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Abstract

High dimensional piecewise stationary graphical models represent a versatile class for mod-
elling time varying networks arising in diverse application areas, including biology, eco-
nomics, and social sciences. There has been recent work in offline detection and estimation
of regime changes in the topology of sparse graphical models. However, the online setting
remains largely unexplored, despite its high relevance to applications in sensor networks and
other engineering monitoring systems, as well as financial markets. To that end, this work
introduces a novel scalable online algorithm for detecting an unknown number of abrupt
changes in the inverse covariance matrix of sparse Gaussian graphical models with small
delay. The proposed algorithm is based upon monitoring the conditional log-likelihood of
all nodes in the network and can be extended to a large class of continuous and discrete
graphical models. We also investigate asymptotic properties of our procedure under certain
mild regularity conditions on the graph size, sparsity level, number of samples, and pre-
and post-changes in the topology of the network. Numerical works on both synthetic and
real data illustrate the good performance of the proposed methodology both in terms of
computational and statistical efficiency across numerous experimental settings.

Keywords: Sequential change-point detection, Gaussian graphical models, Pseudo-
likelihood, Mini-batch update, Asymptotic analysis

1. Introduction

Recent technological advances in data mining have revolutionized the collection of com-
plex and high-resolution financial, biological and social data (Wu et al., 2014). Character-
izing and understanding the relationships amongst a large number of variables poses novel
methodological and technical challenges. Probabilistic graphical models capture the condi-
tional dependence structure between variables of interest (Wainwright and Jordan, 2008)
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and thus have become a standard tool for the aforementioned task. Further, Gaussian
processes provide powerful models in many applications, which when combined with the
computational advantages of estimating Gaussian Graphical Models (GGM) has rendered
them very popular in empirical work (see e.g., (Bessler and Yang, 2003; Jones and West,
2005)).

An undirected probabilistic graphical model comprises of p nodes (variables of interest
X = [X1, . . . , Xp]

>) {V1, . . . , Vp}, whose edges represent conditional dependence relation-
ships amongst them; specifically, there is an edge between Vi and Vj if they are conditionally
dependent given all other variables (nodes). In GGMs, X is a zero mean Gaussian random
vector with covariance matrix Σ and in the precision matrix Ω := Σ−1, an edge connects
Vi and Vj if and only if Ωij 6= 0. In other words, the conditional dependency structure
and topology of a GGM can be uniquely encoded by Ω. Consequently, a rich literature
has been developed around estimating Ω in time invariant GGMs given n i.i.d zero mean
observations X1, . . . ,Xn ∈ Rp from the network. When n > p the Maximum Likelihood
estimator of Ω corresponds to the inverse of the empirical covariance matrix of Σ, while in
the case of n < p one needs to impose additional structural assumptions, such as sparsity,
on the underlying Ω (see (Bühlmann and Van De Geer, 2011) and references therein).

Despite voluminous research on estimating stationary graphical models, in various sce-
narios the underlying dependency structure dynamically evolves over time. Next, we discuss
several real-world problems centering around temporally evolving high-dimensional data
with underlying network structure.

(a) Temporal fluctuations in functional connectivity (FC), which is referred to as dynamic-
FC, has recently received a lot of attention in resting-state blood-oxygen level-dependent
functional magnetic resonance imaging (rs-fMRI) (Hutchison et al., 2013; Hindriks
et al., 2016). The dynamic-FC is commonly investigated using covariance matrix of
FC over consecutive windowed segments.

(b) The similarity pattern of streaming measurements in a large sensor network can be
subject to abrupt changes due to anomalous behaviour of an unknown subset of nodes.
For instance, Kalitsis et al. (Kallitsis et al., 2016) studied the online detection of false
data injection attacks in wide-area smart grid networks.

(c) Stock return time series occasionally exhibit radical changes associated with stochastic
switching between high and low volatility regimes, financial crises or changes in govern-
ment policy. Despite a rich literature on regime-switching low-dimensional time series
models (Bai and Perron, 1998, 2003), there remains an incomplete understanding of
this idea for high dimensional financial network data. Note that there are a few recent
studies (Atchade and Bybee, 2017; Barnett and Onnela, 2016) on detecting multiple
sudden changes in the dependency structure of S&P 500 stocks returns for the period
of 1982− 2000 and 2000− 2016 as a result of the stock market crash of October 1987
(known as Black Monday), beginning of the great recession on January 2008, and the
bankruptcy declaration day of Lehman Brothers Holdings Inc. on September 15, 2008.

Learning temporally evolving dependency structures across a large number of variables
requires specification of the mechanism that drives the underlying dynamics. A simple,
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analytically tractable and widely applicable mechanism is given by assuming piecewise sta-
tionary dynamics subject to unknown break points. This versatile model, which is known
as the change-point model, has been extensively studied for low dimensional time series
during the last few decades; see for example, (Basseville and Nikiforov, 1993; Horváth and
Rice, 2014; Aue et al., 2009; Keshavarz et al., 2018) and references therein. However, there
is significantly less work towards understanding the algorithmic and theoretical aspects of
change-point estimation for high-dimensional time series data.

Change-point detection algorithms are classified into two groups: offline and sequen-
tial (online). Given the entire data set beforehand, the objective of offline algorithms is
to spot the abrupt changes by scanning through the available data. On the other hand,
detection and collection of new samples run concurrently in the sequential framework and
the goal is to find sudden changes with the smallest delay after they occur. Given inde-
pendent observations in the high dimensional paradigm, (Li and Chen, 2012; Cai et al.,
2013) designed offline two sample-tests for identifying a single change-points in the co-
variance matrix. In (Kolar et al., 2010; Kolar and Xing, 2012; Gibberd and Roy, 2020)
maximizing a regularized pseudo-likelihood with fused-lasso penalty has been proposed for
estimating multiple structural breaks in the inverse covariance matrix of high dimensional
sparse GGMs. Roy et al. (Roy et al., 2016) introduced a two-step algorithm for estimating
a single abrupt change in the parameters of high dimensional sparse Markov random fields.
Given an estimate of sudden change, the parameters before and after the change-point are
separately estimated by maximizing an `1 penalized pseudo-likelihood function. A brute
force search on a coarse grid is necessary for updating the location of change-point in each
step. Solely focusing on GGMs, Atchadé and Bybee (Atchade and Bybee, 2017) proposed
an approximate majorize-minimize (MM) algorithm for reducing the computational cost
of brute force search. Note that the `1 penalized loss maximization algorithms in (Roy
et al., 2016; Atchade and Bybee, 2017) are capable of estimating a single change-point and
extension to the case of multiple jumps requires binary segmentation. Note that despite
its relatively low computational cost, the binary segmentation is a greedy procedure that
is not guaranteed to maximize the log-likelihood function. Finally, Chen et al. (Chen and
Zhang, 2015) proposed a non-parametric sequential algorithm for detecting sudden changes
in the similarity graph of dependent random variables.

Motivated by applications in sensor networks and financial markets, we propose a novel
sequential algorithm for detecting sudden changes in sparse inverse covariance structure of
high-dimensional GGMs and investigate its theoretical and numerical properties. To the
best of our knowledge, this constitutes the first attempt for addressing the problem of online
detection of abrupt changes in high-dimensional and sparse graphical models. The sequen-
tial change-point detection in an inverse covariance (precision) matrix inevitably associates
with two technical challenges. First, unlike the covariance matrix, the elements (or eigen-
values) of the precision matrix cannot be easily characterized by the data, particularly in
the “large p, small n” framework. Another challenge, which is a distinctive feature of high
dimensional sequential detection, arises when the main concern is spotting sudden shifts
with reasonable delay. In contrast to offline high-dimensional change-point detection, the
number of post-change observations is considerably smaller than p. Therefore unlike pe-
nalized likelihood-based abrupt-change estimators in (Atchade and Bybee, 2017; Gibberd
and Roy, 2020; Kolar et al., 2010; Kolar and Xing, 2012; Roy et al., 2016), the detection
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procedure should be decoupled from estimating the post-change dependence structure of
GGM.

Outline of online detection strategy. We conclude this section by presenting a concise
and high-level introduction to the proposed sequential detection algorithm. Let Gt = (V,Et)
denote a zero-mean GGM with p vertices and a time-varying precision matrix Ω(t). For each
t, we observe a single realization of Gt, which is represented by Xt = [Xt,1, . . . , Xt,p]

>. We
conduct a statistical test to determine whether a jump occurred at time t, i.e. Ω(t) 6=
Ω(t+1). As detecting small changes can be challenging for complicated objects such as
Ω(t) (especially for large p), our study is hinged on two moderate and prevalent restrictive
conditions.

(a) (Sparsity) For regulating the amount of conditional dependence in Gt, Ω(t) is assumed
to be a sparse matrix, for each t. Some type of sparsity assumption often holds in the
aforementioned applied problems.

(b) (Detection delay) Many sequential decision rules rely on utilizing post-change features
of the process. We adopt a similar approach by allowing to observe w samples ahead
before making a decision. Namely, we raise an alarm at t by using two sources of
information, w post-change observations (Xt+1, . . . ,Xt+w) and pre-change features
such as an `1-regularized estimate of Ω(t). In previous work on offline change-point
learning in sparse graphical models, the estimated jump is of order log p distant from
the true location of a change-point (e.g., Theorem 8 of (Atchade and Bybee, 2017) or
Theorem 1 in (Roy et al., 2016)). So roughly speaking, w is an online variant of the
corresponding abrupt-change estimation error in offline approach.

Comparing the pre- and post-change conditional log-likelihood of all nodes is at the heart
of our proposed algorithm. We particularly show that −2 logP

(
Xts | Xts′ : s′ 6= s; Ω(t)

)
+

log Ω
(t)
ss − log (2π) has a χ2

1 density. However if a change occurs at time t, and lasted for at
least w time points, i.e., Ω(t+w) = . . . = Ω(t+1) 6= Ω(t), then

Π(t,w)
s :=

{
−2 logP

(
Xt+r,s | Xt+r,s′ : s′ 6= s; Ω(t)

)
+ log Ω(t)

ss − log (2π)
}w
r=1

,

is a set of i.i.d. random variables that are not centered around one. Indeed there are some
nodes for which

β(t,w)
s := E

[
−2

w

w∑
r=1

logP
(
Xt+r,s | Xt+r,s′ : s′ 6= s; Ω(t)

)
+ log

(
Ω

(t)
ss

2π

)∣∣∣∃ abrupt-change at t

]
6= 1.

Therefore for a non-negative convex function f for which f (x) > 0 when x 6= 1 (its exact

formulation will be introduced in Section 2.1), after proper normalization
∑p

s=1 f(β
(t,w)
s )

concentrates around zero, if no jump occurs at time t. Indeed, we utilize a suitable convex
barrier f for designing a decision rule in order to magnify any deviation from pre-change
pseudo-likelihood function. The exact formulation of this idea is postponed to Section 2.2.
It is also noteworthy to mention that since the core building blocks of our procedure are
based upon comparing the pre- and post-change pseudo-likelihood of the data, we believe
that it can be extended to more generic Markov random fields.
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We study the performance of our algorithm in two settings: fully known and unknown
Ω(t). Although the case of a fully known Ω(t) is not realistic, it provides insight in under-
standing our contribution, as well as the intrinsic complexity of the underlying detection
problem. When the pre-change precision matrix is unknown, we require the change-points
to be far from each other and the boundary point t = 0. In this case, we first consistently
estimate Ω(1) using any well-studied offline estimation algorithm such as QUIC (Hsieh et al.,
2014) in the burn-in period (t = 1, . . . , n0 for some large enough n0). Note that the first
abrupt-change is supposed to appear after n0. After obtaining an adequate quality esti-
mate of Ω(1) in hand, we concurrently run the detection test and update our pre-change
precision matrix in a sequential fashion. Our asymptotic analysis reveals that when both
p and sample size grow in such a way that we can consistently estimate the pre-change
precision matrix of the GGM, the detection rate does not differ from the ideal case of a
fully-known pre-change dependence structure. In other words, the detection power of our
online algorithm is robust against small enough estimation errors, which is highly desirable
for real applications.

The remainder of the paper is organized as follows: Section 2.1 rigorously formulates the
online change-point problem as a hypothesis testing procedure and introduce the required
statistical ingredients for understanding the subsequent sections. Section 2.2 is devoted
to presenting the proposed detection algorithm for both fully known and unknown pre-
change attributes of the GGM. Section 3 is reserved for investigating the behaviour of
proposed decision rule under both null (no-change at t) and alternative (sudden change at
t) hypotheses. In Section 4, we study asymptotic properties of our algorithm in the case
of unknown pre-change precision matrix (combination of online detection and estimation).
Section 5 assesses the performance of proposed algorithm by numerical experiments on
synthetic and real data. Section 6 serves as the conclusion and discusses future directions.
We prove the main results of the paper in Section 7. Lastly, Appendices A and B contain
auxiliary technicalities which are essential for the results in Section 7.

Notation. 1 (·), ∧ and ∨ successively refer to indicator function, minimum and maximum
operators. We use Im, 0m and 1m respectively denote the m-by-m identity matrix, all zeros
column vector of length m, and all ones column vector of length m. Sp×p++ stands for
the set of strictly positive definite p × p matrices. For two matrices of the same size M
and M ′, 〈M,M ′〉 :=

∑
i,jMijM

′
ij denotes their usual inner product. For M ∈ Rp×p and

B1, B2 ⊂ {1, . . . , p}, MB1,B2 = [Mij : i ∈ B1, j ∈ B2] denote the sub-matrix of M associated
to (B1, B2)-block. diag (M) refers to the main diagonal entries of M . We use the following
norms on M ∈ Rm×n. ‖M‖2→2 represents the usual operator norm (largest singular value
of M). For any 1 ≤ p ≤ ∞, ‖M‖`p stands for element-wise `p-norm of vectorized M . For

any x > 0, Γ (x) denotes the Gamma function at x and ψ(r) stands for the poly-gamma
function of order r, which is defined by

ψ(r) (x) =
dr+1 log Γ (x)

dxr+1
, ∀ x > 0 and r = 0, 1, . . . .

For two non-negative sequences {am}∞m=1 and {bm}∞m=1, we write am . bm if there exists a
bounded positive scalar Cmax (depending on model parameters) such that lim supm→∞ am/bm ≤
Cmax. Moreover, am � bm refers to the case that am . bm and am & bm. For a non-
negative deterministic {am}∞m=1 and random sequence {bm}∞m=1, we write bn = OP (an),
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if P (bm ≤ Cmaxam) → 1, as m → ∞, for some bounded positive scalar Cmax (which may
depend on model parameters). DKL (P1 ‖ P2) represents the Kullback–Leibler (KL) diver-
gence between two distributions P1 and P2. Lastly for a binary test statistic Ξ, the false
alarm and miss-detection probabilities are respectively defined by

PFA (Ξ) := P (Ξ = 1 | H0) , and PMD (Ξ) := P (Ξ = 0 | H1) .

2. Problem formulation and detection algorithm

We start by providing a rigorous formulation of the problem at hand and then introduce
the detection strategy initially for the case of a known precision matrix before the change
point, which provides insight into the technical aspects of the problem, followed by the
real world setting of an unknown precision matrix that needs to be estimated in an online
fashion from the available data.

2.1. Background and setup

Let Gt = (V,Et) , t ∈ {1, . . . , T} be a time-varying undirected zero mean GGM
with (fixed) node set V of size p, where T denotes the number of observed independent
samples. For any t ∈ {1, . . . , T}, we observe a single realization of Gt represented by
Xt = [Xt,1, . . . , Xt,p]

>. In particular, Xt is a p-variate Gaussian vector with density func-
tion

g
(
x; Ω(t)

)
= (2π)−p/2

√
det Ω(t) exp

(
−x>Ω(t)x

2

)
, ∀ x ∈ Rp,

where Ω(t) denotes the symmetric positive definite precision matrix of Xt. Note that Et is
fully identifiable from the non-zero off-diagonal elements of Ω(t); namely

Et =
{(
α, α′

)
∈ V × V : α 6= α′, Ω

(t)
α,α′ 6= 0

}
.

Adopting a piecewise constant model for Ω(t) is a popular approach to modelling multiple
abrupt changes in the dependency structure of Gt. Specifically, assume that there is a set
D? ⊂ {1, . . . , T}, sorted in ascending order and with t?0 = 1, such that

Ω(t) =

T∑
j=1

ΩjI
(
t?j ≤ t < t?j+1

)
, ∀ t ∈ {1, . . . , T} . (1)

In Eq. (1) D? stands for the collection of unknown change-points between 1 and T . As

a consequence
{
Xt : t?j ≤ t < t?j+1

}
are independent and identically distributed samples

drawn from g (·; Ωj).
Detecting jumps in Ω(t) is equivalent to solving T separate hypothesis testing problems

formulated by
H0,t : t /∈ D? vs. H1,t : t ∈ D?, ∀ t ∈ {1, . . . , T} . (2)

In an offline setting, we observe the entire set {Xt}Tt=1 prior to test any hypothesis in (2).
Simply put, a binary decision function Ξt (X1, . . . ,XT ) ∈ {0, 1} is designed for disambiguat-
ing H0,t from H1,t with false alarm rate below some π0 ∈ (0, 1), for any t ∈ {1, . . . , T}. On
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the other hand, in the online regime, Ξt solely depends on {Xi}t+wi=1 , for some pre-specified
delay w. Henceforth, we focus exclusively on the online setting.

For better understanding the rationale behind our proposed detection algorithm, we
make a succinct overview of two key statistical concepts: KL-divergence and conditional log-
likelihood of multivariate Gaussian vectors. We first introduce an alternative formulation of
the KL-divergence between underlying distributions under H0,t and H1,t. From a statistical
viewpoint, the false alarm of Ξt, regardless of its complexity, is not negligible when the
KL-divergence between P (X1, . . . ,Xt+w | H0,t) and P (X1, . . . ,Xt+w | H1,t) is small. For
ease of presentation, we consider a simple scenario. Suppose that the inverse covariance
matrix of Gt switches from Ω1 to Ω2 at time t and it remains in the new regime until t+w,

i.e. D?∩{t, . . . , t+ w} = {t}. For notational convenience let Ψ := Ω
−1/2
2 Ω1Ω

−1/2
2 and define

f : (0,∞) 7→ [0,∞) by
f (x) := x− 1− log x, ∀ x > 0, (3)

Since {Xr}t+wr=1 independent and zero-mean random vectors under both H0,t and H1,t, the
KL-divergence between P (X1, . . . ,Xt+w | H1,t) and P (X1, . . . ,Xt+w | H0,t), which is de-
noted by D, can be written as

D =
∑

1≤r≤w
DKL

(
P (Xt+r | H1,t) ‖ P (Xt+r | H0,t)

)
= wDKL

(
P (Xt+1 | H1,t) ‖ P (Xt+1 | H0,t)

)
= w

[
tr
(
Ω−1

2 Ω1

)
− log

(
det Ω1

det Ω2

)
− p
]

= w
(

tr (Ψ)− log det Ψ− p
)

= w

p∑
j=1

f
(
λj (Ψ)

)
. (4)

The conditional log-likelihood of a GGM is another key component in the proposed de-
tection algorithm. It is known that for a Gaussian random vector X = [X1, . . . , Xp]

> ∼
N
(
0p,Σ = Ω−1

)
, the log-likelihood function of Xs given X−s satisfies the following identity

for any s ∈ {1, . . . , p}.

Zs := −2 logP (Xs|X−s)− log

(
2π

Ωss

)
= Ωss

Xs +
∑
t6=s

XtΩst

Ωss

2

= Ωss

(∑p
t=1XtΩst

Ωss

)2

=
〈X,Ωs,:〉2

Ωss
. (5)

Note that Zs represents the data dependent part of the conditional negative log-likelihood.
Moreover,

var (〈X,Ω:,s〉) = Ωs,: cov (X) Ω:,s = Ωs,:Ω
−1Ω:,s =

(
ΩΩ−1Ω

)
ss

= Ωss.

That is, {Zs : s = 1 . . . , p} forms a class of dependent χ2
1 random variables.

2.2. Detection algorithm for a known pre-change precision matrix

Next, we introduce a novel online algorithm for detecting abrupt changes in Ω(t) with
delay w; namely, determine whether (t+ 1) ∈ D?, given {X1, . . . ,Xt, . . . ,Xt+w}. To gain
insights into the nature of the problem, we first consider the oracle framework in which
the pre-change precision matrix Ω(t) is fully known, that allows us to solely focus on the
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detection procedure without having to estimate the pre-change parameters. The setting of
an unknown Ω(t) is addressed in Section 2.3.

As we discussed in Section ??, the proposed test statistic is motivated by employing a
network based pseudo-likelihood function. For any s ∈ {1, . . . , p}, define

Y (t,w)
s :=

1

wΩ
(t)
ss

w∑
r=1

〈Xt+r,Ω
(t)
:,s 〉2. (6)

Based on Eq. (5), Y
(t,w)
s is indeed the empirical average of the (shifted) negative conditional

log-likelihood of node Vs given all the other nodes in Gt. When dealing with GGMs, Y
(t,w)
s

is a linear combination of w independent quadratic forms of Gaussian random variables.

Next, we investigate the distribution of Y
(t,w)
s under H0,t. In this case Ω(t) = Ω(t+1) = . . . =

Ω(t+w). Thus, for any r ∈ {1, . . . , w}, 〈Xt+r,Ω
(t)
:,s 〉 is a centered Gaussian random variable

and its variance is given by

var
(
〈Xt+r,Ω

(t)
:,s 〉
)

= Ω(t)
s,: cov (Xt+r) Ω(t)

:,s = Ω(t)
s,:

[
Ω(t)

]−1
Ω(t)

:,s =

(
Ω(t)

[
Ω(t)

]−1
Ω(t)

)
ss

= Ω(t)
ss . (7)

Identity (7) reveals that when H0,t holds, then

〈Xt+r,Ω
(t)
:,s 〉√

Ω
(t)
ss

∼ N (0, 1) =⇒ wY (t,w)
s ∼ χ2

w, ∀ s ∈ {1, . . . , p} .

According to the strong law of large numbers, Y
(t,w)
s concentrates around one with high

probability for all s = 1, . . . , p, as w increases. In contrast, under H1,t, whenever Ω(t) 6=
Ω(t+1) = . . . = Ω(t+w), the expected value of Y

(t,w)
s is given by

E
(
Y (t,w)
s | H1,t

)
=

1

w

w∑
r=1

(
Ω(t)

[
Ω(t+1)

]−1
Ω(t)

)
ss

Ω
(t)
ss

=

(
Ω(t)

[
Ω(t+1)

]−1
Ω(t)

)
ss

Ω
(t)
ss

. (8)

Remark 1 Define Ψ(t) ∈ Sp×p++ by Ψ(t) :=
[
Ω(t)

]1/2 [
Ω(t+1)

]−1 [
Ω(t)

]1/2
. The formulation of

KL-divergence between multi-variate Gaussian densities in Eq. (4) shows that distinguish-
ing H0,t and H1,t is not possible when Ψ(t) = Ip. On the other hand, a careful comparison
between Eq. (7) and (8) reveals a slightly stronger condition for distinguishing H0,t from
H1,t. Strictly speaking, conditional log-likelihood terms can not differentiate null and alter-
native hypotheses, when diag

(
Ψ(t)

)
= 1p. In words, a test based on the pseudo-likelihood

function rules out the possibility of detecting abrupt changes at t+ 1 when

Ψ(t) 6= Ip, and Ψ(t)
ss = 1, ∀ s = 1, . . . , p.

Although this may seem a statistical drawback of using the pseudo-likelihood function for
detection purposes, we believe that such situations do not arise in many practical scenarios
involving high-dimensional streaming network data. Therefore for scalability purposes, it is
still of great interest to design online change-point detection algorithms based on the pseudo-
likelihood function. Further, such an algorithm (unlike likelihood-based detection algorithms)
can be also applicable to more general Markov random field models.
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Next, we introduce our online detection algorithm. Recall function f from Eq. (3) and
consider the following test statistic.

Tt =

∑p
s=1 f

(
Y

(t,w)
s

)
− E

[∑p
s=1 f

(
Y

(t,w)
s

) ∣∣∣H0,t

]
std
[∑p

s=1 f
(
Y

(t,w)
s

) ∣∣∣H0,t

] .

For a pre-specified π0 ∈ (0, 1) (denoting the desirable false alarm rate) and a pre-determined
critical value ζπ0 , we design the following binary decision function

Ξt = 1 (Tt ≥ ζπ0) , (9)

for selecting between H0,t and H1,t. Notice that we raise an abrupt change flag, whenever
Ξt = 1. Namely, Ω(t) = Ω(t+1) = . . . = Ω(t+w), as long as Tt is strictly less than ζπ0 .

Before looking closely into technical aspects of the proposed algorithm, we concisely
explain the rationale behind our approach. We argued that if the dependence structure of

Gt does not vary at t+ 1, all random variables Y
(t,w)
s , s = 1, . . . , p lie in a neighborhood of

one. We also selected a non-negative strongly convex barrier function f , whose single root

is at x = 1. Hence, f(Y
(t,w)
s ) lies around zero, for any s. In contrast, when the network

undergoes an abrupt change, Ef(Y
(t,w)
s ) is strictly positive for some nodes s ∈ {1, . . . , p}.

As a result, Tt exhibits relatively larger values under the alternative hypothesis. Finally,
due to the convexity of f , the deviation between H0,t and H1,t is more pronounced in Tt for
stronger changes in Ω(t).

The first question that needs to be addressed is how to simply standardize
∑p

s=1 f(Y
(t,w)
s )

under H0,t.

Remark 2 One can easily justify that under H0,t, 〈Xt+r,Ω
(t)
:,s 〉/

√
Ω

(t)
ss , r = 1, . . . , w, form

a set of i.i.d. standard Gaussian random variables, for any s ∈ {1, . . . , p}. Thus, wY
(t,w)
s

has a chi-square density with w degrees of freedom. Lemma 18 states that

g1 (w) := E
[
f
(
Y (t,w)
s

) ∣∣∣H0,t

]
= log

(w
2

)
− ψ(0)

(w
2

)
,

g2 (w) := std
[
f
(
Y (t,w)
s

) ∣∣∣H0,t

]
=

√
ψ(1)

(w
2

)
− 2

w
, ∀ s = 1, . . . , p. (10)

So Tt can be rewritten in the following form.

Tt =

∑p
s=1 f

(
Y

(t,w)
s

)
− pg1 (w)

std
[∑p

s=1 f
(
Y

(t,w)
s

) ∣∣∣H0,t

] .
g1 (·) and g2 (·) are respectively exhibited in the left and right panels of Figure 1. It is obvious
from Figure 1 that both g1 (w) and g2 (w) converge to zero, as w → ∞. In particular, it is
known that1

lim
w→∞

wg1 (w) = 1, and lim
w→∞

wg2 (w) =
√

2.

9



Keshavarz, Michailidis, and Atchadé
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Figure 1: black dots in the left and right panels respectively exhibit g1 (w) and g2 (w) for
w ∈ {1, . . . , 20}.

Next, we evaluate the denominator of Tt. To do so, we first define the partial correlation
matrix of Gt, denoted by R(t).

R(t) :=

 Ω
(t)
s1,s2√

Ω
(t)
s1,s1Ω

(t)
s2,s2

p
s1,s2=1

∈ Rp×p.

Straightforward calculations show that for standard Gaussian random variables Z1 and Z2

with correlation r, cov
(
Z2

1 , Z
2
2

)
= 2r2. This fact together with the linearity property of the

covariance function imply that

cov
(
Y (t,w)
s1 , Y (t,w)

s2 | H0,t

)
=

2

w

(
R(t)
s1,s2

)2
, ∀ s1, s2 ∈ {1 . . . , p} . (11)

Simply put, R(t) encodes the dependence between conditional log-likelihood functions in
Gt. Now employing the second identity in Eq. (10) yields

var

[
p∑
s=1

f
(
Y (t,w)
s

) ∣∣∣H0,t

]
= g2

2 (w)

p∑
s1,s2=1

corr
[
f
(
Y (t,w)
s1

)
, f
(
Y (t,w)
s2

) ∣∣∣H0,t

]
.

Finding a closed form expression for the correlation between f(Y
(t,w)
s1 ) and f(Y

(t,w)
s2 ), under

H0,t, demands algebraically cumbersome manipulations. However, it is not too difficult to

see that it only depends on R
(t)
s1,s2 and w. Namely, there exists hw : [−1, 1] 7→ [−1, 1] such

that
corr

[
f
(
Y (t,w)
s1

)
, f
(
Y (t,w)
s2

) ∣∣∣H0,t

]
= hw

(
R(t)
s1,s2

)
. (12)

1. We refer the reader to 5.11.2 of https://dlmf.nist.gov/5.11 and 5.15.8 of https://dlmf.nist.gov/
5.15
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Sequential change-point detection in high-dimensional Gaussian graphical models

Remark 3 We employ numerical techniques for approximating hw. Figure 2 displays hw
for different values of w. The plot in the right panel in Figure 2 depicts that hw (r) ≈ r4 for
w ≥ 10. In Lemma 17, we rigorously substantiate this observation by introducing a uniform
upper bound on

∣∣hw (r)− r4
∣∣. Specifically, we show that

• hw passes the origin and hw (1) = hw (−1) = 1.

• As w →∞, maxr∈[−1,1]

∣∣hw (r)− r4
∣∣ = O

(
w−1

)
.

Approximating hw (r) with r4 offers the following numerically convenient proxy for Tt for
large enough w.

Tt =

∑p
s=1

[
f
(
Y

(t,w)
s

)
− g1 (w)

]
g2 (w)

√∑p
s1,s2=1 hw

(
R

(t)
s1,s2

) ≈
∑p

s=1

[
f
(
Y

(t,w)
s

)
− g1 (w)

]
g2 (w)

∥∥R(t)
∥∥2

`4

. (13)
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Figure 2: hw (x) versus x and x4 sign (x) for w = 1, 5, 10 and 20.

In summary, when Ω(t) is fully known, we propose the following sequential test for detecting
a sudden change at time t+ 1.

Ξt = 1


∑p

s=1

[
f
(
Y

(t,w)
s

)
− g1 (w)

]
g2 (w)

√∑p
s1,s2=1 hw

(
R

(t)
s1,s2

) ≥ ζπ0
 (14)

2.3. Detection algorithm: Unknown pre-change precision matrix

The precision matrix is usually unknown before the change-point and needs to be esti-
mated from the data. In this case, Tt is approximated by plugging into Eq. (13) a positive

11
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definite estimate of Ω(t). Specifically, let Ω̂(t) be an estimate of Ω(t). Then, the partial
correlation matrix R(t) can be estimated by

R̂(t) =

 Ω̂
(t)
ij√

Ω̂
(t)
ii Ω̂

(t)
jj

p
i,j=1

.

Moreover for any s ∈ {1, . . . , p}, we can estimate Y
(t,w)
s (recall it from Eq. (6)) in the

following way.

Ŷ (t,w)
s :=

1

wΩ̂
(t)
ss

w∑
r=1

〈Xt+r, Ω̂
(t)
:,s 〉2.

When we have access to R̂(t) and
{
Ŷ

(t,w)
s

}p
s=1

, we propose to estimate Tt and Ξt by

T̂t =

∑p
s=1

[
f
(
Ŷ

(t,w)
s

)
− g1 (w)

]
g2 (w)

√∑p
s1,s2=1 hw

(
R̂

(t)
s1,s2

) , Ξ̂t = 1
(
T̂t ≥ ζπ0

)
. (15)

As seen in Eq. (15), the key to approximating Tt is the availability of a good estimate of
Ω(t), which is a challenging task, especially in settings where consecutive change-points are
close to each other. Thus, adequate separation in time between two consecutive change-
points should be present for obtaining a good approximation of the proposed test statistic.
The following assumption formalizes this notion. Recall that t?j denotes the location of j-th
change-point and for notational consistency, we choose t?0 = 1.

Assumption 2.1 For each j ∈ N, there exists a large enough nj ∈ N (depending on p, w
and the sparsity pattern of network between j-th and (j − 1)-th abrupt changes) such that∣∣t?j − t?j−1

∣∣ > nj , ∀ j ≥ 1.

Note that Assumption 2.1 generalizes the boundary condition for the offline single
change-point estimation problem (see Assumption 2 in (Roy et al., 2016)). For the time
being, selection of nj is postponed for later sections. We refer to the first nj samples after
t?j as the burn-in period. We also assume that there exists a fixed, bounded window size n0

such that nj = n0 for any j ≥ 1.
We first provide the intuition behind the algorithm. Detecting each change-point goes

through two phases: warm-up and detection-estimation cycle. For simplicity, we only focus
on detecting the first abrupt change (located at t?1). Note that for each t ≤ t?1, Ω(t) = Ω(1).

(a) (warm-up) We estimate Ω(1), which is denoted by Ω̂(1), using X1, . . . ,Xn0 .

(b) For any t > n0, as long as Ξ̂t = 0, we use Xt for updating Ω̂(1). In contrast, if
Ξ̂t = 1 (an abrupt change at t), then we wait for Xt+1, . . . ,Xt+n0 for estimating the
post-change inverse covariance matrix.

Next, we describe our approach to updating the estimated pre-change precision matrix
in phase (b). Again for simplicity, we only focus on updating Ω(1).

12
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Updating Ω(1). A mini-batch procedure is used for updating Ω(1), wherein we first obtain
B (a predetermined block size) new samples and subsequently a new estimate at time
t = n + kB (k ∈ N) by employing X1, . . . ,Xn0+kB; the parameter k tracks the number
of size-B batches before the first abrupt change. Throughout this paper, we employ the
CLIME algorithm (Cai et al., 2011) or alternatively the QUIC estimator (Hsieh et al., 2014)
for estimating Ω(1), since both enjoy desirable theoretical and numerical properties. The
detailed pseudocode of this proposed procedure is presented in Algorithm 1.

Algorithm 1 Online detection with batch update of pre-change precision matrix
Input: n0, w,B, ζπ0 and tuning parameter τ

Initialization Set D̂ = ∅ and b = 0. Given X1, . . . ,Xn0
, obtain Ω(1) by CLIME or QUIC with tuning

parameter τ . Also set t̂last = 0, where t̂last denotes the estimated location of the last change-point.

Iterate For t = (n0 + 1) , . . . , T

Set Ξt = 1
(
T̂t ≥ ζπ0

)
.

If Ξt = 0 (no change-point)

b← b+ 1 and t← t+ 1.

If b = B (Update pre-change precision matrix)

Obtain Ω̂(t) using the CLIME or QUIC methods to X1+t̂last
, . . . ,Xt−1,Xt.

b← 0.

Else

Ω̂(t) = Ω̂(t−1)

Else

t̂last = t and D̂ ← D̂ ∪
{
t̂last

}
.

Given Xt, . . . ,Xt+n0−1, estimate post-change precision matrix using CLIME or QUIC
methods.

t← t+ n0 and b← 0.

Output: D̂

3. Asymptotic analysis of Ξt for a fully known Ω(t)

Next, we establish large-sample properties of the proposed test Ξt introduced in Eq.
(14), under both the null and alternative hypotheses. The section addresses the following
three issues:

• Choosing the critical value of the test, ζπ0 , for a fixed false alarm probability π0 ∈ (0, 1).

• Investigating the false alarm and detection power of Ξt for large sparse graphs.

• Introducing the key concepts for the asymptotic analysis of the algorithm in the realistic
case of an unknown pre-change precision matrix.

We present the obtained results in two sub-sections. Section 3.1 studies the distribution of
Tt (recall its formulation from Eq. (13)) under the null hypothesis H0,t and introduces a

13
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simple way of choosing the critical value ζπ0 . In Section 3.2, we investigate the statistical
power of Tt for detecting small changes in the structure of Ω(t). We start by defining the
set of well-behaved precision matrices.

Definition 4 Let M and αmin be bounded and strictly positive scalars. Define Cp×p++ (αmin,M)
by

Cp×p++ (αmin,M) =
{
A ∈ Sp×p++ : ‖A‖1→1 ≤M, λmin (A) ≥ αmin

}
.

For theoretical purposes, throughout this section both pre- and post-change precision
matrices are assumed to belong to Cp×p++ (αmin,M) for some bounded scalars M and αmin.
Namely, although an abrupt change may affect the topology of the network, the post-change
precision matrix is still well-behaved, exhibiting a bounded condition number and a sparse
edge set.

3.1. Distribution of Tt under H0,t

Precise evaluation of null distribution is extremely challenging, due to the complex
nature of Tt. Therefore, for approximating ζπ0 , especially for large networks, we inevitably
focus on finding the asymptotic null distribution of Tt. Let dmax and d̄ respectively denote
the maximum and average degree of Gt. Namely

dmax := max
s1=1,...,p

∣∣∣{s2 : Ω(t)
s1,s2 6= 0

}∣∣∣ , and d̄ :=
1

p

p∑
s1=1

|{s2 : Ωs1,s2 6= 0}| .

For brevity, the dependence of p and t in dmax and d̄ are dropped. Throughout the remainder
of the paper, asymptotic regime refers to the scenario that p, and possibly dmax and d̄, tend
to infinity.

Assumption 3.1 The following conditions hold in the asymptotic regime.

(a) Ω(t) ∈ Cp×p++ (αmin,M) for some fixed, bounded and strictly positive scalars M and αmin.

(b) d̄dmax grows slower than
√
p, i.e., lim supp→∞

dmaxd̄√
p = 0.

Next, we present the first main result of this section.

Theorem 5 Suppose that there is no change-point between t and t+w, i.e. Ω(t) = Ω(t+1) =
. . . = Ω(t+w). If Ω(t) satisfies Assumption 3.1, then

Tt
d→ N (0, 1) .

According to Theorem 5, Tt converges in distribution to a standard Gaussian random
variable under certain asymptotic regularity conditions. Thus, PFA (Ξt) is guaranteed to
remain below π0, if we choose

ζπ0 = Qπ0

where Qx denotes the inverse Gaussian Q-function at x, i.e.
∫∞
Qx

(2π)−
1
2 exp

(
−u2/2

)
du = x.

14
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A close look at Tt in Eq. (13) reveals that Tt is a standardized linear combination of

non-Gaussian components
{
f(Y

(t,w)
s ) : s = 1, . . . , p

}
. Further, as discussed in Section 2.2

(see Eq. (11)), the random variables Y
(t,w)
s1 and Y

(t,w)
s2 are independent if there is no edge

between s1 and s2 at time t, i.e. Ω
(t)
s1,s2 = 0. Therefore, Tt can be viewed as a linear

combination of components in a sparse, stationary non-Gaussian random field. We expect
the central limit theorem to hold for Tt (as p → ∞), since it is formed from a finite range
random field. Lemma 2 in (Bolthausen, 1982), which provides a sufficient condition for
asymptotic normality of a sequence of random variables, is a critical tool for obtaining the
asymptotic distribution of Tt. Note that we adapt the proof of Theorem 3.3.1 in (Guyon,
1995) to the case of growing dmax and d̄ for verifying the sufficient condition in Lemma 2
in (Bolthausen, 1982).

Figure 3 depicts the histogram of Tt and its kernel density estimate for different values
of p, w and dmax for 104 independent replicates. In each case, Ω(t) is constructed in the
following way: We first generate a matrix U ∈ Rp×p with dmax non-zero entries in each
row. Non-zero elements of U are independently generated from a uniform distribution on
(−1, 1). We then choose the symmetric positive definite Ω(t) by

Ω(t) ← U + U> + 1.5dmaxIp,

Ω(t) ← Ω(t)

λmin

(
Ω(t)

) .
Thus, in each case d̄ = dmax and αmin = 1. It is apparent from Figure 3 that Tt has
approximately a standard Gaussian density for all four cases. It is also obvious that the
skewness in the histograms decays as p increases.

Remark 6 The condition (b) in Assumption 3.1 restricts the growth rate of d̄dmax. For
instance, it is asymptotically violated for star network topologies, i.e. a tree with a single
hub node and p−1 leaves of length one. One can easily verify that for star networks dmax = p
and d̄ = p−1 (2 (p− 1) + p) ≈ 3. Therefore,

dmaxd̄√
p
� √p→∞.

Such graphs are prevalent in centralized sensor or computer networks. Note that d̄ = O (1)
in many applied problems, even for star networks. So roughly speaking, Assumption 3.1
holds whenever dmax = o

(√
p
)
, as p→∞. Namely, Ω̂(t) can have a finite number of local

hub nodes, whose degrees grow slower than
√
p. Extensive numerical work presented in

Section 5 aims to understand whether condition (b) in Assumption 3.1 is an artifact of our
asymptotic analysis or reflects a shortcoming of the proposed algorithm.

3.2. Distribution of Tt under H1,t

Next, we study the power of Ξt, under the asymptotic regime of Assumption 3.1.

Assumption 3.2 The following conditions are imposed on the change-point location and
post-change precision matrix.
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Figure 3: Histogram and kernel density estimator of Tt for different scenarios regarding
(p, dmax, w). The condition number of Ω(t) equals to 2.05, 2.02, 2.08, and 1.24 from left to
right and top to bottom, respectively.

(a) Ω(t) 6= Ω(t+1) and Ω(t+1) = . . . ,= Ω(t+w).

(b) Ω(t+1) ∈ Cp×p++ (αmin,M) for some M,αmin ∈ (0,∞).

For brevity, define ∆ = [∆s : s = 1, . . . , p]> ∈ Rp by

∆s :=

[
Ω(t)

(
Ω(t+1)

)−1
Ω(t)

]
ss

Ω
(t)
ss

− 1, ∀ s = 1, . . . , p, (16)

with ∆ encoding the (relative) amount of sudden change in the network. For instance, if
Ω(t) = Ω(t+1), then all entries of ∆ are zero and ‖∆‖`2 is small if the dependence structure
of GGM experiences a weak change at time t. Further, define Ψ̄p by

Ψ̄p :=
1

p

p∑
s=1

f (1 + ∆s) .

Note that Ψ̄p is well-defined as mins=1,...,p ∆s > −1. Ψ̄p roughly quantifies the average
relative change at time t. We now present the key result of this section.

Theorem 7 Suppose that Assumptions 3.1 and 3.2 hold. Further, assume that π0, π1 ≤ 1
2 .

Consider Ξt with the critical value ζπ0 = Qπ0. Then, Ξt satisfies the following condition in
the asymptotic regime

PFA (Ξt) ≤ π0, and PMD (Ξt) ≤ π1,
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as long as

Ψ̄p ≥
4

w

√
1

p

[
log

(
1

2π0

)
+ log

(
1

2π1

)]
. (17)

Remark 8 Theorem 7 confirms that detection of changes in the dependence structure of
a GGM becomes relatively easier as p grows. The intuition behind Eq. (17) is that in
large GGMs, borrowing information across different edges improves the detection power.
Another intuitive aspect of the asymptotic result in Eq. (17) is the capacity of recognizing
weaker change-points for larger delay w. Increasing w provides more information about the
post-change dependence structure of the GGM. We also draw the reader’s attention to the
different asymptotic behavior of p and w in Eq. (17). Recall the formulation of Ξt from

Eq. (14). We discussed in Remark 2 that the standard deviation of f(Y
(t,w)
s ), s = 1, . . . , p,

decays at rate w−1 (instead of w−1/2), as w grows. Simply put, the proposed convex barrier
function f plays a critical role in Tt, as it introduces a test statistic with very small variance
under both the null and alternative hypotheses. Therefore, the detection capability of Ξt
rapidly increases with w.

Remark 9 In the offline setting with a single change point located at t?, it has been shown
in (Atchade and Bybee, 2017; Roy et al., 2016) that t? can be estimated with order log p
accuracy, i.e.

∣∣t̂− t?∣∣ = O (log p). In the online framework, w (detection delay) plays the
role of the estimation error in the change-point location. So in practical scenarios, one can
choose w = O (log p). For this case the detection rate (17) can be rewritten as follows

Ψ̄p ≥ 4

√
− log (2π0)− log (2π1)

p log2 p
.

Next, we explore different settings in light of Theorem 7..

(a) Uniform change in Ω(t): Assume that there is some β ≥ 1 such that −Ω(t+1) +β−1Ω(t)

is strictly positive definite. So the change-point affects all the eigenvalues of Ω(t).
Namely, the network is subject to a dense abrupt change in the spectral domain. In
this case for all s ∈ {1, . . . , p}, ∆s admits

1 + ∆s =

[
Ω(t)

(
Ω(t+1)

)−1
Ω(t)

]
ss

Ω
(t)
ss

≥

[
Ω(t)

(
β−1Ω(t)

)−1
Ω(t)

]
ss

Ω
(t)
ss

= β.

Hence Ψ̄p ≥ f (β) and so the condition (17) holds, whenever

f (β) ≥ 4

√
− log (2π0)− log (2π1)

pw2
.

(b) Rank-r change in Ω(t): Let Ω(t) = UΛU> be the eigen-decomposition of Ω(t), i.e.,
UU> = U>U = Ip and Λ is a diagonal matrix with diag (Λ) = [λ1, . . . , λp]. For
simplicity, also assume that diag

(
Ω(t)

)
= 1p. We assume that only top r eigenvalues

17



Keshavarz, Michailidis, and Atchadé

of Ω(t) are impacted by the abrupt change at t. Particularly, Ω(t+1) can be decomposed
in the following way.

Ω(t+1) = U

λ1 (1 + β1)
. . .

λp (1 + βp)

U> s.t. βr+1 = . . . = βp = 0.

We also assume that mini=1,...,r βi ≥ βmin for some strictly positive βmin. Roughly
speaking βmin can not be so large as Ω(t+1) ∈ Cp×p++ (αmin,M). Due to the convexity of
f , Ψ̄p can be controlled from below by f (

∑p
s=1 (1 + ∆s) /p). Lastly, we obtain a sharp

upper bound on
∑p

s=1 (1 + ∆s). Observe that

1

p

p∑
s=1

(1 + ∆s) =

p∑
s=1

[
Ω(t)

(
Ω(t+1)

)−1
Ω(t)

]
ss

pΩ
(t)
ss

=
1

p
tr

(
Ω(t)

(
Ω(t+1)

)−1
Ω(t)

)
=

p∑
s=1

λ2
s

pλs (1 + βs)

=

p∑
s=1

λs
p (1 + βs)

=
1

p

p∑
s=1

λs −
1

p

r∑
s=1

λsβs
1 + βs

(a)
= 1− 1

p

r∑
s=1

λsβs
1 + βs

≤ 1− βmin

1 + βmin

∑r
s=1 λs
p

.

Notice that identity (a) is implied from the fact that all diagonal entries of Ω(t) equal
to one. So,

Ψ̄p ≥ f

(
p∑
s=1

1 + ∆s

p

)
≥ f

(
1− βmin

1 + βmin

∑r
s=1 λs
p

)
.

In summary, the condition (17) holds, as long as

f

(
1− βmin

1 + βmin

∑r
s=1 λs
p

)
≥ 4

√
− log (2π0)− log (2π1)

pw2
.

It is noteworthy that for small enough βmin, βmin
1+βmin

∑r
s=1 λs
p has the same asymptotic

behavior as βminr
p .

(c) Small relative change: In this case, Ω(t+1) = Ω(t) +Θ for a positive semi-definite matrix
Θ satisfying ∥∥∥∥(Ω(t)

)− 1
2

Θ
(

Ω(t)
)− 1

2

∥∥∥∥
2→2

≤ ξ < 1,

for a ξ ∈ [0, 1). For any positive semi-definite A with ‖A‖2→2 ≤ ξ, we know that(
I − (ξ + 1)−1A

)
− (Ip +A)−1 ∈ Sp×p++ .
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So we can control 1 + ∆s from above, ∀ s = 1, . . . , p. Set A =
(
Ω(t)

)− 1
2 Θ

(
Ω(t)

)− 1
2 , so

1 + ∆s =

[
Ω(t)

(
Ω(t) + Θ

)−1
Ω(t)

]
ss

Ω
(t)
ss

=

[(
Ω(t)

) 1
2 (Ip +A)−1 (Ω(t)

) 1
2

]
ss

Ω
(t)
ss

≤ 1−

[(
Ω(t)

) 1
2 A
(
Ω(t)

) 1
2

]
ss

(1 + ξ) Ω
(t)
ss

= 1− Θss

(1 + ξ) Ω
(t)
ss

< 1.

Since f is a decreasing, convex function in (0, 1], we have

Ψ̄p =
1

p

p∑
s=1

f (1 + ∆s) ≥ f

(
p∑
s=1

1 + ∆s

p

)
≥ f

(
1− 1

(1 + ξ) p

p∑
s=1

Θss

Ω
(t)
ss

)
.

Therefore Ξt has the desirable properties, if

f

(
1− 1

(1 + ξ) p

p∑
s=1

Θss

Ω
(t)
ss

)
≥ 4

√
− log (2π0)− log (2π1)

pw2
.

Lastly note that p−1
∑p

s=1
Θss

Ω
(t)
ss

encodes the mean relative change in the conditional

variance of all nodes.

(d) Localized change: In this example, we consider a setting that the change-point only
affects a single node and the edges connected to it. Let Θ := Ω(t+1)−Ω(t) and suppose
that diag

(
Ω(t)

)
= 1p. The abrupt change being trapped in some s ∈ {1, . . . , p} and

its neighbors means that

Θ = ve>s + esv
> = [v es]

[
e>s
v>

]
,

for s-th coordinate unit vector es ∈ Rp and a v ∈ Rp such that for any u ∈ {1, . . . , p},
vu = 0 if Ω

(t)
su = 0. For simplicity define β := ‖v‖`2 , U := [v es] ∈ Rp×2, and V :=

[es v] ∈ Rp×2. Analogously to parts (a) − (c), our goal is to study the asymptotic
behavior of Ψ̄p for growing p. We only consider the case that β = O (1) when p→∞.
Using Woodbury ’s matrix identity, we get the following equality for any u = 1, . . . , p

∆u =

[
Ω(t)

(
Ω(t) + UV >

)−1
Ω(t)

]
uu

Ω
(t)
uu

− 1 =

[
U

(
I2 + V >

(
Ω(t)

)−1
U

)−1

V >

]
uu

.

Observe that if Ω
(t)
su = 0, then the u-th row of U and V are filled with zeros. So ∆u = 0

and f (1 + ∆u) = 0. On the other hand for neighbors of s, we have

|∆u| ≤
‖Uu,:‖`2 ‖Vu,:‖`2

λmin

(
I2 + V >

(
Ω(t)

)−1
U
) =

‖Uu,:‖2`2
λmin

(
I2 + V >

(
Ω(t)

)−1
U
)
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Since the smallest eigenvalue of Ω(t+1) = Ω(t) + UV > is greater than αmin > 0 and
its largest eigenvalue is less than M , one can find a bounded positive scalar Cmin

depending on M and αmin, such that

λmin

(
I2 + V >

(
Ω(t)

)−1
U

)
≥
√
Cmin =⇒ |∆u| ≤

‖Uu,:‖2`2√
Cmin

.

Thus, as p→∞, all ∆u terms remain in a small neighborhood of zero, since ‖U‖2`2 =
1 + β2 = O (1). By applying a Second order Taylor expansion of f near one, we get

f (1 + ∆u) ≤ Cmax∆2
u, ∀ u = 1, . . . , p,

for some bounded positive scalar Cmax. Thus, some straightforward algebraic deriva-
tions lead to

Ψ̄p =
1

p

p∑
u=1

f (1 + ∆u) ≤ Cmax

p

p∑
u=1

∆2
u ≤

Cmax

pCmin

p∑
s=1

‖Uu,:‖4`2 �
1

p

p∑
s=1

‖Uu,:‖4`2 ≤
‖U‖4`2
p
� 1

p

(18)
Comparing Eq. (18) with the sufficient detectability condition in Eq. (17) reveals that
the considered localized change can not be detected with small error.

We conclude this section by relaxing condition (b) in Assumption 3.2. Choose w+ ∈ N
strictly smaller than w. The following result introduces a sufficient condition on Ψ̄p for
detecting the change point at time t− := t− (w − w+). Notice that the next w samples at
time t− satisfy

Ω(t−) = . . . = Ω(t) 6= Ω(t+1) = . . . = Ω(t+w+). (19)

In words, we observe w+ post-change samples, which is equivalent to having a detection
delay of w+.

Theorem 10 Suppose that Assumption 3.1, constraint (a) in Assumption 3.2, and condi-
tion (19) hold. Choose π0, π1 ≤ 1

2 and consider Ξt− with the critical value ζπ0 = Qπ0. Then,
asymptotically

PFA

(
Ξt−
)
≤ π0, and PMD

(
Ξt−
)
≤ π1,

whenever

Ψ̄p ≥
4

w+

√
1

p

[
log

(
1

2π0

)
+ log

(
1

2π1

)]
.

Due to space considerations, the proof of Theorem 10 is omitted since it follows along
the lines of the proof of Theorem 7, with slightly more involved calculations.

4. Asymptotic analysis of Ξt: unknown Ω(t)

As discussed in Section 2.3, the pre-change precision matrix needs to be estimated
from the observed samples. Our developed theoretical approach for studying Ξ̂t (and its
associated test statistic T̂t) relies on a large-sample sharp bound on the estimation error
of the precision matrix. Specifically, we need operator and Frobenius norm convergence
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rates in terms of p, dmax of the network, and sample size. Because of space constraints,
the non-asymptotic analysis of estimating sparse precision matrices is beyond the scope of
this paper. Consequently, we only employ off-the-shelf theoretical results for this task. For
instance, we heavily use Theorems 1 and 4 of (Cai et al., 2011) for studying Algorithm 2.3
with the CLIME estimator.

In Section 2.3, we qualitatively stated that separation of consecutive change-points is
needed to guarantee the consistency of Algorithm 2.3. The following condition formalizes
this notion.

Assumption 4.1 There exists a bounded large enough scalar C (depending on αmin and
M) such that ∣∣t?j − t?j−1

∣∣ ≥ N := Cpdmax log2 p (w ∨ log p) , ∀ j ≥ 1.

Next, we find the null distribution of T̂t in Algorithm 2.3 (with the CLIME estimator).

Theorem 11 Suppose that there is no change-point between t−N and t+w, i.e. Ω(t−N+1) =
. . . = Ω(t) = . . . = Ω(t+w). Note that the condition is viable when Assumption 4.1 holds.
Further, suppose that Assumption 3.1 holds for Ω(t); then, asymptotically

T̂t
d→ N (0, 1) ,

According to Theorem 11, if Assumption 4.1 holds, then the null distribution of T̂t
has the same asymptotic behavior as that of Tt (with a fully-known pre-change precision
matrix). Roughly speaking, the null distribution of Tt remains almost intact, given large
enough separation of consecutive change-point locations. Hence, if the critical value ζπ0 is
chosen by Qπ0 , then PFA(Ξ̂t) is ensured to be less than π0, in the asymptotic regime. We
conduct a simple simulation study for verifying Theorem 11. Figure 4 depicts the histogram
and associated kernel density estimate of T̂t for four scenarios of (p, w, dmax). In each panel,
the histogram summarizes 104 independent replicates based on the same pre-change true
and estimated precision matrices. For constructing each histogram, we use the CLIME
procedure with N = dpdmax log pe for estimating the pre-change precision matrix. The
scikit-learn implementation of the graphical lasso with the coordinate descent optimization
algorithm is utilized for estimating Ω(t). Finally, note that the regularization parameters are
chosen as 0.01, 0.01, 0.01, and 0.005 from left to right and top to bottom panels, respectively.

Remark 12 The CLIME estimator requires O (pdmax log p) samples for consistently esti-
mating Ω(t), in the Frobenius norm (see Theorem 4 of (Cai et al., 2011)), which is slightly
weaker than the sufficient condition on the interval between two successive change-point in
Assumption 4.1. Moreover, according to Theorem 8 of Atchadé et al. (Atchade and Bybee,
2017), estimating the location of change point with order log p error in a s-sparse GGM
requires O (s log p) samples. Setting w = log p in Assumption 4.1 leads to a slightly stronger
condition on N in the online framework. In particular, we require N = pdmax log3 p obser-
vations before the change-point.
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Remark 13 Notice that N is an increasing function of w in Assumption 4.1, which may
seem counter-intuitive at first glance. This observation can be spelled out by noting that
the var (Tt) decays as order w−2, under the null hypothesis. Simply put as w increases,
even a slight bias introduced by the CLIME estimator can change the null distribution of
Tt (because of its very small variance). In contrast, Theorem 7 suggests that increasing w
improves the power of our proposed test. Therefore, a suitable value for w is affected by
the trade-off between the false alarm and miss-detection rates of Ξ̂t. Hence, we posit that
selecting w = O (log p) is a reasonable choice in practical settings.
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Figure 4: Histogram and kernel density estimator of T̂t for different scenarios regarding
(p, d, w). In each panel, Ω(t) is estimated by the graphical LASSO with N = dpdmax log pe.
The regularization parameters are chosen as 0.01, 0.01, 0.01, and 0.005 from left to right
and top to bottom, respectively.

Next, we study the detection rate of Ξ̂t under Assumption 4.1. The following result
shows that under the same conditions of Theorem 7 and if Assumption 4.1 holds, then Ξ̂t
enjoys the same detection power as Ξt.

Theorem 14 Suppose that Assumptions 3.1 and 3.2 hold. Further, assume that π0, π1 ≤ 1
2 .

Consider Ξ̂t with the critical value ζπ0 = Qπ0. Then, Ξ̂t satisfies the following condition
asymptotically

PFA

(
Ξ̂t

)
≤ π0, and PMD

(
Ξ̂t

)
≤ π1,

provided that Assumption 4.1 is satisfied and

Ψ̄p ≥
4

w

√
1

p

[
log

(
1

2π0

)
+ log

(
1

2π1

)]
.
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In summary, given a good estimate of Ω(t), for large networks the false alarm and miss-
detection rates of the proposed test are not affected by the estimation error. Namely, our
detection algorithm is robust against small estimation error, which is highly desirable in
applications. It is worth mentioning that under Assumption 4.1, the detection power of Ξt−
(recall its formulation from Eq. (19) and Theorem 10 ) is not also affected by the estimation
error of the pre-change precision matrix.

5. Numerical studies

The next set of numerical experiments aims to:

(a) Corroborate the developed asymptotic theory for Ξt and Ξ̂t in Sections 3 and 4.

(b) Understand the impact of issues absent in the asymptotic analysis, such as the length
of the burn-in period and update window, on PFA and PMD of Algorithm 2.3.

(c) Assess the capabilities of our proposed method on real-world applications through
sequential detection of structural changes in the S&P 500 over the period 2000− 2016.

In Section 5.1, we evaluate power of Ξt (known pre-change precision matrix) for the three
different scenarios introduced in Section 3.2: uniform, rank-r and localized abrupt changes.
Section 5.2 gauges the performance of Ξ̂t in Algorithm 2.3. Lastly, Section 5.3 is devoted to
experiments with S&P 500 data. Throughout this section, the false alarm rate is set to π0 =
0.01 and thus the critical value is ζπ0 = 2.3263. Further,

{
Gt ∼ N

(
0p,Ω

(t)
)

: t = 1, . . . , T
}

denotes a time-evolving zero-mean GGM of size p, observed on a time horizon of size T .
The Ω(t) is always normalized to be a correlation matrix. In other words, Ω(t) = R(t), where
R(t) denotes the associated partial correlation matrix to Ω(t).

5.1. Performance evaluation of Ξt

We set to T = 500, with a single change point at t? = 250. We use ΩBC and ΩAC for
referring the before and after-change precision matrix of Gt, respectively. Namely

Ω(t) = ΩBC1{t≤t?} + ΩAC1{t>t?}, ∀ t ∈ {1, . . . , T} .

Remark 15 Given p and d, we generate a sparse random matrix U ∈ Rp×p with exactly d
independent standard Gaussian entries per row. The locations of non-zero elements in each
row are selected uniformly at random (without replacement). We generate H ∈ Rp×p via

H :=
∥∥∥UU>∥∥∥−1

`∞
UU>

where H is a non-negative definite symmetric matrix whose entries lie in [−1, 1]. Note that
when d � p, distinct rows of U have non-overlapping support with high probability. This
fact ensures the sparsity of H in our synthetic simulation studies. In practice H is near
singular when d

p � 1. So for controlling the condition number of ΩBC, we choose

ΩBC ←− H + λ0Ip,

for some properly chosen λ0 > 0.
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The first experiment assesses the performance of Ξt for detecting a uniform change across
the entire network. In this setting, we select λ0 = 0.1 and ΩAC = (1 + β) ΩBC. Note that
pβ encodes the strength of change-point in the whole network. Our objective is to evaluate
the sensitivity of false alarm and miss-detection to p, β, d, and delay w. For any fixed tuple
(p, w, β, d), π0 and π1 are estimated based on 100 replicates of the network. In particular
for the i-th replication, false alarm and miss-detection rates are respectively estimated by

π̂0,i =
1

t? − w

t?−w∑
t=1

Ξit, and π̂1,i =
1

T − w − t?
T−w∑
t=t?

(
1− Ξit

)
, (20)

where
{

Ξit
}T
i=1

represents the sequence of binary decisions in {1, . . . , T}. The final estimates

π̂0 and π̂1 are successively obtained by the sample mean of {π̂0,i}100
i=1 and {π̂1,i}100

i=1.

Figure 5 depicts log10 π̂0 and log10 π̂1 as a function of p, w, β, and d̄. It is apparent from
Figure 5 that π̂0 lies in a small neighborhood of π0 = 0.01 in all scenarios. However, π̂1

rapidly decays with an increase in signal-to-noise-ratio (SNR), w and network size p, which
is in accordance with Theorem 7. For instance, as can be seen in the left-bottom panel in
Figure 5, when p = 800 and w = 15, the average mis-detection probability is around 1%.
In contrast, when the change point uniformly affects all nodes, for fixed values of β, p, and
w, the detection power does not clearly depend on the sparsity structure of the network
(which is encoded by d̄), which is again an expected finding based on part (a) of Remark 9.
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Figure 5: log10 π̂0 and log10 π̂1 for Ξt (fully known pre-change attributes) in a uniform
change scenario. The four plots present π̂0 and π̂1 for different p, w, d̄, and β, respectively
from left to right and top to bottom.
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Figure 6: log10 π̂0 and log10 π̂1 for Ξt (fully known pre-change attributes) in low-rank change
regime. The four plots present π̂0 and π̂1 to variations in r, w, d̄, and β, respectively from
left to right and top to bottom.

In the next experiment, we focus on a low-rank sudden change in the spectrum of
{Gt}Tt=1. Consider the spectral representation of ΩBC given by

ΩBC =

p∑
i=1

λi,BCviv
>
i , where 〈vj1 , vj2〉 = 1{j1=j2}, ∀ j1, j2 ∈ {1, . . . , p} .

Here we assume that {λi,BC : i = 1, . . . , p} has a non-increasing order. In this setting,
the top r eigenvalues of ΩBC are affected by abrupt change, without any impact on the
eigenvectors. Particularly, we choose ΩAC in the following way:

ΩAC =
r∑
i=1

λi,BC (1 + β) viv
>
i +

p∑
i=r+1

λi,BC (1 + β) viv
>
i .

The dependency of π̂0 and π̂1 (over 100 independent replicates) on β, r, w, and d̄ is presented
in Figure 6. Analogous to the uniform change framework, the miss-detection rate rapidly
decays with β, r, and w. For example, with window size w = 15, Ξt is capable of detecting
20% change (β = 0.2) in half of the eigenvalues with 99% percent accuracy (π̂1 ≈ 0.01).
Further, based on the bottom-left panel in Figure 6, the proposed algorithm is more powerful
for denser graphs (large average degree).

In the sequel, we appraise the detection performance of Ξt for uniform change in star
graphs. Recall that the developed asymptotic theory in Section 3 can not be extended to
star graphs, as dmax grows faster than

√
p. For modeling star graphs, the following scheme

is used for constructing ΩBC. Let u = [0, u1, . . . , up−1]> ∈ Rp be a standard Gaussian
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vector padded with a zero in its first position and also define e1 = [1, 0, . . . , 0]> ∈ Rp. The
pre-change precision matrix is given by

ΩBC = 1.1Ip +
e1u
> + ue>1
p ‖u‖`∞

.

Note that ΩBC encodes a star network whose root is set as the first node (s = 1). Despite
lack of asymptotic analysis, Figure 7 shows that the false alarm rate is still around 0.01,
particularly for large graphs. Moreover, the variation of π̂1 in terms of w, p, and β is
analogous to that in preceding simulation studies.
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Figure 7: log10 π̂0 and log10 π̂1 for Ξt (fully known pre-change attributes) for uniform change
in star graph. From left to right, π̂0 and π̂1 are plotted against p, w, and β, respectively.

5.2. Sensitivity of Ξ̂t to the burn-in and update periods

Next, we numerically examine the sensitivity of Ξ̂t to three choice parameters: burn-in
period, precision matrix update frequency, and the frequency of updating the regularization
parameter (model selection). The burn-in period n0 refers to the number of samples used for
computing an initial estimate of the post-change precision matrix (with the premise that the
first change-point occurs at t = 0). We assume that the distance between two consecutive
change-points is greater than n0. Since increasing n0 reduces the bias and variance of the
estimated precision matrix, it can provide an effective barrier against random fluctuations
in Ξ̂t time series and reduces the false alarm rate. On the other hand, an unnecessary
increase in n0 can affect the applicability of the proposed detection algorithm in real world
scenarios.

False alarms are costly as the algorithm needs to wait for a new burn-in window which
in turn may lead to missing a true forthcoming sudden change. Strictly speaking, suppose
that n0 = 500 and the algorithm raises a false alarm at t = 1000, while the true change-
point is located at t = 1250. Thus, detecting this sudden change with a delay less than
250 is infeasible. One practical solution that guards against false alarms, which comes at
the price of slightly increasing the detection delay, is to declare an abrupt change at time
t, whenever

Ξ̂t+r ≥ ζπ0 , ∀ r = 0, . . . , ι− 1.

In other words, we suggest to wait for ι successive flags before entering a new burn-in period.
Our synthetic simulation studies show that ι = 5 is a proper choice and so throughout this
section we fix ι = 5.
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Another choice parameter, which has direct impact on the computational complexity of
the online detection algorithm, is how often to update the estimated pre-change precision
matrix. Let B denote a pre-specified block size of recent observations. After the burn-in
period and until identifying a new change-point, the precision matrix is updated once every
B new samples. In our simulation studies, we exploit the QUIC method (see Algorithm 1
in (Hsieh et al., 2014)) for the estimating pre-change precision matrix because of its smaller
error and faster convergence comparing to the graphical lasso. The QUIC algorithm takes
advantage of the second order approximation of the Gaussian log-likelihood for solving the
following optimization problem.

Ω̂τ = min
Ω∈Sp×p++

{
− log det Ω + 〈Ω, 1

n

n∑
i=1

ZiZ
>
i 〉+ τ ‖Ω‖`1

}
,

in which Zi are i.i.d. draws from a zero mean Gaussian vector with precision matrix Ω?.
Proper choice of τ is essential for controlling the sparsity of the solution and avoiding over-
fitting. The optimal value of τ is chosen on a grid of size 20 to minimize the Bayesian
information criterion (BIC) score. In particular, when t̂last stands for the last detected
abrupt change before t and n := t− t̂last, then we optimize the BIC score over the following
grid (for finding the best i ∈ {0, . . . , 19}).

G :=

{
10(−1+j/10)

√
log p

n
: j = 0, . . . , 19

}
.

Namely, we assume that τ = τ0

√
n−1 log p as n increases and the BIC procedure aims to

choose the best τ0. Note that the relationship between τ and n is justified by our asymp-
totic understanding of the QUIC algorithm. Evaluating the BIC score over G is a heavy
computational burden for large graphs. On the other hand, when B is considerably smaller
than p, tuning the optimal j for each update cycle may provide a negligible improvement in
the detection accuracy. So for accelerating the whole procedure, we propose to conduct a
BIC model selection once every κ times of updating the precision matrix. Thus, we update
the optimal value of j after getting κB new samples, where κ−1 refers to the frequency of
conducting BIC model selection.

We now have all the required ingredients for describing our numerical experiments.
Our objective is to assess the sensitivity of Algorithm 2.3 to n0, B, and κ. In all experi-
ments, we choose p = 100, π0 = 0.01 and w = 20. Moreover three abrupt changes occur
at {3000, 6000, 9000} in T = 104 samples. For each choice of parameters (n0, B, κ), we
employ Algorithm 2.3 on 50 replications of the non-stationary GGM generated from the
following procedure. In order to have a fair comparison, all experiments are conducted
on the same 50 replications. We denote by Ω0,Ω1,Ω2, and Ω3 the precision matrix of the
network in the following four periods {1, . . . , 2999}, {3000, . . . , 5999}, {6000, . . . , 8999}, and
{9000, . . . , 10000}. In each replicate, Ω0 is independently generated with the same proce-
dure as in Remark 15 with p = 100, d = 20 and λ0 = 0.1. The first change point uniformly
affects all nodes with β = 0.2, i.e. Ω1 = (1 + β) Ω0. The second abrupt change only impacts
the top r = 50 eigenvalues without changing the eigenvectors. Specifically,

Ω2 =
r∑
i=1

λiβviv
>
i + Ω0, with β = 0.4,
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in which {vi ∈ Rp}pi=1 are orthonormal eigenvectors of Ω1 whose associated eigenvalues
are sorted in a non-increasing order. For the last change point, we randomly generate a
new precision matrix with the same distribution as Ω0. In this case, possibly all entries,
eigenvalues, and eigenvectors are affected by the change-point. Roughly speaking, the
sudden change signal is more visible compared to the previous ones. So for each replicate,
we have access to a multivariate Gaussian time series of length T = 104 of p = 100 vertices.

The first simulation study aims to assess the sensitivity of Algorithm 2.3 to the burn-in
period n0. We set B = 50 and κ = 4 for all experiments, while varying n0 in the set
{1100, 1300, 1500, 1700, 1900, 2100}. Note that in all the following experiments, T̂t is filled
with NA if t is in the burn-in period. Table 1 summarizes the median and interquartile
range (IQR) of the detection delays for the three aforementioned type of change points,
as well as average number of false alarms. According to Table 1 given enough samples in
the burn-in period for estimating pre-change precision matrix, increasing n0 has negligible
impact on the detection delay. However, larger values of n0 can guard T̂t against false
alarms. Moreover Figure 8 exhibits the average sample path of T̂t time series (over 50
experiments and after skipping the missing values) for each choice of n0. Figure 8 shows
that the change points randomly affecting all the nodes are easier to detect than uniform
or low rank breaks, which corroborates the summary results in Table 1.

n0 = 1100 n0 = 1300 n0 = 1500 n0 = 1700 n0 = 1900 n0 = 2100

Uniform Change
Median delay 53.5 51 54 54 52.5 51
IQR of delay 48.75 48.75 52.25 51.25 48.75 48.75

Low rank Change
Median delay 33 32.5 32 32.5 33 33
IQR of delay 13.25 14.5 12 11.75 13.25 13.25

Random Change
Median delay 4 4 4 4 4 4
IQR of delay 0.75 0.75 0.75 0.75 0.75 0.75

Average number of false alarms 0.12 0.06 0.08 0.04 0.00 0.00

Table 1: The median and IQR of detection delay, and average number of false alarams for
different values of n0 over 50 independent experiments.

In the second experiment, we evaluate the robustness of false alarm and miss detection
rates to variations of κ. Recall that for a fixed mini-batch size B and given n samples in
the pre-change regime, the precision matrix is estimated using the QUIC algorithm with
regularization parameter τ0

√
n−1 log p, where τ0 is updated after getting κB new samples.

We fix B = 50, and choose (n0, κ) pair from {1500, 2000} × {1, 2, 3, 4} (8 different cases).
The median and IQR of detection delay, as well as average number of false alarms (computed
from 50 independent experiment) are given in Table 2 for each (n0, κ). It can be seen that
variations in κ barely affects the detection delay and false alarm rate.

(1500, 1) (1500, 2) (1500, 3) (1500, 4) (2000, 1) (2000, 2) (2000, 3) (2000, 4)

Uniform Change
Median delay 54 54 54 54 52.5 52.5 52.5 52.5
IQR of delay 52.25 52.25 52.5 52.25 48 48 48.5 48

Low rank Change
Median delay 33 33 33 32 33 33 32 31
IQR of delay 13.5 13.25 13.25 12 13.5 13.25 13.25 12

Random Change
Median delay 4 4 4 4 4 4 4 4
IQR of delay 0 0.75 0.75 0.75 0.75 1 1 1

Average number of false alarms 0.08 0.08 0.08 0.08 0.00 0.00 0.00 0.00
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Figure 8: Average sample path of T̂t for different values of n0.

Table 2: The median and IQR of detection delay, and average number of false alarams for
different values of (n0, κ) over 50 independent experiments.

Lastly, we study the role of increasing the min-batch size B on the performance of T̂t.
Note that we use the same data set as in the two previous simulation studies. We fix
κ = 4 for all the experiments and consider 8 different scenarios for (n0, B) in {1100, 1500}×
{5, 10, 20, 40}. Table 3 summarizes the median and IQR of detection delay, and average
number of false alarms. Similar to Table 2, examining the columns of Table 3 shows that
if provided with an adequate quality initial estimate of the precision matrix in the burn-in
period, increasing B exhibits a small impact on the detection performance of T̂t. Roughly
speaking, when B is small, the estimated precision matrix (and consequently the detection
procedure) slightly changes after an update.

(1100, 5) (1100, 10) (1100, 20) (1100, 40) (1500, 5) (1500, 10) (1500, 20) (1500, 40)

Uniform Change
Median delay 54.5 54.5 53.5 52.5 54.5 54.5 54.5 54.5
IQR of delay 50.5 50.5 50.75 48.75 52.75 52.75 52.25 52.25

Low rank Change
Median delay 33 33 32.5 32.5 33 33 32.5 32.5
IQR of delay 13.5 16.75 16 13.25 16.75 16.75 16 13.25

Random Change
Median delay 4 4 4 4 4 4 4 4
IQR of delay 0 0 0 0.75 0.75 0 0 0.75

Average number of false alarms 0.12 0.12 0.12 0.14 0.08 0.08 0.08 0.08

Table 3: The median and IQR of detection delay, and average number of false alarams for
different values of (n0, B) over 50 independent experiments.
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5.3. Real data experiment

We assess the performance of Ξ̂t in a real-world scenario. The objective is to estimate
the time location of abrupt changes in the dependency structure of S&P 500 daily close price
data for the period from 2000-01-01 to 2016-03-03 (total of 3814 trading days). Note that
the S&P 500 data do not fit into the formulation of time evolving GGMs with independent
observations for two main reasons. First, the list of securities in S&P 500 pool evolves over
time. For example Alphabet Inc. Class C (with ticker symbol GOOG) entered the list on
2006-04-03. For circumventing the first issue, we follow the cleaning procedure from Atchade
and Bybee (2017) and select a fixed list of 436 ticker symbols from 2004-02-06 to 2016-03-03,
consisting of 3039 trading days. The second technical challenge is that the daily close price
of each ticker typically exhibits strong temporal dependence with non-Gaussian marginal
distribution. The geometric Brownian motion (GBM) is a versatile and popular tool for
modeling daily stock prices in mathematical finance (see e.g., Chapter 10 of Ross (2014)).
Note that under the GBM model, the daily log-return time series can be well approximated
by a Gaussian random walk. In other words, a high-dimensional GGM with 436 vertices
provides a good working model for the daily log-returns of S&P 500 components.

We choose n0 = 200, w = 22 (corresponding to the number of trading days in a month),
π0 = 0.05, κ = 2, and B = 10. We also employ the same estimation and model selection
approach as in Section 5.2. For each experiment, we conduct our sequential detection
algorithm on a network of 100 randomly chosen tickers, i.e., p = 100. We also set Ξ̂t = 1
for t in the burn-in period. The solid black curve and cyan interval in Figure 9, respectively
exhibits the sample average and standard deviation of Ξ̂t over 300 independent experiments.
Note that for each t, the proximity of the average Ξ̂t (over 300 experiments) to one implies
that t is close to a sudden change in most of the experiments. So roughly speaking the solid
dark curve captures the strength of nearest change-point.

It becomes apparent from Figure 9 that the first cluster of change-points starts in the
last few months of 2008 and lasts for one and half years, which successfully captures the
17-month bear market period from October 2007 to March 2009 (when the S&P 500 index
lost approximately 50% of its value). The beginning of the Great Recession in December
2007 and the bankruptcy filing of Lehman Brothers Holdings Inc. on September 15, 2008
are two notable events during this bear market. Another visible change-point in Figure 9
takes place in late 2010, which can represent the end of bear market in 2009. Our detection
algorithm finds the third change-point starting around September 2011, in most of the
300 experiments. The new regime likely corresponds to a sharp drop in stock prices during
August 2011 affecting the performance of stock exchanges across the United States, Europe,
East Asia, and the Middle East. The fall of stock market in August 2011 was due to fears of
contagion of the European sovereign debt crisis to Spain and Italy. The proposed algorithm
spots the last change-point in Fall 2014. Note that from September 18 to October 14 of
2014, the S&P 500 experienced a remarkable decline of 7.4% due to market jitters over the
rapid spread of the Ebola virus beyond Africa, fears of a global economic slowdown, Hong
Kong protests (umbrella revolution), and the first U.S. strikes against ISIS in Syria.

In the sequel, we introduce a tangible interpretation of the change-points identified in
terms of the average volatility of all tickers (nodes in the S&P 500 graphical model). For
each node s, let {Xt,s}Tt=1 stand for the daily log-return of s. We approximate the volatility
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of {Xt,s}Tt=1 using

Vt,s = std (Xs,t, . . . , Xs,t+w) ,∀ t = 1, . . . , T − w.

The dashed blue line in Figure 9 represents the sample average of {Vt,s}ps=1, which is a
proxy for the return volatility index in the S&P 500 pool. Note that based on Figure 9, all
detected change-points are closely related to periods of relatively high values in the return
volatility index.
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Figure 9: Confidence bound around Ξ̂t for 300 random subsets of S&P 500 with 100 stocks,
and average return volatility.

6. Future directions

We studied the problem of scalable sequential detection of abrupt changes in the preci-
sion matrix of high-dimensional sparse GGMs. The objective is to detect a regime-change
with maximum delay of w, while keeping the false alarm rate below some pre-specified
threshold δ. The proposed test T̂t (in Algorithm 2.3) uses a convex barrier function, which
is motivated by the formulation of KL-divergence between two zero mean multivariate
Gaussian vectors, for comparing the conditional log-likelihood of all nodes before and after
a sudden-change. We also established asymptotic performance guarantees of the algorithm
under certain regularity conditions on p, w, sample size, and pre- and post-change structure
of the graph.

Despite recent progress on scalable offline detection of change-points in the dependence
structure of graphical models in the “large p, small n” framework, there is still a lot of
work to be undertaken in the online setting and this study constitutes a first step in that
direction. We conclude this section by addressing several potential extensions of Algorithm
2.3 as topics of future investigation.
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(a) Extending the applicability of T̂t to non-Gaussian random fields having a closed-
form conditional log-likelihood, such as Ising models, is straightforward. However
the asymptotic analysis of the associated T̂t with Ising models is more technically chal-

lenging, since Y
(t,w)
s : s = 1, . . . , p (in Eq. (6)) is not a set of χ2

w random variables
under the null hypothesis.

(b) The pre-change precision matrix can be sequentially updated after receiving a new
observation by regularized dual averaging (RDA) procedure Xiao (2010) instead of using
a mini-batch scheme in Algorithm 2.3. To the best of our knowledge, the consistency
of RDA is formulated in terms of the regret function, unlike `2 or operator norm
consistency of the CLIME or QUIC mini-batch updates. It is worth mentioning that
an RDA-based sequential change-point detection was beyond the scope of this paper,
as our core asymptotic focus was on online detection, rather than developing `2 or
operator norm estimation rate of the online update for the pre-change precision matrix.

(c) From a statistical standpoint, investigating optimal choices for the barrier function f ,
as well as the minimax lower bound on separability between H0,t and H1,t constitute
interesting subjects of future research.

(d) We pointed out in part (d) of Remark 9 that T̂t is not capable of detecting regime-shifts
affecting a small sub-graph of the network. When a sudden-change is confined to a
subset of nodes B ⊂ {1, . . . , p}, f

(
Y (t,w)s

)
concentrates around zero for all nodes s not

directly connected to B, i.e. Ω
(t)
su = 0, ∀u ∈ B. In other words, the SNR is reduced

in T̂t by considering all nodes unaffected by the change-point. In this case scanning
through a set of potential candidates for B can improve the detection power. Strictly
speaking if B is known to belong a class of clusters C, then this idea can be formulated
as the following.

T̂ ′t = max
B∈C

∑
s∈B

[
f
(
Ŷ

(t,w)
s

)
− g1 (w)

]
g2 (w)

√∑p
s1,s2∈B hw

(
R̂

(t)
s1,s2

) .
Obtaining the distribution of T̂ ′t under the null and the alternative hypotheses is a
challenging analytic task and relies on extreme value theory for dependent random
variables, which is beyond the scope of this manuscript.

7. Proofs

Proof (Proof of Theorem 5) Recall from Eq. (6) and Eq. (13) that

Y (t,w)
s :=

1

wΩ
(t)
ss

w∑
r=1

〈Xt+r,Ω
(t)
:,s 〉2,

Tt =

∑p
s=1

[
f
(
Y

(t,w)
s

)
− g1 (w)

]
g2 (w)

√∑p
s1,s2=1 hw

(
R

(t)
s1,s2

) .
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The proof leverages the well-known Stein’s result (see e.g. Stein (1972) or Lemma 2 in
Bolthausen (1982)) saying that a sequence of L2 integrable random variables ηn converges
in distribution to a standard normal random variable as n→∞, if

E
[
(jν − ηn) ejνηn

]
→ 0, ∀ ν ∈ R. (21)

So we just need to show that E (jν − Tt) ejνTt converges to zero (as p→∞), for any ν ∈ R.
We use a similar technique as in the proof of Theorem 3.3.1 in Guyon (1995). Note that
we cannot directly utilize the result in Guyon (1995), as both d̄ and dmax can grow with p.
We only consider the case of w = 1 and the proof can be extended to any w > 1. However,
we still keep w as superscript for notational consistency. We introduce new notation for
compactness and transparency of algebraic derivations. For any s ∈ {1, . . . , p}, define

f̄
(
Y (t,w)
s

)
:= f

(
Y (t,w)
s

)
− g1 (w) , σ2

p,w := g2
2 (w)

p∑
s1,s2=1

hw

(
R(t)
s1,s2

)
,

ξs :=

p∑
l=1

f̄
(
Y

(t,w)
l

)
1 (Rs,l 6= 0) , ξcs :=

p∑
l=1

f̄
(
Y

(t,w)
l

)
1 (Rs,l = 0) . (22)

Here R stands for the partial correlation matrix of the network. Notice that with the new
notation, we have

Tt =
1

σp,w

p∑
s=1

f̄
(
Y (t,w)
s

)
, and ξu + ξcu =

p∑
u=1

f̄
(
Y (t,w)
u

)
= σp,wTt, ∀ u = 1, . . . , p. (23)

Since R is a correlation matrix, then

σ2
p,w ≥ g2

2 (w)

p∑
s=1

hw (Rss) = g2
2 (w)

p∑
s=1

hw (1) = g2
2 (w) p ⇒ σp,w ≥ g2 (w)

√
p. (24)

Our idea is to decompose (jν − Tt) ejνTt into 3 terms with diminishing expected value. For
any ν ∈ R, define

A1 :=
1

σp,w
ejνTt

p∑
s=1

f̄
(
Y (t,w)
s

)[
1− jν

σp,w
ξs − exp

(
−jνξs
σp,w

)]
,

A2 := jνejνTt

1− σ−2
p,w

p∑
s,l=1

f̄
(
Y (t,w)
s

)
f̄
(
Y

(t,w)
l

)
1 (Rs,l 6= 0)

 = jνejνTt

[
1− σ−2

p,w

p∑
s=1

f̄
(
Y (t,w)
s

)
ξs

]
,

A3 := σ−1
p,w

p∑
s=1

(
f̄
(
Y (t,w)
s

)
ejνξ

c
s/σp,w

)
.
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We obtain a new formulation for A1 +A3 using Eq. (23), which shows that (jν − Tt) ejνTt =
A2 − (A1 +A3).

A1 +A3 =
ejνTt

σp,w

p∑
s=1

f̄
(
Y (t,w)
s

)
− jνejνTt

σ2
p,w

p∑
s=1

f̄
(
Y (t,w)
s

)
ξs −

1

σp,w

p∑
s=1

f̄
(
Y (t,w)
s

)
e
jν
(
Tt− ξs

σp,w

)
+A3

= ejνTtTt −
jνejνTt

σ2
p,w

p∑
s=1

f̄
(
Y (t,w)
s

)
ξs −

1

σp,w

p∑
s=1

f̄
(
Y (t,w)
s

)
ejνξ

c
s/σp,w +A3

= ejνTtTt −
jνejνTt

σ2
p,w

p∑
s=1

f̄
(
Y (t,w)
s

)
ξs −A3 +A3 = ejνTtTt −

jνejνTt

σ2
p,w

p∑
s=1

f̄
(
Y (t,w)
s

)
ξs.

We first show that EA3 = 0. There is a zero mean Gaussian random vector Z ∈ Rp such
that

Y (t,w)
s = Z2

s , ∀ s ∈ {1, . . . , p} , and cov (Z) = R.

So for any s, Y
(t,w)
s is independent of

{
Y

(t,w)
v : Rvs = 0

}
, implying the independence of

f̄
(
Y

(t,w)
s

)
and ξcs. Therefore,

EA3 = σ−1
p,w

p∑
s=1

E
(
f̄
(
Y (t,w)
s

)
ejνξ

c
s/σp,w

)
= σ−1

p,w

p∑
s=1

cov
(
f̄
(
Y (t,w)
s

)
, ejνξ

c
s/σp,w

)
= 0.

Thus E
[
(jν − Tt) ejνTt

]
= EA2 − EA1. Next, we show that E |A1| and E |A2| tend to zero.

We first deal with E |A2|. Due to the Cauchy-Schwartz inequality, we only show that ‖A2‖2
goes to zero. It is known from Eq. 24 that σp,w ≥ g2 (w)

√
p. A lower bound on σp,w gives

an alternative asymptotic representation for ‖A2‖2.

‖A2‖22 = ν2E


∣∣∣∣∣∣

p∑
s,l=1

f̄
(
Y

(t,w)
s

)
f̄
(
Y

(t,w)
l

)
σ2
p,w

1{Rs,l 6=0} − 1

∣∣∣∣∣∣
2


=
ν2

σ4
p,w

var

 p∑
s,l=1

f̄
(
Y (t,w)
s

)
f̄
(
Y

(t,w)
l

)
1{Rs,l 6=0}


≤ ν2

p2g4
2 (w)

∑
Rs1,l1 6=0

∑
Rs2,l2 6=0

cov
[
f̄
(
Y (t,w)
s1

)
f̄
(
Y

(t,w)
l1

)
, f̄
(
Y (t,w)
s2

)
f̄
(
Y

(t,w)
l2

) ]
.

(25)

We break the summation in Eq. (25) into two parts. We interchangeably use B1 and B2

instead of (s1, l1) and (s2, l2), respectively. Define

C1 := {B1, B2 : Rs1,l1 , Rs2,l2 6= 0, There is no edge between B1 and B2} ,
C2 := {B1, B2 : Rs1,l1 , Rs2,l2 6= 0, There is an edge between B1 and B2} .

Proposition 23 states that∑
B1,B2∈C1

cov
[
f̄
(
Y (t,w)
s1

)
f̄
(
Y

(t,w)
l1

)
, f̄
(
Y (t,w)
s2

)
f̄
(
Y

(t,w)
l2

) ]
= 0.
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So we can simplify the upper bound on ‖A2‖2 in Eq. (25) as follows.

‖A2‖22 ≤
(

ν

pg2
2 (w)

)2 ∑
B1,B2∈C2

cov
[
f̄
(
Y (t,w)
s1

)
f̄
(
Y

(t,w)
l1

)
, f̄
(
Y (t,w)
s2

)
f̄
(
Y

(t,w)
l2

) ]
≤

(
ν

pg2
2 (w)

)2

|C2| max
B1,B2∈C2

∣∣∣cov
[
f̄
(
Y (t,w)
s1

)
f̄
(
Y

(t,w)
l1

)
, f̄
(
Y (t,w)
s2

)
f̄
(
Y

(t,w)
l2

) ]∣∣∣ .
(26)

We discussed in Section that wg2 (w) is uniformly bounded from below on N. Namely,
infw∈N |wg2 (w)| > 0. So Eq. (26) can be simplified as the following.

‖A2‖22 ≤
(
ν

p

)2

|C2| max
B1,B2∈C2

w4
∣∣∣cov

[
f̄
(
Y (t,w)
s1

)
f̄
(
Y

(t,w)
l1

)
, f̄
(
Y (t,w)
s2

)
f̄
(
Y

(t,w)
l2

) ]∣∣∣ . (27)

We now control the covariance between f̄
(
Y

(t,w)
s1

)
f̄
(
Y

(t,w)
l1

)
, and f̄

(
Y

(t,w)
s2

)
f̄
(
Y

(t,w)
l2

)
from above. Choose B1, B2 ∈ C2 arbitrarily. Observe that∣∣∣cov

[
f̄
(
Y (t,w)
s1

)
f̄
(
Y

(t,w)
l1

)
, f̄
(
Y (t,w)
s2

)
f̄
(
Y

(t,w)
l2

) ]∣∣∣ ≤
std
[
f̄
(
Y (t,w)
s1

)
f̄
(
Y

(t,w)
l1

) ]
std
[
f̄
(
Y (t,w)
s2

)
f̄
(
Y

(t,w)
l2

) ]
≤∥∥∥f̄ (Y (t,w)

s1

)
f̄
(
Y

(t,w)
l1

)∥∥∥
2

∥∥∥f̄ (Y (t,w)
s2

)
f̄
(
Y

(t,w)
l2

)∥∥∥
2
≤∥∥∥f̄ (Y (t,w)

s1

)∥∥∥
4

∥∥∥f̄ (Y (t,w)
l1

)∥∥∥
4

∥∥∥f̄ (Y (t,w)
s2

)∥∥∥
4

∥∥∥f̄ (Y (t,w)
l2

)∥∥∥
4
≤ max

s=1,...,p

∥∥∥f̄ (Y (t,w)
s

)∥∥∥4

4
.(28)

Since
{
Y

(t,w)
s : s = 1, . . . , p

}
form a set of identically distributed random variables, then∥∥∥f̄ (Y (t,w)
1

)∥∥∥
4

= max
s=1,...,p

∥∥∥f̄ (Y (t,w)
s

)∥∥∥
4
<∞.

Let M0 (w) stands for the forth moment of wf̄
(
Y

(t,w)
1

)
. We substantiated the uniform

boundedness of M0 (w) in Lemma 19. So substituting Eq. (28) into Eq. (27) leads to

(E |A2|)2 ≤ ‖A2‖22 .

(
|ν|
p

)2

|C2|M0 (w) �
(
|ν|
p

)2

|C2| . (29)

Claim 1 |C2| ≤ 8sd2
max = 8pd̄d2

max

Proof (Proof of Claim 1) Consider an arbitrary pair (s1, l1) , (s2, l2) ∈ C2. There is a direct
edge between s1 and l1 as Rs1,l1 6= 0. Similarly, there should be an edge connecting s2 and
l2. A direct connection between (s1, l1), (s2, l2), means that four vertices (s1, l1, s2, l2) form
a path of length less 1, 2, or 3. Let mi denotes the number of distinct paths of length i in
Gt. Then

|C2| ≤ 4 (m1 +m2 +m3) .
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Since each node in network is connected to at most dmax other nodes, one can easily verify
that m1 = s and

mi =

p∑
s=1

(
ds
2

)
di−2

max ≤
p∑
s=1

d2
s

2
di−2

max ≤
1

2
di−1

max

p∑
s=1

ds =
s

2
di−1

max.

Thus |C2| ≤ 2s
(
2 + dmax + d2

max

)
≤ 8sd2

max = 8pd̄d2
max

Replacing the upper bound on |C2| in Claim 1 into Eq. (29) shows that

E |A2| ≤ |ν|

√
8d̄d2

max

p
.

Now we find sufficient condition under which E |A1| → 0. Observe that

|A1| = σ−1
p,w

∣∣∣∣∣
p∑
s=1

f̄
(
Y (t,w)
s

)(
1− jνξs

σp,w
− e−jνξs/σp,w

)∣∣∣∣∣ ≤ σ−1
p,w

p∑
s=1

∣∣∣f̄ (Y (t,w)
s

)∣∣∣ ∣∣∣∣1− jνξs
σp,w

− e−jνξs/σp,w
∣∣∣∣

(a)

≤ 1

2σp,w

p∑
s=1

∣∣∣f̄ (Y (t,w)
s

)∣∣∣ ( νξs
σp,w

)2

=
ν2

2σ3
p

p∑
s=1

ξ2
s

∣∣∣f̄ (Y (t,w)
s

)∣∣∣ . (30)

The inequality (a) is implied form the fact that
∣∣e−jy + jy − 1

∣∣ ≤ y2/2 for any y ∈ R. We
can further simplify the upper bound on E |A1| by using Holder’s inequality with p = 3 and
q = 3/2.

E |A1| ≤
ν2

2σ3
p

p∑
s=1

Eξ2
s

∣∣∣f̄ (Y (t,w)
s

)∣∣∣ ≤ ν2

2σ3
p

p∑
s=1

(
E |ξs|3

) 2
3

(
E
∣∣∣f̄ (Y (t,w)

s

)∣∣∣3) 1
3

. (31)

We previously argued in Eq. (24) that σp,w ≥
√
pg2 (w) & w

√
p. This fact is crucial for

transforming Eq. (31) into a desirable form.

E |A1| . ν2p
3
2

p∑
s=1

(
E |wξs|3

) 2
3

(
E
∣∣∣wf̄ (Y (t,w)

s

)∣∣∣3) 1
3

= ν2p−
3
2

p∑
s=1

‖wξs‖23
∥∥∥wf̄ (Y (t,w)

s

)∥∥∥
3

(b)

. ν2p−
3
2

p∑
s=1

‖wξs‖23 . (32)

Here inequality (b) is obvious implication of Lemma 19. We finally control ‖wξs‖3 from
above. Again by using Holder’s inequality with p = 3, q = 3/2 and Lemma 19, we get

‖wξs‖33 = E

∣∣∣∣∣
p∑
l=1

wf̄
(
Y

(t,w)
l

)
1{Rsl 6=0}

∣∣∣∣∣
3
 ≤ d2

s

p∑
l=1

E
(∣∣∣wf̄ (Y (t,w)

l

)∣∣∣3)1{Rsl 6=0}

≤ d3
s max
l=1,...,p

E
(∣∣∣wf̄ (Y (t,w)

l

)∣∣∣3) . d3
s. (33)
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We finally substitute Eq. (33) into Eq. (33).

E |A1| . ν2p−
3
2

p∑
s=1

d2
s ≤ ν2p−

3
2

p∑
s=1

dsdmax = ν2p−
3
2 pd̄dmax = ν2 d̄dmax√

p
.

Therefore E |A1| and E |A2| simultaneously tend to zero (for any fixed ν ∈ R) whenever√
d̄d2

max

p
∨ d̄dmax√

p
=
d̄dmax√

p
→ 0,

which exactly coincides with Assumption 3.1.

Proof (Proof of Theorem 7) Let Qη denotes (1− η) quantile of N (0, 1) distribution, for
any η ∈ (0, 1). We prove that

P (Tt ≥ Qπ0 | H1,t) ≥ 1− π1.

Let µp,w and σ2
p,w respectively stand for the mean and variance of Tt under alternative

hypothesis. Obviously

P (Tt ≥ Qπ0 | H1,t) = P
(
Tt − µp,w
σp,w

≥ Qπ0 − µp,w
σp,w

| H1,t

)
. (34)

As smallest eigenvalue of Ω(t+1) is greater than αmin and its `1-operator norm is bounded
above by M , we can show that (Tt − µp,w) /σp,w has asymptotically a standard Gaussian
distribution by employing exact same techniques as in the proof of Theorem 5. So the
condition in Eq. (34) is satisfied if we can introduce a sufficient condition under which

Qπ0 − µp,w
σp,w

≤ −Qπ1 , or equivalently
µp,w
σp,w

(
1− Qπ0

µp,w

)
≥ Qπ1 . (35)

The inequality (35) trivially holds if we can prove that

µp,w ≥ 2Qπ0 , and µp,w ≥ 2σp,wQπ1 . (36)

It is easy to verify that σp,w is of order 1 as p, w → ∞. So, we just need to find sufficient
conditions under which µp,w & Qπ0 +Qπ1 . Recall ∆ from Eq. (16) and define

Ψ̄p :=
1

p

p∑
s=1

f (1 + ∆s) , Ψ̄′p :=
1

p

p∑
s=1

∆2
s.

We first note that all terms ∆s, s = 1, . . . , p are uniformly bounded, as for any s ∈ {1, . . . , p}

∆s =
1

Ω
(t)
ss

Ω(t)
s,:

(
Ω(t+1)

)−1
Ω(t)

:,s−1 ≤

∥∥∥Ω
(t)
:,s

∥∥∥2

`2

λmin

(
Ω(t+1)

)
Ω

(t)
ss

−1 ≤

∥∥∥Ω
(t)
:,s

∥∥∥2

`2

λmin

(
Ω(t+1)

)
λmin

(
Ω(t)

)−1 ≤ M2

α2
min

−1.
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So we can find a bounded scalar C (depending on M2

α2
min
− 1) such that

∆2
s ≤ Cf (1 + ∆s) , ∀ s = 1, . . . , p =⇒ Ψ̄′p ≤ CΨ̄p.

We now have required tools for introducing a sufficient condition that guarantees two in-
equalities in Eq. (36). We begin by obtaining a sharp lower bound on µp,w. Recall Tt from
Eq. (13). Using the first part of Lemma 22 yields

µp,w = E (Tt | H1,t) =

∑p
s=1 f (1 + ∆s)

g2 (w)
√∑p

s1,s2=1 hw (Rs1,s2)

(a)
� pwΨ̄p√∑p

s1,s2=1 hw (Rs1,s2)
. (37)

Notice that (a) in Eq. (37) holds since g2 (w) ≥ c0w for some universal constant c0 > 0.
Moreover, it is easy to verify the existence of a bounded constant C1 (M,αmin) for which

p∑
s1,s2=1

hw (Rs1,s2) ≤ C1 (M,αmin) p.

Thus µp,w in Eq. (37) satisfies µp,w & w
√
pΨ̄p. So the first condition in Eq. (36) holds if

Ψ̄p ≥ C2 (M,αmin)
Qπ0 +Qπ1
w
√
p

, (38)

which is same as the desired condition in Theorem 7.

Proof (Proof of Theorem 11) Under Assumption 3.1 and, nt, p, and possibly w, d̄, dmax

asymptotically grow in such a way that

d̄dmax√
p
→ 0, and

pdmax log2 p

n
(w ∨ log p)→ 0. (39)

All the statements regarding probabilistic convergence results in the proof are restricted to
large p and nt framework described in Eq. (39). According to Theorem 5, Tt converges in
distribution to a standard Gaussian random variable. Therefore, we only require to show

that
∣∣∣T̂t − Tt∣∣∣ converges to zero, in probability.

Recall σp,w and f̄ (·) from Eq. (22) and define σ̂p,w (stands for estimated σp,w ) by

σ̂2
p,w := g2

2 (w)

p∑
s1,s2=1

hw

(
R̂(t)
s1,s2

)
.

Using triangle inequality leads to∣∣∣T̂t − Tt∣∣∣ =

∣∣∣∣∣ 1

σ̂p,w

p∑
s=1

f̄
(
Ŷ (t,w)
s

)
− 1

σp,w

p∑
s=1

f̄
(
Y (t,w)
s

)∣∣∣∣∣
≤ 1

σp,w

∣∣∣∣∣
p∑
s=1

f̄
(
Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣∣∣+

∣∣∣∣ 1

σ̂p,w
− 1

σp,w

∣∣∣∣
∣∣∣∣∣
p∑
s=1

f̄
(
Y (t,w)
s

)∣∣∣∣∣
=

1

σp,w

∣∣∣∣∣
p∑
s=1

f̄
(
Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣∣∣+

∣∣∣∣(σp,wσ̂p,w
− 1

)
Tt

∣∣∣∣ . (40)
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The following facts provides a simpler upper bound on
∣∣∣T̂t − Tt∣∣∣.

• σp,w is (obviously) greater than g2 (w)
√
p.

• Based upon Theorem 5, Tt converges in distribution to a standard Gaussian random
variable. Therefore, in the asymptotic regime

P
(
|Tt| ≥ 4

√
log p

)
≤ p−1.

Applying these facts on inequality (40) yields

P


∣∣∣T̂t − Tt∣∣∣

4
≤

∣∣∣∣∣∣
p∑
s=1

f̄
(
Ŷ

(t,w)
s

)
− f̄

(
Y

(t,w)
s

)
g2 (w)

√
p

∣∣∣∣∣∣+

∣∣∣∣σp,wσ̂p,w
− 1

∣∣∣∣√log p

 ≥ 1− 1

p
. (41)

For further simplification of the upper bound on
∣∣∣T̂t − Tt∣∣∣, we need to control |σ̂p,w − σp,w|

from above.

Claim 1 There exists a bounded constant C (αmin,M) such that

P
(∣∣∣∣ σ̂p,wσp,w

− 1

∣∣∣∣ ≥ C (αmin,M) εnt,p,dmax

)
≤ 2

p
, where εnt,p,dmax

:= d
1
4
max

√
log p

nt
.

Before proving Claim 1, we use it for simplifying Eq. (41). Under conditions in Eq.
(39), εnt,p,dmax

√
log p converges to zero, as

εnt,p,dmax

√
log p =

d
1
4
max log p
√
nt

.
d

1
4
max log p√
pdmax log2 p

=
(
p
√
dmax

)− 1
2 → 0.

Therefore for large p and n, 2σ̂p,w ≥ σp,w with probability at least 1− p−1, and∣∣∣∣σp,wσ̂p,w
− 1

∣∣∣∣√log p =
|σ̂p,w − σp,w|

σ̂p,w

√
log p ≤ 2 |σ̂p,w − σp,w|

σp,w

√
log p ≤ 2C (αmin,M) εnt,p,dmax

√
log p

� εnt,p,dmax

√
log p→ 0. (42)

Replacing Eq. (42) into Eq. (41) ensures that

∣∣∣T̂t − Tt∣∣∣ = OP

∣∣∣∣∣∣
p∑
s=1

f̄
(
Ŷ

(t,w)
s

)
− f̄

(
Y

(t,w)
s

)
g2 (w)

√
p

∣∣∣∣∣∣ ∨ εnt,p,dmax

√
log p

 .

So
∣∣∣T̂t − Tt∣∣∣→ 0 (in probability), which terminates the proof, if we prove that

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = oP (g2 (w)
√
p) .
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Since wg2 (w) is strictly less than some bounded universal constant C ′0, we just need to
show that

w
√
p

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = oP (1) . (43)

Define

ηs :=
Ω̂

(t)
s,:

(
Ω(t)

)−1
Ω̂

(t)
:,s

Ω̂
(t)
ss

, ∀ s = 1, . . . , p. (44)

ηs is an important quantity in our analysis as it captures the conditional expected value of

Ŷ
(t,w)
s given X1, . . . , Xt. Particularly, it is easy to show that

E
[
Y (t,w)
s | X1, . . . , Xt

]
= 1, and E

[
Ŷ (t,w)
s | X1, . . . , Xt

]
= ηs.

A vigilant reader notices that despite random nature of ηs, it does not depend onXt+1, . . . , Xt+w.
So using Corollary 25 yields

P

[∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ ≥ f (ηs) + |ηs − 1|
√

8 log p

w

(
1 ∨

√
8 log p

w

)]
≤ p−2, ∀ s = 1 . . . , p.

Using union bound technique, we get

P

[∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ ≥ f (ηs) + |ηs − 1|
√

8 log p

w

(
1 ∨

√
8 log p

w

)
, ∀ s = 1 . . . , p

]
≤ p−1.

In summary, we showed that

w
√
p

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = OP

(
w
∑p

s=1 f (ηs)√
p

+
log p ∨

√
w log p

√
p

p∑
s=1

|ηs − 1|

)
.

(45)
Using Cauchy-Schwartz inequality, we can rewrite Eq. (45) as the following.

w
√
p

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = OP

w∑p
s=1 f (ηs)√
p

+
(

log p ∨
√
w log p

)( p∑
s=1

|ηs − 1|2
) 1

2

 .

(46)
Let us investigate the behaviour of f (ηs) for s = 1, . . . , p. We assumed that λmin

(
Ω(t)

)
is

greater than αmin. It is also known that (see Theorem 1 of Cai et al. (2011)) with probability
at least 1− 1/p

∥∥∥Ω̂(t) − Ω(t)
∥∥∥

2→2
≤ CM2dmax

√
log p

n
= OP

(
dmax

√
log p

n

)
→ 0.

for some bounded universal constant C. Thus(
1− CM2dmax

αmin

√
log p

n

)
Ω̂(t) 4 Ω(t) 4

(
1 +

CM2dmax

αmin

√
log p

n

)
Ω̂(t). (47)
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The inequality (47) is essential for studying the behaviour of ηs, as

|ηs − 1| ≤

(
1 +

CM2dmax

αmin

√
log p

n

)
Ω̂

(t)
s,:

(
Ω̂(t)

)−1
Ω̂

(t)
:,s

Ω̂ss

−1 =
CM2dmax

αmin

√
log p

n
→ 0, ∀ s = 1, . . . , p.

So all ηs are in a small neighbourhood around one, which means that for large enough p
and nt

f (ηs) ≤ 2 (ηs − 1)2 .

From Proposition 26 we know that if we replace the last inequality into Eq. (45), then we
get

w
√
p

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = OP

∑p
s=1 (ηs − 1)2

w−1√p
+
(

log p ∨
√
w log p

)( p∑
s=1

|ηs − 1|2
) 1

2

 .

(48)

Claim 2
∑p

s=1 (ηs − 1)2 = OP

(
pdmax log p

nt

)
. The constant involved in OP depends on M

and αmin.

Given Claim 2, by applying Proposition 26 we can rewrite Eq. (48) in the following way.

w
√
p

p∑
s=1

∣∣∣f̄ (Ŷ (t,w)
s

)
− f̄

(
Y (t,w)
s

)∣∣∣ = OP

pwdmax log p
√
p

+

√
pdmax log2 p (w ∨ log p)

nt


= OP

√pdmax log2 p (w ∨ log p)

nt

 (a)
= oP (1) .

Here identity (a) is implied form assumptions in Eq. (39). Notice that the last equation is
identical as Eq. (43), which concludes the proof. Finally, we establish Claim 1 and 2.
Proof (Proof of Claim 1) Lemma 28 states that as long as αmin > 0, the following result
holds with probability at least 1− p−1, and for some bounded C ′ (αmin).∣∣∣∣ σ̂p,wσp,w

− 1

∣∣∣∣ ≤ C ′ (αmin)

(
‖R‖−1

`4

√∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`∞

∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`2
∨
∥∥∥Ω̂(t) − Ω(t)

∥∥∥
`∞

)
(a)

. p−
1
4

√∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`∞

∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`2
∨
∥∥∥Ω̂(t) − Ω(t)

∥∥∥
`∞
. (49)

The inequality (a) is valid as all diagonal entries of R are equal to one. It is also known
that (see Theorem 4 of Cai et al. (2011)) with probability at least 1− p−1

∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`∞
≤ C0M

2

√
log p

nt
, and

∥∥∥Ω̂(t) − Ω(t)
∥∥∥
`2
≤ C0M

2

√
pdmax log p

nt
, (50)

for some bounded universal constant C0. Combining Eq. (50) and Eq. (49) ends the proof.
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Proof [Proof of Claim 2] Recall ηs from Eq. (44). Observe that

ηs =
Ω̂

(t)
s,:

(
Ω(t)

)−1
Ω̂

(t)
:,s

Ω̂
(t)
ss

=

∥∥∥(Ω(t)
)−1/2

Ω̂
(t)
:,s

∥∥∥2

`2

Ω̂
(t)
ss

=


∥∥∥(Ω(t)

)−1/2
Ω̂

(t)
:,s

∥∥∥
`2√

Ω̂
(t)
ss


2

Using Eq. (47), we showed that all δs, s = 1, . . . , p are in a small neighborhood of one, with
probability at least 1− 1/p. Thus, |ηs − 1| ≤ 3

∣∣√ηs − 1
∣∣ in the asymptotic framework and

hence

|√ηs − 1| =

∣∣∣∣∣∣∣
∥∥∥(Ω(t)

)−1/2
Ω̂

(t)
:,s

∥∥∥
`2√

Ω̂
(t)
ss

− 1

∣∣∣∣∣∣∣
(b)
=

∣∣∣∣∣∣∣
∥∥∥(Ω(t)

)−1/2
Ω̂

(t)
:,s

∥∥∥
`2√

Ω̂
(t)
ss

−

∥∥∥(Ω(t)
)−1/2

Ω
(t)
:,s

∥∥∥
`2√

Ω
(t)
ss

∣∣∣∣∣∣∣
≤

∥∥∥∥∥∥
(

Ω(t)
)−1/2

 Ω̂
(t)
:,s√
Ω̂ss

− Ω
(t)
:,s√
Ω

(t)
ss

∥∥∥∥∥∥
`2

≤
√

1

λmin

(
Ω(t)

)
∥∥∥∥∥∥ Ω̂

(t)
:,s√
Ω̂ss

− Ω
(t)
:,s√
Ω

(t)
ss

∥∥∥∥∥∥
`2

≤ α
− 1

2
min

∥∥∥∥∥∥ Ω̂
(t)
:,s√
Ω̂

(t)
ss

− Ω
(t)
:,s√
Ω

(t)
ss

∥∥∥∥∥∥
`2

. (51)

Note that identity (b) is an immediate consequence of the fact that

Ω(t)
ss =

[
Ω(t)

(
Ω(t)

)−1
Ω(t)

]
= Ω(t)

:,s

(
Ω(t)

)−1
Ω(t)

:,s =

∥∥∥∥(Ω(t)
)− 1

2
Ω(t)

:,s

∥∥∥∥2

`2

.

For simplicity define the following two matrices

L(t) :=

 Ω
(t)
s1,s2√
Ω

(t)
s2,s2

p
s1,s2=1

, L̂(t) :=

 Ω̂
(t)
s1,s2√
Ω̂

(t)
s2,s2

p
s1,s2=1

.

Next, we find an upper bound on
∑p

s=1 (ηs − 1)2 by using Eq. (51).

p∑
s=1

(ηs − 1)2 ≤ 9

p∑
s=1

(
√
ηs − 1)2 ≤ 9

αmin

p∑
s=1

∥∥∥L̂(t)
:,s − L(t)

:,s

∥∥∥2

`2
=

9

αmin

∥∥∥L̂(t) − L(t)
∥∥∥2

`2
.

Lemma 29 provides an upper bound on
∥∥∥L̂(t) − L(t)

∥∥∥
`2

. There is C1 < ∞ (depending on

αmin) such that∥∥∥L̂(t) − L(t)
∥∥∥2

`2
≤ C1

(∥∥∥Ω(t)
∥∥∥2

`2

∥∥∥Ω̂(t) − Ω(t)
∥∥∥2

`∞
+
∥∥∥Ω̂(t) − Ω(t)

∥∥∥2

`2

)
(c)
= OP

(
M2 log p

nt

∥∥∥Ω(t)
∥∥∥2

`2
+M2 pdmax log p

nt

)
.
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Note that identity (c) is implied by the rates obtained in Theorem 4 of Cai et al. (2011).
Recall that `1 operator norm of Ω(t) is less than M . Therefore∥∥∥Ω(t)

∥∥∥2

`2
≤ p

∥∥∥Ω(t)
∥∥∥2

2→2
≤ p

∥∥∥Ω(t)
∥∥∥2

2→2
≤ pM2.

We conclude the proof by combining the last two inequalities.∥∥∥L̂(t) − L(t)
∥∥∥2

`2
= OP

(
M4 p log p

nt
+M2 pdmax log p

nt

)
= OP

(
pdmax log p

nt

)
.
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Appendix A. Auxiliary results on moments of a Chi-square random
variable

We used Y
(t,w)
s (recall its definition from Eq. (6)) to denote the sample mean of con-

ditional log-likelihood of node s given other nodes of Gt, over a window of size w. We
argued in Section 2.2 that if GGM does not experience a sudden change at t + 1, then

wY
(t,w)
s is distributed as a Chi-square random variable with w degrees of freedom. Also

recall f : [0,∞] 7→ R from Eq. (3). In this section we formulate central moments of

f
(
Y

(t,w)
s

)
, s = 1, . . . , p under H0,t (no change at t+ 1) and H1,t (abrupt change at t+ 1).

The two following results, Lemma 16 and 17, are crucial in the proof of principal results in
this section.

Lemma 16 Let X and Y be two real-valued independent zero-mean random variables. For
arbitrary functions f1, f2 : R 7→ R, we have

cov
(
f1 (X) , Y f2 (X)

)
= 0.

Proof Independence of X and Y means that

cov
(
f1 (X) , Y f2 (X)

)
= Ef1 (X) f2 (X)Y − Ef1 (X)Ef2 (X)Y

= Ef1 (X) f2 (X)EY − Ef1 (X)Ef2 (X)EY = EY cov
(
f1 (X) , f2 (X)

)
.

Thus f1 (X) and Y f2 (X) are obviously uncorrelated, since EY = 0.

Lemma 17 Let (X,X ′) be a standard bi-variate Gaussian random vector with corr (X,X ′) =
r. Let {(Xk, X

′
k)}

w
k=1 be i.i.d. draws from (X,X ′) and define

Zw :=
w∑
k=1

X2
k , Z ′w :=

w∑
k=1

X ′2k .

Then,

p (r, w) := cov
[
(Zw − w)2 ,

(
Z ′w − w

)2]
= 8r2

[
4w + r2w2 + 2r2

]
,

q (r, w) := cov
[
(Zw − w)2 ,

(
Z ′w − w

)3]
= 72r4

(
w2 + w + 2

)
+ 240r2w.

Proof Zw and Z ′w are identically distributed chi-square random variables with w degrees of
freedom. We aim to find a recursive formula for p (r, w) in terms of p (r, w − 1) and p (r, 1).
Zw and Z ′w can be formulated in a recursive way.

Zw − w =
(
Zw−1 − (w − 1)

)
+X2

w − 1, Z ′w − w =
(
Z ′w−1 − (w − 1)

)
+
(
X ′2w − 1

)
.

For simplicity, define Z̄w = Zw − w and Z̄ ′w = Z ′w − w. Notice that the pair of random
variables

(
Z̄w−1, Z̄

′
w−1

)
are independent from X ′w and Xw. Thus,

cov
[
Z̄2
w−1,

(
X ′2w − 1

)2 ]
= 0, cov

[
Z̄ ′2w−1,

(
X2
w − 1

)2 ]
= 0. (52)
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Furthermore, Lemma 16 implies that

cov
[ (
X2
w − 1

)2
, Z̄ ′w−1

(
X ′2w − 1

) ]
= 0, cov

[ (
X ′2w − 1

)2
, Z̄w−1

(
X2
w − 1

) ]
= 0,

cov
[
Z̄2
w−1, Z̄

′
w−1

(
X ′2w − 1

) ]
= 0, cov

[
Z̄ ′2w−1, Z̄w−1

(
X2
w − 1

) ]
= 0. (53)

The identities (52) and (53) are crucial for finding a simple alternative way of expressing
p (r, w).

p (r, w) = cov
[ (
X2
w − 1

)2
+ Z̄2

w−1 + 2Z̄w−1

(
X2
w − 1

)
,
(
X ′2w − 1

)2
+ Z̄ ′2w−1 + 2Z̄ ′w−1

(
X ′2w − 1

) ]
= cov

[(
X2
w − 1

)2
,
(
X ′2w − 1

)2]
+ cov

[
Z̄2
w−1, Z̄

2
w−1

]
+ 4 cov

[
Z̄w−1

(
X2
w − 1

)
, Z̄ ′w−1

(
X ′2w − 1

)]
= p (r, 1) + p (r, w − 1) + 4 cov

[
Z̄w−1

(
X2
w − 1

)
, Z̄ ′w−1

(
X ′2w − 1

)]
.

Next we evaluate cov
[
Z̄w−1

(
X2
w − 1

)
, Z̄ ′w−1

(
X ′2w − 1

)]
in terms of w and r. Since X2

w − 1
is a zero mean random variable, so

EZ̄w−1

(
X2
w − 1

)
= EZ̄w−1E

(
X2
w − 1

)
= 0.

Therefore,

cov
[
Z̄w−1

(
X2
w − 1

)
, Z̄ ′w−1

(
X ′2w − 1

)]
= E

(
Z̄w−1Z̄

′
w−1

)
E
[ (
X ′2w − 1

) (
X2
w − 1

) ]
=

cov
(
Z̄w−1, Z̄

′
w−1

)
cov

(
X2
w, X

′2
w

)
=

w−1∑
i,j=1

cov
(
X2
i , X

′2
j

)
cov

(
X2
w, X

′2
w

) (b)
=

(w − 1)
[
cov

(
X2

1 , X
′2
1

)]2 (c)
= 4r4 (w − 1) .

Identity (b) is an obvious consequence of the independence of Xi and X ′j , for any distinct

pair (i, j). Finally equality (c) is implied from the fact that cov
(
X2

1 , X
′2
1

)
= 2r2. Thus,

p (r, w) = p (r, w − 1) + p (r, 1) + 4r4 (w − 1) , ∀ w > 1. (54)

Eq. (54) can be easily reformulated as the following way

p (r, w) = p (r, 1) + (w − 1) p (r, 1) + 4r4
w∑
k=1

(k − 1) = wp (r, 1) + 8r4 (w − 1) (w − 2) . (55)

In the last step, we calculate p (r, 1). The cumbersome algebraic details (which is mainly
based on using moment identities for standard Gaussian distribution) are omitted due to
space constraint. The fact that Z1 and Z ′1 has the same distribution yields

p (r, 1) = E
[
(Z1 − 1)2 (Z ′1 − 1

)2]− var (Z1) var
(
Z ′1
)

= E
[
(Z1 − 1)2 (Z ′1 − 1

)2]− 4

= EZ2
1Z
′2
1 − 4EZ2

1Z
′
1 + 2EZ2

1 + 1− 4EZ1 + 4EZ1Z
′
1 − 4

= EZ2
1Z
′2
1 − 4EZ2

1Z
′
1 + 4EZ1Z

′
1 − 1. (56)
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Furthermore, using Isserlis’ Theorem implies that

EZ1Z
′
1 = EZ1EZ ′1 + 2

(
EX1X

′
1

)2
= 1 + 2r2,

EZ2
1Z
′
1 =

1

2

(
4

2

)
(EZ1)2 EZ ′1 + 2×

(
4

2

)
EZ1

(
EX1X

′
1

)2
= 3 + 12r2,

EZ2
1Z
′2
1 = EZ2

1EZ ′21 + 4!
(
EX1X

′
1

)4
+

42 × 32

2

(
EX1X

′
1

)2 EZ1EZ ′1 = 9 + 72r2 + 24r4. (57)

Substituting Eq. (57) into (56) yields

p (r, 1) = EZ2
1Z
′2
1 − 9− 40r2 = 24r4 + 72r2 + 9− 9− 40r2 = 8r2

(
4 + 3r2

)
. (58)

We terminate the proof by replacing Eq. (58) into Eq. (55). As the second claim in the
statement of Lemma 17 can be substantiated by similar techniques, we skip its proof for
avoiding repetitions.

The succeeding Lemma comes in handy at Section 2.2 for standardizing Tt under H0,t

regime.

Lemma 18 Let Zw be a chi-square random variable with w degrees of freedom. Then the
mean and standard deviation of f (Zw/w) is given by

g1 (w) := Ef
(
Zw
w

)
= log

(w
2

)
− ψ(0)

(w
2

)
, g2 (w) := std f

(
Zw
w

)
=

√
ψ(1)

(w
2

)
− 2

w
.

in which ψ(r) stands for the poly-gamma function of order r.

Proof It is known that the expected value and variance of logZw are respectively given
by log 2 + ψ(0) (w/2) and ψ(1) (w/2) Pav (2015). Therefore,

Ef
(
Zw
w

)
= E

[
Zw
w
− 1− log

(
Zw
w

)]
= 1− 1 + logw − E logZw = log

(w
2

)
− ψ

(w
2

)
.

We now focus on calculating the variance of f
(
Zw
w

)
. Observe that

var f

(
Zw
w

)
= var

(
Zw
w
− logZw

)
=

varZw
w2

+ var logZw −
2 cov (Zw, logZw)

w

=
2

w
+ ψ(1)

(w
2

)
− 2

w
cov (Zw, logZw)

=
2

w
+ ψ(1)

(w
2

)
− 2

w
[E (Zw logZw)− wE logZw] . (59)

So we just need to evaluate the expected value of Zw logZw. Using the fact that Γ (x+ 1) =
xΓ (x) for any x > 0 leads to

E (Zw logZw) =

∫ ∞
0

x log x
xw/2−1 exp (x/2)

2w/2Γ (w/2)
dx =

∫ ∞
0

log x
x(w+2)/2−1 exp (x/2)

2w/2Γ (w/2)
dx

= w

∫ ∞
0

log x
x(w+2)/2−1 exp (x/2)

2(w+2)/2Γ ((w + 2) /2)
dx = wE logZw+2.
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Thus the covariance of Zw and logZw can be rewritten as

cov (Zw, logZw) = w (E logZw+2 − E logZw) = w

[
ψ(0)

(
w + 2

2

)
+ log 2− ψ(0)

(w
2

)
− log 2

]
= w

[
ψ(0)

(
1 +

w

2

)
− ψ(0)

(w
2

)]
(a)
= w

2

w
= 2. (60)

In which the identity (a) is a direct implication of the fact that ψ(0) (x+ 1)−ψ(0) (x) = 1/x.
Replacing Eq. (60) into Eq. (59) yields

var f

(
Zw
w

)
=

2

w
+ ψ(1)

(w
2

)
− 4

w
= ψ(1)

(w
2

)
− 2

w
,

which concludes the proof.

The following result, which is needed for proving Theorem 5, shows that all moments of
wf
(
Zw
w

)
are bounded

Lemma 19 There exist universal constant C1, C2 > 0 such that∥∥∥∥wf (Zww
)∥∥∥∥

k

= w

∣∣∣∣Efk (Zww
)∣∣∣∣1/k ≤ C1k,∥∥∥∥w [f (Zww

)
− g1 (w)

]∥∥∥∥
k

≤ C2k, ∀ k ∈ N.

Proof Let Gw (t) denotes the moments generating function of f (Zw/w). Due to non-
negativity of f , if Gw is well defined for a strictly positive t, then all moments of f (Zw/w)
can be controlled from above by Gw (t). We first show that Gw is well defined at t = w/4.
Observe that

Gw

(w
4

)
= E

[
exp

(
w

4
f

(
Zw
w

))]
= E

[
exp

(
Zw
4
− w

4
− w

4
log

(
Zw
w

))]
= e−

w
4 w

w
4 E
[
Z
−w

4
w exp

(
Zw
4

)]
= e−

w
4 w

w
4

∫ ∞
0

x−
w
4 e

x
4
x
w
2
−1e−

x
2

2
w
2 Γ
(
w
2

) dx
= e−

w
4 w

w
4

∫ ∞
0

x
w
4
−1e−

x
4

2
w
2 Γ
(
w
2

) dx.
The last integral can be simplified by introducing u := x

4 .

Gw

(w
4

)
= e−

w
4 w

w
4

∫ ∞
0

u
w
4
−1e−u

Γ
(
w
2

) du = exp
[
−w

4
+
w

4
logw + log Γ

(w
4

)
− log Γ

(w
2

)]
.

(61)
This identity ensures that Gw

(
w
4

)
is well defined as long as w does not grow. Strictly

speaking we can find bounded w0 ∈ N nd C0 > 0 (depending on w0) so that Gw (w/4) is
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smaller than C0 for all w ≤ w0. Next we study the behaviour of Gw
(
w
4

)
for large w. It is

known that 2

lim
x→∞

log Γ (x)−
(
x− 1

2

)
log x+ x =

log (2π)

2
.

Applying the asymptotic identity of log Γ function on Eq. (61) implies that

Gw

(w
4

)
= exp

(
1

2
log 2

)
=
√

2.

In summary, we guaranteed the existence of a bounded universal constant C1 ≥ 1 for which
Gw
(
w
4

)
≤ C1, for all w ∈ N. Elementary properties of moment generating function implies

that

1

k!

(w
4

)k ∥∥∥∥f (Zww
)∥∥∥∥k

k

≤ Gw
(w

4

)
, ∀ k ∈ N =⇒

∥∥∥∥w4 f
(
Zw
w

)∥∥∥∥
k

≤ k

√
k!Gw

(w
4

)
≤ k
√
k!C

1
k
1 , ∀ k ∈ N.

We conclude the proof by mentioning that k
√
k! ≤ k for any k ∈ N. Now we turn to the

proof of second claim. Using Minkowski’s inequality, we get∥∥∥∥w [f (Zww
)
− g1 (w)

]∥∥∥∥
k

≤
∥∥∥∥wf (Zww

)∥∥∥∥
k

+ |wg1 (w)| ≤ Ck + |wg1 (w)| .

So the desired result obviously holds, since there is a bounded universal scalar C ′ > 0 such
that |wg1 (w)| ≤ C ′ for all w ∈ N 3.

We now find a polynomial approximation for hw function defined in Eq. (12).

Lemma 20 Under the same notation and conditions as Lemma 17, define hw [−1, 1] 7→
[−1, 1] by

hw (r) := corr

[
f

(
Zw
w

)
, f

(
Z ′w
w

)]
Then

1. hw is an even function, i.e. hw (x) = hw (−x) for any x ∈ [0, 1], with hw (0) = 0 and
hw (1) = 1.

2. There exist a bounded universal scalar C > 0and w0 ∈ N such that for any w ≥ w0

max
r∈[−1,1]

∣∣hw (r)− r4
∣∣ ≤ C

w
.

Proof The first claim in obvious. So we focus on finding a uniform upper bound on the
difference between hw (r) and r4, for r ∈ [−1, 1]. Choose an arbitrary r ∈ [−1, 1]. Define
random variables Z̄w and Z̄ ′w by

Z̄w := (Zw − w) , Z̄ ′w :=
(
Z ′w − w

)
. (62)

2. See http://functions.wolfram.com/GammaBetaErf/LogGamma/introductions/Gammas/ShowAll.html

3. We refer the reader to 5.11.2 of https://dlmf.nist.gov/5.11
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Taylor expansion of f around 1 gives us

f

(
Zw
w

)
= f

(
1 +

Z̄w
w

)
=
∞∑
k=2

(−1)k Z̄kw
kwk

.

Therefore,

cov

[
f

(
Zw
w

)
, f

(
Z ′w
w

)]
= cov

[ ∞∑
k=2

(−1)k Z̄kw
kwk

,

∞∑
k=2

(−1)k Z̄ ′kw
kwk

]
=

∞∑
j,k=2

(−1)j+k

jkwj+k
cov

(
Z̄jw, Z̄

′k
w

)
=

cov
(
Z̄2
w, Z̄

′2
w

)
4w4

−
cov

(
Z̄3
w, Z̄

′2
w

)
3w5

+
∞∑

j+k≥6

(−1)j+k

jkwj+k
cov

(
Z̄jw, Z̄

′k
w

)
.(63)

Lemma 17 gives an equivalent representation for the first two terms in the second line of
Eq. (63). One line of algebra guarantees the existence of a large enough constant C1 such
that ∣∣∣∣∣cov

(
Z̄2
w, Z̄

′2
w

)
4w4

−
cov

(
Z̄3
w, Z̄

′2
w

)
3w5

− 2r4

w2

∣∣∣∣∣ ≤ C1

w3
, ∀ w ≥ 1. (64)

We also use ξ to denote the third term in the second line of Eq. (63). Observe that

|ξ| = w−3

∣∣∣∣∣∣
∞∑

j+k≥6

(−1)j+k

jk

(
2

w

)(j+k−6)/2

cov

[(
Z̄w√
2w

)j
,

(
Z̄ ′w√
2w

)k]∣∣∣∣∣∣
We know from central limit Theorem that as w tends to infinity, then(

Z̄w√
2w

,
Z̄ ′w√
2w

)
d→ N

([
0
0

]
,

[
1 r2

r2 1

])
.

Thus, there exist a large enough w0 ∈ N and finite positive scalar C2 such that for any
w ≥ w′0

|ξ| ≤ C2

w3
. (65)

Combining Eq. (63), (64) and (65) gives us∣∣∣∣cov

[
f

(
Zw
w

)
, f

(
Z ′w
w

)]
− 2r4

w2

∣∣∣∣ ≤ C1 + C2

w3
, ∀ w ≥ w′0.

According to Lemma 18, var
[
f
(
Zw
w

)]
= var

[
f
(
Z′w
w

)]
= ψ(1)

(
w
2

)
− 2

w . So∣∣∣∣∣hw (r)− 2r4

w2

(
ψ(1)

(w
2

)
− 2

w

)−1
∣∣∣∣∣ ≤ C1 + C2

w3

(
ψ(1)

(w
2

)
− 2

w

)−1

. (66)

It is known that4 there are two finite scalars C ′1 and w′′0 such that∣∣∣∣ψ(1)
(w

2

)
− 2

w
− 2

w2

∣∣∣∣ ≤ C ′1
w3
, ∀ w ≥ w′′0 .

4. See 5.15.8 at https://dlmf.nist.gov/5.15
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So inequality (66) can be simplified as

∣∣hw (r)− r4
∣∣ ≤ C1 + C2

2w − C ′1
+

2C ′1r
4

w
≤ C

w
.

Here C is a finite scalar depending on C1, C2, C
′
1, w

′
0 and w′′0 . In summary we showed that

for any r ∈ [−1, 1], ∣∣hw (r)− r4
∣∣ ≤ C

w
, ∀ w ≥ w0 := w′0 ∨ w′′0 .

Lemma 21 There exists a bounded constant Cw > 1 such that supr∈[−1,1]

∣∣∣hw(r)
r4
− 1
∣∣∣ ≤ Cw.

Proof Since hw is a continuous function on a compact space, we only need to show that
lim sup
r→0

hw(r)
r4
≤ C ′w := 1 + Cw. According to Lemma 19, hw (r) � r4 as w →∞, so we only

present the proof for w = 1.

The following result is beneficiary for finding the expected value and standard deviation
of Tt, under alternative hypothesis H1,t.

Lemma 22 Let (X,X ′) be a standard bi-variate Gaussian random vector with corr (X,X ′) =
r. Let {(Xk, X

′
k)}

w
k=1 be i.i.d. draws from (X,X ′) and define

Zw :=

w∑
k=1

X2
k , Z ′w :=

w∑
k=1

X ′2k .

Recall g1 (·) and g2 (·) from Lemma 18. For two arbitrary positive scalars α, α′,

1. Ef
(
αZw
w

)
= g1 (w) + f (α).

2. cov
[
f
(
αZw
w

)
, f
(
α′Z′w
w

)]
= 2r2

w (α− 1) (α′ − 1) + hw (r) g2
2 (w).

Proof We employ a similar approach as the proof of Lemma 18 and 20. Notice that

f

(
αZw
w

)
= f

(
Zw
w

)
+ (α− 1)

Zw
w
− logα. (67)

taking expected value from both sides substantiates the first claim.

Ef
(
αZw
w

)
= Ef

(
Zw
w

)
+ α− 1− logα = Ef

(
Zw
w

)
+ f (α) = g1 (w) + f (α) .

We now aim to prove the second claim. hw is defined to satisfy the following identity.

cov

[
f

(
Zw
w

)
, f

(
Z ′w
w

)]
= hw (r) g2

2 (w) .
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Since covariance operator is bilinear, using Eq. (67) one can show that

cov

[
f

(
αZw
w

)
, f

(
α′Z ′w
w

)]
− hw (r) g2

2 (w) =

(
αα′ − 1

)
cov

(
Zw
w
,
Z ′w
w

)
− (α− 1) cov

(
Zw
w
, log

Z ′w
w

)
−
(
α′ − 1

)
cov

(
Z ′w
w
, log

Zw
w

)
.

(68)

Let {Yk}wk=1 be a set of i.i.d. standard Gaussian random variables. Obviously

(
Zw, Z

′
w

)
=

(
Zw, r

2Zw,
(
1− r2

) w∑
k=1

Y 2
k + 2r

√
1− r2

w∑
k=1

XkYk

)
.

This distributional identity alongside with Lemma 16 shows that

cov
(
Zw, Z

′
w

)
= r2 varZw = 2r2w,

cov

(
Zw
w
,
Z ′w
w

)
= cov

(
Z ′w
w
, log

Zw
w

)
= r2 cov

(
Zw
w
, log

Zw
w

)
.

So we can rewrite Eq. (68) as the following.

cov

[
f

(
αZw
w

)
, f

(
α′Z ′w
w

)]
−hw (r) g2

2 (w) =
2r2

w

(
αα′ − 1

)
−r

2 (α+ α′ − 2)

w
cov (Zw, logZw) .

We conclude the proof by applying Eq. (60).

cov

[
f

(
αZw
w

)
, f

(
α′Z ′w
w

)]
−hw (r) g2

2 (w) =
2r2

w

(
αα′ − 1

)
−2r2

w

(
α+ α′ − 2

)
=

2r2

w
(α− 1)

(
α′ − 1

)
.

Appendix B. Some technical probabilistic results

This section contains auxiliary results that are useful for proving main theoretical con-
tributions of this manuscript in Section 7. The following Proposition comes in handy for
substantiating Theorems 5 and 11.

Proposition 23 Let Z ∈ Rp be a zero mean GGM with inverse covariance matrix Ω.
Define another (zero mean) GGM Y ∈ Rp by

Ys =
〈Ωs,:, Z〉√

Ωss
, ∀ s ∈ {1, . . . , p} .

Choose four distinct points s1, t1, s2, t2 ∈ {1, . . . , p} such that there is no edge between
B1 = {s1, t1} and B2 = {s2, t2}. Then [Ys1 , Yt1 ] is independent of [Ys2 , Yt2 ].
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Proof Let R be the partial correlation matrix of Z. It is easy to show that cov (Y ) = R.
Thus [Ys1 , Yt1 ] is independent of [Ys2 , Yt2 ] if and only if

cov ([Ys1 , Yt1 ] , [Ys2 , Yt2 ]) = RB1,B2 = 02×2.

Since there is no edge between {s1, t1} and {s2, t2}, then ΩB1,B2 = 02×2. We conclude the
proof by reminding the reader that R has the same sparsity pattern as Ω, i.e. supp (R) =
supp (Ω).

Next we conduct a probabilistic sensitivity analysis for f with a stochastic argument
(Chi-square random variable with w-degrees of freedom). Such result is crucial in the proof
of Theorem 11.

Lemma 24 Let α be a bounded strictly positive scalar and let Zw be a chi-square random
variables with w degrees of freedom. Then for any ξ > 0,

P

[∣∣∣∣f (αZww
)
− f

(
Zw
w

)
− f (α)

∣∣∣∣ ≥ |α− 1|
√

8ξ log p

w

(
1 ∨

√
8ξ log p

w

)]
≤ p−2ξ.

Proof Without loss of generality, assume that α 6= 1. The following identity holds for any
x > 0.

f (αx)−f (x)−f (α) = [αx− 1− log (αx)]−(x− 1− log x)−(α− 1− logα) = (α− 1) (x− 1) .

Thus √
w
2

|α− 1|

∣∣∣∣f (αZww
)
− f

(
Zw
w

)
− f (α)

∣∣∣∣ =
|Zw − w|√

2w
.

Therefore we just need a concentration inequality for a standardized version of Zw. We
know form Remark 2.11 of Boucheron et al. (2013) that for any t > 0

P

(
|Zw − w|√

2w
≥
√

2t+

√
2

w
t

)
≤ e−t. (69)

Replacing t = 2ξ log p in Eq. (69) concludes the proof.

One can extend Lemma 24 to random α, as long as it is independent from Zw. We skip
the proof due to its simplicity.

Corollary 25 Lemma 24 is satisfied for a strictly positive random variable α, independent
of Zw.

Proposition 26 Let X and Y be random variables jointly distributed as P. Let B be a
measurable set with P (Y ∈ B) ≥ 1− ε1, for some ε1 ∈ (0, 1). If there exist a measurable set
A and ε2 ∈ (0, 1) such that

P (A | Y = y) ≤ ε2, ∀ y ∈ B, (70)

then P (A) ≤ ε1 + ε2
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Proof Let PY stands for the marginal distribution of Y . Observe that

P (A) = P (A ∩ [Y /∈ B]) + P (A ∩ [Y ∈ B]) ≤ P (Y /∈ B) + P (A ∩ [Y ∈ B]) ≤ ε1 + P (A ∩ [Y ∈ B])

= ε1 +

∫
B
P (A | Y = y) dPY (y) ≤ ε1 + sup

y∈B
P (A | Y = y) .

Finally condition (70) trivially substantiates the desired upper bound on P (A).

Lemma 27 Let Ω,Ω′ ∈ Sp×p++ be two inverse covariance matrices such that

λmin (Ω) ∧ λmin

(
Ω′
)
≥ αmin, (71)

for a strictly positive scalar αmin. We use R and R′ to denote the partial correlation matrices
associated to Ω and Ω′, respectively. If ‖Ω′ − Ω‖`∞ ≤ αmin, then there exists a bounded
universal constant C such that

‖R′ −R‖`4
‖R‖`4

≤ C

α2
min


√
‖Ω′ − Ω‖`∞ ‖Ω′ − Ω‖`2

‖R‖`4
+
∥∥Ω′ − Ω

∥∥
`∞


Proof For simplicity define ∆ := R′ − R. Our objective is control |∆st| , s, t = 1, . . . , p
from above. Using triangle inequality yields

|∆st| =

∣∣∣∣∣ Ω′st√
Ω′ssΩ

′
tt

− Ωst√
ΩssΩtt

∣∣∣∣∣ ≤ |Ω′st − Ωst|√
Ω′ssΩ

′
tt

+ |Ωst|

∣∣∣∣∣ 1√
Ω′ssΩ

′
tt

− 1√
ΩssΩtt

∣∣∣∣∣
≤ |Ω′st − Ωst|√

ΩssΩtt

√
Ωtt

Ω′tt

√
Ωss

Ω′ss
+ |Rst|

∣∣∣∣∣
√

Ωtt

Ω′tt

√
Ωss

Ω′ss
− 1

∣∣∣∣∣
Let us simplify the right hand side term in preceding inequality. The right hand side
condition in Eq. (71) guarantees that all diagonal entries of Ω are greater than αmin. Thus
for all s ∈ {1, . . . , p},√

Ωss

Ω′ss
=

(
1 +

Ωss − Ω′ss
Ω′ss

)1/2

≤ 1+
|Ω′ss − Ωss|

2Ω′ss
≤ 1+

‖Ω′ − Ω‖`∞
2Ω′ss

≤ 1+
‖Ω′ − Ω‖`∞

2αmin
. (72)

Moreover we know that ‖Ω′ − Ω‖`∞ ≤ αmin. So, the upper bound on |∆st| can be rewritten
as

|∆st| ≤
|Ω′st − Ωst|

αmin

(
1 +
‖Ω′ − Ω‖`∞

2αmin

)2

+ |Rst|

∣∣∣∣∣
(

1 +
‖Ω′ − Ω‖`∞

2αmin

)2

− 1

∣∣∣∣∣
≤ 9 |Ω′st − Ωst|

4αmin
+

5 |Rst|
4αmin

∥∥Ω′ − Ω
∥∥
`∞
≤

9
√
|Ω′st − Ωst|
4αmin

√
‖Ω′ − Ω‖`∞ +

5 |Rst|
4αmin

∥∥Ω′ − Ω
∥∥
`∞
.

We now apply the following result to find an upper bound on |∆st|4.

(x+ y)4 ≤ 8
(
x4 + y4

)
, ∀ x, y ≥ 0.
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The proof of preceding result is left to the reader. So,

|∆st|4 ≤
206

α4
min

∣∣Ω′st − Ωst

∣∣2 ∥∥Ω′ − Ω
∥∥2

`∞
∨ 20

α4
min

∥∥Ω′ − Ω
∥∥4

`∞
R4
st.

Now summing up over all entries of ∆ (omitting the straightforward algebra), we get

‖∆‖4`4 ≤
C

α4
min

[∥∥Ω′ − Ω
∥∥2

`∞

∥∥Ω′ − Ω
∥∥2

`2
+
∥∥Ω′ − Ω

∥∥4

`∞
‖R‖4`4

]
, (73)

for some bounded universal constant C. Taking forth root from both sides of Eq. (73) ends
the proof.

The following result is an easy consequence of Lemma 21 and Lemma 27.

Lemma 28 The following inequality holds under the same conditions of Lemma 27.∣∣∣∣∣
∑p

s1,s2=1 hw
(
R′s1,s2

)∑p
s1,s2=1 hw (Rs1,s2)

− 1

∣∣∣∣∣ ≤ C

α2
min


√
‖Ω′ − Ω‖`∞ ‖Ω′ − Ω‖`2

‖R‖`4
+
∥∥Ω′ − Ω

∥∥
`∞

 .
Proof Lemma 21 ensures the existence of two bounded strictly positive constants Cw, C

′
w

such that
hw (r) ≥ C ′wr4, and hw (r) ≤ Cwr4, ∀ r ∈ [−1, 1] .

Therefore, p∑
s1,s2=1

hw
(
R′s1,s2

) 1
4

≤ C
1
4
w

∥∥R′∥∥
`4
≤ C

1
4
w ‖R‖`4

(
1 +
‖R′ −R‖`4
‖R‖`4

)

≤
(
Cw
C ′w

) 1
4

 p∑
s1,s2=1

hw (Rs1,s2)

 1
4 (

1−
‖R′ −R‖`4
‖R‖`4

)
. (74)

Applying triangle inequality on Eq. (74) leads to∑p
s1,s2=1 hw

(
R′s1,s2

)∑p
s1,s2=1 hw (Rs1,s2)

− 1 .

(
1−
‖R′ −R‖`4
‖R‖`4

)4

− 1 ≤

∣∣∣∣∣1− ‖R′ −R‖`4‖R‖`4

∣∣∣∣∣− 1 ≤
‖R′ −R‖`4
‖R‖`4

.

Employing similar techniques, one can show that 1−
∑p
s1,s2=1 hw(R′s1,s2)∑p
s1,s2=1 hw(Rs1,s2)

≤
‖R′−R‖`4
‖R‖`4

. Thus,

∣∣∣∣∣
∑p

s1,s2=1 hw
(
R′s1,s2

)∑p
s1,s2=1 hw (Rs1,s2)

− 1

∣∣∣∣∣ . ‖R′ −R‖`4‖R‖`4
. (75)

We conclude the proof by applying Lemma 27 to Eq. (75).
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Lemma 29 Let Ω,Ω′ ∈ Sp×p++ be two precision matrices such that

λmin (Ω) ∧ λmin

(
Ω′
)
≥ αmin,

for a strictly positive scalar αmin. Define L1, L2 ∈ Rp×p by

L :=

[
Ωst√
Ωtt

]p
s,t=1

, and L′ :=

[
Ω′st√
Ω′tt

]p
s,t=1

.

If ‖Ω′ − Ω‖`∞ ≤ αmin, then there exists a bounded universal constant C such that

∥∥L′ − L∥∥
`2
≤ C

‖Ω′ − Ω‖`2√
αmin

+
‖Ω‖`2 ‖Ω

′ − Ω‖`∞√
α3

min

 .

Proof We apply similar techniques as the proof of Lemma 27. For simplicity define
∆ := L′ − L. Triangle inequality leads to

|∆st| ≤
|Ω′st − Ωst|√

Ω′tt
+
|Ωst|√

Ωtt

∣∣∣∣∣
√

Ωtt

Ω′tt
− 1

∣∣∣∣∣ , ∀ s, t ∈ {1, . . . , p} .

Using Eq. (72) and the fact that ‖Ω′ − Ω‖`∞ ≤ αmin are critical for simplifying the obtained
upper bound on |∆st|. We skip the algebraic details as it is exactly the same in Eq. (72).

|∆st|2 ≤

 |Ω′st − Ωst|√
αmin

+
|Ωst| ‖Ω′ − Ω‖`∞

2
√
α3

min

2

≤ 2

(
(Ω′st − Ωst)

2

αmin
+

Ω2
st ‖Ω′ − Ω‖2`∞

4α3
min

)
, (76)

for any s, t ∈ {1, . . . , p}. Combining Eq. (76) for all pairs (s, t) in {1, . . . , p} × {1, . . . , p},
we get

‖∆‖2`2 =

p∑
s,t=1

|∆st|2 ≤
2

αmin

∥∥Ω′ − Ω
∥∥2

`2
+

1

2α3
min

‖Ω‖2`2
∥∥Ω′ − Ω

∥∥2

`∞
.

This inequality can be easily reformulated as the desirable upper bound on ‖∆‖`2 .
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