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Abstract

Regularized least-squares (kernel-ridge / Gaussian process) regression is a fundamental
algorithm of statistics and machine learning. Because generic algorithms for the exact
solution have cubic complexity in the number of datapoints, large datasets require to resort
to approximations. In this work, the computation of the least-squares prediction is itself
treated as a probabilistic inference problem. We propose a structured Gaussian regression
model on the kernel function that uses projections of the kernel matrix to obtain a low-rank
approximation of the kernel and the matrix. A central result is an enhanced way to use
the method of conjugate gradients for the specific setting of least-squares regression as
encountered in machine learning.

Keywords: Gaussian processes, kernel methods, low-rank approximation, conjugate
gradients, probabilistic numerics

1. Introduction

Regularized least-squares is one of the fundamental algorithms in statistics and machine
learning. Due to its importance it is known under a variety of names such as kernel
ridge regression (Hoerl and Kennard, 1970), spline regression (e.g. Wahba (1990)), Kriging
(e.g. Matheron (1973)) and Gaussian process (GP) regression (e.g. Rasmussen and Williams
(2006)). The common principle is the estimation of a regression function from a reproducing
kernel Hilbert space (RKHS) f : X→ R over some domain X that minimizes the regularized
loss (Rasmussen and Williams, 2006, Eq. (6.19))

L(f) =
1

2
‖f‖2k +

1

2σ2

N∑
i=1

(yi − f(xi))
2,

where (xi, yi) ∈ X×R, i = 1, . . . , N are observations, σ2 ∈ R+ is a regularization parameter,
k is the corresponding kernel and ‖ · ‖k is the RKHS norm of f .

The minimizer of this loss has a closed-form solution that coincides with the posterior
mean of the Gaussian process p(f |X,y) = GP(f ; f̄ , c̄) under a zero-mean prior p(f) =
GP(f ; 0, k) and likelihood p(y |f(X)) = N (y;f(X), σ2I) (Kimeldorf and Wahba, 1970;
Wahba, 1990; Rasmussen and Williams, 2006):

f̄(x∗) = kᵀ∗(K + σ2I)−1y, (1)

c̄(x∗,x∗∗) = k(x∗,x∗∗)− kᵀ∗(K + σ2I)−1k∗∗ (2)
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Figure 1: Our algorithm KMCG in comparison to CG on a toy setup. The dataset consists
of one hundred data-points where the targets are a draw from a zero-mean Gaussian process
with squared exponential kernel (Eq. (18) with Λ = 0.25 and θf = 2). The thin, black line
is the posterior mean of that Gaussian process (Eq. 1). The light-green line is the mean
prediction produced by conjugate gradients after P = 7 steps and the dark-red line is the
mean prediction of KMCG (where the number of inducing inputs M = N).

where Kij = k(xi, xj), and k∗,i = k(x∗,xi).
For datasets up to about N ∼ 5 · 104 observations, the standard approach to solve

Equations (1) and (2) is to compute a Cholesky decomposition (Benoit, 1924) of K + σ2I
at a cubic cost O(N3). For larger datasets, a number of approximate algorithms have been
proposed that yield an approximation f̂ to f̄ in linear time (Zhu et al., 1998; Csató and
Opper, 2002; Snelson and Ghahramani, 2007; Walder et al., 2008; Rahimi and Recht, 2009;
Titsias, 2009b; Lázaro-Gredilla et al., 2010; Yan and Qi, 2010; Le et al., 2013; Solin and
Särkkä, 2014; Wilson and Nickisch, 2015; Hensman et al., 2018). Comparative empirical
studies like those of Chalupka et al. (2013) or Quiñonero-Candela and Rasmussen (2005)
indicate that some of these methods can provide good approximations in a reasonable amount
of time, although there is no conclusive ‘best practice’ among these choices.

Not included in the list above are iterative linear solvers, such as the method of conjugate
gradients (CG) (Hestenes and Stiefel, 1952). These algorithms construct an approximate
solution to systems of linear equations Ax = b using repeated matrix-vector multiplications
(MVMs). In general, each MVM with K has quadratic costs O(N2) which is one reason
why the machine learning community prefers the methods above.

Furthermore, a linear solver needs to run again for new test inputs when computing the
posterior uncertainty (Eq. 2) and Gaussian process regression often requires the evaluation
of the log marginal likelihood:

ln p(y) = −1

2
yᵀ(K + σ2I)−1y +

1

2
ln |2π(K + σ2I)|−1. (3)

Conjugate gradients can be used to estimate |K| (Filippone and Engler, 2015), yet also
requiring several runs.

Below, we present a way of using CG specifically tailored to Equations (1) to (3) which
we dub kernel machine conjugate gradients (KMCG). Our approach follows the notion of
probabilistic numerics (PN) (Hennig et al., 2015) which phrases approximation as inference.
A common idea of PN formulations is to replace a deterministic yet intractable operation by
Bayesian inference where, by design, prior and likelihood admit analytic estimation of the
intractable solution. In our case, the ‘intractable’ operation is the inversion of very large
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matrices (i.e. of size N ×N such that N3 is intractable), and the design criterion for the
prior is that the posterior mean over the matrix has to admit efficient inversion, which we
achieve through the matrix inversion lemma. Instead of providing an approximation solely
to the vector (K + σ2I)−1y, our approach uses the MVMs performed by CG to learn an
approximation directly to the function k.

The following section proposes a model-template that can be used to learn low-rank
approximations to kernel functions. The subsequent section shows how conjugate gradients
can be applied into that template. A discussion on how our approach relates to existing
work is presented thereafter, in Section 3.4.

2. Model

To approximate Equations (1) to (3), we will approximate the kernel and, to this end, present
a probabilistic estimation rule for k. The idea is to treat the kernel as unknown and to
choose prior and likelihood such that the posterior mean kM is efficient to evaluate and
yields a kernel of finite rank. Substituting for this finite-rank kernel in Equations (1) to (3)
then allows to compute these expressions faster. The following sections describe finite-rank
kernel, our prior, possible likelihoods and resulting posteriors. Fig. 2 shows a schematic
summary of this section.

2.1. Finite-rank Kernel

An M -rank approximation to a kernel is a factorization of the form

k(x, z) ≈ φ(x)∗Σ−1φ(z)

where φ(x) : X→ CM , φ∗ denotes the conjugate transpose, and Σ is an M ×M Hermitian
and positive definite matrix.

Given such an expansion one can use the matrix-inversion, and matrix-determinant
lemmata to approximate Equations (1) to (3) with the expressions below

f(x∗) ≈ φ(x∗)∗
(
ΦΦ∗ + σ2Σ

)−1
Φy (4)

c(x∗, z∗) ≈ σ2φ(x∗)∗
(
ΦΦ∗ + σ2Σ

)−1
φ(z∗) (5)

ln p(y) ≈ −1

2
yᵀΦ∗

(
ΦΦ∗ + σ2Σ

)−1
Φy − 1

2
ln

∣∣∣∣( 1

σ2
ΦΦ∗ + Σ

)∣∣∣∣− N

2
ln(2πσ2) (6)

where φ(x∗)j = φj(x∗) and Φij = φi(Xj). Typically M � N and therefore the computa-
tional costs to evaluate Equations (4) to (6) reduce from O(N3) to O(NM2), i.e. linear in
N . The dominant factor is the matrix-matrix product ΦΦ∗.

An example for a finite-rank kernel that will become important later, is the Subset of
Regressors (SoR) approximation (Quiñonero-Candela and Rasmussen, 2005)

kSoR(x, z) = k(x,XU )k(XU ,XU )−1k(XU , z) (7)

where XU is a set of M so called inducing inputs. The method proposed in this work
(KMCG) is related to SoR. Readers familiar with SoR will be aware of the associated flaws,
and methods to remedy them (Quiñonero-Candela and Rasmussen, 2005; Titsias, 2009b).
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Figure 2: Schematic summary of our proposed kernel approximation method.
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(a) The kernel k, here a squared exponential (Eq. 18) is assumed to be an unknown function.
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(b) Section 2.2 describes a Kronecker-structured Gaussian process prior over the kernel.
Above pictures show from left-to-right: prior mean (zero), prior standard deviation, the
absolute error divided by the standard deviation minus one and a sample from this prior.
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(c) Observations of k stem from matrix-vector multiplications with the kernel matrix K
(Section 2.3), sketched using random columns of the identity matrix.
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(d) The posterior is again Gaussian (Section 2.4) and similar to Figure 2a the pictures show
from left-to-right: mean, standard deviation, relative error and a sample. By design, the
posterior mean kM is an approximation of finite rank which allows to efficiently solve the
original least-squares problem (Section 2.1).
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The Deterministic Training Conditional (DTC) approximation alleviates this issue by
using the exact kernel for the prior uncertainty over the test inputs (Quiñonero-Candela
and Rasmussen, 2005). In effect this is a substitution of Eq. (5) for Eq. (8) below.

c(x∗, z∗) ≈k(x∗,x∗∗)− φ(x∗)∗
(
ΦΦ∗ + σ2I

)−1
φ(z∗) (8)

We will apply the same substitution for our method KMCG. Another approach to this
problem is taken by the FITC method (Quiñonero-Candela and Rasmussen, 2005). FITC
can be obtained from SoR by substituting the approximate diagonal elements kSoR(x,x)
for their exact counterpart k(x,x). For our method, we found that this correction slightly
worsens performance.

2.2. Prior

Consider a Gaussian process prior over bivariate functions

k ∼ GP(k0, γψ) (9)

where ψ : X2 × X2 → R is a covariance function over kernels and γ ∈ R+ is a scaling
parameter. Since the posterior mean is meant to be a substitution for the exact kernel,
this is an exchange of one least-squares problem for another. Without further assumptions,
calculating the posterior over k is more expensive than computing the equations of interest
(Equations 1 to 3).

Efficient inference is rendered possible by imposing the following structure on ψ

ψ(k(a, b), k(c,d)) :=
1

2
w(a, c)w(b,d) +

1

2
w(a,d)w(b, c) (10)

for a, b, c,d ∈ X and where w is a covariance function on the domain X. Consider the first
addend. It states that the similarity between k(a, b) and k(c,d) depends on the similarity
of a and c, and b and d–a natural assumption for kernel matrices.

The second addend is a symmetrization of the first. Observe that each addend is a
product kernel of two pairs of inputs and recall that a product kernel produces Kronecker
product matrices. The sum of the two products leads to covariance matrices that have
a symmetric Kronecker product form, i.e. ∀A,B ∈ RN×N : ψ(A,B) = A⊗	B ∈ RN2×N2

(see Appendix A). This will allow a sufficiently efficient evaluation of the posterior. Fig. 2
visualizes the variance and shows samples from this prior for the toy setup from Fig. 1.

This choice of prior offers a trade-off between efficient tractable inference and the desire
to encode as much prior structural information about the kernel as possible. One desirable
property to encode is symmetry, and indeed, matrix-valued functions sampled from this prior
distribution are symmetric (c.f. Fig. 2 for examples, Appendix A.1 for formal proof). Kernel
functions are also positive definite. Unfortunately, since the positive definite cone is not a
linear sub-space of the vector-space of real matrices, this property can not be encoded in a
Gaussian prior, in closed form.1 However, it is possible to guarantee positive-definiteness of
the posterior mean point estimate through the specific choice of prior parameters k0 = 0
(proof in Proposition 11, p. 27). For this reason, we adopt this choice for the remainder.

1. e.g. Hennig (2015) discusses this problem and possible solutions.
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There are other properties of certain kernels that would be desirable to encode, but
which are not feasible within the chosen framework without sacrificing fast computability.
For example, stationarity of the kernel can not be represented by a prior with Kronecker
structure in the covariance since a and b (and symmetrically c and d) do not appear together
as arguments to w.

The question remains how to choose w. Recall that w should reflect the similarity
between k(a, b) and k(c,d) which depends on the similarity of a and c, and b and d. To
measure the relationship between inputs is exactly the purpose of the kernel k and we
therefore set

w := k

for the remainder. Even if k fails to capture similarity between inputs, as choice for w
it still captures the similarity between the kernel values. Furthermore, samples from the
approximate kernel will be a function of w and lastly, this choice is convenient computationally
as expressions simplify.

2.3. Likelihood

Having specified a prior over k, we will now be concerned with how to obtain observations.
Iterative solvers like conjugate gradients proceed by collecting a sequence of linear projections
of the (kernel) matrix to be inverted, in the form of matrix-vector products. In fact, this
general structure also describes the setting of non-adaptive approaches like inducing point
methods, which can be interpreted as collecting multiplications of the kernel matrix with a
set of pre-specified and sparse vectors (namely the unit selection vectors exui

). We can use
these matrix-vector products for learning a low-rank version of the kernel by introducing
the linear operator

T p :(X× X)R → RP
2
, k 7→ vec

([∫∫
k(x, z)pi(x)pj(z) dx dz

]
ij

)
(11)

where i, j = 1...P , p = [p1, ..., pP ] are densities or distributions and vec (A) is a column
vector created by stacking the rows of A.

Example 1 (Matrix-vector multiplication) Define T p with

pi(x) :=

M∑
j=1

sijδ(x− xuj ). (12)

Then the evaluation of T pk reduces to a matrix vector product, that is mat (T pk) =
Sᵀk(XU ,XU )S where Sij = sij, XU = [xu1 , ...,xuM ] and mat ( ) transforms a P 2 vector
into a P × P matrix, s.t. mat (vec (A)) = A.

The xuj can be datapoints or arbitrary elements of the domain X. The choice Sij := δij
leads to the Subset of Regressors approximation (Proposition 1, p. 7).
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Example 2 (Integrals with Eigenfunctions) Let φi i = 1, ..., P be orthogonal Eigen-
functions of k with respect to a density ν on X, i.e.∫

k(x, z)φi(z)ν(z) dz = λiφi(x)∫
φi(z)φj(z)ν(z) dz = δij

where λi ∈ R and δij is the Kronecker indicator function (compare Rasmussen and Williams
(2006, p. 96)). Then for

pi(x) := φi(x)ν(x)

the observations [mat (T pk)]ij = δijλi are spectral values of the kernel.

In essence, this example shows another possibility to express prior knowledge over the kernel.
This likelihood leads to the Projected Bayes Regressor (Trecate et al., 1999) (Proposition 2,

p. 8), which is a historical, deterministic precursor to the more widely known random Fourier
feature expansion of Rahimi and Recht (2008).

2.4. Posterior and Subsumed Approximation Methods

The observation operator T p is a linear projection, and hence transforms the Gaussian prior
into an also Gaussian posterior. Given the prior (Eq. 9) and any likelihood of the previous
section, the posterior is Gaussian with:

p(k | Y ,T p) = N (kM , wM )

kM = k0 + (T pψ)ᵀ(T p(T pψ)ᵀ)−1(vec (Y )− T pk0) (13)

ψM = ψ − (T pψ)ᵀ(T p(T pψ)ᵀ)−1T pψ

The concrete posterior depends on the choice of T p. The following propositions presents
approximation methods that have a view as GP inference with low-rank kernel and how
they arise in our framework.

Proposition 1 (Subset of Regressors) Consider the prior of Eq. (9) with k0 := 0 and
w := k and the likelihood defined in Example 1 with sij = δij. Then the posterior mean kM
is equivalent to that of SoR:

kM (x, z) = kSoR = k(x,XU )k(XU ,XU )−1k(XU , z)

where XU are inducing inputs, not necessarily part of X.

The proof is part of Appendix B. An example of this posterior distribution is shown
in Figure 2. The related method, Fully Independent Conditional (FIC) has a very similar
kernel, kFIC = kSoR(x, z) + δ(x − z)(k(x,x) − kSoR(x,x)). The structure indicates that
this kernel should fit as well into our framework. One option that comes to mind, is to model
the diagonal elements as certain, using a prior with mean k0(k(a, b)) := δ(a− b)k(a, b) and
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Figure 3: progression of the posterior (Eq. 14) for KMCG on the toy example from Figure
1 for P = 2, 4 and 8 conjugate gradients steps. The columns show from left to right:
mean, standard deviation, standardized error (white refers to perfect calibration, green to
overconfidence and red to underconfidence) and a sample.

covariance function ψ′(a, b; c,d) := (1− δ(a− b))ψ(a, b; c,d)(1− δ(c− d)). The posterior
mean, however, is in general not the FIC kernel, as for off-diagonal elements, the prediction
differs to due to the certainty over the diagonal elements. Furthermore, the modification
of the covariance function annuls the convenient algebraic properties of the associated
covariance matrices and hence, this prior is dismissed as potential FIC competitor.

Another strategy could be to add the diagonal elements as observations. However, this
is not possible with the operator as defined in Eq. (11) as it requires the mapping to a
finite-dimensional vector. Also restricting the observation to test- and training points does
not lead to FIC. It remains an open question whether FIC fits into our proposed kernel
approximation scheme.2

Proposition 2 (Projected Bayes Regressor) Consider the prior of Eq. (9) with k0 := 0
and w := k and the likelihood defined in Example 2. Let λ1 to λP be the largest eigenvalues of
the kernel k (w.r.t to the Mercer expansion) and assume the inputs x1, ...,xN are independent

2. We found that replacing heuristically the approximate diagonal for the exact diagonal does not improve
performance.
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and identical draws from ν. Then the posterior kernel kM leads to the Projected Bayes
Regressor (Trecate et al., 1999).

The proof is part of Appendix C.

3. Conjugate Gradients for Kernel Machines

The previous section introduced a probabilistic estimation rule for the kernel k. This section
presents another data-collection approach using conjugate gradients that leads to a new
approximation algorithm: kernel machine conjugate gradients (KMCG).

The interest to use conjugate gradients for kernel machines goes back to more than 25
years (Skilling, 1993) and is still continuing (Davies, 2015; Filippone and Engler, 2015).
Albeit quadratic costs per step, CG has advantages over many of the approximation methods
referenced in the introduction. CG has only one parameter, the desired precision, which is
more natural than e.g. the number of inducing inputs for inducing point methods (Quiñonero-
Candela and Rasmussen, 2005). This means, the computational budget of CG is not fixed
in advance but varies as necessary for the problem at hand.

3.1. Conjugate Gradients

Conjugate gradients (Algorithm 1) is an iterative solver for linear equation systems Ax = b
where A ∈ RN×N is a real, symmetric and positive definite matrix (Hestenes and Stiefel,
1952). In theory, CG returns the exact solution x after N steps. In practice, CG is used as
approximate solver and can provide good approximations to x in significantly less than N
steps.

The costs of running CG are dominated by a matrix-vector multiplication in each step
which in general has complexity O(N2). The number of necessary steps depends on the
eigenvalues λ1 > ... > λN of A. The following summary of the properties of CG is an excerpt
from Nocedal and Wright (1999, Chapter 5.1). We use the notation ‖x‖2Λ := xᵀΛx for any
symmetric and positive definite matrix Λ. The A-error of CG decreases in each step with

‖xk+1 − x‖2A ≤
(
λN−k − λ1
λN−k + λ1

)2

||x0 − x||2A

and one can show that if A has at most r distinct eigenvalues, then CG terminates after
r steps with the exact solution. Thus, conjugate gradients is particularly advantageous if
the eigenvalues of A are clustered or decay rapidly.

3.2. Kernel-machine Conjugate Gradients

Our approach is to run conjugate gradients for P steps on a kernel matrix of size M and to
treat the matrix multiplications (zi in Algorithm 1) as observations in the model presented
in Section 2. Formally, the likelihood is defined similar to the SoR likelihood (Example 1)
albeit scaled.

Definition 3 (Conjugate-gradients likelihood) Choose a subset XM of size M from
X and denote as yM ∈ RM the vector that contains the corresponding entries of y. Run
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Algorithm 1 Conjugate Gradients

1: procedure ConjugateGradients(A, b, x0, ε)
2: r0^Ax0 − b . The initial residual ...
3: s0^ − r0 . ... is the first search direction.
4: i^ 0
5: while ||ri||2 > ε do
6: zi^Asi . the most expensive step: O(N2) matrix-multiplication

7: αi^
rᵀ
i ri

sᵀi zi
. optimal linesearch along si for φ(x) := xᵀAx− 2xᵀb

8: xi+1^xi + αisi . update to the solution
9: ri+1^ ri + αizi . analogue update to the residual

10: si+1^ − ri+1 +
rᵀ
i+1ri+1

rᵀ
i ri

si . Gram-Schmidt applied to the new residual

11: i^ i+ 1
12: end while
13: return xi
14: end procedure

conjugate gradients (Algorithm 1 on p. 10) with x0 := 0, A = k(XM ,XM ), b = yM and
ε := 0.01||b||2. In Equation (11) set

pi(x) :=

M∑
j=1

sjδ(x− xj)

where sj is the j-th entry of vector si in iteration i of Algorithm 1.

Remark 4 KMCG uses only the CG search directions s1, ..., sP and not the solution x̂.
Other search directions ( e.g. from the Lanczos process) could also be used3.

Using this likelihood, the resulting approximate kernel (Eq. (13)) and approximate Equations
are (Proposition 9, p. 26):

k̂M (x∗,x∗∗) = k(x∗,XM )S(SᵀKMS)−1Sᵀk(XM ,x∗∗) (14)

f̂(x∗) = k(x∗,XM )S(RᵀR+ σ2SᵀKMS)−1Rᵀy (15)

ĉ(x∗,x∗∗) = k(x∗,x∗∗)− k(x∗,XM )S(SᵀKMS)−1Sᵀk(XM ,x∗∗)

+ σ2k(x∗,XM )S
(
RᵀR+ σ2SᵀKMS

)−1
Sᵀk(XM ,x∗∗)

ln Ẑ =
1

2σ2
(yᵀy − yᵀR(RᵀR+ σ2SᵀKMS)−1Rᵀy) (16)

+
1

2
ln |RᵀR+ σ2SᵀKMS| −

1

2
|SᵀKMS|

+
1

2
(N − P ) lnσ2 +

1

2
N ln 2π

where S :=
[
s1 ... sP

]
,R := k(XM ,X)S and P is the number of CG-iterations. We call

this approximation kernel machine conjugate gradients (KMCG).

3. In exploratory experiments, we found conjugate gradients search directions to perform slightly better
than Lanczos search directions.
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Algorithm 2 Kernel Machine Conjugate Gradients

1: procedure KMCG(k, X, y, σ2, ε)
2: . We assume (w.l.o.g.) that the inducing inputs are a subset of X, denoted by XM .
3: . Let yM the be corresponding entries of y.
4: Conjugate Gradients(k(XM ,XM ),yM , ε) . ignore solution x̂
5: S^[s1, ..., sP ] . collect CG search directions
6: Z^[z1, ...,zP ] . Z = KMS
7: if M < N then
8: R^ k(X,XM )S
9: else

10: R^Z . When XM = X above matrix multiplication is not necessary.
11: end if
12: L1 ^ chol(SᵀZ) . precompute required Choleskies
13: L2 ^ chol(σ2SᵀZ +RᵀR)
14: evaluate Eqs. (15) to (16)
15: end procedure

3.3. Properties

Figure 3 shows how the approximation to the kernel progresses for the toy example from
Figure 1. Computing the Cholesky of RᵀR + σ2SᵀKMS costs O(NMP ). After that,
evaluating the mean prediction is possible in O(M) and the variance in O(MP ).

In case P = M , KMCG reduces to SoR since all occurrences of S in Equation (14) cancel
and what remains is the SoR kernel (Equation 7). If KM has a favorable distribution of
eigenvalues such that conjugate gradients terminates in less than M steps (c.f. Section 3.1),
KMCG can be used to speed up SoR.4 In practice, this kind of advantage can only be
expected to be beneficial when realized in low-level code. The level of efficiency of existing
low-level linear algebra routines makes it challenging to evaluate this area.

Recall that the computational complexity of CG for the solution of Eq. (9) in P iterations
is O(N2P ), that of inducing point methods with M inducing inputs is O(NM2), and KMCG
running for P iterations on M inducing points has complexity O(NMP ). The subsequent
evaluation section is dedicated to the case M = N , i.e. using the whole data set which places
KMCG in direct competition to plain conjugate gradients.

3.3.1. Relationship to the Nadaraya-Watson estimator

Taking only one step (P = 1) implies S = yM and Equation (15) takes the following form

f̂(x∗) = α

M∑
m=1

k(xm,x∗)ym

where α =
yᵀ
MKMyM

σ2yᵀ
MKMyM+yᵀ

MKMKMyM
. The equation bears resemblance to the Nadaraya-

Watson estimator (Bishop, 2006, p. 301f): a sum over all training targets weighted by the

4. The same applies to related methods such as DTC (Quiñonero-Candela and Rasmussen, 2005) and
Titsias’ method (Titsias, 2009b).
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similarity of the corresponding input to the test input. However, the scaling-factor α is
different.

Since conjugate gradients solves the linear system for the mean prediction, it is to be
expected that this might incur a trade-off to the approximation of the variance. See Section
4 for an empirical evaluation of the quality of the variance estimate.

3.3.2. Uncertainty

In addition to the posterior mean kM , the Gaussian formulation of the approximation
problem also provides a posterior variance ψM . It is a natural question to which degree this
object can be interpreted as a notion of uncertainty or, more specifically, as an estimate of
the square error (k − kM )2.

This section provides an analysis of this covariance for KMCG, showing it to be an outer
bound on the true error. Figure 3 visualizes this for the toy data set from Figure 1.

Proposition 5 (relative error bound) The relative size of estimation error and error
estimate is bounded from above by 2.

(k(x, z)− kM (x, z))2

ψM (k(x, z), k(x, z))
≤ 2

Proof To simplify notation, define kᵀx := k(x,X) and G := S(SᵀKS)−1Sᵀ.

For KMCG posterior mean and variance evalute to (Appendix B):

kM (x, z) = kᵀxGkz,

ψM (k(x, z), k(x, z)) = 1/2
(
k(x,x)k(z, z) + k(x, z)2 − kᵀxGkxkᵀzGkz − (kᵀxGkz)

2
)

= 1/2
(
k(x,x)k(z, z) + k(x, z)2 − kM (x,x)kM (z, z)− kM (x, z)2

)
.

As a variance ψM (k(x,x), k(x,x)) is always larger than 0 which implies k(x,x) ≥ kM (x,x)
for all x. This allows to lower bound ψM (k(x, z), k(x, z)) by 1

2k(x, z)2− 1
2kM (x, z)2 leading

to

(k(x, z)− kM (x, z))2

ψM (k(x, z), k(x, z))
≤2

(k(x, z)− kM (x, z)2

k(x, z)2 − kM (x, z)2

= 2
(k(x, z)− kM (x, z)2

(k(x, z)− kM (x, z))(k(x, z) + kM (x, z))

= 2
|k(x, z)− kM (x, z)|
k(x, z) + kM (x, z)

≤2.

12
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3.4. Related Work

In terms of using conjugate gradients for kernel machines there is related work by Filippone
and Engler (2015). Their algorithm ULISSE is aimed at the estimation of the marginal
likelihood p(θ | y) where θ are hyper-parameters of the kernel k. They use a randomized
conjugate gradients to estimate gradients of the log-marginal likelihood (Eq. (3)) which in
combination with Stochastic Gradient Langevin Dynamics (SGLD) (Welling and Teh, 2011)
allows to sample from p(θ | y). Our work is complementary to ULISSE. While running
CG the matrix multiplications the inference perspective in Section 2 can be used to build a
low-rank approximation of the kernel matrix which can serve as preconditioner for the next
SGLD step.

Using the Kronecker product for efficient inference has been explored before for example
in the KISS-GP framework (Wilson and Nickisch, 2015). The difference to this work is
that Wilson and Nickisch (2015) factorize the kernel matrix K into a Kronecker-product
where here it is the covariance matrix of the prior ψ(K,K) over the kernel that has
Kronecker structure (cf. Eq. 9). A synergy between their and our approach is hard to
imagine. However, the follow-up work by Pleiss et al. (2018) uses Lanczos iteration to build
a low-rank approximation of a kernel matrix C for the variance prediction. Presumably, one
could use instead KMCG.

4. Empirical Comparison of Conjugate Gradients and Kernel Machine
Conjugate Gradients

This section elaborates the conceptual differences between CG and KMCG and then compares
both algorithms with numerical experiments. Consider Equation (1), restated below for
convenience.

f̄(x∗) = kᵀ∗(K + σ2I)−1y (1)

CG computes an approximation to (K+σ2I)−1y and uses the exact k∗. In contrast, KMCG
computes an approximation to k and substitutes k∗ as well. That the systematic replacement
of the kernel can be of importance has been noted before by Rasmussen and Williams (2006,
p. 177) when comparing SoR and the Nyström method (Williams and Seeger, 2001). The
SoR method approximates k with the kernel in Equation (7). In contrast Nyström uses
the exact k∗ such that the predictive variance (Eq. 2) can become negative. They further
observed that for large M , Nyström and SoR have a similar performance, yet for small
M Nyström performs poorly. We made the same observations for CG and KMCG in the
following comparison on common regression problems.

Classical conjugate gradients is used to solve the equations (K+σ2I)α = y. In contrast,
since the goal of KMCG is to learn an approximation to the kernel, the algorithm runs
conjugate gradients on Kα = y, i.e. without noise term. Both methods were evaluated in
terms of the average relative error

εf :=
1

n∗

n∗∑
k=1

∣∣∣∣∣ f̄(x∗,k)− f̂(x∗,k)
f̄(x∗,k)

∣∣∣∣∣ , (17)

13
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where x∗,k is a test input not part of the training set.
The text book version of conjugate gradients in Algorithm 1 is known to be numerically

unstable5 (Golub and Van Loan, 2013, p. 635) and there exist different strategies to cope with
this problem. We refer the interested reader to Golub and Van Loan (2013, p. 562f) and the
references therein. To explore the potential of our method, we bypass this implementation
issue using the slowest6 yet most stable solution: complete reorthogonalization7 (Golub and
Van Loan, 2013, p. 564) and the explicit projection-method formulation (Saad, 2003, p. 135
Eq. (5.7)) to compute α.

Therefore the following comparison will be conceptually, i.e. over the number of conjugate
gradient steps. For completeness, Appendix E.1 contains results how KMCG performs in
wall-clock time. Often the baseline methods converge faster since block-matrix multiplication
is faster than looped matrix-vector multiplication.

Baseline methods are the Fully Independent Training Conditional (FITC) approximation
(Quiñonero-Candela and Rasmussen, 2005) and the Variational Free Energy (VFE) method
(Titsias, 2009a), with inducing inputs randomly selected from the data set as recommended
by Chalupka et al. (2013). The baseline runs were repeated 10 times and besides the average,
each figure shows also the progressive minimum and maximum over all runs, to take into
account for more elaborate inducing input selection schemes.

In all our experiments, we used two popular stationary kernel functions: automatic
relevance determination (ARD) Squared Exponential and ARD Matérn 5/2 (Rasmussen and
Williams, 2006, p. 83f, p. 106),

kSE(d(x, z; Λ)) = θf exp

(
−1

2
d2
)

(18)

k52(d(x, z; Λ)) = θf

(
1 +
√

5d+
5

3
d2
)

exp
(
−
√

5d
)

(19)

where d = d(x, z; Λ) = ||x−z||Λ and Λ is a diagonal matrix. All experiments were executed
with Matlab R2019a on an Intel i7 CPU with 32 Gigabytes of RAM running Ubuntu 18.04.

4.1. Common Regression data sets

The data sets chosen are small such that computation of the exact GP is still feasible. The
origin and purpose of each data set can be found in Appendix D. Each data set has been
shuffled and split into two sets, using one for training and the other for testing. For each
data set, we optimized the kernel parameters running Carl Rasmussen’s minimize function8

for 100 optimization-steps, where initially all kernel hyper-parameters are set to 1.
Fig. 4 shows how the average relative error develops for the described setup9. The number

of inducing inputs M was set to M =
√
NP such that O-notation costs are equivalent to

KMCG: Since KMCG uses multiplications with K for observations, the costs per CG-step

5. see additional results in Appendix E.3
6. Computing the exact solution is actually faster.
7. We experimented with selective reorthogonalization (Simon, 1984) but found it in our experiments to be

slower than full reorthogonalization.
8. This method is part of the GPML toolbox (Rasmussen and Nickisch, 2010), see http://www.

gaussianprocess.org/gpml/code/matlab/doc.
9. Since the Matérn kernel experiments look very similar, these results are in Appendix E.2

14

http://www.gaussianprocess.org/gpml/code/matlab/doc
http://www.gaussianprocess.org/gpml/code/matlab/doc


Conjugate Gradients for Kernel Machines

are O(N2P ). The upper x-axis displays the number of conjugate gradients steps, the lower
x-axis, the number of inducing inputs.

During early iterations the performance of CG is not as reliable as KMCG and the latter
also improves more consistently. In comparison to the baselines, KMCG often provides a
worse approximation to start with but exhibits a faster convergence rate.

In contrast to plain conjugate gradients, KMCG naturally provides estimates for variance
(Eq. 2) and evidence (Eq. 3). Define the average relative errors εvar and εev analogously to
Equation (17), respectively. Figure 6 and 5 show the average relative error of these estimates
in comparison to the baselines. For all data sets one can observe that the approximation
quality of KMCG for the evidence (Eq. (3)) is improving at first and then worsening.
KMCG is better at approximating the quadratic form than the determinant. Therefore, the
approximation often ‘overshoots’.

The baselines clearly outperform KMCG in these experiments. A possible explanation
is that the baselines provide a better overall-approximation to the kernel matrix: After P
CG-steps, the KMCG kernel is of rank P whereas using M inducing inputs, the VFE kernel
is of rank M (so is the FITC kernel, putting the diagonal correction aside). Since M =

√
NP ,

the baselines can afford more inducing inputs M than KMCG can afford CG-steps P .

Overall, when it comes to real-time, the baselines are preferable over KMCG. The picture
changes when matrix-multiplication is less expensive than O(N2) which is investigated in
the next section.

4.2. Grid-structured data sets

In the previous section the baselines are the preferable estimators over KMCG. This changes
when matrix-multiplication costs less than O(N2). For example when the kernel is a product
kernel (such as squared exponential) and the data set has grid-structure, the cost for matrix-
multiplication is almost linearly in the number of data-points (Wilson et al., 2014) such that
the number of CG-steps KMCG can take, matches the number of baseline inducing inputs.

4.2.1. Artificial data sets

The data sets considered in the following are artificial multi-dimensional grids.10 For the
training set, along each axis G points are equally spaced in [−G/4,G/4] distorted by Gaussian
noise N (0, 10−3). One hundred test inputs are uniformly distributed over the [−G/4,G/4]
cube. Targets are drawn from a Gaussian process with squared exponential kernel (length
scales and amplitude equal to 1). The number of inducing inputs had to be capped at 500
due to memory limitations.

Figure 7 shows how the approximation error to mean, variance and likelihood term
evolves, zoomed in on the first 100 steps. For reference, Fig. 7 also shows a 10× 10 data set
to give an idea how each method would evolve when investing more computational power
would be feasible. In the appendix, Figure 10 shows the same comparison over time for the
whole 500 steps, stopping KMCG when it becomes slower than the baselines.

10. Computing the exact solution is feasible exploiting the Kronecker structure of the kernel matrix which we
use to evaluate the quality of the approximation methods. However, we may imagine datapoints missing,
s.t. matrix-vector multiplication is fast but computing the exact solution is not.
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Figure 4: progression of the relative error εf as a function of the number of iterations of
CG and KMCG for different data sets using the squared-exponential kernel (Eq. 18). The
bottom axis is the number of CG-steps, which is the same for all plots. Therefore, this axis
is visible only in the last row. The top axis denotes the number of inducing inputs used
by the baseline methods. The shaded area visualizes minimum and maximum over all
baseline runs. A cross denotes the end of a crashed run.
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Figure 5: progression of the relative error of the variance εvar as a function of the number
of iterations of KMCG and baseline for different data sets using the squared-exponential
kernel (Eq. 18). The bottom axis is the number of CG-steps, which is the same for all
plots. Therefore, this axis is visible only in the last row. The top axis denotes the number
of inducing inputs used by the baseline methods. The shaded area visualizes minimum
and maximum over all baseline runs. A cross denotes the end of a crashed run.
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Figure 6: progression of the relative error of the evidence εev as a function of the number
of iterations of baseline and KMCG for different data sets using the squared-exponential
kernel (Eq. 18). The bottom axis is the number of CG-steps, which is the same for all
plots. Therefore, this axis is visible only in the last row. The top axis denotes the number
of inducing inputs used by the baseline methods. The shaded area visualizes minimum
and maximum over all baseline runs. A cross denotes the end of a crashed run. The small
spikes in the plots where KMCG appears to be close to the solution correspond to changes
of the estimate from too small to too large.
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On these data sets KMCG dominates the baseline methods. After already one hundred
CG-steps KMCG provides a useful approximation to the posterior mean whereas the
baselines hardly show any progress. For the variance, the same computational effort is not
enough. Though the baselines find better solutions, all methods essentially fail to arrive at a
satisfactory solution of a relative error below one. The issue is that all methods overestimate
the posterior variance by two orders of magnitude. The picture is similar for the evidence,
albeit the approximations are closer to the truth and KMCG performs slightly better on
average.

4.2.2. Natural Sound Modeling

For a real-world example of a grid-structured data set, we repeat the Natural Sound Modeling
experiment considered by Turner (2010); Wilson and Nickisch (2015) and Dong et al. (2017).
Given the intensity of a sound signal recorded over time, the objective is to recover the signal
in missing regions. All inputs (i.e. including missing) are equidistant and hence the kernel
matrix (over all inputs) is Toeplitz for stationary kernel. The kernel matrix over the given
inputs is not Toeplitz, which forbids to use this structure for exact inference. Nevertheless
matrix-vector-multiplication can be performed in linear time.

We use the squared-exponential kernel with the hyper-parameters used by Dong et al.
(2017). Since the exact posterior is infeasible to compute, we report only the standardized
mean squared-error:

SMSE :=
1

V[y]

N∗∑
j=1

(y∗,j − f̂(x∗,j))2.

To conform with the original experiment, we added for each baseline method a run the
inducing inputs where chosen to be on a regular grid. The result of this run correspond to
the minimum. Figure 8 confirms the observations from the previous section that KMCG
arrives at satisfactory solutions faster than baseline, if matrix-vector multiplication is not
an issue.

5. Conclusion

We have presented a new approximate inference method for kernel machines that showed how
linear solvers can be used in combination with low-rank kernel approximations. The approach
is based on a probabilistic numerics viewpoint: the kernel k is treated as a latent quantity and
a linear solver is used for collecting observations of k. By design, the resulting approximate
kernel is of low rank and is plugged into the nonparametric least-squares problem. The
approach is not restricted to least-squares problems but applicable in any scenario where
the bottleneck is the inversion of a large kernel matrix, as e.g. GP classification.

Our kernel machine conjugate gradients (KMCG), consistently outperforms plain conju-
gate gradients in numerical experiments. This does not change the fact that standard dense
kernel least-squares problems are often more efficiently solved by inducing point methods.
However, as demonstrated in Section 4.2, in the settings which allow fast multiplication with
the kernel matrix, the new algorithm can improve upon the state of the art.
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all baseline runs.
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Appendix A. Properties of the Symmetric Kronecker Product

The Kronecker product and its symmetric version have been studied, among others, by Loan
(2000) and Magnus and Neudecker (1980). The definitions used in this work slightly differ
from the authors above and instead follow Hennig (2015). The Kronecker product for two
arbitrary matrices A ∈ RN1×N2 , B ∈ RN3×N4 is defined as

[A⊗B]ij,kl := AikBjl

where i ∈ {1, ..., N1}, j ∈ {1, ..., N3}, k ∈ {1, ..., N2} and l ∈ {1, ..., N4}, and ij is not a
product but a double-index. The following identities about Kronecker products and the
vectorization operator can be found in Hennig and Kiefel (2013), and are restated here for
the convenience of the reader:

(A⊗B) vec (C) = vec (ACBᵀ) (K1)

(A⊗B)(C ⊗D) =(AC)⊗ (BD) (K2)

(A⊗B)−1 =A−1 ⊗B−1 (K3)

(A⊗B)> =Aᵀ ⊗Bᵀ (K4)

(A+B)⊗C =A⊗C +B ⊗C (K5)

where11 A,B,C,D ∈ RN×N , and A and B are assumed to be invertible.

An appealing property of Kronecker-structured matrices is their interaction with vector-
ized matrices. For a square matrix A =

[
a1 . . . aN

]ᵀ ∈ RN×N , the vectorization operator

vec ( ) : RN×N _RN2
stacks the rows12 of A into one vector:

vec (A) =

a1...
aN

 , with [vec (A)](ij) = [A]ij

11. The conditions can be more general but for ease of exposition, we assume all matrices are square and of
equal size.

12. Stacking the columns is equivalently possible and common. It is associated with a permutation in the
definition of the Kronecker product, but the resulting inferences are equivalent.
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and mat ( ) transforms an N2 vector into an N × N matrix, s.t. mat (vec (A)) = A. A
vector product of vectorized matrices corresponds to the trace of their product:

vec (A)ᵀ vec (B) = tr [ABᵀ] . (V1)

Proof

tr [ABᵀ] =
∑
i

[ABᵀ]ii

=
∑
i,j

AijB
ᵀ
ji

=
∑
i,j

AijBij

= vec (A)ᵀ vec (B)

The symmetric Kronecker product for two square matrices A,B ∈ RN×N of equal size
is defined as

A⊗	B := ΓN (A⊗B)ΓN

where [ΓN ]ij,kl := 1/2δikδjl + 1/2δilδjk satisfies

Γ vec (C) = 1/2 vec (C) + 1/2 vec (Cᵀ)

for all square-matrices C ∈ RN×N .
Equivalently, one can write

(A⊗	B)ij,kl =
1

4
(AikBjl +AilBjk +BikAjl +BilAjk) .

The symmetric Kronecker product inherits some of the desirable properties of the Kronecker
product. Some of the following identities can, again, be found in Hennig (2015), some are
due to Loan (2000) and Magnus and Neudecker (1980) and some are novel. The proof gives
exact credit.

Proposition 6 Let V ,W ∈ RN×N be square matrices and Aᵀ,B ∈ RN×M be rectangular.

W⊗	W = ΓN (W ⊗W ) (SK1)

ΓM (A⊗A) = (A⊗A)ΓN (SK2)

V ⊗	W = W⊗	V (SK3)

(A⊗A)(W⊗	W )(B ⊗B) = (AWB)⊗	(AWB) (SK4)

W⊗	W − V ⊗	V = (W + V )⊗	(W − V ) (SK5)

(W⊗	W )−1 = (W−1⊗	W−1). (SK6)

The interpretation of Eq. (SK6) requires some care: symmetric Kronecker product matrices
are rank deficient. Eq. (SK6) is to be read in the sense that for symmetric Y ∈ RN×N ,
i.e. Y = Y ᵀ, X := mat

(
(W−1⊗	W−1) vec (Y )

)
satisfies vec (Y ) = (W⊗	W ) vec (X) and

X is the unique symmetric solution.
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Proof The proofs for Eqs. (SK1) and (SK2) can be found in Magnus and Neudecker
(1999)[p. 46-50]. In the notation of Magnus and Neudecker (1999) Γ = Nn = DnD

+
n and

K = 2Γ− 2I. Eq. (SK1) is Theorem 13 (a). Eq. (SK2) follows from Theorem 9 (a).
To show (W⊗	V ) = (V ⊗	W ), let X ∈ RN×N be an arbitrary matrix.

(V ⊗	W ) vec (X) = Γ(V ⊗W )Γ vec (X)

=
1

2
Γ(V ⊗W ) vec (X +Xᵀ)

=
1

2
Γ vec (V (X +Xᵀ)W ᵀ)

=
1

4
vec (V (X +Xᵀ)W ᵀ +W (X +Xᵀ)V ᵀ)

=
1

2
Γ vec (W (X +Xᵀ)V ᵀ)

=
1

2
Γ(W ⊗ V ) vec (X +Xᵀ)

= Γ(W ⊗ V )Γ vec (X)

= (W⊗	V ) vec (X)

To show Eq. (SK4), use (SK2).

(A⊗A)(W⊗	W )(B ⊗B) = (A⊗A)Γ(W ⊗W )Γ(B ⊗B)

= Γ(A⊗A)(W ⊗W )(B ⊗B)Γ

= Γ(AWB ⊗AWB)Γ

= AWB⊗	AWB

The proof of Eq. (SK5) uses (SK3).

(A+B)⊗	(A−B) = Γ(A+B)⊗ (A−B)Γ

= Γ(A⊗A−A⊗B +B ⊗A−B ⊗B)Γ

= A⊗	A−A⊗	B +B⊗	A−B⊗	B
= A⊗	A−B⊗	A+B⊗	A−B⊗	B
= A⊗	A−B⊗	B

It remains to prove Eq. (SK6). Assume Z satisfies (W⊗	W ) vec (Z) = vec (Y ) and
Z = Zᵀ. Then,

vec (Y ) = (W⊗	W ) vec (Z)

= (W ⊗W )ΓN vec (Z) using Eq. (SK1) and Eq. (SK2)

= (W ⊗W ) vec (Z) since Z = Zᵀ

and hence, Z = (W ⊗W )−1 vec (Y ). Using Eq. (K3) and again Eq. (SK1),

Z = (W−1⊗	W−1) vec (Y )

which is the definition of X.
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A.1. Sampling from a Gaussian with Symmetric Kronecker Covariance matrix

To sample matrices from the KMCG posterior (Eq. 13) the following proposition will be
useful.

Proposition 7 Let W ,WM ∈ RN×N be symmetric and positive semi-definite matri-
ces s.t. W − WM is symmetric positive-semidefinite as well. Further let vec (Y ) ∼
N (0,W⊗	W −WM⊗	WM ), denote with L+ the Cholesky of W + WM , with L− the
Cholesky of W −WM and let vec (X) ∼ N (0, IN2), then Γ(L1 ⊗L2) vec (X) and vec (Y )
have the same distribution.

Remark: This shows that Y is symmetric due to the Γ-operator.

Proof As vec (X) is standard normal, Γ(L+ ⊗ L−) vec (X) is distributed Gaussian with
mean 0 and covariance matrix Γ(L+ ⊗L−)(Γ(L+ ⊗L−))ᵀ.

Γ(L+ ⊗L−) [Γ(L+ ⊗L−)]ᵀ = Γ(L+ ⊗L−)(Lᵀ
+ ⊗Lᵀ

−)Γ

= (L+L
ᵀ
+)⊗	(L−L

ᵀ
−)

= (W +WM )⊗	(W −WM )

According to Equation (SK5): (W +WM )⊗	(W −WM ) = W⊗	W −WM⊗	WM .

Appendix B. Inducing Input Methods

This section contains the proof of Proposition 1, introduced on page 7, and, for the readers
convenience, restated below, along with the referenced equations.

Proposition 8 (Subset of Regressors) Consider the prior of Eq. (9) with k0 := 0 and
w := k and the likelihood defined in Example 1 with sij = δij. Then the posterior mean kM
is equivalent to that of SoR:

kM (x, z) = kSoR = k(x,XU )k(XU ,XU )−1k(XU , z)

where XU are inducing inputs, not necessarily part of X.

The mentioned equations are

k ∼ GP(k0, γψ), (9)

ψ(k(a, b), k(c,d)) :=
1

2
w(a, c)w(b,d) +

1

2
w(a,d)w(b, c), (10)

T p :(X× X)R → RP
2
, k 7→ vec

([∫∫
k(x, z)pi(x)pj(z) dx dz

]
ij

)
, (11)

and pi(x) :=
M∑
j=1

sijδ(x− xuj ). (12)

Proposition 1 follows from the more general Proposition 9, below.
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Proposition 9 Consider the prior of Eq. (9) (without the restriction w = k) and the
likelihood defined in Example 1. The posterior over k is p(k | Y = T pk) = N (k; kM , ψM )
with posterior mean

kM (a, b) = k0(a, b) + w(a,XU )S(SᵀWMS)−1SᵀKMS(SᵀWMS)−1Sᵀw(XU , b) (20)

− w(a,XU )S(SᵀWMS)−1Sᵀk0(XU ,XU )S(SᵀWMS)−1Sᵀw(XU , b)

and posterior variance

ψM (k(a,b), k(c,d)) =
1

2
w(a, c)w(b,d) +

1

2
w(a,d)w(b, c) (21)

− 1

2
w(a,XU )S(SᵀWMS)−1Sᵀw(XU , c)w(b,XU )S(SᵀWMS)−1Sᵀw(XU ,d)

− 1

2
w(a,XU )S(SᵀWMS)−1Sᵀw(XU ,d)w(b,XU )S(SᵀWMS)−1Sᵀw(XU , c)

where WM = w(XU ,XU ).

Proof The proof is tedious linear algebra. If prior and likelihood are Gaussian, so is the
posterior with mean

kM (a, b) = k0(a, b)− (T pψ(k(a, b), ·))ᵀ(T p(T pw)ᵀ)−1 vec (Y − Sᵀk0(XU ,XU )S) ,

and variance

ψM (k(a, b), k(c,d)) = ψ((a, b), (c,d))− (T pψ((a, b), (·, ·)))ᵀ(T p(T pψ)ᵀ)−1T pψ(c,d), (·, ·)).

With Lemma 10 and Eq. (SK6), we can write

(T pψ(k(a, b), ·))ᵀ(T p(T pw)ᵀ)−1

=
1

2
vec (Sᵀw(XU ,a)w(b,XU ) + w(XU , b)w(a,XU ))S)ᵀ

(
(SᵀWMS)−1⊗	(SᵀWMS)−1

)
=

1

2
vec
(
(SᵀWMS)−1Sᵀw(XU ,a)w(b,XU ) + w(XU , b)w(a,XU ))S(SᵀWMS)−1

)ᵀ
and, using Eq. (V1), obtain for Eq. (20):

kM (a, b) = k0(a, b)

+
1

2
tr
[
(SᵀWMS)−1Sᵀw(XU ,a)w(b,XU )S(SᵀWMS)−1(Y − k0(XU ,XU ))

]
+

1

2
tr
[
(SᵀWMS)−1Sᵀw(XU , b)w(a,XU )S(SᵀWMS)−1(Y − k0(XU ,XU ))

]
= k0(a, b) + w(a,XU )S(SᵀWMS)−1SᵀKMS(SᵀWMS)−1Sᵀw(XU , b)

− w(a,XU )S(SᵀWMS)−1Sᵀk0(XU ,XU )S(SᵀWMS)−1Sᵀw(XU , b)

The derivation for Eq. (21) follows analogously.
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Lemma 10 Let T p be defined by Eq. (12).

T pw(k(a, b), ·) =
1

2
vec (Sᵀ (w(XU ,a)w(b,XU ) + w(XU , b)w(a,XU ))S) (22)

T p(T pw(·, ·))ᵀ = (SᵀWMS)⊗	(SᵀWMS) (23)

Proof Denote with mat ( ) the complement of the vectorization operator, i.e. mat (vec (A)) =
A. Define the matrix S ∈ RN×M as Sij = sij and denote with Sl the l-th column of S.
Also recall that by Eq. (10) ψ(k(a, b), k(x, z)) = 1

2(w(a,x)w(b, z) + w(a, z)w(b,x)).

[mat (T p[ψ(k(a, b), k(·, ·))])]ij

=

∫∫
ψ(k(a, b), k(x, z))

(
M∑
l=1

silδ(x− ul)
)(

M∑
l=1

sjlδ(z − ul)
)

dx dz

=

∫∫
1

2
(w(a,x)w(b, z) + w(a, z)w(b,x))

(
M∑
l=1

silδ(x− ul)
)(

M∑
l=1

sjlδ(z − ul)
)

dx dz

=
1

2

M∑
m=1

M∑
l=1

SimSjl(w(a,um)w(b,ul) + w(a,ul)w(b,um))

=
1

2
[Sᵀw(XU ,a)w(b,XU )S + Sᵀw(XU , b)w(a,XU )S]ij

=
1

2
[Sᵀ(w(XU ,a)w(b,XU ) + w(XU , b)w(a,XU ))S]ij

which shows Eq. (22)

= [mat ((Sᵀ ⊗ Sᵀ)Γ vec (w(XU ,a)w(b,XU )))]ij

= [mat ((Sᵀ ⊗ Sᵀ)Γ(w(XU ,a)⊗ w(XU , b)))]ij

Repeating above derivations shows the second statement, Eq. (23):

T p(T pψ)ᵀ = (Sᵀ ⊗ Sᵀ)Γ(w(XU ,XU )⊗ w(XU ,XU ))Γ(S ⊗ S)

= (S ⊗ S)ᵀ(w(XU ,XU )⊗	w(XU ,XU ))(S ⊗ S)

= (SᵀWMS)⊗	(SᵀWMS) Equation (SK4)

Proposition 11 If k0 = 0, S has rank M , and k and w are positive definite kernel functions
then the posterior mean in Eq. (20) is symmetric and positive semi-definite.

Proof

With k0 = 0 the expression for kM from Proposition 9 simplifies to

kM (x, z) =w(x,XU )S(SᵀWMS)−1SᵀKMS(SᵀWMS)−1Sᵀw(XU , z).
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The function kM is symmetric since k is symmetric. The bivariate function kM is said
to be positive (semi-)definite iff for all n ∈ N and for all Z ∈ X, kM (Z,Z) is a positive
(semi-)definite matrix. Since k(XU ,XU ) is a symmetric and positive definite (s.p.d.)
matrix, so is Sᵀk(XU ,XU )S for arbitrary S. The same argument holds for SᵀWMS.
Since S is rank M , (SᵀWMS)−1 exists and the inverse of an s.p.d. matrix is s.p.d. as well.
Therefore S(SᵀWMS)−1SᵀKMS(SᵀWMS)−1S is symmetric and positive semi-definite.
This completes the proof.

Appendix C. Projected Bayes Regressor

This section contains the proof of Proposition 2 restated below.

Proposition 12 (Projected Bayes Regressor) Consider the prior of Eq. (9) with k0 :=
0 and w := k and the likelihood defined in Example 2. Let λ1 to λP be the largest eigenvalues
of the kernel k (w.r.t to the Mercer expansion) and assume the inputs x1, ...,xN are inde-
pendent and identical draws from ν. Then the posterior kernel kM leads to the Projected
Bayes Regressor (Trecate et al., 1999).

Proof Given Lemma 13 below, all that remains is to substitute kM in Eq. (1) which evaluates
to

φ(x∗)ᵀ(ΦΦᵀ + σ2Λ−1)Φᵀy. (24)

Comparing b(x) in Definition 1 in Trecate et al. (1999) and Eq. (24) one observes that both
are equivalent.

Lemma 13 Let φi i = 1, ..., P be orthogonal Eigenfunctions of k with respect to a density ν
on X, i.e. ∫

k(x, z)φi(z)ν(z) dz = λiφi(x)∫
φi(z)φj(z)ν(z) dz = δij

where λi ∈ R and δij is the Kronecker delta. Under the prior of Eq. (9) with k0 := 0 and
w := k and the likelihood defined in Example 2 with pi(x) = φi(x)ν(x), the approximate
kernel (Eq. (13)) evaluates to

kM (x, z) =
M∑
j=1

λjφj(x)φj(z) = φ(x)ᵀΛφ(z)

where [φ(x)]i = φi(x) and Λij := δijλi.
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Proof With a zero prior-mean, the posterior over k (Eq. (13)) simplifies to

kM (x, z) = (T pψ(k(x, z), ·)ᵀ(T p(T pψ)ᵀ)−1T pk.

Differing from the proof of Proposition 9 the observation operator T p (Eq. 11) is of the
form:

[mat (T pk)]ij =

∫∫
k(x, z)φi(x)φj(z) ν(dx)ν(dz)

= λi

∫
φi(z)φj(z) ν(dz)

= λiδij

= Λij .

The observation operator T p applied to the covariance function w evaluates to:

[mat (T pψ(k(a, b), k(·, ··)))]ij =

[
mat

(
T p

[
1

2
k(a, ·)k(b, ··) +

1

2
k(a, ··)k(b, ·)

])]
ij

=
1

2

∫∫
k(a,x)k(b, z)φi(x)φj(z)ν(dx)ν(dz)

+
1

2

∫∫
k(a,x)k(b, z)φj(x)φi(z)ν(dx)ν(dz)

=
1

2
λiλj(φi(a)φj(b) + φi(b)φj(a)) (25)

=
1

2
[Λ(φ(a)φ(b)ᵀ + φ(b)φ(a)ᵀ)Λ]ij .

Applying T p again, leads to

[T p(T pψ)ᵀ]ij,gh =

∫∫
[T pψ(k(x, z), k(·, ··)]ᵀghφi(x)φj(z) ν(dx)ν(dz)

using Equation (25)

=
1

2
λgλh

∫∫
(φg(x)φh(z) + φg(z)φh(x))φi(x)φj(z) ν(dx)ν(d(z)

=
1

2
λgλh

∫
(δigφh(z) + δihφg(z))φj(z) ν(d(z)

=
1

2
λgλh(δigδjh + δihδjg)

= [Λ⊗	Λ]ij,gh
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where the last equation follows from the definition of the symmetric Kronecker product.
This implies for the posterior mean over the kernel:

kM (a, b) = (T pψ(k(a, b), ·)ᵀ(T p(T pψ)ᵀ)−1T pk

=
1

2
vec (Λ(φ(a)φ(b)ᵀ + φ(b)φ(a)ᵀ)Λ)ᵀ (Λ⊗	Λ)−1 vec (Λ)

=
1

2
vec ((φ(a)φ(b)ᵀ + φ(b)φ(a)ᵀ))ᵀ vec (Λ)

applying Equation (V1):

=
1

2
tr [Λ(φ(a)φ(b)ᵀ + φ(b)φ(a)ᵀ)]

= φ(a)ᵀΛφ(b).

Appendix D. Benchmark data sets

Table 1 describes the purposes and origins of standard benchmark data sets used for
Gaussian process regression. More information on PRECIPITATION can be found at http:
//www.image.ucar.edu/Data/US.monthly.met/. It appears that the data sets AILERONS,
ELEVATORS and POLETELECOMM are no longer available under the link https://www.

dcc.fc.up.pt/~ltorgo/Regression/datasets.html. However, all files are part of this
submission.

Appendix E. Additional Experiments and Results

This section consists of figures showing the results of Section 4.1 for the Matérn kernel,
real-time experiments and experiments with the textbook version of conjugate gradients.

E.1. Real-time Results

This section shows the same results as in Section 4.1 but over training-time instead of
CG-steps. All figures have been trimmed to the slowest baseline method. Fig. 9 shows how
the relative error εf develops over time for the squared exponential kernel and Fig. 10 shows
the same for experiments over grid-structured data sets from Section 4.2. For the x-axis
values we took the median of all measurements and fitted a quadratic function to these.

E.2. Matérn Kernel Results

The figures in this section show the results for the Matérn 5/2 kernel (Eq. (19)) for the
experiment setup described Section 4.1. Fig. 11 shows the results for the relative error εf ,
Fig. 12 and Fig. 13 the results for εvar and εev, respectively. Fig. 14 displays the relative
error over time.

http://www.image.ucar.edu/Data/US.monthly.met/
http://www.image.ucar.edu/Data/US.monthly.met/
https://www.dcc.fc.up.pt/~ltorgo/Regression/data sets.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/data sets.html
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ABALONE Nash et al. (1994); Waugh (1995); Dua and Graff (2019)
age prediction of abalone from physical measurements
https://archive.ics.uci.edu/ml/datasets/Abalone

AILERONS Camachol (1998)
control action prediction on the ailerons of an F16 aircraft

ELEVATORS Camachol (1998)
control action prediction on the elevators of an F16 aircraft

MPG Quinlan (1993); Dua and Graff (2019)
fuel consumption prediction in miles per gallon for different attributes of cars
https://archive.ics.uci.edu/ml/datasets/auto+mpg

POLETELECOMM Weiss and Indurkhya (1995)
commercial telecommunication application–no further information

PRECIPITATION Vanhatalo and Vehtari (2008)
US annual precipitation prediction for the year 1995
https://github.com/gpstuff-dev/gpstuff/blob/master/gp/demodata/USprec1.txt

PUMADYN Snelson and Ghahramani (2006)
acceleration prediction one of the arm links given angles, positions and velocities of other
links of a Puma560 robot
ftp://ftp.cs.toronto.edu/pub/neuron/delve/data/tarfiles/pumadyn-family/

pumadyn-32nm.tar.gz

SOUND Turner (2010); Wilson and Nickisch (2015)
sound intensity prediction of a signal recorded over time for missing regions
https://github.com/kd383/GPML_SLD/blob/master/demo/sound/audio_data.mat

TOY introduced in this work
targets are a draw from a zero-mean Gaussian process with squared exponential kernel
(Eq. (18) with Λ = 0.25 and θf = 2), inputs stem in equal parts from a Gaussian mixture
(N (0, 1) +N (1, 0.1) +N (−0.5, 0.05)) and the uniform distribution over [0, 1]

Table 1: descriptions and sources for all data sets considered in this work.

https://archive.ics.uci.edu/ml/data sets/Abalone
https://archive.ics.uci.edu/ml/data sets/auto+mpg
https://github.com/gpstuff-dev/gpstuff/blob/master/gp/demodata/USprec1.txt
ftp://ftp.cs.toronto.edu/pub/neuron/delve/data/tarfiles/pumadyn-family/pumadyn-32nm.tar.gz
ftp://ftp.cs.toronto.edu/pub/neuron/delve/data/tarfiles/pumadyn-family/pumadyn-32nm.tar.gz
https://github.com/kd383/GPML_SLD/blob/master/demo/sound/audio_data.mat
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Figure 9: progression of the relative error εf over training time for different data sets
using the squared-exponential kernel (Eq. 18). The shaded area visualizes minimum and
maximum over all baseline runs. A cross denotes the end of a crashed run.
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Figure 10: progression of the relative error εf over training time for different data sets
using the squared-exponential kernel (Eq. 18). The shaded area visualizes minimum and
maximum over all baseline runs. A cross denotes the end of a crashed run. It may seem
surprising that the runs on the 100× 100× 100 data set take more than twice as long. By
chance, the data set contains more extreme values in the kernel matrix, i.e. smaller than
1e−50. Multiplication with these elements takes more time.
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Figure 11: progression of the relative error εf as a function of the number of iterations of
baseline and KMCG for different data sets using the Matérn kernel (Eq. 19). The bottom
axis is the number of CG-steps, which is the same for all plots. Therefore, this axis is
visible only in the last row. The top axis denotes the number of inducing inputs used by the
baseline methods. The shaded area visualizes minimum and maximum over all baseline
runs. A cross denotes the end of a crashed run.
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Figure 12: progression of the relative error of the variance εvar as a function of the number
of iterations of baseline and KMCG for different data sets using the Matérn kernel (Eq. 19).
The bottom axis is the number of CG-steps, which is the same for all plots. Therefore, this
axis is visible only in the last row. The top axis denotes the number of inducing inputs used
by the baseline methods. The shaded area visualizes minimum and maximum over all
baseline runs. A cross denotes the end of a crashed run.
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Figure 13: progression of the relative error of the evidence εev as a function of the number
of iterations of baseline and KMCG for different data sets using the Matérn kernel (Eq. 19).
The bottom axis is the number of CG-steps, which is the same for all plots. Therefore, this
axis is visible only in the last row. The top axis denotes the number of inducing inputs used
by the baseline methods. The shaded area visualizes minimum and maximum over all
baseline runs. A cross denotes the end of a crashed run.
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Figure 14: progression of the relative error εf over training time for different data sets using
the Matérn kernel (Eq. 19). The shaded area visualizes minimum and maximum over all
baseline runs. A cross denotes the end of a crashed run.
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E.3. Instability of Textbook Conjugate Gradients

The experiments in Section 4, where carried out by running conjugate gradients with full
reorthogonalization. Fig. 15 demonstrates that for the problems under consideration, the
textbook version of conjugate gradients is not sufficiently numerically stable.13 With vanilla
conjugate gradients in the background, KMCG can run only for a couple of steps before the
Cholesky decomposition of SᵀKS fails.
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