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Abstract

We propose a novel, theoretically-grounded, acquisition function for Batch Bayesian Op-
timization informed by insights from distributionally ambiguous optimization. Our ac-
quisition function is a lower bound on the well-known Expected Improvement function,
which requires evaluation of a Gaussian expectation over a multivariate piecewise affine
function. Our bound is computed instead by evaluating the best-case expectation over
all probability distributions consistent with the same mean and variance as the original
Gaussian distribution. Unlike alternative approaches, including Expected Improvement,
our proposed acquisition function avoids multi-dimensional integrations entirely, and can
be computed exactly – even on large batch sizes – as the solution of a tractable convex
optimization problem. Our suggested acquisition function can also be optimized efficiently,
since first and second derivative information can be calculated inexpensively as by-products
of the acquisition function calculation itself. We derive various novel theorems that ground
our work theoretically and we demonstrate superior performance via simple motivating
examples, benchmark functions and real-world problems.

Keywords: Bayesian Optimization, Convex Optimization, Distributionally Robust Op-
timization, Batch Optimization, Black-Box Optimization.

1. Introduction

When dealing with numerical optimization problems in engineering applications, one is
often faced with the optimization of a process or function that is expensive to evaluate
and depends on a number of tuning parameters. Examples include the training of machine
learning algorithms (Snoek et al., 2012), algorithms for robotic tasks (Lizotte et al., 2007)
or reinforcement learning (Shahriari et al., 2016). Given the cost of evaluating the process,
we wish to select the parameters at each stage of evaluation carefully so as to optimize
the process using as few experimental evaluations as possible. We are concerned with
problem instances wherein there is the capacity to speed up optimization by performing k
experiments in parallel and, if needed, repeatedly select further batches with cardinality k
as part of some sequential decision making process.

It is common to assume a surrogate model for the outcome f : Rn 7→ R of the process
to be optimized. This model, which is based on both prior assumptions and past function
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evaluations, is used to determine a collection of k input points for the next set of evalua-
tions. Bayesian Optimization provides an elegant surrogate model approach and has been
shown to outperform other state-of-the-art algorithms on a number of challenging bench-
mark functions (Jones, 2001). It models the unknown function f with a Gaussian Process
(GP) (Rasmussen and Williams, 2005), a probabilistic function approximator which can
incorporate prior knowledge such as smoothness, trends, etc.

A comprehensive introduction to GPs can be found in Rasmussen and Williams (2005).
In short, modeling a function with a GP amounts to modeling the function as a realization of
a stochastic process. In particular, we assume that the outcomes of function evaluations are
normally distributed random variables with known prior mean function m : Rn 7→ R and
prior covariance function κ : Rn × Rn 7→ R. Prior knowledge about f , such as smoothness
and trends, can be incorporated through judicious choice of the covariance function κ, while
the mean function m is commonly assumed to be zero. A training dataset D = (XD, yD)
of ` past function evaluations yDi = f(XDi ) for i = 1 . . . `, with yD ∈ R`, XD ∈ R`×n is then
used to calculate the posterior of f .

The celebrated GP regression equations (Rasmussen and Williams, 2005) give the pos-
terior

y|D ∼ N (µ(X),Σ(X)) (1)

on a batch of k test locations X ∈ Rk×n as a multi-variate normal distribution in a closed
form formula. The posterior mean value µ and variance Σ depend also on the dataset D, but
we do not explicitly indicate this dependence in order to simplify the notation. Likewise, the
posterior y|D is a normally distributed random variable whose mean µ(X) and covariance
Σ(X) depend on X, but we do not make this explicit.

Given the surrogate model, we wish to identify some selection criterion for choosing the
next batch of points to be evaluated. Such a selection criterion is known as an acquisition
function in the terminology of Bayesian Optimization. Ideally, such an acquisition function
would take into account the number of remaining evaluations that we can afford, e.g. by
computing a solution via dynamic programming to construct an optimal sequence of poli-
cies for future batch selections. However, a probabilistic treatment of such a criterion is
computationally intractable, involving multiple nested maximization-marginalization steps
(Gonzalez et al., 2016b).

To avoid this computational complexity, myopic acquisition functions that only consider
the one-step return are typically used instead. For example, one could choose to maximize
the one-step Expected Improvement (described more fully in §1.1) over the best evaluation
observed so far, or maximize the probability of having an improvement in the next batch
over the best evaluation. Other criteria use ideas from the bandit (Desautels et al., 2014)
and information theory (Shah and Ghahramani, 2015) literature. In other words, the in-
tractability of the multistep lookahead problem has spurred instead the introduction of a
wide variety of myopic heuristics for batch selection.

Notation Used We denote with Sk,SK+ and SK++ the set of symmetric, positive semidef-
inite and positive definite matrices respectively. A � B (A � B) denotes that A − B is
positive (semi)definite. The symbol EP denotes the expectation over the probability distri-
bution P.
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1.1. Expected improvement

We will focus on the (one-step) Expected Improvement criterion, which is a standard choice
and has been shown to achieve good results in practice (Snoek et al., 2012). In order to give
a formal description we first require some definitions related to the optimization procedure
of the original process. At each step of the optimization procedure, define yD ∈ R` as the
vector of ` past function values evaluated at the points XD ∈ R`×n, and X ∈ Rk×n as a
candidate set of k points for the next batch of evaluations. Then the classical Expected
Improvement acquisition function is defined as

α(X) = yD − E[min(y1, . . . , yk, y
D)|D]

with y|D ∼ N
(
µ(X),Σ(X)

)
,

(2)

where yD is the element-wise minimum of yD, i.e. the minimum value of the function f
achieved so far by any known function input. In the above definition we assume perfect
knowledge of yD, which implies a noiseless objective. A noisy objective requires the intro-
duction of heuristics discussed in detail in Picheny et al. (2013). For the purposes of clarity,
a noiseless objective is assumed for the rest of the document. This is not constraining, as
most of the heuristics discussed in (Picheny et al., 2013) are compatible with the theoretical
analysis presented in the rest of the paper.

Selection of a batch of points to be evaluated with optimal Expected Improvement
amounts to finding some X ∈ arg max[α(X)]. Unfortunately, direct evaluation of the acqui-
sition function α requires the k–dimensional integration of a piecewise affine function; this
is potentially a computationally expensive operation. This is particularly problematic for
gradient-based optimization methods, wherein α(X) may be evaluated many times when
searching for a maximizer. Regardless of the optimization method used, such a maximizer
must also be computed again for every step in the original optimization process, i.e. every
time a new batch of points is selected for evaluation. Therefore a tractable acquisition func-
tion should be used. In contrast to (2), the acquisition function we will introduce in Section
2 avoids expensive integrations and can be calculated efficiently with standard software
tools.

1.2. Related work

Despite the intractability of (2), Chevalier and Ginsbourger (2013) presented an efficient
way of calculating α and its derivative dα/dX (Marmin et al., 2015) by decomposing it
into a sum of q–dimensional Gaussian Cumulative Distributions, which can be calculated
efficiently using the seminal work of Genz and Bretz (2009). However, the number of calls
to the q–dimensional Gaussian Cumulative Distribution grows quadratically with respect to
the batch size q. To avoid this issue, Gonzalez et al. (2016a) and Ginsbourger et al. (2009)
rely on heuristics to derive a multi-point criterion. Both methods choose the batch points
in a greedy, sequential way, which restricts them from exploiting the interactions between
the batch points in a probabilistic manner.
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2. Distributionally ambiguous optimization for Bayesian Optimization

We now proceed to the main contribution of the paper. We draw upon ideas from the Dis-
tributionally Ambiguous Optimization community to derive a novel, tractable, acquisition
function that lower bounds the expectation in (2). Our acquisition function:

• is theoretically grounded;

• is numerically reliable and consistent, unlike Expected Improvement-based alterna-
tives (see §3);

• is fast and scales well with the batch size; and

• provides first and second order derivative information inexpensively.

In particular, we use the GP posterior (1) derived from the GP to determine the mean µ(X)
and variance Σ(X) of y|D given a candidate batch selection X, but we thereafter ignore
the Gaussian assumption and consider only that y|D has a distribution embedded within a
family of distributions P that share the mean µ(X) and covariance Σ(X) calculated by the
standard GP regression equations. In other words, we define

P(µ,Σ) =
{
P is a p.d.f. on Rk

∣∣ EP[ξ] = µ,EP[ξξT ] = Σ + µµT
}
.

We will omit the dependence of µ and Σ on X, and will denote the set P(µ,Σ) simply as
P, where the context is clear. Note in particular that N (µ,Σ) ∈ P(µ,Σ) for any choice of
mean µ or covariance Σ.

One can then construct lower and upper bound for the Expected Improvement by min-
imizing or maximizing over the set P respectively, i.e. by writing

inf
P∈P

EP[g(ξ)] ≤ EN (µ,Σ)[g(ξ)] ≤ sup
P∈P

EP[g(ξ)], (3)

where the random vector ξ ∈ Rk and the function g : Rk 7→ R are chosen according to the
definition (2) of the Expected Improvement i.e., ξ = y|D, and

g(ξ) = yD −min(ξ1, . . . , ξk, y
D) (4)

so that EN (µ(X),Σ(X))[g(ξ)] = α(X). Thus, the middle term in (3) is equivalent to the
Expected Improvement.

Perhaps surprisingly, both of the bounds in (3) are computationally tractable even
though they seemingly require optimization over the infinite-dimensional (but convex) set
of distributions P. For either case, these bounds can be computed exactly via transformation
of the problem to a tractable, convex optimization problem using distributionally ambiguous
optimization techniques (Zymler et al., 2013).

We will focus on the upper bound supP∈P EP[g(ξ)] in (3), hence adopting an optimistic
modeling approach. The lower bound turns out to be of limited use, and we show in
Proposition 8 of Appendix D that it is trivial to evaluate and independent of Σ. Hence, we
informally assume that the distribution of function values is such that it yields the largest
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possible Expected Improvement compatible with the mean and covariance computed by the
GP, which we put together in the second order moment matrix Ω of the posterior as

Ω :=

[
Σ + µµT µ
µT 1

]
. (5)

We will occasionally write this explicitly as Ω(X) to highlight the dependency of the second
order moment matrix on X.

The following result says that the upper (i.e. optimistic) bound in (3) can be computed
via the solution of a convex semidefinite optimization problem whose objective function is
linear in Ω. Semidefinite Problems (SDPs) are convex optimization problems with matrices
as decision variables that are constrained to be positive semidefinite. SDPs enjoy strong
theoretical results which guarantee that they can be solved globally in polynomial time, as
well as a variety of mature software tools (O’Donoghue et al., 2016b), (MOSEK), (Garstka
et al., 2019). The reader can refer to (Boyd and Vandenberghe, 2004) and (Vandenberghe
and Boyd, 1996) for an introduction to SDPs.

Theorem 1 For any Σ � 0 the optimal value of the semi-infinite optimization problem

sup
P∈P(µ,Σ)

EP[g(ξ)]

coincides with the optimal value of the following semidefinite program:

p(Ω) := − sup 〈Ω,M〉
s.t. M − Ci � 0, i = 0, . . . , k,

(P )

where M ∈ Sk+1 is the decision variable, C0 := 0,

Ci :=

[
0 ei/2

eTi /2 −yD
]
, i = 1, . . . , k, (6)

are auxiliary matrices defined using yD and ei denotes the k−dimensional vector with a 1
in the i−th coordinate and 0s elsewhere.

Proof See Appendix A.

We therefore propose the computationally tractable acquisition function

ᾱ(X) := p
(
Ω(X)

)
≥ α(X) ∀X ∈ Rk×n,

which we will call Optimistic Expected Improvement (OEI), as it is an optimistic variant of
the Expected Improvement function in (2).

This computational tractability comes at the cost of inexactness in the bounds (3),
which is a consequence of maximizing over a set of distributions containing the Gaussian
distribution as just one of its members. Indeed, we prove in Theorem 10 of Appendix
D that the maximizing distribution is discrete with k + 1 possible outcomes that can be
constructed by the Lagrange multipliers of (P ). We show in §3 that this inexactness is
of limited consequence in practice and it mainly renders the acquisition function more
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explorative. In particular, we show in Figure 1 that the qualitative behavior of OEI closely
matches that of QEI. Nevertheless, there remains significant scope for tightening the bounds
in (3) via imposition of additional convex constraints on the set P, e.g. by restricting P to
symmetric or unimodal distributions (Van Parys et al., 2015). Most of the results in this
work would still apply, mutatis mutandis, if such structural constraints were to be included.

In contrast to the side-effect of inexactness, the distributional ambiguity is useful for
integrating out the uncertainty of the GP’s hyperparameters efficiently for our acquisition
function. Given q samples of the hyperparameters, resulting in q second order moment ma-
trices {Ωi}i=1,...,q, we can estimate the resulting second moment matrix Ω̃ of the marginal-
ized, non-Gaussian, posterior as

Ω̃ ≈ 1

q

q∑
i=1

Ωi.

Due to the distributional ambiguity of our approach, both bounds of (3) can be calculated
directly based on Ω̃, hence avoiding multiple calls to the acquisition function.

Although the value of p(Ω) for any fixed Ω is computable via solution of an SDP, the
non-convexity of the GP posterior (1) that defines the mapping X 7→ Ω(X) means that
ᾱ(X) = p

(
Ω(X)

)
is still non-convex in X. This is unfortunate, since we ultimately wish to

maximize ᾱ(X) in order to identify the next batch of points to be evaluated experimentally.

However we can still optimize ᾱ locally via non-linear programming. We will establish
that a second order method is applicable by showing that ᾱ(X) is twice differentiable under
mild conditions. Such an approach would also be efficient as the Hessian of ᾱ can be calcu-
lated inexpensively. To show these results we will begin by considering the differentiability
of p as a function of Ω.

Theorem 2 The optimal value function p : Sk+1
++ 7→ R defined in problem (P ) is differen-

tiable on its domain with ∂p(Ω)/∂Ω = −M̄(Ω), where M̄(Ω) is the unique optimal solution
of (P ) at Ω.

Proof See Appendix B.

The preceding result shows that ∂p(Ω)/∂Ω is produced as a byproduct of evaluation of
supP∈P EP[g(ξ)], since it is simply −M̄(Ω), the negation of the unique optimizer of (P ).
The simplicity of this result suggests consideration of second derivative information of p(Ω),
i.e. derivatives of −M̄(Ω). The following result proves that this is well defined and tractable
for any Ω � 0:

Theorem 3 The optimal solution function M̄ : Sk+1
++ 7→ Sk+1 in problem (P ) is differ-

entiable on Sk+1
++ . Every directional derivative of M̄(Ω) is the unique solution to a sparse

linear system with O(k3) nonzeros.

Proof See Appendix C.

We can now consider the differentiability of ᾱ = p ◦ Ω. The following Corollary establishes
this under certain conditions.

Corollary 4 ᾱ : Rk×n 7→ R is twice differentiable on any X for which Σ(X) � 0 and the
mean and kernel functions of the underlying GP are twice differentiable.
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Proof By examining the GP Regression equations (Rasmussen and Williams, 2005) and
Equation (5), we conclude that Ω(X) is twice differentiable on Rk×n if the kernel and
mean functions of the underlying Gaussian Process are twice differentiable. Hence, ᾱ(X) =
p(Ω(X)) is twice differentiable for any Ω(X) � 0 as a composition of twice differentiable
functions. Examining (5) reveals that Ω(X) � 0 is equivalent to Σ(X) � 0, which concludes
the proof.

A rank deficient Σ(X) � 0 implies perfectly correlated outcomes. At these points both OEI
and QEI can be shown to be non-differentiable. However, this is not constraining in practice
as both QEI and OEI can be calculated by considering a smaller, equivalent problem. It is
also not an issue for ascent based methods for maximizing ᾱ, as a ascent direction can be
obtained by an appropriate perturbation of the perfectly correlated points.

We are now in a position to derive expressions for the gradient and the Hessian of
ᾱ = p ◦Ω. For simplicity of notation we consider derivatives over x̄ = vec(X). Application
of the chain rule to ᾱ(x̄) = p(Ω(x̄)) gives:

∂ᾱ(x̄)

∂x̄(i)
=

〈
∂p(Ω)

∂Ω
,
∂Ω(x̄)

∂x̄(i)

〉
= −

〈
M̄(Ω),

∂Ω(x̄)

∂x̄(i)

〉
. (7)

Note that the second term in the rightmost inner product above depends on the particular
choice of covariance function κ and mean function m. It is straightforward to compute
(7) in modern graph-based autodiff frameworks, such as the TensorFlow-based GPflow.
Differentiating again (7) gives the Hessian of ᾱ:

∂2ᾱ(x̄)

∂x̄(i)∂x̄(j)
= − ∂

∂x(i)

〈
M̄(Ω),

∂Ω(x̄)

∂x̄(j)

〉
= −

〈
M̄(Ω),

∂2Ω(x̄)

∂x̄(i)∂x̄(j)

〉
−
〈
∂M̄(Ω(x̄))

∂x̄(i)
,
∂Ω(x̄)

∂x̄(j)

〉
,

(8)

where ∂M̄/∂x̄(i) is the directional derivative of M̄(Ω) across the perturbation ∂Ω(x̄)/∂x̄(i).
According to Theorem 3, each of these directional derivatives exists and can be computed
via solution of a sparse linear system.

3. Empirical analysis

In this section we demonstrate the effectiveness of our acquisition function against a number
of state-of-the-art alternatives. The acquisition functions we consider are listed in Table 1.
We do not compare against PPES as it is substantially more expensive and elaborate than
our approach and there is no publicly available implementation of this method.

We show that our acquisition function OEI achieves better performance than alter-
natives and highlight simple “failure” cases exhibited by competing methods. In making
the following comparisons, extra care should be taken in the setup used. This is because
Bayesian Optimization is a multifaceted procedure that depends on a collection of disparate
elements (e.g. kernel/mean function choice, normalization of data, acquisition function, op-
timization of the acquisition function) each of which can have a considerable effect on the
resulting performance (Snoek et al., 2012; Shahriari et al., 2016). For this reason we test
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Table 1: List of acquisition functions

Key Description

OEI Optimistic Expected Improvement (Our novel algorithm)
QEI Multi-point Expected Improvement (Marmin et al., 2015)
QEI-CL Constant Liar (“mix” strategy) (Ginsbourger et al., 2010)
LP-EI Local Penalization Expected Improvement (Gonzalez et al., 2016a)
BLCB Batch Lower Confidence Bound (Desautels et al., 2014)

the different algorithms on a unified testing framework, based on GPflow, available online
at https://github.com/oxfordcontrol/Bayesian-Optimization.

Our acquisition function is evaluated via solution of a semidefinite program, and as such
it benefits from the huge advances of the convex optimization field. A variety of standard
tools exist for solving such problems, including MOSEK (MOSEK), SCS (O’Donoghue et al.,
2016a) and CDCS (Zheng et al., 2017). We chose the first-order (Boyd and Vandenberghe,
2004), freely-available solver SCS, which scales well with batch size and allows for solver
warm-starting between acquisition function evaluations.

Warm starting allows for a significant speedup since the acquisition function is evaluated
repeatedly at nearby points by the non-linear solver. This results in solving (P ) repeatedly
for similar Ω. Warm-starting the SDP solver with the previous solution reduces SCS’s
iterations by 77% when performing the experiments of Figure 3. Moreover, Theorem 2
provides the means for a first-order warm starting. Indeed, the derivative of the solution
across the change of the cost matrix Ω can be calculated, allowing us to take a step in the
direction of the gradient and warm start from that point. This reduces SCS’s iterations by
a further 43%.

Indicative timing results for the calculation of OEI, QEI and their derivatives are listed
in Table 2. The dominant operation for calculating OEI and its gradient is solving (P ). This
makes OEI much faster than QEI, which is in line with the complexity of the dominant
operation in SDP solvers based on first-order operator splitting methods such as SCS or
CDCS which, for our problem, is O

(
k4
)
. Assume that, given the solution of (P ), we want to

also calculate the Hessian of OEI. This would entail the following two operations:

Calculating ∂M̄/∂X(i,j) given ∂Ω(X)/∂X(i,j). According to Lemma 3 this can be ob-
tained as a solution to a sparse linear system. We used Intel R© MKL PARDISO to solve
efficiently these linear systems.

Calculate ∂Ω(X)/∂X(i,j) and apply chain rules of (8) to get the Hessian of the acqui-
sition function ᾱ = p ◦Ω given the gradient and Hessian of p. We used Tensorflow’s
Automatic Differentiation for this part, without any effort to optimize its perfor-
mance. Considerable speedups can be brought by e.g. running this part on GPU, or
automatically generating low-level code optimized specifically for this operation.

8

https://github.com/oxfordcontrol/Bayesian-Optimization


Distributionally Ambiguous Optimization for Batch Bayesian Optimization

Table 2: Average execution time of the acquisition function, its gradient and Hessian when
running BO in the Eggholder function on an Intel E5-2640v3 CPU. For batch size 40, QEI
fails, i.e. it always returns 0 without any warning message. For the execution time of the
Hessian we assume knowledge of the solution of (P ). Its timing is split into two parts as
described in the main text. Note that these results present a qualitative picture as OEI and
QEI are coded in different languages and use different underlying libraries.

Batch Size QEI: α(X),∇α(X) OEI: ᾱ(X),∇ᾱ(X) ∇2ᾱ(X)

Solve (P ) ∂M̄ Tensorflow Part
2 5.6 · 10−3 2.1 · 10−4 5.3 · 10−4 1.0 · 10−2

3 1.2 · 10−2 3.8 · 10−4 7.5 · 10−4 1.4 · 10−2

6 1.1 · 10−1 1.5 · 10−3 1.7 · 10−3 2.0 · 10−2

10 1.1 8.2 · 10−3 5.9 · 10−3 3.2 · 10−2

20 2.1 · 101 4.7 · 10−2 2.3 · 10−2 8.7 · 10−2

40 − 3.4 · 10−1 1.4 · 10−1 3.5 · 10−1

Note that the computational tractability of the Hessian is only allowed due to the novelty
of Theorem 2 which exploits the “structure” of (P )’s optimizer.

We chose the KNITRO v10.3 (Byrd et al., 2006) Sequential Quadratic Optimization
(SQP) non-linear solver with the default parameters for the optimization of OEI. Explicitly
providing the Hessian on the experiments of Figure 3 reduces KNITRO’s iterations by 49%
as compared to estimating the Hessian via the symmetric-rank-one (SR1) update method
included in the KNITRO suite. Given the inexpensiveness of calculating the Hessian and
the fact that KNITRO requests the calculation of the Hessian less than a third as often
as it requires the objective function evaluation we conclude that including the Hessian is
beneficiary.

We will now present simulation results to demonstrate the performance of OEI in various
scenarios.

3.1. Perfect modeling assumptions

We first demonstrate that the competing Expected Improvement based algorithms produce
clearly suboptimal choices in a simple 1–dimensional example. We consider a 1–d Gaussian
Process on the interval [−1, 1] with a squared exponential kernel (Rasmussen and Williams,
2005) of lengthscale 1/10, variance 10, noise 10−6 and a mean function m(x) = (5x)2. An
example posterior of 10 observations is depicted in Figure 1(a). Given the GP and the 10
observations, we depict the optimal 3-point batch chosen by maximizing each acquisition
function. Note that in this case we assume perfect modeling assumptions – the GP is
completely known and representative of the actual process. We can observe in Figure 1(a)
that the OEI choice is very close to the one proposed by QEI while being slightly more
explorative, as OEI allows for the possibility of more exotic distributions than the Gaussian.

9



Rontsis, Osborne and Goulart

(a) Suggested 3-point batches of different al-
gorithms for a GP posterior, depicted on
[−1, 1], given 10 observations. The thick blue
line depicts the GP mean, the light blue shade
the uncertainty intervals (± sd) and the black
dots the observations. The locations of the
batch chosen by each algorithm are depicted
with colored vertical lines at the bottom of the
figure.

(b) Averaged one-step Expected Improvement
on 200 GP posteriors of sets of 10 observa-
tions with the same generative characteristics
(kernel, mean, noise) as the one in Figure 1
for different algorithms across varying batch
size.

(c) Contour plots of evaluating 2-point batch selections on the GP posterior of Figure 1(a) across
[−1, 1]2 with OEI (left) and QEI (right). OEI closely approximates QEI in the sense that their
optimizers nearly coincide and their level sets are similar. Note that the level sets of the two figures
correspond to different values.

Figure 1: Simulation results on Gaussian Process draws.
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In contrast the LP-EI heuristic samples almost at the same point all three times. This
can be explained as follows: LP-EI is based on a Lipschitz criterion to penalize areas around
previous choices. However, the Lipschitz constant for this function is dominated by the end
points of the function (due to the quadratic trend), which is clearly not suitable for the area
of the minimizer (around zero), where the Lipschitz constant is approximately zero. On the
other hand, QEI-CL favors suboptimal regions. This is because QEI-CL postulates outputs
equal to the mean value of the observations which significantly alter the GP posterior.

We proceed to test the algorithms on 200 different posteriors, generated by creating sets
of 10 observations drawn from the previously defined GP. For each of the 200 posteriors,
each algorithm chooses a batch, the performance of which is evaluated by sampling the
multipoint Expected Improvement (2). The averaged results are depicted in Figure 1(b).
For a batch size of 1 all of the algorithms perform the same, except for OEI which performs
slightly worse due to the relaxation of Gaussianity. For batch sizes 2-3, QEI is the best
strategy, while OEI is a very close second. For batch sizes 4-5 OEI performs significantly
better. Figure 1(c) explains the very good performance of OEI. Although always different
from the sampled estimate, it closely approximates the actual Expected Improvement in the
sense that their optimizers and level sets are in close agreement. The deterioration of the
performance for QEI in Figure 1(b) on batch sizes 4 and 5 might be related with software
issues of the R package DiceOptim as there appear to exist points that DiceOptim’s results
of the multipoint Expected Improvement differ considerably from sampled estimates.

3.2. Synthetic functions

Next, we evaluate the performance of OEI in minimizing synthetic benchmark functions.
The functions considered are: the Six-Hump Camel function defined on [−2, 2] × [−1, 1],
the Hartmann 6 dimensional function defined on [0, 1]6 and the Eggholder function, defined
on [−512, 512]2. We compare the performance of OEI against QEI, LP-EI and BLCB as
well as random uniform sampling. The initial dataset consists of 10 random points for
all the functions. A Matern 3/2 kernel is used for the GP modeling (Rasmussen and
Williams, 2005). As all of the considered functions are noiseless, we set the likelihood
variance to a fixed small number 10−6 for numerical reasons. For the purpose of generality,
the input domain of every function is scaled to [−0.5, 0.5]n while the observation dataset
yd is normalized at each iteration, such that Var[yD] = 1. The same transformations are
applied to QEI, LP-EI and BLCB for reasons of consistency. All the acquisition functions
except OEI are optimized with the quasi-Newton L-BFGS-B algorithm (Fletcher, 1987)
with 20 random restarts. We use point estimates for the kernel’s hyperparameters obtained
by maximizing the marginal likelihood via L-BFGS-B restarted on 20 random initial points.

First, we consider a small-scale scenario of batch size 5. The results of 40 runs of Bayesian
Optimization on a mixture of Cosines, the Six-Hump Camel, Eggholder, and 6-d Hartmann
functions are depicted in Figure 2. In these functions, OEI approaches the minimums faster
than QEI and BLCB while considerably outperforming LP-EI, which exhibits outliers with
bad behavior. The explorative nature of OEI can be observed in the optimization of the
Hartmann function. OEI quickly reaches the vicinity of the minimum, but then decides
not to refine the solution further but explore instead the rest of the 6-d space. Increasing
the batch size to 20 for the challenging Eggholder and Hartmann functions shows a further
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Figure 2: BO of batch size 5 on synthetic functions. Red, blue, green, yellow and black dots
depict runs of OEI, LP-EI, BLCB, QEI and Random algorithms respectively. Diamonds
depict the median regret for each algorithm.
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Figure 3: BO of batch size 20 on the challenging Hartmann 6-d Eggholder 2-d functions
where OEI exhibits clearly superior performance. Red, blue, green and black dots depict runs
of OEI, LP-EI, BLCB and Random algorithms respectively. Diamonds depict the median
regret for each algorithm. Compare the above results with Figure 2 for the same runs with
a smaller batch size. Note that QEI is not included in this case, as it does not scale to large
batch sizes (see Table 2).

advantage for OEI. Indeed, as we can observe in Figure 3, OEI successfully exploits the
increased batch size. BLCB also improves its performance though not to the extent of OEI.
In contrast, LP-EI fails to manage the increased batch size. This is partially expected due
to the heuristic based nature of LP-EI: the Lipschitz constant estimated by LP-EI is rarely
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suitable for all the 20 locations of the suggested batch. Even worse, LP-EI’s performance
is deteriorated as compared to smaller batch sizes. LP-EI is plagued by numerical issues
in the calculation of its gradient, and suggests multiple re-evaluations of the same points.
This multiple re-samplings affects the GP modeling, resulting in an inferior overall BO
performance.

3.3. Real world example: Tuning a Reinforcement Learning Algorithm on
various tasks
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Figure 4: BO of batch size 20 on tuning PPO on a variety of robotic tasks. Red, blue, green
and black dots depict runs of OEI, LP-EI, BLCB and Random algorithms respectively.
Diamonds depict the median loss of all the runs for each algorithm.

Finally we perform Bayesian Optimization to tune Proximal Policy Optimization (PPO),
a state-of-the-art Deep Reinforcement Learning algorithm that has been shown to outper-
form several policy gradient reinforcement learning algorithms (Schulman et al., 2017). The
problem is particularly challenging, as deep reinforcement learning can be notoriously hard
to tune, without any guarantees about convergence or performance. We use the imple-
mentation Dhariwal et al. (2017) published by the authors of PPO and tune the reinforce-
ment algorithm on 4 OpenAI Gym tasks (Hopper, InvertedDoublePendulum, Reacher and
InvertedPendulumSwingup) using the Roboschool robot simulator. We tune a set of 5
hyper-parameters which are listed in Table 3. We define as objective function the negative
average reward per episode over the entire training period (4 · 105 timesteps), which favors
fast learning (Schulman et al., 2017). All of the other parameters are the same as the
original implementation (Schulman et al., 2017).
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Table 3: List of PPO’s Hyperparameters used for tuning. Items with asterisk are tuned in
the log-space.

Hyperparameter Range

Adam step-size [10−5, 10−3]∗

Clipping parameter [0.05, 0.5]
Batch size 24, . . . , 256

Discount Factor (γ) 1− [10−3, 10−3/2]∗

GAE parameter (λ) 1− [10−2, 10−1]∗

We run Bayesian Optimization with batch size of 20, with the same modeling, prepro-
cessing and optimization choices as the ones used in the benchmark functions. The results
of 20 runs are depicted in Figure 4. OEI outperforms, on average, BLCB (which performs
comparably to Random search), and, w.r.t. the variance of the outcomes, LP-EI, which
exhibits occasional outliers stuck in inferior solutions.

4. Conclusions

We have introduced a new acquisition function that is a tractable, probabilistic relaxation of
the multi-point Expected Improvement, drawing ideas from the Distributionally Ambiguous
Optimization community. Novel theoretical results allowed inexpensive calculation of first
and second derivative information resulting in efficient Bayesian Optimization on large batch
sizes. In our experiments we performed BO with batch size 20. We found that increasing
the batch size further was difficult because of the increased computation cost of solving
the SDP problems (P ). Novel advances in Semidefinite Programming (Rontsis et al., 2019)
might allow for larger batch sizes and we believe that there exists significant scope for
further research in this area.

Further directions include applying our distributionally agnostic approach to non-Gaussian
setups e.g. to Bayesian Optimization with Student t-processes (Shah et al., 2014), testing
performance in noisy setups and examining the asymptotic properties of OEI. Finally, we
believe that the distributionally ambiguous techniques used in this document can be applied
to other machine learning fields such as Gaussian Process based Reinforcement Learning
(Deisenroth et al., 2015).
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Appendix A. Value of the Expected Improvement Lower Bound

In this section we provide a proof of the first of our main results, Theorem 1, which estab-
lishes that for any Σ � 0 one can compute the value of our optimistic upper bound function

sup
P∈P(µ,Σ)

EP[g(ξ)] (9)

via solution of a convex optimization problem in the form of a semidefinite program.

Proof of Theorem 1:

Recall that the set P(µ,Σ) is the set of all distributions with mean µ and covariance Σ.
Following the approach of Zymler et al. (2013, Lemma A1), we first remodel problem (9)
as:

− inf
ν∈M+

∫
Rk

−g(ξ)ν(dξ)

s.t.

∫
Rk

ν(dξ) = 1∫
Rk

ξν(dξ) = µ∫
Rk

ξξT ν(dξ) = Σ + µµT ,

(10)

where M+ represents the cone of nonnegative Borel measures on Rk. The optimization
problem (10) is a semi-infinite linear program, with infinite dimensional decision variable ν
and a finite collection of linear equalities in the form of moment constraints.

As shown by Zymler et al. (2013), the dual of problem (10) has instead a finite dimen-
sional set of decision variables and an infinite collection of constraints, and can be written
as

−sup 〈Ω,M〉

s.t.
[
ξT 1

]
M
[
ξT 1

]T ≤ −g(ξ) ∀ξ ∈ Rk,
(11)

with M ∈ Sk+1 the decision variable and Ω ∈ Sk+1 the second order moment matrix of ξ
(see (5)). Strong duality holds between problems (10) and (11) for any Ω � 0⇔ Σ � 0, i.e.
there is zero duality gap and their optimal values coincide.

The dual decision variables in (11) form a matrix M of Lagrange multipliers for the
constraints in (10) that is block decomposable as

M =

(
M11 m12

mT
12 m22

)
,

where M11 ∈ Sk are multipliers for the second moment constraint, m12 ∈ Rk multipliers
for the mean value constraint, and m22 a scalar multiplier for the constraint that ν ∈ M+

should integrate to 1, i.e. that ν should be a probability measure.
For our particular problem, we have:

−g(ξ) = min(ξ(1), . . . , ξ(k), y
D)− yD

= min(ξ(1) − yD, . . . , ξ(k) − yD, 0),
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as defined in (4), so that (11) can be rewritten as

−sup 〈Ω,M〉

s.t.
[
ξT 1

]
M
[
ξT 1

]T ≤ ξ(i) − yD, ∀ξ ∈ Rk[
ξT 1

]
M
[
ξT 1

]T ≤ 0 i = 1, . . . , k.

(12)

The infinite dimensional constraints in (12) can be replaced by the equivalent conic
constraints

M −
[

0 ei/2
eTi /2 −yD

]
� 0 i = 1, . . . , k,

and M � 0 respectively, where ei denotes the k−dimensional vector with a 1 in the i−th
coordinate and 0s elsewhere. Substituting the above constraints in (12) results in (P ), which
proves the claim.

Appendix B. Gradient of the Expected Improvement Lower Bound

In this section we provide a proof of our second main result, Theorem 2, which shows that
the gradient1 ∂p/∂Ω of our upper bound function (3) with respect to Ω coincides with the
optimal solution of the semidefinite program (P ). We will find it useful to exploit also the
dual of this SDP, which we can write as

−inf

k∑
i=1

〈Yi, Ci〉

s.t. Yi � 0, i = 0, . . . , k

k∑
i=0

Yi = Ω,

(13)

and the Karush-Kuhn-Tucker conditions for the pair of primal and dual solutions M̄ , {Ȳi}:

Ci − M̄ � 0 (14)

Ȳi � 0 (15)

〈Ȳi, M̄ − Ci〉 = 0⇒ Ȳi(M̄ − Ci) = 0 (16)

∂L(M,Ω)

∂M

∣∣∣∣∣
M̄

= 0⇒
k∑
i=0

Ȳi = Ω, (17)

where L denotes the Lagrangian of (P ).
Before proving Theorem 2 we require three ancillary results. The first of these results

establishes that any feasible point M for the optimization problem (P ) has strictly negative
definite principal minors in the upper left hand corner.

Lemma 5 For any feasible M ∈ Sk+1 of (P ) the upper left k × k matrix M11 is negative
definite.

1. Technically, the gradient is not defined, as Ω is by definition symmetric. We can get around this
technicality by a slight abuse of notation allowing for a non-symmetric Ω such that Ω + ΩT ∈ Sk+1

++ .
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Proof Let

M =

[
M11 m12

mT
12 m22

]
,

where M11 ∈ Sk,m12 ∈ Rk and m22 ∈ R.

From (6) we can infer that m22 + yD < 0, otherwise (6) would require m12 + ei/2 =
0 ∀i = 1, . . . k, which is impossible.

Since M � 0, we have m22 ≤ 0. Assume though, for now, that m22 < 0. Applying then
a standard Schur complement identity in (6) results in:

M11 � (m12 − ei)(m22 + yD)−1(m12 − ei)T

M11 � m12m
−1
22 m

T
12 i = 1, . . . , k.

Summing the above results in

M11 �
(m22 + yD)−1

k + 1

k∑
i=1

(m12 − ei)(m12 − ei)T +
m−1

22

k + 1
m12m

T
12,

which results in M11 ≺ 0, since span
(
{m12, {m12 − ei}i=i,...,k}

)
⊇ span

(
{m12 − m12 +

ei}i=i,...,k}
)

= Rk.
Finally, in the case where m22 = 0 we have m12 = 0, since M � 0. Applying the above

results in M11 � (m22 + yD)−1/k
∑k

i=1
1
keie

T
i ≺ 0.

The second auxiliary results lists some useful properties of the dual solution:

Lemma 6 The optimal Lagrange multipliers of (P ) are of rank one with R(Ȳi) = N (M̄ −
Ci), ∀i = 0, . . . , k, where N (·) and R(·) denote the nullspace and the range of a matrix.

Proof Lemma 5 implies that [xT 0](M̄ − Ci)[xT 0]T = [xT 0]M̄ [xT 0]T < 0,∀x ∈ Rk (recall
that Ci is nonzero only in the last column or the last row), which means that rank(M̄−Ci) ≥
k. Due to the complementary slackness condition (16), the span of Ȳi is orthogonal to the
span of M̄ − Ci and consequently rank(Ȳi) ≤ 1. However, according to (17) we have

rank
k∑
i=0

Ȳi = rank(Ω)
Ω�0
=⇒

k∑
i=0

rank(Ȳi) ≥ k + 1

which results in

rank(M̄ − Ci) = k, rank(Ȳi) = 1,

and, using (16):

R(Ȳi) = N (M̄ − Ci), i = 0, . . . , k.

Our final ancillary result considers the (directional) derivative of the function p when
its argument is varied linearly along some direction Ω̄.
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Lemma 7 Given any Ω̄ ∈ Sk+1 and any moment matrix Ω ∈ Sk+1
++ , define the scalar

function q(· ; Ω) : R→ R as

q(γ; Ω) := p(Ω + γΩ̄).

Then q(· ; Ω) is differentiable at 0 with ∂q(γ; Ω)/∂γ|γ=0 = −〈Ω̄, M̄(Ω)〉, where M̄(Ω) is the
optimal solution of (P ) at Ω.

Proof Define the set ΓΩ as

ΓΩ := {γ | γ ∈ dom q(· ; Ω)} =
{
γ
∣∣ (Ω + γΩ̄

)
∈ dom p

}
,

i.e. the set of all γ for which problem (P ) has a bounded solution given the moment matrix
Ω + γΩ̄. In order to prove the result it is then sufficient to show:

i 0 ∈ int ΓΩ, and

ii The solution of (P ) at Ω is unique.

The remainder of the proof then follows from Goldfarb and Scheinberg (1999, Lemma
3.3), wherein it is shown that 0 ∈ int ΓΩ implies that −〈Ω̄, M̄(Ω)〉 is a subgradient of q(· ; Ω)
at 0, and subsequent remarks in Goldfarb and Scheinberg (1999) establish that uniqueness
of the solution M(Ω) ensure differentiability.

We will now show that both of the conditions (i) and (ii) above are satisfied.

(i): Proof that 0 ∈ int ΓΩ:

It is well-known that if both of the primal and dual problems (P ) and (13) are strictly
feasible then their optimal values coincide, i.e. Slater’s condition holds and we obtain strong
duality; see (Boyd and Vandenberghe, 2004, Section 5.2.3) and (Ramana et al., 1997).

For (P ) it is obvious that one can construct a strictly feasible point. For (13), Yi =
Ω/(k + 1) defines a strictly feasible point for any Ω � 0. Hence (P ) is solvable for any
Ω + γΩ̄ with γ sufficiently small. As a result, 0 ∈ int Γ.

(ii): Proof that the solution to (P ) at Ω is unique:

We will begin by showing that the range of the dual variables R(Yi), i = 0, . . . k remain the
same for every primal-dual solution. Assume that there exists another optimal primal-dual
pair denoted by M̃ = M̄ + δM , and Ỹi. Due to Lemma 6, there exist ȳi, ỹi ∈ Rk+1 such
that

Ȳi = ȳiȳ
T
i , Ỹi = ỹiỹ

T
i ∀i = 0, . . . , k. (18)

Obviously, ỹi ∈ R(Ỹi) = N (M̃ − Ci) and, by definition, we have

ỹTi (M̃ − Ci)ỹi = 0 i = 0, . . . , k. (19)

Moreover, as M̄ is feasible we have ỹTi (M̄ − Ci)ỹi ≤ 0, resulting in

ỹTi δMỹi ≥ 0, i = 0, . . . , k. (20)
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Since M̄ and M̃ have the same objective value we conclude that 〈Ω, δM〉 = 0. Moreover,
according to (17) and (18) we can decompose Ω as

∑k
i=0 ỹiỹ

T
i . Hence

tr(ΩδM) = 0 =⇒ tr(δM
k∑
i=0

ỹiỹ
T
i ) = 0 =⇒

k∑
i=0

tr(δMỹiỹ
T
i ) = 0

=⇒
k∑
i=0

ỹTi δMỹi = 0
(20)
=⇒ ỹTi δMỹi = 0 ∀i = 0, . . . , k

(19)
=⇒ ỹi(M̄ − Ci)ỹTi = 0 ∀i = 0, . . . , k.

Hence, ỹi is, like ȳi, a null vector of M̄ −Ci. Since the null space of M̄ −Ci is of rank one,
we get ỹi = λiȳi for some λi ∈ R, resulting in, Ȳi = λ2

i Ỹi.
Now we can show that the dual solution is unique. Assume that Ȳi 6= Ỹi, i.e. λ2

i 6= 1 for
some i = {1, . . . , k}. Feasibility of Ỹi and Ȳi gives

k∑
i=0

Ȳi = Ω⇔
k∑
i=0

λ2
i Ỹi = Ω

k∑
i=0

Ỹi = Ω

⇒
k∑
i=0

(1− λ2
i )Ỹi = 0,

i.e. {R(Ỹi)} are linearly dependent. This contradicts Lemma 6 and (17) which suggest
linear independence, as each R(Yi) is of rank one and together they span the whole space
Rk+1. Hence, Ȳi = Ỹi ∀i = {0, . . . , k}, i.e. the dual solution is unique.

Finally, the uniqueness of the primal solution can be established by the uniqueness for
the dual solution. Indeed, summing (16) gives

k∑
i=0

Ȳi(M̄ − Ci) = 0
(17)⇔ ΩM̄ =

k∑
i=0

ȲiCi ⇔ M̄ = Ω−1
k∑
i=0

ȲiCi.

Proof of Theorem 2:

Given the preceding support results of this section, we are now in a position to prove
Theorem 2.

First, we will show that p : Sk+1
++ 7→ R is differentiable on its domain. First, note that

p is concave due to (Rockafellar and Wets, 2009, Corollary 3.32) and hence continuous on
int(dom p) = Sk+1

++ (Rockafellar and Wets, 2009, Theorem 2.35). Also, note that due to
Lemma 7 the regular directional derivatives (Rockafellar and Wets, 2009, Theorem 8.22) of
p exist and are a linear map of the direction. Hence, according to (Rockafellar and Wets,
2009, Theorem 9.18 (a, f)) p is differentiable on Sk+1

++ .
Consider now the derivative of the solution of (P ) when perturbing Ω across a spe-

cific direction Ω̄, i.e. ∂q(γ; Ω)/∂γ with q(γ; Ω) = p(Ω + γΩ̄). Lemma 7 shows that
∂q(γ; Ω)/∂γ|0 = −〈Ω̄, M̄〉 when Ω � 0. The proof then follows element-wise from Lemma
7 by choosing Ω̄ a sparse symmetric matrix with Ω̄(i,j) = Ω̄(j,i) = 1/2 the only nonzero
elements.
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Appendix C. Derivative of the Optimal Solution

In this section we will provide a constructive proof of Theorem 3, and show in particular

that ˙̄M , the directional derivative of M̄(Ω) when perturbing Ω linearly across a direction
Ω̄ ∈ Sk+1, can be computed by solution of the following linear system

S̄0 0 (ȳT0 ⊗ I)Π+

. . .
...

0 S̄k (ȳTk ⊗ I)Π+

Π(ȳ0 ⊕ ȳ0) . . . Π(ȳ0 ⊕ ȳ0) 0




˙̄y0
...
˙̄yk

vecu( ˙̄M)

 =


0
...
0

vecu(Ω̄)

,
where

• S̄i = M̄i − Ci, i = 0, . . . , k

• yi is defined such that Ȳi = ȳiȳ
T
i , i.e. the non-zero eigenvector of the Lagrange

multiplier Ȳi, which was shown to be unique in Lemma (6).

• vec(·), is the operator that stacks the columns of a matrix to a vector, and vecu(·) the
operator that stacks only the upper triangular elements in a similar fashion

• Π, is the matrix that maps vec(Z) 7→ vecu(Z) where Z ∈ S, and Π+ performing the
inverse operation.

• ⊗ and ⊕ denote the Kronecker product and sum respectively.

Proof Lemma 7 of Appendix B, guarantees that the solutions of (P ) and (13) are unique
for any Ω � 0. Hence, according to Freund and Jarre (2004), the directional derivatives
˙̄M, ˙̄Yi of M̄, Ȳ along the perturbation Ω̄ exist and are given as the unique solution to the

following overdetermined system:

k∑
i=0

˙̄Yi = Ω̄

˙̄YiS̄i − Ȳi ˙̄M = 0

˙̄M, ˙̄Yi ∈ Sk+1 i = 0, . . . , k.

(21)

The above linear system is over-determined, and has symmetric constraints. This renders
standard solution methods, such as LU decomposition, inapplicable. Expressing the above
system in a standard matrix form results in a matrix with O(k4) zeros, which makes its
solution very costly.

To avoid theses issues, we will exploit Lemma 6 of Appendix B to express the dual
solution Ȳi compactly as Ȳi = ȳiȳ

T
i . One can choose a differentiable mapping Ȳi(t) 7→ ȳi(t),

e.g. ȳi(t) =
√
λi(t)ui(t) where λi(t) is the only positive eigenvalue of Ȳi(t) and ui(t) its

corresponding unit-norm eigenvector. Differentiability of ȳi(t) comes from differentiability
of Ȳi(t), λi(t), ui(t) (Kato, 1976) and positivity of λi(t) due to Lemma 6. The chain rule
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then applies for ˙̄Yi = ˙̄yiȳ
T
i + ȳi ˙̄yTi . Hence (21) can be expressed as

k∑
i=0

˙̄yiȳ
T
i + ȳi ˙̄yTi = Ω̄ (22)

( ˙̄yiȳ
T
i + ȳi ˙̄yTi )S̄i − ȳiȳTi ˙̄M = 0, i = 0, . . . , k. (23)

Exploiting ȳTi S̄i = 0 from (16) and that yi 6= 0 gives

(23)⇔ ȳi( ˙̄yTi S̄i − ȳTi ˙̄M) = 0
yi 6=0⇐⇒ ˙̄yTi S̄i − ȳTi ˙̄M, i = 0, . . . , k (24)

We can express equations (22) and (24) into the standard matrix form by using the vec
operator and the identity vec(AXB) = (BT ⊗A) vec(X), which gives

k∑
i=0

(ȳi ⊗ I + I ⊗ ȳi) ˙̄yi = vec(Ω̄)

Si ˙̄yi − (ȳTi ⊗ I)vec( ˙̄M) = 0, i = 0, . . . , k.

Finally, eliminating the symmetric constraint via vecu(·), Π and Π+ gives:

k∑
i=0

Π(ȳi ⊗ I + I ⊗ ȳi) ˙̄yi = vecu(Ω̄)

Si ˙̄yi − (ȳTi ⊗ I)Π+vecu( ˙̄M) = 0, i = 0, . . . , k,

(25)

leading to the suggested linear system. The system is square and non-singular since it is
equivalent to (21) which has a unique solution.

Finally, it remains to show that M(Ω) is a differentiable for any Ω � 0. First note that M
is outer semicontinuous (Rockafellar and Wets, 2009, Definition 5.4) on Sk+1

++ as, according

to Theorem (2), p is continuous on Sk+1
++ . Since M is unique on Sk+1

++ it is also continu-
ous. Finally, note that due to Equation (25) the regular directional derivatives (Rockafellar
and Wets, 2009, Theorem 8.22) of M exist and are a linear map of the direction. Hence,
according to (Rockafellar and Wets, 2009, Theorem 9.18 (a, f)) M is differentiable on Sk+1

++ .

Appendix D. Construction of the worst and best-case distributions

In this appendix we construct distributions in P(µ,Σ) that achieve the bounds of (3).
First, regarding the lower bound infP∈P(µ,Σ) EP[g(ξ)], where g is the convex piecewise affine
function defined by (4), the following Proposition implies that it is trivial, in the sense that
it is independent of the variance Σ.

Proposition 8 For any convex piecewise affine function maxi=1,...,l(ai + bTi ξ) the worst
case expectation infP∈P(µ,Σ) EP[maxi=1,...,l(ai + bTi ξ)] is equal to maxi=1,...,l(ai + bTi µ).
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Proof First note that the worst case expectation is bounded below

E
[

max
i=1,...,l

(ai + bTi ξ)

]
≥ max

i=1,...,l
E[ai + bTi ξ] = max

i=1,...,l
(ai + bTi µ). (26)

We will construct a sequence of parametric distributions that, in the limit, achieve the above
mentioned lower bound.

Assume the one-dimensional, uncorrelated random variables z, w

z ∼ U
(
−1

ε
,
1

ε

)
, w ∼ N (0, ε),

i.e. z is uniformly distributed in (−ε−1, ε−1), and w is a zero mean Gaussian with variance
ε, where ε ∈ R++.

Now, assuming 0 < ε ≤
√

1
3 , consider the random variable x with the mixture distribu-

tion

x =

{
z with probability 3ε2

w with probability 1− 3ε2.

Since both of the mixing distributions are zero mean, the resulting distribution is zero mean
with variance

E(x2) = 3ε2E(z2) + (1− 3ε2)E(w2) = 1 + ε(1− 3ε2).

In the limit ε→ 0 the random variable x has zero mean and variance one, but its probability
distribution function is infinitesimal everywhere outside the origin.

Assuming that y is a vector of independent variables distributed identically to x for
ε→ 0, the random vector ξ = Σ1/2y+µ has covariance matrix Σ and mean value µ, with its
probability distribution being infinitesimal everywhere expect in µ. For this random vector
(26) is tight.

Thus, according to Proposition 8 the worst case expectation infP∈P(µ,Σ) EP[g(ξ)] does not

depend on Σ and is equal to yD −min(µ1, . . . , µk, y
D).

Next, we will construct a distribution that achieves the upper bound of (3). In particular
we will show that for any Ω � 0 the optimal distribution P̄µ,Σ(Ω) of problem (P ) is discrete
and can be given in closed form by the solution of (13), i.e. the dual of (P ). To show this,
we will need the following ancillary result:

Proposition 9 For any Ω � 0 we have 〈Ȳi(Ω), Ci〉 < 0 ∀i = 1, . . . , k where Ȳi(Ω) is the
dual solution of (P ).

Proof Assume that there exists i ∈ {1, . . . , k} such that 〈Ȳi, Ci〉 ≥ 0. Then, the following
set of dual variables

Ỹ0 = Ȳ0 + Ȳi

Ỹi = 0

Ỹj = Ȳj , j ∈ {1, . . . , k} ∩ j 6= i,

(27)

is also optimal, as
∑k

i=1〈Ỹi, Ci〉 =
∑

i 6=j〈Ȳi, Ci〉 ≤
∑k

i=1〈Ȳi, Ci〉. This is a contradiction to
Lemma (7).

The following Theorem will now construct the best-case distribution:
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Theorem 10 For any Ω ∈ Sk+1
++ the probability distribution P̄(Ω) that minimizes (12) is

discrete with probability mass function

fy(ξ) =

{
pi, ξ = ξi, i = 0, . . . , k

0, otherwise,
(28)

where the points ξi and the probability masses pi are uniquely defined by the solution of (13)

and Ω =
[

Σ+µµT µ

µT 1

]
as following

Ȳi = pi

[
ξi
1

][
ξTi 1

]
, i = 1, . . . k

p0 = 1−
k∑
i=1

pi ξ0 = µ−
k∑
i=1

piξi.

Proof Consider the dual of (11) defined in (12) which can be reformulated as following:

−sup 〈Ω,M〉

s.t.
[
ξT 1

]
(M − Ci)

[
ξT 1

]T ≤ 0

∀ξ ∈ Rk, i = 0, . . . k.

(29)

According to Lemma 6, N (M̄ − Ci) = 1 = R(Ȳi), i = 0, . . . , k. Hence, at optimality,
the infinite dimensional constraint of (29) is active in at most k + 1 points. Due to slack
complementarity between the primal-dual pair (11)-(12) these are the only points for which
the optimal probability measure of (11) is nonzero. As a result, the optimal distribution
P̄µ,Σ is discrete with at most k + 1 points.

Denote as ξi the possible outcomes of the optimal probability distribution P̄µ,Σ, with ξi
corresponding to the i-th constraint of (28). Each ξi has a nonzero probability if and only if
there exists a (unique)

[
ξTi 1

]
∈ N (M̄−Ci) = R(Ȳi). This is always the case for i = 1, . . . , k

as otherwise the last row and column of Yi would be zero and, due to the special structure
of Ci, we would get 〈Ȳi, Ci〉 = 0 contradicting Proposition 27. Decomposing Ȳi as

Ȳi = pi

[
ξi
1

][
ξTi 1

]
, i = 1, . . . k

results in the following dual optimal cost

−
k∑
i=1

〈Ȳi, Ci〉 = −
k∑
i=1

pi(ξi(i) − yd),

from which we can verify that the suggested probability distribution (28) achieves the
optimal cost. Uniqueness of the probability distribution comes from uniqueness and linear
independence of Ȳi (Lemma (7)).

Finally, it is worth noting that a similar result that concerns a broader class of distri-
butionally robust optimization problems is given in (Van Parys, B. P.G., 2015, Theorem
5.1) which shows that the optimal distribution P̄µ,Σ has a discrete support. However, (Van
Parys, B. P.G., 2015) does not show how to construct the optimal distribution nor does he
prove that it consists of exactly k + 1 points.
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