)

2 2
/ ,—4n“ o ’I’L£2)

holds with probability at least 1 — e - exp(—“—5—"=).

The proof is deferred to Appendix E. Observe that § = \/2(1 — (1 — g)e=279%) € [0, 1] if
(1—¢)e 2" > 1/2. Part 1 of Theorem 14 follows by combining Proposition 15 with The-
orem 12 and Lemma 8. To prove part 2 of Theorem 14, we simply use the fact %ZTH z>0
(since H is p.s.d) in Theorem 12, and then combine it with part 2 of Proposition 15 and
Lemma 8. This altogether completes the proof. |

7. Analysis for multivariate functions and arbitrary bounded noise

We now consider the general setting where f is a d-variate function with d > 1. Specifically,
we consider f : [0,1]% — R where f is Hélder continuous, meaning that for constants M > 0
and a € (0,1],

f(x) = fI<M [ x=y5; ¥xyel01] (7.1)

For a positive integer m, we consider f to be sampled everywhere on the regular grid
d

g = {0, ﬁ, e %—j, 1} , with n = |G| = m? being the total number of samples. Let

V={12,... ,m}d be the index set for the points on the grid. We assume for concreteness

the same arbitrary bounded noise model as in (2.3), i.e.,
yi = (f(x1) + ;) mod 1; |65 € (0,1/2); i€V, x€0. (7.2)

We will work with a regularization graph G = (V| E)) where the set of edges now consists of
vertices that are close in the (o metric (also known as Chebychev distance). The edge set
E is formally defined as

E={{ij}:ijeV, i#], [[i-]le<k}. (7.3)
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Note that the degree of each vertex is less than or equal to (2k+1)¢ —1, and is also at least
(k+41)% — 1 (with equality achieved by nodes at corners of the grid). As in (3.1), we denote

hi := exp(2mLf;), zi = exp(2muy;); 1€V, (7.4)

to be the respective representations of the clean mod 1 and noisy mod 1 samples on the unit
circle in C. Let h,z € C" denote the respective corresponding vectors, with entries indexed
by V, and the indices sorted in lexicographic increasing order. Then, we simply consider
solving the relaxed (trust-region) problem in (4.2), in particular, its equivalent reformulation
(4.5) with the real-valued representations as in (4.3) and (4.4). This altogether leads to the
following theorem, which is a generalization of Theorem 5 to the multivariate case.

Theorem 16 Consider the arbitrary bounded noise model defined in (7.2), with z satisfying
| z—h|2<dyn for§d €[0,1]. Let m > 2, and let N(H) denote the null space of H.

1. If z Y N(H) then g is the unique solution to (4.5) satisfying

1o~ 30 Am2M2(2k)%d>*[(2k +1)¢ — 1]
ﬁ<h7g>>1_?_ n2a/d
1 I
—z Hz | . 7.5
MG [C S ST (Zn Z> (7.5)
2. Ifz L N(H) and A < m then g is the unique solution to (4.5) satisfying

1o~ 30 AmZM2(2k)%d>*[(2k + 1)4 — 1]
S(hg) > 1—— 5a7d
1 1
- > (ZTHZ) : (7.6)
(14 2X[(2k 4+ 1)@ — 1] — 4Xrp gsin? (L)) \2n

Here, kiq < (k+ 1) — 1 is the vertex connectivity of the graph G.
As H is positive semi-definite, we obtain the following useful Corollary of Theorem 16.

Corollary 17 Consider the arbitrary bounded noise model defined in (2.3), with z satisfying
|z—hl2<dyn ford €0,1]. Let m>2. If A < m then g is the unique solution
to (4.5) satisfying
1o~ 30 Am2M?(2k)%*d>[(2k +1)¢ — 1]
- ) >1_ 2 _

. (7.7)

It can be easily verified that for d = 1, Theorem 16 reduces to Theorem 5 since ki1 = k.
We see that the bounds on the correlation involve terms depending exponentially in the
dimension d. This is the curse of dimensionality typically arising in high-dimensional non-
parametric estimation problems. Nevertheless, as noted in Section 1, many interesting
applications in phase unwrapping arise when d is small, specifically, d = 2, 3. Furthermore,
the lower bound on 2 (h, g) readily implies the ¢5 error bound on || g — h |3 via

S ~ _ g.h, 36 20
18-BIB=IE3+ 10320822 <on 0n1-% €y onint=4). ()

n - ?_n2o¢/d
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Proof [Proof of Theorem 16| The proof follows the same structure as that of Theorem 5,
with minor technical changes. To begin with, Lemma 7 remains unchanged, meaning that
any solution g to (4.5) satisfies

36 1

1,- -
—(h,g) >1—-——

_ _ 1 7.~
—h"Hh+ —g Hg. )
n 2 2n + Qng g (7 9)

We then need the following analogue of Lemma 8 to upper bound the term %ETH h using
the smoothness of the ground truth h € R?",
Lemma 18 For m > 2, it holds true that

A2 M2 (2k)%d?>*[(2k + 1)4 — 1]
n2a/d ’

1 _ _
%hTHh < (7.10)

where a € (0,1] and M > 0 are related to the smoothness of f and defined in (7.1), and
A > 0 is the regularization parameter in (3.2).
Proof The proof is very similar to that of Lemma 8, so we only focus on the changes. To

begin with, as in (5.14), we have

1 - _
—hTHh < 1|E| max_|h; — hj|?. (7.11)
2n 2n' ' {ijleE

For each i € V we have deg(i) < (2k + 1)? — 1, hence |E| < %[(2k + 1)? — 1]. Next, for any
{i,j} € E, we have

« k “ (0% 2k “ (0%
\fi— fil <M || x; — % HQgM(m_l> d /2§M<m> d°/?, (7.12)
if m > 2 (since then m — 1 > m/2). This leads to
21 M (2k)*d*/?
|hy — hy| < 2r|f; — fi] < W(ma) (using (5.18) and (7.12)). (7.13)

Plugging (7.13) in (7.11) with the bound |E| < %[(2k + 1)¢ — 1] yields the desired bound. W

Finally, we lower bound the term ﬁéTH g in (7.9) via an analogue of Lemma 9 outlined
below.

Lemma 19 Denoting N'(H) to be the null space of H, the following holds for the solution
g to (4.5).

1. If z Y N(H) then g is unique and

L& Hg > ! . (1ZTHZ> . (7.14)
2n (14 2X([2k + 1]¢ — 1))

then g is unique and

2. Ifz L N(H) and A < gty

Lorpe 1 . <1zTHz>. (7.15)
n (14 2M([2k + 1]¢ — 1) — 4\sg g sin® (£))° \2n

Here, kg < (k+ 1)4 — 1 is the vertex connectivity of the graph G.
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Proof The outline of the proof is the same as the proof of Lemma 9, so we will only
highlight the technical changes. To begin with, the largest eigenvalue of L, namely S, (L),
now satisfies 3,(L) < 2([2k + 1] — 1). This is easily verified® through Gershgorin’s disk
theorem. Therefore, the eigenvalues of H now satisfy

0=M(H) = (H) < A3(H) <+ < don(H) < 2X[2k +1]% — 1) (7.16)

Recall that {q; }3211 denote the corresponding eigenvectors of H, with N'(H) = span {q1, q2}.
We now consider the two cases separately below.

1. Consider the case where z ¥ N'(H). We know that g = 2(2H + p*I)~'z for a unique
p* € (0,00), and so g is the unique solution to (4.5) by Lemma 3 since 2H + p*I > 0.
We again have p* < 2 as in (5.24). Finally, we can lower bound ﬁETH g as follows.

2n _
lor~ 2 (z qj H)

09')

2n

2 _ . *
2 ANEE 7= 1) £ 272 ;<z,qj>2)\j(H) (from (7.16) and since p* < 2)

(7.18)

1 1 _T 7=
TRk d 1) 1) <2n HZ> ' (7.19)

2. Let us now consider the case where z 1 N (H). The analogous of (5.30) to the
multivariate case is given by

2n
;3 A 2 _4/\2([2/<:+ 14— 1)2’ (7.20)

since \j(H) < 2X\([2k + 1] — 1) for all j (recall (7.16)). Therefore, the choice A <
m clearly implies ¢(0) > n, and consequently that the solution g is unique.
Assuming \ < m holds, we arrive at u* € (0,2—2A3(H)) as previously shown
n (5.32). As a sanity check, note that 2 — 2A3(H) > 0, in light of (7.16) stating that
A3(H) < 2X([2k + 1]¢ — 1). Consequently, we can provide the following lower bound
for %ETHE
L7 o 29 (3,q5)°)(H)
8 He =1 ; 2X (H) + )2 (7.21)

2 —
- n(4A([2k +1]¢ — 1) + 2 — 2X3(H))? ;@ a)* X (H) (7.22)

1 1 B
B (1+2X([2k +1]¢ — 1) — M\3(H))? (MZTHZ> ) (7.23)

8. Denote L;; to be the (i,j)th entry of L. Using Gershgorin’s disk theorem, each eigenvalue of L lies in
U, {x o= Lal <3, |L,-j\}. Since Ly < [2k+ 1]~ L and 2, |Li;| < [2k+1]? — 1 holds for each
i, the claim follows.
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where the second inequality follows from (7.16) and the fact pu* € (0,2 — 2X3(H)).
Finally, using Theorem 10 we readily obtain the bound A3(H) > 4Mky, g4 sin’ (%),
where kj, 4 denotes the vertex connectivity of G. The minimum degree of G is (k +
1)% — 1 and so kg g < (k+ 1)? — 1. Plugging the lower bound on A3(H) into (7.23)

completes the proof.
|
This completes the proof of Theorem 16. |

Unwrapping the samples of f. Once we obtain the denoised f mod 1 samples, we can
recover an estimate of the original samples of f (up to a global shift) by using, for instance,
the OLS method outlined in Section 4.2. This is the approach we adopt in our simulations,
but one could of course consider using more sophisticated unwrapping algorithms. Exploring
other approaches for the unwrapping stage is an interesting direction for future work.

Extensions to random noise models. One could also consider extending the results
to random noise models (Bernoulli-Uniform, Gaussian) as was shown in Sections 6.1 and
6.2 for the d = 1 case. We expect the proof outline to be very similar to that of Theorems
11 and 14 with minor technical changes.

8. Numerical experiments for the univariate case via TRS-based modulo
denoising

This section contains numerical experiments? for the univariate case (d = 1) for the following
three noise models discussed in Section 2.

1. Arbitrary bounded noise model (2.3), analyzed theoretically in Section 5. In par-
ticular, we experiment with the Uniform model, with samples generated uniformly at
random in [—~, ] for bounded . Results for this model are shown in Appendix F1.

2. Bernoulli-Uniform noise model (2.4), with guarantees put forth in Section 6.1.

3. Gaussian noise model (2.5), analyzed theoretically in Section 6.2.

The function f we consider throughout all the experiments in this Section is given by
f(z) = 4z cos®(2nz) — 2sin’(27x). (8.1)

For each experiment, we average the results over 20 trials, and show the RMSE error on a
log scale, both for the denoised samples of f mod 1 and the final f estimates. For the latter,
we compute the RMSE after we mod out the best global shift!’. For each noise model, we
compare the performance of three methods.

9. Code is publicly available online at http://www.stats.ox.ac.uk/~cucuring/ModuloDenoising.htm
10. Any algorithm that takes as input the mod 1 samples will be able to recover f only up to a global shift.
We mod out the global shift via a simple procedure, that first computes the offset at each sample point
fi— fi, and then considers the mode of this distribution, after a discretization step. More specifically,
we compute a histogram of the offsets, and consider the center of the bucket that gives the mode of the
distribution as our final global shift estimate with respect to the ground truth.
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e OLS denotes the algorithm based on the least-squares formulation (4.23) used to
recover samples of f, and works directly with noisy mod 1 samples. The final estimated
f mod 1 values are then obtained as the corresponding mod 1 versions.

e QCQP denotes Algorithm 1 where the unwrapping stage is performed via OLS (4.23).

e iQCQP denotes an iterated version of QCQP, wherein we repeatedly denoise the
noisy f mod 1 estimates (via Stage 1 of Algorithm 1) for [ € {3,5,10} iterations,
and finally perform the unwrapping stage via OLS (4.23), to recover the final sample
estimates of f.

8.1. Numerical experiments: Gaussian Model

Figure 5 shows noisy instances of the Gaussian noise model, for n = 500 samples. The
scatter plots on the top row show that, as the noise level increases, the function (4.21) will
produce more and more errors in (4.23), while the remaining plots show the corresponding
f mod 1 signal (clean, noisy, and denoised via QCQP) for three levels of noise.

Figure 6 depicts instances of the recovery process, highlighting the noise level at which
each method shows a significant decrease in performance. iQCQP shows surprisingly good
performance even at very high levels of noise, (o = 0.17).

Figures 7, respectively 8, plot the recovery errors (averaged over 20 runs) for the denoised
values of f mod 1, respectively the estimated f samples, as we scan across the input
parameters k € {2,3,5} and A € {0.03,0.1,0.3,0.5, 1}, at varying levels of noise o € [0, 0.15].
We remark that £ = 5 and A\ = 1 most often lead to the worst performance. For most
parameter combinations iQCQP improves on QCQP (except for very high values of A\ and
k). The best recovery errors are obtained for £ = 2 and higher values of A.

8.2. Numerical experiments: Bernoulli Model

Figure 9 shows noisy instances of the Bernoulli-Uniform noise model, for n = 500 samples.
As shown in the scatter plots (top row), most § increments take value 0 (since only a
small fraction of the samples are corrupted by noise). For higher noise levels, the function
(4.21) will produce an increase numbers of errors in (4.23). The remaining plots show the
corresponding f mod 1 signal (clean, noisy, denoised via QCQP) for three levels of noise.

Figure 10 shows instances of the recovery process, highlighting the noise level at which
each method shows a significant decrease in performance. Note that at p = 10% noise level,
the simple OLS approach exhibits poor performance, while QCQP is able to denoise most
of the erroneous spikes. Interestingly, iQCQP performs worse than QCQP across all levels
of noise.

Finally, Figures 11 and 12 show recovery errors (averaged over 20 runs) for the estimated
values of f mod 1 and f, as we scan across the input parameters k € {2,3,5} and \ €
{0.03,0.1,0.3,0.5, 1}, at varying levels of noise p € [0,0.15]. We remark that k = 5 clearly
returns the worst performance, and higher values of A\ yield better results for QCQP.
Interestingly, the behavior of iQCQP oscillates, and its performance with respect to QCQP
depends on k£ and \. The best recovery errors are obtained for £k =2 and A = 1.
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Figure 5: Noisy instances of the Gaussian noise model (n = 500). Top row (a)-(c) shows
scatter plots of change in y (the observed noisy f mod 1 values) versus change
in [ (the noisy quotient). Plots (d)-(f) show the clean f mod 1 values (blue), the
noisy f mod 1 values (cyan) and the denoised (via QCQP) f mod 1 values (red).
QCQP denotes Algorithm 1 without the unwrapping stage performed by OLS
(4.23).
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Figure 6: Denoised instances under the Gaussian noise model, for OLS, QCQP and
iQCQP, as we increase the noise level 0. We keep fixed the parameters n = 500,
k=2 X=01 QCQP denotes Algorithm 1 where the unwrapping stage is
performed by OLS (4.23).

8.3. Comparison with Bhandari et al. (2017)

This section is a comparison of OLS, QCQP, and iQCQP with the approach of Bhan-
dari et al. (2017), whose algorithm we denote by BKR. for brevity. We compare all four
approaches across two different noise models, Bounded and Gaussian, on two different func-
tions: the function (8.1) used in the experiments throughout this paper and a bandlimited
function used by Bhandari et al. (2017). We defer to the appendix all the experiments,
except for those reported in Figure 13, where we consider the function (8.1) under the
Bounded noise model. We note that at a lower level of noise v = 0.13, all methods perform
similarly well, with relative performance in the following order: iQCQP (RMSE=0.25),
QCQP (RMSE=0.29), OLS (RMSE=0.30), BKR (RMSE=0.30). However, at higher

31



CUCURINGU AND TYAGI

—Noisy f mod 1
Y/ ~-OLS fmod 1
2 ~-QCQP fmod 1
2 -+ IQCQP-3 f mod 1
IQCQP-5 f mod 1
~+ iQCQP-10 f mod 1

log(RMSE)
>

—Noisy f mod 1

-6-OLS f mod 1

~-QCQP fmod 1

~+ iQCQP-3 f mod 1
iQOQP-5 fmod 1

~+ iQCQP-10 f mod 1

log(RMSE)

@15 e,
[} - >y ¥

z w4477 = Noisy fmod 1
5 * --OLS fmod 1

~~QCQP f mod 1
~+ iQUQP-3 f mod 1

iQCQP-5 f mod 1
~+ IQCQP-10 f mod 1

4
12
14 e
g 2
16 3 ¥
z - #24Noisy fmod 1
5-1.8¢ ~6-OLS fmod 1
2 —-+—QCQP f mod 1
2 < + iQCQP-3 fmod 1
iQCQP-5 f mod 1
~+ iQCQP-10 f mod 1

log(RMSE)

E
15
—Noisy f mod 1
Leor ~-OLS fmod 1
-2 ~+-QCQP f mod 1
-+ IQUQP-3 f mod 1
IQCQP-5 f mod 1
25 ~+ iQCQP-10 f mod 1

0.1 015
o (Gaussian noise)

0.1 015
o (Gaussian noise)

0.1 015
o (Gaussian noise)

5 01 015
o (Gaussian noise)

0.05 0.1
o (Gaussian noise)

0.15

(@) k=2, A=0.03

—Noisy f mod 1

-6-OLS fmod 1

—~-QCQP fmod 1

~+ iIQCQP-3 f mod 1
iQCQP-5 f mod 1

—+ IQCQP-10 f mod 1

(b) k=2 A=0.1

= Noisy f mod 1
-6-OLS fmod 1
~-QCQP fmod 1

~+ iQCQP-3 fmod 1
QCQP-5 £ mod 1
- IQCQP-10 f mod 1

() k=2 A=03

o5
[} L.
z ’ —Noisy f mod 1
=3 -6-OLS fmod 1
S 2l -+ QCQP f mod 1
—+ iQCQP-3 f mod 1
iQCQP-5 f mod 1
25 ~+ IQUQP-10 f mod 1

(d) k=2 XA=05

12f L gy
o .
2}
16
g Lo v —~—Noisy f mod 1
518 -6-OLS f mod 1
< ~+-QCQP f mod 1
2 -+ iQCQP-3 f mod 1
22 iQCQP-5 £ mod 1

- iQCQP-10 f mod 1

10g(RMSE)

[ oot

ep il T
1.4

y oisy f mod 1

e OLS f mod 1
1.8 ~+QCQP fmod 1
-+ iQCQP-3 f mod 1

18 iQCQP-5 £ mod 1

(e) k=2, 1=1

-+ iQCQP-10 fmod 1

0.05 0.1
o (Gaussian noise)

(F) k=3, 1=0.03

0.15

0.05 0.1 0.15
o (Gaussian noise)

0.05 0.1 0.
o (Gaussian noise)

(h) k=3, A=0.3

15

0.05 0.1 0.
 (Gaussian noise)

() k=3 A=05

15

0.05 0.1 0.15
 (Gaussian noise)

() k=3 =1

log(RMSE)

(g) k=3, A=0.1

- - B e o Sy ~ —
e =R eanyevs s K v T i
e . 12 - 4 et ” M LA e p - o N
At Rah 1.2 > N .
a* =14 [ = B —12 o =
Im B Im Im Im
246 Sy 2] @ B2
—Noisy fmod 1 z —Noisy f mod 1 g4 - XCisy fmod 1 s z —Noisy f mod 1
~6-OLS f mod 1 518 --OLS f mod 1 E OLS fmod 1 ] T14 ~6-OLS fmod 1
~-QCQP fmod 1 2 ~QCQP fmod 1 246 —~+QCQP fmod 1 < —~+-QCQP fmod 1 2 ~-QCQP f mod 1
-+ iQCQP-3 f mod 1 2 ~+ iQCQP-3 f mod 1 ~+ iQCQP-3 f mod 1 46 ~+ iQCQP-3 f mod 1 16 -+ iQCQP-3 f mod 1
iQUQP-5 f mod 1 22 IQUQP-5 f mod 1 1QCQP-5 £ mod 1 QCQP-5 £ mod 1 QCQP-5 £ mod 1

~+ iQCQP-10 f mod 1

~+ iQCQP-10 f mod 1

~+ iQCQP-10 f mod 1

~+ iQCQP-10 f mod 1

~+ iQCQP-10 f mod 1

005 0.1 015
o (Gaussian noise)

(k) k=5, A =0.03

005 0.1 015
o (Gaussian noise)

005 0.1 015
o (Gaussian noise)

0.05 01 015
o (Gaussian noise)

0.05 01 0.15
o (Gaussian noise)

() k=5X=01 (M) k=5 A=03 (n) k=5 A=05 (0) k=5 A=1

Figure 7: Recovery errors for the denoised f mod 1 samples, for n = 500 under the Gaussian
noise model (20 trials). QCQP denotes Algorithm 1 without the unwrapping
stage performed by OLS (4.23).

levels of noise, BKR returns meaningless results, while QCQP, and especially iQCQP,
return more accurate results.
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Figure 8:

Recovery errors for the final estimated f samples, for n = 500 under the Gaussian

noise model (20 trials). QCQP denotes Algorithm 1 where the unwrapping stage
is performed via OLS (4.23).
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Figure 10: Denoised instances under the Bernoulli noise model, for OLS, QCQP (Algo-
rithm 1) and iQCQP, as we increase the noise level 0. QCQP denotes Algo-
rithm 1, for which the unwrapping stage is performed via OLS (4.23). We keep
fixed the parameters n = 500, k = 2, A = 1.
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Figure 11: Recovery errors for the denoised f mod 1 samples, for n = 500 under the
Bernoulli noise model (20 trials). QCQP denotes Algorithm 1 without the
unwrapping stage performed by OLS (4.23).
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Figure 12: Recovery errors for the final estimated f samples, for n = 500 under the Bernoulli
noise model (20 trials). Here, QCQP denotes Algorithm 1, for which the un-
wrapping stage is performed via OLS (4.23).
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Figure 13: Denoised instances for both the f mod 1 and f values, under the Bounded-
Uniform noise model for function (8.1), for BKR, OLS, QCQP (Algorithm 1)
and iIQCQP, as we increase the noise level v. QCQP denotes Algorithm 1, for
which the unwrapping stage is performed via OLS (4.23). We keep fixed the
parameters n = 500, £k = 2, A = 0.1. The numerical values in the legend denote
the RMSE.
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9. Modulo 1 denoising via optimization on manifolds

Section 9.1 outlines two alternative approaches for denoising the modulo 1 samples, both
of which involve optimization on a smooth manifold. Section 9.2 contains numerical simu-
lations involving these approaches for the setting d = 2, on both synthetic and real data.

9.1. Two formulations for denoising modulo 1 samples

We now describe two approaches for denoising the modulo 1 samples, which are based
on optimization over a smooth manifold. Both methods are implemented using Manopt
(Boumal et al. (2014)), a free Matlab toolbox for optimization on manifolds. Among others,
the toolbox features a Riemannian trust-region solver based on the algorithm originally
developed by Absil et al. (2007), who proposed a truncated conjugate-gradient algorithm
to solve trust-region subproblems. The algorithm enjoys global convergence guarantees,
i.e., it will converge to stationary points for any initial guess. Under certain assumptions
on the smoothness of the manifold and cost function, the method enjoys quadratic local
convergence if the true Hessian is used, superlinear if the approximate Hessian is accurate
enough, and linear otherwise. We refer the reader to Absil et al. (2007, 2008) for an
in-depth description of the algorithm, along with its theoretical convergence guarantees,
numerical results on several problems popular in the numerical linear algebra literature, and
comparison with other state-of-the art methods. Boumal et al. (2016a) recently provided
the first global rates of convergence to approximate first and second-order KKT points on
the manifold.

(i) Solving original QCQP via optimization over C,. Our first approach involves
solving the original QCQP (3.7), i.e.,

min \g"Lg — 2Re(g"z). (9.1)
geln

The feasible set C,, := {g € C" : |g;| = 1} is a manifold (Absil et al. (2008)). It is in fact a
submanifold of the embedding space R? x ... x R?, where the complex circle is identified
with the unit circle in the real plane. We employ the complexcirclefactory structure of
Manopt that returns a manifold structure to optimize over unit-modulus complex numbers.
This constitutes the input to the trustregions function within Manopt, along with our
objective function, the gradient and the Hessian operator. In our experiments, we will
denote this approach by Manopt-Phases.

(ii) SDP relaxation via Burer-Monteiro. An alternative direction we consider is to
cast (9.1) as a semidefinite program (SDP), and solve it efficiently via a Burer-Monteiro
approach. Denoting
pe| AL~z c CntD)x(nt1) 9.2)
—-z* 0

to account for the linear term, the SDP relaxation of (9.1) is given by
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ge{éliflgrnégsxn Ag'Lg — 2Re(g"z) Werfclglgr)li%gl) tr(TW)
subject to Ti=1i=1,...,n subject to Wi=1i=1,...,n+1
[T g]>0 (9.3) W = 0.
gt 1]~ (9.4)
w

Note that, for (9.3), if T = gg*, and using properties of the trace (invariance under
cyclic permutations), it can be easily verified that tr(TW) = Ag*Lg — 2Re(g*z). Ideally,
we would like to enforce the constraint T = gg*, which guarantees that T is indeed a rank-1
solution. However, since rank constrains do not lead to convex optimization problems, we
relax this constraint to Y > gg*, which via Schur’s lemma is equivalent to W = 0 (see for
eg., Boyd et al. (1994)).

Since semidefinite programs are computationally expensive to solve, we resort to the
Burer-Monteiro approach, which consists of replacing optimization of a linear function
(C, X)) over the convex set X = {X > 0: A(X) = b} with optimization of the quadratic
function (CY,Y’) over the non-convex set Y = {Y € R™P : A(YYT) = b}.

If the convex set X' is compact, and m denotes the number of constraints, it holds true
that whenever p satisfies p(p%l) > m, the two problems share the same global optimum
Barvinok (1995); Burer and Monteiro (2005). Note that over the complex domain, an
analogous statement holds true as soon as p? > m. Building on earlier work of Burer and
Monteiro (2005), Boumal et al. (2016b) show that if the set X is compact and the set )
is a smooth manifold, then p(p72+1) > m implies that, for almost all cost matrices, global
optimality is achieved by any Y satisfying second-order necessary optimality conditions.

The problem we consider in (9.3) and (9.4) falls in the above setting with the set X' :=
{W = 0: AW) =1} being compact and involving m = n + 1 diagonal constraints, and )
(defined below) being a smooth manifold. Note that in theory, choosing p > |v/n+ 1] +1
is sufficient, however in our simulations the choice p = 3 already returned excellent results.
In the Burer-Monteiro approach, we replace T with YY™ in (9.3) which amounts to the
following optimization problem over Y € C"*P and v € CP (the latter of which arises due

to the linear term in the objective function)

minimize  A(LY,Y) — 2Re(z"Yv)
YeCnxp; veCr

subject to diag(YY™) =1 (9.5)

Ivll3 =1.

Therefore, we optimize over the product manifold Y = My x My, where M7 denotes the
manifold of n X p complex matrices with unit 2-norm rows, and My the unit sphere in
CP. Within Manopt, M is captured by the obliquecomplexfactory(n,p) structure. Its
underlying geometry is a product geometry of n unit spheres in CP, with the real and
imaginary parts being treated separately as 2p real coordinates, thus making the complex
oblique manifold a Riemannian submanifold of (R?)P*". Furthermore, My is captured
within Manopt by the spherecomplexfactory structure. In our experiments, we will
denote this approach by Manopt-Burer-Monteiro.
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9.2. Numerical simulations

This section details the application of our approach to the two-dimensional phase unwrap-
ping problem, on a variety of both synthetic and real-world examples. We empirically eval-
uate the performance of Algorithm 1 with three different methods for denoising the modulo
1 samples (Stage 1): Trust-region subproblem (denoted by QCQP for consistency of nota-
tion with previous sections), Manopt-Phases, and Manopt-Burer-Monteiro. Throughout all
our experiments, we fix the neighborhood radius k = 1 so that each node has on average
(2k +1)2 — 1 = 8 neighbors. The noise model throughout this section is fixed to be the
Gaussian noise model. Note that the running times reported throughout this section are
exclusively for the optimization problem itself, and exclude the time needed to build the
measurement graph and its Laplacian.

Two-dimensional synthetic example. We consider a synthetic example given by the
multivariate function

flz,y) = Gaze Y, (9.6)

with n &~ 15,000 (i.e., a square grid of size y/n x /n), which we almost perfectly recover
at 0 = 10% Gaussian noise level, as depicted in Figure 14. Figure 15 is a comparison
of the computational running times for the Manopt-Phases and Manopt-Burer-Monteiro
approaches, as well OLS and QCQP, for varying parameters A € {0.01,0.1, 1}, noise level
o € {0,0.1}, and n € {1,2,4,8,...,512,1024} x 1000. For the same set of parameters,
Figure 16 shows the log(RMSE) errors for the recovered f mod 1 values, while Figure 17
shows similar recovery errors for the final estimate of f. For large values of n, Manopt-
Phases is significantly faster than Manopt-Burer-Monteiro and QCQP, with the recovery
errors being almost identical for all three approaches. For the noisy setup, OLS consistently
returns much worse results compared to the other three methods, both in terms of denoising
the f mod 1 values and estimating the final f samples.

In the noiseless setting, for mod 1 recovery, OLS consistently returns an RMSE close
to machine precision as shown in the top row of Figure 16 (in other words, OLS preserves
the mod 1 values when recovering the function f). OLS has a mixed performance in terms
of recovering the actual function f, shown in the top row of Figure 17, where it can be seen
that it either has a performance similar to that of the other three methods, or achieves an
RMSE that is close to machine precision.

We remark that for the largest problem we consider, with over one million sample
points, Manopt-Phases returns an almost perfect solution (log(RMSE) ~ —11 for the mod
1 estimate with A = 0.01) for the noiseless case in under 2 seconds, for a fraction of the
cost of running OLS (Figure 15 (a)). For the noisy example (¢ = 0.10, A = 1), the same
algorithm achieves an error of log(RMSE) ~ —4 in under 10 seconds (Figure 15 (f)).

Two-dimensional real elevation maps. We then consider a variety of elevation maps!!,
in particular those surrounding the Vesuvius and Etna volcanoes and Mont Blanc, at various
resolution parameters, all of which we solve by Manopt-Phases. Figure 31 (shown in the

11. Data acquired via the Digital Elevation Model (DEM) of the Earth using radar interferometry. We relied
on a Matlab script developed by Frangois Beauduce (Institut de Physique du Globe de Paris, https:
//dds.cr.usgs.gov/srtm/version2_1), which downloads SRTM data and plots a map corresponding
to the geographic area defined by latitude and longitude limits (in decimal degrees).
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Figure 14: Synthetic example f(z,y) = 6:56_752_92, with n = 15000, £ = 1 (Chebychev
distance), A = 2, and noise level o = 0.10 under the Gaussian model, as recovered
by Manopt-Phases.

Appendix) pertains to the elevation map of Vesuvius, using n = 3600 sample points, and
noise level ¢ = 0.05. Figures 18, respectively 19, also concern Mount Vesuvius, but at a
higher resolution, using n = 32400 sample points with noise level ¢ = 0.10, respectively o =
0.25. Figure 20, respectively 32 (deferred to the Appendix), pertain to noisy measurements
of Mount Etna at ¢ = 0.10 Gaussian noise added, where the number of sample points
is n = 4100, respectively n = 19000. Finally, Figure 21, respectively Figure 22, show
the recovered elevation map of Mont Blanc from over 1 million sample points in under 18
seconds, for clean, respectively noisy (7 = 10% Bounded uniform noise), measurements.

10. Related work

This section provides a discussion of the recent closely related work of Bhandari et al.
(2017), details the connection with the problem of group synchronization with anchors, and
finally surveys some of the approaches in the phase unwrapping literature.

10.1. Function recovery from modulo samples

The recent work of Bhandari et al. (2017) considers the problem of recovering a bandlimited
function ¢ (the spectrum is limited to [—7,x]) from its centered modulo samples defined
using the non-linear map My : R — [—A, )]

M(g(t)) := 2X ([% + %] — %) : (10.1)
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Figure 15:

Comparison of running times for the synthetic example f(z,y) = 6re= Y

k =1 (Chebychev distance), for several noise levels o and values of \. QCQP
denotes Algorithm 1, where the unwrapping stage is performed by OLS (4.23).
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RMSE comparison for f mod 1 denoising, for the synthetic example f(z,y) =
2 2
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denotes Algorithm 1 where the unwrapping stage is performed via OLS (4.23).
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Figure 18: Elevation map of Mount Vesuvius with n = 32400, recovered by Manopt-Phases

with £ = 1 (Chebychev distance), A = 1, and noise level o = 0.10 under the
Gaussian model.
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Figure 19: Elevation map of Mount Vesuvius with n = 32400, k = 1 (Chebychev distance),
A = 1, and noise level 0 = 0.25 under the Gaussian model, as recovered by

Manopt-Phases.
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Figure 20: Elevation map of Mount Etna with n = 4100, recovered by Manopt-Phases
with & = 1 (Chebychev distance), A = 0.3, and noise level o = 0.10 under the

Gaussian model.
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(a) Clean f mod 1. (b) Recovery A = 0.01.

Figure 21: Recovery of the elevation map of Mont Blanc from over 1 million clean sample
points, as recovered by Manopt-Phases. Despite the challenging topology, we
are able to almost perfectly recover (unwrap) the shape of the mountain, in just
under 18 seconds. RMSE for the mod 1 recovery is 0.0457, while the RMSE for
the final f estimates was 0.69.

where [z] denotes the fractional part of x, and ¢ € R. By considering a regular sampling on
R with step length T, it is shown (Bhandari et al., 2017, Theorem 1) that if T < 1/(27e),
then their Algorithm recovers the samples of g exactly (assuming no noise) from N** order
finite differences of the modulo samples (with N suitably large). Consequently, as g is
bandlimited, one can recover the function g itself via a low pass filter. The analysis for
unwrapping the samples mainly relies on the additional assumption that ¢ € C*°(R) N
L>®(R). This assumption is required in order to be able to control the N** order finite
differences of the modulo samples for appropriately large N. Moreover, Theorem 1 only
holds in the case of noiseless modulo samples, while the conditions under which the method
stably unwraps the samples are unclear. As shown in the experiments, our finding is that
their algorithm is stable only for very low levels of noise. Finally, note that for A\ = 0.5,
(10.1) corresponds to a centered modulo 1 function, with range in [—0.5,0.5). It is easy to
verify that

B 11\ ()mod 1 ; if g(t) mod 1 < 1/2
Mas(g(t)) = ([g(t) + 5} - §> = { Omedl -1 ifgHmed1s 1y © (102

Therefore, (10.2) implies that there is a one-to-one correspondence between M 5(g(t)) and
g(t) mod 1, the latter of which we adopt throughout our paper.

10.2. Relation to group synchronization

The problem we consider is closely related to the well-known group synchronization prob-
lem introduced by Singer (2011). The synchronization of clocks in a distributed network
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(a) Noisy f mod 1, 0 = 0.10. (b) Recovery A = 0.01.

Figure 22: Recovery of the elevation map of Mont Blanc from over 1 million sample points
under the Gaussian noise model with o = 10%, as recovered by Manopt-Phases.
Despite the noise level and the topology, our approach recovers the details of
the topographical relief, in under 20 seconds. RMSE for the mod 1 recovery is
0.26, while the RMSE for the final f estimates equals 1.06.

from noisy pairwise measurements of their time offsets is one such example of synchro-
nization, where the underlying group is the real line R. The eigenvector and semidefinite
programming methods for solving an instance of the synchronization problem were initially
introduced by Singer (2011) in the context of angular synchronization (over the group SO(2)
of planar rotations) where one is asked to estimate n unknown angles 61,...,0, € [0,27)
given m noisy measurements 0;; of their offsets §; —6; mod 27. The difficulty of the prob-
lem is amplified on one hand by the amount of noise in the pairwise offset measurements,
and on the other hand by the fact that m < (g), i.e., only a very small subset of all possi-
ble pairwise offsets are measured. Given the noisy measurements, Singer (2011) introduced
an approach that first embeds the noisy angle differences on the unit complex circle via
Zi; = exp(12md;;), leading to the Hermitian n x n matrix Z. Thereafter, one recovers the
angle estimates by maximizing a quadratic form x*Zx, subject to x lying on a sphere. This
is similar to the formulation in (4.2), but without the linear term. However, there is a fun-
damental difference between the two problems. The matrix in the quadratic term in (4.2) is
formed using the Laplacian of the smoothness regularization graph, and thus is independent
of the data (given noisy mod 1 samples). On the other hand, as described above, the matrix
Z in synchronization is formed using the given noisy pairwise angle offsets embedded on
the unit circle, and hence depends on the data. Additionally, the angular representations
of the modulo samples bear a smoothness property arising due to the function f, while the
angle offsets in synchronization are typically arbitrary.
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We point out that a similar objective function encompassing both a quadratic and a
linear term arises in the setting of synchronization with anchors, which are nodes whose
corresponding group element is known a priori. The goal is to combine information given
by the anchors with the matrix of noisy pairwise group ratios, in order to estimate the
corresponding group elements of the non-anchor nodes. Such a variation of the synchro-
nization problem has been explored in prior work by a subset of the authors (see Cucuringu
et al. (2012b); Cucuringu (2015)), who introduced several methods for incorporating anchor
information in the synchronization problem over Zs, in the context of the molecule problem
from structural biology. The first approach relies on casting the problem as a quadratically
constrained quadratic program (QCQP) similar to the approach we pursue for denoising
the modulo 1 samples, while a second one relies on an SDP formulation.

10.3. Phase unwrapping

We now discuss methods from the phase unwrapping literature to put our methodology in
context. Phase unwrapping is a field in its own with a vast body of work, therefore this
section is by no means a comprehensive overview of the literature.

Phase unwrapping is a classical and challenging problem in signal processing with a
long line of work wherein one recovers the original phase values (in radians) from their
wrapped (modulo 27) versions. Formally, for an unknown sequence of phase values (¢;)!"
(in radians), one is given the wrapped values 1); = w(¢;), where w : R — [—m,m) is the
wrap function that outputs centered modulo 27 values. We consider ¢; = ¢(x;) for some
unknown function ¢ : R — R, with x; € R%. The goal is to recover the original ¢;’s from
the 1;’s. The problem is, of course, ill posed in general so one typically needs to make some
additional smoothness assumptions on ¢, although some methods are developed with an
eye towards dealing with abrupt phase changes. For d = 1, Itoh (1982) showed in 1982 that
if the condition

|¢i — pia| < (10.3)

holds for each 4, then this implies ¢; — ¢;—1 = w(th; — 1h;—1) for all i = 1,...,n. Thereafter,
one can easily recover the ¢;’s in a sequential manner by integration, up to a global shift
by an integer multiple of 2. We remark that this approach is essentially the Quotient
Tracker Algorithm (QTA), discussed in Section 4.2. A similar argument extends to the
case d = 2 (cf., (Ying, 2006, Lemma 1.2)). Of course, (10.3) will typically not hold in the
presence of noise. Therefore, several robust alternatives have been proposed to date, and we
briefly review some of them for the d = 2 case (which is also one of the most studied cases
due to the many applications). The methods can be broadly classified into the following
categories. We refer the reader to (Ying, 2006, Section 2.1) for a more detailed overview of
these methods.

e Least squares methods. This class of methods seeks to find the phase function ¢ :
R? — R that minimizes a cost function of the form

1026 = w(09)) [lp + || Oy — w(Byd) lp - (10.4)

Here, || - || is the L, norm and 0,, 0y denote partial derivatives w.r.t z,y respectively.
Specifically, one solves a discrete version of (10.4) with discrete partial derivatives. For
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p = 2, the solution actually has an analytical form given by the discrete form of Pois-
son’s equation with Neumann boundary conditions. This is known to be efficiently im-
plementable, using for instance methods based on fast Fourier transform (FFT) (Pritt
and Shipman (1994)), discrete cosine transform (DCT) (Kerr et al. (1996)), multigrid
techniques (Pritt (1996)) etc. More broadly, the least-squares formulation of phase
unwrapping (both the weighted and unweighted versions) lead to discretized partial
differentiable equations, which are solvable efficiently by standard methods from the
numerical PDE literature (see for eg., Takajo and Takahashi (1988a,b); Hunt (1979);
Ghiglia and Romero (1989, 1994); Buzbee et al. (1970)). We remark that smoothness
constraints have been incorporated by introducing a Tikhonov regularization term,
which increases robustness to noise and missing data (Marroquin and Rivera (1995);
Press et al. (2007)). Huang et al. (2012) proposed a TV (Total variation) minimiza-
tion based method wherein the unwrapped phase gradients are estimated from the
wrapped counterparts via a TV norm regularized least-squares method. Rivera and
Marroquin (2004) proposed solving a “half quadratic” regularized-least squares prob-
lem, and proposed convex as well as non-convex formulations of the problem. Finally,
we note that Ghiglia and Romero (1996) proposed an algorithm to minimize a more
general £, norm based objective function for 2D phase unwrapping; they showed that
this framework is equivalent to weighted least squares phase unwrapping where the
weights are data dependent.

e Branch cut methods. A common problem that arises in 2D phase unwrapping is
the so-called path dependent problem, wherein the integration result depends on the
path chosen between two points. In particular, it is known (Kreysig (1966)) that
if the unwrapping is path dependent then it implies that there exists a closed path
C such that Y~ [w(Agtmn) + W(Ayhm )] is not zero; here A,, A, denote discrete
partial derivatives. This non-zero value is referred to as the residue, and arises for
instance due to noise or (near) discontinuities in the original phase signal (see for
eg., (Ying, 2006, Section 1.1.2)). Branch cut methods rely on the assumption that
paths from positive residues to negative residues (referred to as branch cuts) cross the
regions corresponding to the discontinuities. To this end, many algorithms have been
proposed to find the optimal branch cuts in the phase image (Huntley (1989); Bone
(1991); Prati et al. (1990); Chavez et al. (2002)).

o Network flow methods. These methods are similar to branch-cut methods and rely
on the same assumptions. The difference is that they explicitly try to quantify the
discontinuities at each sample and then find the optimal unwrapped phases that min-
imize the overall discontinuities. Broadly speaking, the idea is to construct a network
with the nodes defined by the residues, and with a directed arc from the positive
residues to the negative ones. With a suitable cost per unit flow assigned to each arc,
the algorithms then seek to find a flow that minimizes the cumulative cost over all
the arcs. (Towers et al. (1991); Ching et al. (1992); Takeda and Abe (1996)).

More recently, Bioucas-Dias and Valadao (2007) proposed a method that involves the
minimization of an energy functional based on a generalization of the classical £, norm, using
graph cut algorithms. Bioucas-Dias et al. (2008); Valadao and Bioucas-Dias (2009) proposed
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more noise tolerant versions of PUMA, which together with PUMA constitute the current
state of art in phase unwrapping. Bioucas-Dias and Valadao (2007) proposed a two-stage
algorithm similar in spirit to ours. Specifically, the first stage involves obtaining the denoised
modulo 27 samples via a local adaptive denoising scheme; the second stage then takes as
input these denoised samples and unwraps them using PUMA. Assuming the original phase
to be piecewise smooth that is well approximated by a polynomial in the neighborhood of
the estimation point, their denoising scheme is based on local polynomial approximations
in sliding windows of varying sizes. Valadao and Bioucas-Dias (2009) adopted a Bayesian
framework assuming a first order Markov random field prior. The proposed algorithm
first unwraps the phase image using PUMA, and then in the second stage, it denoises the
unwrapped phase to form the final estimate.

Gonzlez and Jacques (2014) considered placing a sparsity prior on the phase signal in
the wavelet domain, to model discontinuities. They proposed an unwrapping algorithm
based on solving a ¢; minimization problem. Kamilov et al. (2015) proposed a method
based on the minimization of an energy functional that includes a weighted #; norm based
data fidelity term, along with a regularizer term based on the higher order total variation
(TV) norm.

Extensions to higher dimensions have also attracted significant interest from the commu-
nity, in light of numerous applications. In SAR interferometry, the data typically consists
of a sequence of time-dependent consecutive interferograms. Existing approaches utilize
the time dimension to perform 1-D phase unwrapping along the time axis component (as
opposed to performing standard 2-D phrase unwrapping for each time stamped interfer-
ogram), an approach which increases robustness of the recovery process for scenarios of
steep gradients in the phase maps (Huntley and Saldner (1993)). This approach has been
subsequently extended to the case of 3-D phrase unwrapping in a 3-D space-time domain
by Costantini et al. (2002). They formulate the phase unwrapping problem as a linear inte-
ger minimization, and report increased robustness when compared to standard 2-D phase
unwrapping on simulated and real SAR images. More recently, Osmanoglu et al. (2014)
introduced a novel 3-D phase unwrapping approach for generating digital elevation models,
by combining multiple SAR acquisitions using an extended Kalman filter.

Very recently, Dardikman et al. (2018) introduced a new 4-D phase unwrapping approach
for time-lapse quantitative phase microscopy, which allows for the reconstruction of optically
thick objects that are optically thin in a certain temporal point and angular view. The
authors leverage both the angular dimension and the temporal dimension, in addition to
the usual x — y dimensions, to enhance the reconstruction process. They report improved
numerical results over other state-of-the-art methods. Finally, we remark that Jenkinson
(2003) introduced a fast algorithm for the N-dimensional phase unwrapping problem, built
around a cost function that leads to an integer programming problem, solved via a greedy
optimization approach, and tested on 3D MRI medical data for venogram studies.

11. Concluding remarks and future work

We considered the problem of denoising noisy modulo 1 samples of a smooth function, arising
in the context of the popular phase unwrapping problem. We proposed a method centered
around solving a trust-region subproblem with a sphere constraint, and provided extensive
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empirical evidence as well as theoretical analysis, that altogether highlight its robustness
to noise. We mostly focused on the one-dimensional case, but also provided extensions
to the two-dimensional setting, whose applications include the phase unwrapping problem.
In addition, we have also explored two formulations that leverage tools from Riemannian
optimization on manifolds, including a relaxation based on semidefinite programing, solvable
fast via a Burer-Monteiro approach.

There are several possible research directions worth exploring in future work, that we
detail below.

e An interesting direction would be to better understand the unwrapping stage of our
approach, either via the simple OLS (potentially with an additional smoothness reg-
ularization term), or by proposing a new method based on group synchronization
(Singer (2011)). For the latter direction, finding the right global shift of each sam-
ple point (i.e., the quotient ¢;) can be cast a synchronization problem over the real
line R, given pairwise (potentially noisy) offset measurements ¢; — ¢; between nearby
points. The non-compactness of R renders the eigenvector or semidefinite program-
ming relaxations no longer applicable directly, thus motivating an approach that first
compactifies the real line by wrapping it over the unit circle, as explored recently by
Cucuringu (2016) in the context of ranking from noise incomplete pairwise informa-
tion.

e Another potentially interesting direction to explore would be a patch-based divide-
and-conquer method that first decomposes the graph into many (either overlapping
or non-overlapping) subgraphs (potentially with an eye towards the jumps in the mod
1 measurements), solves the problem locally and then integrates the local solutions
into a globally consistent framework, in the spirit of existing methods from the group
synchronization literature (see for eg., Cucuringu et al. (2012a,b)).

e As discussed briefly at the start of Section 4, an interesting approach for solving (3.7)
would be to first discretize the angular domain, and then solve (3.7) approximately
via dynamic programming. In general, the graph G has tree-width Q(k?), rendering
the computational cost of naive dynamic programming to be exponential in k<.

e Another potential direction would be to explore a variation of (3.2), with the last
term replaced by a TV norm

n
=l

glv---vgneC;‘gi {i,j}eE

At first sight, the TV norm may not seem beneficial in light of the smoothness assump-
tions in our setting; however, in certain imaging applications (Fang et al. (2006)), it
is desirable to preserve any sharp discontinuities that may arise in the boundaries be-
tween classes within the image. Rudin et al. (1992) introduced ROF, a total variation
(TV)-based approach as a regularizing functional for image denoising. The intuition
is that the TV term in the minimization discourages the solution from having an
oscilatory behavior, while allowing it to have discontinuities. Inspired by the above
seminal variational framework, and building on their prior work, such as Bergmann
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et al. (2014), Bergmann and Weinmann (2016) introduced variational models for var-
ious nonlinear data spaces. In particular, they developed proximal point algorithms
for the solution of the second order T'V-based problems for denoising, inpainting, and
a combination of both, for combined cyclic (i.e., modulo measurements) and linear
space valued images, along with a convergence analysis and a number of applications
to real-world problems.

e Another natural direction to explore is the development and theoretical analysis of a
“single-stage method” that directly outputs denoised estimates of the original real-
valued samples.

e Finally, an interesting question would be to consider the regression problem, where
one attempts to learn a smooth, robust estimate to the underlying mod 1 function
itself (not just the samples) and/or the original f, from noisy mod 1 samples of f.
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Supplementary Material: Provably robust estimation of modulo 1 samples
of a smooth function with applications to phase unwrapping

A. Rewriting the QCQP in real domain
We first show that A\g*Lg = g/ Hg. Indeed, it holds true that

g"Hg = (Re(g)'Im(g)") (AOL 0> (RegD (A1)
= (Re(g)" (iﬁ:ﬁ ) (A.2)
= Re(g)"(AL)Re(g) + Im(g)" (AL)Im(g) (A.3)
= A(Re(g) — m(g))" ( e(g) + m(g)) (A.4)
= \g'Lg. (A.5)
Next, we can verify that
Re(g'z) = Re((Re(g) —Im(g))" (Re(z) + 1Im(z))) (A.6)
= Re(g) Re(z) + Im(g)"Im(z) (A7)
= glz (A.8)

Lastly, it is trivially seen that || g ||3=|| g ||3= n. Hence (4.2) and (4.5) are equivalent.

B. Trust-region sub-problem with ¢, ball/sphere constraint

Consider the following two optimization problems

1 1

min b'x+ —x'P min b'x+ -x'P

)gn X 2X X (P1) )gn X 2x X (P2) (B.1)
st x|2<r st x [l2=1r

with P € R™*" being a symmetric matrix. (P1) is known as the trust-region sub-problem
in the optimization literature and has been studied extensively with a rich body of work.
(P2) is closely related to (P1), and has a non-convex equality constraint. There exist
algorithms that efficiently find the global solution of (P1) and (P2), to arbitrary accuracy.
In this section, we provide a discussion on the characterization of the solution of these two
problems.

To begin with, it is useful to note for (P1) that

e If the solution lies in the interior of the feasible domain, then it implies P > 0. This
follows from the second order necessary condition for a local minimizer.

e In the other direction, if P % 0 then the solution will always lie on the boundary.
Surprisingly, we can characterize the solution of (P1), as shown in the following lemma.

Lemma 20 (Sorensen (1982)) x* is a solution to (P1) iff || x* |[2<r and 3u* > 0 such
that (a) p*(|| x* [[2 =) =0, (b) (P + p*I)x* = —b and (¢) P + p*I = 0. Moreover, if
P+ p*1 = 0, then the solution is unique.
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Note that if the solution lies in the interior, and if P is p.s.d and singular, then there will
also be a pair of solutions on the boundary of the ball. This is easily verified. The solution
to (P2) is characterized by the following lemma.

Lemma 21 (Hager (2001); Sorensen (1982)) x* is a solution to (P2) iff || x* |la=7r
and 3p* such that (a) P+ p*I =0 and (b) (P + p*I)x* = —b. Moreover, if P+ pu*I > 0,
then the solution is unique.

The solution to (P1) and (P2) is closely linked to solving the nonlinear equation || (P + ul)~'b |jo=
r. Let n
<b7 qj>

x(n) = —=(P+ul)'b==) g (B.2)

Pl

where p11 < pip < -+ <y, and {q;} are the eigenvalues and eigenvectors of P respectively.
Let us define ¢(u) as
<b7 q; >2

o) =l x(0) 3= 3 (s

J=1

(B.3)

Denoting S = {q € R" : Pq = pu1q}, there are two cases to consider.
1. (b,q) #0 for someq €S

This is the easy case. ¢(u) has a pole at —p; and is monotonically decreasing in
(—p1,00) with limy, oo ¢(p) = 0 and lim,,_,, ¢(u) = co. Hence there is a unique

* * b7 j
i* € (—pu1,00) such that ¢(u) = r?, and x(u*) = — 7, 2
solution to (P2). Some remarks are in order.

q; will be the unique

e If P was p.s.d and singular, then there is no solution to Px = —b, since b ¢
colspan(P). Also, since ;3 = 0, we would have p* € (0,00). Hence the cor-
responding solution x(u*) would be the same for (P1), (P2) and would lie on
the boundary. Moreover, the solution will be unique due to Lemma 21 since
P+p*1>0.

e If P was p.d and ¢(0) < 72, then this would mean that the global solution to
the unconstrained problem is a feasible point for (P1). In other words, x(0) =
—P~!b would be the unique solution to (P1) with u* = 0. Moreover, x(u*) with
p* € (—u1,00) satisfying ¢(u*) = 72, would be the unique solution to (P2) (with
w* < 0); the uniqueness follows from Lemma 21 since P + p*I > 0.

2. (b,q) =0 forallqe S

This is referred to as the “hard” case in the literature - ¢(u) does not have a pole at
—1, 80 @(—u) is well defined. There are two possibilities.

(a) If ¢(—u1) > r? then the solution is straightforward — simply find the unique
p* € [—pu1,00) such that ¢(u*) = r2. This is possible since ¢(u) is monotonically
decreasing in [—pu1,00). Hence,

xu)=— 3 il

JipiFpa Wy
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is the unique solution to (P2). If P was p.s.d and singular, then 1 = 0, and so
w* > 0. Hence, x(u*) would be the solution to both (P1) and (P2) and would
lie on the boundary.

(b) If ¢(—pu1) < 72, then slightly more work is needed. For # € R and any z € S
with || z ||o= 1, define

b,q;
x(0) := — Z tiqﬂqj +0z.
JipjFp Hi— M
x(—p)

Then, it holds true that

2 _ (b»(h'>2 2
| %(6) I3 = 2 ey (B.4)
= $(—m) + 0. (B.5)

Solving || x(6) 3= r? for 6§, we see that for any solution §*, we will also have
—0* as a solution. Hence, x(6*),x(—6*) will be solutions to (P2) with pu* = —p;.
If P was p.s.d and singular, then p* = 0, and x(+60*) = x(0) & *z would be
solutions to both (P1) and (P2). Note that x(—u1) is a solution to (P1). In fact,
any point in the interior of the form x(—pu1) + 6z is a solution to (P1).

C. Useful concentration inequalities

We present in this section some useful concentration inequalities, that will be employed as
a tool to prove our other results. Recall that for a random variable X, its sub-Gaussian
norm || X ||y, is defined as

(ELX]P)!/P
5

Moreover, X is a sub-Gaussian random variable if || X ||, is finite. For instance, consider
a bounded random variable X with | X| < M. Then, X is a sub-Gaussian random variable
with || X ||y, < M (Vershynin, 2012, Example 5.8).

We begin with the well-known Hanson-Wright inequality (Hanson and Wright (1971))
for concentration of random quadratic forms. The following version is taken from Rudelson
and Vershynin (2013).

| X o= Sup (C.1)
p=

Theorem 22 (Rudelson and Vershynin (2013)) Let (X; X2 -+ X,,) € R" be a ran-
dom vector with independent components X; satisfying E[X;] =0 and || X; |l < K. Let A
be a n X n matriz. Then for everyt >0

t2 t
P(|XTAX —E[XTAX]| > t) < 2exp (—cmin < : >> (C.2)
K4 A3 K2 A

for an absolute constant ¢ > 0.
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Next, we recall the following Hoeffding type inequality for sums of independent sub-Gaussian
random variables.

Proposition 23 (Vershynin, 2012, Proposition 5.10) Let X1, ..., X, be independent cen-
tered sub-Gaussian random variables and let K = max; || X ||y,. Then for every a € R",
and every t > 0, we have

n /42
c't
P(‘E a; X;| 2 1) < e-exp (—KQHaHQ> ; (C.3)

i=1 2

where ¢ > 0 is an absolute constant.

D. Proof of Proposition 13

Let us first recall the definition of Z from (4.3). For clarity of notation, we will denote
zr = Re(z) € R" and z; = Im(z) € R", and thus z = [z5 z!]|T € R?". Clearly, (2;)7, are
independent, complex-valued random variables. Note that

o7(f; mod 1)) : if B =0
()i = cosre) = { o W(fcéz(o%ruzg ) if gz =1 '7 Lo (D-1)
and
. in(27r(f; mod 1)) : if B =0 ,
(z1); = sin(2my;) = { sin( 7T<fsirrrllz)27ruz; ; ;f g@ = 1,...,n. (D.2)

Since (8;)1; and (u;)!" 4 are i.i.d random variables, hence the components of zr are inde-
pendent real-valued random variables. The same is true for the components of z;.

1. Lower bounding iiTHi

To begin with, note that z Hz = z5(\L)Zg + 2z (AL)z;. Denote iy = E[zg] € R",
and gy = E[z;] € R™. We see that

(Br)i = E[(ZR)i] (D.3)
= (1 — p) cos(27(f; mod 1)) + pE[cos(27u;)] (D.4)
= (1 — p) cos(27(f; mod 1)), (D.5)

since E[cos(2mu;)] = 0 for ¢ = 1,...,n. Similarly, we have that (g;); = (1 —
p) sin(27(f; mod 1)). Hence, we may write

fip = (1—p)Re(h) and fiy = (1 —p)m(h). (D.6)
We now focus on lower bounding the term Z%LZ r. We observe that
2Lz = (Zr — pr + Bg) L(ZR — Bp + fig) (D.7)

= (Zr — g) L(zr — g) + 2(Zr — ) Lty + BRLig. (D-8)
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The first two terms in (D.8) are random, and we proceed to lower bound them w.h.p
starting with the first term. Let us note that

El(zr — ftp)" L(zr — fig)] ZE zr)i — (BR)il*Lu

+ ZE zr)i — (Bg)i)(zr); — (Bg);)| Lij  (D.9)

i#] ~
= S (Elzr)il®  (Bg)?) deg(i), (D.10)
=1

since the cross terms in (D.9) are zero. We now obtain

Bl = & |-
= % + % [(1 — p) cos(4n(f; mod 1)) + pE[cos(47u;)]]
- % + %(1 ~ p) cos(dr(f; mod 1)), (D.11)
Concerning the second term in (D.10), we note that
(Bp)? = (1 —p)?cos?(2m(f; mod 1)) = ( —2p)2 + u ;p)Q cos(4r(f; mod 1)),

(D.12)

fori=1,...,n. Plugging (D.11), (D.12) in (D.10), and observing that k& < deg(i) <
2k, one can easily verify that

nk _ _ _
5 <Elzr - in) Lz — i) < 3pnk. (D.13)
Next, for each i = 1,...,n, the random variables (zgr); — (ftp); are zero mean, and
also uniformly bounded since
[(2)s — ()il = lcos(2mys) — (1 — p) cos(2r(f; mod 1))] < 2. (D.14)

Hence || (z); — (BR)i ||, < 2 for each i. Therefore, applying Hanson-Wright inequality
to (zr — fig)" L(Zr — pig) yields
P(|(zr — fop)" L(Zr — fip) — El(2r — )" L(Zr — )] 2 1)

t? t
< 2exp (—cmin ( , >> . (D.15)
16 L5 411 L

Since deg(i) < 2k for each i = 1,...,n, therefore Gershgorins disk theorem yields the
estimate || L ||< 4k. Moreover, || L [|4< 3°.((2k)? + 2k) < 8k*n. Plugging t = #
for e € (0,1), we observe that

2 2020212y /4 22,2
e Da16)
16 || L |2 128k2n 512
t (epnk)/2  epn
d > = —, D.17
WAL T 16k 32 (D-17)
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Thus, min { AR 4HLII} > 5512 Plugging this estimate in (D.15) for the aforemen-
F

tioned choice of ¢, and using the bounds in (D.13), we have with probability at least

1—2exp (— CE;{’;”) that

pnk
2
We now turn our attention to the second term in (D.8) namely 2(zg — jug)? Lizg.

Recall that (zg); — (frg): are independent, zero-mean sub-Gaussian random variables
with || (zr)i — (BR)i || < 2, for each 7. Hence, invoking Proposition 23 yields

PR o) < (zr — ag) L(zg — ) < prk (3+%). (D.18)

t?
(o~ o 2L)] 2 0) < evoxp (7o ) (D.19)
11 2Lin 13

/t2 >
(D.20)
16 || L |12 g 113

o -
< cr > (D.21)
(

256k2n

where in (D.21), we used the bounds || L ||< 4k (as shown earlier) and || iy |3< n

w in (D.21), we have that the following holds with

“1e cp*n(l—e)
probability at least 1 — e - exp (_W>

(using (D.6)). Plugging t =

pnk(l —¢)
—
Combining (D.18), (D.22) and applying the union bound, we have with probability

at least 1 — e - exp <—%> — 2exp (—%) that the following bound holds

[(Zr — g, 2Lpg)| < (D.22)

nk
zpLzR > %(1 —e)+phLig. (D.23)

. . . .15 cp?n(1—e)?
By proceeding as above, one can verify that with probability at least 1—e-exp (— W)
—2exp (— ce”p 2”), the following bound holds

512
k
2Lz, > ]%(1 — &)+ i} Liny. (D.24)

Combining (D.23), (D.24) and applying the union bound, we have with probability
at least 1 — 2e - exp (—%) — 4exp ( ce?p ”) that

1

%_THZ = —)\(zﬂLiR +z! Lzp) (D.25)
)\pnk 1, _ _ _
> Ze = (1= &)+ o (BROAL) g + 7 (L)) (D.26)
Apk 1
= %(1 —¢)+(1-p)’; hHh (D.27)

holds true. To go from (D.26) to (D.27), we used (D.6) along with the definition of H
(see also Appendix A). This completes the derivation of the lower bound on %ZTH Z.
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2. Upper bounding || Z — h |2 By recalling the definition of z, h € R?" from (4.3), we

note that
2
_ 2 _||(Re(z)) [Re(h)
l2=512= (i) = (i) .2%)
Y (D.29)
=2n — (z'h + h*z) (Since |z, |hi| = 1, for each 1) (D.30)

n

=2n — Z(exp(ﬁﬂ(fi mod 1 — y;)) + exp(—27(f; mod 1 —y;))) (D.31)

=1
=2n - (2cos(27(f; mod 1 —y;))). (D.32)
=1 M,

Clearly, (M;)?_, are independent sub-Gaussian random variables with |/;| < 2; hence
|| M; ||, < 2 for each i. Moreover,

E[M;] = 2(1 — p) + pE[(2 cos(27(f; mod 1 — w;)))] (D.33)
1
=2(1-p) +p/0 2 cos(2m(f; mod 1 — w;))du; (D.34)
i ; — 2m(f; mo !
21— p)+p [2 sin(27mu; 227T (fi mod 1))]0 (D.35)
=2(1-p). (D.36)

Therefore, (M; —E[M;])I, are centered, independent sub-Gaussian random variables
with || M; —E[M;] ||y, < 4. Thus, by applying Proposition 23 to > ;" | (M; — E[M;]),
we obtain

ct?
IP’(]Z M; —2n(1 —p)| >t) <e-exp (— 16n) . (D.37)

Plugging ¢t = 2(1 — p)ne in (D.37) for ¢ € (0,1), we have with probability at least
1—e-exp <—%> that the following bound holds

21 —p)n(l —¢) < zn:Ml <2(1—p)n(l+e). (D.38)
i=1

Conditioning on the event in (D.38), we finally obtain from (D.32) the bound

|z—h|3<2n—2(1—-pn(l—¢) <2n(p+e). (D.39)

E. Proof of Proposition 15

We consider the noise model 3; = (f; +1;) mod 1, where 1; ~ N(0,02) are i.i.d. Recall
the definition of z from (4.3), where upon denoting zr = Re(z) € R", z; = Im(z) € R",
we have z = [z5 Zz!|T € R?". Clearly (zr); = cos(2n((f; + m;) mod 1)), i = 1,...,n are
independent random variables, the same being true for (zr); = sin(27((f; + 7;) mod 1)).
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1. Lower bounding 5z Hz. To begin with, note that 2 Hz = z5(\L)zr+27 (\L)z,
Denote i = E[zR] E R"™, and f1; = E[z;] € R™. We then have

(Br)i = Elcos(2m((fi + n;) mod 1))] (E.1)
et2m((fi+n:) mod 1) + e—v2m((fi+n:) mod 1)

| ' ] (£:2)

_ 6L27T(fi mod 1)E[6L2m7i} +2€—L27T(fi mod UE[B_LZW%} ' (Eg)

Using the fact'2 E[e2™], E[e~2™i] = 279" in (E.3), we get (ﬂ ) = e 277" cos(2m(f; mod
1)). In an analogous manner, one can show that (f;); = e 29 sin(27(f; mod 1)).
To summarize, we have shown that

fig = ¢ "7 Re(h), f;=e " Im(h). (E4)

Now recall that zZ Hz = zL(AL)zg + z! (AL)z;. We will lower bound z5(AL)zg,
respectively 2?()\[/)2 7 individually, w.h.p., via similar arguments as for the Bernoulli
noise, via a Hanson-Wright inequality, respectively, a Hoeffding type inequality argu-
ments.

Consider iﬂLiR, and recall its decomposition as in (D.8). We will lower bound
(zr — pr)"L(Zr — ) and 2(zr — fip)" Lig w.hop.
To begin with, recall from (D.10) that

El(zr — ip)" L(zr — ip)] = Z(E[(ZRMQ — (g)?) deg(i). (E.5)

Next, using the following observation

1+ cos(4m(f; +m:))
2
(E.6)

E[(zr):]* = E[cos® (27 ((f; + ;) mod 1))] = E[cos®(2m(fi + m:))] = E

together with the fact that Ecos(4m(f;+m:))] = =879 cos(47(f; mod 1)), we remark
that, for each i = 1,...,n, it holds true that

1+ e879" cos(47(f; mod 1))

E((zr)i]* = 5

(E.7)

Note that the last equality follows along similar steps as those in the derivation of
(ftp); earlier. A similar calculation yields that

1 + cos(4m(f; mod 1))
2

(g)? = e’ cos?(27(f; mod 1)) = e’

(2

(E.8)

5242
12. Indeed, for X ~ N (u,0?), we have E[e**] = =72~ for any t € R.
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Combining (E.7) with (E.8) yields

— edn?o? e=8m%0% _ e=4m%0%) cos(4n( f; mo
El(za)? - ()7 = O Jrle T —e T eostinllimod ) g

) (1 B 67471_252)(1 _ 647r22¢72 cOS(47r(fi mod 1))) (E.lO)

Since k < deg(i) < 2k, we readily conclude that (E.5) amounts to

(1 o 67471’202)2
2

Note that for each ¢ = 1,...,n, the random variables (zgr); — (ftp); are zero-mean,
and are also uniformly bounded as

(Z); — (g)i] = |cos2m((f; +n;) mod 1)) — e 27" cos(2r(f; mod 1))] < 2. (E.12)

kn <E[(zr — up) Lzr — p)] < (1— e 377 )kn. (E.11)

Hence || (z); — (ftg)i |l < 2 for each i, therefore allowing us to apply the Hanson-
Wright inequality to (zZg — jig)T L(Zgr — fip) yields

P(|(zr — itr)" L(zr — hg) — El(zr — g) " L(zr — )l > 1)

t? t
< 2exp <—cmin < ) >> . (E.13)
16 [| L (13" 4 L |
We saw earlier that || L ||< 4k (see the proof of Lemma 9). Since L < 2k, and L; ; <
1, for 4,7 € E, it holds true that || L ||%< 8k?*n. Plugging in t = Eknw for
e € (0,1) we observe that
2 (52(1 _ 6—47r202)4n2k2)/4 B 52(1 _ 6—47#02)4” (E.14)
16 || L% ~ 128k2n B 1024 ’ '
t 1— —4r262\2 k)/2 1— —47252\2
and > (e J'nk)/ = sd-e ) " (E.15)
4| L | 16k 32
: £2 ¢ 2(1_e—tn70? Y1y . L ,
Thus, min { 6L 4HL||} > 074 . Plugging this estimate in (E.13) for the

aforementioned choice of ¢, and using the bounds in (E.11), we have with probability

_ —47r20'2 4
at least 1 — 2exp <—W> that

(1 _ 67471'2:72 )2

(1—¢) 5 kn < (zr — pp) L(zg — ) < kn |(1 — e 8777) + %(1 - e—‘”fz”?)?} .

(E.16)

Next, we turn our attention to lower-bounding the second term, namely 2(zp —
i) Liig. Recall that (zr); — (jig); are independent, zero-mean sub-Gaussian ran-
dom variables with || (Zg); — (ftg)i |y < 2, for each i. Hence, invoking Proposition
23 along with the facts || L ||< 4k and || 2y ||3< e we obtain

Clt2 clt2€4ﬂ'2¢72
P((zp — i, 2Ljs)| > 1) <e- | <e- T Torarzn |-
((zr — pr,2Lpg)| > t) <e eXP< 256k2 || i ||%> =P 256k2n

(E.17)
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(1—)(1—e—4m°7%)2
3

Plugging in t = kn, we have with probability at least

1 —eexp

—Cl(l _ 5)2(1 _ 6—471'202)464#20'2
2304 "

that

(1 _ 6)(1 _ 6747r20'2)2

3 kn. (E.18)

(zZr — g, 2Lpg)| <
Recalling the decomposition of Z%LZ r as in (D.8), combining the lower bound from

(E.16) with the lower bound implied by (E.18), and applying the union bound, we
have that, with probability at least

—(1 = 21_ —4m262\4 4n202 21_ —4r262\4
1—eexp< dl—-e)*(1—e )e 2] — 2exp _ce( e )*n

2304 1024
(E.19)

the following bound holds

(1 —e)(1 — e 4m0%)2

zpLzp > G

kn+ phLig. (E.20)

By proceeding as above, we obtain the same lower bound on Z?LZ 1 with the same
lower bound on the success probability. Hence, by applying the union bound to (E.20)
and its imaginary counterpart, we finally have with probability at least

—(1 — 2 1— —4r262\4 An202 2 1— —4m252\4
1—26exp< ol &) ¢ ) n | —4exp _cs( c )'n

2304 1024
(E.21)
that the following bound holds
LT - iA(zTLzR + 2z Lay) (E.22)
2n on R !
A (1 —e)(1—e i) Uopo
> — — L L E.2
> [ 2 kn| + o (BROAL)BR + B (AL)R) - (E.23)
Ak 2.2 6_47T202
- 2% 1— —4meo°\2 T ) 24
6( e)(l—e ) + h' Hh (E.24)

In the last step, we used (E.4) along with the definition of H (see also Appendix A).
This completes the derivation of the lower bound on %ZTH Z.
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2. Upper bounding || Z — h ||2. By recalling the definition of z, h € R?" from (4.3), we
observe that

Iz -hl3=]z-h|3 (E.25)
=2n — (z'h + h*z) (E.26)

n

— 9 — Z[efdﬂ((fﬂrm) mod 1—f; mod 1) + 6L27T((fi+7h‘) mod 1— f; mod 1)] (E27)

=1
n n
— o — Z[eL27r(m mod 1) + e—L27r(m mod 1)] — o — Z [€L27rm + e—L27rm] )
=1 =1

M;
(E.28)

Clearly (M;)}, are i.i.d real-valued sub-Gaussian random variables with |M;| < 2;
hence || M; ||y, < 2 for each i. Moreover, we readily obtain E[M;] = 2¢727°7" and
consequently, (M; —E[M;])!"_, are centered, i.i.d sub-Gaussian random variables with
| M; — E[M;] ||y, < 4. Therefore, by applying Proposition 23 to > | (M; — E[M;]),
we obtain

/t2
]P’(|Z M; — Zne_%zaz\ >1t) <e-exp <— fﬁn) . (E.29)
i

Plugging in ¢t = 2nee=2m9 for ¢ € (0,1), we have with probability at least 1 — e -

—4n?o

, 2
exp(—%) that the following bound holds
2n€e*2”2"2(1 —¢e) < Z M; < 2n€e*2ﬂ2”2(1 +¢). (E.30)
i=1

Conditioning on the event in (E.30), we finally obtain from (E.28) the bound

2.2

|Z—h|2<2n —2n(1 —e)e 277" = 2n(1 — (1 —e)e 277°). (E.31)

F. Additional numerical experiments
F1. Numerical experiments: Bounded Model

Figure 23 shows several denoising instances as we increase the noise level in the Uniform
noise model (y € {0.15,0.27,0.30}). Note that OLS starts failing at v = 0.27, while QCQP
still estimates the samples of f well. Interestingly, iQCQP performs quite well, even for
~v = 0.30 (where QCQP starts failing) and produces highly smooth, and accurate estimates.
It would be interesting to investigate the properties of iQCQP in future work.

Figures 24, 25 plot RMSE (on a log scale) for denoised f mod 1 and f samples versus
the noise level, for the Uniform noise model. They illustrate the importance of the choice
of the regularization parameters A, k. If A\ is too small (eg., A = 0.03), then QCQP has
negligible improvement in performance, and sometimes also has worse RMSE than the raw
noisy samples. However, for a larger A (A € {0.3,0.5}), QCQP has a strictly smaller error
than OLS and the raw noisy samples. Interestingly, iQCQP typically performs very well,
even for A = 0.03.
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Figure 26 plots the RMSE (on a log scale) for both the denoised f mod 1 samples,

and samples of f, versus n (for Uniform noise model).

Observe that for large enough

n, QCQP shows strictly smaller RMSE than both the initial input noisy data, and OLS.
Furthermore, we remark that iQCQP typically has superior performance to QCQP except

for small values of n.
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Figure 23: Denoised instances under the Uniform noise model, for OLS, QCQP and
iQCQP, as we increase the noise level 7. We keep fixed the parameters n = 500,
k =2, A = 0.1. The numerical values in the legend denote the RMSE. QCQP
denotes Algorithm 1, for which the unwrapping stage is performed via OLS

(4.23).

F2. Comparison with Bhandari et al. (2017)

This section is a comparison of OLS, QCQP, and iQCQP with the approach introduced
by Bhandari et al. (2017), whose algorithm we denote by BKR for brevity. We compare all
four approaches across two different noise models, Bounded and Gaussian, on two different
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Figure 24: Recovery errors for the denoised fmod 1 samples, for the Bounded noise model
(20 trials). QCQP denotes Algorithm 1 without the unwrapping stage per-
formed by OLS (4.23).

functions: the function (8.1) used thus far in the experiments throughout this paper, and a
bandlimited function used by Bhandari et al. (2017).

Figure 27 pertains to function (8.1) but for the Gaussian noise model. At a lower level
of noise 0 = 5%, all methods are able to recover the function fairly well, with iQCQP
and QCQP yielding the most accurate reconstructions in terms of the RMSE of both
the denoised f mod 1 samples, and the final estimates for f. At higher levels of noise
o € {6%,13%}, BKR breaks down, while the other methods (in order of accuracy) iQCQP,
QCQP, OLS return meaningful estimates.

Figures 28, respectively 29, compare the results of the four methods on the same ban-
dlimited function considered by the authors of Bhandari et al. (2017), under the Bounded,
respectively Gaussian, noise models with n = 494 sample points. The bandlimited function
is generated by multiplying the Fourier spectrum of the sinc-function with weights drawn
from the standard distribution, rescaled such that the largest magnitude entry is equal to
1. To make the problem more challenging, we also scale the function by a factor of 3, such
that the function wraps itself more often when taking modulo 1 values. Finally, to make
the resulting figures more visually appealing, we shift the function values by +3 in order
to minimize the overlap with the modulo 1 values (clean, noisy and denoised samples). For
the Bounded noise model, Figure 28 illustrates the fact that at a lower noise level v = 15%
all methods recover a good approximation of the function, the winners being iQCQP and
QCQP both in terms of denoising the f mod 1 samples and estimating f. At v = 17%
BKR breaks down, while the remaining methods return good approximations. Finally, at
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(20 trials). QCQP denotes Algorithm 1, for which the unwrapping stage is
performed via OLS (4.23).
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Figure 26: Recovery errors for OLS, QCQP, and iQCQP as a function of n (number of
samples), for both the f mod 1 samples (leftmost two plots) and the final f
estimates (rightmost two plots) under the Uniform noise model, for different
values of k, A and . Results are averaged over 20 runs. QCQP denotes
Algorithm 1, for which the unwrapping stage is performed via OLS (4.23).

v = 20% the latter three methods have difficulties in the unwrapping stage. Figure 29
shows analogous results and conclusions under the more challenging Gaussian noise model,

with o € {5%, 8%, 12%}.

Finally, Figure 30, shows analogous results as in Figures 28 under the Bounded noise
model, but with a sparser sampling pattern n = 194, similar to the setup used by the
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Figure 27: Denoised instances for both the f mod 1 and f values, under the Gaussian noise
model for function (8.1), for BKR, OLS, QCQP and iQCQP, as we increase
the noise level 0. QCQP denotes Algorithm 1, for which the unwrapping stage
is performed via OLS (4.23). We keep fixed the parameters n = 500, k = 2,
A = 0.1. The numerical values in the legend denote the RMSE.

authors of Bhandari et al. (2017). At a lower noise level, v = 10%, all methods recover a
good approximation of the function, the performance ranking being iQCQP (RMSE=0.23),
QCQP (RMSE=0.23), OLS (RMSE=0.31), BKR (RMSE=0.31) for the denoised f mod
1 samples, and iQCQP (RMSE=0.06), QCQP (RMSE=0.11), OLS (RMSE=0.11), BKR
(RMSE=0.11) for the final f estimates. At higher levels of noise, iQCQP, QCQP, OLS
return meaningful estimates, though all methods experience difficulties in the unwrapping
stage, in the interval where the function f has the highest slope.

F3. Additional elevation maps experiments for two-dimensional phase
unwrapping

Figure 31 pertains to the elevation map of Vesuvius, using n = 3600 samples, under the
Gaussian noise model (o = 0.05). Figure 32, pertains to noisy measurements of Mount
Etna under the Gaussian noise model (o = 0.10), using n = 19000 samples.
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Figure 28: Denoised instances for the bandlimited function considered in Bhandari et al.
(2017), under the Bounded-Uniform noise model, for BKR, OLS, QCQP and
iQCQP, as we increase the noise level 7. We keep fixed the parameters n = 484,
k=2, A = 0.01. The numerical values in the legend denote the RMSE. QCQP

denotes Algorithm 1, for which the unwrapping stage is performed via OLS
(4.23).
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Figure 29: Denoised instances for the bandlimited function considered in Bhandari et al.
(2017), under the Gaussian noise model, for BKR, OLS, QCQP and iQCQP,
as we increase the noise level 0. QCQP denotes Algorithm 1, for which the

unwrapping stage is performed via OLS (4.23). We keep fixed the parameters
n =484, k =2, A = 0.01. The numerical values in the legend denote the RMSE.
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Figure 30: Denoised instances for the bandlimited function considered in Bhandari et al.
(2017), under the Bounded-Uniform noise model, for BKR, OLS, QCQP and
iQCQP, as we increase the noise level v. QCQP denotes Algorithm 1, for which
the unwrapping stage is performed via OLS (4.23). The function is sampled less
frequently compared to the earlier Figure 28, which in this experiment leads to
only n = 194 sample points. We keep fixed k = 2 and A = 0.01. The numerical
values in the legend denote the RMSE.
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Figure 31: Elevation map of Mount Vesuvius with n = 3600, £ = 1 (Chebychev distance),
A = 0.1, and noise level 0 = 0.05 under the Gaussian model, as recovered by

Manopt-Phases.
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Figure 32: Elevation map of Mount Etna with n = 19000, £ = 1 (Chebychev distance),
= 0.3, and noise level ¢ = 0.10 under the Gaussian model, as recovered by
Manopt-Phases.
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