
Journal of Machine Learning Research 21 (2020) 1-53 Submitted 7/18; Revised 4/20; Published 10/20

A Unified q-Memorization Framework for Asynchronous
Stochastic Optimization

Bin Gu jsgubin@gmail.com

School of Computer & Software, Nanjing University of Information Science & Technology, China

Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA

JD Finance America Corporation, Mountain View, CA, 94043, USA

Wenhan Xian wex37@pitt.edu

Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA

Zhouyuan Huo zhhuo@google.com

Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA

Cheng Deng chdeng.xd@gmail.com

School of Electronic Engineering, Xidian University, Xi’an, Shaanxi, 710071, China

Heng Huang heng.huang@pitt.edu

Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA

JD Finance America Corporation, Mountain View, CA, 94043, USA

Editor: Mark Schmidt

Abstract

Asynchronous stochastic algorithms with various variance reduction techniques (such as
SVRG, S2GD, SAGA and q-SAGA) are popular in solving large scale learning problems.
Recently, Reddi et al. (2015) proposed an unified variance reduction framework (i.e., HSAG)
to analyze the asynchronous stochastic gradient optimization. However, the HSAG frame-
work cannot incorporate the S2GD technique, the analysis of the HSAG framework is
limited to the SVRG and SAGA techniques on the smooth convex optimization. They
did not analyze other important various variance techniques (e.g., S2GD and q-SAGA)
and other important optimization problems (e.g., convex optimization with non-smooth
regularization and non-convex optimization with cardinality constraint). In this paper,
we bridge this gap by using an unified q-memorization framework for various variance
reduction techniques (including SVRG, S2GD, SAGA, q-SAGA) to analyze asynchronous
stochastic algorithms for three important optimization problems. Specifically, based on the
q-memorization framework, 1) we propose an asynchronous stochastic gradient hard thresh-
olding algorithm with q-memorization (AsySGHT-qM) for the non-convex optimization
with cardinality constraint, and prove that the convergence rate of AsySGHT-qM before
reaching the inherent error induced by gradient hard thresholding methods is geometric.
2) We propose an asynchronous stochastic proximal gradient algorithm (AsySPG-qM) for
the convex optimization with non-smooth regularization, and prove that AsySPG-qM can
achieve a linear convergence rate. 3) We propose an asynchronous stochastic gradient
descent algorithm (AsySGD-qM) for the general non-convex optimization problem, and
prove that AsySGD-qM can achieve a sublinear convergence rate to stationary points. The
experimental results on various large-scale datasets confirm the fast convergence of our
AsySGHT-qM, AsySPG-qM and AsySGD-qM through concrete realizations of SVRG and
SAGA.

©2020 Bin Gu, Wenhan Xian, Zhouyuan Huo, Cheng Deng, and Heng Huang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/18-434.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v21/18-434.html

Gu, Xian, Huo, Deng, and Huang

Keywords: Stochastic optimization, q-memorization, asynchronous parallel computing,
variance reduction, proximal operator, hard thresholding

1. Introduction

Large-scale learning problems are ubiquitous in the current era of big data. For example,
Flickr (a public picture sharing site) daily received 1.8 million photos on average from
February to March in 2012 (Michel, 2012; Wu et al., 2014). If we want to learn a classifier
based on these cumulative photos (Wang et al., 2012), it is inevitable to design a large-scale
learning algorithm to handle the massive amounts of photo data. Parallel computation
and stochastic optimization are the dominant techniques for solving this kind of large scale
learning problems.

Parallel Computation. Parallel computation techniques were recently proposed to
address large-scale learning problems, benefiting from the popularity of multi-core proces-
sors and GPU-accelerators. Parallel computation techniques can be roughly divided into
synchronous and asynchronous models, according to whether the reading or writing lock is
used. As pointed out in many literatures (Lian et al., 2016; Liu and Wright, 2015; Zhao
and Li, 2016; Lian et al., 2015), the synchronous parallel model reduces parallel efficiency,
because all other computational resources need to wait the ongoing computational resource
when reading or writing a variable. On the other hand, the asynchronous parallel model
is much more efficient than the synchronous parallel model, because it keeps all compu-
tational resources busy all the time. It should be noted that, the convergence analysis
for the asynchronous parallel algorithm is much more difficult than the one for the syn-
chronous parallel algorithm, due to the inconsistent reading1. In this paper, we focus on
the asynchronous parallel model on the parallel environment with shared memory (such as
multi-core processors and GPU-accelerators).

Stochastic Optimization. Stochastic optimization is the other important big data
computation technique. For the full gradient descent algorithm, the full gradient is used to
update the solution, which is quite computational costly for large-scale data. Different to
the full gradient descent algorithm, stochastic gradient descent (SGD) algorithm (Bottou,
2010) uses the stochastic gradient on a sample or a subset of samples to update the solution,
instead of the full gradient. Thus, the SGD algorithm has a cheap computation for each
iteration. However, compared to the linear convergence rate of the full gradient descent
algorithm, the SGD algorithm has a low sublinear convergence rate O(1

T) due to the variance
of stochastic gradients introduced by random sampling, where T is the iteration number.

To accelerate the SGD algorithm, there have been several variance reduction techniques
proposed to reduce the variance of stochastic gradients. Basically, these variance reduction
techniques use different strategies to combine the full gradient and the stochastic gradient.
Specifically, the variance reduction techniques include SVRG (Johnson and Zhang, 2013),
S2GD (Konečný and Richtárik, 2017), SAGA (Defazio et al., 2014) and q-SAGA (Hofmann
et al., 2015), SAG (Schmidt et al., 2017). We give a detailed comparison of the representative
unbiased variance reduction techniques (i.e., SVRG, S2GD, SAGA and q-SAGA) in Section

1. Because the asynchronous parallel algorithm does not use the reading and writing locks, the variables
read into the local memory may be inconsistent to the ones in shared memory. It is the so-called
inconsistent reading.

2

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

2.1 and Table 2. From the comparison, we find that SVRG and S2GD have a low space cost
and a high computational cost for each epoch. On the other hand, SAGA and q-SAGA have
a low computational cost and a high space cost for each iteration. In addition, S2GD and
q-SAGA are the general and adjustable versions to SVRG and SAGA respectively. Thus,
each variance reduction technique has its specific merit. Note that, we only consider the
unbiased variance reduction techniques in this paper. The SAG technique (Schmidt et al.,
2017) uses biased stochastic gradients which is out of scope of this paper.

Asynchronous stochastic optimization algorithms with various variance reduction tech-
niques have been proposed to solve large scale learning problems. Specifically, for smooth
convex optimization problems, Zhao and Li (2016) proposed an asynchronous stochastic
algorithm with SVRG, and proved its linear convergence rate. Mania et al. (2017) proposed
a perturbed iterate framework to analyze the asynchronous stochastic SVRG algorithm
with sparse gradients. Leblond et al. (2017) proposed an asynchronous SAGA algorithm,
and proved its linear convergence rate. Huo and Huang (2017) extended the asynchronous
stochastic SVRG algorithm to non-convex optimization problems and proved its sublinear
convergence rate. Gu et al. (2018) proposed an asynchronous stochastic zeroth order gra-
dient algorithm with SVRG technique to non-convex optimization problems and proved
its sublinear convergence rate. For convex optimization problems with non-smooth regu-
larization, Meng et al. (2017); Gu and Huo (2018) independently proposed asynchronous
stochastic proximal gradient algorithms with SVRG, and proved their linear convergence
rates. Pedregosa et al. (2017) proposed an asynchronous stochastic proximal gradient al-
gorithm with SAGA, and proved its linear convergence rate. For non-convex optimization
problems with cardinality constraint, Li et al. (2016) proposed asynchronous stochastic gra-
dient hard thresholding algorithms with the SVRG and SAGA techniques, and proved the
linear convergence rate to an approximately global optimum for the SVRG case. Gu et al.
(2019) proposed asynchronous stochastic Frank-Wolfe algorithm and its SVRG variant, and
proved their convergence rates. We also summarize these representative (asynchronous)
stochastic gradient descent algorithms in Table 1.

As mentioned previously, different variance reduction techniques have their specific
merit. Thus, it is highly desired to propose an unified variance reduction framework to
asynchronous stochastic optimization. To the best of our knowledge, the only unified vari-
ance reduction framework for asynchronous stochastic optimization is (Reddi et al., 2015).
Specifically, Reddi et al. (2015) proposed an unified variance reduction framework (i.e.,
HSAG) to analyze the asynchronous stochastic gradient algorithm for the smooth convex
optimization, and proved its linear convergence rate. However, the HSAG framework cannot
incorporate the S2GD technique, and the analysis for the HSAG framework is limited to the
SVRG and SAGA techniques for smooth convex smooth optimization problems. They did
not analyze other important variance reduction techniques (e.g., S2GD and q-SAGA) and
other important optimization problems, such as the non-convex optimization with cardi-
nality constraint, the convex optimization with non-smooth regularization, and the general
non-convex optimization problem.

To bridge this gap, we introduce a more unified and general variance reduction frame-
work (i.e., q-memorization) (Hofmann et al., 2015) which is originally proposed for analyzing
the sequential stochastic gradient algorithm for the smooth convex optimization. In this
paper, we use the unified q-memorization framework to analyze asynchronous stochastic gra-

3

Gu, Xian, Huo, Deng, and Huang

Table 1: Representative (asynchronous) stochastic gradient descent algorithms with various
variance reduction techniques. (C, SC, NC, S, NS, RSS and RSC are the abbreviations of
convex, strongly convex, non-convex, smooth, non-smooth, restricted strong smoothness
and restricted strong convexity respectively.)

Reference Problem Technique Parallel Asynchronous

Johnson and Zhang (2013) S&SC+NS SVRG No No
Konečný and Richtárik (2017) SC S2GD No No

Defazio et al. (2014) SC+NS SAGA No No
Hofmann et al. (2015) SC q-SAGA No No
Schmidt et al. (2017) SC SAG No No
Reddi et al. (2016a) S&NC SVRG No No

Allen-Zhu and Hazan (2016) S&NC SVRG No No
Reddi et al. (2016b) S&NC SAGA No No

Lei et al. (2017) S&NC SCSG No No
Zhao and Li (2016) S&SC SVRG Yes Yes
Mania et al. (2017) S&C/SC SGD/SVRG Yes Yes

Huo and Huang (2017) S&NC SVRG Yes Yes
Leblond et al. (2017) S&SC SAGA Yes Yes

Meng et al. (2017); Gu and Huo (2018) S&SC+NS SVRG Yes Yes
Pedregosa et al. (2017) S&SC+NS SAGA Yes Yes

Li et al. (2016) RSS&RSC+l0 SVRG Yes Yes
Reddi et al. (2015) S&SC HSAG Yes Yes
Lian et al. (2015) S&NC SGD Yes Yes
Gu et al. (2018) S&NC SVRG Yes Yes
Gu et al. (2019) NC SGD/SVRG Yes Yes

dient algorithms for three classes of important optimization problems (i.e., the non-convex
optimization problem with cardinality constraint, the convex optimization problem with
non-smooth regularization and the general non-convex optimization problem). Specifically,
based on the q-memorization framework,

1) we propose an asynchronous stochastic gradient hard thresholding algorithm with
q-memorization (AsySGHT-qM) for the non-convex optimization problem with cardi-
nality constraint. We prove that the convergence rate of AsySGHT-qM before reaching
the inherent error induced by gradient hard thresholding methods is geometric.

2) we propose an asynchronous stochastic proximal gradient algorithm (AsySPG-qM)
for the convex optimization problem with non-smooth regularization. We prove that
AsySPG-qM can achieve a linear convergence rate.

3) we propose an asynchronous stochastic gradient descent algorithm (AsySGD-qM) for
the general non-convex optimization problem. W prove that AsySGD-qM can achieve
a sublinear convergence rate to stationary points.

The experimental results on various large-scale datasets confirm the fast convergence of our
AsySGHT-qM, AsySPG-qM and AsySGD-qM through concrete realizations of SVRG and
SAGA.

4

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

In the following, we give more details to the non-convex optimization problem with
cardinality constraint, the convex optimization problem with non-smooth regularization,
and general non-convex smooth optimization problem, which will be addressed in this paper.

1.1 Non-convex Optimization with Cardinality Constraint

Sparse learning plays an important role in machine learning. First, high-dimensional data
(such as DNA microarray data, recommendation data, social network data and so on) are
becoming increasingly available as data collection technique evolves. One truth is that
most features in high-dimensional data are non-informative or noisy. Second, by substi-
tuting high dimensional sparse data by low-dimensional representations, the generalization
ability of the models can be improved. Third, a sparse model can lead to a simplified de-
cision rule which can lead to faster prediction which is especially important for large scale
problems. Finally, sparse learning can lead to a model with better interpretation because
a small set of important features is selected. Sparse learning is normally conducted by
sparsity constraints on the model parameter. There are several sparse constraints, such
as l1-norm constraint (Tibshirani, 1996), l1/2-norm constraint (Liang et al., 2013) and car-
dinality constraint (Régin, 1996), and so on. Among them, cardinality constraint is the
intrinsic way for sparse learning. to stationary points

To implement the sparse learning, we consider the following generic non-convex opti-
mization problem with cardinality constraint in this paper.

min
x∈Rn

1

l

l∑
i=1

fi(x)︸ ︷︷ ︸
F (x)

s.t. ‖x‖0 ≤ k (1)

where F (x) is a smooth and non-strongly convex function with the additive form 1
l

∑l
i=1 fi(x),

each function fi(x) is a smooth function. The formulation (1) covers many machine learn-
ing problems, such as sparsity-constrained linear regression model (Tropp and Gilbert,
2007), sparsity-constrained logistic regression model (Tropp and Gilbert, 2007), sparsity-
constrained graphical model (Jalali et al., 2011).

Directly solving the problem (1) is NP-hard (Natarajan, 1995). Existing works (Yuan
et al., 2014; Jain et al., 2014; Nguyen et al., 2017; Li et al., 2016; Shen and Li, 2018) try to
obtain a good approximation of the global solution to (1). Specifically, Yuan et al. (2014)
and Jain et al. (2014) proposed the gradient hard thresholding (GHT) algorithm which offer
a fast and scalable batch algorithm. To further scale up the GHT algorithm, Nguyen et al.
(2017) proposed the stochastic gradient hard thresholding (SGHT) algorithm. Li et al.
(2016) and Shen and Li (2018) proposed the SGHT algorithm with SVRG, and prove its
linear convergence rate before reaching the inherent error induced by GHT-style methods. In
this paper, we design a new generalized variance reduction asynchronous stochastic gradient
hard thresholding algorithm (AsySGHT-qM) based on the q-memorization framework.

1.2 Convex Optimization with Non-smooth Regularization

Many regularized empirical risk minimization problems (such as Lasso (Tibshirani, 1996),
elastic net (Zou and Hastie, 2005), regularized logistic regression (Lee et al., 2006)) consists

5

Gu, Xian, Huo, Deng, and Huang

of a finite sum of smooth convex functions and a convex (possibly non-smooth) regularized
function. Formally, we present this kind of problems as a composite objective function as
follows.

min
x∈Rn

F (x) =
1

l

l∑
i=1

fi(x)︸ ︷︷ ︸
f(x)

+h(x) (2)

where fi : Rn 7→ R is a smooth and convex function, and h : Rn 7→ R ∪ {∞} is a convex
but possibly non-smooth function. Without loss of generality, we further assume that there
exists a partition {G1, · · · ,Gk} on n features (i.e., coordinates) of x, where each Gj is also

called as block. Thus, we can write the function h(x) as h(x) =
∑k

j=1 hGj (xGj).

To solve the problem (2) with k = 1, Xiao and Zhang (2014); Nitanda (2014) pro-
posed proximal stochastic gradient algorithms with SVRG. Defazio et al. (2014) proposed
a proximal stochastic gradient method with SAGA. To solve the problem (2) with k > 1,
Hong et al. (2017) proposed a batch randomized block coordinate descent method which
runs with full gradient on the randomized block coordinates. Zhao et al. (2014) proposed
a double stochastic proximal gradient algorithm (DSPG) with SVRG. In addition to these
sequential stochastic algorithms, Meng et al. (2017) and Gu and Huo (2018) independently
proposed asynchronous stochastic proximal gradient algorithms with SVRG, and proved
their linear convergence rates. Pedregosa et al. (2017) proposed an asynchronous stochastic
proximal gradient algorithm with SAGA, and proved its linear convergence rate. In this
paper, we design a new generalized variance reduction asynchronous stochastic proximal
gradient algorithm (AsySPG-qM) based on the q-memorization framework.

1.3 General Non-Convex Smooth Optimization

Non-convex optimization has become increasingly popular in machine learning because of
two inevitable trends, i.e., robust learning and deep learning (Huo et al., 2018b,a). Take
robust learning for example, we normally minimize an empirical or regularized risk problem
with non-convex loss functions (e.g. ramp loss (Huang et al., 2014), sigmoid loss and
correntropy induced loss (He et al., 2011)), instead of optimizing convex surrogate loss
functions. Formally, we present this kind of problems as follows.

min
x∈Rn

F (x) =
1

l

l∑
i=1

fi(x) (3)

where fi : RN 7→ R is a smooth and non-convex function. Note that one may absorb a
regularizer in the definition of the function fi(x).

To solve the problem (3), Reddi et al. (2016a); Allen-Zhu and Hazan (2016) proposed
SVRG algorithm to solve (3)), and proved the sublinear convergence rate of SVRG to sta-
tionary points under the general non-convex setting. Reddi et al. (2016b) proposed SAGA
algorithm to solve (3) and proved the sublinear convergence rate of SVRG to stationary
points under the general non-convex setting. Lei et al. (2017) proposed a variant of S2GD
(stochastically controlled stochastic gradient (SCSG)) to solve (3), where the full gradient

6

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

in S2GD is replaced by a mini-batch of samples). They proved the sublinear convergence
rate of SCSG to stationary points under the general non-convex setting, and proved the
linear convergence rate under the Polyak-Lojasiewicz condition. Lian et al. (2015) proposed
an asynchronous parallel stochastic gradient algorithm to solve (3)), and proved the ergodic
convergence rate under the general non-convex setting. Huo and Huang (2017); Gu et al.
(2018) proposed the asynchronous stochastic SVRG algorithm to to solve (3)) and proved
its sublinear convergence rate under the general non-convex setting. In this paper, we design
a new generalized variance reduction asynchronous stochastic gradient descent algorithm
(AsySPG-qM) based on the q-memorization framework.

1.4 Contributions

The main contributions of this paper are summarized as follows:

1. We analysis the limitations of the HSAG framework, and introduce a more unified and
general variance reduction framework (i.e., q-memorization) (Hofmann et al., 2015)
for analyzing the convergence rates of asynchronous stochastic algorithms.

2. Based on the q-memorization framework, we propose an asynchronous stochastic gra-
dient hard thresholding algorithm with q-memorization (AsySGHT-qM) for the non-
convex optimization problem with cardinality constraint. We prove that the conver-
gence rate of AsySGHT-qM before reaching the inherent error induced by GHT-style
methods is geometric. The experimental results on various large-scale datasets con-
firm the fast convergence of our AsySGHT-qM through concrete realizations of SVRG
and SAGA.

3. Based on the q-memorization framework, we propose an asynchronous stochastic prox-
imal gradient algorithm (AsySPG-qM) for the convex optimization problem with non-
smooth regularization. We prove that AsySPG-qM achieves a linear convergence rate.
The experimental results on various large-scale datasets confirm the fast convergence
of our AsySPG-qM through concrete realizations of SVRG and SAGA.

4. Based on the q-memorization framework, we propose an asynchronous stochastic gra-
dient descent algorithm (AsySGD-qM) for the general non-convex optimization prob-
lem. We prove that AsySGD-qM achieves a sublinear convergence rate to stationary
points. The experimental results on various large-scale datasets confirm the fast con-
vergence of our AsySGD-qM through concrete realizations of SVRG and SAGA.

1.5 Outline

We organize the rest of the paper as follows. In Section 2, we present a general variance
reduction framework (i.e., q-memorization). In Section 3, we propose our AsySGHT-qM,
and provide its linear convergence rate to reach the inherent error induced by GHT-style
methods. In Section 4, we propose our AsySPG-qM algorithm, and provide its linear
convergence rate. In Section 5, we propose our AsySGD-qM algorithm, and provide its
sublinear convergence rate. In Section 6, we present the experimental results on a variety
of datasets. In Section 7.2, we prove the convergence rates of AsySGHT-qM, AsySPG-qM
and AsySGD-qM. Finally, we give some concluding remarks in Section 8.

7

Gu, Xian, Huo, Deng, and Huang

1.6 Notations

In order to make notations easier to follow, we give a summary of the notations in the
following list.

‖x‖0 the number of nonzero entries in x.

‖x‖1 =
∑n

i=1 |xi| the `1-norm of x.

1(m|t), 1(m 6 | t) 1(m|t) is the boolean value determining whether t is divisible by m.
1(m 6 | t) is the inverse boolean value of 1(m|t).

Ip the p-dimensional identity matrix.

supp(x) the index set of nonzero entries of x.

∇fi(x) ∇fi(x) is the gradient of the function fi(x) at the point x.

Si, Φi Si is the support of ∇fi(x). Φi is the extended support of ∇fi(x), which
is the set of blocks that intersect Si, and formally defined as Φi = {Si ∩
G′,G′ ∈ {G1, · · · ,Gk}}.

α = 1
l

∑l
k=1 αk the average gradient of αk over k = 1, · · · , n.

∂F (x) the set of all subgradinets of the function F (x) at the point x.

I the complementary set of I, i.e., I = {1, 2, . . . , n} − I.

(αi)I, ∇Ifi(x) the vectors same with the vectors αi and ∇fi(x) respectively, except that
the entries indexed by I are zero.

Hk(·) the hard thresholding operator that keeps the largest k entries in magni-
tude and sets the other entries equal to zero.

2. Unified Variance Reduction Framework

Stochastic gradient algorithm uses the updating rule x+ ← x − γ∇fi(x) which minimizes
the problem f(x) = 1

l

∑l
i=1 fi(x), where γ is the step size, i is an index of the sample

selected uniformly at random and x+ denotes the updated solution x after one algorithm
iteration. However, as mentioned previously, the standard stochastic gradient algorithm
has a low convergence due to the variance of stochastic gradients introduced by random
sampling. To reduce the variance of stochastic gradients, various variance reduction tech-
niques and frameworks have been proposed to accelerate the stochastic gradient algorithm.
The updating rule of these variance reduction techniques have the following form.

x+ ← x− γv, where v = ∇fi(x)− αi + α (4)

where αi denotes the outdated gradient on the i-th sample. Different variance reduction
techniques have different strategies to update the outdated gradient αi. Note that we
consider the unbiased variance reduction techniques such that Ev = ∇f(x).

8

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

In this section, we first present the representative variance reduction techniques, and
then present the HSAG framework. Finally, we introduce a more general variance reduction
framework (i.e., q-memorization) which will be used to analyze our AsySGD-qM, AsySPG-
qM and AsySGHT-qM.

2.1 Representative Unbiased Variance Reduction Techniques

In this subsection, we give the descriptions of representative unbiased variance reduction
techniques (i.e., SVRG, S2GD, SAGA, and q-SAGA).

As mentioned above, different variance reduction techniques have different strategies
to update the outdated gradient αi. Technically, we define two elements (i.e, index set J
and iteration number of one epoch) to define the different variance reduction techniques.
Specifically, . We present the different variance reduction techniques as follows.

1. SVRG: SVRG updates all αi after m iterations, where m is fixed. Thus, the index
set J = ∅ for the iterations {1, · · · ,m− 1}, and J = {1, · · · , l} for m-th iteration.

2. S2GD: S2GD updates all αi after t iterations, where t ∈ {1, · · · ,m} is a random

variable obeying the distribution P(t) = (1−νγ)m−t

β , where ν is a nonnegative constant
not greater than the strong convexity parameter of the objective function, γ is the
steplength parameter, and β =

∑m
t=1(1 − νγ)m−t. Thus, the index set J = ∅ for the

iterations {1, · · · , t− 1}, and J = {1, · · · , l} for t-th iteration.

3. SAGA: SAGA updates αi with ∇fi(x) for each iteration, where i is the index of the
sample used in (4). Thus, the size of the index set J is one.

4. q-SAGA: q-SAGA randomly selects an index set J ⊆ {1, · · · , l} such that |J | = q for
each iteration. q-SAGA updates αJ with ∇fJ(x) for each iteration.

We also summarize these variance reduction techniques in Table 2.

Table 2: Representative unbiased variance reduction techniques. (J is the index set for
updating the stochastic gradient, P(t) denotes the probability of the value t.)

Technique
Iteration number
for an epoch

Index set J for
each iteration

Space cost
for an epoch

Time cost
for an epoch

SVRG m J = {1, · · · , l} ∨ J = ∅ O(N) O(Nl)

S2GD
t ∈ {1, · · · ,m},

J = {1, · · · , l} ∨ J = ∅ O(N) O(Nl)
P(t) = (1−νγ)m−t

β

SAGA 1 |J | = 1 ∧ J ⊆ {1, · · · , l} O(Nl) O(N)

q-SAGA 1 |J | = q ∧ J ⊆ {1, · · · , l} O(Nl) O(qN)

2.2 HSAG Framework

Reddi et al. (2015) proposed an unified variance reduction framework (i.e., HSAG) to ana-
lyze the asynchronous stochastic gradient algorithm, and proved its linear convergence rate.
The HSAG framework is presented in Algorithm 1. Because the iteration numbers of an

9

Gu, Xian, Huo, Deng, and Huang

epoch for SAGA and SVRG are different, the HSAG framework uses two different rules to
update {αti}li=1. Specifically, the SAGA and q-SAGA techniques correspond to the rule in
the case of i ∈ J in (5), and the SVRG technique corresponds to the rule in the case of
i 6∈ J in (5). Because the HSAG framework uses the above two different updating rules, the
HSAG framework is not unified enough. In addition, the HSAG framework assumes that
the iteration number for an epoch is fixed. Thus, the HSAG framework cannot incorporate
the S2GD technique, where the iteration number for an epoch is a random variable obey-
ing a distribution as discussed in Section 2.1. Thus, the HSAG framework is not general
enough.

Because the HSAG framework is not unified and general enough as mentioned above,
the analysis for the HSAG framework of (Reddi et al., 2015) is limited to the SVRG and
SAGA techniques for the convex and smooth optimization problems. They did not analyze
other important variance reduction techniques (e.g. S2GD and q-SAGA) and other impor-
tant optimization problems, such as the convex optimization problem (2) with non-smooth
regularization and the non-convex optimization problem (1) with cardinality constraint. In
this paper, we will try to address these challenges.

Algorithm 1 HSAG({αti}li=1, J , m, t)

Input: {αti}li=1, the index set J , the iteration number for an epoch m, and the current
iteration number t.

Output: {αt+1
i }li=1.

1: for i = 1, 2, · · · , l do
2: Update

αt+1
i =

{
1(it = i)∇fi(xt) + 1(it 6= i)αti if i ∈ J
1(m|t)∇fi(xt) + 1(m 6 | t)αti if i 6∈ J (5)

3: end for

2.3 Unified q-Memorization Framework

As mentioned above, the HSAG framework is not unified and general enough. In this paper,
we introduce a more unified and general variance reduction framework (i.e., q-memorization)
which is originally proposed by Hofmann et al. (2015) to analyze the sequential stochastic
gradient algorithm for the convex and smooth optimization problems.

To formulate the variance reduction techniques such as SVRG, SAGA and q-SAGA,
Hofmann et al. (2015) proposed an unified q-memorization framework. In this paper, we
present the unified q-memorization framework in Definition 1 by highlighting its two con-
ditions. As mentioned above, S2GD cannot be included in the HSAG framework (Reddi
et al., 2015). According to the two conditions in Definition 1, we show that S2GD can be
viewed as a special case of the unified q-memorization framework which was not discussed
in (Hofmann et al., 2015).

10

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

Definition 1 (Unified q-Memorization) A stochastic gradient algorithm is satisfied with
the unified q-memorization framework, if each iteration of the algorithm satisfies the follow-
ing two conditions:

1. The algorithm selects a random index set J ⊆ {1, · · · , l} in each iteration to update
αi as

αt+1
i =

{
∇fi(xt) if i ∈ J
αti otherwise

(6)

2. Any αi has a same probability q
l to be updated. It means that, ∀i1, i2, and i1 6= i2, we

have that
∑

J3i1 P{J} =
∑

J3i2 P{J}
def
= q

l .

It is easy to verify that SAGA and q-SAGA satisfy the two conditions of Definition 1. In
the following, we give a brief explanation to show how SVRG and S2GD satisfy the two
conditions of Definition 1.

1. SVRG: As mentioned in Section 2.1, standard SVRG updates all αi afterm iterations,
where m is fixed. It is not compatible with the 1st condition of Definition 1 (i.e.,
randomly select a index set J). Same with (Hofmann et al., 2015), we give a variant
of SVRG to adapt Definition 1. Specifically, fixing q > 0 and generating a random
variables r from a uniform distribution on the interval [0, 1]. If r < q

l , we choose
J = {1, · · · , l}. Otherwise, we choose J = ∅. Thus, any αi has a same probability of
q
l of being updated. For simplicty, we also use SVRG to refer to the q-memorization
variant of SVRG in this paper. That means SVRG standards for the q-memorization
variant of SVRG if SVRG is used with q-memorization. Otherwise, SVRG standards
for the classical variant.

2. S2GD: As mentioned in Section 2.1, standard S2GD updates all αi after t itera-

tions, where t ∈ {1, · · · ,m} and P(t) = (1−νγ)m−t

β . It is also not compatible with
the randomness of the index set J in the 1st condition of Definition 1. Thus, we
give a variant of S2GD. Specifically, fixing q̂ > 0 and generating a random vari-
ables r from a uniform distribution on the interval [0, 1]. If r < q̂t

ml , we choose
J = {1, · · · , l}. Otherwise, we choose J = ∅. Thus, any αi has a same probability of

q
l

def
=

q̂
∑m
t=1 t(1−νγ)m−t

βml = q̂
βml

(
m−1
νγ −

(1−νγ)(1−(1−νγ)m−1)
ν2γ2

)
of being updated.

3. Asynchronous Stochastic Gradient Hard Thresholding Algorithm with
Generalized Variance Reduction

In this section, to solve the non-convex optimization problem (1) with cardinality constraint,
we first propose our AsySGHT-qM algorithm based on the unified q-memorization frame-
work. Then, we prove the linear convergence rate of AsySGHT-qM to an approximately
global optimum.

11

Gu, Xian, Huo, Deng, and Huang

3.1 AsySGHT-qM

Based on the unified q-memorization framework, we propose our AsySGHT-qM algorithm
in this section. AsySGHT-qM is also designed for the parallel environment with shared
memory, such as multi-core processors and GPU-accelerators, but it can also work in the
parallel environment with distributed memory.

In the parallel environment with shared memory, all cores in CPU or GPU can read and
write the vectors x and αi in shared memory simultaneously without any lock. AsySGHT-
qM is to parallelly and repeatedly read and update the vectors x and αi in shared memory.
Specifically, all cores repeat the following steps independently and concurrently without any
lock:

1. Read: Read the vectors x and αi from shared memory to local memory without
reading lock. We use x̂ and α̂i to denote their values respectively.

2. Compute: Randomly pick i ∈ {1, ..., l} with equal probability, and locally compute
v̂ = ∇fi(x̂)− α̂i + 1

l

∑l
j=1 α̂j .

3. Update: Update the vector x in shared memory as x← Hk (x̂− γv̂), and the vectors
αi in shared memory without writing lock.

Based on the three above steps, we present our AsySGHT-qM in Algorithm 2.

Algorithm 2 Generalized Variance Reduction Asynchronous Stochastic Gradient Hard
Thresholding Algorithm (AsySGHT-qM)

Input: Steplength γ, parameter q.
1: Initialize shared variables x, and {αi}li=1.
2: keep doing in parallel
3: Inconsistent read of x and αi as x̂ and α̂i respectively.
4: Randomly pick i ∈ {1, ..., l} with equal probability.
5: Compute v̂ = ∇fi(x̂)− α̂i + 1

l

∑l
j=1 α̂j .

6: Update x← Hk (x̂− γv̂) using coordinate atomic operation.
7: Update {αi}li=1 using coordinate-wise atomic operation based on the q-memorization

framework.
8: end parallel loop

Output: x.

3.2 Convergence Analysis of AsySGHT-qM

In this section, we first give several preliminaries, and then prove the convergence rate of
AsySGHT-qM.

3.2.1 Preliminaries

In this subsection, we introduce the conditions of restricted strong smoothness (RSS) for
the functions fi(x) and the restricted strong convexity (RSC) for the function F (x), which
are widely used in the analysis for the non-convex optimization problem (2) with cardinality

12

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

constraint (Li et al., 2016; Shen and Li, 2018; Nguyen et al., 2017). We also discuss the
global time counter t, coordinate-wise atomic write operation and xt which are important
for analyzing the convergence of asynchronous parallel algorithms.

1. RSS: For the differentiable functions fi(x), we assume that the function fi(x) is with
the restricted strong smoothness as follows.

Assumption 1 (RSS) The differentiable function fi(x) is restricted ρ+
s -strongly smooth

at sparsity level s if there exists a generic constant ρ+
s > 0 such that for any x and y

with ‖x− y‖0 ≤ s, we have

fi(x) ≤ fi(y) + 〈∇fi(y), x− y〉+
ρ+
s

2
‖x− y‖2 (7)

2. RSC: For the convex functions F (x), we assume that the function F (x) is with the
restricted strong convexity as follows.

Assumption 2 (RSC) The convex function F (x) restricted ρ−s -strongly convex at spar-
sity level s if there exists a generic constant ρ−s > 0 such that for any x and y with
‖x− y‖0 ≤ s, we have

F (x) ≥ F (y) + 〈∇F (y), x− y〉+
ρ−s
2
‖x− y‖2 (8)

3. Global Time Counter t: As discussed in (Leblond et al., 2017), formalizing the mean-
ing of xt and x̂t highlights a subtle but important difficulty arising when analyzing ran-
domized parallel algorithms: what is the meaning of t? Thus, the global time counter t
plays an important role in the convergence rate analyses of AsySGHT-qM. In this paper,
we follow the strategy of “after read” labeling proposed in (Leblond et al., 2017), in
which we update our iterate counter t as each core finishes reading the parameters x
and αi. This means that x̂t is the (t+ 1)th fully completed read. The advantage of this
approach is that it guarantees both that the it are uniformly distributed and that it and
x̂t are independent.

4. Coordinate-Wise Atomic Write Operation: Because AsySGHT-qM does not use
any locks in the write operation. Thus, while x in shared memory is currently updated
by a thread as shown in the line 7 of Algorithm 2, x may be overwritten by other threads.
The phenomenon of overwriting is also called as write-write conflict which means that the
uncommitted data is overwritten by other interleaved execution of transactions. In this
paper we use compare-and-swap to implement coordinate-wise atomic write operation
which can avoid the phenomenon of overwriting and is used in Leblond et al. (2017); Ma-
nia et al. (2017); Pedregosa et al. (2017). Note that hardware provides write operations
such that they will be successfully recorded in shared memory at some point. Atomic
write on float or doubles can be strictly enforced through compare-and-swap operations.

13

Gu, Xian, Huo, Deng, and Huang

5. xt: Because xt updated in shared memory may be inconsistent with the ideal one com-
puted in the local memory due to the coordinate-wise writing which will make the con-
vergence analysis more difficult. To address this issue, we only consider the ideal ones
xt in the analysis which is defined as

xt+1 ← Hk
(
x̂t − γv̂t

)
(9)

It is noted that, if T is the last iteration of AsySGHT-qM, xT is exactly what is stored
in shared memory. Thus, although the ideal ones xt is considered in the analysis, we
can still build the convergence rate for AsySGHT-qM. Similarly, we define αi = ∇fi(xu),
where u is the last iteration number for updating αi.

3.2.2 Convergence Analysis

Because AsySGHT-qM is an asynchronous parallel stochastic algorithm without any lock,
the inconsistent reading could arise to the vectors x and {αi}li=1 in shared memory, which
makes the convergence analysis of AsySGHT-qM more challenging. To address this chal-
lenge, we provide the relationships between x and x̂, and between αi and α̂i as follows,
which are also summarized in Fig. 1.

 Shared memory Local memory

Ideal ones without the overwriting

(10)

(11)

Equal

for

the

 last

iteration

Real ones

Virtual gradient

Bounded overlap assumption
+

Figure 1: The relationships between x and x̂, and between αi and α̂i.

Before building the relationships between the ideal xt (αti) and x̂t (α̂ti), we first define
a virtual gradient gt for the t-th iteration of AsySGHT-qM, which will be used to build
the relationships between the ideal xt (αti) and x̂t (α̂ti). Let xt be a sparse vector with
‖xt‖0 ≤ k and define It = supp(xt). For the t-th iteration of AsySGHT-qM, we define the
virtual gradient gt as

gt =
1

γ

(
xt − xt+1

)
(10)

where It+1 denotes the support set of xt+1. xt − (xt)It+1 is a subset of nonzero elements
of xt. Note that the virtual gradient gt is only used for the analysis, not computed in the
implementation. We can provide an upper bound of ‖gt‖2 based on

∥∥(v̂t+1)I
∥∥2

(i.e., Lemma
2). The detailed proof of Lemma 2 is provided in Section 7.2.

14

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

Lemma 2 If
∥∥(v̂t+1)It+1

∥∥2 ≤ c
∥∥(v̂t+1)It+1

∥∥2
, where c ≥ 0 is constant, the virtual gradient

gt can be bounded by
∥∥(v̂t+1)I

∥∥2
for any I ⊇ It ∪ I∗ with a coefficient ς = 4n+4c

γ2
+ 2 as

follows.

‖gt‖2 ≤ ς
∥∥(v̂t+1)I

∥∥2
(11)

In addition to the virtual gradient gt, we also give the bounded overlap assumption (i.e.,
Assumption 3). In the asynchronous computation, the iteration t1 and t2 overlap if they are
processed simultaneously. We make an assumption of bounded overlap (i.e., Assumption 3)
which is widely used in the asynchronous parallel analysis (Mania et al., 2017; Lian et al.,
2015; Huo and Huang, 2017; Zhao and Li, 2016).

Assumption 3 (Bounded overlap) We assume that there exists a bound τ on the maxi-
mum difference of the numbers of iterations that overlap. The bound τ means that iteration
t1 cannot overlap with iteration t2 for t1 ≥ t2 + τ + 1.

Based on the bounded overlap assumption (Assumption 3) and the virtual gradient gt, we
have the relationship between the ideal xt and x̂t as follows.

x̂t − xt = γ

t−1∑
u=(t−τ)+

Stugu (12)

where Stu are n× n diagonal matrices with terms in {1, 0} (please refer to (Leblond et al.,
2017) for more details). According to the the definitions of global time counter t and xt

as mentioned previously, we know that 0 denotes that every update in x̂t is already in xt.
Conversely, 1 denotes that some updates might be late. x̂t may be lacking some updates
from the “past” in some sense, whereas according to our rule of global time counter defined
by the strategy of “after read” labeling proposed in (Leblond et al., 2017), it cannot contain
updates from the “future”. Based on (12), we have the relationship between the ideal αti
and α̂ti as follows if ‖xt−1 − x̂t−1‖0 ≤ s.

∥∥αti − α̂ti∥∥2
=
∥∥∇fi(xt−1)−∇fi(x̂t−1)

∥∥2 ≤ (ρ+
s)2

∥∥xt−1 − x̂t−1
∥∥2

= (ρ+
s γ)2

∥∥∥∥∥∥
t−2∑

k=(t−τ−1)+

St−1
k gk

∥∥∥∥∥∥
2

(13)

Based on the relationship between the ideal xt and x̂t as (12), and the relationship
between the ideal αti and α̂ti as (13), we can prove that the convergence rate of AsySGHT-
qM before reaching the inherent error induced by GHT-style methods is geometric as shown
in Theorem 3. The detailed proofs are provided in Section 7.2. Corollary 6 provides the
convergence result of sequential version of AsySGHT-qM (i.e., τ = 0, denoted by SGHT-
qM).

Theorem 3 Let x∗ denote any optimal sparse solution of the problem (1) with ‖x∗‖0 ≤
k∗. We define I∗ = supp(x∗) which denotes the support of x∗. Assume that the func-
tion F satisfies the RSC condition and the functions fi satisfy the RSS condition with

15

Gu, Xian, Huo, Deng, and Huang

s = 2k + k∗. Define Ĩ = supp(Hk(∇F (x∗)) ∪ supp(x∗)). Let α = 1 + 2
√
k∗

k−k∗ , β ∈ (0, 1),

% = α(1 + β)
(

1− γ ρ
−
s
2

)
, max{%, 1 − q

l } < ρ < 1, ν = 2

1− 6ςτ2(ρ+s)2γ2

ρτ+1 − 12ςq(ρ+s)2γ2τ3

lρ2τ+2

, ω =

α
(

(1 + 1
β)γ2τς + 2(1 + β)ςτρ+

s γ
3(1 + 3ρ+

s γ)
)

and Γ = νωρ−(τ+1)+12να(1+β)ςq(ρ+s)2γ4τ
l ρ−(2τ+2),

where ς is define in Lemma 2. Suppose the nonnegative steplength parameter γ satis-

fies γ ≤ 1√
6ςτ2(ρ+s)2

ρτ+1 +
12ςq(ρ+s)2τ3

lρ2τ+2

and −αγ + 12(2α(1 + β)γ2 + Γ)

(
1 + ρ+s

1−
1− q

l
ρ

)
≤ 0. For

AsySGHT-qM, under Assumptions 1, 2 and 3, we have that

EF (xt)− F (x∗) (14)

≤ ρt
(2ρ− %) ‖x0 − x∗‖2(

1− %
ρ

)
(α(1 + β)γ − 24α(1 + β)γ2 − 12Γ)

+
3(2α(1 + β)γ2 + Γ)

(1− ρ)(1− %)(α(1 + β)γ − 24α(1 + β)γ2 − 12Γ)
E
∥∥∇ĨF (x∗)

∥∥2

Remark 4 The convergence rate of Theorem 3 is built on the iteration number t, instead
of the epoch number like in Theorem 4.1. of (Li et al., 2016) (the result for SVRG). Thus,
although the parameter of ρ may be close to 1, we can still obtain a linear convergence rate

EF (xt)−F (x∗) ≤ (5
6)t/m (2ρ−%)‖x0−x∗‖2(

1− %
ρ

)
(α(1+β)γ−24α(1+β)γ2−12Γ)

+ 3(2α(1+β)γ2+Γ)
(1−ρ)(1−%)(α(1+β)γ−24α(1+β)γ2−12Γ)

E
∥∥∇ĨF (x∗)

∥∥2

before reaching the inherent error, where m = logρ(
5
6) is the iteration number of each epoch,

and 3(2α(1+β)γ2+Γ)
(1−ρ)(1−%)(α(1+β)γ−24α(1+β)γ2−12Γ)

E
∥∥∇ĨF (x∗)

∥∥2
is the inherent error induced by GHT-

style methods. To the best of our knowledge, there is still no work that has proven the con-
vergence rate of asynchronous stochastic gradient hard thresholding algorithm with SAGA.
Our result in Theorem (9) is the first one to provide the convergence rate of asynchronous
stochastic gradient hard thresholding algorithm with SAGA because AsySGHT-qM covers
the case of SAGA.

Remark 5 For the smooth convex problem minx∈Rn F (x), we have ∇ĨF (x∗) = 0 if x∗ is
a global minimizer of minx∈Rn F (x). However, the problem (1) considered in this paper is
with a cardinality constraint. Thus, x∗ is normally not a global minimizer of minx∈Rn F (x),
and the second term on the R.H.S of (14) is nonzero, which is same with the results of the
convergence rates in (Li et al., 2016; Shen and Li, 2018).

Corollary 6 Let x∗ denote any optimal sparse solution of the problem (1) with ‖x∗‖0 ≤
k∗. We define I∗ = supp(x∗) which denotes the support of x∗. Assume that the function
F satisfies the RSC condition and the functions fi satisfy the RSS condition with s =

2k + k∗. Define Ĩ = supp(Hk(∇F (x∗)) ∪ supp(x∗)). Let α = 1 + 2
√
k∗

k−k∗ , β ∈ (0, 1), % =

α(1 + β)
(

1− γ ρ
−
s
2

)
, max{%, 1 − q

l } < ρ < 1, where ς is define in Lemma 2. Suppose the

nonnegative steplength parameter γ satisfies γ ≤ 1

24(1+β)

1+
ρ+s

1−
1− q

l
ρ

 . For SGHT-qM, under

Assumptions 1 and 2, we have that

EF (xt)− F (x∗) (15)

16

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

≤ ρt
(2ρ− %) ‖x0 − x∗‖2

α
(

1− %
ρ

)
((1 + β)γ − 24(1 + β)γ2)

+
6(1 + β)γ

(1− ρ)(1− %)((1 + β)− 24(1 + β)γ)
E
∥∥∇ĨF (x∗)

∥∥2

4. Asynchronous Stochastic Proximal Gradient Algorithm with
Generalized Variance Reduction

As mentioned above, AsySGHT-qM is designed to solve the non-convex optimization prob-
lem (1) with cardinality constraint. In this section, to solve the convex optimization problem
(2) with non-smooth regularization, we first propose our AsySPG-qM algorithm based on
the unified q-memorization framework. Then, we prove the linear convergence rate of our
AsySPG-qM. Note that, our AsySPG-qM algorithm follows from (Pedregosa et al., 2017),
effectively utilizes the sparsity of the data, and is much more efficient than the traditional
asynchronous stochastic proximal gradient algorithms (Meng et al., 2017; Gu and Huo,
2018) for the sparse data.

4.1 Sparse Proximal Updating

In this section, we first discuss the necessity of the sparse proximal updating for the asyn-
chronous parallel stochastic proximal gradient descent algorithm, and then present the
sparse proximal updating which will be used in our AsySPG-qM algorithm.

Due to the fact that the sparse data widely exists in the real world applications, the
gradient ∇fi(x) on the i-th training sample would be sparse correspondingly. For example,
if the function fi(x) (e.g. square loss, logistic loss) is with the form of f ′i(〈ai, x〉), it is easily
to derive that the gradient ∇fi(x) has the same sparsity with the data ai. Thus, how to
leverage this sparsity is crucial for the efficiency of our AsySPG-qM algorithm.

To utilize the q-memorization variance reduction technique, we only need to read and
update the blocks of coefficients that intersect with the support of the current partial
gradient as shown in (4). Thus, some blocks might be read and updated more frequently
than others, which leads to an unbalanced number of updates per block. Following the
works of (Leblond et al., 2017), we define a block-wise reweighting matrix Di on the the
average gradient α to counterbalance the frequency of updating each block. Specifically,
the new sparse stochastic gradient with variance reduction technique can be formulated as

v = ∇fi(x)− αi +Diα (16)

It is time to give the definition of diagonal matrix Di. First, we let dG′ = n
nG′

if nG′ > 0

and 0 otherwise, where nG′ is the number of times that G′ ∈ Φi. Based on dG′ , we define
the diagonal matrix Di as [Di]G′,G′ = dG′I|G′| if G′ ∈ Φi and 0 · I|G′| otherwise.

The traditional proximal gradient algorithm requires computing the proximal opera-
tor of h(x) as Proxγh(x′) = arg minx∈Rn

1
2γ ‖x− x

′‖2 + h(x), which involves a full pass on
the coordinates. Obviously, operating on all coordinates is a bottleneck for designing a
sparse proximal gradient algorithm. To address this issue, we replace h(x) by a block-
wise reweighted function ϕi(x) =

∑
G′∈Φi

dG′hG′(x), similar with the work of (Pedregosa

17

Gu, Xian, Huo, Deng, and Huang

et al., 2017). Thus, we compute the new sparse proximal operator Proxγϕi(x
′) instead of

Proxγh(x′). Note that, it is easy to verify that Eϕi(x) = h(x).

4.2 AsySPG-qM

AsySPG-qM is designed for the parallel environment with shared memory, such as multi-
core processors and GPU-accelerators, but it can also work in the parallel environment with
distributed memory.

In parallel environment with shared memory, all cores in CPU or GPU can read and
write the vectors x and the historical gradients {αi}li=1 in the shared memory simultaneously
without any lock. AsySPG-qM is to parallelly and repeatedly read and update the vectors
x and the historical gradients {αi}li=1 in shared memory. Specifically, all cores repeat the
following steps independently and concurrently without any lock:

1. Read: Read the vectors x and αi from shared memory to local memory without
reading lock. We use x̂ and α̂i to denote their values respectively.

2. Compute: Randomly pick i ∈ {1, ..., l} with equal probability, and locally compute
[v̂]Φi = ∇fi([x̂]Φi)− [α̂i]Φi +Di[α̂]Φi , and ∆xΦi = [x̂]Φi − [Proxϕi([x̂]Φi − γ[v̂]Φi)]Φi .

3. Update: Update the vector x and the historical gradients {αi}li=1 in shared memory
without writing lock.

Based on the three above steps, we provide two versions (i.e., the analyzed version and the
implementation version) of our AsySPG-qM in Algorithm 3.

4.3 Convergence Analysis of AsySPG-qM

In this section, we first give several preliminaries, and then prove the convergence rate of
our AsySPG-qM.

4.3.1 Preliminaries

In this subsection, we introduce the Lipschitz smoothness for the function fi(x) and the
strong convexity for the function F (x), which are widely used in the optimization analysis
(Mania et al., 2017; Lian et al., 2015; Huo and Huang, 2017; Zhao and Li, 2016).

1. Lipschitz smooth: For the smooth functions fi(x), we have the Lipschitz constant
L for ∇fi(x) as follows.

Assumption 4 L is the Lipschitz constant for ∇fi(x) (∀i ∈ {1, · · · , l}) in (2). Thus,
∀x and ∀y, L-Lipschitz smooth can be presented as

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖ (17)

Equivalently, L-Lipschitz smooth can also be written as the formulation (18).

fi(x) ≤ fi(y) + 〈∇fi(y), x− y〉+
L

2
‖x− y‖2 (18)

18

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

Algorithm 3 Asynchronous Stochastic Proximal Gradient Algorithm with Generalized
Variance Reduction (AsySPG-qM) (Left: analyzed version. Right: implementation ver-
sion)

Input: Steplength γ, parameter q.
1: Initialize shared variables x and {αi}li=1.

2: keep doing in parallel
3: Inconsistent read of x and αi as x̂ and

α̂i respectively.
4: Pick i randomly from l samples.
5: Let Φi be the extended support of

∇fi(x) in {G1, · · · ,Gk}.
6: [α̂]Φi = 1

l

∑l
k=1[α̂k]Φi .

7: [v̂]Φi = ∇fi([x̂]Φi)− [α̂i]Φi +Di[α̂]Φi .
8: ∆xΦi = [x̂]Φi − [Proxϕi([x̂]Φi −

γ[v̂]Φi)]Φi .
9: for G′ ∈ Φi do

10: for b ∈ G′ do
11: [x]b ← [x]b + [∆x]b.
12: end for
13: end for
14: Pick a subset J of the size of q ran-

domly from l samples.
15: Let Si be the support of ∇fi(x̂).
16: for i ∈ J do
17: for b ∈ Si do
18: [αi]b ← [∇fi(x̂)]b.
19: end for
20: end for
21: end parallel loop
Output: x.

Input: Steplength γ, parameter q.
1: Initialize shared variables x and {αi}li=1.

2: keep doing in parallel
3: Inconsistent read of x and αi as x̂ and

α̂i respectively.
4: Pick i randomly from l samples.
5: Let Φi be the extended support of

∇fi(x) in {G1, · · · ,Gk}.
6: [α̂]Φi=inconsistent read of α on Φi.
7: [v̂]Φi = ∇fi([x̂]Φi)− [α̂i]Φi +Di[α̂]Φi .
8: ∆xΦi = [x̂]Φi − [Proxϕi([x̂]Φi −

γ[v̂]Φi)]Φi .
9: for G′ ∈ Φi do

10: for b ∈ G′ do
11: [x]b ← [x]b + [∆x]b.
12: end for
13: end for
14: Pick a subset J of the size of q ran-

domly from l samples.
15: Let Si be the support of ∇fi(x̂).
16: for i ∈ J do
17: for b ∈ Si do
18: [αi]b ← [∇fi(x̂)]b.
19: [α]b ← [α]b+ 1

l ([∇fi(x̂)]b− [α̂i]b).
20: end for
21: end for
22: end parallel loop
Output: x.

2. Strong convexity: For the convex functions f(x), we assume that the function
f(x) is µ-strongly convex as follows.

Assumption 5 (Strong convexity) The convex function F (x) has the condition of
strong convexity with parameter µ > 0, which means that, ∀x and ∀y, we have

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2 (19)

We use the notation κ = L
µ to denote the condition number for the L-Lipschitz smooth and

µ-strongly convex function. In addition, we also follow the global time counter t and the
coordinate-wise atomic write operation as described in Section 3.2.1.

19

Gu, Xian, Huo, Deng, and Huang

4.3.2 Convergence Analysis

As mentioned above, AsySPG-qM is an asynchronous parallel stochastic algorithm without
any lock, the inconsistent reading could arise to the vectors x and {αi}li=1 in shared memory.
In other words, some components of x (αi) in shared memory are different to the ones of
x̂ (α̂i) in the local memory, which makes the convergence analysis of AsySPG-qM more
challenging. To address this challenge, we build the relationships between x and x̂, and
between αi and α̂i similar to AsySGHT-qM.

First, we can define x and αi as the ideal x and αi similar to AsySGHT-qM. Then, we
define a virtual gradient gt for the t-th iteration of AsySPG-qM, which will be used to build
the relationships between the ideal xt (αti) and x̂t (α̂ti). Specifically, the virtual gradient gt
is defined as

gt =
1

γ

(
xt − Proxγh

(
xt − γv̂t+1

))
(20)

Because xt+1 = arg minx
1

2γ ‖x− (xt− γv̂t+1)‖+h(x), based on the optimality condition, we

have that 1
γ

(
−xt+1 + (xt − γv̂t+1)

)
∈ ∂h(x̂t+1). Thus, we have

gt =
1

γ

(
xt − xt+1

)
= v̂t+1 + ξt+1 (21)

where ξt+1 ∈ ∂h(x̂t+1). Note that the virtual gradient gt is only used for the analysis, not
computed in the implementation.

Based on (12), we have the relationship between the ideal αti and α̂ti as follows.

∥∥αti − α̂ti∥∥2
=
∥∥∇fi(xt−1)−∇fi(x̂t−1)

∥∥2 ≤ L2
∥∥xt−1 − x̂t−1

∥∥2
= L2γ2

∥∥∥∥∥∥
t−2∑

k=(t−τ−1)+

St−1
k gk

∥∥∥∥∥∥
2

(22)

Based on the relationship between x and x̂ as (12), and the relationship between αi
and α̂i as (22), we can prove the linear convergence of AsySPG-qM in Theorem 9. Before
presenting Theorem 9, we first give the definition of block sparsity in Definition 7 which
will be used in Theorem 9.

Definition 7 (Block Sparsity) Let 4 = maxj=1,...,k
|{i:Gj∈Φi}|

l which is the normalized
maximum number of data points that share a specfic block in their extend support. We call
4 as the block sparsity of the training set.

Remark 8 According to Definition 7, we have that 1
l ≤ 4 ≤ 1. Specifically, if a block

appears in all Φi, we have that 4 = 1. If there are not two Φi sharing a same block, we
have that 4 = 1.

Theorem 9 Suppose τ ≤ 1
10
√
4 , the nonnegative steplength parameter γ = a

L with a ≤
min

{
3

248 ,
2κ
11τ

}
, and q ≤ 5

√
l. For AsySPG-qM, under Assumptions 3, 4 and 5, we have

that E‖xt−x∗‖ ≤ (1−ρ(a))tC̃0, where ρ(a) = 1
5 min{ ql ,

a
κ}, and C̃0 is a constant independent

of t.

20

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

Theorem 9 can be proved in a similar way than the proof of ProxASAGA in (Pedregosa
et al., 2017). We provide a brief proof to Theorem 9 in Section 7.2. Next, we provide a
variant of Theorem 9 for a SAGA version of AsySPG-qM (i.e., q = 1) in Corollary 10.

Corollary 10 Suppose τ ≤ 1
10
√
4 , the nonnegative steplength parameter γ = a

L with a ≤
min 1

36

{
1, 6κ

τ

}
. For SAGA version of AsySPG-qM (i.e., q = 1), under Assumptions 3, 4

and 5, we have that E‖xt − x∗‖ ≤ (1 − ρ(a))tC̃0, where ρ(a) = 1
5 min{1

l ,
a
κ}, and C̃0 is a

constant independent of t.

The conclustion of Corollary 10 is exactly same to the conclusion of ProxASAGA in (Pe-
dregosa et al., 2017).

5. Asynchronous Stochastic Gradient Descent Algorithm with
Generalized Variance Reduction

In this section, to solve the general non-convex smooth optimization problem (3), we first
propose our AsySGD-qM algorithm based on the unified q-memorization framework. Then,
we prove the convergence rates of our AsySGD-qM.

5.1 AsySGD-qM

Similar to AsySGHT-qM and AsySPG-qM, AsySGD-qM is to parallelly and repeatedly read
and update the vectors x and the historical gradients {αi}li=1 in shared memory. Specifically,
all cores repeat the following steps independently and concurrently without any lock:

1. Read: Read the vectors x and αi from shared memory to local memory without
reading lock. We use x̂ and α̂i to denote their values respectively.

2. Compute: Randomly pick i ∈ {1, ..., l} with equal probability, and locally compute
v̂ = ∇fi(x̂)− α̂i + 1

l

∑l
j=1 α̂j .

3. Update: Update the vector x and the historical gradients {αi}li=1 in shared memory
without writing lock.

Based on the above three steps, we present our AsySGD-qM in Algorithm 4.

5.2 Convergence Analysis of AsySGD-qM

In this section, we first provide the sublinear convergence rate of AsySGD-qM, then provide
the linear convergence rate of AsySGD-qM under different assumptions. In the analysis of
this section, we follow the global time counter t, the coordinate-wise atomic write operation
(please refer to Section 3.2.1), the relationship between x and x̂ as (12) and the relationship
between αi and α̂i as (22) where g is replaced by v̂.

5.2.1 Sublinear Convergence Rate

Under Assumptions 3 and 4, we can prove the sublinear convergence of AsySGD-qM in
Theorem 11. The detailed proofs are provided in Section 7.2.

21

Gu, Xian, Huo, Deng, and Huang

Algorithm 4 Generalized Variance Reduction Asynchronous Stochastic Gradient Descent
Algorithm (AsySGD-qM)

Input: Steplength γ, parameter q.
1: Initialize shared variables x, and {αi}li=1.
2: keep doing in parallel
3: Inconsistent read of x and αi as x̂ and α̂i respectively.
4: Randomly pick i ∈ {1, ..., l} with equal probability.
5: Compute v̂ = ∇fi(x̂)− α̂i + 1

l

∑l
j=1 α̂j .

6: Update x← x− γv̂ using coordinate atomic operation.
7: Update {αi}li=1 using coordinate-wise atomic operation based on the q-memorization

framework.
8: end parallel loop

Output: (in theory): xs, s is randomly chosen from {0, . . . , T}, where both of the total
iteration number T and the vector xt are defined in Section 3.2.1.

Output: (in practice): x.

Theorem 11 Under Assumptions 3, 4 and γ < 1√
6τ2L2+ 12qL2τ2

l

. Let a = 2

1−6τ2L2γ2− 12qL2γ2τ3

l

,

cT = 0, ct = aL3γ2 + 2aL2ct+1

(
γ2 + (l−1)γ

βl

)
+ aτ2L4γ3 + ct+1

l−1
l (1 + γβ), Γt = γ

2 −

2a
(
Lγ2

2 + ct+1

(
γ2 + (l−1)γ

βl

)
+ τ2L2γ3

2

)
. For AsySGD-qM, we have that

E‖∇f(xs)‖2 ≤ f(x0)− f(x∗)

T min0≤t≤T−1 Γt
(23)

where T is the total iteration number.

5.2.2 Linear Convergence Rate

We firstly give the assumption of α-Polyak-Lojasiewicz in Assumption 6.

Assumption 6 Let α > 0 and f be a differentiable function. The function f is α-Polyak-
Lojasiewicz. Specifically, α-Polyak-Lojasiewicz can be presented as, for every x, we have

1

2
‖∇f(x)‖ ≥ α(f(x)− f(x∗)) (24)

Based on the assumption of α-Polyak-Lojasiewicz and Theorem 11, we can obtain the linear
convergence rate for AsySGD-qM as follows.

Theorem 12 Under Assumptions 3, 4, 6 and γ < 1√
6τ2L2+ 12qL2τ2

l

. Let a = 2

1−6τ2L2γ2− 12qL2γ2τ3

l

,

cT = 0, ct = aL3γ2 + 2aL2ct+1

(
γ2 + (l−1)γ

βl

)
+ aτ2L4γ3 + ct+1

l−1
l (1 + γβ), Γt = γ

2 −

2a
(
Lγ2

2 + ct+1

(
γ2 + (l−1)γ

βl

)
+ τ2L2γ3

2

)
. For AsySGD-qM, let T > α

min0≤t≤T−1 Γt
, and ρ =

α
T min0≤t≤T−1 Γt

< 1 we have that

Ef(xs)− f(x∗) ≤ ρ
(
f(x0)− f(x∗)

)
(25)

where T is the total iteration number.

22

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

Remark 13 If we call AsySGD-qM for multiple times, we can obtain the multi-stage ver-
sion of AsySGD-qM which has the linear convergence rate as proved in Theorem 12.

6. Experiments

In this section, we first give the experimental setup, then present our experimental results
and discussion.

6.1 Experimental Setup

6.1.1 Design of Experiments

In the experiments, we verify the fast convergence of our AsySGHT-qM, AsySPG-qM and
AsySGD-qM through concrete realizations of asynchronous SVRG and SAGA. In the follow-
ing, we give the design of experiments for the AsySGHT-qM, AsySPG-qM and AsySGD-qM
algorithms respectively.
AsySGHT-qM: For the experiments to the AsySPG-qM algorithm, we consider the
sparse logistic regression (26) with cardinality constraint for binary classification problem.

min
x

1

l

l∑
i=1

log(1 + e−bix
T ai) s.t. ‖x‖0 ≤ k (26)

where ai ∈ Rn is the input of a sample, and bi ∈ {+1,−1} is the label of a sample. To verify
the fast convergence of our AsySGHT-qM, we compare the following three asynchronous
stochastic gradient hard thresholding algorithms.

1. AsySGHT: AsySGHT without any variance reduction technique (Nguyen et al., 2017).

2. AsySGHT-qM(SVRG): Our AsySGHT-qM with SVRG.

3. AsySGHT-qM(SAGA): Our AsySGHT-qM with SAGA.

Specifically, we observe the convergence of the objective function (26) w.r.t. the running
time and iterations, respectively, for the three implementations of asynchronous stochastic
gradient hard thresholding algorithms, to verify the fast convergence rate of our AsySGHT-
qM. In addition, we test the speedup of our AsySGHT-qM(SVRG) and AsySGHT-qM(SAGA),
to show that asynchronous parallel computation can achieve a near-linear speedup.
AsySPG-qM: For the experiments to the AsySPG-qM algorithm, we consider the logistic
regression (27) with l1-norm and l2-norm for binary classification problem.

min
x

1

l

l∑
i=1

log(1 + e−bix
T ai) + λ1‖x‖22 + λ2‖x‖1 (27)

where ai ∈ Rn is the input of a sample, bi ∈ {+1,−1} is the label of a sample, and λ1

and λ2 are two regularization parameters. For the implementation of AsySPG-qM with
the dense norm ‖x‖22, we treat λ1‖x‖22 + λ2‖x‖1 as the function of h(x). Thus, we can use
the sparse proximal operator Proxγh(x′) = argminx∈Rn

1
2γ ‖x− x

′‖2 + h(x) to update the
solution. To verify the fast convergence of our AsySPG-qM, we compare the following three
asynchronous stochastic proximal gradient algorithms.

23

Gu, Xian, Huo, Deng, and Huang

1. AsySPG: AsySPG without any variance reduction technique.

2. AsySPG-qM(SVRG): Our AsySPG-qM with SVRG.

3. AsySPG-qM(SAGA): Our AsySPG-qM with SAGA, which is exactly same with the
AsySPG with SAGA.

Specifically, we observe the convergence of the objective function of (27) w.r.t. the running
time and iterations, respectively, for the three implementations of asynchronous stochastic
proximal gradient algorithms, to verify the fast convergence rate of our AsySPG-qM. In
addition, we test the speedup of our AsySPG-qM(SVRG) and AsySPG-qM(SAGA), to
show that asynchronous parallel computation can achieve a near-linear speedup.

AsySGD-qM: For the experiments to the AsySGD-qM algorithm, we consider the non-
convex correntropy induced loss (Feng et al., 2015; He et al., 2011) for robust regression.

min
x

1

l

l∑
i=1

σ2

2

(
1− e−

(bi−x
T ai)

2

σ2

)
(28)

where ai ∈ Rn is the input of a sample, bi ∈ R is the label of a sample. To verify the fast
convergence of our AsySGD-qM, we compare the following four asynchronous stochastic
proximal gradient algorithms.

1. AsySGD: AsySGD without any variance reduction technique.

2. AsySGD-qM(SVRG): Our AsySGD-qM with SVRG.

3. AsySGD-qM(SAGA): Our AsySGD-qM with SAGA, which is exactly same with the
AsySGD with SAGA.

Specifically, we observe the convergence of the objective function of (28) w.r.t. the running
time and iterations, respectively, for the three implementations of asynchronous stochastic
gradient descent algorithms, to verify the fast convergence rate of our AsySGD-qM. In
addition, we test the speedup of our AsySGD-qM(SVRG) and AsySGD-qM(SAGA), to
show that asynchronous parallel computation can achieve a near-linear speedup.

6.1.2 Implementations

We implement our AsySGHT-qM, AsySPG-qM and AsySGD-qM (including SVRG and
SAGA) using C++, where the shared memory parallel computation is handled via OpenMP
(Chandra, 2001). Note that the SVRG implementations for AsySGHT-qM and AsySPG-
qM follow the unified q-Memorization framework as mentioned in Definition 1, where q is
set as 10. In the experiments, the steplength γ for all compared methods is selected from
{102, 10, 1, 10−1, 10−2, 10−3, 10−4, 10−5} according to the optimal value of objective funtion
reached in a fixed number of iterations, and the number of iterations for each epoch is the
number of training samples. For the experiments of AsySPG-qM, we fix the parameter of
λ1 to 10−6. Our experiments are performed on a 32-core two-socket Intel Xeon E5-2699
machine where each socket has 16 cores.

24

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

6.1.3 Datasets

Table 3 summarizes the six large-scale real-world binary classification datasets (i.e., the
A1a, Covtype, Phishing, Criteo, Kdd2012, and URL datasets) used in our experiments.
They are from LIBSVM website(Chang and Lin, 2011)2.

Table 3: Summary of large-scale real-world binary classification dasetsets used in the ex-
periments.

Dataset Features Samples Sparsity

A1a 123 30,956 0.58%
Covtype 54 581,012 22.00%
Phishing 68 11,055 44.12%
Criteo 1,000,000 45,840,617 0.004%

Kdd2012 54,686,452 149,639,105 0.00002%
URL 3,231,961 2,396,130 0.004%

6.2 Experimental Results and Discussion

In this section, we present the experimental results and discussion to AsySGHT-qM, AsySPG-
qM and AsySGD-qM respectively.

6.2.1 AsySGHT-qM

Figure 2 presents the convergence of objective values of AsySGHT, AsySGHT-qM(SVRG)
and AsySGHT-qM(SAGA) w.r.t. the epoch and running time on the Ala dataset, where
k is set as 10, 30 and 50 respectively. Figures 3 and 4 present the convergence of ob-
jective values of AsySGHT, AsySGHT-qM(SVRG) and AsySGHT-qM(SAGA) w.r.t. the
epoch and running time on the Covtype and Phishing datasets, where k is set as 10, 20
and 30 respectively. Note that the convergence of AsySGHT, AsySGHT-qM(SVRG) and
AsySGHT-qM(SAGA) with different values of k (i.e., k = 10, 20, 30 or k = 10, 30, 50) are
different slightly. The results show that AsySGHT-qM(SVRG) and AsySGHT-qM(SAGA)
have similar convergence on the Ala dataset. The reason is that the Ala dataset has high
sparseness which makes the hard thresholding operators based on variance reduced gradi-
ents of SVRG and SAGA on different samples of Ala dataset have similar values. Finally,
the results of Figures 2, 3 and 4 confirm the fast convergence of our AsySGHT-qM.

To estimate the scalability of our AsySGHT-qM, we perform AsySGHT-qM(SVRG)
and AsySGHT-qM(SAGA) on 1, 2, 4, 8 and 16 cores to observe the speedup. Figures
5 and 6 present the objective values of AsySGHT-qM(SVRG) and AsySGHT-qM(SAGA),
respectively, w.r.t. the epoch and running time on the A1a, Covtype and Phishing datasets.
The results show that AsySGHT-qM can have a near-linear speedup on a parallel system
with shared memory. This is because that we do not use any lock in the implementation of
AsySGHT-qM.

To verify the effect of q to the convergence rate of AsySGHT-qM in Theorem 3, we
test the convergence of AsySGHT-qM (including AsySGHT-qM(SVRG) and AsySGHT-

2. The datasets are available at: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

25

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Gu, Xian, Huo, Deng, and Huang

0 5 10 15 20 25 30

0.685

0.686

0.687

0.688

0.689

0.69

0.691

0.692

0.693

0.694

(a) k = 10: obj. vs epoch

0 5 10 15 20 25 30
0.685

0.686

0.687

0.688

0.689

0.69

0.691

0.692

0.693

0.694

(b) k = 30: obj. vs epoch

0 5 10 15 20 25 30
0.685

0.686

0.687

0.688

0.689

0.69

0.691

0.692

0.693

0.694

(c) k = 50: obj. vs epoch

0 0.05 0.1 0.15 0.2 0.25
0.685

0.686

0.687

0.688

0.689

0.69

0.691

0.692

0.693

0.694

(d) k = 10: obj. vs time

0 0.05 0.1 0.15 0.2 0.25
0.685

0.686

0.687

0.688

0.689

0.69

0.691

0.692

0.693

0.694

(e) k = 30: obj. vs time

0 0.05 0.1 0.15 0.2 0.25
0.685

0.686

0.687

0.688

0.689

0.69

0.691

0.692

0.693

0.694

(f) k = 50: obj. vs time

Figure 2: Convergence of AsySPG-qM and AsySPG on Ala dataset.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) k = 10: obj. vs epoch

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) k = 20: obj. vs epoch

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) k = 30: obj. vs epoch

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) k = 10: obj. vs time

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) k = 20: obj. vs time

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(f) k = 30: obj. vs time

Figure 3: Convergence of of AsySPG-qM and AsySPG on Covtype dataset.

26

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

0 5 10 15 20 25 30
0.4

0.45

0.5

0.55

0.6

0.65

0.7

(a) k = 10: obj. vs epoch

0 5 10 15 20 25 30
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(b) k = 20: obj. vs epoch

0 5 10 15 20 25 30
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(c) k = 30: obj. vs epoch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.45

0.5

0.55

0.6

0.65

0.7

(d) k = 10: obj. vs time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(e) k = 20: obj. vs time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(f) k = 30: obj. vs time

Figure 4: Convergence of of AsySPG-qM and AsySPG on Phishing dataset.

0 5 10 15 20 25 30
0.685

0.686

0.687

0.688

0.689

0.69

0.691

0.692

0.693

0.694

(a) A1a: obj. vs epoch

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Covtype: obj. vs epoch

0 5 10 15 20 25 30
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(c) Phishing: obj. vs epoch

0 0.05 0.1 0.15 0.2 0.25
0.685

0.686

0.687

0.688

0.689

0.69

0.691

0.692

0.693

0.694

(d) A1a: obj. vs time

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) Covtype: obj. vs time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(f) Phishing: obj. vs time

Figure 5: Speedup results of AsySGHT-qM(SVRG).

27

Gu, Xian, Huo, Deng, and Huang

0 5 10 15 20 25 30
0.685

0.686

0.687

0.688

0.689

0.69

0.691

0.692

0.693

0.694

(a) A1a: obj. vs epoch

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Covtype: obj. vs epoch

0 5 10 15 20 25 30
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(c) Phishing: obj. vs epoch

0 0.05 0.1 0.15 0.2 0.25
0.684

0.685

0.686

0.687

0.688

0.689

0.69

0.691

0.692

0.693

0.694

(d) A1a: obj. vs time

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) Covtype: obj. vs time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(f) Phishing: obj. vs time

Figure 6: Speedup results of AsySGHT-qM(SAGA).

qM(SAGA)) with q = 1, 5, 10 and 20 in Figure 7. The results show that AsySGHT-qM
has a faster convergence rate if q is larger. The experimental results support the theoretical
result in Theorem 3.

6.2.2 AsySPG-qM

Figure 8 presents the convergence of objective values of and AsySPG, AsySPG-qM(SVRG)
and AsySPG-qM(SAGA) w.r.t. the epoch and running time on the Criteo dataset, where
λ2 = 10−3, 10−4 and 10−5. Figure 9 presents the convergence of objective values of and
AsySPG, AsySPG-qM(SVRG) and AsySPG-qM(SAGA) w.r.t. the epoch and running time
on the URL dataset, where λ2 = 10−3, 10−4 and 10−5. The results confirm the fast
convergence of our AsySPG-qM no matter what the value of λ2 is..

To estimate the scalability of AsySPG-qM, we perform AsySPG-qM(SVRG) and AsySPG-
qM(SAGA) on 1, 2, 4, 8 and 16 cores to observe the speedup. Figure 12 presents the objec-
tive values of AsySPG-qM(SVRG) and AsySPG-qM(SAGA) w.r.t. the epoch and running
time on the Criteo and URL datasets, which show that AsySPG-qMR can have a near-
linear speedup on a parallel system with shared memory. Similarly to AsySGHT-qM, this
is because that we do not use any lock in the implementation of AsySPG-qM.

6.2.3 AsySGD-qM

Figure 11 presents the convergence of objective values of and AsySGD, AsySGD-qM(SVRG)
and AsySGD-qM(SAGA) w.r.t. the epoch and running time on the A1a, Covtype, Criteo
and URL dataset. The results confirm the fast convergence of our AsySGD-qM.

28

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

0 2 4 6 8 10 12 14 16
0.67

0.675

0.68

0.685

0.69

(a) Kdd2012: obj. vs epoch

0 2 4 6 8 10 12 14 16
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(b) Phishing: obj. vs epoch

0 200 400 600 800 1000
0.682

0.684

0.686

0.688

0.69

0.692

0.694

(c) Kdd2012: obj. vs time

0 0.05 0.1 0.15 0.2 0.25 0.3
0.45

0.5

0.55

0.6

0.65

0.7

(d) Phishing: obj. vs time

0 2 4 6 8 10 12 14 16
0.665

0.67

0.675

0.68

0.685

0.69

0.695

(e) Kdd2012: obj. vs epoch

0 2 4 6 8 10 12 14 16
0.4

0.45

0.5

0.55

0.6

0.65

0.7

(f) Phishing: obj. vs epoch

0 100 200 300 400 500 600 700 800 900 1000
0.674

0.676

0.678

0.68

0.682

0.684

0.686

0.688

0.69

0.692

0.694

(g) Kdd2012: obj. vs time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(h) Phishing: obj. vs time

Figure 7: Convergence results of AsySGHT-qM with different values of q. (a)-(d) AsySGHT-
qM(SVRG). (e)-(h) AsySGHT-qM(SAGA).

29

Gu, Xian, Huo, Deng, and Huang

0 2 4 6 8 10 12
0.55

0.6

0.65

0.7

(a) λ2 = 10−3: obj. vs epoch

0 2 4 6 8 10 12
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

(b) λ2 = 10−4: obj. vs epoch

0 2 4 6 8 10 12
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

(c) λ2 = 10−5: obj. vs epoch

0 100 200 300 400 500 600 700 800
0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

(d) λ2 = 10−3: obj. vs time

0 100 200 300 400 500 600 700 800
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

(e) λ2 = 10−4: obj. vs time

0 100 200 300 400 500 600 700 800
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

(f) λ2 = 10−5: obj. vs time

Figure 8: Convergence of AsySPG-qM and AsySPG on the Criteo dataset.

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) λ2 = 10−3: obj. vs epoch

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) λ2 = 10−4: obj. vs epoch

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) λ2 = 10−5: obj. vs epoch

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) λ2 = 10−3: obj. vs time

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e) λ2 = 10−4: obj. vs time

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(f) λ2 = 10−5: obj. vs time

Figure 9: Convergence of AsySPG-qM and AsySPG on the URL dataset.

30

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

0 2 4 6 8 10 12 14 16 18
0.55

0.6

0.65

0.7

(a) Criteo: obj. vs epoch

0 2 4 6 8 10 12 14 16 18
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) URL: obj. vs epoch

0 50 100 150 200 250 300 350 400 450 500
0.55

0.6

0.65

0.7

(c) Criteo: obj. vs time

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) URL: obj. vs time

0 2 4 6 8 10 12 14 16 18
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

(e) Criteo: obj. vs epoch

0 2 4 6 8 10 12 14 16 18
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(f) URL: obj. vs epoch

0 50 100 150 200 250 300 350 400 450 500
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

(g) Criteo: obj. vs time

0 5 10 15 20 25 30 35 40 45 50
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(h) URL: obj. vs time

Figure 10: Speedup results of AsySPG-qM. (a)-(d) AsySPG-qM(SVRG). (e)-(h) AsySPG-
qM(SAGA).

31

Gu, Xian, Huo, Deng, and Huang

To estimate the scalability of AsySGD-qM, we perform AsySGD-qM(SVRG) and AsySGD-
qM(SAGA) on 1, 2, 4, 8 and 16 cores to observe the speedup. Figure 12 presents the objec-
tive values of AsySGD-qM(SVRG) and AsySPG-qM(SAGA) w.r.t. the epoch and running
time on the Criteo and URL datasets, which show that AsySPG-qMR can have a near-linear
speedup on a parallel system with shared memory. Similarly to AsySGD-qM, this is because
that we do not use any lock in the implementation of AsySGD-qM.

0 2 4 6 8 10 12 14 16 18
0.307

0.308

0.309

0.31

0.311

0.312

0.313

0.314

0.315

0.316

0.317

(a) A1a: obj. vs epoch

0 2 4 6 8 10 12 14 16 18
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Covtype: obj. vs epoch

0 2 4 6 8 10 12 14 16 18
0.074

0.075

0.076

0.077

0.078

0.079

0.08

0.081

(c) Criteo: obj. vs epoch

0 2 4 6 8 10 12 14 16 18
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

(d) URL: obj. vs epoch

0 0.005 0.01 0.015 0.02 0.025 0.03
0.304

0.306

0.308

0.31

0.312

0.314

0.316

0.318

(e) A1a: obj. vs time

0 1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(f) Covtype: obj. vs time

0 50 100 150 200 250 300 350 400 450 500
0.075

0.076

0.077

0.078

0.079

0.08

0.081

(g) Criteo: obj. vs time

0 5 10 15 20 25 30 35 40
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

(h) URL: obj. vs time

Figure 11: Convergence of AsySGD-qM and AsySGD on different datasets.

7. Proofs to Theorems 3, 9 and 11

In this section, we first provide the proof to Theorem 3, then give a brief proof to Theorem
9. Finally, we provide the proof to Theorem 11.

32

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

0 2 4 6 8 10 12 14 16 18
0.306

0.308

0.31

0.312

0.314

0.316

0.318

(a) A1a: obj. vs epoch

0 2 4 6 8 10 12 14 16 18
0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) Covtype: obj. vs epoch

0 2 4 6 8 10 12 14 16 18
0.074

0.075

0.076

0.077

0.078

0.079

0.08

0.081

(c) Criteo: obj. vs epoch

0 2 4 6 8 10 12 14 16 18
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

(d) URL: obj. vs epoch

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.295

0.3

0.305

0.31

0.315

0.32

(e) A1a: obj. vs time

0 1 2 3 4 5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(f) Covtype: obj. vs time

0 50 100 150 200 250 300
0.075

0.076

0.077

0.078

0.079

0.08

0.081

(g) Criteo: obj. vs time

0 2 4 6 8 10 12 14 16 18 20
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

(h) URL: obj. vs time

Figure 12: Speedup results of AsySGD-qM. (a)-(d) AsySGD-qM(SVRG). (e)-(h) AsySGD-
qM(SAGA).

33

Gu, Xian, Huo, Deng, and Huang

7.1 AsySGHT-qM

In this section, we provide the convergence analysis for AsySGHT-qM. Specifically, we
first give the upper bounds to ‖gt‖2, E

∥∥αtit −∇fit(x∗)∥∥2
, E
∥∥(vt+1)I

∥∥2
and E

∥∥(v̂t+1)I
∥∥2

in Lemmas 2, 14, 15 and 16 respectively. Then, based on Lemma 14, 15 and 16, we give
the recursive relationship between E

∥∥xt+1 − x∗
∥∥2

and E ‖xt − x∗‖2 in Theorem 18. Finally,
based on Theorem 18, we prove the linear convergence of AsySGHT-qM to an approximately
global optimum in Theorem 3.

We first provide the proof to Lemma 2 as follows.
Proof Firstly, we have that

gt =
1

γ

(
xt − xt+1

)
=

1

γ

(
xt −Hk

(
xt − γv̂t+1

))
=

1

γ

(
xt −

(
xt − γ(v̂t+1)

)
It+1

)
=

1

γ

(
xt − (xt)It+1

)
+ (v̂t+1)It+1 =

1

γ
(xt)It+1 + (v̂t+1)It+1 (29)

Let Ît+1 be the subset of It+1 such that (xt)i = 0, ∀i ∈ Ît+1 and (xt)i 6= 0, ∀i ∈ It+1−Ît+1.

Thus, we have the upper bound of
∥∥(xt)It+1

∥∥2
as follows.∥∥(xt)It+1 + (v̂t+1)It+1

∥∥2 ≤
∣∣∣It+1

∣∣∣ max
i∈It+1

|(xt)i + (v̂t+1)i|2 (30)

≤
∣∣∣It+1

∣∣∣ min
i∈It+1

|(xt)i + (v̂t+1)i|2 ≤
∣∣∣It+1

∣∣∣ min
i∈Ît+1

|(v̂t+1)i|2

≤
∣∣∣It+1

∣∣∣ ∥∥(v̂t+1)It+1

∥∥2

In addition, we have that∥∥(xt)It+1 + (v̂t+1)It+1

∥∥2 ≥ 1

2

∥∥(xt)It+1

∥∥2 −
∥∥(v̂t+1)It+1

∥∥2
(31)

Based on (30) and (31), we have that∥∥(xt)It+1

∥∥2 ≤ 2
∣∣∣It+1

∣∣∣ ∥∥(v̂t+1)It+1

∥∥2
+ 2

∥∥(v̂t+1)It+1

∥∥2
(32)

Based on the above inequalities, we have that

‖gt‖2 ≤
∥∥∥∥1

γ
(xt)It+1 + (v̂t+1)It+1

∥∥∥∥2

≤ 2

γ2

∥∥(xt)It+1

∥∥2
+ 2

∥∥(v̂t+1)It+1

∥∥2
(33)

≤

4
∣∣∣It+1

∣∣∣
γ2

+ 2

∥∥(v̂t+1)It+1

∥∥2
+

4

γ2

∥∥(v̂t+1)It+1

∥∥2

≤

4
∣∣∣It+1

∣∣∣
γ2

+ 2

∥∥(v̂t+1)It+1

∥∥2
+

4c

γ2

∥∥(v̂t+1)It+1

∥∥2

≤
(

4n+ 4c

γ2
+ 2

)∥∥(v̂t+1)I
∥∥2

This completes the proof.

34

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

Lemma 14 Suppose that the functions fi(x) satisfy the RSS condition with s = 2k + k∗.
For AsySGHT-qM, we have that

Eit
∥∥(αtit)I −∇Ifit(x

∗)
∥∥2 ≤ 4ρ+

s

l

t−1∑
u=1

(
1− q

l

)t−u−1
e(xu) + 4ρ+

s

(
1− q

l

)t
e(x0) (34)

where e(xu) = EF (xu)− F (x∗).

Proof Firstly, we have that

EitE
∥∥(αtit)I −∇Ifit(x

∗)
∥∥2

=
1

l

l∑
i=1

E
∥∥(αti)I −∇Ifi(x∗)

∥∥2
(35)

=
1

l

l∑
i=1

∑
d∈I

E
(
αti −∇fi(x∗)

)2
d

=
1

l

l∑
i=1

∑
d∈I

E
t−1∑
u=0

1{uti,d=u} (∇fi(xu)−∇fi(x∗))2
d

=
1

l

t−1∑
u=0

l∑
i=1

∑
d∈I

E1{uti,d=u} (∇fi(xu)−∇fi(x∗))2
d

where uti,d denote the time of the iterate last used to write the [αui]d. We consider the two
cases u > 0 and u = 0 as follows.

For u > 0, we have that

E
(
1{uti,d=u} (∇fi(xu)−∇fi(x∗))2

d

)
(36)

≤ E
(
1{iu=i}1{iv 6=i,∀v s.t. u+1≤v≤t−1} (∇fi(xu)−∇fi(x∗))2

d

)
≤ P{iu = i}P{iv 6= i,∀v s.t. u+ 1 ≤ v ≤ t− 1}E (∇fi(xu)−∇fi(x∗))2

d

≤ q

l

(
1− q

l

)t−u−1
E (∇fi(xu)−∇fi(x∗))2

d

where iu and iv denote that the random picked index uniformly at random in {1, ..., l} for
the u-th and v-th iterations respectively, P{iu = i} = q

l and P{iv 6= i} = 1− q
l are obtained

from the condition 2 of Definition 1, the second inequality holds because iv is independent
to xu.

For u = 0, we have that

E
(
1{u0i,d=0}

(
∇fi(x0)−∇fi(x∗)

)2
d

)
(37)

≤ E
(
1{iv 6=i,∀v s.t. 0≤v≤t−1}

(
∇fi(x0)−∇fi(x∗)

)2
d

)
≤ P{iv 6= i,∀v s.t. 0 ≤ v ≤ t− 1}E

(
∇fi(x0)−∇fi(x∗)

)2
d

≤
(

1− q

n

)t
E
(
∇fi(x0)−∇fi(x∗)

)2
d

35

Gu, Xian, Huo, Deng, and Huang

Substituting (36) and (37) into (35), we have that

E
∥∥(αtit)I −∇Ifit(x

∗)
∥∥2

(38)

≤ 1

l

t−1∑
u=0

l∑
i=1

∑
d∈I

E1{uti,d=u} (∇fi(xu)−∇fi(x∗))2
d

≤ 1

l

t−1∑
u=1

l∑
i=1

∑
d∈I

(
q

l

(
1− q

l

)t−u−1
E (∇fi(xu)−∇fi(x∗))2

d

)

+
1

l

l∑
i=1

∑
d∈I

((
1− q

l

)t−1
E
(
∇fi(x0)−∇fi(x∗)

)2
d

)

=
1

l

t−1∑
u=1

(
1− q

l

)t−u−1
E ‖∇Ifi(xu)−∇Ifi(x∗)‖2 +

(
1− q

l

)t−1
E
∥∥∇Ifi(x0)−∇Ifi(x∗)

∥∥2

≤ 4ρ+
s

l

t−1∑
u=1

(
1− q

l

)t−u−1
e(xu) + 4ρ+

s

(
1− q

l

)t
e(x0)

where the second inequality uses (36) and (37), the last inequality uses (8.16) in (Li et al.,
2016). This completes the proof.

Lemma 15 Suppose that the functions fi(x) satisfies the RSS condition with s = 2k + k∗.
For AsySGHT-qM, we have that

E
∥∥(vt+1)I

∥∥2
(39)

≤ 12ρ+
s

l

t−1∑
u=1

(
1− q

l

)t−u−1
e(xu) + 12ρ+

s

(
1− q

l

)t
e(x0) + 12e(xt) + 3E ‖∇IF (x∗)‖2

where e(xu) = EF (xu)− F (x∗).

Proof Define vt+1 = ∇fit(xt)−αtit+
1
l

∑l
i=1 α

t
i, we first give the upper bound to E

∥∥(vt+1)I
∥∥2

.

E
∥∥(vt+1)I

∥∥2
= E

∥∥∥∥∥∇Ifit(xt)− (αtit)I +
1

l

l∑
i=1

(αti)I

∥∥∥∥∥
2

(40)

= E

∥∥∥∥∥∇Ifit(xt)−∇Ifit(x∗)− (αtit)I +∇Ifit(x∗) +
1

l

l∑
i=1

(αti)I −∇IF (x∗) +∇IF (x∗)

∥∥∥∥∥
2

≤ 3E

∥∥∥∥∥∇Ifit(x∗)− (αtit)I +
1

l

l∑
i=1

(αti)I −∇IF (x∗)

∥∥∥∥∥
2

+3E
∥∥∇Ifit(xt)−∇Ifit(x∗)∥∥2

+ 3E ‖∇IF (x∗)‖2

≤ 3E
∥∥(αtit)I −∇Ifit(x

∗)
∥∥2

+ 3E
∥∥∇Ifit(xt)−∇Ifit(x∗)∥∥2

+ 3E ‖∇IF (x∗)‖2

36

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

≤ 12ρ+
s

l

t−1∑
u=1

(
1− q

l

)t−u−1
e(xu) + 12ρ+

s

(
1− q

l

)t
e(x0) + 12e(xt) + 3E ‖∇IF (x∗)‖2

where the first inequality uses ‖
∑n

i=1 ai‖2 ≤ n
∑n

i=1 ‖ai‖2, the second inequality follows
from E ‖x− Ex‖2 ≤ E ‖x‖2, and the third inequality uses Lemma 14. This completes the
proof.

Lemma 16 Suppose that the functions fi(x) satisfies the RSS condition with s = 2k + k∗.
For AsySGHT-qM, we have that

E
∥∥(v̂t+1)I

∥∥2
(41)

≤ 6ςτ(ρ+
s)2γ2

t−1∑
u=(t−τ)+

E
∥∥(v̂u+1)I

∥∥2
+

12ςq(ρ+
s)2γ2τ

l

t−1∑
u=(t−τ)+

u−2∑
k=(u−τ−1)+

E
∥∥∥(v̂k+1)I

∥∥∥2

+2E
∥∥(vt+1)I

∥∥2

Proof Next, we have that

E
∥∥(v̂t+1)I − (vt+1)I

∥∥2
(42)

= E

∥∥∥∥∥∇Ifit(x̂t)− (α̂tit)I +
1

l

l∑
i=1

(α̂ti)I −∇Ifit(xt) + (αtit)I −
1

l

l∑
i=1

(αti)I

∥∥∥∥∥
2

≤ 3E
∥∥∇Ifit(x̂t)−∇Ifit(xt)∥∥2︸ ︷︷ ︸

Q1

+3E
∥∥(αtit)I − (α̂tit)I

∥∥2︸ ︷︷ ︸
Q2

+3E

∥∥∥∥∥1

l

l∑
i=1

(αti)I −
1

l

l∑
i=1

(α̂ti)I

∥∥∥∥∥
2

︸ ︷︷ ︸
Q3

where the second inequality uses ‖
∑n

i=1 ai‖2 ≤ n
∑n

i=1 ‖ai‖2. We will give the upper bounds
for the expectations of Q1, Q2 and Q3 respectively.

EQ1 = E
∥∥∇Ifit(x̂t)−∇Ifit(xt)∥∥2 ≤ (ρ+

s)2E
∥∥x̂t − xt∥∥2

= (ρ+
s)2γ2E

∥∥∥∥∥∥
t−1∑

u=(t−τ)+

Stugu

∥∥∥∥∥∥
2

≤ τ(ρ+
s)2γ2

t−1∑
u=(t−τ)+

E
∥∥Stugu∥∥2 ≤ ςτ(ρ+

s)2γ2
t−1∑

u=(t−τ)+

E
∥∥(v̂u+1)I

∥∥2
(43)

where the first inequality uses the L-Lipschitz continuity, the second inequality uses ‖
∑n

i=1 ai‖2 ≤
n
∑n

i=1 ‖ai‖2, the third inequality uses the upper bound of virtual gradient (i.e., Assumption
2).

EQ2 = E
∥∥(αtit)I − (α̂tit)I

∥∥2
=

1

l

l∑
i=1

E
∥∥(αti)I − (α̂ti)I

∥∥2
(44)

37

Gu, Xian, Huo, Deng, and Huang

=
1

l

l∑
i=1

E
t−1∑
u=0

∑
d∈I

1{uti,d=u} (αui − α̂ui)2
d

=
t−1∑
u=0

1

l

l∑
i=1

E
∑
d∈I

1{uti,d=u} (αui − α̂ui)2
d =

t−1∑
u=(t−τ)+

1

l

l∑
i=1

q

l
E ‖(αui)I − (α̂ui)I‖2

=
q

l

t−1∑
u=(t−τ)+

E ‖(αui)I − (α̂ui)I‖2 =
q

l

t−1∑
u=(t−τ)+

E
∥∥∇Ifi(x̂u−1)−∇Ifi(xu−1)

∥∥2

≤ q(ρ+
s)2

l

t−1∑
u=(t−τ)+

E
∥∥x̂u−1 − xu−1

∥∥2
=
q(ρ+

s)2γ2

l

t−1∑
u=(t−τ)+

E

∥∥∥∥∥∥
u−2∑

k=(u−τ−1)+

Su−1
k gk

∥∥∥∥∥∥
2

≤ ςq(ρ+
s)2γ2τ

l

t−1∑
u=(t−τ)+

u−2∑
k=(u−τ−1)+

E
∥∥∥(v̂k+1)I

∥∥∥2

where uti,d denotes the time of the iterate last used to write the [α̂ui]d, the sixth equality
holds because αui = α̂ui if u < t− τ , according to Assumption 3.

EQ3 = E

∥∥∥∥∥1

l

l∑
i=1

(αti)I −
1

l

l∑
i=1

(α̂ti)I

∥∥∥∥∥
2

(45)

≤ 1

l

l∑
i=1

E
∥∥(αti)I − (α̂ti)I

∥∥2

≤ ςq(ρ+
s)2γ2τ

l

t−1∑
u=(t−τ)+

u−2∑
k=(u−τ−1)+

E
∥∥∥(v̂k+1)I

∥∥∥2

where the first inequality uses ‖
∑n

i=1 ai‖2 ≤ n
∑n

i=1 ‖ai‖2, the second inequality uses (44).

E
∥∥(v̂t+1)I

∥∥2 ≤ 2E
∥∥(v̂t+1)I − (vt+1)I

∥∥2
+ 2E

∥∥(vt+1)I
∥∥2

(46)

≤ 6EQ1 + 6EQ2 + 6EQ3 + 2E
∥∥(vt+1)I

∥∥2

≤ 6ςτ(ρ+
s)2γ2

t−1∑
u=(t−τ)+

E
∥∥(v̂u+1)I

∥∥2
+

12ςq(ρ+
s)2γ2τ

l

t−1∑
u=(t−τ)+

u−2∑
k=(u−τ−1)+

E
∥∥∥(v̂k+1)I

∥∥∥2

+2E
∥∥(vt+1)I

∥∥2

where the second inequality uses Lemma 14. This completes the proof.

Lemma 17 (Li et al. (2016)) For k > k∗ and for any vector x ∈ RN , we have

‖Hk (x)− x∗‖ ≤

(
1 +

2
√
k∗

k − k∗

)
‖x− x∗‖ (47)

38

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

Lemma 17 is proved in (Li et al., 2016).

Theorem 18 Assume that the function F satisfies the RSC condition and the functions fi
satisfy the RSS condition with s = 2k + k∗. For AsySGHT-qM, we have that

E
∥∥xt+1 − x∗

∥∥2
(48)

≤ %E
∥∥xt − x∗∥∥2

+ α(1 + β)
12ςq(ρ+

s)2γ4τ

l

t−1∑
u=(t−τ)+

u−2∑
k=(u−τ−1)+

E
∥∥∥(v̂k+1)I

∥∥∥2

+α

(
(1 +

1

β
)γ2τς + 2(1 + β)ςτρ+

s γ
3(1 + 3ρ+

s γ)

) t−1∑
u=(t−τ)+

E
∥∥(v̂u+1)I

∥∥2

+2α(1 + β)γ2E
∥∥(vt+1)I

∥∥2 − α(1 + β)γe(xt)

where % = α(1 + β) (1− γρ−s) and e(xu) = EF (xu)− F (x∗).

Proof According to (7.24) in (Li et al., 2016), we have the the upper bound to−E
〈
(v̂t+1)I , x

t − x∗
〉
.

−E
〈
(v̂t+1)I , x

t − x∗
〉
≤ −e(xt) + ςρ+

s τγ
2

t−1∑
u=(t−τ)+

E
∥∥(v̂u+1)I

∥∥2
(49)

Let x̃t+1 = x̂t − γv̂t+1. We have that

E
∥∥x̃t+1 − x∗

∥∥2
= E

∥∥x̂t − γ(v̂t+1)I − x∗
∥∥2

(50)

= E
∥∥x̂t − xt∥∥2

+ E
∥∥xt − γ(v̂t+1)I − x∗

∥∥2
+ 2〈x̂t − xt, xt − γ(v̂t+1)I − x∗〉

≤ (1 +
1

β
)E
∥∥x̂t − xt∥∥2

+ (1 + β)E
∥∥xt − γ(v̂t+1)I − x∗

∥∥2

= (1 +
1

β
)γ2E

∥∥∥∥∥∥
t−1∑

u=(t−τ)+

Stugu

∥∥∥∥∥∥
2

+ (1 + β)E
∥∥xt − γ(v̂t+1)I − x∗

∥∥2

≤ (1 +
1

β
)γ2τ

t−1∑
u=(t−τ)+

E ‖gu‖2 + (1 + β)E
∥∥xt − γ(v̂t+1)I − x∗

∥∥2

≤ (1 +
1

β
)γ2τς

t−1∑
u=(t−τ)+

E
∥∥(v̂u+1)I

∥∥2
+ (1 + β)E

∥∥xt − γ(v̂t+1)I − x∗
∥∥2

≤ (1 + β)E
∥∥xt − x∗∥∥2

+ (1 + β)
12ςq(ρ+

s)2γ4τ

l

t−1∑
u=(t−τ)+

u−2∑
k=(u−τ−1)+

E
∥∥∥(v̂k+1)I

∥∥∥2

+

(
(1 +

1

β
)γ2τς + 6(1 + β)ςτ(ρ+

s)2γ4 + 2(1 + β)ςρ+
s τγ

3

) t−1∑
u=(t−τ)+

E
∥∥(v̂u+1)I

∥∥2

+2(1 + β)γ2E
∥∥(vt+1)I

∥∥2 − 2(1 + β)γe(xt)

39

Gu, Xian, Huo, Deng, and Huang

where the first inequality uses Lemma 16 and (49). In addition, according to the RSC
condition, we have that

e(xt) = EF (xt)− F (x∗) ≥ ρ−s
2
E
∥∥xt − x∗∥∥2

(51)

Let α = 1 + 2
√
k∗

k−k∗ , according to (50), (51) and Lemma 17, we have that

E
∥∥xt+1 − x∗

∥∥2
(52)

≤ α(1 + β)
(
1− γρ−s

)
E
∥∥xt − x∗∥∥2

+ α(1 + β)
12ςq(ρ+

s)2γ4τ

l

t−1∑
u=(t−τ)+

u−2∑
k=(u−τ−1)+

E
∥∥∥(v̂k+1)I

∥∥∥2

+α

(
(1 +

1

β
)γ2τς + 2(1 + β)ςτρ+

s γ
3(1 + 3ρ+

s γ)

) t−1∑
u=(t−τ)+

E
∥∥(v̂u+1)I

∥∥2

+2α(1 + β)γ2E
∥∥(vt+1)I

∥∥2 − α(1 + β)γe(xt)

This completes the proof.

Based on Theorem 18, we provide the proof to Theorem 3.

Proof We will first give the upper bound of
∑t

u=0 ρ
t−uE

∥∥(v̂u+1)I
∥∥2

. Let 0 < ρ < 1, we
have that

t∑
u=0

ρt−uE
∥∥(v̂u+1)I

∥∥2
(53)

≤
t∑

u=0

ρt−u

6ςτ(ρ+
s)2γ2

u−1∑
k=(u−τ)+

E
∥∥∥(v̂k+1)I

∥∥∥2

+
12(1 + β)ςq(ρ+

s)2γ2τ

l

u−1∑
k1=(u−τ)+

k1−2∑
k2=(k1−τ−1)+

E
∥∥∥(v̂k2+1)I

∥∥∥2
+ 2E

∥∥(vu+1)I
∥∥2


=

t∑
u=0

ρt−u6ςτ(ρ+
s)2γ2

u−1∑
k=(u−τ)+

E
∥∥∥(v̂k+1)I

∥∥∥2

+

t∑
u=0

ρt−u
12ςq(ρ+

s)2γ2τ

l

u−1∑
k1=(u−τ)+

k1−2∑
k2=(k1−τ−1)+

E
∥∥∥(v̂k2+1)I

∥∥∥2
+ 2

t∑
u=0

ρt−uE
∥∥(vu+1)I

∥∥2

≤ 6ςτ2(ρ+
s)2γ2

t∑
u=0

ρt−(u+τ+1)E
∥∥(v̂u+1)I

∥∥2

+
12ςq(ρ+

s)2γ2τ3

l

t∑
u=0

ρt−(u+2τ+2)E
∥∥∥(v̂k2+1)I

∥∥∥2
+ 2

t∑
u=0

ρt−uE
∥∥(vu+1)I

∥∥2

= 6ςτ2(ρ+
s)2γ2ρ−(τ+1)

t∑
u=0

ρt−uE
∥∥(v̂u+1)I

∥∥2

40

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

+
12ςq(ρ+

s)2γ2τ3

l
ρ−(2τ+2)

t∑
u=0

ρt−uE
∥∥(v̂u+1)I

∥∥2
+ 2

t∑
u=0

ρt−uE
∥∥(vu+1)I

∥∥2

where the first inequality uses Lemma 16. Based on (53), if γ ≤ 1√
6ςτ2(ρ+s)2

ρτ+1 +
12ςq(ρ+s)2τ3

lρ2τ+2

and

ν = 2

1− 6ςτ2(ρ+s)2γ2

ρτ+1 − 12ςq(ρ+s)2γ2τ3

lρ2τ+2

, the upper bound of
∑t

u=0 ρ
t−uE

∥∥(v̂u+1)I
∥∥2

can be obtained

as follows.
t∑

u=0

ρt−uE
∥∥(v̂u+1)I

∥∥2 ≤ ν
t∑

u=0

ρt−uE
∥∥(vu+1)I

∥∥2
(54)

Define at = E
∥∥xt − x∗∥∥2

, and Lt =
∑t

u=0 ρ
t−uau, we have that

Lt+1 (55)

= ρt+1a0 +

t∑
u=0

ρt−uau+1

≤ ρt+1a0 +
t∑

u=0

ρt−u

%au + α

(
(1 +

1

β
)γ2τς + 2(1 + β)ςτρ+

s γ
3(1 + 3ρ+

s γ)

)
︸ ︷︷ ︸

ω

u−1∑
k=(u−τ)+

E
∥∥∥(v̂k+1)I

∥∥∥2

+
12α(1 + β)ςαq(ρ+

s)2γ4τ

l

u−1∑
v=(u−τ)+

v−2∑
k=(v−τ−1)+

E
∥∥∥(v̂k+1)I

∥∥∥2

+2α(1 + β)γ2E
∥∥(vu+1)I

∥∥2 − α(1 + β)γe(xu)
]

≤ ρt+1a0 +
t∑

u=0

ρt−u
[
%au + 2α(1 + β)γ2E

∥∥(vu+1)I
∥∥2 − α(1 + β)γe(xu)

]
+ωρ−(τ+1)

t∑
u=0

ρt−uE
∥∥(v̂u+1)I

∥∥2

+
12α(1 + β)ςq(ρ+

s)2γ4τ

l
ρ−(2τ+2)

t∑
u=0

ρt−uE
∥∥(v̂u+1)I

∥∥2

≤ ρt+1a0 +

t∑
u=0

ρt−u
[
%au + 2α(1 + β)γ2E

∥∥(vu+1)I
∥∥2 − α(1 + β)γe(xu)

]
+

(
νωρ−(τ+1) +

12να(1 + β)ςq(ρ+
s)2γ4τ

l
ρ−(2τ+2)

)
︸ ︷︷ ︸

Γ

t∑
u=0

ρt−uE
∥∥(vu+1)I

∥∥2

= ρt+1a0 +

t∑
u=0

ρt−u
[
%au + (2α(1 + β)γ2 + Γ)E

∥∥(vu+1)I
∥∥2 − α(1 + β)γe(xu)

]
≤ ρt+1a0 +

t∑
u=0

ρt−u

[
%au +

12ρ+
s (2α(1 + β)γ2 + Γ)

l

u−1∑
k=1

(
1− q

l

)u−k−1
e(xk) (56)

41

Gu, Xian, Huo, Deng, and Huang

+12ρ+
s

(
1− q

l

)u
(2α(1 + β)γ2 + Γ)e(x0) + 12(2α(1 + β)γ2 + Γ)e(xu)

+3(2α(1 + β)γ2 + Γ)E ‖∇IF (x∗)‖2 − α(1 + β)γe(xu)
]

≤ ρt+1a0 + %Lt − (α(1 + β)γ − 24α(1 + β)γ2 − 12Γ)e(xt)

+3(2α(1 + β)γ2 + Γ)
t∑

u=0

ρt−uE
∥∥∇ĨF (x∗)

∥∥2

where the first inequality uses Theorem 18, the third inequality uses (54), the fourth in-
equality uses Lemma 15, the fifth inequality holds by appropriately choosing γ such that
the terms related to e(xu) (u = 0, · · · , t− 1) are negative, because the signs related to the
lowest orders of e(xu) (u = 0, · · · , t− 1) are negative. In the following, we give the detailed
analysis for how to choose γ such that the terms related to e(xu) (u = 0, · · · , t − 1) are
negative. We first consider u = 0. Assume that C(e(x0)) is the coefficient term of e(x0) in
(56), we have that

C(e(x0)) (57)

= −αγρt + 12(2α(1 + β)γ2 + Γ)ρt + 12ρ+
s (2α(1 + β)γ2 + Γ)

t∑
u=0

ρt−u
(

1− q

l

)u
= ρt

(
−αγ + 12(2α(1 + β)γ2 + Γ) + 12ρ+

s (2α(1 + β)γ2 + Γ)

t∑
u=0

ρ−u
(

1− q

l

)u)

= ρt

−αγ + 12(2α(1 + β)γ2 + Γ) + 12ρ+
s (2α(1 + β)γ2 + Γ)

1−
(

1− q
l

ρ

)t
1− 1− q

l
ρ


1− q

l
<ρ

≤ ρt

−αγ + 12(2α(1 + β)γ2 + Γ)

1 +
ρ+
s

1− 1− q
l

ρ



Based on (57), we can carefully choose γ such that−αγ+12(2α(1+β)γ2+Γ)

(
1 + ρ+s

1−
1− q

l
ρ

)
≤

0.

Assume that C(e(xu)) is the coefficient term of e(xu) (u = 1, · · · , t−1) in the big square
brackets of (55), we have that

C(e(xu)) (58)

= −αγ + 12(2α(1 + β)γ2 + Γ) +
12ρ+

s (2α(1 + β)γ2 + Γ)

l

t−1∑
v=u+1

(
1− q

l

)v−u−1

= −αγ + 12(2α(1 + β)γ2 + Γ) +
12ρ+

s (2α(1 + β)γ2 + Γ)

l

1− (1− q
l)

(t−u−1)+

1−
(
1− q

l

)
= −αγ + 12(2α(1 + β)γ2 + Γ) +

12ρ+
s (2α(1 + β)γ2 + Γ)

l

1− (1− q
l)

(t−u−1)+

q
l

42

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

≤ −αγ + 12

(
1 +

ρ+
s

q

)
(2α(1 + β)γ2 + Γ)

where the inequality holds due to 0 < (1− q
l)

(t−u−1)+ ≤ 1. Based on (58), we can carefully

choose γ such that −αγ + 12(2α(1 + β)γ2 + Γ)
(

1 + ρ+s
q

)
≤ 0.

In addition, assume that C(e(xt)) is the coefficient term of e(xt) in (56), we have that
−αγ + 12(2αγ2 + Γ) ≤ 0. Combing the two above cases, we have that the terms related to

e(xu) (u = 0, · · · , t− 1) are negative if −αγ + 12(2α(1 + β)γ2 + Γ)

(
1 + ρ+s

1−
1− q

l
ρ

)
≤ 0.

Thus, based on (55), we have that

(α(1 + β)γ − 24α(1 + β)γ2 − 12Γ)e(xt) (59)

≤ (α(1 + β)γ − 24α(1 + β)γ2 − 12Γ)e(xt) + Lt+1

≤ ρt+1a0 + %Lt + 3(2α(1 + β)γ2 + Γ)

t∑
u=0

ρt−uE
∥∥∇ĨF (x∗)

∥∥2

≤ %t+1L0 + ρt+1a0
t+1∑
k=0

(
%

ρ

)k
+

3(2α(1 + β)γ2 + Γ)

1− ρ
E
∥∥∇ĨF (x∗)

∥∥2
t∑

k=0

%k

%<ρ
≤ %t+1a0 + ρt+1 a0

1− %
ρ

+
3(2α(1 + β)γ2 + Γ)

(1− ρ)(1− %)
E
∥∥∇ĨF (x∗)

∥∥2

≤ ρt+1
(2− %

ρ)a0

1− %
ρ

+
3(2α(1 + β)γ2 + Γ)

(1− ρ)(1− %)
E
∥∥∇ĨF (x∗)

∥∥2

From (60), we have the conclusion of Theorem 3. This completes the proof.

7.2 AsySPG-qM

Lemma 19 For AsySPG-qM, under Assumptions 3, 4 and 5, we have that

E
∥∥α̂tit −∇fit(x∗)∥∥ ≤ 2qL

l

t=1∑
u=1

(
1− q

l

)(t−2τ−u−1)+
Bf (x̂u, x

∗) +
(

1− q

l

)(t−τ)+
ẽ0 (60)

where Bf (x̂u, x
∗) = f(x̂u)− f(x∗)− 〈∇f(x∗), x̂u − x∗〉, and ẽ0 = E‖α0

i −∇fi(x∗)‖.

The Lemma 19 can be got similarly to Lemma 2 of (Leblond et al., 2017). Based on Lemma
19, we provide the brief proof to Theorem 3.

Proof Define at = E
∥∥xt − x∗∥∥2

, according to Lemma 19 and (50) in (Pedregosa et al.,
2017) we have that

at+1 (61)

≤
(

1− γµ

2

)
at +

4γ2L

β

(
1− q

l

)(t−τ)+
ẽ0 + γ2

[
β − 1 +

√
4τ
]
E‖gt‖2

43

Gu, Xian, Huo, Deng, and Huang

+
[
γ2
√
4+ γ3µ(1 +

√
4τ)

] t∑
u=(t−τ)+

E‖gu‖2 − 2γEBf (x̂t, x
∗)

+
4γ2L

β
EBf (x̂t, x

∗) +
4γ2qL

βl
Ht

where Ht =
∑t=1

u=1

(
1− q

l

)(t−2τ−u−1)+ Bf (x̂u, x
∗). Define Lt =

∑t
u=0(1 − ρ)t−uau, we have

that

Lt+1 (62)

≤ (1− ρ)t+1a0 +

t∑
u=0

(1− ρ)t−u
[
(1− γµ

2
)au +

4γ2L

β
(1− q

l
)(u−τ)+ ẽ0

+γ2(β − 1 +
√
4τ)E‖gu‖2 +

(
γ2
√
4+ γ3µ(1 +

√
4τ)

) u∑
v=(u−τ)+

E‖gv‖2

−2γEBf (x̂u, x
∗) +

4γ2L

β
EBf (x̂u, x

∗) +
4γ2qL

βl
Hu

]
After regrouping similar terms, we get

Lt+1 ≤ (1− ρ)t+1(a0 +Aẽ0) + (1− γµ

2
)Lt +

t∑
u=0

stuE‖gu‖2 +
t∑

u=1

rtuEBf (x̂u, x
∗) (63)

where stu, rtu and A are defined as follows.

stu ≤ (1− ρ)t−u
[
γ2(β − 1 +

√
4τ) + τ(1− ρ)−τ (γ2

√
4+ γ3µ(1 +

√
4τ))

]
(64)

rtu ≤ (1− ρ)t−u
[
−2γ +

4γ2L

β
+

4Lγ2q

lβ
(1− ρ)−2τ−1

(
2τ +

1

1− ρ̃

)]
(65)

A =
4γ2L

β
(1− ρ)−τ−1

(
τ + 1 +

1

1− ρ̃

)
(66)

where ρ̃ = 1−q/l
1−ρ . Now, provided that we can prove that under certain conditions the stu

and rtu terms are all negative (and that the A term is not too big), we can drop them from
the right-hand side of (63) which will allow us to finish the proof.

We consider stu here. Firstly, we assume ρ ≤ q
4l , and τ ≤ 1

10
√
4 ≤

1
10

√
l, thus we have

that

1

1− ρ̃
=

1

1− 1−q/l
1−ρ

=
1− ρ
q/l − ρ

=
1− q

4l

q/l − q
4l

≤ 4l

3q
(67)

(1− ρ)−kτ−1 ≤ 1

1− ρ(kτ + 1)
≤ 1

1− q
4l (k

1
10

√
l + 1)

=
1

1− kq

40
√
l
− q

4l

(68)

If k ∈ {0, 1, 2} and q ≤ 5l√
l−5
≤ 5
√
l, we have that (1 − ρ)−kτ−1 ≤ 4

3 . Thus, setting β = 1
2 ,

we have

stu ≤ (1− ρ)t−uγ2

[
−1

2
+
√
4τ +

4

3
(
√
4τ + γµτ(1 +

√
4τ))

]
(69)

44

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

≤ (1− ρ)t−uγ2

[
−1

2
+

1

10
+

4

30
+ γµτ

4

3

11

10

]
Thus, the condition under which all stu are negative boils down to γµτ ≤ 2

11 .
Next, we consider rtu as follows.

rtu ≤ (1− ρ)t−u

[
−2γ + 8γ2L+

8γ2qL

l

4

3

(√
l

5
+

4l

3q

)]
(70)

≤ (1− ρ)t−u
[
−2γ + 8γ2L+

8γ2qL

l

4

3

(
l

q
+

4l

3q

)]
Thus, the condition under which all rtu are negative boils down to γ ≤ 3

124L . If we add
γBf (x̂t, x

∗) to both sides of (63), rtt is replaced by rtt + γ, which makes for a slightly worse
bound of γ as γ ≤ 3

248L to ensure linear convergence.

Thus, if γ = a
L , a ≤ min

{
3

248 ,
2κ
11τ

}
and q ≤ 5

√
l, we have that

Lt+1 ≤ Lt+1 + γBf (x̂t, x
∗) ≤ (1− ρ)t+1(a0 +Aẽ0) + (1− γµ

2
)Lt (71)

By unrolling the recursion (71), we can carefully combine the effect of the geometric term
(1− ρ) with the one of (1− γµ

2) which yields the overall rate:

γµ

2
E‖x̂t − x∗‖ ≤ γBf (x̂t, x

∗) ≤ (1− ρ∗)t+1C̃0 (72)

where ρ∗ = 1
5 min{ ql ,

a
κ}, C̃0 = 21l2κ

aγ

(
‖x0 − x∗‖2 + 1

5L2

∑l
i=1 ‖α−∇fi(x∗)‖2

)
. This com-

pletes the proof.

7.3 AsySGD-qM

In this section, we provide the convergence analysis for AsySGD-qM under the smooth
assumption (i.e., Assumption 4). Firstly, we give an upper bound to

∑T−1
t=0 ctE

∥∥(v̂t)
∥∥2

in
Lemma 20.

Lemma 20 Under Assumptions 3 and 4 and γ < 1√
6τ2L2+ 12qL2τ2

l

. Let {ct}Tt=0 be a mono-

tonically decreasing sequence and a = 2

1−6τ2L2γ2− 12qL2γ2τ3

l

. For AsySGD-qM, we have that

T−1∑
t=0

ctE
∥∥(v̂t)

∥∥2 ≤ a
T−1∑
t=0

Ect
∥∥(vt)

∥∥2
(73)

Proof Similar to (73), we can obtain

E
∥∥(v̂t)

∥∥2
(74)

≤ 6τL2γ2
t−1∑

u=(t−τ)+

E
∥∥(v̂u+1)

∥∥2
+

12ςqL2γ2τ

l

t−1∑
u=(t−τ)+

u−2∑
k=(u−τ−1)+

E
∥∥∥v̂k+1

∥∥∥2
+ 2E

∥∥vt+1
∥∥2

45

Gu, Xian, Huo, Deng, and Huang

By summing the the inequality (74) over t = 0, . . . , T − 1, we obtain

T−1∑
t=0

ctE
∥∥(v̂t)

∥∥2
(75)

≤ 6τL2γ2
T−1∑
t=0

ct

t−1∑
u=(t−τ)+

E
∥∥(v̂u+1)

∥∥2
+

12qL2γ2τ

l

T−1∑
t=0

ct

t−1∑
u=(t−τ)+

u−2∑
k=(u−τ−1)+

E
∥∥∥v̂k+1

∥∥∥2

+2

T−1∑
t=0

ctE
∥∥vt∥∥2

≤ 6τ2L2γ2
T−1∑
t=0

ctE
∥∥(v̂t)

∥∥2
+

12ςqL2γ2τ3

l

T−1∑
t=0

ctE
∥∥v̂t∥∥2

+ 2

T−1∑
t=0

ctE
∥∥vt∥∥2

According to (75), we have that(
1− 6τ2L2γ2 − 12qL2γ2τ3

l

) T−1∑
t=0

ctE
∥∥(v̂t)

∥∥2 ≤ 2
T−1∑
t=0

ctE
∥∥vt∥∥2

(76)

If γ < 1√
6τ2L2+ 12qL2τ2

l

, we have that 1 − 6τ2L2γ2 − 12ςqL2γ2τ3

l > 0. Thus, we can have the

conclusion. This completes the proof.

Based on Lemma 20, we provide the proof to Theorem 11.

Proof We define the Lyapunov function as Rt = E
(
f(xt) + ct

l

∑l
i=1 ‖xt − αti‖2

)
. Firstly,

we give the upper bound to Ef(xt+1) as follows.

Ef(xt+1) (77)

≤ E
(
f(xt) + 〈∇f(xt), xt+1 − xt〉+

L

2
‖xt+1 − xt‖2

)
= E

(
f(xt)− γ〈∇f(xt), v̂t〉+

Lγ2

2
‖v̂t‖2

)
= Ef(xt)− γE〈∇f(xt),∇f(x̂t)〉+

Lγ2

2
E‖v̂t‖2

= Ef(xt)− γ

2
E
(
‖∇f(xt)‖2 + ‖∇f(x̂t)‖2 − ‖∇f(xt)−∇f(x̂t)‖2

)
+
Lγ2

2
E‖v̂t‖2

≤ Ef(xt)− γ

2
E
(
‖∇f(xt)‖2 + ‖∇f(x̂t)‖2

)
+
Lγ2

2
E‖v̂t‖2 +

γL2

2
E‖xt − x̂t‖2

≤ Ef(xt)− γ

2
E
(
‖∇f(xt)‖2 + ‖∇f(x̂t)‖2

)
+
Lγ2

2
E‖v̂t‖2 +

τL2γ3

2

t−1∑
u=(t−τ)+

E‖v̂u‖2

Secondly, we give the upper bound to 1
l

∑l
i=1 E‖xt+1 − αt+1

i ‖2 as follows.

1

l

l∑
i=1

E‖xt+1 − αt+1
i ‖

2 =
1

l

l∑
i=1

(
1

l
E‖xt+1 − xt‖2 +

l − 1

l
E‖xt+1 − αti‖2

)
(78)

46

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

=
1

l

l∑
i=1

(
1

l
E‖xt+1 − xt‖2 +

l − 1

l
E
(
‖xt+1 − xt‖2 + ‖xt − αti‖2 + 2〈xt+1 − xt, xt − αti〉

))

=
1

l

l∑
i=1

(
1

l
E‖xt+1 − xt‖2 +

l − 1

l
E
(
‖xt+1 − xt‖2 + ‖xt − αti‖2 − 2γ〈v̂t, xt − αti〉

))

≤ 1

l

l∑
i=1

(
γ2

l
E‖v̂t‖2 +

l − 1

l
E
(
γ2‖v̂t‖2 + ‖xt − αti‖2 +

γ

β
‖v̂t‖2 + γβ‖xt − αti‖2

))

=
γ2

l
E‖v̂t‖2 +

l − 1

l

(
γ2 +

γ

β

)
E‖v̂t‖2 +

l − 1

l2
(1 + γβ)

l∑
i=1

E‖xt − αti‖2

=

(
γ2 +

(l − 1)γ

βl

)
E‖v̂t‖2 +

l − 1

l2
(1 + γβ)

l∑
i=1

E‖xt − αti‖2

Based on (77) and (78), we have that

Rt+1 = E

(
f(xt+1) +

ct+1

l

l∑
i=1

‖xt+1 − αt+1
i ‖

2

)
(79)

≤ Ef(xt)− γ

2
E
(
‖∇f(xt)‖2 + ‖∇f(x̂t)‖2

)
+
Lγ2

2
E‖v̂t‖2 +

τL2γ3

2

t−1∑
u=(t−τ)+

E‖v̂u‖2

+ct+1

(
γ2 +

(l − 1)γ

βl

)
E‖v̂t‖2 + ct+1

l − 1

l2
(1 + γβ)

l∑
i=1

E‖xt − αti‖2

By summing the the inequality (79) over t = 0, . . . , T − 1, we obtain

T−1∑
t=0

Rt+1 (80)

≤
T−1∑
t=0

Ef(xt)− γ

2
E
(
‖∇f(xt)‖2 + ‖∇f(x̂t)‖2

)
+
Lγ2

2
E‖v̂t‖2 +

τL2γ3

2

t−1∑
u=(t−τ)+

E‖v̂u‖2

+ct+1

(
γ2 +

(l − 1)γ

βl

)
E‖v̂t‖2 + ct+1

l − 1

l2
(1 + γβ)

l∑
i=1

E‖xt − αti‖2
)

=
T−1∑
t=0

Ef(xt)− γ

2

T−1∑
t=0

E
(
‖∇f(xt)‖2 + ‖∇f(x̂t)‖2

)
+
τL2γ3

2

T−1∑
t=0

t−1∑
u=(t−τ)+

E‖v̂u‖2

+

T−1∑
t=0

(
Lγ2

2
+ ct+1

(
γ2 +

(l − 1)γ

βl

))
E‖v̂t‖2 +

T−1∑
t=0

ct+1
l − 1

l2
(1 + γβ)

l∑
i=1

E‖xt − αti‖2

≤
T−1∑
t=0

Ef(xt)− γ

2

T−1∑
t=0

E
(
‖∇f(xt)‖2 + ‖∇f(x̂t)‖2

)
+

T−1∑
t=0

ct+1
l − 1

l2
(1 + γβ)

l∑
i=1

E‖xt − αti‖2

47

Gu, Xian, Huo, Deng, and Huang

+
T−1∑
t=0

(
Lγ2

2
+ ct+1

(
γ2 +

(l − 1)γ

βl

)
+
τ2L2γ3

2

)
E‖v̂t‖2

≤
T−1∑
t=0

Ef(xt)− γ

2

T−1∑
t=0

E
(
‖∇f(xt)‖2 + ‖∇f(x̂t)‖2

)
+
T−1∑
t=0

ct+1
l − 1

l2
(1 + γβ)

l∑
i=1

E‖xt − αti‖2

+

T−1∑
t=0

a

(
Lγ2

2
+ ct+1

(
γ2 +

(l − 1)γ

βl

)
+
τ2L2γ3

2

)
E‖vt‖2

≤
T−1∑
t=0

Ef(xt)− γ

2

T−1∑
t=0

E
(
‖∇f(xt)‖2 + ‖∇f(x̂t)‖2

)
+
T−1∑
t=0

ct+1
l − 1

l2
(1 + γβ)

l∑
i=1

E‖xt − αti‖2

+

T−1∑
t=0

a

(
Lγ2

2
+ ct+1

(
γ2 +

(l − 1)γ

βl

)
+
τ2L2γ3

2

)(
2E‖∇f(xt)‖2 +

2L2

l

l∑
i=1

E‖xt − αti‖2
)

=
T−1∑
t=0

Ef(xt)− γ

2

T−1∑
t=0

E‖∇f(x̂t)‖2

+
T−1∑
t=0

1

l

(
aL3γ2 + 2aL2ct+1

(
γ2 +

(l − 1)γ

βl

)
+ aτ2L4γ3 + ct+1

l − 1

l
(1 + γβ)

)
︸ ︷︷ ︸

ct

l∑
i=1

E‖xt − αti‖2

−
T−1∑
t=0

(
γ

2
− 2a

(
Lγ2

2
+ ct+1

(
γ2 +

(l − 1)γ

βl

)
+
τ2L2γ3

2

))
︸ ︷︷ ︸

Γt

E‖∇f(xt)‖2

=
T−1∑
t=0

Rt − γ

2

T−1∑
t=0

E‖∇f(x̂t)‖2 −
T−1∑
t=0

ΓtE‖∇f(xt)‖2

where the first inequality uses (79), the third inequality uses Lemma 20, the fourth inequality
uses Lemma 2 of Reddi et al. (2016b). If we carefully choose γ such that Γt > 0 over
t = 0, . . . , T − 1, we have that

1

T

T−1∑
t=0

E‖∇f(xt)‖2 ≤ R0 −RT

T min0≤t≤T−1 Γt
=

f(x0)− f(x∗)

T min0≤t≤T−1 Γt
(81)

This completes the proof.

8. Conclusion

In this paper, we introduced an unified q-memorization framework for various variance
reduction techniques (including SVRG, S2GD, SAGA, q-SAGA) to analyze asynchronous
stochastic algorithms for three important optimization problems. Specifically, based on
the q-memorization framework, 1) we propose an asynchronous stochastic gradient hard
thresholding algorithm with q-memorization (AsySGHT-qM) for the non-convex optimiza-
tion with cardinality constraint, and prove that the convergence rate of AsySGHT-qM

48

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

before reaching the inherent error induced by GHT-style methods is geometric. 2) We pro-
pose an asynchronous stochastic proximal gradient algorithm (AsySPG-qM) for the convex
optimization with non-smooth regularization, and prove that AsySPG-qM can achieve a
linear convergence rate. 3) We propose an asynchronous stochastic gradient descent al-
gorithm (AsySGD-qM) for the general non-convex optimization problem, and prove that
AsySGD-qM can achieve a sublinear convergence rate. The experimental results on various
large-scale datasets confirm the fast convergence of our AsySGHT-qM, AsySPG-qM and
AsySGD-qM through concrete realizations of SVRG and SAGA.

Besides the non-convex optimization problem with cardinality constraint, the convex
optimization problem with non-smooth regularization and the general non-convex smooth
optimization problem, we believe that our analysis scheme based on the q-memorization
framework can be extended to the asynchronous stochastic algorithms for other optimization
problems.

Acknowledgments

B. Gu was partially supported by he National Natural Science Foundation of China (No:
62076138), the Natural Science Foundation (No. BK20161534), Six talent peaks project
(No. XYDXX-042) and the 333 Project (No. BRA2017455) in Jiangsu Province and the
National Natural Science Foundation of China (No: 61573191).

References

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization.
In International conference on machine learning, pages 699–707, 2016.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010, pages 177–186. Springer, 2010.

Rohit Chandra. Parallel programming in OpenMP. Morgan kaufmann, 2001.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014.

Yunlong Feng, Xiaolin Huang, Lei Shi, Yuning Yang, and Johan AK Suykens. Learning
with the maximum correntropy criterion induced losses for regression. Journal of Machine
Learning Research, 16:993–1034, 2015.

Bin Gu and Zhouyuan Huo. Asynchronous doubly stochastic group regularized learning. In
International Conference on Artificial Intelligence and Statistics (AISTATS 2018), 2018.

49

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Gu, Xian, Huo, Deng, and Huang

Bin Gu, Zhouyuan Huo, Cheng Deng, and Heng Huang. Faster derivative-free stochastic al-
gorithm for shared memory machines. In International Conference on Machine Learning,
pages 1807–1816, 2018.

Bin Gu, Wenhan Xian, and Heng Huang. Asynchronous stochastic frank-wolfe algorithms
for nonconvex optimization. In 28th International Joint Conference on Artificial Intelli-
gence (IJCAI 2019), 2019.

Ran He, Wei-Shi Zheng, and Bao-Gang Hu. Maximum correntropy criterion for robust face
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):
1561–1576, 2011.

Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien, and Brian McWilliams. Variance
reduced stochastic gradient descent with neighbors. In Advances in Neural Information
Processing Systems, pages 2305–2313, 2015.

Mingyi Hong, Xiangfeng Wang, Meisam Razaviyayn, and Zhi-Quan Luo. Iteration com-
plexity analysis of block coordinate descent methods. Mathematical Programming, 163
(1-2):85–114, 2017.

Xiaolin Huang, Lei Shi, and Johan AK Suykens. Ramp loss linear programming support
vector machine. The Journal of Machine Learning Research, 15(1):2185–2211, 2014.

Zhouyuan Huo and Heng Huang. Asynchronous mini-batch gradient descent with variance
reduction for non-convex optimization. In AAAI, pages 2043–2049, 2017.

Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay.
In Advances in Neural Information Processing Systems, pages 6659–6668, 2018a.

Zhouyuan Huo, Bin Gu, Heng Huang, et al. Decoupled parallel backpropagation with
convergence guarantee. In International Conference on Machine Learning, pages 2098–
2106, 2018b.

Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding meth-
ods for high-dimensional m-estimation. In Advances in Neural Information Processing
Systems, pages 685–693, 2014.

Ali Jalali, Christopher C Johnson, and Pradeep K Ravikumar. On learning discrete graphi-
cal models using greedy methods. In Advances in Neural Information Processing Systems,
pages 1935–1943, 2011.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems, pages 315–
323, 2013.

Jakub Konečný and Peter Richtárik. Semi-stochastic gradient descent methods. Frontiers in
Applied Mathematics and Statistics, 3:9, 2017. ISSN 2297-4687. doi: 10.3389/fams.2017.
00009. URL https://www.frontiersin.org/article/10.3389/fams.2017.00009.

50

https://www.frontiersin.org/article/10.3389/fams.2017.00009

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Asaga: Asynchronous parallel
saga. In Artificial Intelligence and Statistics, pages 46–54, 2017.

Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Y Ng. Efficient l1 regularized logistic
regression. In AAAI, volume 6, pages 401–408, 2006.

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimiza-
tion via scsg methods. In Advances in Neural Information Processing Systems, pages
2348–2358, 2017.

Xingguo Li, Raman Arora, Han Liu, Jarvis Haupt, and Tuo Zhao. Nonconvex sparse
learning via stochastic optimization with progressive variance reduction. arXiv preprint
arXiv:1605.02711, 2016.

Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gra-
dient for nonconvex optimization. In Advances in Neural Information Processing Systems,
pages 2737–2745, 2015.

Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu. A comprehensive
linear speedup analysis for asynchronous stochastic parallel optimization from zeroth-
order to first-order. pages 3054–3062, 2016.

Yong Liang, Cheng Liu, Xin-Ze Luan, Kwong-Sak Leung, Tak-Ming Chan, Zong-Ben Xu,
and Hai Zhang. Sparse logistic regression with a l 1/2 penalty for gene selection in cancer
classification. BMC bioinformatics, 14(1):198, 2013.

Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent: Parallelism and
convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin Recht, Kannan Ramchan-
dran, and Michael I Jordan. Perturbed iterate analysis for asynchronous stochastic opti-
mization. SIAM Journal on Optimization, 27(4):2202–2229, 2017.

Qi Meng, Wei Chen, Jingcheng Yu, Taifeng Wang, Zhiming Ma, and Tie-Yan Liu. Asyn-
chronous stochastic proximal optimization algorithms with variance reduction. pages
2329–2335, 2017.

F Michel. How many photos are uploaded to flickr every day and month? Papadimitriou, S.,
& Sun, J.(2008). Disco: Distributed co-clustering with map-reduce: A case study towards
petabyte-scale end-to-end mining, 2012.

Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM journal on
computing, 24(2):227–234, 1995.

Nam Nguyen, Deanna Needell, and Tina Woolf. Linear convergence of stochastic iterative
greedy algorithms with sparse constraints. IEEE Trans. Information Theory, 63(11):
6869–6895, 2017.

Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques. In
Advances in Neural Information Processing Systems, pages 1574–1582, 2014.

51

Gu, Xian, Huo, Deng, and Huang

Fabian Pedregosa, Rémi Leblond, and Simon Lacoste-Julien. Breaking the nonsmooth
barrier: A scalable parallel method for composite optimization. pages 56–65, 2017.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alexander J Smola.
On variance reduction in stochastic gradient descent and its asynchronous variants. In
Advances in Neural Information Processing Systems, pages 2647–2655, 2015.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International conference on machine
learning, pages 314–323, 2016a.

Sashank J. Reddi, Suvrit Sra, Barnabás Póczos, and Alexander J. Smola. Fast incremental
method for smooth nonconvex optimization. pages 1971–1977, 2016b.

Jean-Charles Régin. Generalized arc consistency for global cardinality constraint. In Pro-
ceedings of the thirteenth national conference on Artificial intelligence-Volume 1, pages
209–215. AAAI Press, 1996.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochas-
tic average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Jie Shen and Ping Li. A tight bound of hard thresholding. Journal of Machine Learning
Research, 18(208):1–42, 2018. URL http://jmlr.org/papers/v18/16-299.html.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via orthog-
onal matching pursuit. IEEE Transactions on information theory, 53(12):4655–4666,
2007.

Gang Wang, Derek Hoiem, and David Forsyth. Learning image similarity from flickr groups
using fast kernel machines. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 34(11):2177–2188, 2012.

Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data mining with big data.
IEEE transactions on knowledge and data engineering, 26(1):97–107, 2014.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Xiaotong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit for sparsity-
constrained optimization. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 127–135, 2014.

Shen-Yi Zhao and Wu-Jun Li. Fast asynchronous parallel stochastic gradient descent:
A lock-free approach with convergence guarantee. In Thirtieth AAAI Conference on
Artificial Intelligence, 2016.

52

http://jmlr.org/papers/v18/16-299.html

A Unified q-Memorization Framework for Asynchronous Stochastic Optimization

Tuo Zhao, Mo Yu, Yiming Wang, Raman Arora, and Han Liu. Accelerated mini-batch ran-
domized block coordinate descent method. In Advances in neural information processing
systems, pages 3329–3337, 2014.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

53

	Introduction
	Non-convex Optimization with Cardinality Constraint
	Convex Optimization with Non-smooth Regularization
	General Non-Convex Smooth Optimization
	Contributions
	 Outline
	Notations

	Unified Variance Reduction Framework
	Representative Unbiased Variance Reduction Techniques
	HSAG Framework
	Unified q-Memorization Framework

	Asynchronous Stochastic Gradient Hard Thresholding Algorithm with Generalized Variance Reduction
	AsySGHT-qM
	Convergence Analysis of AsySGHT-qM
	Preliminaries
	Convergence Analysis

	Asynchronous Stochastic Proximal Gradient Algorithm with Generalized Variance Reduction
	Sparse Proximal Updating
	AsySPG-qM
	Convergence Analysis of AsySPG-qM
	Preliminaries
	Convergence Analysis

	Asynchronous Stochastic Gradient Descent Algorithm with Generalized Variance Reduction
	AsySGD-qM
	Convergence Analysis of AsySGD-qM
	Sublinear Convergence Rate
	Linear Convergence Rate

	Experiments
	Experimental Setup
	Design of Experiments
	Implementations
	Datasets

	 Experimental Results and Discussion
	AsySGHT-qM
	AsySPG-qM
	AsySGD-qM

	Proofs to Theorems 3, 9 and 11
	AsySGHT-qM
	AsySPG-qM
	AsySGD-qM

	Conclusion

