
Journal of Machine Learning Research 21 (2020) 1-30 Submitted 6/18; Revised 11/20; Published 12/20

AdaGrad stepsizes: Sharp convergence over nonconvex
landscapes

Rachel Ward ∗ rward@math.utexas.edu
Xiaoxia Wu ∗ xwu@math.utexas.edu
Department of Mathematics
The University of Texas at Austin
2515 Speedway, Austin, TX, 78712, USA

Léon Bottou leonb@fb.com
Facebook AI Research
770 Broadway, New York, NY, 10019, USA

Editor: Mark Schmidt

Abstract
Adaptive gradient methods such as AdaGrad and its variants update the stepsize in stochastic
gradient descent on the fly according to the gradients received along the way; such methods
have gained widespread use in large-scale optimization for their ability to converge robustly,
without the need to fine-tune the stepsize schedule. Yet, the theoretical guarantees to date
for AdaGrad are for online and convex optimization. We bridge this gap by providing
theoretical guarantees for the convergence of AdaGrad for smooth, nonconvex functions.
We show that the norm version of AdaGrad (AdaGrad-Norm) converges to a stationary
point at the O(log(N)/

√
N) rate in the stochastic setting, and at the optimal O(1/N)

rate in the batch (non-stochastic) setting – in this sense, our convergence guarantees are
“sharp”. In particular, the convergence of AdaGrad-Norm is robust to the choice of all hyper-
parameters of the algorithm, in contrast to stochastic gradient descent whose convergence
depends crucially on tuning the step-size to the (generally unknown) Lipschitz smoothness
constant and level of stochastic noise on the gradient. Extensive numerical experiments are
provided to corroborate our theoretical findings; moreover, the experiments suggest that
the robustness of AdaGrad-Norm extends to the models in deep learning.
Keywords: nonconvex optimization, stochastic offline learning, large-scale optimization,
adaptive gradient descent, convergence

1. Introduction

Consider the problem of minimizing a differentiable non-convex function F : Rd → R via
stochastic gradient descent (SGD); starting from x0 ∈ Rd and stepsize η0 > 0, SGD iterates
until convergence

xj+1 ← xj − ηjG(xj), (1)

∗. Equal Contribution; work done at Facebook AI Research.

c©2020 Rachel Ward, Xiaoxia Wu and Léon Bottou.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/18-352.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/18-352.html

Ward, Wu and Bottou

where ηj > 0 is the stepsize at the jth iteration and G(xj) is the stochastic gradient in
the form of a random vector satisfying E[G(xj)] = ∇F (xj) and having bounded variance.
SGD is the de facto standard for deep learning optimization problems, or more generally,
for the large-scale optimization problems where the loss function F (x) can be approximated
by the average of a large number m of component functions, F (x) = 1

m

∑m
i=1 fi(x). It is

more efficient to measure a single component gradient ∇fij (x), ij ∼ Uniform{1, 2, . . . ,m}
(or subset of component gradients), and move in the noisy direction Gj(x) = ∇fij (x), than
to compute a full gradient 1

m

∑m
i=1∇fi(x).

For non-convex but smooth loss functions F , (noiseless) gradient descent (GD) with
constant stepsize converges to a stationary point of F at rate O (1/N) with the number of
iterations N (Nesterov, 1998). In the same setting, and under the general assumption of
bounded gradient noise variance, SGD with constant or decreasing stepsize ηj = O

(
1/
√
j
)

has been proven to converge to a stationary point of F at rate O
(
1/
√
N
)
(Ghadimi and Lan,

2013; Bottou et al., 2018). The O (1/N) rate for GD is the best possible worst-case dimension-
free rate of convergence for any algorithm (Carmon et al., 2019); faster convergence rates
in the noiseless setting are available under the mild assumption of additional smoothness
(Agarwal et al., 2017; Carmon et al., 2017, 2018). In the noisy setting, faster rates than
O
(
1/
√
N
)
are also possible using accelerated SGD methods (Ghadimi and Lan, 2016; Allen-

Zhu and Yang, 2016; Reddi et al., 2016; Allen-Zhu, 2017; Xu et al., 2018; Zhou et al., 2018;
Fang et al., 2018). For instance, Zhou et al. (2018) and Fang et al. (2018) obtain the rate
O
(
1/N2/3

)
without requiring finite-sum structure but with an additional assumptions about

Lipschitz continuity of the stochastic gradients, which they exploit to reduce variance.
Instead of focusing on faster convergence rates for SGD, this paper focuses on adaptive

stepsizes (Cutkosky and Boahen, 2017; Levy, 2017) that make the optimization algorithm
more robust to (generally unknown) parameters of the optimization problem, such as the
noise level of the stochastic gradient and the Lipschitz smoothness constant L of the loss
function defined as the smallest number L > 0 such that ‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖ for
all x, y. In particular, the O (1/N) convergence of GD with fixed stepsize is guaranteed only
if the fixed stepsize η > 0 is carefully chosen such that η ≤ 1/L – choosing a larger stepsize η,
even just by a factor of 2, can result in oscillation or divergence of the algorithm (Nesterov,
1998). Because of this sensitivity, GD with fixed stepsize is rarely used in practice; instead,
one adaptively chooses the stepsize ηj > 0 at each iteration to approximately maximize
a decrease of the loss function in the current direction of −∇F (xj) via either line search
(Wright and Nocedal, 2006), or according to the Barzilai-Borwein rule (Barzilai and Borwein,
1988) combined with line search.

Unfortunately, in the noisy setting where one uses SGD for optimization, line search
methods are not useful, as in this setting the stepsize should not be overfit to the noisy
stochastic gradient direction at each iteration. The classical Robbins/Monro theory (Robbins
and Monro, 1951) says that in order for limk→∞ E[‖∇F (xk)‖2] = 0, the stepsize schedule
should satisfy

∞∑
k=1

ηk =∞ and
∞∑
k=1

η2k <∞. (2)

2

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

However, these bounds do not tell us much about how to select a good stepsize schedule
in practice, where algorithms are run for finite iterations and the constants in the rate of
convergence matter.

The question of how to choose the stepsize η > 0 or stepsize or learning rate schedule
{ηj} for SGD is by no means resolved; in practice, a preferred schedule is chosen manually by
testing many different schedules in advance and choosing the one leading to smallest training
or generalization error. This process can take days or weeks, and can become prohibitively
expensive in terms of time and computational resources incurred.

1.1 Stepsize adaptation with AdaGrad-Norm

Adaptive stochastic gradient methods such as AdaGrad (introduced independently by Duchi
et al. (2011) and McMahan and Streeter (2010)) have been widely used in the past few
years. AdaGrad updates the stepsize ηj on the fly given information of all previous (noisy)
gradients observed along the way. The most common variant of AdaGrad updates an entire
vector of per-coefficient stepsizes (Lafond et al., 2017). To be concrete, for optimizing a
function F : Rd → R, the “coordinate” version of AdaGrad updates d scalar parameters
bj(k), k = 1, 2, . . . , d at the j iteration – one for each xj(k) coordinate of xj ∈ Rd – according
to bj+1(k)

2 = bj(k)
2 + [∇F (xj)]2k in the noiseless setting, and bj+1(k)

2 = bj(k)
2 + [Gj(k)]

2

in the noisy gradient setting. This common use makes AdaGrad a variable metric method
and has been the object of recent criticism for machine learning applications (Wilson et al.,
2017).

One can also consider a variant of AdaGrad which updates only a single (scalar) stepsize
according to the sum of squared gradient norms observed so far. In this work, we focus
instead on the “norm” version of AdaGrad as a single stepsize adaptation method using the
gradient norm information, which we call AdaGrad-Norm. The update in the stochastic
setting is as follows: initialize a single scalar b0 > 0; at the jth iteration, observe the random
variable Gj such that E[Gj] = ∇F (xj) and iterate

xj+1 ← xj − η
G(xj)

bj+1
with b2j+1 = b2j + ‖G(xj)‖2

where η > 0 is to ensure homogeneity and that the units match. It is straightforward that in
expectation, E[b2k] = b20+

∑k−1
j=0 E[‖G(xj)‖2]; thus, under the assumption of uniformly bounded

gradient ‖∇F (x)‖2 ≤ γ2 and uniformly bounded variance Eξ
[
‖G(x; ξ)−∇F (x)‖2

]
≤ σ2, the

stepsize will decay eventually according to 1
bj
≥ 1√

2(γ2+σ2)j
. This stepsize schedule matches

the schedule which leads to optimal rates of convergence for SGD in the case of convex but
not necessarily smooth functions, as well as smooth but not necessarily convex functions (see,
for instance, Agarwal et al. (2009) and Bubeck et al. (2015)). This observation suggests that
AdaGrad-Norm should be able to achieve convergence rates for SGD, but without having to
know Lipschitz smoothness parameter of F and the parameter σ a priori to set the stepsize
schedule.

Theoretically rigorous convergence results for AdaGrad-Norm were provided in the convex
setting recently (Levy, 2017). Moreover, it is possible to obtain convergence rates in the
offline setting by online-batch conversion. However, making such observations rigorous for
nonconvex functions is difficult because bj is itself a random variable which is correlated

3

Ward, Wu and Bottou

with the current and all previous noisy gradients; thus, the standard proofs in SGD do not
straightforwardly extend to the proofs of AdaGrad-Norm. This paper provides such a proof
for AdaGrad-Norm.

1.2 Main contributions

Our results make rigorous and precise the observed phenomenon that the convergence behavior
of AdaGrad-Norm is highly adaptable to the unknown Lipschitz smoothness constant and level
of stochastic noise on the gradient : when there is noise, AdaGrad-Norm converges at the rate
of O(log(N)/

√
N), and when there is no noise, the same algorithm converges at the optimal

O(1/N) rate like well-tuned batch gradient descent. Moreover, our analysis shows that
AdaGrad-Norm converges at these rates for any choices of the algorithm hyperparameters
b0 > 0 and η > 0, in contrast to GD or SGD with fixed stepsize where if the stepsize is set
above a hard upper threshold governed by the (generally unknown) smoothness constant L,
the algorithm might not converge at all. Finally, we note that the constants in the rates of
convergence we provide are explicit in terms of their dependence on the hyperparameters b0
and η. We list our two main theorems (informally) in the following:

• For a differentiable non-convex function F with L-Lipschitz gradient and F ∗ =
infx F (x) > −∞, Theorem 2.1 implies that AdaGrad-Norm converges to an ε-approximate
stationary point with high probability 1 at the rate

min
`∈[N−1]

‖∇F (x`)‖2 ≤ O
(
γ(σ + ηL+ (F (x0)− F ∗)/η) log(Nγ2/b20)√

N

)
.

If the optimal value of the loss function F ∗ is known and one sets η = F (x0) − F ∗
accordingly, then the constant in our rate is close to the best-known constant σL(F (x0)−
F ∗) achievable for SGD with fixed stepsize η = η1 = · · · = ηN = min{ 1L ,

1
σ
√
N
} carefully

tuned to knowledge of L and σ, as given in Ghadimi and Lan (2013). However, our
result requires bounded gradient ‖∇F (x)‖2 ≤ γ2 and our rate constant scales with γσ
instead of linearly in σ. Nevertheless, our result suggests a good strategy for setting
hyperparameters in implementing AdaGrad-Norm practically: given knowledge of F ∗,
set η = F (x0)− F ∗ and simply initialize b0 > 0 to be very small.

• When there is no noise σ = 0, we can improve this rate to an O (1/N) rate of
convergence. In Theorem 2.2, we show that minj∈[N] ‖∇F (xj)‖2 ≤ ε after

(1) N = O
(
1
ε

(
((F (x0)− F ∗)/η)2 + b0 (F (x0)− F ∗) /η

))
if b0 ≥ ηL,

(2) N = O
(
1
ε

(
L (F (x0)− F ∗) + ((F (x0)− F ∗)/η)2

)
+ (ηL)2

ε log
(
ηL
b0

))
if b0 < ηL.

Note that the constant (ηL)2 in the second case when b0 < ηL is not optimal compared
to the known best rate constant ηL obtainable by gradient descent with fixed stepsize
η = 1/L (Carmon et al., 2019); on the other hand, given knowledge of L and F (x0)−F ∗,
the rate constant of AdaGrad-norm reproduces the optimal constant ηL by setting
η = F (x0)− F ∗ and b0 = ηL.

1. It is becoming common to define an ε-approximate stationary point as ‖∇F (x)‖ ≤ ε (Agarwal et al.,
2017; Carmon et al., 2018, 2019; Fang et al., 2018; Zhou et al., 2018; Allen-Zhu, 2018), but we use the
convention ‖F (x)‖2 ≤ ε (Lei et al., 2017; Bottou et al., 2018) to most easily compare our results to those
from Ghadimi and Lan (2013); Li and Orabona (2019).

4

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

Practically, our results imply a good strategy for setting the hyperparameters when imple-
menting AdaGrad-norm in practice: set η = (F (x0)− F ∗) (assuming F ∗ is known) and set
b0 > 0 to be a very small value. If F ∗ is unknown, then setting η = 1 should work well for a
wide range of values of L, and in the noisy case with σ2 strictly greater than zero.

1.3 Previous work

Theoretical guarantees of convergence for AdaGrad were provided in Duchi et al. (2011) in
the setting of online convex optimization, where the loss function may change from iteration
to iteration and be chosen adversarially. AdaGrad was subsequently observed to be effective
for accelerating convergence in the nonconvex setting, and has become a popular algorithm
for optimization in deep learning problems. Many modifications of AdaGrad with or without
momentum have been proposed, namely, RMSprop (Srivastava and Swersky, 2012), AdaDelta
(Zeiler, 2012), Adam (Kingma and Ba, 2015), AdaFTRL(Orabona and Pal, 2015), SGD-
BB(Tan et al., 2016), AdaBatch (Defossez and Bach, 2017), SC-Adagrad (Mukkamala and
Hein, 2017), AMSGRAD (Reddi et al., 2018), Padam (Chen and Gu, 2018), etc. Extending
our convergence analysis to these popular alternative adaptive gradient methods remains an
interesting problem for future research.

Regarding the convergence guarantees for the norm version of adaptive gradient methods
in the offline setting, the recent work by Levy (2017) introduces a family of adaptive gradient
methods inspired by AdaGrad, and proves convergence rates in the setting of (strongly)
convex loss functions without knowing the smoothness parameter L in advance. Yet, that
analysis still requires the a priori knowledge of a convex set K with known diameter D in
which the global minimizer resides. More recently, Wu et al. (2018) provids convergence
guarantees in the non-convex setting for a different adaptive gradient algorithm, WNGrad,
which is closely related to AdaGrad-Norm and inspired by weight normalization (Salimans
and Kingma, 2016). In fact, the WNGrad stepsize update is similar to AdaGrad-Norm’s:

(WNGrad) bj+1 = bj + ‖∇F (xj)‖/bj ;
(AdaGrad-Norm) bj+1 = bj + ‖∇F (xj)‖/(bj + bj+1).

However, the guaranteed convergence in Wu et al. (2018) is only for the batch setting and
the constant in the convergence rate is worse than the one provided here for AdaGrad-
Norm. Independently, Li and Orabona (2019) also proves the O(1/

√
N) convergence rate

for a variant of AdaGrad-Norm in the non-convex stochastic setting, but their analysis
requires knowledge of of smoothness constant L and a hard threshold of b0 > ηL for
their convergence. In contrast to Li and Orabona (2019), we do not require knowledge of
the Lipschitz smoothness constant L, but we do assume that the gradient ∇F is uniformly
bounded by some (unknown) finite value, while Li and Orabona (2019) only assumes bounded
variance Eξ

[
‖G(x; ξ)−∇F (x)‖2

]
≤ σ2.

1.4 Future work

This paper provides convergence guarantees for AdaGrad-Norm over smooth, nonconvex
functions, in both the stochastic and deterministic settings. Our theorems should shed
light on the popularity of AdaGrad as a method for more robust convergence of SGD in
nonconvex optimization in that the convergence guarantees we provide are robust to the initial

5

Ward, Wu and Bottou

stepsize η/b0, and adjust automatically to the level of stochastic noise. Moreover, our results
suggest a good strategy for setting hyperparameters in AdaGrad-Norm implementation: set
η = (F (x0)− F ∗) (if F ∗ is known) and set b0 > 0 to be a very small value. However, several
improvements and extensions should be possible. First, the constant in the convergence rate
we present can likely be improved and it remains open whether we can remove the assumption
of the uniformly bounded gradient in the stochastic setting. It would be interesting to analyze
AdaGrad in its coordinate form, where each coordinate x(k) of x ∈ Rd has its own stepsize

1
bj(k)

which is updated according to bj+1(k)
2 = bj(k)

2 + [∇F (xj)]2k. AdaGrad is just one
particular adaptive stepsize method and other updates such as Adam (Kingma and Ba, 2015)
are often preferable in practice; it would be nice to have similar theorems for other adaptive
gradient methods, and to even use the theory as a guide for determining the “best” method
for adapting the stepsize for given problem classes.

1.5 Notation

Throughout, ‖ · ‖ denotes the `2 norm. We use the notation [N] := {0, 1, 2, . . . , N}. A
function F : Rd → R has L-Lipschitz smooth gradient if

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd (3)

We write F ∈ C1
L and refer to L as the smoothness constant for F if L > 0 is the smallest

number such that the above is satisfied.

2. AdaGrad-Norm convergence

To be clear about the adaptive algorithm, we first state in Algorithm 1 the norm version of
AdaGrad we consider throughout in the analysis.

Algorithm 1 AdaGrad-Norm
1: Input: Initialize x0 ∈ Rd, b0 > 0, η > 0
2: for j = 1, 2, . . . do
3: Generate ξj−1 and Gj−1 = G(xj−1, ξj−1)
4: b2j ← b2j−1 + ‖Gj−1‖2
5: xj ← xj−1 − η

bj
Gj−1

6: end for

At the kth iteration, we observe a stochastic gradient G(xk, ξk), where ξk, k = 0, 1, 2 . . .
are random variables, and such that G(xk, ξk) is an unbiased estimator of ∇F (xk).2 We
require the following additional assumptions: for each k ≥ 0,

1. The random vectors ξk, k = 0, 1, 2, . . . , are independent of each other and also of xk;

2. Eξk [‖G(xk, ξk)−∇F (xk)‖2] ≤ σ2;

3. ‖∇F (x)‖2 ≤ γ2 uniformly.

2. Eξk [G(xk, ξk)] = ∇F (xk) where Eξk [·] is the expectation with respect ξk conditional on previous
ξ0, ξ1, . . . , ξk−1

6

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

The first two assumptions are standard (see e.g. Nemirovski and Yudin (1983); Nemirovski
et al. (2009); Bottou et al. (2018)). The third assumption is somewhat restrictive as it rules
out strongly convex objectives, but is not an unreasonable assumption for AdaGrad-Norm,
where the adaptive learning rate is a cumulative sum of all previous observed gradient norms.

Because of the variance in gradient, the AdaGrad-Norm stepsize η
bk

decreases to zero
roughly at a rate between 1√

2(γ2+σ2)k
and 1

σ
√
k
. It is known that AdaGrad-Norm stepsize

decreases at this rate (Levy, 2017), and that this rate is optimal in k in terms of the resulting
convergence theorems in the setting of smooth but not necessarily convex F , or convex but
not necessarily strongly convex or smooth F . Still, standard convergence theorems for SGD
do not extend straightforwardly to AdaGrad-Norm because the stepsize 1/bk is a random
variable and dependent on all previous points visited along the way, i.e., {‖∇F (xj)‖}kj=0

and {‖∇G(xj , ξj)‖}kj=0. From this point on, we use the shorthand Gk = G(xk, ξk) and
Fk = ∇F (xk) for simplicity of notation. The following theorem gives the convergence
guarantee to Algorithm 1. We give detailed proof in Section 3.

Theorem 2.1 (AdaGrad-Norm: convergence in stochastic setting) Suppose F ∈ C1
L

and F ∗ = infx F (x) > −∞. Suppose that the random variables G`, ` ≥ 0, satisfy the above
assumptions. Then with probability 1− δ,

min
`∈[N−1]

‖∇F (x`)‖2 ≤ min

{(
2b0
N

+
4(γ + σ)√

N

)
Q
δ3/2

,

(
8Q
δ

+ 2b0

)
4Q
Nδ

+
8Qσ

δ3/2
√
N

}
where

Q =
F (x0)− F ∗

η
+

4σ + ηL

2
log

(
20N(γ2 + σ2)

b20
+ 10

)
.

This result implies that AdaGrad-Norm converges for any η > 0 and starting from any
value of b0 > 0. To put this result in context, we can compare to Corollary 2.2 of Ghadimi
and Lan (2013) giving the best-known convergence rate for SGD with fixed step-size in
the same setting (albeit not requiring Assumption (3) of uniformly bounded gradient): if
the Lipschitz smoothness constant L and the variance σ2 are known a priori, and the fixed
stepsize in SGD is set to

η = min

{
1

L
,

1

σ
√
N

}
, j = 0, 1, . . . , N − 1,

then with probability 1− δ

min
`∈[N−1]

‖∇F (x`)‖2 ≤
2L(F (x0)− F ∗)

Nδ
+

(L+ 2(F (x0)− F ∗))σ
δ
√
N

.

We match the O(1/
√
N) rate of Ghadimi and Lan (2013), but without a priori knowledge of

L and σ, and with a worse constant in the rate of convergence. In particular, the constant in
our bound scales according to σ3 (up to logarithmic factors in σ) while the result for SGD
with well-tuned fixed step-size scales linearly with σ. The additional logarithmic factor (by
Lemma 3.2) results from the AdaGrad-Norm update using the square norm of the gradient
(see inequality (11) for details). The extra constant 1√

δ
results from the correlation between

7

Ward, Wu and Bottou

the stepsize bj and the gradient ‖∇F (xj)‖. We note that the recent work Li and Orabona
(2019) derives an O(1/

√
N) rate for a variation of AdaGrad-Norm without the assumption

of uniformly bounded gradient, but at the same time requires a priori knowledge of the
smoothness constant L > 0 in setting the step-size in order to establish convergence, similar
to SGD with fixed stepsize. Finally, we note that recent works (Allen-Zhu, 2017; Lei et al.,
2017; Fang et al., 2018; Zhou et al., 2018) provide modified SGD algorithms with convergence
rates faster than O(1/

√
N), albeit again requiring priori knowledge of both L and σ to

establish convergence.
We reiterate however that the main emphasis in Theorem 2.1 is on the robustness of

the AdaGrad-Norm convergence to its hyperparameters η and b0, compared to plain SGD’s
dependence on its parameters η and σ. Although the constant in the rate of our theorem
is not as good as the best-known constant for stochastic gradient descent with well-tuned
fixed stepsize, our result suggests that implementing AdaGrad-Norm allows one to vastly
reduce the need to perform laborious experiments to find a stepsize schedule with reasonable
convergence when implementing SGD in practice.

We note that for the second bound in 2.1, in the limit as σ → 0 we recover an O (log(N)/N)
rate of convergence for noiseless gradient descent. We can establish a stronger result in the
noiseless setting using a different method of proof, removing the additional log factor and
Assumption 3 of uniformly bounded gradient. We state the theorem below and defer our
proof to Section 4.

Theorem 2.2 (AdaGrad-Norm: convergence in deterministic setting) Suppose that
F ∈ C1

L and that F ∗ = infx F (x) > −∞. Consider AdaGrad-Norm in deterministic setting
with following update,

xj = xj−1 −
η

bj
∇F (xj−1) with b2j = b2j−1 + ‖∇F (xj−1)‖2

Then minj∈[N] ‖∇F (xj)‖2 ≤ ε after

(1) N = 1 + d1ε
(
4(F (x0)−F ∗)2

η2
+ 2b0(F (x0)−F ∗)

η

)
e if b0 ≥ ηL,

(2) N = 1 + d1ε

(
2L (F (x0)− F ∗) +

(
2(F (x0)−F ∗)

η + ηLCb0

)2
+ (ηL)2(1 + Cb0)− b20

)
e

if b0 < ηL. Here Cb0 = 1 + 2 log
(
ηL
b0

)
.

The convergence bound shows that, unlike gradient descent with constant stepsize η which
can diverge if the stepsize η ≥ 2/L, AdaGrad-Norm convergence holds for any choice of
parameters b0 and η. The critical observation is that if the initial stepsize η

b0
> 1

L is too
large, the algorithm has the freedom to diverge initially, until bj grows to a critical point (not
too much larger than Lη) at which point η

bj
is sufficiently small that the smoothness of F

forces bj to converge to a finite number on the order of L, so that the algorithm converges at
an O(1/N) rate. To describe the result in Theorem 2.2, let us first review a classical result
(see, for example Nesterov (1998), (1.2.13)) on the convergence rate for gradient descent with
fixed stepsize.

8

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

Lemma 2.1 Suppose that F ∈ C1
L and that F ∗ = infx F (x) > −∞. Consider gradient

descent with constant stepsize, xj+1 = xj− ∇F (xj)
b . If b ≥ L, then minj∈[N−1] ‖∇F (xj)‖2 ≤ ε

after at most a number of steps

N =
2b(F (x0)− F ∗)

ε
.

Alternatively, if b ≤ L
2 , then convergence is not guaranteed at all – gradient descent can

oscillate or diverge.

Compared to the convergence rate of gradient descent with fixed stepsize, AdaGrad-Norm in
the case b = b0 ≥ ηL gives a larger constant in the rate. But in case b = b0 < ηL, gradient
descent can fail to converge as soon as b ≤ ηL/2, while AdaGrad-Norm converges for any
b0 > 0, and is extremely robust to the choice of b0 < ηL in the sense that the resulting
convergence rate remains close to the optimal rate of gradient descent with fixed stepsize
1/b = 1/L, paying a factor of log(ηLb0) and (ηL)2 in the constant. Here, the constant (ηL)2

results from the worst-cast analysis using Lemma 4.1, which assumes that the gradient
‖∇F (xj)‖2 ≈ ε for all j = 0, 1, . . ., when in reality the gradient should be much larger at first.
We believe the number of iterations can be improved by a refined analysis, or by considering
the setting where x0 is drawn from an appropriate random distribution.

3. Proof of Theorem 2.1

We first introduce some important lemmas in subsection 3.1 and give the main proof of
Theorem 2.1 in Subsection 3.2.

3.1 Ingredients

We first introduce several lemmas that are used in the proof for Theorem 2.1. We repeatedly
appeal to the following classical Descent Lemma, which is also the main ingredient in Ghadimi
and Lan (2013), and can be proved by considering the Taylor expansion of F around y.

Lemma 3.1 (Descent Lemma) Let F ∈ C1
L. Then,

F (x) ≤ F (y) + 〈∇F (y), x− y〉+ L

2
‖x− y‖2.

We will also use the following lemmas concerning sums of non-negative sequences.

Lemma 3.2 For any non-negative a1, · · · , aT , and a1 ≥ 1, we have

T∑
`=1

a`∑`
i=1 ai

≤ log

(
T∑
i=1

ai

)
+ 1. (4)

Proof The lemma can be proved by induction. That the sum should be proportional to
log
(∑T

i=1 ai

)
can be seen by associating to the sequence a continuous function g : R+ → R

satisfying g(`) = a`, 1 ≤ ` ≤ T , and g(t) = 0 for t ≥ T , and replacing sums with integrals.

9

Ward, Wu and Bottou

3.2 Main proof

Proof For simplicity, we write Fj = F (xj) and ∇Fj = ∇F (xj). By Lemma 3.1, for j ≥ 0,

Fj+1 − Fj
η

≤ −〈∇Fj ,
Gj
bj+1
〉+ ηL

2b2j+1

‖Gj‖2

= −‖∇Fj‖
2

bj+1
+
〈∇Fj ,∇Fj −Gj〉

bj+1
+
ηL‖Gj‖2

2b2j+1

.

At this point, we cannot apply the standard method of proof for SGD, since bj+1 and Gj are
correlated random variables and thus, in particular, for the conditional expectation

Eξj

[
〈∇Fj ,∇Fj −Gj〉

bj+1

]
6=

Eξj [〈∇Fj ,∇Fj −Gj〉]
bj+1

=
1

bj+1
· 0;

If we had a closed form expression for Eξj [1
bj+1

], we would proceed by bounding this term as∣∣∣∣Eξj [1

bj+1
〈∇Fj ,∇Fj −Gj〉

]∣∣∣∣ = ∣∣∣∣Eξj [(1

bj+1
− Eξj

[
1

bj+1

])
〈∇Fj ,∇Fj −Gj〉

]∣∣∣∣
≤Eξj

[∣∣∣∣ 1

bj+1
− Eξj

[
1

bj+1

]∣∣∣∣ ‖〈∇Fj ,∇Fj −Gj〉‖] . (5)

However, we do not have a closed form expression for Eξj [1
bj+1

]. We use the estimate
1√

b2j+2‖∇Fj‖2+2σ2
as a surrogate for Eξj [1

bj+1
] to proceed as we have by Jensen inequality that

Eξj

[
1

bj+1

]
≥ 1

Eξj [bj+1]
=

1

Eξj
[√

b2j + ‖Gj‖2
] ≥ 1√

Eξj
[
b2j + ‖Gj‖2

] ≥ 1√
b2j + 2‖∇Fj‖2 + 2σ2

.

where the last inequality is due to ‖Gj‖2 ≤ 2‖∇Fj‖2 + 2‖∇Fj − Gj‖2. Condition on
ξ1, . . . , ξj−1 and take expectation with respect to ξj ,

0 =
Eξj [〈∇Fj ,∇Fj −Gj〉]√
b2j + 2‖∇Fj‖2 + 2σ2

= Eξj

 〈∇Fj ,∇Fj −Gj〉√
b2j + 2‖∇Fj‖2 + 2σ2


thus,

Eξj [Fj+1]− Fj
η

≤Eξj

〈∇Fj ,∇Fj −Gj〉
bj+1

− 〈∇Fj ,∇Fj −Gj〉√
b2j + 2‖∇Fj‖2 + 2σ2

− Eξj

[
‖∇Fj‖2

bj+1

]
+ Eξj

[
Lη‖Gj‖2

2b2j+1

]

=Eξj

 1√
b2j + 2‖∇Fj‖2 + 2σ2

− 1

bj+1

 〈∇Fj , Gj〉
− ‖∇Fj‖2√

b2j + 2‖∇Fj‖2 + 2σ2
+
ηL

2
Eξj

[
‖Gj‖2

b2j+1

]
(6)

10

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

Now, observe the term

1√
b2j + 2‖∇Fj‖2 + 2σ2

− 1

bj+1
=

(‖Gj‖ − ‖∇Fj‖)(‖Gj‖+ ‖∇Fj‖)− σ2

bj+1

√
b2j + 2‖∇Fj‖2 + 2σ2

(√
b2j + 2‖∇Fj‖2 + 2σ2 + bj+1

)
≤ |‖Gj‖ − ‖∇Fj‖|

bj+1

√
b2j + 2‖∇Fj‖2 + 2σ2

+
σ

bj+1

√
b2j + 2‖∇Fj‖2 + 2σ2

thus, applying Cauchy-Schwarz,

Eξj

 1√
b2j + 2‖∇Fj‖2 + 2σ2

− 1

bj+1

 〈∇Fj , Gj〉


≤Eξj

 |‖Gj‖ − ‖∇Fj‖| ‖Gj‖‖∇Fj‖
bj+1

√
b2j + 2‖∇Fj‖2 + 2σ2

+ Eξj

 σ‖Gj‖‖∇Fj‖

bj+1

√
b2j + 2‖∇Fj‖2 + 2σ2

 (7)

By applying the inequality ab ≤ 1
2λb

2 + λ
2a

2 with λ = 2σ2√
b2j+2‖∇Fj‖2+2σ2

, a =
‖Gj‖
bj+1

, and

b =
|‖Gj‖−‖∇Fj‖|‖∇Fj‖√
b2j+2‖∇Fj‖2+2σ2

, the first term in (7) can be bounded as

Eξj

 |‖Gj‖ − ‖∇Fj‖| ‖Gj‖‖∇Fj‖
bj+1

√
b2j + 2‖∇Fj‖2 + 2σ2


≤

√
b2j + 2‖∇Fj‖2 + 2σ2

4σ2

‖∇Fj‖2Eξj
[
(‖Gj‖ − ‖∇Fj‖)2

]
b2j + 2‖∇Fj‖2 + 2σ2

+
σ2√

b2j + 2‖∇Fj‖2 + 2σ2
Eξj

[
‖Gj‖2

b2j+1

]

≤ ‖∇Fj‖2

4
√
b2j + 2‖∇Fj‖2 + 2σ2

+ σEξj

[
‖Gj‖2

b2j+1

]
. (8)

where the first term in the last inequality is due to the fact that

|‖Gj‖ − ‖∇Fj‖| ≤ ‖Gj −∇Fj‖.

Similarly, applying the inequality ab ≤ λ
2a

2 + 1
2λb

2 with λ = 2√
b2j+2‖∇Fj‖2+2σ2

, a =
σ‖Gj‖
bj+1

,

and b = ‖∇Fj‖√
b2j+2‖∇Fj‖2+2σ2

, the second term of the right hand side in equation (7) is bounded

by

Eξj

 σ‖∇Fj‖‖Gj‖

bj+1

√
b2j + 2‖∇Fj‖2 + 2σ2

 ≤ σEξj
[
‖Gj‖2

b2j+1

]
+

‖∇Fj‖2

4
√
b2j + 2‖∇Fj‖2 + 2σ2

. (9)

11

Ward, Wu and Bottou

Thus, putting inequalities (8) and (9) back into (7) gives

Eξj

 1√
b2j + 2‖∇Fj‖2 + 2σ2

− 1

bj+1

 〈∇Fj , Gj〉
 ≤ 2σEξj

[
‖Gj‖2

b2j+1

]
+

‖∇Fj‖2

2
√
b2j + 2‖∇Fj‖2 + 2σ2

and, therefore, back to (6),

Eξj [Fj+1]− Fj
η

≤ηL
2
Eξj

[
‖Gj‖2

b2j+1

]
+ 2σEξj

[
‖Gj‖2

b2j+1

]
− ‖∇Fj‖2

2
√
b2j + 2‖∇Fj‖2 + 2σ2

Rearranging,

‖∇Fj‖2

2
√
b2j + 2‖∇Fj‖2 + 2σ2

≤
Fj − Eξj [Fj+1]

η
+

4σ + ηL

2
Eξj

[
‖Gj‖2

b2j+1

]

Applying the law of total expectation, we take the expectation of each side with respect to
ξj−1, ξj−2, . . . , ξ1, and arrive at the recursion

E

 ‖∇Fj‖2

2
√
b2j + 2‖∇Fj‖2 + 2σ2

 ≤ E[Fj]− E[Fj+1]

η
+

4σ + ηL

2
E

[
‖Gj‖2

b2j+1

]
.

Taking j = N and summing up from k = 0 to k = N − 1,

N−1∑
k=0

E

 ‖∇Fk‖2

2
√
b2k + 2‖∇Fk‖2 + 2σ2

 ≤ F0 − F ∗

η
+

4σ + ηL

2
E
N−1∑
k=0

[
‖Gk‖2

b2k+1

]

≤ F0 − F ∗

η
+

4σ + ηL

2
log

(
10 +

20N
(
σ2 + γ2

)
b20

)
(10)

where the second inequality we apply Lemma (3.2) and then Jensen’s inequality to bound
the summation:

E
N−1∑
k=0

[
‖Gk‖2

b2k+1

]
≤ E

[
1 + log

(
1 +

N−1∑
k=0

‖Gk‖2/b20

)]

≤ log

(
10 +

20N
(
σ2 + γ2

)
b20

)
. (11)

since

E
[
b2k − b2k−1

]
≤ E

[
‖Gk‖2

]
≤ 2E

[
‖Gk −∇Fk‖2

]
+ 2E

[
‖∇Fk‖2

]
≤ 2σ2 + 2γ2. (12)

12

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

3.2.1 Finishing the proof of the first bound in Theorem 2.1

For the term on left hand side in equation (10), we apply Hölder’s inequality,

E|XY |
(E|Y |3)

1
3

≤
(
E|X|

3
2

) 2
3

with X =

 ‖∇Fk‖2√
b2k + 2‖∇Fk‖2 + 2σ2

 2
3

and Y =

(√
b2k + 2‖∇Fk‖2 + 2σ2

) 2
3

to obtain

E

 ‖∇Fk‖2

2
√
b2k + 2‖∇Fk‖2 + 2σ2

 ≥
(
E‖∇Fk‖

4
3

) 3
2

2
√

E
[
b2k + 2‖∇Fk‖2 + 2σ2

] ≥
(
E‖∇Fk‖

4
3

) 3
2

2
√
b20 + 4(k + 1)(γ2 + σ2)

where the last inequality is due to inequality (12). Thus (10) arrives at the inequality

N mink∈[N−1]

(
E
[
‖∇Fk‖

4
3

]) 3
2

2
√
b20 + 4N(γ2 + σ2)

≤ F0 − F ∗

η
+

4σ + ηL

2

(
log

(
1 +

2N
(
σ2 + γ2

)
b20

)
+ 1

)
.

Multiplying by 2b0+4
√
N(γ+σ)
N , the above inequality gives

min
k∈[N−1]

(
E
[
‖∇Fk‖

4
3

]) 3
2 ≤

(
2b0
N

+
4(γ + σ)√

N

)
CF︸ ︷︷ ︸

CN

where

CF =
F0 − F ∗

η
+

4σ + ηL

2
log

(
20N

(
σ2 + γ2

)
b20

+ 10

)
.

Finally, the bound is obtained by Markov’s Inequality:

P
(

min
k∈[N−1]

‖∇Fk‖2 ≥
CN
δ3/2

)
=P

(
min

k∈[N−1]

(
‖∇Fk‖2

)2/3 ≥ (CN
δ3/2

)2/3
)

≤δ
E
[
mink∈[N−1] ‖∇Fk‖4/3

]
C

2/3
N

≤δ

where in the second step Jensen’s inequality is applied to the concave function φ(x) =
mink hk(x).

13

Ward, Wu and Bottou

3.2.2 Finishing the proof of the second bound in Theorem 2.1

First, observe with probability 1− δ′ that
N−1∑
i=0

‖∇Fi −Gi‖2 ≤
Nσ2

δ′
.

For the denominator on the left hand side of the inequality 10, we let Z =
∑N−1

k=0 ‖∇Fk‖2
and so

b2N−1 + 2(‖∇FN−1‖2 + σ2) =b20 +
N−2∑
i=0

‖Gi‖2 + 2(‖∇FN−1‖2 + σ2)

≤b20 + 2
N−1∑
i=0

‖∇Fi‖2 + 2
N−2∑
i=0

‖∇Fi −Gi‖2 + 2σ2

≤b20 + 2Z + 2N
σ2

δ′

Thus, we further simplify inequality (10),

E

 ∑N−1
k=0 ‖∇Fk‖2

2
√
b2N−1 + 2‖∇FN−1‖2 + 2σ2

 ≤ F0 − F ∗

η
+

4σ + ηL

2
log

(
10 +

20N
(
σ2 + γ2

)
b20

)
, CF

we have with probability 1− δ̂ − δ′ that

CF

δ̂
≥

∑N−1
k=0 ‖∇Fk‖2

2
√
b2N−1 + 2‖∇FN−1‖2 + 2σ2

≥ Z

2
√
b20 + 2Z + 2Nσ2/δ′

That is equivalent to solve the following quadratic equation

Z2 −
8C2

F

δ̂2
Z −

4C2
F

δ̂2

(
b20 +

2Nσ2

δ′

)
≤ 0

which gives

Z ≤
4C2

F

δ̂2
+

√
16C4

F

δ̂4
+

4C2
F

δ̂2

(
b20 +

2Nσ2

δ′

)
≤

8C2
F

δ̂2
+

2CF

δ̂

(
b0 +

√
2Nσ√
δ′

)

Let δ̂ = δ′ = δ
2 . Replacing Z with

∑N−1
k=0 ‖∇Fk‖2 and dividing both side with N we have

with probability 1− δ

min
k∈[N−1]

‖∇Fk‖2 ≤
4CF
Nδ

(
8CF
δ

+ 2b0

)
+

8σCF

δ3/2
√
N
.

14

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

4. Proof of Theorem 2.2

4.1 Lemmas

We will use the following lemma to argue that after an initial number of steps N =

d (ηL)
2−b20
ε e+ 1, either we have already reached a point xk such that ‖∇F (xk)‖2 ≤ ε, or else

bN ≥ ηL.

Lemma 4.1 Fix ε ∈ (0, 1] and C > 0. For any non-negative a0, a1, . . . , the dynamical
system

b0 > 0; b2j+1 = b2j + aj

has the property that after N = dC
2−b20
ε e+1 iterations, either mink=0:N−1 ak ≤ ε, or bN ≥ ηL.

Proof If b0 ≥ ηC, we are done. Else b0 < C. Let N be the smallest integer such that
N ≥ C2−b20

ε . Suppose bN < C. Then

C2 > b2N = b20 +
N−1∑
k=0

ak > b20 +N min
k∈[N−1]

ak ⇒ min
k∈[N−1]

ak ≤
C2 − b20
N

Hence, for N ≥ C2−b20
ε , mink∈[N−1] ak ≤ ε. Suppose mink∈[N−1] ak > ε, then from above

inequalities we have bN > C.

The following Lemma shows that {F (xk)}∞k=0 is a bounded sequence for any value of b0 > 0.

Lemma 4.2 Suppose F ∈ C1
L and F ∗ = infx F (x) > −∞. Denote by k0 ≥ 1 the first index

such that bk0 ≥ ηL. Then for all bk < ηL, k = 0, 1, . . . , k0 − 1,

Fk0−1 − F ∗ ≤ F0 − F ∗ +
η2L

2

(
1 + 2 log

(
bk0−1
b0

))
(13)

Proof Suppose k0 ≥ 1 is the first index such that bk0 ≥ ηL. By Lemma 3.1, for j ≤ k0 − 1,

Fj+1 ≤ Fj −
η

bj+1
(1− ηL

2bj+1
)‖∇Fj‖2 ≤ Fj +

η2L

2b2j+1

‖∇Fj‖2 ≤ F0 +

j∑
`=0

η2L

2b2`+1

‖∇F`‖2

⇒ Fk0−1 − F0 ≤
η2L

2

k0−2∑
i=0

‖∇Fi‖2

b2i+1

≤ η2L

2

k0−2∑
i=0

(‖∇Fi‖/b0)2∑i
`=0(‖∇F`‖/b0)2 + 1

≤ η2L

2

(
1 + log

(
1 +

k0−2∑
`=0

‖∇F`‖2

b20

))
by Lemma 3.2

≤ η2L

2

(
1 + log

(
b2k0−1
b20

))
.

15

Ward, Wu and Bottou

4.2 Main proof

Proof By Lemma 4.1, if mink∈[N−1] ‖∇F (xk)‖2 ≤ ε is not satisfied after N = d (ηL)
2−b20
ε e+1

steps, then there exits a first index 1 ≤ k0 ≤ N such that bk0
η > L. By Lemma 3.1, for j ≥ 0,

Fk0+j ≤ Fk0+j−1 −
η

bk0+j
(1− ηL

2bk0+j
)‖∇Fk0+j−1‖2

≤ Fk0−1 −
j∑
`=0

η

2bk0+`
‖∇Fk0+`−1‖2

≤ Fk0−1 −
η

2bj

j∑
`=0

‖∇Fk0+`−1‖2. (14)

Let Z =
∑M−1

k=k0−1 ‖∇Fk‖
2, it follows that

2 (Fk0−1 − F ∗)
η

≥ 2 (F0 − FM)

η
≥
∑M−1

k=k0−1 ‖∇Fk‖
2

bM
≥ Z√

Z + b2k0−1

.

Solving the quadratic inequality for Z,

M−1∑
k=k0−1

‖∇Fk‖2 ≤
4 (Fk0−1 − F ∗)

2

η2
+

2 (Fk0−1 − F ∗) bk0−1
η

. (15)

If k0 = 1, the stated result holds by multiplying both side by 1
M . Otherwise, k0 > 1.

From Lemma 4.2, we have

Fk0−1 − F ∗ ≤ F0 − F ∗ +
η2L

2

(
1 + 2 log

(
ηL

b0

))
.

Replacing Fk0−1 − F ∗ in (15) by above bound, we have

M−1∑
k=k0−1

‖∇Fk‖2

≤
(
2 (F0 − F ∗)

η
+ ηL (1 + 2 log (ηL/b0))

)2

+ 2L (F0 − F ∗) + (ηL)2
(
1 + 2 log

(
ηL

b0

))
︸ ︷︷ ︸

CM

Thus, we are assured that
min

k=0:N+M−1
‖∇Fk‖2 ≤ ε

where N ≤ L2−b20
ε and M = CM

ε .

16

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

5. Numerical experiments

With guaranteed convergence of AdaGrad-Norm and its robustness to the parameters η and
b0, we perform experiments on several data sets ranging from simple linear regression over
Gaussian data to neural network architectures on state-of-the-art (SOTA) image data sets
including ImageNet. These experiments are not about outperforming the strong baseline
of well-tuned SGD, but to further strengthen the theoretical finding that the convergence
of AdaGrad-norm requires less hyper-parameter tuning while maintaining a comparable
performance as the well-tuned SGD methods.

5.1 Synthetic data

In this section, we consider linear regression to corroborate our analysis, i.e.,

F (x) =
1

2m
‖Ax− y‖2 = 1

(m/n)

m/n∑
k=1

1

2n
‖Aξkx− yξk‖

2

where A ∈ Rm×d, m is the total number of samples, n is the mini-batch (small sample) size
for each iteration, and Aξk ∈ Rn×d. Then AdaGrad-Norm update is

xj+1 = xj −
ηATξj

(
Aξjxj − yξj

)
/n√

b20 +
∑j

`=0

(
‖ATξ` (Aξ`x` − yξ`) ‖/n

)2 .
We simulate A ∈ R1000×2000 and x∗ ∈ R1000 such that each entry of A and x∗ is an i.i.d.
standard Gaussian. Let y = Ax∗. For each iteration, we independently draw a small sample
of size n = 20 and x0 whose entries follow i.i.d. uniform in [0, 1]. The vector x0 is same
for all the methods so as to eliminate the effect of random initialization in weight vector.
Since F ∗ = 0, we set η = F (x0) − F ∗ = 1

2m‖Ax0 − b‖
2 = 650. We vary the initialization

b0 > 0 as to compare with plain SGD using (a) SGD-Constant: fixed stepsize 650
b0

, (b)
SGD-DecaySqrt: decaying stepsize ηj = 650

b0
√
j
, and (c) AdaGrad-Coodinate: update the d

parameters bj(k), k = 1, 2, . . . , d at each iteration j, one for each coordinate of xj ∈ Rd.
Figure 1 plots ‖AT (Axj − y) ‖/m (GradNorm) and the effective learning rates at iterations
10, 2000, and 5000, and as a function of b0, for each of the four methods. The effective
learning rates are 650

bj
(AdaGrad-Norm), 650

b0
(SGD-Constant), 650

b0
√
j
(SGD-DecaySqrt), and

the median of {bj(`)}d`=1 (AdaGrad-Coordinate).
We can see in Figure 1 how AdaGrad-Norm and AdaGrad-Coordinate auto-tune the

learning rate adaptively to a certain level to match the unknown Lipschitz smoothness
constant and the stochastic noise so that the gradient norm converges for a significantly
wider range of b0 than for either SGD method. In particular, when b0 is initialized too
small, AdaGrad-Norm and AdaGrad-Coordinate still converge with good speed while SGD-
Constant and SGD-DecaySqrt diverge. When b0 is initialized too large (stepsize too small),
surprisingly AdaGrad-Norm and AdaGrad-Coordinate converge at the same speed as SGD-
Constant. This possibly can be explained by Theorem 2.2 because this is somewhat like the
deterministic setting (the stepsize controls the variance σ and a smaller learning rate implies
smaller variance). Comparing AdaGrad-Coordinate and AdaGrad-Norm, AdaGrad-Norm is

17

Ward, Wu and Bottou

10−2 100 102 104 106

10−4
10−2
100
102
104
106
108

1010
Gr

ad
No

rm
Iteration a 10

AdaGrad_Norm
SGD_Cons an

SGD_DecaySqr
AdaGrad_Coordina e

10−2 100 102 104 106

10−4

10−2

100

102

104

106

108

1010

I era ion a 2000

10−2 100 102 104 106

10−4

10−2

100

102

104

106

108

1010

I era ion a 5000

10−2100 102 104 106

b0

10−5
10−4
10−3
10−2
10−1
100

Ef
fe

c
iv

e
LR

10−2100 102 104 106

b0

10−5

10−4

10−3

10−2

10−1

100

10−2100 102 104 106

b0

10−5

10−4

10−3

10−2

10−1

100

Figure 1: Gaussian Data – Stochastic Setting. The top 3 figures plot the square of the
gradient norm for linear regression, ‖AT (Axj − y) ‖/m, w.r.t. b0, at iterations 10,
2000 and 5000 (see title) respectively. The bottom 3 figures plot the corresponding
effective learning rates (median of {bj(`)}d`=1 for AdaGrad-Coordinate), w.r.t. b0,
at iteration 10, 2000 and 5000 respectively (see title).

more robust to the initialization b0 but is not better than AdaGrad-Coordinate when the
initialization b0 is close to the optimal value of L.

Figure 2 explores the batch gradient descent setting, when there is no variance σ = 0 (i.e.,
using the whole data sample for one iteration). The experimental setup in Figure 2 is the
same as Figure 1 except for the sample size m of each iteration. Since the line-search method
(GD-LineSearch) is one of the most important algorithms in deterministic gradient descent
for adaptively choosing the step-size at each iteration, we also compare to this method – see
Algorithm 2 in the appendix for our particular implementation of Line-Search. We see that
the behavior of the four methods, AdaGrad-Norm, AdaGrad-Coordinate, GD-Constant, and
GD-DecaySqrt, are very similar to the stochastic setting, albeit AdaGrad-Coordinate here is
worse than in the stochastic setting. Among the five methods in the plot, GD-LineSearch
performs the best but with significantly longer computational time, which is not practical in
large-scale machine learning problems.

5.2 Image data

In this section, we extend our numerical analysis to the setting of deep learning and show
that the robustness of AdaGrad-Norm does not come at the price of worse generalization –

18

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

10−3 10−1 101 103 105

10−12
10−8
10−4
100
104
108
1012

Gr
ad
No

rm
Iteration at 50

AdaGrad_Norm
GD_Constant

GD_DecayS rt
AdaGrad_Coordinate

GD_LineSearch

10−3 10−1 101 103 105

10−12

10−8

10−4

100

104

108

1012

Iteration at 100

10−3 10−1 101 103 105

10−12

10−8

10−4

100

104

108

1012

Iteration at 200

10−3 10−1 101 103 105
10−2

10−1

100

101

102

Ef
fe
ct
iv
e
LR

10−3 10−1 101 103 105

10−2

10−1

100

101

102

10−3 10−1 101 103 105

10−2

10−1

100

101

102

10−3 10−1 101 103 105
b0

10−2

10−1

Ac
cu
Ti
m
e(
Se
co
nd
)

10−3 10−1 101 103 105
b0

10−2

10−1

10−3 10−1 101 103 105
b0

10−2

10−1

Figure 2: Gaussian Data - Batch Setting. The y-axis and x-axis in the top and middle 3
figures are the same as in Figure 1. The bottom 3 figures plot the accumulated
computational time (AccuTime) up to iteration 50, 100 and 200 (see title), as a
function of b0.

an important observation that is not explained by our current theory. The experiments are
done in PyTorch (Paszke et al., 2017) and parameters are by default if no specification is
provided.3 We did not find it practical to compute the norm of the gradient for the entire
neural network during back-propagation. Instead, we adapt a stepsize for each neuron or
each convolutional channel by updating bj with the gradient of the neuron or channel. Hence,
our experiments depart slightly from a strict AdaGrad-Norm method and include a limited
adaptive metric component. Details in implementing AdaGrad-Norm in a neural network
are explained in the appendix and the code is also provided.4

Datasets and Models We test on three data sets: MNIST (LeCun et al., 1998), CIFAR-10
(Krizhevsky, 2009) and ImageNet (Deng et al., 2009), see Table 1 in the appendix for detailed
descriptions. For MNIST, our models are a logistic regression (LogReg), a multilayer network

3. The code we used is originally from https://github.com/pytorch/examples/tree/master/imagenet
4. https://github.com/xwuShirley/pytorch/blob/master/torch/optim/adagradnorm.py

19

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/xwuShirley/pytorch/blob/master/torch/optim/adagradnorm.py

Ward, Wu and Bottou

10−5 10−3 10−1 101 10370

75

80

85

90

95
Tr
ai
n
Ac
c
ra
cy

LogReg at 5

AdaGrad_Norm
SGD_Constant

SGD_DecaySqrt
AdaGrad_Coordinate

10−5 10−3 10−1 101 103

LogReg at 15

10−5 10−3 10−1 101 103

LogReg at 30

10−6 10−3 100 103
b0

70

75

80

85

90

95

Te
st
 A
cc
 r
ac
y

10−6 10−3 100 103
b0

10−6 10−3 100 103
b0

Figure 3: MNIST. In each plot, the y-axis is the train or test accuracy and the x-axis is b0.
The 6 plots are for logistic regression (LogReg) with average at epoch 1-5, 11-15
and 26-30. The title is the last epoch of the average. Note green and red curves
overlap when b0 belongs to [10,∞)

with two fully connected layers (FulConn2) with 100 hidden units and ReLU activations, and
a convolutional neural network (see Table 2 in the appendix for details). For CIFAR10, our
model is ResNet-18 (He et al., 2016). For both data sets, we use 256 images per iteration (2
GPUs with 128 images/GPU, 234 iterations per epoch for MNIST and 196 iterations per
epoch for CIFAR10). For ImagetNet, we use ResNet-50 and 256 images for one iteration (8
GPUs with 32 images/GPU, 5004 iterations per epoch). Note that we do not use accelerated
methods such as adding momentum in the training.

We pick these models for the following reasons: (1) LR with MNIST represents the
smooth loss function; (2) FC with MNIST represents the non-smooth loss function; (3) CNN
with MNIST belongs to a class of simple shallow network architectures; (4) ResNet-18 in
CIFAR10 represents a complicated network architecture involving many other added features
achieving SOTA performance; (5) ResNet-50 in ImageNet represents large-scale data and a
deep network architecture.

20

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

Experimental Details In order to make the setting match our assumptions, we make
several changes, which are not practically meaningful scenarios but serve only for corroborating
our theorems.

For the experiment in MNIST, we do not use bias, regularization (zero weight decay),
dropout, momentum, batch normalization (Ioffe and Szegedy, 2015), or any other added
features that help achieving SOTA performance (see Figure 3 and Figure 4). However, the
architecture of ResNet by default is built with the celebrated batch normalization (Batch-
Norm) method as important layers. Batch-Norm accomplishes the auto-tuning property
by normalizing the means and variances of mini-batches in a particular way during the
forward-propagation, and in return is back-propagated with projection steps. This projection
phenomenon is highlighted in weight normalization (Salimans and Kingma, 2016; Wu et al.,
2018). Thus, in the ResNet-18 experiment on CIFAR10, we are particularly interested in
how Batch-Norm interacts with the auto-tuning property of AdaGrad-Norm. We disable the
learnable scale and shift parameters in the Batch-Norm layers 5 and compare the default
setup in ResNet (Goyal et al., 2017). The resulted plots are located in Figure 4 (bottom
left and bottom right). In the ResNet-50 experiment on ImageNet, we also depart from the
standard set-up by initializing the weights of the last fully connected layer with i.i.d. Gaussian
samples with mean zero and variance 0.03125. Note that the default initialization for the
last fully-connected layer of ResNet50 is an i.i.d. Gaussian distribution with mean zero and
variance of 0.01. Instead, we use variance 0.03125 in that the AdaGrad-Norm algorithm takes
the norm of the gradient. The initialization of Gaussian distribution with higher variance
results in larger accumulative gradient norms, which is likely to make AdaGrad-Norm robust
to small initialization of b0. To some extent, AdaGrad-Norm could be sensitive to the model’s
initialization. But how much sensitive the AdaGrad-Norm, or more generally the adaptive
gradient methods, to the initialization of the model could be a potential future direction.

For all experiments, same initialized vector x0 is used for the same model so as to
eliminate the effect of random initialization in weight vectors. We set η = 1 in all AdaGrad
implementations, noting that in all these problems we know that F ∗ = 0 and we measure that
F (x0) is between 1 and 10. Indeed, we approximate the loss using a sample of 256 images to
be 1

256

∑256
i=1 fi(x0): 2.4129 for logistic regression, 2.305 for two-layer fully connected model,

2.301 for convolution neural network, 2.3848 for ResNet-18 with disable learnable parameter
in Batch-Norm, 2.3459 for ResNet-18 with default Batch-Norm, and 7.704 for ResNet-50.
We vary the initialization b0 while fixing all other parameters and plot the training accuracy
and testing accuracy after different numbers of epochs. We compare AdaGrad-Norm with
initial parameter b0 to (a) SGD-Constant: fixed stepsize 1

b0
, (b) SGD-DecaySqrt: decaying

stepsize ηj = 1
b0
√
j
(c) AdaGrad-Coordinate: a vector of per-coefficient stepsizes. 6

Observations and Discussion In all experiments shown in Figures 3, 4, and 5, we fix
b0 and compare the accuracy for the four algorithms; the convergence of AdaGrad-Norm
is much better even for small initial values b0, and shows much stronger robustness than
the alternatives. In particular, Figures 3 and 4 show that the AdaGrad-Norm’s accuracy is
extremely robust (as good as the best performance) to the choice of b0. At the same time,
the SGD methods and AdaGrad-Coordinate are highly sensitive. For Figure 5, the range of

5. Set nn.BatchNorm2d(planes,affine=False)
6. We use torch.optim.adagrad

21

Ward, Wu and Bottou

10−2 100 102 104

20

40

60

80

100

Tr
ai
n
Ac
cu
ra
cy

FulConn at 5
AdaGrad_Norm SGD_Constant

10 2 100 102 104

FulConn at 15

10 2 100 102 104

FulConn at 30

10 2 100 102 104
b0

20

40

60

80

100

Te
st
 A
cc
ur
ac
y

10 2 100 102 104
b0

10 2 100 102 104
b0

10−2 100 102 104

20

40

60

80

100

Tr
ai

n
Ac

cu
ra

cy

CNN at 5
SGD_DecaySqrt AdaGrad_Coordinate

10−2 100 102 104

CNN at 15

10−2 100 102 104

CNN at 30

10−2 100 102 104

b0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

10−2 100 102 104

b0
10−2 100 102 104

b0

10−2 100 102 104

20

40

60

80

100

Tr
ai

n
Ac

cu
ra

cy

ResNet at 10

10−2 100 102 104

ResNet at 45

10−2 100 102 104

ResNet at 90

10−2 100 102 104

b0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

10−2 100 102 104

b0
10−2 100 102 104

b0

10−2 100 102 104

20

40

60

80

100

Tr
ai

n
Ac

cu
ra

cy

ResNet at 10

10−2 100 102 104

ResNet at 45

10−2 100 102 104

ResNet at 90

10−2 100 102 104

b0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

10−2 100 102 104

b0
10−2 100 102 104

b0

Figure 4: In each plot, the y-axis is the train or test accuracy and the x-axis is b0. Top left 6
plots are for MNIST using the two-layer fully connected network (ReLU activation).
Top right 6 plots are for MNIST using convolution neural network (CNN). Bottom
left 6 plots are for CIFAR10 using ResNet-18 with disabling learnable parameter in
Batch-Norm. Bottom right 6 plots are for CIFAR10 using ResNet-18 with default
Batch-Norm. The points in the (top) bottom plot are the average of epoch (1-5)
6-10, epoch (11-15) 41-45 or epoch (26-30) 86-90. The title is the last epoch of
the average. Note green, red and black curves overlap when b0 belongs to [10,∞).
Better read on screen.

parameters b0 for which AdaGrad-Norm attains its best performance is also larger than the
corresponding range for SGD-Constant and AdaGrad-Coordinate but sub-optimal for small
values of b0. It is likely to indicate that for ImageNet training, AdaGrad-Norm does not
remove the need to tune b0 but makes the hyper-parameter search for b0 easier. Note that
the best test accuracy in Figure 5 is substantially lower than numbers in the literature, where

22

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

10−210−11001011021031041050
10
20
30
40
50
60
70

Tr
ai
n
Ac

cu
ra
c

ResNet at 30

AdaGrad_Norm
SGD_Constant

SGD_Deca Sqrt
AdaGrad_Coordinate

10−2 10−1 100 101 102 103 104 105

ResNet at 50

10−2 10−1 100 101 102 103 104 105

ResNet at 90

10−2 100 102 104
b2
0

0
10
20
30
40
50
60
70

Te
st
 A
cc
ur
ac

10−2 100 102 104
b2
0

10−2 100 102 104
b2
0

Figure 5: ImageNet trained with model ResNet-50. The y-axis is the average train or test
accuracy at epoch 26-30, 46-50, 86-90 w.r.t. b20. Note no momentum is used in the
training. See Experimental Details. Note green, red and black curves overlap
when b0 belongs to [10,∞).

optimizers for ResNet-50 on ImageNet attain test accuracy around 76% (Goyal et al., 2017),
about 10% better than the best result in Figure 5. This is mainly because (a) we do not
apply momentum methods, and perhaps more critically (b) both SGD and AdaGrad-Norm
do not use the default decaying scheduler for η as in Goyal et al. (2017). Instead, we use a
constant rate η = 1. Our purpose is not to achieve the comparable state-of-the-art results
but mainly to verify that AdaGrad-Norm is less sensitive to hyper-parameter and requires
less hyper-parameter tuning.

Similar to the Synthetic Data, when b0 is initialized in the range of well-tuned stepsizes,
AdaGrad-Norm gives almost the same accuracy as SGD with constant stepsize; when b0 is
initialized too small, AdaGrad-Norm still converges with good speed (except for CNN in
MNIST), while SGDs do not. The divergence of AdaGrad-Norm with small b0 for CNN in
MNIST (Figure 4, top right) can be possibly explained by the unboundedness of gradient
norm in the four-layer CNN model. In contrast, the 18-layer or 50-layer ResNet model is

23

Ward, Wu and Bottou

10−2 100 102 104

20

40

60

80

100

Tr
ai

n
Ac

cu
ra

cy
LeNet at 10

AdaGrad_Norm SGD_Constant

10−2 100 102 104

LeNet at 45

10−2 100 102 104

LeNet at 90

10−2 100 102 104

b0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

10−2 100 102 104

b0
10−2 100 102 104

b0

10−2 100 102 104

20

40

60

80

100

Tr
ai

n
Ac

cu
ra

cy

LeNet at 10
AdaGrad_Norm SGD_Constant

10−2 100 102 104

LeNet at 45

10−2 100 102 104

LeNet at 90

10−2 100 102 104

b0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

10−2 100 102 104

b0
10−2 100 102 104

b0

Figure 6: The performance of SGD and AdaGrad-Norm in presence of momentum (see
Algorithm 3). In each plot, the y-axis is train or test accuracy and x-axis is b0.
Left 6 plots are for CIFAR10 using ResNet-18 with disabling learnable parameter
in Batch-Norm. Right 6 plots are for CIFAR10 using ResNet-18 with default
Batch-Norm. The points in the plot are the average of epoch 6-10, epoch 41-45
and epoch 86-90, respectively. The title is the last epoch of the average. Better
read on screen.

very robust to all range of b0 in experiments (Figure 4, bottom), which is due to Batch-Norm
that we further discuss in the next paragraph.

We are interested in the experiments of Batch-Norm by default and Batch-Norm without
learnable parameters because we want to understand how AdaGrad-Norm interacts with
models that already have the built-in feature of auto-tuning stepsize such as Batch-Norm.
First, comparing the outcomes of Batch-Norm with the default setting (Figure 4, bottom right)
and without learnable parameters (Figure 4, bottom left), we see the learnable parameters
(scales and shifts) in Batch-Norm can be very helpful in accelerating the training. Surprisingly,
the best stepsize in Batch-Norm with default for SGD-Constant is at b0 = 0.1 (i.e., η = 10).
While the learnable parameters are more beneficial to AdaGrad-Coordinate, AdaGrad-Norm
seems to be affected less. Overall, combining the two auto-tuning methods (AdaGrad-Norm
and Batch-Norm) give good performance.

At last, we add momentum to the stochastic gradient descent methods as empirical
evidence to showcase the robustness of adaptive methods with momentum shown in Figure
6. Since SGD with 0.9 momentum is commonly used, we also set 0.9 momentum for our
implementation of AdaGrad-Norm. See Algorithm 3 in the appendix for details. The results
(Figure 6) show that AdaGrad-Norm with momentum is highly robust to initialization while
SGD with momentum is not. SGD with momentum does better than AdaGrad-Norm when
the initialization b0 is greater than the Lipschitz smoothness constant. When b0 is smaller

24

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

than the Lipschitz smoothness constant, AdaGrad-Norm performs as well as SGD with the
best stepsize (0.1).

Acknowledgments

Special thanks to Kfir Levy for pointing us to his work, to Francesco Orabona for reading a
previous version and pointing out a mistake, and to Krishna Pillutla for discussion on the unit
mismatch in AdaGrad. We thank Arthur Szlam and Mark Tygert for constructive suggestions.
We also thank Francis Bach, Alexandre Defossez, Ben Recht, Stephen Wright, and Adam
Oberman. We appreciate the help with the experiments from Priya Goyal, Soumith Chintala,
Sam Gross, Shubho Sengupta, Teng Li, Ailing Zhang, Zeming Lin, and Timothee Lacroix.
Finally, we owe particular gratitude to the reviewers and the editor for their suggestions and
comments that significantly improved the paper.

References

A. Agarwal, M. Wainwright, P. Bartlett, and P. Ravikumar. Information-theoretic lower
bounds on the oracle complexity of convex optimization. In Advances in Neural Information
Processing Systems, pages 1–9, 2009.

N. Agarwal, Z. Allen-Zhu, B. Bullins, and T. Hazan, E.and Ma. Finding approximate
local minima faster than gradient descent. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, pages 1195–1199, 2017. ISBN
978-1-4503-4528-6.

Z. Allen-Zhu. Natasha: Faster non-convex stochastic optimization via strongly non-convex
parameter. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pages 89–97. JMLR. org, 2017.

Z. Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 2675–2686. 2018.

Z. Allen-Zhu and Y. Yang. Improved svrg for non-strongly-convex or sum-of-non-convex
objectives. In International conference on machine learning, pages 1080–1089, 2016.

J. Barzilai and J. Borwein. Two-point step size gradient method. IMA Journal of Numerical
Analysis, 8:141–148, 1988.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM Reviews, 60(2):223–311, 2018.

S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends R©
in Machine Learning, 8(3-4):231–357, 2015.

Y. Carmon, J. Duchi, O. Hinder, and A Sidford. “convex until proven guilty”: Dimension-free
acceleration of gradient descent on non-convex functions. In International Conference on
Machine Learning, pages 654–663. PMLR, 2017.

25

Ward, Wu and Bottou

Y. Carmon, J. Duchi, O. Hinder, and A. Sidford. Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

Y. Carmon, J. Duchi, O. Hinder, and A. Sidford. Lower bounds for finding stationary points
i. Mathematical Programming, pages 1–50, 2019.

J. Chen and Q. Gu. Closing the generalization gap of adaptive gradient methods in training
deep neural networks. arXiv preprint arXiv:1806.06763, 2018.

A. Cutkosky and K. Boahen. Online learning without prior information. Proceedings of
Machine Learning Research vol, 65:1–35, 2017.

A. Defossez and F. Bach. Adabatch: Efficient gradient aggregation rules for sequential and
parallel stochastic gradient methods. arXiv preprint arXiv:1711.01761, 2017.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

C. Fang, C. J. Li, Z. Lin, and T. Zhang. Spider: Near-optimal non-convex optimization via
stochastic path-integrated differential estimator. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 689–699. 2018.

S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex nonlinear and stochastic
programming. Mathematical Programming, 156(1-2):59–99, 2016.

P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, and
K. Jia, Y.and He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pages 448–456,
2015.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

A. Krizhevsky. Learning multiple layers of features from tiny images. 2009.

26

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

J. Lafond, N. Vasilache, and L. Bottou. Diagonal rescaling for neural networks. Technical
report, arXiV:1705.09319, 2017.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

L. Lei, Cheng J., J. Chen, and M. Jordan. Non-convex finite-sum optimization via scsg
methods. In Advances in Neural Information Processing Systems, pages 2348–2358, 2017.

K. Levy. Online to offline conversions, universality and adaptive minibatch sizes. In Advances
in Neural Information Processing Systems, pages 1612–1621, 2017.

X. Li and F. Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 983–992. PMLR, 2019.

B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization.
Conference on Learning Theory, page 244, 2010.

M. C. Mukkamala and M. Hein. Variants of RMSProp and Adagrad with logarithmic regret
bounds. In Proceedings of the 34th International Conference on Machine Learning, pages
2545–2553, 2017.

A. Nemirovski and D. Yudin. Problem complexity and method efficiency in optimization.
1983.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19:1574–1609, 2009.

Y. Nesterov. Introductory lectures on convex programming volume i: Basic course. 1998.

F. Orabona and D. Pal. Scale-free algorithms for online linear optimization. In ALT, 2015.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, and
A. Antiga, L.and Lerer. Automatic differentiation in pytorch. 2017.

S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Fast incremental method for smooth nonconvex
optimization. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages
1971–1977. IEEE, 2016.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In International
Conference on Learning Representations, 2018.

H. Robbins and S. Monro. A stochastic approximation method. In The Annals of Mathematical
Statistics, volume 22, pages 400–407, 1951.

T. Salimans and D. Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems,
pages 901–909, 2016.

27

Ward, Wu and Bottou

G. Hinton N. Srivastava and K. Swersky. Neural networks for machine learning-lecture
6a-overview of mini-batch gradient descent, 2012.

C. Tan, S. Ma, Y. Dai, and Y. Qian. Barzilai-borwein step size for stochastic gradient descent.
In Advances in Neural Information Processing Systems, pages 685–693, 2016.

A. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value of adaptive
gradient methods in machine learning. In Advances in Neural Information Processing
Systems, pages 4148–4158, 2017.

S. Wright and J. Nocedal. Numerical Optimization. Springer New York, New York, NY,
2006. ISBN 978-0-387-40065-5.

X. Wu, R. Ward, and L. Bottou. WNGrad: Learn the learning rate in gradient descent.
arXiv preprint arXiv:1803.02865, 2018.

Yi Xu, Rong Jin, and Tianbao Yang. First-order stochastic algorithms for escaping from
saddle points in almost linear time. In Advances in Neural Information Processing Systems,
pages 5530–5540, 2018.

M. Zeiler. ADADELTA: an adaptive learning rate method. In arXiv preprint arXiv:1212.5701,
2012.

D. Zhou, P. Xu, and Q. Gu. Stochastic nested variance reduced gradient descent for nonconvex
optimization. In Advances in Neural Information Processing Systems, pages 3925–3936,
2018.

Appendix A. Tables

Table 1: Statistics of data sets. DIM is the dimension of a sample
Dataset Train Test Classes Dim

MNIST 60,000 10,000 10 28×28
CIFAR-10 50,000 10,000 10 32×32
ImageNet 1,281,167 50,000 1000 Various

Table 2: Architecture for four-layer convolution neural network (CNN)
Layer type Channels Out Dimension

5× 5 conv relu 20 24
2× 2 max pool, str.2 20 12

5× 5 conv relu 50 8
2× 2 max pool, str.2 50 4

FC relu N/A 500
FC relu N/A 10

28

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes

Appendix B. Implementing Algorithm 1 in a neural network

In this section, we give the details for implementing our algorithm in a neural network. In
the standard neural network architecture, the computation of each neuron consists of an
elementwise nonlinearity of a linear transform of input features or output of previous layer:

y = φ(〈w, x〉+ b), (16)

where w is the d-dimensional weight vector, b is a scalar bias term, x,y are respectively a
d-dimensional vector of input features (or output of previous layer) and the output of current
neuron, φ(·) denotes an element-wise nonlinearity.

For fully connected layer, the stochastic gradient G in Algorithm 1 represents the gradient
of the current neuron (see the green curve, Figure 7). Thus, when implementing our algorithm
in PyTorch, AdaGrad Norm is one learning rate associated to one neuron for fully connected
layer, while SGD has one learning rate for all neurons.

For convolution layer, the stochastic gradient G in Algorithms 1 represents the gradient
of each channel in the neuron. For instance, there are 6 learning rates for the first layer in
the LeNet architecture (Table 1). Thus, AdaGrad-Norm is one learning rate associated to
one channel.

Dim 1

Dim 2

Dim 3

Dim 4

Hidden
layer 1

Hidden
layer 2

loss

Input
layer

Output
layer

Figure 7: An example of backpropagation of two hidden layers. Green edges represent the
stochastic gradient G in Algorithm 1 .

Algorithm 3 AdaGrad-Norm with momentum in PyTorch
1: Input: Initialize x0 ∈ Rd, b0 > 0, v0 ← 0, j ← 0, β ← 0.9, and the total iterations N .
2: for j = 0, 1, . . . , N do
3: Generate ξj and Gj = G(xj , ξj)
4: vj+1 ← βvj + (1− β)Gj
5: xj+1 ← xj − vj+1

bj+1
with b2j+1 ← b2j + ‖Gj‖2

6: end for

29

Ward, Wu and Bottou

Algorithm 2 Gradient Descent with Line Search Method
1: function line-search(x, b0,∇F (x))
2: xnew ← x− 1

b0
∇F (x)

3: while F (xnew) > F (x)− b0
2 ‖∇F (x)‖

2 do
4: b0 ← 2b0
5: xnew ← x− 1

b0
∇F (x)

6: end while
7: return xnew
8: end function

30

	Introduction
	Stepsize adaptation with AdaGrad-Norm
	Main contributions
	Previous work
	Future work
	Notation

	AdaGrad-Norm convergence
	Proof of Theorem 2.1
	Ingredients
	Main proof
	Finishing the proof of the first bound in Theorem 2.1
	Finishing the proof of the second bound in Theorem 2.1

	Proof of Theorem 2.2
	Lemmas
	Main proof

	Numerical experiments
	Synthetic data
	Image data

	Tables
	Implementing Algorithm 1 in a neural network

