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Abstract

Bayesian Optimisation (BO) refers to a suite of techniques for global optimisation of expensive
black box functions, which use introspective Bayesian models of the function to efficiently search
for the optimum. While BO has been applied successfully in many applications, modern opti-
misation tasks usher in new challenges where conventional methods fail spectacularly. In this
work, we present Dragonfly, an open source Python library for scalable and robust BO. Dragonfly
incorporates multiple recently developed methods that allow BO to be applied in challenging real
world settings; these include better methods for handling higher dimensional domains, methods
for handling multi-fidelity evaluations when cheap approximations of an expensive function are
available, methods for optimising over structured combinatorial spaces, such as the space of neural
network architectures, and methods for handling parallel evaluations. Additionally, we develop new
methodological improvements in BO for selecting the Bayesian model, selecting the acquisition
function, and optimising over complex domains with different variable types and additional con-
straints. We compare Dragonfly to a suite of other packages and algorithms for global optimisation
and demonstrate that when the above methods are integrated, they enable significant improvements
in the performance of BO. The Dragonfly library is available at dragonfly.github.io.

1. Introduction

Many scientific and engineering tasks can be cast as black box optimisation problems, where we
need to sequentially evaluate a noisy black box function with the goal of finding its optimum. A
common use case for black box optimisation, pervasive in many industrial and scientific applica-
tions, is hyperparameter tuning, where we need to find the optimal configuration of a black box
system by tuning the several knobs which affect the performance of the system. For example, in
scientific simulation studies, parameters in expensive simulations must be chosen to yield realistic
results (Parkinson et al., 2006); in materials design and drug discovery, parameters of a material
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or drug should be chosen to optimise the various desired criteria (Griffiths and Herndndez-Lobato,
2020). An application for hyperparameter tuning, most relevant to the machine learning community
is model selection, where we cannot model the generalisation performance of a statistical model
analytically. Hence, we need to carry out expensive train and validation experiments to find the best
model for a given task. Common methods for hyperparameter tuning, in practice, are often inefficient
or based on heuristics. For example, parameters may be chosen via an exhaustive (i.e. “grid”) or
random search over the parameter space, or via manual tuning by domain experts. In academic
circles, the lore is that this work is often done manually via trial and error by graduate students.

Formally, given a black box function f : X — R over some domain X, we wish to find its
optimum (maximum) using repeated evaluations to f. Typically, f is accessible only via noisy point
evaluations, is non-convex, and has no gradient information. In many applications, each evaluation
is expensive, incurring a large computational or economic cost. Hence, the goal is to maximise f
using as few evaluations as possible. Methods for this task aim to determine the next point x; for
evaluation using knowledge of f acquired via previous query-observation pairs {(z;, y;) f;i
Bayesian Optimisation (BO) refers to a suite of methods for optimisation, which use a prior belief
distribution for f. To determine future evaluations, BO methods use the posterior given the current
evaluations to reason about where to evaluate next. Precisely, it uses the posterior to construct an
acquisition function ¢, : X — R and chooses its maximum z; € argmax,c y () as the next point
for evaluation. BO usually consumes more computation to determine future points than alternative
methods for global optimisation, but this pays dividends when evaluating f is expensive, as it is
usually able to find the optimum in a fewer number of iterations than such methods. Bayesian
optimisation has shown success in a variety of hyperparameter tuning tasks including optimal policy
search, industrial design, scientific experimentation, and model selection.

That said, optimisation tasks in modern applications face new challenges which cannot be handled
by conventional approaches. This paper describes Dragonfly (dragonfly.github.io), a new open
source Python library for BO. Dragonfly has a primary focus of making BO scalable for modern
settings, and a secondary focus on making BO robust.

e Scalability: Over the last few years, we have published a line of work on scaling up BO to
address modern challenges. These include better methods for handling higher dimensional
domains, methods for handling multi-fidelity evaluations when cheap approximations of an
expensive function are available, methods for optimising over neural network architectures,
and methods for handling parallel evaluations. These methods have been incorporated into
Dragonfly. In addition, we use evolutionary algorithms to optimise the acquisition, which
enables BO over complex domains, including those with different variable types and with
fairly general constraints on these variables.

e Robustness: Conventional BO methods tend to be sensitive to the choice of the acquisition
and the parameters of the underlying Bayesian model. A common symptom of a bad choice
for these options is that the procedure is unable to improve on a previously found optimum
for a large number of iterations. Current approaches to handle these settings tend to be very
expensive, limiting their applicability in settings where evaluations to f are only moderately
expensive. We describe new randomised approaches implemented in Dragonfly which stochas-
tically sample among an available set of acquisition choices and model parameters instead of


https://dragonfly.github.io

DRAGONFLY: SCALABLE & ROBUST BAYESIAN OPTIMISATION

relying on a single value for the entire optimisation routine. This approach adds much needed
robustness to BO, at significantly lower computational overhead than existing approaches.

We compare Dragonfly to several other packages and algorithms for black box optimisation and
demonstrate that we perform better or competitively in a variety of synthetic benchmarks and real
world tasks in computational astrophysics and model selection. Crucially, Dragonfly is able to
consistently perform well across a wide array of problems.

The remainder of this manuscript is organised as follows. In Section 2, we review Gaussian processes
and BO, in Section 3 we describe our previous efforts for scaling up BO, and in Section 4 we describe
techniques for improving robustness of BO. Section 5 describes our implementation, and Section 6
compares Dragonfly to other popular methods and packages for global optimisation.

2. A Brief Review of Gaussian Processes and Bayesian Optimisation

A Review of Gaussian Processes: A Gaussian Process (GP) over a space X is a random process
from & to R. GPs are typically used as a prior for functions in Bayesian nonparametrics. A GP is
characterised by a mean function z : X — R and a kernel (covariance function) x : X2 — R. If
f ~ GP(u, k), then f(x) is distributed normally NV (u(x), x(x, z)) for all z € X'. Some common
options for the prior kernel « are the squared exponential and Matérn kernels. Suppose that we are
given n observations D,, = {(z;,¥;)}I~, from this GP, where z; € X, y; = f(z;) + ¢ € R and
i ~ N(0,1?). Then the posterior f|D,, is also a GP with mean y,, and covariance ,, given by,

() = kT (K + n2L,)7'Y, kn(z, 1) = k(z,2') — kT (K +°1,) K. (1)

Here, Y € R™ is a vector with Y; = y;, and k, k' € R™ are such that k; = r(z, ;) k} = (2, ;).
I, is the n x n identity matrix. The Gram matrix K € R™*" is given by K; ; = r(x;, ;). We have
illustrated the prior and posterior GPs in Figure 1. We refer the reader to Chapter 2 of Rasmussen
and Williams (2006) for more on the basics of GPs and their use in regression.

A Review of Bayesian Optimisation: BO refers to a suite of methods for black box optimisation in
the Bayesian paradigm which use a prior belief distribution for f. BO methods have a common modus
operandi to determine the next point x; for evaluation: first use the posterior for f conditioned on the
past evaluations {(z;, ;) }!_] to construct an acquisition function ¢; : X — R; then maximise the
acquisition to determine the next point, x; € argmax, y ¢¢(x). At time ¢, the posterior represents
our beliefs about f after t — 1 observations and ;(x) captures the utility of performing an evaluation
at x according to this posterior. Typically, optimising ¢; can be nontrivial. However, since ¢ is
analytically available, it is assumed that the effort for optimising ¢, is negligible when compared
to an evaluation of f. After n evaluations of f, usually, the goal of an optimisation algorithm is to
achieve small simple regret .S,,, defined below.

Sn = (@) = max_f(a), @
While there are several options for the prior for f, such as neural networks (Snoek et al., 2015;
Springenberg et al., 2016) and random forests (Hutter et al., 2011), the most popular option is
to use a GP. Similarly, while there are several choices for the acquisition, for the purpose of this
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Figure 1: An illustration of GPs and BO. The first figure shows the function of interest f (black line)
and illustrates a GP that represents the prior uncertainty. The shaded region is a 99% confidence
region for f and the coloured lines are samples from the GP. The second figure shows some noisy
observations (black x’s) of f and the posterior GP conditioned on the observations. The confidence
region has shrunk around the observations. In the third figure we illustrate GP-UCB when we have
to pick the next point x; given the observations. The GP-UCB acquisition ¢; upper bounds f. At
time ¢, we choose the maximiser of ¢, for evaluation, i.e x; € argmax, ().

introduction, we focus on Gaussian process upper confidence bound (GP-UCB) (Auer, 2003; Srinivas
et al., 2010) and Thompson sampling (TS) (Thompson, 1933). The GP-UCB acquisition forms an
upper confidence bound for f, and is defined as,

oi(r) = p(z) + BP0 (). 3)

Here p;—1 is the posterior mean of the GP after ¢t — 1 observations and is our current estimate of f.
The posterior standard deviation, 0,1, is the uncertainty associated with this estimate. The p;—1
term encourages an exploitative strategy—in that we want to query regions where we already believe
f is high—and o;_1 encourages an exploratory strategy—in that we want to query where we are
uncertain about f lest we miss high valued regions which have not been queried yet. 3; controls the
trade-off between exploration and exploitation. We have illustrated GP-UCB in Figure 1. Thompson
sampling is another popular BO method, where at each time step, a random sample drawn from the
posterior serves as the acquisition ;. Precisely, at time ¢, the next evaluation point is determined by
drawing a sample h from the posterior and then choosing z; € argmax,cy h(z). Other common
acquisitions for BO include probability of improvement (Pl) (Kushner, 1964), expected improvement
(GP-EI) (Jones et al., 1998), knowledge gradient (Frazier et al., 2009), top-two expected improvement
TTEI (Qin et al., 2017), and entropy based methods (Hennig and Schuler, 2012).

Finally, we mention that the mean and kernel function of the prior GP have parameters which are typ-
ically chosen via empirical Bayes methods, such as maximum likelihood or posterior marginalisation;
we will elaborate more on this in Section 4.2.

3. Scaling up Bayesian Optimisation

We now describe our prior work in scaling up BO to modern large scale problems. We provide only
a brief overview of each method and refer the reader to the original publication for more details.
Where necessary, we also provide some details on our implementation in Dragonfly.
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3.1. Additive Models for High Dimensional Bayesian Optimisation

In this subsection we consider settings where X is a compact subset of R?. While BO has been
successful in many low dimensional applications (typically d < 10), expensive high dimensional func-
tions occur in several fields such as computer vision (Yamins et al., 2013), antenna design (Hornby
et al., 2006), computational astrophysics (Parkinson et al., 2006) and biology (Gonzalez et al., 2014).
Existing theoretical and empirical results suggest that BO is exponentially difficult in high dimensions
without further assumptions (Srinivas et al., 2010; Wang et al., 2013).

In Kandasamy et al. (2015a), we identify two key challenges in scaling BO to high dimensions. The
first is the statistical challenge in estimating the function — nonparametric regression is inherently
difficult in high dimensions (Gyorfi et al., 2002). The second is the computational challenge
in maximising ;. Commonly used methods to maximise ¢; themselves require computation
exponential in dimension. We showed that we can overcome both challenges by modeling f as an
additive function. Prior to our work, most literature for BO in high dimensions are in the setting
where the function varies only along a very low dimensional subspace (Chen et al., 2012; Wang
et al., 2013; Djolonga et al., 2013). In these works, the authors do not encounter either the statistical
or computational challenge as they perform BO in either a random or carefully selected lower
dimensional subspace. However, these assumptions can be restrictive in many practical problems.
While our additive assumption is strong in its own right, it is considerably more expressive.

Key structural Assumption: In order to make progress in high dimensions, in Kandasamy et al.
(2015a), we assumed that f decomposes into the following additive form,

fl@) = fD @)+ f@ @) 4.4 pOD (5 (M) )

Here each z0) € X0U) are lower dimensional groups of dimensionality p;. In this setting, we are
interested in cases where d is very large and the group dimensionality is bounded: p; < p < d.
We will refer to the X9)’s as groups and the grouping of different dimensions into these groups
{x (G )} j=1 as the decomposition. The groups are disjoint —i.e. if we treat the coordinates as a set,
2@ Nz = @. In keeping with the BO literature, we assume that each f(9) is sampled from a GP,
GgP(o, Ii(j)) where the f()’s are independent. Here, () : X() x X)) — R is the kernel for f(7).
This implies that f itself is sampled from a GP with an additive kernel r(z, 2") = 3 _; k) (20) 20 ),).
While other additive GP models have been studied before (e.g. (Duvenaud et al., 2011)), the above
form will pave the way to nice computational properties, as we will see shortly.

A natural first inclination given (4) is to try GP-UCB with an additive kernel. Since an additive
kernel is simpler than a d* order kernel, we can expect statistical gains—in Kandasamy et al. (2015a)
we showed that the regret improves from being exponential in d to linear in d. However, the main
challenge in directly using GP-UCB is that optimising ¢ in high dimensions can be computationally
prohibitive in practice. For example, using any grid search or branch and bound method, maximising
¢ to within ¢ accuracy, requires O(¢~%) calls to ;. To circumvent this, we proposed Add-GP-UCB
which exploits the additive structure in f to construct an alternative acquisition function. For this, we
first describe inferring the individual f()’s using observations from f.

Inference in additive GPs: Suppose we are given observations Y = {yi,...,yn} at X =
{x1,...,2,}, where y; = f(x;) + € and ¢ ~ N(0,7%). For Add-GP-UCB, we will need the
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distribution of f(/) (xi] )) conditioned on X, Y, which can be shown to be the following Gaussian.

fOEN e XY ~ N (K +021) 7Y k0@ 2l = k0

(K +n°L) " 'kY) (9)
where k() € R™ are such that ki(j ) = k@ (x, ;). I, is the n x n identity matrix. The Gram matrix
K € R™"is givenby K j = r(x,25) = 3, w9 (24, 75).

The Add-GP-UCB acquisition: We now define the Add-GP-UCB acquisition ¢y as,
M
j ; 1/2 (5 j
eul@) = Y (@) + 8o, (). (©)
j=1

(¢ can be maximised by maximising ul(i)l + Btl / 2091 separately on XU). As we need to solve M at

most p dimensional optimisation problems, it requires only O(MPT1(~P) calls in total to optimise
within ( accuracy—far more favourable than maximising (.

We conclude this section with a couple of remarks. First, while our original work used a fixed group
dimensionality, in Dragonfly we treat this and the decomposition as kernel parameters. We describe
how they are chosen at the end of Section 5. Second, we note that several subsequent works have
built on our work and studied various additive models for high dimensional BO. For example, Wang
et al. (2017); Gardner et al. (2017) study methods for learning the additive structure. Furthermore, the
disjointedness in our model (4) can be restrictive in applications where the function to be optimised
has additive structure, but there is dependence between the variables. Some works have tried to
generalise this. Li et al. (2016) use additive models with non-axis-aligned groups, and Rolland et al.
(2018) study additive models with overlapping groups.

3.2. Multi-fidelity Bayesian Optimisation

Traditional methods for BO are studied in single fidelity settings; i.e. it is assumed that there
is just a single expensive function f. However, in practice, cheap approximations to f may be
available. These lower fidelity approximations can be used to discard regions in X with low function
value. We can then reserve the expensive evaluations for a small promising region. For example, in
hyperparameter tuning, the cross validation curve of an expensive machine learning algorithm can be
approximated via cheaper training routines using less data and/or fewer training iterations. Similarly,
scientific experiments can be approximated to varying degrees using cheaper data collection and
computational techniques.

BO techniques have been used in developing multi-fidelity optimisation methods in various applica-
tions such as hyperparameter tuning and industrial design (Huang et al., 2006; Swersky et al., 2013;
Klein et al., 2015; Poloczek et al., 2017). However, these methods do not come with theoretical
underpinnings. There has been a line of work with theoretical guarantees developing multi-fidelity
methods for specific tasks such as active learning (Zhang and Chaudhuri, 2015), and model selec-
tion (Li et al., 2018). However, these papers focus on the specific applications themselves and not
on general optimisation problems. In a recent line of work (Kandasamy et al., 2016c¢.a,b, 2017), we
studied multi-fidelity optimisation and bandits under various assumptions on the approximations.



DRAGONFLY: SCALABLE & ROBUST BAYESIAN OPTIMISATION

To the best of our knowledge, this is the first line of work that theoretically formalises and analyses
multi-fidelity optimisation. Of these, while our work in Kandasamy et al. (2016c.a,b) requires
stringent assumptions on the approximations, our follow up work, BOCA (Kandasamy et al., 2017),
uses assumptions of a more Bayesian flavour and can be applied as long as we define a kernel on the
approximations. We first describe the setting and algorithm for BOCA and then discuss the various
modifications in our implementation in Dragonfly.

Formalism for Multi-fidelity Optimisation: We will assume the existence of a fidelity space Z
and a function g : Z X & — R defined on the product space of the fidelity space and domain. The
function f which we wish to maximise is related to g via f(-) = g(ze, ), Where zo € Z. z, is the
fidelity at which we wish to maximise the multi-fidelity function. Our goal is to find a maximiser
Z, € argmax,, f(r) = argmax, g(ze,x). In the rest of the manuscript, the term “fidelities” will
refer to points z in the fidelity space Z. The multi-fidelity framework is attractive when the following
two conditions are true.

1. The cheap g(z,-) evaluation gives us information about g(ze, ). As we will describe shortly, this
can be achieved by modelling g as a GP with an appropriate kernel for the fidelity space Z.

2. There exist fidelities z € Z where evaluating g is cheaper than evaluating at z,. To this end,
we will associate a known cost function A : Z — R.. It is helpful to think of z, as being the
most expensive fidelity, i.e. maximiser of A, and that A(z) decreases as we move away from z,.
However, this notion is strictly not necessary for our algorithm or results.

We will assume g ~ GP(0, k), and upon querying at (z,z) we observe y = ¢(z,x) + € where
e ~ N(0,7%). k : (Z x X)? — Ris the prior covariance defined on the product space. We will
exclusively study product kernels x of the following form,

k([z, 2], 7, 2']) = kokz(z,2') kx(x, o). @)

Here, ro € R is the scale of the kernel and x z, kx are kernels defined on Z, X’ such that ||k z||cc =
lkx||oo = 1. This assumption implies that for any sample g drawn from this GP, and for all z € Z,
g(z,-) is a GP with kernel xy, and vice versa. This assumption is fairly expressive — for instance, if
we use an SE kernel on the joint space, it naturally partitions into a product kernel of the above form.

At time ¢, a multi-fidelity algorithm would choose a fidelity z; € Z and a domain point z; € X to
evaluate based on its previous fidelity, domain point, observation triples {(z;, z;, ;) }\_1. Here y;
was observed when evaluating ¢(z;, z;). Let D,, = {(z;, i, y;) }—; be n such triples from the GP
g. We will denote the posterior mean and standard deviation of g conditioned on D,, by v,, and 7,
respectively (v, 7, can be computed from (1) by replacing x < [z, x]). Denoting, i, (-) = vy (Ze, *),
and o, (-) = 7,(Ze, *), to be the posterior mean and standard deviation of g(z.,-) = f(-), we have
that f|D,, is also a GP and satisfies f(z)|D,, ~ N (pun (), 02(z)) forall z € X.

In Kandasamy et al. (2017), we defined both xkz and kx to be radial kernels, and proposed the
following two step procedure to determine the next evaluation. At time ¢, we will first construct
an upper confidence bound ¢; for the function f we wish to optimise. It takes the form, ¢;(z) =
pe—1(x) + Btl / QJt,l(x), where ;1 and o041 are the posterior mean and standard deviation of f
conditioned on the observations from the previous ¢ — 1 time steps at all fidelities, i.e. the entire
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Figure 2: An illustration of GP sample paths drawn from the expo-
nential decay kernel (Swersky et al., 2014b) conditioned on being
positive. They are suitable for representing the validation accuracy
along a fidelity dimension in model selection where, for e.g. validation
accuracy tends to increase as we use more data and/or train for more
iterations.

Z x X space. Our next point z; in the domain X for evaluating ¢ is a maximiser of ¢, i.e.

1/2 1/2
xy € argmax py—1(x) —i—Bt/ oi—1(z) = argmax v;_1(ze, ) —i—Bt/ Ti—1(Ze, T). (8)
TEX TEX

We then choose z; = argmin, ¢ z,,,) A(2) where,

Zi(z) = {ze} U {z tA(2) < A(ze), Ti—1(z, 1) > /Fo&(2) )\(z)/)\(z.)}. 9)

Here &(z) is an information gap function. We refer the reader to Section 2 in Kandasamy et al. (2017)
for the definition and more details on £(z), but intuitively, it measures the price we have to pay,
in information, for querying away from z,. £(z) is a well defined quantity for radial kernels; for
e.g. for kernels of the form r(z, ) = exp(||z — 2’[|?"), one can show that £(z) is approximately
proportional to ||z — ze||”. The second step in BOCA says that we will only consider fidelities where
the posterior variance is larger than a threshold. This threshold captures the trade-off between cost
and information in the approximations available to us; cheaper fidelities cost less, but provide less
accurate information about the function f we wish to optimise.

Other acquisitions: A key property about the criterion (9) shown in Kandasamy et al. (2017), is that
is chooses a fidelity z; with good cost to information trade-off, given that we are going to evaluate g
at x;. In particular, it applies to x; chosen in an arbitrary fashion, and not necessarily via an upper
confidence bound criterion (8). Therefore in Dragonfly, we adopt the two step procedure described
above, but allow x; to be chosen also via other acquisitions as well.

Exponential decay kernels for monotonic approximations: In Kandasamy et al. (2017), we
choose the fidelity kernel xz to be a radial kernel. This typically induces smoothness in g across
Z, which can be useful in many applications. However, in model selection, the approximations are
obtained by using less data and/or less iterations in an iterative training procedure. In such cases, as
we move to the expensive fidelities, the validation performance tends to be monotonic—for example,
when the size of the training set increases, one expects the validation accuracy to keep improving.
Swersky et al. (2014b) demonstrated that an exponential decay kernel keq(u, v') = 1/(u + v’ + 1)?,
can strongly support such sample paths. We have illustrated such sample paths in Figure 2. Ina p
dimensional fidelity space, one can use kz(z,2") = [[V_; Ked(2, 2}) as the kernel for the fidelity
space if all fidelity dimensions exhibit such behaviour. Unfortunately, the information gain £(z) is
not defined for non-radial kernels. In Dragonfly, we use £(z) = ||z — ze|| which is similar to the
approximation of the information gain for SE kernels. Intuitively, as z moves away from z,, the
information gap increases as g(z, -) provides less information about g(z, -).

This concludes our description of multi-fidelity optimisation in Dragonfly. Following our work, there
have been a few papers on multi-fidelity optimisation with theoretical guarantees. Sen et al. (2018a,b)
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develop an algorithm in frequentist settings which builds on the key intuitions here, i.e. query at low
fidelities and proceed higher only when the uncertainty has shrunk. In addition, Song et al. (2019)
develop a Bayesian algorithm which chooses fidelities based on the mutual information.

3.3. Bayesian Optimisation for Neural Architecture Search

In this section, we study using BO for neural architecture search (NAS), i.e. for finding the optimal
neural network architecture for a given prediction problem. The majority of the BO literature has
focused on settings where the domain & is either Euclidean and/or categorical. However, with
the recent successes of deep learning, neural networks are increasingly becoming the method of
choice for many machine learning applications. Recent work has demonstrated that architectures
which deviate from traditional feed forward structures perform welle.g. He et al. (2016); Huang
et al. (2017). This motivates studying model selection methods which search the space of neural
architectures and optimise for generalisation performance. While there has been some work on BO
for architecture search (Swersky et al., 2014a; Mendoza et al., 2016), they only optimise among feed
forward architectures. Jenatton et al. (2017) study methods for BO in tree structured spaces, and
demonstrate an application in optimising feed forward architectures. Besides BO, other techniques
for NAS include reinforcement learning (Zoph and Le, 2017), evolutionary algorithms (Liu et al.,
2017), gradient based methods (Liu et al., 2019), and random search (Li and Talwalkar, 2019).

There are two main challenges for realising GP based BO for architecture search where each element
x € X in our domain is now a neural network architecture. First, we must quantify the similarity
between two architectures x, 2’ in the form of a kernel x(z, 2"). Secondly, we must maximise (;, the
acquisition function, in order to determine which point x; to test at time ¢. To tackle these issues,
in Kandasamy et al. (2018b) we develop a (pseudo-) distance for neural network architectures called
OTMANN (Optimal Transport Metrics for Architectures of Neural Networks) that can be computed
efficiently via an optimal transport program. Using this distance, we develop a BO framework for
optimising functions defined on neural architectures called NASBOT (Neural Architecture Search
with Bayesian Optimisation and Optimal Transport), which we describe next. We will only provide
high level details and refer the reader to Kandasamy et al. (2018b) for a more detailed exposition.

The OTMANN Distance and Kernel: Our first and primary contribution in Kandasamy et al.
(2018b) was to develop a distance metric d among neural networks; given a distance d of this form,
we may use e 7% as the kernel. This distance was designed taking into consideration the fact that the
performance of an architecture is determined by the amount of computation at each layer, the types of
these operations, and how the layers are connected. A meaningful distance should account for these
factors. To that end, OTMANN is defined as the minimum of a matching scheme which attempts
to match a notion of mass at the layers from one network to the layers of the other. The mass is
proportional to the amount of computation happening at each layer. We incur penalties for matching
layers with different types of operations or those at structurally different positions. The goal is to
find a matching that minimises these penalties, and the penalty at the minimum is a measure of
dissimilarity between two networks G;, Go. In Kandasamy et al. (2018b), we show that this matching
scheme can be formulated as an optimal transport program (Villani, 2003), and moreover the solution
induces a pseudo-distance d in the space of neural architectures.
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The NASBOT Algorithm and its implementation in Dragonfly: Equipped with such a distance,
we use a sum of exponentiated distance terms as the kernel, as explained previously. These distances
are obtained via different parameters of OTMANN and/or via normalised versions of the original
distance. To optimise the acquisition, we use an evolutionary algorithm. For this, we define a library
of modifiers which modify a given network by changing the number of units in a layer, or make
structural changes such as adding skip connections, removing/adding layers, and adding branching
(see Table 6 in Kandasamy et al. (2018b)). The modifiers allow us to navigate the search space, and
the evolutionary strategy allows us to choose good candidates to modify. In Dragonfly, we also tune
for the learning rate, and moreover, allow for multi-fidelity optimisation, allowing an algorithm to
train a model partially and observe its performance. We use the number of training batch iterations
as a fidelity parameter and use an exponential decay kernel across the fidelity space.

3.4. Parallelisation

BO, as described in Section 2, operates sequentially by determining the next query after completing
previous queries. However, we may have access to multiple workers and hence be able to carry out
several evaluations simultaneously. As we demonstrated theoretically in Kandasamy et al. (2018a),
when there is high variability in evaluation times, it is prudent for BO to operate in asynchronously,
where a worker is re-deployed immediately with a new evaluation once it completes an evaluation.
In contrast, if all evaluations take roughly the same amount of time, it is meaningful to wait for all
workers to finish, and incorporate all their feedback before issuing the next set of queries in batches.

In our implementations of all acquisitions except TS, we handle parallelisation using the hallucination
technique of Desautels et al. (2014); Ginsbourger et al. (2011). Here, we pick the next point exactly
as in the sequential setting, but the posterior is based on D; U {(z, pt—1(z)) }zer,, Where F are
the points in evaluation by other workers at step ¢ and p;—1 is the posterior mean conditioned on
just D;. This preserves the mean of the GP, but shrinks the variance around the points in F}, thus
discouraging the algorithm from picking points close to those that are in evaluation. However, for
TS, as we demonstrated in Kandasamy et al. (2018a), a naive application would suffice, as the
inherent randomness of TS ensures that the points chosen for parallel evaluation are sufficiently
diverse. Therefore, Dragonfly does not use hallucinations for TS. While there are other techniques
for parallelising BO, they either require choosing additional parameters and/or are computationally
expensive (Gonzélez et al., 2016; Shah and Ghahramani, 2015; Wang et al., 2018).

4. Robust Bayesian Optimisation in Dragonfly

We now describe our design principles for robust GP based BO in Dragonfly. We favour randomised
approaches which uses multiple acquisitions and GP hyperparameter values at different iterations
since we found them to be quite robust in our experiments.

4.1. Choice of Acquisition

Dragonfly implements several common acquisitions for BO such as GP-UCB, GP-EI, TTEI, TS,
Add-GP-UCB, and PI. The general practice in the BO literature has been for a practitioner to pick

10



DRAGONFLY: SCALABLE & ROBUST BAYESIAN OPTIMISATION

Hartmann6 (d=06) Park1x3 (d=12) Braninx20 (d =40)
*\ s s = 10°
) \‘::-Q\._\, E )
] ] ]
&1 | —8— RAND t o o
m GP-PI M 10° M 6x10%
2 | —— cpEl ) 2
£ —— TTEL £ £
w w w

Add-GP-UCB
TS
—e— Combined

4x 100

60 80 100 0 20 40 60 80 100 0 2 40 60 80 100

0 20 P
Number of Evaluations Number of Evaluations Number of Evaluations

Figure 3: Comparison of using individual acquisitions such as GP-UCB, GP-EI, TTEI, TS, PI, and
Add-GP-UCB versus the combined sampling method described in Section 4.1. We have also shown
random sampling (RAND) for comparison. We plot the simple regret (2), so lower is better. Error
bars indicate one standard error. All curves were produced by averaging over 10 independent runs.

their favourite acquisition, and use it for the entire optimisation process. However, the performance
of each acquisition can be very problem dependent, as demonstrated in Figure 3. Therefore, instead
of trying to pick the single best acquisition, we adopt an adaptive sampling strategy which chooses
different acquisitions at different iterations instead of attempting to pick a single best one.

Our sampling approach maintains a list of m acquisitions ¢*°9 along with a weight vector w; ! =

{wia]}acma € R™. We set wy [a] = wy™? for all o € £2%9. Suppose at time step ¢, we chose
acquisition ¢ and found a higher f value than the current best value. We then update w;% [o]
wy o] + 1(0 = «); otherwise, w;} [a] <+ w;“l[e]. At time ¢, we choose acquisition § € 24
with probability w;“1[6]/ > wi“d[a]. This strategy initially samples all acquisitions with equal

probability, but progressively favours those that perform better on the problem.

By default, we set ¢*°9 = {GP-UCB, GP-EIl, TS, TTEI}; for entirely Euclidean domains, we also
include Add-GP-UCB. We do not incorporate Pl since it consistently underperformed other acquisi-
tions in our experiments. As Figure 3 indicates, the combined approach is robust across different
problems, and is competitive with the best acquisition on the given problem. A similar sampling
approach to ours is used in Hoffman et al. (2011). Shahriari et al. (2014) use an entropy based
approach to select among multiple acquisitions; however, this requires optimising all of them which
can be expensive. We found that our approach, while heuristic in nature, performed well in our
experiments. Finally, we note that we do not implement entropy based acquisitions, since their
computation can, in general, be quite expensive.

4.2. GP Hyperparameters

One of the main challenges in GP based BO is that the selection of the GP hyperparameters’
themselves could be notoriously difficult. While a common approach is to choose them by maximising
the marginal likelihood, in some cases, this could also cause overfitting in the GP, especially in the
early iterations (Snoek et al., 2012). The most common strategy to overcome this issue is to maintain
a prior on the hyperparameters and integrate over the posterior (Malkomes et al., 2016; Snoek

1. Here “hyperparameters” refer to those of the GP, such as kernel parameters, and should not be conflated with the title
of this paper, where “hyperparameter tuning” refers to the general practice of optimising a system’s performance.
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Figure 4: Comparison using only maximum likelihood (ML), only posterior sampling (PS) and the
combined sampling approach (ML+PS) as described in Section 4.2. We have also shown random
sampling (RAND) for comparison. We plot the simple regret (2), so lower is better. All curves were
produced by averaging over 10 independent runs. Error bars indicate one standard error.

et al., 2012; Hoffman and Shahriari, 2014). However, this can be very computationally burdensome,
and hence prohibitive in applications where function evaluations are only moderately expensive.
Instead, in this work, we focus on a different approach that uses posterior sampling. Precisely, at
each iteration, one may sample a set of GP hyperparameters from the posterior conditioned on the
data, and use them for the GP at that iteration. Intuitively, this is similar to a Thompson sampling
procedure where the prior on the hyperparameters specifies a prior on a meta-model, and once we
sample the hyperparameters, we use an acquisition of our choice. When this acquisition is TS, this
procedure is exactly Thompson sampling using the meta-prior.

Our experience suggested that maximising the marginal likelihood (ML) generally worked well in
settings where the function was smooth; for less smooth functions, sampling from the posterior (PS)
tended to work better. We speculate that this is because, with smooth functions, a few points are
sufficient to estimate the landscape of the function, and hence maximum likelihood does not overfit;
since it has already estimated the GP hyperparameters well, it does better than PS. On the other hand,
while ML is prone to overfit for non-smooth functions, the randomness in PS prevents us from getting
stuck at bad GP hyperparameters. As we demonstrate in Figure 4, either of these approaches may
perform better than the other depending on the problem.

Therefore, similar to how we handled the acquisitions, we adopt a sampling approach where we
choose either maximum likelihood or sampling from the posterior at every iteration. Our GP
hyperparameter tuning strategy proceeds as follows. After every n.y. evaluations of f, we fit a single
GP to it via maximum likelihood, and also sample n.y. hyperparameter values from the posterior.
At every iteration, the algorithm chooses either ML or PS in a randomised fashion. If it chooses the
former, it uses the single best GP, and if it chooses the latter, it uses one of the sampled values. For
the sampling strategy, we let wf® = {w!"[]} he € R? where (" = {ML, PS} and choose strategy
h € (" with probability w? P[n]/ (w,tfl PML] + w?p [PS]). We update w?p in a manner similar to w; 4.
Figure 4 demonstrates that this strategy performs as well as, if not better than the best of ML and PS.

By default, Dragonfly uses n¢yc = 17. For maximum likelihood of continuous GP hyperparameters,
we use either DiRect (Jones et al., 1993) or PDOO (Grill et al., 2015). If discrete hyperparameters
are also present, we optimise the continuous parameters for all choices of discrete values; this is

12
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feasible, since, in most cases, there are only a handful of discrete GP hyperparameter values. For
posterior sampling, we impose a uniform prior and use Gibbs sampling as follows. At every iteration,
we visit each hyperparameter in a randomised order; on each visit, we sample a new value for the
current hyperparameter, conditioned on the values of the rest of the hyperparameters. For continuous
hyperparameters, we do so via slice sampling (Neal, 2003) and, for discrete hyperparameters, we
use Metropolis-Hastings. We use a burn-in of 1000 samples and collect a sample every 100 samples
from thereon to avoid correlation. Next, we describe our BO implementation in Dragonfly.

5. BO Implementation in Dragonfly

Domains: Dragonfly allows optimising over domains with Euclidean, integral, and discrete variables.
We also define discrete numeric and discrete Euclidean variable types, where a variable can assume
one of a finite discrete set of real numbers and Euclidean vectors respectively. We also allow neural
network variable types which permits us to optimise functions over neural network architectures.
In addition to specifying variables, one might wish to impose constraints on the allowable values
of these variables. These constraints can be specified via a Boolean function which takes a point
and returns True if and only if the point exists in the domain. For example, if we have a Euclidean
variable z € [—1, 1]2, the function 1{||z||2 < 1} constrains the domain to the unit ball. In Dragonfly,
these constraints can be specified via a Python expression or function.

Kernels: For Euclidean, integral, and discrete numeric variables, Dragonfly implements the squared
exponential and Matérn kernels. We also implement additive variants of above kernels for the Add-
GP-UCB acquisition. Following recommendations in Snoek et al. (2012), we use the Matérn-2.5
kernel by default for above variable types. We found that it generally performed better across our
experiments as well. For discrete variables, we use the Hamming kernel (Hutter et al., 2011); precisely,
given z, 2’ € x%_| A;, where each A; is a discrete domain, we use Koo (7, 7') = 0 S5 a;1(z; =
x}) as the kernel. Here 0 > 0 and a € R, >; @; = 1 are kernel hyperparameters determining the
scale and the relative importance of each discrete variable respectively. Dragonfly also implements
the OTMANN and exponential decay kernels discussed in Sections 3.3 and 3.2 respectively.

Optimising the Acquisition: To maximise the acquisition ¢, in purely Euclidean spaces with no
constraints, we use DiRect (Jones et al., 1993) or PDOO (Grill et al., 2015), depending on the
dimensionality d. Our Fortran implementation of DiRect, can only handle up to d = 64; for larger
dimensions we use PDOO. In all other cases, we use an evolutionary algorithm. For this, we begin
with an initial pool of randomly chosen points in the domain and evaluate the acquisition at those
points. We then generate a set of Ny, mutations of this pool as follows; first, stochastically select
Nmue candidates from this set such that those with higher ¢, values are more likely to be selected;
then apply a mutation operator to each candidate. Then, we evaluate the acquisition on this Ny,
mutations, add it to the initial pool, and repeat for the prescribed number of steps. We choose an
evolutionary algorithm since it is simple to implement and works well for cheap functions, such as
the acquisition ¢;. However, as we demonstrate in Section 6, it is not ideally suited for expensive-
to-evaluate functions. Each time we generate a new candidate we test if they satisfy the constraints
specified. If they do not, we reject that sample and keep sampling until all constraints are satisfied.
One disadvantage to this rejection sampling procedure is that if the constrains only permit a small
subset of the entire domain, it could significantly slow down the optimisation of the acquisition.
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Initialisation: We bootstrap our BO routine with nj,j; evaluations. For Euclidean and integral
variables, these points are chosen via latin hypercube sampling, while for discrete and discrete
numeric variables they are chosen uniformly at random. For neural network variables, we choose
ninit feed forward architectures. Once sampled, as we did when optimising the acquisition, we use
rejection sampling to test if the constraints on the domain are satisfied. By default, niyj is set to 5d
where d is the dimensionality of the domain but is capped off at 7.5% of the optimisation budget.

We have summarised the resulting procedure for BO in Dragonfly in Algorithm 1. ¢, ¢ denote a
query. In usual BO settings, they simply refer to the next point z € X, i.e. ¢ = (z); in multi-fidelity
settings they also include the fidelity z € Z,i.e. ¢ = (2, ). acq(q), hp(g) refer to the acquisition and
the choice of {ML, PS} for GP parameter selection. multinomial-sample(¢, w) samples an element
from a set ¢ from the multinomial distribution {w;/ > j wj} y:ll. Before concluding this section, we
take a look at two implementation details for Add-GP-UCB.

Algorithm 1 Bayesian Optimisation in Dragonfly with M asynchronous workers

Require: nipi, Neye, 29, 0P,
1: Dy < Evaluate f at njy; points.

2: Ymax < Maximum y value in Dy.
3: wacq = wng1|gacq|.
4 whP = wgplg.
5: forj=0,1,2... do
6:  Wait for a worker to finish.
7. Dj <+ Dj_1U{(q,y)} where (¢, y) are the worker’s previous query and observation.
8: ify > Ymax» then # update weights if new max-value was found
9 w*lacq(q)] = w*acq(q)] + 1.
10:  w®hp(q)] = w'lhp(q)] + 1.
11:  endif
12: if mod (t,ncyc) =0, then # updates for GP hyperparameters
13: OF% < sample ncyc GP hyperparameter values.
14: OM- < maximise GP marginal likelihood to find best GP hyperparameter values.
15:  end if
16: 6 «+ multinomail-sample([pop(©), "], w"P). # choose GP hyperparameters
17: o 4 multinomial—sample(éacq, ’LUva). # choose acquisition
18:  py—1 < Compute posterior GP mean given D, using 6.
19:  Compute hallucinated posterior GP GP;_1 <= GP (p1i—1, ki—1; Dj U {(x, pe—1(2)) tzer,, 0).
20: ¢’ + Determine next query for evaluation using acquisition o and GP GP;_1.

21:  Re-deploy worker with an evaluation at ¢'.
22: end for

Choosing the decomposition for Add-GP-UCB: Recall from Section 3.1, the additive decompo-
sition and maximum group dimensionality for Add-GP-UCB are treated as kernel parameters. We
conclude this section by describing the procedure for choosing these parameters, both for ML and PS.
For the former, since a complete maximisation can be computationally challenging, we perform a
partial maximisation by first choosing an upper bound pp,x for the maximum group dimensionality.
For each group dimensionality p € {1,. .., pmax}, We select k different decompositions chosen at
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random. For each such decomposition, we optimise the marginal likelihood over the remaining
hyperparameters, and choose the decomposition with the highest likelihood. For PS, we use the
following prior for Gibbs sampling. First, we pick the maximum group dimensionality p uniformly
from {1, ..., pmax }- We then randomly shuffle the coordinates {1,...,d} to produce an ordering.
Given a maximum group dimensionality p and an ordering, one can uniquely identify a decomposi-
tion by iterating through the ordering and grouping them in groups of size at most p. For example,
in a d = 7 dimensional problem, p = 3 and the ordering 4,7, 3,6, 1, 5, 2 yields the decomposition
{(3,4,7),(1,5,6),(2)} of three groups having group dimensionalities 3, 3, and 1 respectively.

Since the set of possible decompositions is a large combinatorial space, we might not be able to
find the true maximiser of the marginal likelihood in ML or cover the entire space via sampling in
PS. However, we adopt a pragmatic view of the additive model (4) which views it as a sensible
approximation to f in the small sample regime, as opposed to truly believing that f is additive. Under
this view, we can hope to recover any existing marginal structure in f via a partial maximisation or a
few posterior samples. In contrast, an exhaustive search may not do much better when there is no
additive structure. By default, Dragonfly uses pmax = 6 and k = 25 for Add-GP-UCB.

Combining multi-fidelity with Add-GP-UCB: When using an additive kernel Ky = ) i k()
for the domain X in multi-fidelity settings, the resulting product kernel also takes an additive
form, r([z, 7], [z, 2']) = 3>, kz(z, z’)m(:z:(j),x(j)/). When using Add-GP-UCB, in the first step

U) ¢ argmax () c x () yﬁ)l(z., z(0)) + ﬁtl/QTt(f)l(z.7 x()) for all j to obtain the next

evaluation x;. Here I/t(]_ )1, Tt(f )1 are the posterior GP mean and standard deviation of the j* function in
the above decomposition. Then we choose the fidelity z; as described in (9).

we choose x

6. Experiments

We now compare Dragonfly to the following algorithms and packages. RAND: uniform random
search; EA: evolutionary algorithm; PDOO: parallel deterministic optimistic optimisation (Grill
et al., 2015); HyperOpt (v0.1.1) (Bergstra et al., 2013); SMAC (v0.9.0) (Hutter et al., 2011);
Spearmint (Snoek et al., 2012); GPyOpt (v1.2.5) (Authors, 2016). Of these PDOO is a deterministic
non-Bayesian algorithm for Euclidean domains. SMAC, Spearmint, and GPyOpt are model based
BO procedures, where SMAC uses random forests, while Spearmint and GPyOpt use GPs. For EA,
we use the same procedure used to optimise the acquisition in Section 5. We begin with experiments
on some standard synthetic benchmarks for zeroth order optimisation.

6.1. Experiments on Synthetic Benchmarks

Euclidean Domains: Our first set of experiments are on a series of synthetic benchmarks in
Euclidean domains. We use the Branin (d = 2), Hartmann3 (d = 3), Parkl (d = 4), Park2 (d = 4),
Hartmann6 (d = 6), and Borehole (d = 8) benchmarks, and additionally, construct high dimensional
versions of the above benchmarks. The high dimensional forms were obtained via an additive
model f(z) = f(() 4 f/(z?)... where f’is a lower dimensional function and the z(")’s are
coordinates forming a low dimensional subspace. For example, in the Hartmann3x6 problem, we
have an 18 dimensional function obtained by considering six Hartmann3 functions along coordinate
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Figure 5: Comparison of Dragonfly with other algorithms and BO packages on functions with
noiseless evaluations defined on Euclidean domains. We plot the simple regret (2) so lower is
better. The title states the name of the function, and its dimensionality. All curves were produced
by averaging over 20 independent runs. Error bars indicate one standard error. The legend for all
curves is available in the first figure. SMAC’s initialisation procedure did not work in dimensions
larger than 40 so it is not shown in the respective figures. Spearmint is not shown on all figures since
it was too slow to run on high dimensional problems.
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Figure 6: Comparison of Dragonfly with other algorithms and BO packages on synthetic functions
defined on non-Euclidean domains. We plot the maximum value, so higher is better. The z-axis
shows the expended capital and the y axis is the maximum value (higher is better). The title states the
name of the function, and its dimensionality (number of variables). We do not state the dimensionality
for the synthetic CNN function since the dimensionality of a space of CNN architectures is not
defined. All curves were produced by averaging over 20 independent runs. Error bars indicate one
standard error. The legend for all curves is available in the first figure. We do not compare Spearmint,
HyperOpt, SMAC, and GPyOpt on the synthetic CNN function since they do not support optimising
over neural architectures.

groups {1,2,3},{4,5,6},...,{16,17,18}. We compare all methods on their performance over
200 evaluations. The results are given in Figure 5, where we plot the simple regret (2) against the
number of evaluations (lower is better). As its performance was typically worse than all other BO
methods, we do not compare to EA to avoid clutter in the figures. Spearmint is not shown on the
higher dimensional problems since it was too slow beyond 25-30 dimensions. SMAC’s initialisation
procedure failed in dimensions larger than 40 and is not shown in the corresponding experiments.

Non-Euclidean Domains: Next, we compare Dragonfly to the above baselines on non-Euclidean
domains. For this, we modify the above benchmarks, originally defined on Euclidean domains, so
that they can take non-Euclidean arguments. Specifically, we use modified versions of the Bore-
hole, Hartmann6, Park1 and Park2 functions. We also construct a synthetic function defined on
CNN architectures, on a synthetic NAS problem. The results are given in Figure 6. Since the
true maxima of these functions are not known, we simply plot the maximum value found against
the number of evaluations (higher is better). In this set of experiments, in addition to vanilla
BO, we also construct variations of these function which can take a fidelity argument. Hence, a
strategy may use these approximations to speed up the optimisation process. The z-axis in all
cases refers to the expended capital, which was chosen so that a single fidelity algorithm would
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Figure 7: Comparison of Dragonfly with RAND and EA on synthetic functions with constraints on
the domain. See caption under Figure 6 for more details.

perform exactly 200 evaluations. We compare a multi-fidelity version of Dragonfly, which uses the
BOCA strategy (Kandasamy et al., 2017), to choose the fidelities and points for evaluation. See
github.com/dragonfly/dragonfly/tree/master/examples/synthetic for a description of these func-
tions and the approximations for the multi-fidelity cases.

Domains with Constraints: Next, we consider three optimisation tasks where we impose additional
constraints on the domain variables. Specifically, we consider versions of the Hartmann3, Park1 and
Borehole functions. As an example, the Hartmann3 function is usually defined on the domain [0, 1]3;
however, we consider a constrained domain X = {z € [0,1]?; 23 + 23 < 1/2}. Descriptions of
the other functions and domains are available in the Dragonfly repository. In Figure 7, we compare
Dragonfly to RAND and EA. We do not compare to other methods and packages, since, to our
knowledge, they cannot handle arbitrary constraints of the above form.

Noisy Evaluations: Finally, we compare all methods when evaluations are noisy. We use 6 test
functions from above, but add Gaussian noise to each evaluation; the width of the Gaussian was
chosen based on the range of the function. We evaluate all methods on the maximum true function
value queried (as opposed to the observed maximum value). The results are given in Figure 8.

Take-aways: On Euclidean domains, Spearmint and Dragonfly perform consistently well across the
lower dimensional tasks, but Spearmint is prohibitively expensive in high dimensions. On the higher
dimensional tasks, Dragonfly is the most competitive. It is worth pointing out that on the Park1l and
Park2 benchmarks, Dragonfly and Spearmint do significantly better than other methods. We believe
this is because these packages have discovered a good but hard to find optimum on these problems,
whereas other packages have only discovered worse local optima. On non-Euclidean domains, we
see that Dragonfly is able to do consistently well. GPyOpt and Dragonfly perform very well on some
problems, but also perform poorly on others. It is interesting to note that the improvements due to
multi-fidelity optimisation are modest in some cases. We believe this is due to two factors. First, the
multi-fidelity method spends an initial fraction of its capital at the lower fidelities, and the simple
regret is co until it queries the highest fidelity. Second, there is an additional statistical difficulty in
estimating, what is now a more complicated GP model across the domain and fidelity space. We
have summarised the results on the synthetic experiments in Table 1 separately for the Euclidean and
non-Euclidean synthetic benchmarks. These include the results in Figures 5, 6, and 8. We exclude the
constrained optimisation results from Figure 7 since there are too few baselines in this setting. From
these results, we see that Dragonfly performs consistently well across a wide range of benchmarks.
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Figure 8: Experiments on synthetic functions when evaluations are noisy. In the top row, the domain
is Euclidean and we plot the number of evaluations versus simple regret (lower is better). In the
bottom row, the domain is non-Euclidean, and we plot the expended capital versus the maximum true
value found (higher is better). The legend for each row is given in the leftmost figure. See captions
under Figures 5, 6, and 7 for more details.

Method ‘ Dragonfly ‘ GPyOpt ‘ Spearmint‘ SMAC ‘ HyperOpt ‘ PDOO ‘ RAND ‘ EA
Euclidean | 8520 | 3342 | 3330 | 1032 | 03-02 | 0034 | 0015 | NA
Non-Euclidean | 5-2-0-1 | 2-0-1-1 | 1-3-02 | 0241 | 0021 | NA | 0010 | 0-1-0-1

Table 1: A summary of the ranks of each method on the Euclidean and non-Euclidean synthetic
problems at the end of 200 evaluations. We show the number of times each method was ranked
within the first four in the order nl — n2 — n3 — n4d where < nk > is the number of times the method
was ranked k® in the problems. There are a total of 15 Euclidean problems (12 from Figure 5, 3
from Figure 8) and 8 non-Euclidean problems (6 from Figure 6, 2 from Figure 8). We exclude the
multi-fidelity methods from this table.

6.2. Experiments on Astrophysical Maximum Likelihood Problems

In this section, we consider two maximum likelihood problems in computational Astrophysics.

Luminous Red Galaxies: Here we used data on Luminous Red Galaxies (LRGs) for maximum
likelihood inference on 9 Euclidean cosmological parameters. The likelihood is computed via the
galaxy power spectrum. Software and data were taken from Kandasamy et al. (2015b); Tegmark et al.
(2006). Each evaluation here is relatively cheap, and hence we compare all methods on the number
of evaluations in Figure 9. We do not compare a multi-fidelity version since cheap approximations
were not available for this problem. Spearmint, GPyOpt, and Dragonfly do well on this task.
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Figure 9: Results on the maximum likelihood estimation problem on the luminous red galaxies
dataset (left) and the supernova dataset (right). In both figures, the y-axis is the highest log likelihood
found (higher is better). On the left figure, the x-axis is the number of evaluations and on the right
figure it is wall clock time. All curves were produced by averaging over 10 independent runs. Error
bars indicate one standard error.

Type Ia Supernova: We use data on Type la supernova for maximum likelihood inference on 3
cosmological parameters, the Hubble constant, the dark matter fraction, and the dark energy fraction.
We use data from Davis et al. (2007), and the likelihood is computed using the method described
in Shchigolev (2017). This requires a one dimensional numerical integration for each point in the
dataset. We construct a p = 2 dimensional multi-fidelity problem where we can choose data set
size N € [50,192] and perform the integration on grids of size G' € [102, 10%] via the trapezoidal
rule. As the cost function for fidelity selection, we used A(N, G) = NG. Our goal is to maximise
the average log likelihood at z, = [192, 10°]. Each method was given a budget of 4 hours on a 3.3
GHz Intel Xeon processor with 512GB memory. The results are given in Figure 9 where we plot the
maximum average log likelihood (higher is better) against wall clock time. The plot includes the
time taken by each method to determine the next point for evaluation. We do not compare Spearmint
and HyperOpt as they do not provide an API for optimisation on a time budget.

6.3. Experiments on Model Selection Problems

We begin with three experiments on tuning hyperparameters of regression methods, where we wish
to find the hyperparameters with the smallest validation error. We set up a one dimensional fidelity
space where a multi-fidelity algorithm may choose to use a subset of the dataset to approximate
the performance when training with the entire training set. For multi-fidelity optimisation with
Dragonfly, we use an exponential decay kernel for Kz (7). The results are presented in Figure 10,
where we plot wall clock time against the validation error (lower is better). We do not compare
Spearmint and HyperOpt since they do not provide an API for optimisation on a time budget.

Random forest regression, News popularity: In this experiment, we tune random forest regression
(RFR) on the news popularity dataset (Fernandes et al., 2015). We tune 6 integral, discrete and
Euclidean parameters available in the Scikit-Learn implementation of RFR. The training set had
20000 points, but could be approximated via a subset of size z € (5000, 20000) by a multi-fidelity
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Figure 10: Results on the model selection problems in Section 6.3. The title states the method and
data set. The y-axis is the validation error (lower is better), and the z-axis is wall clock time. All
curves were produced by averaging over 10 independent runs. Error bars indicate one standard error.

Dragonfly | Dragonfly RAND
Dataset Dragonfly (lowest) MF GPyOpt SMAC RAND (lowest) Hyperband
RFR (News) 0.6456 .6631 0.5203 0.5904 0.9802 0.9314 0.8501 0.6812
‘ +0.08044 | +0.0110 | +0.0805 +0.0635 +0.0291 +0.0371 +0.0563 | £0.0412
GBR (Naval) 5.82e—5 1.14e—5 3.00e—5 3.26e—4 1.97e—5 1.04e—3 1.31e—5 1.13e—5
+1.52e—5 | £7.3e—7 | £1.00e—5 | £1.46e—5 | £5.27e—6 | £1.10e—5 | £2.34e—6 | £6.4e—7
SALSA (Energy) 0.0097 0.9950 0.0095 0.0105 0.0084 0.0634 0.9974 0.3217

+0.0015 +0.0033 +0.0031 $0.0022 +0.0003 +0.0019 +0.0032 +0.1032

Table 2: Final least squared errors in the regression problems in Section 6.3. We compare the methods
in Figure 10, Dragonfly and random search at the lowest fidelity, and Hyperband.

method. As the cost function, we use A(z) = z, since training time is linear in the training set size.
Each method was given a budget of 6 hours on a 3.3 GHz Intel Xeon processor with 512GB memory.

Gradient Boosted Regression, Naval Propulsion: In this experiment, we tune gradient boosted
regression (GBR) on the naval propulsion dataset (Coraddu et al., 2016). We tune 7 integral, discrete
and Euclidean parameters available in the Scikit-Learn implementation of GBR. The training set
had 9000 points, but could be approximated via a subset of size z € (2000, 9000) by a multi-fidelity
method. As the cost function, we use A(z) = z, since training time is linear in the training set size.
Each method was given a budget of 3 hours on a 2.6 GHz Intel Xeon processor with 384GB memory.

SALSA, Energy Appliances: We use the SALSA regression method (Kandasamy and Yu, 2016) on
the energy appliances dataset (Candanedo et al., 2017) to tune 30 integral, discrete, and Euclidean
parameters of the model. The training set had 8000 points, but could be approximated via a subset
of size z € (2000, 8000) by a multi-fidelity method. As the cost function, we use \(z) = 23, since
training time is cubic in the training set size. Each method was given a budget of 8 hours on a 2.6
GHz Intel Xeon processor with 384GB memory. In this example, SMAC does very well because its
(deterministically chosen) initial value luckily landed at a good configuration.

Table 2 compares the final error achieved by all methods on the above three datasets at the end of the
respective optimisation budgets. In addition to the methods in Figure 10, we also show the results for
BO (with Dragonfly) at the lowest fidelity, random search at the lowest fidelity and Hyperband (Li
et al., 2018), which is a multi-fidelity method which uses random search and successive halving. For
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Figure 11: Results on the neural architecture search experiments. In all figures, the x-axis is wall
clock time. The y axis is the mean squared validation error (lower is better). In all cases, we used a
parallel set up of two asynchronous workers, where each worker is a single GPU training a single
model. We used a one dimensional fidelity space where we chose the number of batch iterations
from 4000 to 20,000 (z, = 20, 000). All figures were averaged over 5 independent runs. Error bars
indicate one standard error.

example, for BO and random search at the lowest fidelity on the RFR problem, we performed the
same procedure as RAND and Dragonfly, but only using 5000 points at each evaluation. Interestingly,
we see that for the GBR experiment, BO using only a fraction of the training data, outperforms BO
using the entire training set. This is because, in this problem, one can get good predictions even with
2000 points, and the lower fidelity versions are able to do better since they are able to perform more
evaluations within the specified time budget than the versions which query the higher fidelity.

Experiments on Neural Architecture Search: Our next set of model selection experiments demon-
strate the NAS features in Dragonfly. Here, we tune for the architecture of the network using the
OTMANN kernel (Kandasamy et al., 2018b) and the learning rate. Each function evaluation, trains
an architecture with stochastic gradient descent (SGD) with a fixed batch size of 256. We used
the number of batch iterations in a one dimensional fidelity space, i.e. Z = [4000,20000] for
Dragonfly while NASBOT always queried with z, = 20, 000 iterations. We test both methods in
an asynchronously parallel set up of two GeForce GTX 970 (4GB) GPU workers with a computa-
tional budget of 8 hours. Additionally, we also impose the following constraints on the space of
architectures: maximum number of layers: 60, maximum mass: 10%, maximum in/out degree: 5,
maximum number of edges: 200, maximum number of units per layer: 1024, minimum number of
units per layer: 8. We present the results of our experiments on the blog feedback (Buza, 2014),
indoor location (Torres-Sospedra et al., 2014), and slice localisation (Graf et al., 2011), datasets in
Figure 11. For reference, we also show the corresponding results for a vanilla implementation of
NASBOT (Kandasamy et al., 2018b). Dragonfly outperforms NASBOT primarily because it is able
to use cheaper evaluations to approximate fully trained models. Additionally, it benefits from tuning
the learning rate and using robust techniques for selecting the acquisition and GP hyperparameters.

7. Conclusion
Bayesian optimisation is a powerful framework for optimising expensive blackbox functions. How-

ever, with increasingly expensive function evaluations and demands to optimise over complex input
spaces, BO methods face new challenges today. In this work, we describe our multiple efforts to
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scale up BO to address the demands of modern large scale applications and techniques for improving
robustness of BO methods. We implement them in an integrated fashion in an open source platform,
Dragonfly, and demonstrate that they outperform existing platforms for BO in a variety of applica-
tions. Going forward, we wish to integrate techniques for multi-objective optimisation (Paria et al.,
2018) and for using customised models via probabilistic programming (Neiswanger et al., 2019).
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