
Journal of Machine Learning Research 21 (2020) 1-5 Submitted 3/18; Revised 5/19; Published 02/20

DESlib: A Dynamic ensemble selection library in Python

Rafael M. O. Cruz RAFAELMENELAU@GMAIL.COM
Luiz G. Hafemann LUIZ.GH@GMAIL.COM
Robert Sabourin ROBERT.SABOURIN@ETSMTL.CA
Laboratoire d’imagerie, vision et intelligence artificielle (LIVIA)
École de Technologie Supérieure (ÉTS) - Université du Québec
Montreal, Canada

George D. C. Cavalcanti GDCC@CIN.UFPE.BR

Centro de Informática - Universidade Federal de Pernambuco
Recife, Brazil

Editor: Balazs Kegl

Abstract
DESlib is an open-source python library providing the implementation of several dynamic se-

lection techniques. The library is divided into three modules: (i) dcs, containing the implementation
of dynamic classifier selection methods (DCS); (ii) des, containing the implementation of dynamic
ensemble selection methods (DES); (iii) static, with the implementation of static ensemble tech-
niques. The library is fully documented (documentation available online on Read the Docs), has
a high test coverage (codecov.io) and is part of the scikit-learn-contrib supported projects. Docu-
mentation, code and examples can be found on its GitHub page:
https://github.com/scikit-learn-contrib/DESlib.
Keywords: Multiple classifier systems, Ensemble of Classifiers, Dynamic classifier selection,
Dynamic ensemble selection, Machine learning, Python

1. Introduction

Dynamic selection (DS) has become an active research topic in the multiple classifier systems lit-
erature in recent years. In this paradigm, one or more base classifiers1 are selected for each query
instance to be classified. Such techniques have demonstrated improvements over traditional (static)
combination approaches, such as majority voting and Boosting (Cruz et al., 2018). DS techniques
work by estimating the competence level of each classifier from a pool of classifiers. Only the most
competent, or an ensemble containing the most competent classifiers is selected to predict the label
of a specific test sample. The rationale for such techniques is that not every classifier in the pool is
an expert in classifying all unknown samples; rather, each base classifier is an expert in a different
local region of the feature space.

In this paper, we introduce a library for dynamic ensembles in python: DESlib. The library con-
tains the implementation of the key dynamic selection techniques in the literature. It also provides
static ensemble methods which are often used as baseline comparisons for dynamic ensembles. The
following sections present the project organization, the API design, currently implemented methods
and future directions for the API.

1. The term base classifier refers to a single classifier belonging to an ensemble or a pool of classifiers.

c©2020 Rafael M. O. Cruz, Luiz G. Hafemann, Robert Sabourin and George D. C. Cavalcanti.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v21/18-144.html.

https://github.com/scikit-learn-contrib/DESlib
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/18-144.html

CRUZ, HAFEMANN, SABOURIN AND CAVALCANTI

2. Project management

DESlib was developed with two objectives in mind: to make it easy to integrate Dynamic Selection
algorithms to machine learning projects, and to facilitate research on this topic, by providing imple-
mentations of the main DES and DCS methods, as well as the commonly used baseline methods.
Each algorithm implements the main methods in the scikit-learn API (Pedregosa et al., 2011): fit(X,
y), predict(X), predict_proba(X) and score(X, y). Any classifier from scikit-learn (or from other
libraries that follow this API) can be used as base classifiers, making the library easy to use and to
integrate in other projects.

The implementation of the DS methods is modular, following a taxonomy defined in (Cruz
et al., 2018). This taxonomy considers the main characteristics of DS methods, that are centered
in three components: (1) the methodology used to define the local region, in which the compe-
tence level of the base classifiers are estimated (region of competence); (2) the source of infor-
mation used to estimate the competence and (3) the selection approach to define the best classi-
fier (for DCS) or the best set of classifiers (for DES). This modular approach makes it easy for
researchers to implement new DS methods, in many cases requiring only the implementation of
methods estimate_competence and select.

The library is written in pure python, working on any platform, and depends on the following
python packages: scikit-learn, numpy and scipy. The project follows these guidelines:

• Development: All development is performed collaboratively using GitHub and Gitter, which
facilitates code integration, communication between collaborators and issue tracking. Exter-
nal contributions are encouraged.

• Code quality: The code was written following the PEP 8 standards. We use Codacy2 to
measure and track code quality. The library is also covered by unit tests (py.test), using Travis
CI. Moreover, Codacy and Travis CI are used to automatically check each new contribution
according to the code quality and test coverage.

• Documentation: The code of DESlib is fully documented, including detailed instructions
and examples for using the API. The documentation is provided based using numpydoc and
sphinx, being automatically updated with new developments. It is available online at http:
//deslib.readthedocs.io/en/latest/

• Bugs and new features: Bugs and new feature requests are tracked through the project’s
GitHub page: https://github.com/scikit-learn-contrib/DESlib/issues.
This environment allows a discussion between the collaborators to find the best solution for
the problem. New users can check whether the problems they found or new requests are
already being addressed.

• Project relevance: At the edition time, the library is on its third release (v0.3), counts with
7 contributors (2 main and 5 external), and attracts about 500 new visitors weekly. Moreover,
it is part of the scikit-learn-contrib supported projects.

3. Implemented techniques

The library is divided into three modules:

2. https://codacy.com/

2

http://deslib.readthedocs.io/en/latest/
http://deslib.readthedocs.io/en/latest/
https://github.com/scikit-learn-contrib/DESlib/issues

DESLIB: A DYNAMIC ENSEMBLE SELECTION LIBRARY IN PYTHON

• Dynamic Classifier Selection (DCS): This module contains the implementation of tech-
niques in which only the base classifier that attained the highest competence level is selected
for the classification of the query.

• Dynamic Ensemble Selection (DES): Dynamic ensemble selection strategies refer to tech-
niques that select an ensemble of classifier rather than a single one. All base classifiers that
attain a minimum competence level are selected to compose the ensemble of classifiers.

• Static Ensembles: This module provides the implementation of static ensemble techniques
that are usually used as a baseline for the comparison of DS methods: Single Best (SB), Static
Selection (SS), Oracle and Stacked Generalization.

Tables 1 and 2 list the implemented DS and baseline methods, respectively.

Table 1: Implemented DES and DCS methods
DES DCS

META-DES (Cruz et al., 2015a) Modified Rank (Sabourin et al., 1993)
KNORA-E (Ko et al., 2008) OLA (Woods et al., 1997)
KNORA-U (Ko et al., 2008) LCA (Woods et al., 1997)
DES-P (Woloszynski et al., 2012) MLA (Smits, 2002)
KNOP (Cavalin et al., 2013) MCB (Giacinto and Roli, 2001)
DES-RRC (Woloszynski and Kurzynski, 2011) A Priori (Didaci et al., 2005)
DES-KL (Woloszynski et al., 2012) A Posteriori (Didaci et al., 2005)
DES-Exponential (Woloszynski and Kurzynski, 2009) Online Local Pool (Souza et al., 2019)
DES-Logarithmic (Woloszynski and Kurzynski, 2009)
DES-Minimum Difference (Antosik and Kurzynski, 2011)
DES-Clustering (Souto et al., 2008)
DES-KNN (Souto et al., 2008)
DES-Multiclass Imbalance (DES-MI) (García et al., 2018)

Table 2: Implemented baseline methods
Static

Oracle (Kuncheva, 2002)
Single Best
Static Selection (Ruta and Gabrys, 2005)
Stacked Generalization (Wolpert, 1992)

The library also provides several state-of-the-art improvements to DS techniques, such as the
online Dynamic Frienemy Pruning (DFP) algorithm used in the FIRE-DES framework (Oliveira
et al., 2017; Cruz et al., 2019), as well as dynamic weighting and hybrid selection + weighting (Cruz
et al., 2015b) versions of DES techniques.

4. Installation and Usage

The latest stable version of the library can be installed using pip (Python package manager): pip
install deslib. Alternatively, the master branch, which contains features that will be in-
cluded in future releases, can be installed directly from the GitHub address: pip install
git+https://github.com/scikit-learn-contrib/deslib. New features are only
merged to the master branch after code review and the creation of unit tests.

3

CRUZ, HAFEMANN, SABOURIN AND CAVALCANTI

4.1. Usage

Each implemented method receives as an input a list of classifiers. This list can be either homoge-
neous (i.e., all base classifiers are of the same type) or heterogeneous (base classifiers of different
types). The library supports any type of base classifiers from scikit-learn.

After instantiation, the method fit(X, y) is used to fit the Dynamic Selection method. Predictions
for new examples can then be obtained with predict(X) and predict_proba(X). In the example
below, we show how to use the library, with a given Training (X_train, y_train), and Testing (X_test,
y_test) datasets. The META-DES (Cruz et al., 2015a) technique is used in this example:

from sklearn.ensemble import RandomForestClassifier
from deslib.des.meta_des import METADES

Train a pool of 10 classifiers
pool_classifiers = RandomForestClassifier(n_estimators=10)
pool_classifiers.fit(X_train, y_train)
Initialize the DS model
metades = METADES(pool_classifiers)

Fit the dynamic selection model
metades.fit(X_dsel, y_dsel)

Predict new examples:
metades.predict(X_test)

As of version 0.3, each implemented method comes with a list of default values, not requiring
a trained list of classifiers as input. In such case, the pool of classifiers is trained together with
the DS algorithm inside the fit method. More examples of using different aspects of the library
can be found on https://deslib.readthedocs.io/en/latest/auto_examples/
index.html.

5. Conclusion and future plans

In this paper, we introduced the DESlib, a Python library with the implementation of the state-of-
the-art dynamic classifier and ensemble selection techniques. The project is fully compatible with
the scikit-learn API and is part of the scikit-learn-contrib supported projects. Future work on this
library includes the implementation of dynamic selection methods in different contexts, such as
One-Class-Classification (OCC) and regression.

References
B. Antosik and M. Kurzynski. New measures of classifier competence – heuristics and application to the

design of multiple classifier systems. In Computer Recognition Systems 4, pages 197–206. 2011.

P. R. Cavalin, R. Sabourin, and C. Y. Suen. Dynamic selection approaches for multiple classifier systems.
Neural Computing and Applications, 22(3-4):673–688, 2013.

R. M. O. Cruz, R. Sabourin, G. D. C. Cavalcanti, and Tsang Ing Ren. META-DES: A dynamic ensemble
selection framework using meta-learning. Pattern Recognition, 48(5):1925–1935, 2015a.

R. M. O. Cruz, R. Sabourin, and G. D.C. Cavalcanti. Dynamic classifier selection: Recent advances and
perspectives. Information Fusion, 41:195 – 216, 2018.

4

https://deslib.readthedocs.io/en/latest/auto_examples/index.html
https://deslib.readthedocs.io/en/latest/auto_examples/index.html

DESLIB: A DYNAMIC ENSEMBLE SELECTION LIBRARY IN PYTHON

Rafael M. O. Cruz, Robert Sabourin, and George D. C. Cavalcanti. META-DES.H: A dynamic ensemble
selection technique using meta-learning and a dynamic weighting approach. In International Joint Con-
ference on Neural Networks, pages 1–8, 2015b.

Rafael M. O. Cruz, Dayvid V. R. Oliveira, George D. C. Cavalcanti, and Robert Sabourin. FIRE-DES++:
Enhanced online pruning of base classifiers for dynamic ensemble selection. Pattern Recognition, 85:
149–160, 2019.

L. Didaci et al. A study on the performances of dynamic classifier selection based on local accuracy estima-
tion. Pattern Recognition, 38(11):2188–2191, 2005.

Salvador García, Zhong-Liang Zhang, Abdulrahman Altalhi, Saleh Alshomrani, and Francisco Herrera. Dy-
namic ensemble selection for multi-class imbalanced datasets. Information Sciences, 445:22–37, 2018.

G. Giacinto and F. Roli. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recog-
nition, 34:1879–1881, 2001.

A. H. R. Ko, R. Sabourin, and A. S. Britto Jr. From dynamic classifier selection to dynamic ensemble
selection. Pattern Recognition, 41:1735–1748, 2008.

Ludmila I. Kuncheva. A theoretical study on six classifier fusion strategies. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(2):281–286, 2002.

D. V.R. Oliveira, G. D.C. Cavalcanti, and R. Sabourin. Online pruning of base classifiers for dynamic ensem-
ble selection. Pattern Recognition, 72:44 – 58, 2017.

F. Pedregosa et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

D. Ruta and B. Gabrys. Classifier selection for majority voting. Inf. Fusion, 6(1):63–81, 2005.

M. Sabourin, A. Mitiche, D. Thomas, and G. Nagy. Classifier combination for handprinted digit recognition.
Intl. Conf. on Document Analysis and Recognition, pages 163–166, 1993.

Paul C Smits. Multiple classifier systems for supervised remote sensing image classification based on dy-
namic classifier selection. IEEE Trans. on Geoscience and Remote Sensing, 40(4):801–813, 2002.

M. C. P. Souto et al. Empirical comparison of dynamic classifier selection methods based on diversity and
accuracy for building ensembles. In International Joint Conference on Neural Networks, pages 1480–
1487, 2008.

Mariana A Souza, George DC Cavalcanti, Rafael MO Cruz, and Robert Sabourin. Online local pool genera-
tion for dynamic classifier selection. Pattern Recognition, 85:132–148, 2019.

T. Woloszynski and M. Kurzynski. On a new measure of classifier competence applied to the design of
multiclassifier systems. In International Conference on Image Analysis and Processing (ICIAP), pages
995–1004, 2009.

T. Woloszynski and M. Kurzynski. A probabilistic model of classifier competence for dynamic ensemble
selection. Pattern Recognition, 44:2656–2668, October 2011.

T. Woloszynski et al. A measure of competence based on random classification for dynamic ensemble selec-
tion. Information Fusion, 13(3):207–213, 2012.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

K. Woods, W. P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using local accuracy
estimates. IEEE Trans. on PAMI, 19:405–410, April 1997.

5

	Introduction
	Project management
	Implemented techniques
	Installation and Usage
	Usage

	Conclusion and future plans

