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Abstract

Tterative Hard Thresholding (IHT) is a popular class of first-order greedy selection meth-
ods for loss minimization under cardinality constraint. The existing IHT-style algorithms,
however, are proposed for minimizing the primal formulation. It is still an open issue to
explore duality theory and algorithms for such a non-convex and NP-hard combinatorial
optimization problem. To address this issue, we develop in this article a novel duality
theory for ¢5-regularized empirical risk minimization under cardinality constraint, along
with an IHT-style algorithm for dual optimization. Our sparse duality theory establishes a
set of sufficient and/or necessary conditions under which the original non-convex problem
can be equivalently or approximately solved in a concave dual formulation. In view of this
theory, we propose the Dual IHT (DIHT) algorithm as a super-gradient ascent method
to solve the non-smooth dual problem with provable guarantees on primal-dual gap con-
vergence and sparsity recovery. Numerical results confirm our theoretical predictions and
demonstrate the superiority of DIHT to the state-of-the-art primal IHT-style algorithms
in model estimation accuracy and computational efficiency.!

Keywords: Iterative hard thresholding, Duality theory, Sparsity recovery, Non-convex
optimization

1. Introduction

We consider the problem of learning sparse predictive models which has been extensively
studied in high-dimensional statistical learning (Hastie et al., 2015; Bach et al., 2012). Given

1. A conference version of this article appeared at ICML 2017 (Liu et al., 2017). The first two authors
contributed equally to this article.
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a set of training samples {(z;,y;)}, in which x; € R? is the feature representation and
y; € R the corresponding label, the following sparsity-constrained f2-norm regularized loss
minimization problem is often considered for learning the sparse representation of a linear
predictive model (Bahmani et al., 2013):

. 1 o T A 2

||ﬁ;2kp(w) N ;l(w T, yi) + 5”“’” . (1)
Here w € R? is the model parameter vector, I(w'z;; ;) is a convex function that measures
the linear regression/prediction loss of w at data point (x;,y;), and A > 0 is the regulariza-
tion modulus. For example, the squared loss [(u,v) = 3(u —v)? is used in linear regression
and the hinge loss [(u, v) = max{0, 1 —uv} in support vector machines. The cardinality con-
straint ||wl||o < k is imposed for improving learnability and interpretability of model when d
is potentially much larger than N. Due to the presence of such a constraint, the problem (1)
is simultaneously non-convex and NP-hard even for the quadratic loss function (Natarajan,
1995), hence is challenging for optimization. An alternative way to address this challenge is
to use proper convex relaxation, e.g., £1-norm (Tibshirani, 1996) and k-support norm (Ar-
gyriou et al., 2012), as an alternative of the cardinality constraint. However, the convex
relaxation based techniques tend to introduce bias for parameter estimation (Zhang and
Huang, 2008).

In this article, we are interested in algorithms that directly minimize the non-convex
formulation (1). Early efforts mainly lie in compressed sensing for signal recovery, which is
a special case of (1) with squared loss (Donoho, 2006; Pati et al., 1993). Among others, a
family of the so called Iterative Hard Thresholding (IHT) methods have gained particular
interests and they have been witnessed to offer the fastest and most scalable solutions in
many cases (Blumensath and Davies, 2009; Foucart, 2011). In recent years, IHT-style meth-
ods have been generalized to handle more general convex loss functions (Beck and Eldar,
2013; Jain et al., 2014; Yuan et al., 2018) as well as structured sparsity constraints (Jain
et al., 2016). The common theme of these methods is to iterate between gradient descent
and hard thresholding to maintain sparsity of solution while minimizing the objective value.
In our problem setting, a plain IHT iteration is given by

w® = Hy, (w(tfl) — nVP(w(tfl))) ,

where Hg(+) is the truncation operator that preserves the top k (in magnitude, with ties bro-
ken arbitrarily) entries of input and sets the remaining to be zero, and 7 > 0 is the learning
rate. In practice, IHT-style algorithms have found their applications in deep neural networks
compression (Jin et al., 2016), sparse signal demixing from noisy observations (Soltani and
Hegde, 2017), and fluorescence molecular lifetime tomography (Cai et al., 2016), to name a
few.

Although THT-style methods have long been studied, so far this class of methods is
only designed for optimizing the primal formulation (1). It still remains an open problem
to investigate the feasibility of solving the original NP-hard/non-convex formulation in
a dual space that might potentially generate new sparsity recovery theory and further
improve computational efficiency. To fill this gap, inspired by the emerging success of dual
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optimization methods in regularized learning problems (Shalev-Shwartz and Zhang, 2013b,
2016; Xiao, 2010; Tan et al., 2018), we establish in this article a sparse Lagrangian duality
theory and propose an IHT-style algorithm along with its stochastic extension for efficient
dual optimization.

1.1 Overview of Contribution

The core contribution of this work is two-fold in theory and algorithm. As the theoretical
aspect of our contribution, we have established a novel strong sparse Lagrangian duality
theory for the NP-hard and non-convex combinatorial optimization problem (1) which to
the best of our knowledge has not been reported elsewhere in literature. A fundamental
result is showing that the following condition is sufficient and necessary to guarantee a zero
primal-dual gap between the primal non-convex problem and the dual concave problem:

where 0 is the k-sparse primal minimizer and & € [0y (w " z1), ..., 0y (w0 zx)]. The strong
sparse duality theory suggests a natural way for finding the global minimum of the sparsity-
constrained minimization problem (1) via equivalently maximizing its dual problem as given
in (6) which is concave. Although can be partially verified for some special models such
as sparse linear regression and logistic regression, the preceding condition could more often
than not be violated in practice, leading to non-zero primal-dual gap. In order to address
this issue, we further develop an approximate sparse duality theory to cover the setting
where sparse strong duality does not hold exactly.

On the algorithm side, we propose the Dual IHT (DIHT) algorithm as a super-gradient
ascent method to maximize the non-smooth dual objective. In high level description, DIHT
iterates between dual gradient ascent and primal hard thresholding pursuit until conver-
gence. A stochastic variant of DIHT is further proposed to handle large-scale learning
problems. For both algorithms, we provide non-asymptotic convergence analysis on dual
estimation error, primal-dual gap, and sparsity recovery as well. In contrast to the exist-
ing analysis for primal IHT-style algorithms, our analysis is not explicitly relying on the
Restricted Isometry Property (RIP) conditions and thus would be less restrictive in real-
life high-dimensional estimation. Numerical results on synthetic and benchmark data sets
demonstrate that DIHT and its stochastic extension significantly outperform the state-of-
the-art primal IHT-style algorithms in estimation accuracy and computational efficiency.

The main contributions of this article are highlighted in below:

e Sparse Lagrangian duality theory: we introduce a sparse saddle point theorem (Theo-
rem 2), a sparse mini-max theorem (Theorem 5) and a sparse strong duality theorem
(Theorem 8). Moreover, we establish an approximate duality theory (Theorem 13) as
a complement to the strong sparse duality theory.

e Dual iterative hard thresholding algorithm: we propose an IHT-style algorithm along
with its stochastic extension for non-smooth dual maximization. These algorithms
have been shown to converge at sub-linear rates when the individual loss functions
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Notation Definition
N number of samples
d number of features
k the sparsity level hyper-parameter
A the regularization strength hyper-parameter
P(w) the primal objective function
w the primal k-sparse minimizer given by w := arg min,, <, P(w)
D(«) the dual objective function
F the feasible set of dual variables
a the dual maximizer given by & := argmax,r D(«)
epp(w, a) the sparse primal-dual gap defined by epp(w, ) := P(w) — D(«)
X the data matrix of which the columns are N data samples
Hp(x) the truncation operator that restricts vector z to the index set F'
Hy(x) the truncation operator that restricts z to its top k (in magnitude) entries
supp(z) the index set of non-zero entries of x
l|lz]o number of non-zero entries of x, i.e., ||z|o := |supp(x)|
[x]; the i-th entry of x
12| oo the largest (in magnitude) element of z, i.e., ||z||c := max; |[x]i]
Tmin the smallest non-zero element of z, i.e., Zmin := MiN;cqupp(a) |[z];]
Amax(A) the largest eigenvalue of matrix A
Amin(4) the smallest eigenvalue of A
I Al the spectral norm (the largest singular value) of A
Ap the restriction of A with rows restricted to F'

Table 1: Table of notation.

are Lipschitz smooth (see Theorem 15 and Theorem 19), and at linear rates if further
assuming that the loss functions are strongly convex (see Theorem 17 and Theo-
rem 22).

1.2 Notation and Organization

Notation. The key quantities and notations that commonly used in our analysis are sum-
marized in Table 1.

Organization. The rest of this article is organized as follows: In Section 2 we briefly review
the related literature. In Section 3 we develop a Lagrangian duality theory for sparsity-
constrained minimization problems. The dual IHT algorithms along with convergence anal-
ysis are presented in Section 4. The numerical evaluation results are reported in Section 5.
Finally, the concluding remarks are made in Section 6. All the technical proofs are deferred
to the appendix sections.

2. Related Work

For generic convex objective beyond quadratic loss, the rate of convergence and parame-
ter estimation error of IHT-style methods were analyzed under proper RIP (or restricted
strong condition number) bounding conditions (Blumensath, 2013; Bahmani et al., 2013;
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Yuan et al., 2014). In the work of Jain et al. (2014), several sparsity-level-relaxed variants of
IHT-style algorithms were presented for which the high-dimensional estimation consistency
can be established without requiring the RIP conditions. The support recovery performance
of THT-style methods has been studied to understand when the algorithm can exactly re-
cover the support of a sparse signal from its compressed measurements (Yuan et al., 2016;
Shen and Li, 2017a,b). A Nesterov’s momentum based hard thresholding method was pro-
posed by Khanna and Kyrillidis (2018) to further improve the efficiency of IHT. In large-
scale settings where a full gradient evaluation on all data samples becomes a bottleneck,
stochastic and variance reduction techniques have been adopted to improve the computa-
tional efficiency of IHT via leveraging the finite-sum structure of learning problem (Nguyen
et al., 2017; Li et al., 2016; Chen and Gu, 2016; Shen and Li, 2018; Zhou et al., 2018).
For distributed learning with sparsity, an approximate Newton-type extension of IHT was
developed that takes advantage of the stochastic nature of problem to improve communica-
tion efficiency. The generalization performance of IHT has recently been studied from the
perspective of algorithmic stability (Yuan and Li, 2020).

Another related line of research is dual optimization which has gained considerable
popularity in various machine learning tasks including kernel learning (Hsieh et al., 2008),
online learning (Xiao, 2010), multi-task learning (Lapin et al., 2014) and graphical mod-
els learning (Mazumder and Hastie, 2012). In recent years, a number of stochastic dual
coordinate ascent (SDCA) methods have been proposed for solving large-scale regularized
loss minimization problems (Shalev-Shwartz and Zhang, 2013a,b, 2016). All these methods
exhibit fast convergence rate in theory and highly competitive numerical performance in
practice. Shalev-Shwartz (2016) also developed a dual free variant of SDCA that supports
non-regularized objectives and non-convex individual loss functions. To further improve
computational efficiency, some primal-dual methods are developed to alternately minimize
the primal objective and maximize the dual objective. The successful examples of primal-
dual methods include learning total variation regularized model (Chambolle and Pock, 2011)
and generalized Dantzig selector (Lee et al., 2016). For large-scale machine learning, several
stochastic and distributed variants were developed to make the primal-dual algorithms more
computationally efficient and scalable (Zhang and Xiao, 2017; Yu et al., 2015; Tan et al.,
2018; Xiao et al., 2019).

Our work lies at the intersection of the above two disciplines of research. Although dual
optimization methods have long been studied in machine learning, it still remains largely
unknown, in both theory and algorithm, how to apply dual methods to the non-convex and
NP-hard sparse estimation problem (1) where the non-convexity arises from the cardinality
constraint rather than the objective function. The main contribution of the present article
is closing this gap by presenting a novel sparse Lagrangian duality theory and a dual THT
method with provable guarantees on sparsity recovery accuracy and efficiency.

3. A Sparse Lagrangian Duality Theory

In this section, we establish weak and strong duality theory that guarantees the original non-
convex and NP-hard problem in (1) can be equivalently solved in a dual space. The results
in this part lay a theoretical foundation for developing dual sparse estimation methods.
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3.1 Sparse Strong Duality Theory

From here onward we abbreviate I;(u) = I(u,y;). The convexity of I(w'xz;,v;) implies

that [;(u) is also convex. Let If(a;) = max{o;u — [;(u)} be the convex conjugate of I;(u)
u

and F; C R be the feasible set of a;. According to the standard expression of I;(u) =

maxa,er, {aiu — (o)}, the problem (1) can be reformulated into the following mini-max

formulation:

* A
i 2 a0} ®

The following defined Lagrangian form will be useful in analysis:

N
1 A
Lw,a) = > <ainxi . l:‘(ai)) + Sl
i=1
where a = [a,...,ay] € F := Fy x --- x Fy € RY is the vector of dual variables. We
now introduce the following concept of sparse saddle point which is a restriction of the
conventional saddle point to the setting of sparse optimization.

Definition 1 (Sparse saddle point) Let k > 0 be an integer. A pair (w,a) € R x F
is said to be a k-sparse saddle point for L if ||w]o < k and the following holds for all
|lwllo < k,a € F:

L(w,a) < L(w, @) < L(w, &). (3)

Different from the conventional definition of saddle point, the k-sparse saddle point only
requires that the inequality (3) holds for an arbitrary k-sparse vector w. The following
result is a basic sparse saddle point theorem for L. Throughout the article, we will use '(-)
to denote a sub-gradient (or super-gradient) of a convex (or concave) function I(-), and use
Ol(-) to denote its sub-differential (or super-differential).

Theorem 2 (Sparse saddle point theorem) Let w € RY be a k-sparse primal vector
and & € F be a dual vector. Then the pair (w,&) is a k-sparse saddle point for L if and
only if the following conditions hold:

(a) w solves the primal problem in (1);

(b) a € [0l (0w z1),...,0ln (0w zN)];
(c) w=Hy (-ﬁ PO @zl‘z)

Remark 3 Theorem 2 shows that the conditions (a)~(c) are sufficient and necessary to
guarantee the existence of a sparse saddle point for the Lagrangian form L. The condition (c)
can be regarded as a Sparsity Constraint Qualification condition to guarantee the existence
of saddle point.

Remark 4 Let us consider P'(w) = + Zfil a;x; + \w € OP(w). Denote F = supp(w). It
is straightforward to verify that the condition (c) in Theorem 2 is equivalent to

Hp(P(5)) =0, Buin > 5|0 o 4
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To gain some intuition of the above condition, let us consider a simple example where
w € RN, {z; = e;} are the standard basis of RY and P(w) = 5% Zi\il(yz —w;)? + 5wl
18 quadratic. In this case, it is trivial to see that the primal minimizer is given by w =
Hy, <1+%> and P'(w) = (A + %)@ — wy. Denote [|yl];) the j-th largest entry of |yl,
i, [[wlloy = [lle = - = [lWllav)y- Then the above condition (4) is characterized by

Uyl (x) > Uyl (k+1) Iyl (kt1)
1+AN = AN [yl ey —lyll (kt1)) ©
to be strictly larger than [|y|](x4+1) to guarantee the existence of such a .

which basically requires A > 7 Obviously, we need [|y|]x)

The following sparse mini-max theorem guarantees that the min and max in formulation (2)
can be safely switched if and only if there exists a sparse saddle point for L(w, ).

Theorem 5 (Sparse mini-max theorem) The mini-maz relationship

max min L(w,a) = min max L(w, ) (5)
acF ||lwlo<k lwllo<k acF

holds if and only if there exists a sparse saddle point (w,a) for L.

The sparse mini-max result in Theorem 5 provides sufficient and necessary conditions under
which one can safely exchange a min-max for a max-min, in the presence of non-convex
cardinality constraint. The following corollary is a direct consequence of invoking Theorem 2
to Theorem 5.

Corollary 6 The mini-maz relationship

max min L(w,a) = min max L(w, a)
a€F ||lw|o<lk |lwllo<k aeF

holds if and only if there exist a k-sparse primal vector w € R? and a dual vector a € F
such that the conditions (a)~(c) in Theorem 2 are fulfilled.

The mini-max result in Theorem 5 can be used as a basis for establishing sparse duality
theory. Indeed, we have already shown the following:

min max L(w,a) = min P(w).
[wllo<k a€F l[wllo<k

This is called the primal minimization problem and it is the min-max side of the sparse mini-
max theorem. The other side, the max-min problem, will be called as the dual maximization
problem with dual objective function D(a) := min,,<x L(w, @), i.e.,

D = in L . 6
max D{a) = max min L(w,a) (6)

The following Proposition 7 shows that the dual objective function D(«) is concave and
explicitly gives the expression of its super-differential.

Proposition 7 The dual objective function D(«) is given by

N
Dla) = 1 3 I o) — S w(@)]?

=1
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where w(a) = Hy, <fﬁ Zfil ai:ci>. Moreover, D(«) is concave and its super-differential

s given by
1
0D(a) = N [w(a) 1 — ol (1), .., w(a) "z — Ol (an)].

Particularly, if w(a) is unique at o with respect to the truncation operator Hy(-) and
{I*}Yi=1,. n are differentiable, then 0D(«) is unique and it is the super-gradient of D(c).

In view of Theorem 2 and Theorem 5, we are in the position to establish a sparse strong
duality theorem which gives the sufficient and necessary conditions under which the optimal
values of the primal and dual problems coincide.

Theorem 8 (Sparse strong duality theorem) Let w € R? be a k-sparse primal vector
and & € F be a dual vector. Then & solves the dual problem in (6), i.e., D(&) > D(a), Ya €
F, and P(w) = D(&) if and only if the pair (w,&) satisfies the conditions (a)~(c) in
Theorem 2.

We define the sparse primal-dual gap epp(w,a) := P(w) — D(«). The main message
conveyed by Theorem 8 is that the conditions (a)~(c) in Theorem 2 are sufficient and
necessary to guarantee a zero primal-dual gap at the sparse primal-dual pair (w, &).

3.2 On Dual Sufficient Conditions for Sparse Strong Duality

The previously established strong sparse duality theory relies on the sparsity constraint
qualification condition (c¢) in Theorem 2. This key condition is essentially imposed on the
underlying primal sparse minimizer w one would like to recover. To make the results more
comprehensive, we further provide in the following theorem a sufficient condition imposed
on the dual maximizer of D(«) to guarantee zero primal-dual gap. From now on we denote
X = [z1,...,2n5] € RN the data matrix which contains the N data samples as columns.

Theorem 9 Assume that each I is differentiable and smooth, and each dual feasible set
Fi is convez. Let & = argmax, D(«) be a dual mazimizer. If w(a) = Hy <_ﬁ Zi\il o’zixi>
is unique at & with respect to truncation operation, then (w(&), &) is a sparse saddle point
and w(a) is a primal minimizer of P(w) satisfying P(w(a)) = D(&).

Remark 10 The dual sufficient condition given in Theorem 9 basically shows that under
mild conditions, if w(&) constructed from a dual maximizer & is unique with respect to the
truncation operator Hy(-), then sparse strong duality holds. Such a uniqueness condition
is computationally more verifiable than the condition (c) in Theorem 2 as mazximizing the
dual concave program is easier than minimizing the primal non-convex problem.

To gain better intuition of Theorem 9, we discuss its implications for sparse linear regression
and logistic regression models which are commonly used in statistical machine learning.

FEzxample I: Sparse strong duality for linear regression. Consider the special case of

the primal problem (1) with least square loss I(w'z;,y;) = %(yz —w'xz;)% Let us write

Ww'x;,y;) = Li(w'z;) with [;(a) = 3(a —y;)% It is standard to know that the convex

conjugate of [;(a) is ¥ (oy) = %? + yio; and F; = R. Obviously, [} is differentiable and
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Fi is convex. According to Theorem 9, if w(a) = Hy <—ﬁ Zf\il dixi> is unique at the
dual maximizer a with respect to truncation operation, then w(&) is a primal minimizer of
P(w). To illustrate this claim, let us consider the same example as presented in Remark 4,
of which the dual objective function is expressed as

1 n [ o2 1 )
D(a) = > —5 ~ i~ oy k()%
i=1

Provided that % > [|yll k41, it can be readily verified that the dual solution is

@] = —w e ie{l,..k}
O e ie{k+1,.,N}

and w(a) = Hy (— ﬁd) is then by definition unique with respect to the truncation operator.
According to the discussion in Remark 4, w(@) is exactly the primal minimizer. This verifies
the validness of Theorem 9 on the considered example. On the other side, to see an example
in which the uniqueness condition on w(&) can be violated, let us consider a special case
y=12,2,1], \=1 and k = 1. From the discussion in Remark 4 we know that the primal
sparse minimizer is w = [0.5,0,0] (or w = [0,0.5,0]) with P(w) = 4/3. In the meanwhile,
it can be verified by exhaustive search that the maximal dual objective value is attained at
a = [-1.5,—1.5,—1] with D(a) = 7/6. Obviously, here w(a) = Hy, (—55a) is not unique
and the primal-dual gap is non-zero which indicates that strong duality fails in this case.
Ezxample 1I: Sparse strong duality for logistic regression. In logistic regression model,
given a k-sparse parameter vector w, the relation between the random feature vector z € R?
and its associated random binary label y € {—1,4+1} is determined by the conditional
probability P(y|z;w) = exp(2yw ' z)/(1 + exp(2yw'x)). The logistic loss over a sam-
ple (x;,y;) is written by I(w ' x;, ;) = l;i(w'x;) = log (1 —|—exp(—yin:vi)), where [;(a) =
log (1 + exp(—ay;)). In this case, we have I} (o;) = —ouy; log(—a;y;) + (14 a;y;) log(1+ ;)
with a;y; € [—1,0]. Note that [} is differentiable and F; is convex. Therefore Theorem 9
implies that if w(a) = Hy (—ﬁ SN o’agm) is unique at & with respect to truncation

operation, then w(@) is a primal minimizer of P(w) satisfying P(w(&)) = D(@).

3.3 Approximate Sparse Duality

The strong sparse duality theory developed in the previous subsection relies on certain sparse
constraint qualification conditions imposed on the primal or dual optimizers as appeared
in Theorem 2 and Theorem 9. Although these conditions can be partially verified for some
special models such as sparse linear regression and logistic regression, they could still be
restrictive and more often than not be violated in practice, leading to non-zero primal-dual
gap at primal and dual optimizers. To cover the regime where sparse strong duality does not
hold exactly, we further derive in the present subsection a set of primal-dual gap bounding
results which only require the sparse duality holds in an approximate way. The starting
point is to define the concept of approrimate sparse saddle point which is fundamental to
the subsequent analysis.
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Definition 11 (Approximate sparse saddle point) Let k > 0 be an integer and v > 0
be a scalar. A pair (0,d) € R x F is said to be a v-approzimate k-sparse saddle point for
L(w, a) if [|[w|lo < k and the following is valid for all k-sparse vector w and o € F:

L(w,a) < L(w, &) + v. (7)

Obviously, the above definition allows L(w, ) < L(w, &) + v for any o € F, and L(w, &) <
L(w, &) + v for any w with ||wl||g < k. Specially when v = 0, an approximate sparse saddle
point reduces to an exact sparse saddle point. The approximate sparse saddle point can also
be understood as an extension of the so called approzrimate saddle point in approximate du-
ality theory (Scovel et al., 2007) to the setting of sparsity-constrained minimization. Based
on the concept of approximate sparse saddle point, we can prove the following proposition
of approximate sparse duality.

Proposition 12 Let w € R? be a k-sparse primal vector and & € F be a dual vector. Then
for any v > 0, the primal-dual gap satisfies

P(w)—-D(a)<v
if and only if the pair (0, &) admits a v-approzimate k-sparse saddle point for L(w, ).

Now we are going to bound the primal-dual gap under the condition of approximate sparse
duality. Before presenting the main result, we need to define some notations. We say a
univariate differentiable function I(z) is p-strongly convex and ¢-smooth if Vz, y,

Ba —yP <ily) ~ 1) - @)y~ 2) < Sl

The following defined sparse largest (smallest) eigenvalue of the empirical covariance matrix
¥ = %X X" will be used in our analysis:

v+ = max {?}Tih} | lv]lo < s, ||v]| = 1} )
vERI

v = min {oTSu | ollo < 5, ol = 1}
vERT

Let us re-express the primal objective function as

A, o 1
P(w) = f(w) + §HwH ,  where f(w) := NZli(w x;).
i=1

We show in the following theorem that the primal-dual optimizer pair (w,a) admits an
approximate sparse saddle point with approximation level controlled by the underlying
statistical error of model.

Theorem 13 Assume that the primal loss functions l; are u-strongly convex and £-smooth.
17 VEIV (@) ]lo

Let w be any k-sparse vector satisfying Wmin > %. Assume that A <

Ve = O 1B —VEIV (@)oo
Then )
- ~ k g’ﬁj > ~\112
Pw)<D@) + 2 2+ — ) Vi),
() < D@+ 5 (24 25 ) 19 s

where w is the primal minimizer of P(x) and & is the dual mazimizer of D(«).

10
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17 VEIV f(@)]lo

eyl Nl

_ il vk <2+ Mﬁ

Remark 14 Specially, by setting A = > 0, we get from the above theorem

that

WY

This bound shows that the optimal primal-dual gap at (w, &) is controlled by the approxima-
tion level v = O(VE||V f()]|00) which usually represents the statistical estimation error of
a nominal vector w. The smaller ||V f(0)||oo is, the more accurate approzimation will be.
This theorem, however, does not provide any guarantee on the sub-optimality of the primal

2
P(w) - D(a) ) 19 £

WY

solution w(a) = Hy, (—ﬁ Zf\;l o‘zixi) produced from the dual maximizer a. We leave this

prima-dual connection issue as an open problem for future investigation. In any case, this
prima-dual gap bound can be a useful tool for getting a rough idea of how well the dual
formulation can capture the optimal primal objective value.

In the following, we show the implications of Theorem 13 for the sparse linear regression
and logistic regression models.

Approzimate sparse duality for linear regression. Given a k-sparse parameter vector 0,
assume the samples are generated according to the linear model y = @'z + ¢ where ¢ is a
zero-mean Gaussian random noise variable with parameter o. Let I;(w z;) = %(yz —w ' x;)?
be the least square loss over data sample (z;,y;). In this example, we have { = p = 1.
Suppose z; are drawn from Gaussian distribution with covariance ¥. Then with over-

whelming probability we have 7, > Amin(E) — O(klog(d)/N) and 7; < max; ||z;; and
V()] = O (adlog(d)/N). Thus according to Theorem 13, by setting the regular-

Vg
Yl |oo

with high probability as P(w) — D(a) = O (a\/k:log(d)/N).

Approximate sparse duality for logistic regression. Suppose x; are sub-Gaussian with

ization parameter A = O ( log(d)/N ), the primal-dual gap can be upper bounded

parameter o in logistic regression model. It is known that ||V f(@)|ec = O (0’ log(d)/N)

hold with high probability (Yuan et al., 2018). Also it is well known that the binary
logistic loss l;(u) = log (1 + exp(—y;u)) is f-smooth with ¢ = 1/4. By assuming with-
out loss of generality that |u| < r we can verify that it is also u-strongly convex with
p = exp(r)/(1+exp(r))?. Then according to the bound in Theorem 13, by setting the reg-

ularization parameter A\ = O (0’ log(d)/N ), the primal-dual gap can be upper bounded
with high probability as P(@) — D(a@) = O (a\/k log(d) /N).

We remark that the sparse duality theory developed in this section suggests a natural
way for finding the global minimum of the sparsity-constrained minimization problem in (1)
via maximizing its dual problem in (6). Particularly in the case when the strong sparse
duality holds, once the dual maximizer & is estimated, the primal sparse minimizer w can
then be recovered from it according to the prima-dual connection w = Hy, (—ﬁ Zf\i 1 diazi> .

Since the dual objective function D(«) is shown to be concave, its global maximum can be
estimated using off-the-shelf convex/concave optimization methods. In the next section, we
present a simple projected super-gradient method to solve the dual maximization problem
with strong guarantees on convergence and sparsity recovery.

11
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4. Algorithms

Let us now consider the dual maximization problem (6) which can be expressed as

Dia) = L 5™ “t¢(ar) - Xuta)? (8)
agr TN &) TR el

where w(a) = Hy, <—)%N SV aixi>. Generally speaking, D(«) is a non-smooth function
because: 1) the conjugate function I} of an arbitrary convex loss [; is generally non-smooth
and 2) the term ||w(a)||? is non-smooth with respect to a due to the truncation operation
involved in computing w(«). We propose to adopt projected sub-gradient-type methods to
solve the constrained non-smooth dual maximization problem in (6).

4.1 The DIHT Algorithm

The Dual Iterative Hard Thresholding (DIHT) algorithm, as outlined in Algorithm 1, is
essentially a projected super-gradient method for maximizing D(c). Initialized with w(®) =
0 and a(®) = 0, the procedure generates a sequence of prima-dual pairs {(w(t), a(t))}tzl. At
the t-th iteration, the dual update step S1 conducts the projected super-gradient ascent
in (9) to update a® from oY and w® Y. Then in the primal update step S2, the
primal vector w® is constructed from a® based on a k-sparse primal-dual connection
operator (10).

Algorithm 1: Dual Iterative Hard Thresholding (DIHT)
Input : Training set {z;,3;})Y,. Regularization strength \. Sparsity level k.

Initialization w(® =0, ago) =..= ag\(,]) =0.
for t=1,2,...,7T do
/* Dual projected super-gradient ascent */
(S1) For all i € {1,2,..., N}, update the dual variables al@ as
agt) =Pz (agt_l) + U(t_l)glgt_l)> ; 9)
where ggt_l) = t(z] w1 l;‘/(agt_l))) is the super-gradient and Pz, () is
the Euclidian projection operator with respect to feasible set F;.
/* Primal hard thresholding */
(S2) Update the primal vector w® as:
L\ 0
t
1=

end
Output: w™).

In the following we analyze the non-asymptotic convergence behavior of DIHT. We
denote w = arg min,,<; £(w) and use the abbreviation eg)D = epp(w®,a®). In order

12
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to avoid technical complications, we will limit optimization to bounded dual feasible sets F;
and derivatives I’ i.e., we will let r = max; 4 7, |a| and p = max; 4e 7, |I¥' (a)|. For example,
such quantities exist when /; and [ are Lipschitz continuous (Shalev-Shwartz and Zhang,
2013b). We assume without loss of generality that ||z;|| < 1. In the following theorem, we
show that DIHT converges sub-linearly in dual parameter estimation error and primal-dual
gap, and exact sparsity recovery can be guaranteed after sufficient iteration.

Theorem 15 Assume the primal loss functions 1;(-) are 1/u-smooth and € := Wyin —
$|[P' (@)l > 0. Set the step-size as n® =

n(t+2) "

T

(a) Parameter estimation error and primal-dual gap. Leta = [I}(w"z1), ..., Iy (0 "z N)].

Then the sequence {a(t)}tzl generated by Algorithm 1 satisfies

2
H&w_MPS<MMW+A%Mj 1

AL t+2
Moreover the primal-dual gap is bounded as

(o CIXI+AN? (X () alXTlal )
PD = NN AV N ANeé

VE+2
(b) Sparsity recovery. The exact support recovery supp(w®) = supp(w®) holds if

tZPMWWWM%ﬂWVk

M 2N2e2

Remark 16 To gain some intuition of the bounds in the theorem, if conventionally choosing

the regularization parameter \ o ﬁ, then ﬁ“a(t) —all =0 (%), eg}) =0 <%) and

supp(w(t)) = supp(w) is guaranteed after O (g%) steps of iteration. Theorem 15 also suggests
a computationally tractable termination criterion for DIHT: the algorithm can be stopped
when the primal-dual gap becomes sufficiently small and supp(w(t)) becomes stable.

Next, we consider the case when [; are simultaneously smooth and strongly convex, which
can lead to improved linear rate of convergence as stated in the following theorem.

Theorem 17 Suppose that the loss functions l;(-) are 1/u-smooth and 1/¢-strongly-convez.

Assume that € = Wmin — +[|P'(0)|ls > 0. Let lp = (@% (1 + 4||§]@|£&\\) * %> and

pup = K. Set the step-size as nt) = lZT;)-

T

(a) Parameter estimation error and primal-dual gap. Leta = [I} (@ 21), ..., 5 (@0 zn)].

Then the sequence {oz(t)}tzl generated by Algorithm 1 satisfies

2\ 1
_ _ u
o~ alP < Jal? (1- 52

Moreover, the primal-dual gap eg)D 18 upper bounded as

_ 2\ 1
0 a2 (X Al X _UD
epp < Iplla|] (AM\/N 1+ Nz +1)(1 2 )

13
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(b) Sparsity recovery. The exact support recovery, i.e., supp(w®) = supp(w), occurs
after
1 [ g (USEIXEY)
e A2N2g2

Remark 18 Consider setting the regularization parameter as A x

rounds of iteration.

L Then the contrac-

g\

tion factor 3 1 is of the order O (

/\

w) can be guaranteed

( ||XH+Z ) For the
1

special case of linear regression with l;(u) = 4(u —y;)? and I} (oy) = 5 + yici, we have

2
(HXTW) , and supp(w®) = supp(w

6

after O (M log( )) steps of iteration using step-size n*)

= { =1, hence the contraction factor is of the order O (”X”) and support recovery can

be guaranteed after t = O (||X|| log (g)) rounds of iteration with n® = © (ﬁ)
Regarding the primal sub-optimality eg) = P(w®) — P(w), since eg) < eg)D always holds,
the convergence rates in Theorem 15 and Theorem 17 are directly applicable to the primal
sub-optimality. We comment that under the sparse strong duality conditions, our conver-
gence results on eg) are not explicitly relying on the Restricted Isometry Property (RIP)
(or restricted strong condition number condition) which is required in most existing anal-
ysis of primal THT-style algorithms (Blumensath and Davies, 2009; Bahmani et al., 2013;
Yuan et al., 2014). It was shown by Jain et al. (2014) that with proper relaxation of spar-
sity level, the estimation consistency of IHT-style algorithms can be guaranteed without
imposing RIP-type conditions. In contrast to these prior analysis, our RIP-free results in
Theorem 15 and Theorem 17 do not require the sparsity level & to be relaxed.

4.2 Stochastic DIHT

When a batch estimation of super-gradient D’(«)) becomes expensive in large-scale appli-
cations, it is optional to consider the stochastic implementation of DIHT, namely SDIHT,
as outlined in Algorithm 2. Different from the batch computation in Algorithm 1, the dual
update step S1 in Algorithm 2 randomly selects a block of samples (from a given block par-
tition of samples) and update their corresponding dual variables according to (11). Then in
the primal update step S2.1, we incrementally update an intermediate accumulation vector
@w® which records —ﬁ fv 1 a( )acz as a weighted sum of samples. In S2.2, the primal
vector w® is updated by applying k-sparse truncation on w®. The SDIHT is essentially a
block-coordinate super-gradient method for the dual problem. Particularly, in the extreme
case where m = 1, SDIHT reduces to the batch DIHT. At the opposite extreme end where
m = N, i.e., each block contains one sample, SDIHT becomes a stochastic coordinate-wise
super-gradient method.

The dual update (11) in SDIHT is computationally more efficient than full DIHT as the
former only needs to access a small subset of samples at a time. If the complexity of hard
thresholding operation in primal update is not negligible as in high-dimensional settings, we
suggest to use SDIHT with relatively smaller number of blocks so that the hard thresholding
operation in S2.2 can be less frequently called.

14
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Algorithm 2: Stochastic Dual Iterative Hard Thresholding (SDIHT)

Input : Training set {z;,%;})¥,. Regularization strength \. Sparsity level k. A

block disjoint partition { By, ..., B;,} of the sample index set [N].
Initialization w©® = ¢(© =0, agl) — .. =aY =0
for t=1,2,....T do
/* Stochastic blockwise dual projected super-gradient ascent

(S1) Uniformly randomly select a block index i) € [m]. For all j € By
(t)

update o;° as

m

ozgt) =Pg, (ayfl) + U(t_1)9§t71)) )
W =al™ ) ¢ By
/* Primal hard thresholding

(S2) Update the primal vector w® via the following operations:
~ (S2.1) Update w® according to

- (i 1 1
o =t~ — Vi Z (ag.t) — a§t ))xj.

and set o

~ (82.2) Compute w® = Hy(w®).
end
Output: w™).

When the primal losses are Lipschitz continuous, we can similarly establish sub-linear

convergence rate bounds for SDIHT, as summarized in the following theorem.

Theorem 19 Assume that the primal loss functions l;(+) are 1/p-smooth and € := Wy —

mN

P (@)oo > 0. Set the step-size as n't) = -

(a) Parameter estimation error and primal-dual gap. Leta = [Ij(w"

The sequence {a(t)}tzl generated by Algorithm 2 satisfies

2
E[”a(t) - aHQ] < THXH + )\\/Np m
- AL t+2

Moreover, the primal-dual gap is upper bounded in expectation by

2 _
E[e) ] < (r|X|| +AVNp)* (|IX]| o A ay |y v
2N AV N AN€ Vit +2

.%'1), ceey lf/\f(w

T

xN)]

(b) Support recovery. For any ¢ € (0,1), it holds with probability at least 1 — & that

supp(w®) = supp(w) occurs after

{4m||X||2<r||X|| + Aﬁﬂ
t>
= 2\ 2 N2¢e2

rounds of iteration.
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Remark 20 Theorem 19 indicates that up to scaling factors, the expected iteration com-
plexity of SDIHT is identical to that of DIHT. The additional scaling factors m or \/m
appeared in the bounds essentially reflect a trade-off between the decreased per-iteration
computational cost and the increased iteration complexity.

Remark 21 The part(b) of Theorem 19 states that supp(w®) = supp(w) occurs with high
probability when t is sufficiently large. When this event occurs, SDITH (with m = N ) re-
duces to a restricted version of SDCA (Shalev-Shwartz and Zhang, 2013b) over supp(w),
and thus we are able to obtain improved primal-dual gap convergence rate by straightfor-
wardly applying the analysis of SDCA over supp(w). However, we do not pursue further in
that direction as the final stage convergence behavior of SDIHT after exact support recovery
is mot of primal interest of this work.

When the primal loss functions are smooth and strongly convex, we can further general-
ize the linear convergence rates in Theorem 17 from batch DIHT to SDIHT, as formally
summarized in the following theorem.

Theorem 22 Assume that the loss functions l;(-) are 1/u-smooth and 1/¢-strongly-convez.

Assume that € := Wiy — %HP/(,(D)HOO > 0. Let tp = (j\/ffuj% <1 + 4”1(1‘\‘7[*&“) + %) and

pp = K. Set the step-size as 7t = lZT;)-

T

(a) Parameter estimation error and primal-dual gap. Leta = [I{ (@ 21), ..., 5 (@0 zn)].

The sequence {oz(t)}tzl generated by Algorithm 2 satisfies

13\
_n2 _n2
Blo” ~a?) < Jal? (1- 25-)

(t)

Moreover, the primal-dual gap €pp, is bounded in expectation as

) X 41X ||| & 12\
sl < ot (5L (14 ST (a8

(b) Support recovery. For any 6 € (0,1), it holds with probability at least 1 — & that
supp(w®) = supp(w) occurs after

% 4)|&|?|1X 1%
KT 022 N<e

rounds of iteration.

Remark 23 Like in Theorem 19, the scaling factor m appeared in the contraction factors
represents a trade-off between the reduced per-iteration computational cost and the increased
iteration complexity.
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4.3 Comparison against Primal THT Methods

We now compare DIHT and SDIHT in theory with several representative primal THT-
style algorithms for sparse estimation. Here, we use primal e-sub-optimality as the metric
of performance. Specifically, we compare the considered algorithms in terms of RIP-type
condition, sparsity level relaxation condition, and incremental first-order oracle (IFO)? com-
plexity for achieving the primal sub-optimality P(w) — P(w) < €, where @ is the k-sparse
estimator and w is the target k-sparse primal minimizer with & < k. Table 2 summarizes the
comparison results in the setting where the univariate loss functions /;(-) are 1/p-smooth
and 1/¢-strongly-convex. In the following elaboration, we highlight the key observations
that can be made from these results.

DIHT wversus primal full gradient IHT methods. Since DIHT is a full gradient hard-
thresholding method, we compare it with several popularly studied full gradient primal
IHT algorithms including GraSP (Bahmani et al., 2013), IHT (Jain et al., 2014) and
GraHTP (Yuan et al., 2018). The comparison results are summarized on the top panel
of Table 2, from which we can observe that: 1) Different from the considered full gradient
IHT algorithms which are either relying on RIP-type bounding conditions on &g or requiring
relaxation k = Q(x2k) on sparsity level, DIHT is free of explicitly assuming RIP-type con-
ditions and sparsity level relaxation; 2) In terms of IFO complexity, based on Theorem 17

we can verify that DIHT needs O ((%‘f + /\% (1 + /\LN)Q) log (%)) IFO queries to achieve

primal e-sub-optimality. This should be superior to the considered primal algorithms when
A x \;—N and kg > ﬁ—i which is expected to be the case in ill-conditioned problems where
scales up quickly with data size and sparsity level while ¢, i typically do not.

SDIHT wversus primal stochastic gradient IHT methods. In order to improve com-
putational efficiency, stochastic gradient IHT algorithms have recently been developed
via leveraging the finite-sum structure of statistical learning problems. We further com-
pare SDIHT against several state-of-the-art stochastic gradient IHT algorithms including
StoIHT (Nguyen et al., 2017), SVR-GHT (Li et al., 2016) and HSG-HT (Zhou et al., 2018).
At each iteration, StolHT only evaluates gradient of one (or a mini-batch) randomly selected
sample for variable update and hard thresholding. Although efficient in iteration, StolHT
can only be shown to converge to a sub-optimal statistical estimation accuracy which is
inferior to that of the full-gradient methods. Another limitation of StoIHT is that it re-
quires the restricted condition number 4 to be not larger than 4/3 which is hard to meet in
realistic high-dimensional sparse estimation problems such as sparse linear regression (Jain
et al., 2014). The SVR-GHT algorithm (Li et al., 2016) was developed as an adaptation of
SVRG (Johnson and Zhang, 2013) to the iterative hard thresholding methods. Benefiting
from the variance reduced technique, SVR-GHT can converge more stably and efficiently,
while allowing arbitrary bounded restricted condition number at the cost of sparsity level re-
laxation. Lately, Zhou et al. (2018) proposed HSG-HT as a stochastic-deterministic hybrid
stochastic gradient hard thresholding method that can be provably shown to have sample-
size-independent TFO complexity. From the bottom panel of Table 2 we can see that in

2. For the primal objective P(w) in problem (1), an IFO takes a data point (z;,y;) and returns the pair
{li(mei) + M, I(w z:)x: + )\w}. For the dual objective D(«) in problem (8), an IFO takes a point

(zi,y:) and returns the pair {lf (i) + M, lf/(ai) — x:w(a)}.
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Method | RIP-Free | DPASitY FO
level k Complexity
GraSP X k O (Nkslog (1))
Full THT | (k2R O (Nk,log (1))
gradient GraHTP v Q (k2k) O (Nkslog (1))
DIHT = 2
(this work) Y K © ((]Y‘g * (% + >‘21N)2) log (%))
StolHT X k -
Stochastic | SVR-GHT v Q (k2k) O ((N + k,)log (1))
gradient HSG-HT v Q (k2k) O (&)
SDIHT _ ,
(this work) 4 & v ((ﬁg + (% + vx) ) log (%))

Table 2: Comparison of primal and dual THT-style methods for achieving primal e-sub-
optimality in full gradient (top panel) and stochastic gradient (bottom panel)
optimization settings. We denote ks as the restricted condition number of P(w)
with s = O(k + k). The loss functions /;(-) are assumed to be 1/pu-smooth and
1/¢-strongly-convex. The mark “—” indicates that the related result is unknown
in the corresponding reference.

comparison to the considered primal stochastic gradient IHT methods, SDIHT is the only
one that is free of assuming RIP-type conditions while allowing the sparsity level to be un-
relaxed for sparse estimation. From Theorem 22 we know that in expectation, SDIHT needs

O ((%‘;Z + % (1 + )%N)2> log (%)) IFO queries to achieve primal e-sub-optimality, which is

comparable to SVR-GHT when A \;—N and superior to HSG-HT when the sample size N
is dominated by “=.

To summarize the above comparison, when strong sparse duality holds, DIHT and
SDIHT have provable guarantees on convergence without assuming RIP-type conditions
and sparsity level relaxation conditions. The IFO complexity bounds of DIHT and SDIHT
are superior or comparable to the best known results for primal IHT-style algorithms. As
always, there is no free lunch here: DIHT and SDIHT are customized for solving the ¢3-norm
regularized sparse learning problems while the primal IHT-style algorithms can be applied
to more general sparse learning problems without needing to impose f2-norm penalty on
the empirical risk.

5. Experiments

In this section we present numerical study for theory verification and algorithm evaluation.
In the theory verification part, we conduct simulations on sparse linear regression problems
to verify the strong/approximate sparse duality theorems established in Section 3. Then
in the algorithm evaluation part, we run experiments on synthetic and real data sets to
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Figure 1: Verification of strong sparse duality theory on linear regression problem: optimal
primal-dual gap evolving curves as functions of regularization strength A under
different values of sample size N. For the sake of semi-log curve plotting, we set
the primal-dual gap as 107 when the gap is exactly zero.

evaluate the numerical performance of DIHT and SDIHT when applied to sparse linear
regression and hinge loss minimization tasks.

5.1 Theory Verification

For theory verification, we consider the sparse ridge regression model with quadratic loss
function I(y;, w' z;) = 1 (yi—w"2;)?. The feature points {z;}, are sampled from standard
multivariate normal distribution. The responses {yl}f\il are generated according to a linear
model y; = @' x; + ¢; with a k-sparse parameter @ € R¢ and random Gaussian noise
gi ~ N(0,0?). For this simulation study, we test with two baseline dimensionality-sparsity
configurations (d, k) € {(30,5),(500,50)}. For each configuration, we fix the parameter
vector w and study the effect of varying sample size N, regularization strength A, and noise
level o on the optimal primal-dual gap between primal minimum and dual maximum.

5.1.1 VERIFICATION OF STRONG SPARSE DUALITY THEORY

The strong sparse duality theory relies on the sparsity constraint qualification condition (c)
in Theorem 2, which essentially requires Wmin > |/ P'(0)o0. In this group of simulation
study, keeping all other quantities fixed, we test how the optimal primal-dual gap evolves
under varying sample size N and regularization strength A\. To compute the optimal primal-
dual gap, we need to find ways to estimate the primal and dual optimal values. For the
configuration (d,k) = (30,5), the primal minimizer can be exactly determined via brute-
force search among the optimal values over all the feasible index sets of cardinality &, and the
dual maximizer is estimated via running the proposed DIHT algorithm until convergence.
For (d, k) = (500, 50), it becomes computationally prohibitive to compute the exact primal
minimum. In this case, we just run DIHT on the dual problem until convergence and com-
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Figure 2: Verification of approximate sparse duality theory on linear regression problem:
optimal primal-dual gap evolving curves as functions of noise level ¢ under dif-
ferent regularization strength A. Here we fix N = d.

pute the suboptimal primal-dual gap at the estimated dual maximizer. Figure 1 shows the
(sub)optimal primal-dual gap evolving curves as functions of AV N € {1072,1071, 1, 10,20}
under different values of sample size with N/d € {0.2,0.5,1}. From this group of curves we
can make the following observations:

e For each curve with fixed N, the optimal primal-dual gap decreases as A\ increases
and the gap reaches zero when A\V/N is sufficiently large. This is as expected because
the larger A is, the easier the condition Wyin > 1|/ P'(0)|s can be fulfilled so as to
guarantee strong sparse duality.

e The primal-dual gap evolving curves are relatively insensitive to sample size N. This
observation combined with the previous one indicates that sample size tends to have
limited impact on the validness of the sparsity constraint qualification condition
Wmin = %HPI(E)HOO-

5.1.2 VERIFICATION OF APPROXIMATE SPARSE DUALITY THEORY

We further verify the approximate sparse strong duality theory stated in Theorem 13,
which basically suggests that when wy,, is sufficiently large, by setting the regularization

parameter A = O (cr\/log(d) /N ), the primal-dual gap can be upper bounded with high

probability as epp = O (m/k‘log(d) /N ) To confirm this result, fixing the sample size
N = d, we studied how the optimal primal-dual gap evolves under varying noise level
o € [1073,50] and A = \o/VN with \g € {1072,107%,1}. Figure 2 shows the optimal
primal-dual gap evolving curves as functions of noise level o under a variety of regularization
strength A. These results lead to the following observations:
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e For each curve with fixed A, the optimal primal-dual gap increases as ¢ increases.
This confirms the implication of Theorem 13 in linear regression models that the
optimal prima-dual gap of sparse linear regression model is controlled by the quantity

oy/klogd/N x o.

e For a fixed o, it can be observed that the optimal primal-dual gap approaches zero
as \ increases. This again matches the prediction of Theorem 13 that the prima-dual
gap bound is scaled inversely in A.

5.2 Algorithm Evaluation

We now turn to evaluate the effectiveness and efficiency of DIHT and SDIHT for dual sparse
optimization. We begin with a simulation study to confirm some theoretical properties of
DIHT. Then we conduct a set of real-data experiments to demonstrate the computational
efficiency of DIHT /SDIHT when applied to sparse hinge loss minimization problems.

5.2.1 SIMULATION STUDY

The basic setting of this simulation study is identical to the one as described in the theory
verification part. As we pointed out at the end of Section 4.1, an interesting theoretical
property of DIHT is that its convergence is not relying on the RIP-type conditions which
in contrast are usually required by primal IHT-style algorithms. To confirm this point,
for each configuration (d, k), we studied the effect of varying regularization strength \ and
condition number of design matrix on the optimal primal-dual gap achieved by DIHT, and
make a comparison to some baseline primal IHT-style methods as well.

Convergence of DIHT under varying condition number. In this simulation, when A is
fixed and given a desirable condition number k > 1, we generate feature points {z;}Y,
from multivariate Gaussian distribution A (0,X) of which the covariance matrix is carefully
designed?® such that the condition number of ¥ + A equals to x. In this way of data
generation, the condition number of the primal Hessian matrix %X XT + X\ is close to
k. Keeping all other quantities fixed, we test how the optimal primal-dual gap output
by DIHT evolves under varying € [1,200] and regularization strength A = \g/V/N for
Ao € {0.1,1,10}. Figure 3 shows the corresponding optimal primal-dual gap evolving curves.
From these curves we can observe that the optimal primal-dual gap curves are not sensitive
to k in most cases, especially in badly conditioned cases when x > 50. This numerical
observation confirms our theoretical claim that the convergence behavior of DIHT is not
relying on the condition number of problem.

DIHT versus primal methods on ill-conditioned problems. We further run experiments to
compare DIHT against primal IHT and HTP methods (Yuan et al., 2018; Jain et al., 2014)
in high condition number setting. For this simulation study, we test with the dimensionality-
sparsity configuration (d, k) = (500, 50). To make the problem badly conditioned, we follow
a protocol introduced by Jain et al. (2014) to select k/2 random coordinates from the
support of nominal parameter vector @ and k/2 random coordinates outside its support and

3. We first generate a semi-positive definite matrix £’ = 0 such that Amin (X') = 0 and Amax(T) = (26— 1),
and then we set ¥ = ¥/ + ol with 0 = % It is readily verifiable that the condition number of 3 + AT
max(E)+A _ Amax(EB)+o+XA _ 26A+6A/(k—1)

min(E)+A T Anin(B) o+ T KA/ (k—1)+A

L A
is given by % = K.
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Figure 3: Convergence of DITH on linear regression problem under varying condition num-
ber: optimal primal-dual gap evolving curves as functions of condition number s
of the Hessian matrix %X X T + M, under different regularization strength \.

constructed a covariance matrix with heavy correlations between these chosen coordinates.
The condition number of the resulting matrix is around 50. Keeping all the other quantities
fixed, we test how the primal objective value P(w) and fs-norm parameter estimation error
|w — @|| evolve under varying sample size N < d and regularization strength A = \g/vV/N
for A9 € {1,10}. The resulting curves are plot in Figure 4. It can be seen from these curves
that in most cases DIHT is able to achieve more optimal primal objective values and smaller
parameter estimation errors than IHT and HTP in the considered ill-conditioned problems.
We attribute such a numerical benefit of DIHT to its invariance to the condition number
of problem.

5.2.2 REAL-DATA EXPERIMENT: COMPUTATIONAL EFFICIENCY EVALUATION

For real data experiment, we mainly evaluate the computational efficiency of the pro-
posed dual algorithms. We test with varying smoothed or non-smooth hinge loss func-
tions which are commonly used by support vector machines. Two binary benchmark data
sets from LibSVM data repository, RCV1 (d = 47,236) (Lewis et al., 2004) and News20
(d =1,355,191) (Lang, 1995),% are used for algorithm efficiency evaluation and comparison.
For the RCV1 data set, we select N = 500,000 (N > d) samples for model training and
the rest 197,641 samples for testing. For the News20 data set, we use N = 15,000 (d > N)
samples for training and the left 4,996 samples are used as test data.

4. These data sets are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
binary.html.
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Figure 4: DIHT versus primal THT-style methods on badly conditioned linear regression
problem: primal objective value (left panel) and parameter estimation error (right
panel) evolving curves as functions of sample size N under regularization strength
(a) A=1/v/N and (b) A = 10/V/N, respectively.

Experiment with smoothed hinge loss. We first consider the sparse learning model (1)
with the following smoothed hinge loss function

0 yinaci >1

l(wTa:i,yi) = 1—yw'z — 3 yw' x; <1—r

%(1 —y;w' x;)?  otherwise

Its convex conjugate is given by

(ar) = Yo + %a? if yia; € [—1,0]
! +00 otherwise

We set v = 0.25 throughout our experiment. The computational efficiency of DIHT and
SDIHT is evaluated by comparing their wall-clock running time against three primal baseline
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Figure 5: Real-data experiment with smooth hinge loss: Primal loss evolving curves as
functions of running time (in second).

algorithms: THT, HTP, and SVR-GHT (Li et al., 2016) which is a stochastic variance
reduced variant of IHT. The learning rates of all the considered algorithms are tuned via
grid search. For the two stochastic algorithms SDIHT and SVR-GHT, the training data is
uniformly randomly divided into mini-batches with batch size 10 .

Figure 5 shows the primal loss evolving curves with respect to wall-clock running time
under A =1/ V/N and varying sparsity level k. It can be seen from these results that under
all the considered configurations of A and k, DIHT and SDIHT outperform the considered
primal THT algorithms in minimizing the primal objective value. In the meanwhile, it
can be seen that SDIHT is more efficient than DIHT which matches the consensus that
stochastic dual coordinate methods often outperform their batch counterparts (Hsieh et al.,
2008; Shalev-Shwartz and Zhang, 2013b).

We further compare the computational efficiency of the considered methods in terms
of the training time needed to reach comparable test accuracy. We set the desirable test
error as 0.08 for RCV1 and 0.24 for News20. Figure 6 shows the time cost comparison
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Figure 6: Real-data experiment with smoothed hinge loss: Running time (in second) com-
parison of the considered algorithms to reach comparable test accuracy.

under varying regularization parameter A = \g/ VN and sparsity level k. From this group
of curves we can observe that DIHT and SDIHT are significantly more efficient than the
considered primal IHT algorithms to reach comparable generalization performance on the
test set. Also, we can see that SDIHT is consistently more efficient than DIHT.

Moreover, to evaluate the primal-dual convergence behavior of DIHT and SDIHT, we
plot in Figure 7 their primal-dual gap evolving curves with respect to the number of epochs
processing, under sparsity level k& = 103 for RCV1 and k& = 5 x 10* for News20. The
regularization parameters are set to be A = A\o/V/N, \g = {0.4,1.2,2}, respectively. The
results again showcase the superior efficiency of SDIHT over DIHT as the former uses much
fewer epoches of processing to reach comparable primal-dual gaps to the latter.
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Figure 7: Real-data experiment with smoothed hinge loss: The primal-dual gap evolving
curves of DIHT and SDIHT. We test with the sparsity level k& = 103 for RCV1
and k =5 x 10* for News20.

Ezperiment with non-smooth hinge loss. Finally, we test the efficiency of the proposed
algorithms when applied to the support vector machines with vanilla hinge loss function
l(w' 2, y;) = max(0,1 — y;w " x;). It is standard to know that

(o) :{ yioy if yiy € [—1,0]

+o0o otherwise

We follow the same experiment protocol as in the previous smoothed case to compare the
considered primal and dual IHT algorithms on the two benchmark data sets. In this non-
smooth case, we set the step-size in DIHT and SDIHT to be n(t) = HLZ’ where c is a constant
determined by grid search for optimal efficiency. In Figure 8, we plot the primal loss evolving
curves with respect to running time under A = 1/ V/N. The computational time curves of
the considered algorithms to reach comparable test errors (0.074 for RCV1 and 0.23 for
News20) are shown in Figure 9. These two groups of results demonstrate the remarkable

efficiency advantage of DIHT and SDIHT over the considered primal THT algorithms even
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Figure 8: Real-data experiment with non-smooth hinge loss: Primal loss evolving curves as
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Figure 9: Real-data experiment with non-smooth hinge loss: Running time (in second)
comparison of the considered algorithms to reach comparable test accuracy.

when the loss function is non-smooth. The prima-dual gap evolving curves of DIHT and
SDIHT under a variety of A = Ao/ VN are illustrated in Figure 10, from which we can
observe that when using non-smooth hinge loss function, SDIHT is still more efficient than
DIHT in closing the primal-dual gap.
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Figure 10: Real-data experiment with non-smooth hinge loss: The primal-dual gap evolving
curves of DIHT and SDIHT. We test with the sparsity level k = 10% for RCV1
and k =5 x 10* for News20.

6. Conclusion and Future Work

In this article, we investigated duality theory and optimization algorithms for solving the
sparsity-constrained empirical risk minimization problem which has been widely applied
in sparse learning. As a core theoretical contribution, we established a sparse Lagrangian
duality theory which guarantees strong duality in sparse settings under certain sufficient
and necessary conditions. For the scenarios where sparse strong duality would be violated,
we further developed an approximate sparse duality theory that upper bounds the prima-
dual gap at the level of statistical estimation error of model. Our theory opens the gate
to solve the original NP-hard and non-convex problem equivalently in a dual formulation.
We then propose DIHT as a first-order method to maximize the non-smooth dual concave
formulation. The algorithm is characterized by dual super-gradient ascent and primal hard
thresholding. To further improve iteration efficiency in large-scale settings, we propose
SDIHT as a block-coordinate stochastic variant of DIHT. For both algorithms we have
proved sub-linear primal-dual gap convergence rates when the loss is smooth, and improved

28



DuAL ITERATIVE HARD THRESHOLDING

linear rates of convergence when the loss is also strongly convex. Based on our theoretical
findings and numerical results, we conclude that DIHT and SDIHT are theoretically sound
and computationally attractive alternatives to the conventional primal THT algorithms,
especially when the sample size is smaller than feature dimensionality.

Our work leaves several open issues for future exploration. First, it remains an open
question on how to verify the key condition (c¢) in Theorem 2 for generic sparse learning
models. It will be interesting to provide some more intuitive ways to understand this condi-
tion in popular statistical learning models such as linear regression and logistic regression.
Second, our approximate duality theory (Theorem 13) only gives a duality gap bound be-
tween the (unknown) primal minimizer w and the dual maximizer @. From the perspective
of primal solution quality certification, it would be more informative to have results on the
duality gap between & and the primal vector w(a) produced from @. Or third, our conver-
gence results in Theorem 19 and 22 merely indicate that SDIHT is not worse than DIHT in
convergence rate, but without showing that its dependence of scaling factors on sample size
N and regularization strength A can be significantly improved as what has been achieved
by SDCA for unconstrained regularized learning (Shalev-Shwartz and Zhang, 2013b). In
our opinion, a main challenge here we are facing with is the non-smoothness of the dual
objective D(«), which prevents us from directly extending the analysis of SDCA to SDIHT.
We need to develop new proof approaches to justify why SDIHT often outperforms DIHT
in practice. Finally, it would be an interesting future work to apply our duality theory
and algorithms to communication-efficient distributed sparse learning problems which have
recently gained considerable attention in distributed machine learning (Jaggi et al., 2014;
Wang et al., 2017; Liu et al., 2019).
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Appendix A. Proofs of Results in Section 3

In this section, we present the proofs of the main results stated in Section 3.

A.1 Proof of Theorem 2

Proof The “«<” direction: If the pair (w, &) is a sparse saddle point for L, then from the
definition of conjugate convexity and inequality (3) we have

P(w max L(w,a) < L(w,&) < min L(w
() = max L(ip,0) < L(,6) < min L(w,a).

On the other hand, we know that for any ||w|jo < k and a € F

L(w,a) < (gng;(_L(w o) = P(w).

combining the preceding two inequalities yields

P(w) < min L(w,a) < min Plw) <P
( )_kuosk ( lwllo<k (w) (@)

Therefore P(w) = minj,|,<; P(w), i.e., w solves the problem in (1), which proves the
necessary condition (a). Moreover, the above arguments lead to

P(w) = I;IEEL}(L(’LU a) = L(w, a).

Then from the maximizing argument property of convex conjugate we know that a; €
Ol;(w " x;). Thus the necessary condition (b) holds. Note that

1 Y 1 (& ’
w+—zaﬂ:z —N;lf(ai)—w<;aixi> : (13)

Let ' = supp(w). Since the above analysis implies L(w, &) = minj,,<x L(w, @), it must
hold that

2
L(w,a) =

1 & 1 &
w = Hp (—w ZO@:&) = Hy, (—w ZO?%L}) .
=1 1=1

This validates the necessary condition (c).

The “=" direction: Conversely, let us assume that w is a k-sparse solution to the
problem (1) (i.e., conditio(a)) and let &; € 9l;(w' x;) (i.e., condition (b)). Again from the
maximizing argument property of convex conjugate we know that [;(w'z;) = a;w ' x; —
[*(@y). This leads to the following:

L(w,a) < P(w) = max L(w, a) = L(w, &). (14)
acF
The sufficient condition (c) guarantees that F' contains the top k (in absolute value) entries

of _ﬁ Zf\il a;x;. Then based on the expression in (13) we can see that the following holds

for any k-sparse vector w
L(w,a) < L(w, @). (15)
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By combining the inequalities (14) and (15) we obtain that for any ||w||p < k and « € F,
L(w,a) < L(w, &) < L(w, &).

This shows that (w, @) is a sparse saddle point of the Lagrangian L. |

A.2 Proof of Theorem 5

Proof The “=" direction: Let (w, &) be a saddle point for L. On one hand, note that the
following holds for any k-sparse w’ and o/ € F

min L(w, ') < L(w',a’) < max L(w', a),

Jlwllo<k acF

which implies
max min L(w,a) < min max L(w, a). (16)
a€F ||lwlo<lk |wllo<k aeF

On the other hand, since (w, @) is a saddle point for L, the following is true:

min max L(w, a) < max L(w, )
lwllo<k aeF aeF (17)
< L(w,a) < min L(w,&) < max min L(w,a).

l[wllo<k a€F wllo<k

In view of (16) and (17) we have that the equality in (5) must hold.

The “<” direction: Assume that the equality in (5) holds. Let us define @w and & such

that
max L(w, o) = min max L(w, «)
aceF |lwlo<k a€F
min L(w,&) = max min L(w,a)
llwllo<k Ak Jlwllo<k

Then we can see that for any o € F,

L(w,a) > min L(w,&) = max L(w,a’) > L(w, ),

T lwllo<k o’'eF
where the “=” is due to (5). In the meantime, for any [|w|o < &,
L(w,&) <max L(w,a) = min L(w',a) < L(w, &).
(0,0) < max L. 0) = min L(u',a) < L(w,a)
This shows that (w, @) is a sparse saddle point for L. [ |

A.3 Proof of Proposition 7
Proof Recall that

1 < A
Liw,a) = 3 (e w: = (0 + 5l

=1
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Then for any fixed o € F, it is straightforward to verify that the k-sparse minimum of
L(w, o) with respect to w is attained at the following point:

N
1
w(a) = argmin L(w, ) = Hg <_)\N Z awi) .

wllo<k

Thus we have
D(a) = min L(w,a) = L(w(a), «)

[wllo<k

1y Toy— 1 A ?
=¥ ; (aiw(a) Ti — Z’(ai)> + §Hw(0‘)H

a1 al A
G ) — 2 2
2 3 L -tia) - Glut@

where “¢;” follows from the above definition of w(a).

Now let us consider two arbitrary dual variables o/, o” € F and any g(a) € % [w(a”) 21—
i (), .., w(@”) Teny — Ol (a%)]. From the definition of D() and the fact that L(w, )
is concave with respect to a at any fixed w we can derive that

D(d!) = L(w(d),d') < L(w(a), o) < L(w(a"),a”) + (g(a”), o/ — ).
This implies that D(«) is a concave function and its super-differential is given by

dD(a) = %[w(a)Txl 0z () s w(a) Tan — Ol ().

If we further assume that w(«) is unique and {I7};—;,  n are differentiable at any a,
then 9D(a) = +[w(a) 21 — Olf (o), ..., w(a) "z — Ol (an)] becomes unique, which im-
plies that 0D(«) is the unique super-gradient of D(«). [ |

A.4 Proof of Theorem 8

Proof The “=" direction: Given the conditions in the theorem, it can be known from
Theorem 2 that the pair (w,a&) forms a sparse saddle point of L. Thus based on the
definitions of sparse saddle point and dual function D(«) we can show that
D(a) = min L(w,a) > L(w,a) > L(w,a) > D(«).
l[w]lo<k
This implies that & solves the dual problem in (6). Furthermore, Theorem 5 guarantees the
following
D(a) = max min L(w,a) = min max L(w,a) = P(w),
a€F [wlo<k [wllo<k a€F

which indicates that the primal and dual optimal values are equal to each other.

The “«<” direction: Assume that & solves the dual problem in (6) and D(&) = P(w).
Since D(a@) < P(w) holds for any ||w||o < k, @ must be the sparse minimizer of P(w). It
follows that

max min L(w,a) = D(a) = P(w) = min max L(w, a).
a€F [lwllo<k [wllo<k a€F

32



DuAL ITERATIVE HARD THRESHOLDING

M b

From the argument for in the proof of Theorem 5 and Corollary 6 we get that the
conditions (a)~(c) in Theorem 2 should be satisfied for (w, @). [ ]

A.5 Proof of Theorem 9

Proof Recall the dual objective function is D(a) = Zz L =) = 3|lw(a)||®. Since
w(@) is unique and each [ is differentiable, according to Proposition 7 it is true that the
super-gradient of D(«a) at & is given by D'(&) = %[w(&)szl—lf(o’q), cw(@) T ey =1 (@n)).
Under the conditions in the theorem, we are going to show that for sufficiently small 7, the
following must hold:

a; =Pr, (di + 7]§z) ) (18)

where g; = %(w(d)—rxi—lf/ () and Pz, (-) is the Euclidian projection operator with respect
to feasible set F;. Before proving this, we need to present a few preliminaries. For any o € F,

let us define w(a) = — 5 SN ajzi. For a vector x € R?, denote [z](;) the j-th largest
entry (in absolute value) of =, i.e., |[z](1)| > |[*]2)| = ... > [[z](q)|- Since w(a) is unique, or
equivalently, the top k entries of w(a) is unique, we must have € := [ ()] &) — [W(Q)] (k41) >
0. Let F = supp(w(a@)) and define B(a) = {a RV : |la—al < 2)|\|]¥<€H}
We prove the equation (18) by contradiction. Note that for any « € B(a) we have
- - 1 _ X €
Ji5(0) — 0(@)l = 11X 0 = ) oo < el X (- )] < Pl < £

This indicates that supp(w(a)) = F = supp(w(@)). That is, F' still contains the (unique)
top k entries of w(«) for all @ € B(a). Consider the vector 8 with 8; = a; + ng; with
a sufficiently small step-size n > 0 such that § € B(a). Let o be a vector such that
o, = Px, (B;). From the non-expanding property of Euclidian projection we know that and
o/ —al| < |8 —all and thus o’ € B(@). Therefore supp(w(a’)) = F. Let us assume o’ # a.
Since [ is ¢-smooth, we have

D(’) ZIZN:—Z*W) — 2w = ~ ZNj—z*(o/) Y [T ZN:M‘
N P 1 1 2 N — 7 1 9 F )\N - il
1 N A 1 N 2
>_ g ¥ N ko, My (1 .
_N;< (@) = I (ea)leg = @) = 505 — @) ) 2 F( AN ;QJC)
1 & \
N2 <_l:(a’) 1 (i) (o = i) = (o — %>2> = Slw(@]?
=1
N
+ i Z%TU}(@)(O/ — d~) — L(O/ _ d)TX—_rxf(a/ . 64)
N po 1 1 3 2AN2 F F
g gy AN X

>D(@) +(D'(a). o’ — &) - S la’ —

< 1 ANCH X2,
>D — o el -
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where in “(;” we have used (o —a)" X1 Xp(a/ —a) < || X[?[lo/ — al?, “C2” is due to the
fact that o/ — B||*> < ||@ — B||*> which then implies |o/ — a||* — 2n{a’ — @, D'(@)) < 0.
2

Since we have assumed || — @|| # 0, by choosing sufficiently small 1 < we can

AN
AN+ X
always find D(a/) > D(a&), which contradicts the optimality of &. Therefore o/ = a, i.e.,
the equation (18) must hold for sufficiently small 7.

Next we prove that (w(@), @) forms a sparse saddle point of the Lagrangian of the form:

1 o A
Liw,a) = = > (o e = 17 () + Sl
i=1
Since (18) holds and J; is convex, it must hold that either g, = + (2] w(a) — ¥ (&) =0
for &; lies in the interior of F;, or &; lies on the boundary of F; (if it is closed) and it maxi-
mizes the function % (ainwi =7 (ai)). In any case, we always have that &; is a maximizer
of % (] w(@) — I (a;)) over the feasible set JF;, which implies L(w(a), a) < L(w(@), &)
holds for any a € F. From the definition of w(a) we know that L(w(a),a) < L(w, &) is
valid for all k-sparse primal vector w. Therefore (w(a@),@) is a sparse saddle point, and
consequently according to Theorem 8 that w(a) admits a primal k-sparse minimizer. |

A.6 Proof of Proposition 12

Proof The “<” direction: If the pair (1, &) is a v-approximate k-sparse saddle point for
L(w, @), then from Definition 11 we can derive

P(@w) =max L(w,a) < min L(w,&) +v = D(&) + v.

acF [lwllo<Lk
The “=" direction: Conversely, let us assume that P(w) — D(&) < v. Then

L(w = P(w) < D(a = in L N
max (0, a) (w) < D(&)+v IIme(l)I%k (w, &) + v,

which implies that for any ||w||o < k and o € F,
L(w,a) < L(w, &) + v.

Then by definition (w, &) is a v-approximate k-approximate saddle point of the Lagrangian
L(w, «). This concludes the proof. [ ]

A.7 Proof of Theorem 13

We first introduce the following key lemma which bounds the approximation level of certain
approximate sparse saddle point (@, &) with the primal vector @ being optimal on its own
supporting set.

Lemma 24 Assume that the primal loss functions l;(-) are differentiable. Let w € R? be a
k-sparse primal vector and & = [I} (0" x1),...,Uy (@0 zy)]. Let F = supp(w). Assume that
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Hz(VP(w)) = 0. Then (w,a) is a v-approzimate k-sparse saddle point of the Lagrangian
L(w, «) with approzimation level

= SIS @)]*

Proof From the definition of & we know that L(w,a) < L(w,&). Recall the following
formulation of L(w, &):

2 2

+C,

L(w,a) = %

_ % Hw + %W(w)

N
v 2 G
=1

where the term C' is not dependent on w. Since Hz (VP( w)) = 0, we must have w =

Hj(—5V f(@)) which implies L(w, &) = 55 ||[Hpe (V f (@ H +C. Let w = arg min |, <x L(w, &)

and F = supp(w). Then from the first-order optlmahty of w we must have L(w,a&) =
% HHFc(Vf(w))H2 + C. Therefore

L(#,&) — L(w, &) < L(w &) — L(w, &)
< o5 (1B F@) | + HA(VF@)IP) < 5 IH(V @)

By combining the above arguments we get L(@, ) < L(W, &) < L(w, &) + + | Hg(V £ (@))]%,
which by definition indicates that (w0, &) admits a v-approximate sparse saddle point with
v = 3| HK(VF(@))]?. =

Next we introduce the concepts of smoothness and restricted strong convexity which are
conventionally used in IHT-style methods (Jain et al., 2014; Yuan et al., 2018).

Definition 25 (Restricted strong convexity and smoothness) For any integer s >
0, we say a function f(w) : R? — R is restricted ps-strongly convex for some ms > 0 if

fw) = f(w') = (Vf(w'),w—w') > %Hw — 'l Vw—w'o < s. (19)
Moreover, we say f(w) is £-smooth for some £ > 0 if
f(w) = f() — (V@) w =) < Slw— |, V,u € R
The ratio number ¢/us, which measures the curvature of the loss function over sparse sub-

spaces, will be referred to as restricted condition number. The following is a simple lemma
that summarizes some standard properties of smoothness and restricted strong convexity.

Lemma 26 Assume that f(w) is ps-strongly conver and €-smooth. For any index set F
with cardinality |F| < s and any z,y with supp(w) U supp(w') C F, it holds that

[He(Vf(w) = He(VI) = pslw —w'll,  [Vf(w) = V)] <lw—w'].
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Proof By adding two copies of the inequality (19) with w and w’ interchanged we get
(w—w) (Vf(w) = V() = psllw — /|,

which in turn according to Cauchy-Schwartz inequality leads to |[Hp(V f(w))—Hp(V f(w"))|| >
psllw —w'||. The inequality ||V f(w) =V f(w')]| < £||w—w'|| is standard (see, e.g., Nesterov,
2004, Theorem 2.1.5). [ ]

The following is another key lemma to the proof of Theorem 13.

Lemma 27 Assume that the loss functions l; are p-strongly conver and £-smooth. Let W

be an arbitrary k-sparse vector and F = supp(w). Let w* = arg ming, =i P(w). Then
Oyt P
s < (1425 ) I TS+ 2l
[y A [y +A

Proof It can be verified that f(w) is py, -strongly convex and thus P(w) is (uy, + A)-
strongly convex. From Lemma 26 we know that

1
& — 0| < ————|[Hz(VP(D)) — Ha(VP(@*))|
WY + A r "
&Ly (vP@))
WY +A
S L ——
< — ~ w ——|W]],
pg +A T e+ A

where “¢;” is due to the first-order optimality condition of @* over F. Also, it can be
verified that f(w) is E’y,j—smooth. Then it follows from Lemma 26 and the above inequality
that

V(@) - V@) < 4 15— 7] € — 2 JHp (V@) + 2o
w) — w S £ w—w S —————— a w —_||W]|.
’ py AT w + A
Thus,
[He(V (@) < [V f(@) = V(@) + [[He(V (@) ]|
K'y]j - )\f’y]j N -
< ——[Ha(Vf()) + — 0]l + [[He(V f ()]
py, + A F wyy, + A
an N Aoyt
< (1 2 ) I + =l
Wy, +A Wy, A
This proves the desired bound. |
We are now in the position to prove the main result in Theorem 13.
Proof [of Theorem 13| Let us consider
w* = argmin  P(w), & = [lj(x] @),..., IN(@§5")).

supp(w)=supp(W)
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By applying Lemma 24 we can show that (w*, &*) is a 7*-approximate sparse saddle point
with relaxation level

7 = L IH(V ()]

We now bound the quantity ||Hk(Vf(1D*))H in 7* using ||Hg(Vf(w))||. Since Wmin >

, according to Lemma 27 we can show that

'Yk - ZV ||| — \fllvf( Moo’
MyE
|H(V f (@ >>u<( )HHk Vi@ + 22
Wy A
PN
< VE|Vf( k4@
< (14 ) VRIS + 2
g(2+ )fuw Yoo

Therefore

oo\
<k (2 N ”k) IV (@)
A Wy + A

Finally, from Proposition 12 we obtain
2

~ % ~ % ~x k gfylj ~\ 1|2
— < < — _ .
P(w*) — D(a*) <v* < 3 <2+H’Yk+)\> |V f(w)]|%

The desired bound then follows immediately from the fact P(w)—D(a) < P(w*)—D(&*). B

Appendix B. Proofs of Results in Section 4

In this section, we present the technical proofs of the main results stated in Section 4.

B.1 Proof of Theorem 15

We need a series of technical lemmas to prove this theorem. The following lemma bounds
the estimation error ||a — a|? = O((D'(a) — D'(@), & — «)) when the primal losses {l;}Y,
are Lipschitz smooth.

Lemma 28 Assume that the primal loss functions {l;(-)}}\., are 1/u-smooth. Then the
following inequality holds for any a, o’ € F and g(/) € dD(), g(a") € dD(a"):

N
o’ = 0" < = (g(a’) = gla"), 0" — ).
"

Proof Recall that D(a) = + Zfil —U (o) — f||w( )|I?. Let us consider two arbitrary
dual variables o/, o” € F. The assumption of [; being 1/u-smooth implies that its convex
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conjugate function I} is p-strongly-convex. Let F” = supp(w(«”)). Then

2
=1
N N 2
1 . A 1
:Nz_lz‘( 0k 5 Hy, <_)\N . Oééxz)
i=1 1=1
N N 2
1 ’ 1% A 1
59> (—t(a) =t (@f)iat = of) = S0t = af)?) = 5 ||Hp (—w > a;wi>
1 al YN/ N / " ooy 12 1"y112
< D7 (i) = i (0 = o) = B(al = af)?) = Slw(a”)
i=1
1 & 1
e S wla) (e - af) = s o — o) X Xpu(al — o)
i=1
<D(a" 7 _ ana
<D(0") +{g(a"), 0 — o) — Lo fla’ — o
By adding two copies of the above inequality with o and ' interchanged we arrive at
Llla’ = a"|* < {g(a') = gla"). 0" = o),
which leads to the desired inequality in the lemma. |

The following lemma gives a simple expression of the gap for properly connected primal-
dual pairs.

Lemma 29 For any dual vector oo € F and the related primal vector

w—Hk< Zax)

the primal-dual gap epp(w, ) can be expressed as:
1 N
epp(w,a) = N Z <li(wTa:i) + 15 (o) — ozina:i) .

=1

Proof It can be directly verified according to the definitions of P(w) and D(«) that

1 al T A 2 1 al T * A 2
Pw) = Dlo) =57 3 h(w' ) + Gl - 7 2 (owwTes — (@) + Slul

=1
NZ( w2 )+ 1 (o) — aina:i>,
which is the desired expression. |
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Based on Lemma 29, we can further derive the following lemma which establishes a
bound on the primal-dual gap.
Lemma 30 Consider a primal-dual pair (w, «) satisfying w = Hy, (—ﬁ sz\il aixi). Then
the following inequality holds for any g(a) € dD(c) and B € [0l1(w ' x1), ..., Ol (w zN)]:

P(w) = D(a) < (g(a), B — o).

Proof For any i € [1,..., N], from the maximizing argument property of convex conjugate
we have

L(w' z) =wzli(w' x) — U (G(w' ),
and / ,
li (i) = ol (i) = Ll (0u)).-
By summing both sides of above two equalities we get
Li(w ;) + 1 () =w wili(w ) + il (eq) = (T} () + 1 (lh(w " 22)))

a , / (20)
Smeilg(wai) + ol (o) = 17 (ai)lg(wTa:i),

where “(;” follows from Fenchel-Young inequality. Therefore

(w2 — 1} () (U(w 23) — o)

(9(a), B —a) =

-

~
Il
—

2|~

(wail;(wai) — (o) l(w " 2;) — cqw i + ailfl(ai))

I
==
M=

s
Il
—

(Li(w " x) + 1 (0g) — aw " ;) s P(w) — D(«),

Ve
=] =
=

s
I
—_

where “(2” follows from (20) and “(3” follows from Lemma 29. This proves the desired
bound. |

The following lemma shows that under proper conditions, w(«) is locally smooth around
w = w(@).

Lemma 31 Assume that {l;}i—1,. N are differentiable and € := Wyin — 3||P'(0)]lc > 0.

Let & = [lj(w"21), ..., In (@0 2n)].

(a) If [|a —af| < 2)‘“];[;“, then supp(w(a)) = supp(w) and

(o)~ < Pl ja — ).

= ANE
(b) If |ao — & > 3 then

X 40| X ||| e
ot o < L (1 KLY

AN ANE
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Proof Part(a): For any a € F, let us define

1 N
b(a) = N ;aimi.

Consider F' = supp(w). Given € > 0, it is known from Theorem 8 that w = Hz (w(a)) and

M = Hpe (—w(@)). Then € > 0 implies F' 1s umque, i.e., the top k entries of w(a@) is
a

umque and w = w(a). Given that | — al| < we can show that

2HX||’

1x ‘
lla—al < 2.

This indicates that F' still contains the (unique) top k entries of w(«a). Therefore,

[@(a) - w(@)] = ﬁ”X(a —a)l <

supp(w(a)) = F = supp(w).
Consequently we have
lw(e) —w(@)|| = [Hp (w(a)) = Hp (w(@)) ||

< Ji(0) — d(@)] = 11X (0~ )] < Xl o~ &)

This proves the desired bound in Part(a).
Part(b): Next let us consider the case ||a — a| > 2’\”];[{”

can verify that |w(a)| < 551X al < 55X |lle]. Then we have

From the expression of w(«) we

(o)~ w(@) < P gjaf + ap)
x|

< = (la — al +2ljal)
X o Xl
< o7 _
< = (la—al+ S5 allla - af
RS 4||X|| _
=N = llall ) lla = all.
This completes the proof. |

We are now ready to prove the main result in Theorem 15.
Proof [of Theorem 15| Part(a): Let us consider ¢® € aD(a®) with g(t) = +(z]w® —

)

l;‘,(agt))). From the expression of w®) we can verify

IXNe®) _ rllX])

o IXa) <

H_AN

AN T AN
Since ||z;|| < 1, it can be verified that
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Let g € 9D(a) with g; = % (2] w(a) — I} "(@)). We will now claim g = 0. Indeed, Since & =
Wrnin — 3 || P’ (0)]0e > 0, from the strong sparse duality theory we can show that w = w( ).
Then, according to the fact I* (I'(a)) = a we can derive g( ) = +(zfw— ¥ (I(z] w)))
+ (2w — zf w) =0, and thus g = 0.

Let h® = [|[a® — a| and v® = (¢® — g,a — o®). From Lemma 28 we know that
(h®M)2 < Nv® /. Then

(h0)2 =[P (a0 4t 0gl=D)) — g
SHOZ(t_l) + 77(t—l)g(t—l) _ 54||2
(D)2 — 2t gl 6 — o) 4 (2ol 2
=(R(D)2 — 2D (g1 — g G — a17D) 4 (D)2 g2

_ 2 _ _ || X || + AN,
S(h(t 1))2_77(1& 1)#(h(t 1))2+(n(t 1))2( I ||)\2N2 Np)? :

where the first inequality is permitted by the non-expansion property of convex projection

operator. Let n(t) = (t+2) Then we obtain

We will now use induction over ¢ > 1 to prove our claimed bound, i.e., for all ¢ > 1,

)2 « o
(h )—t+2

where ¢y = W. The base-case t = 1 follows immediately from (22). Now

considering ¢ > 2, the bound in (22) reads as

2 c
(t) _ o~ (t=1))2 0
()2 < (1 t+1>(h Pt

-2 ) o (i 1) @
t+1)t+1  (t+1)2 t+1)t+1 " t+2

which is our claimed estimation error bound when ¢t > 2.

To prove the convergence of primal-dual gap, we consider 8¢ := [If (2] w®), ..., I} (x Fw®)].
According to Lemma 30 we have

& = Pw®) — D) < (g, 8O — a®) < [|g?](18D — &]| + |a — o).

From the smoothness of [; and Lemma 31 we get

e YN . Xl A X |l _
() _ < Y2 @) < =0 gy 2R AR _
18—l < YE i — < S (14 S o gl
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where in the first “<” we have used the assumption ||z;|| < 1. By combining the above with
the bound in (21) we obtain

etp < lg@1(18Y = [ + lla — o))

o TIXUEANp (X (L AXlal la®
= AN AV N ANé

AT (5 () ) ().

This completes the proof of Part(a).

Part(b): Let us consider ¢y = % From Part(a) we obtain |[a® — a|| < ¢ after

t > to = %. In this case, it is known from Lemma 31 that supp(w®) = supp(w). This
0

proves the claim of Part(b). [ |

B.2 Proof of Theorem 17

Proof Part(a): Let us consider g() € aD(a) with gl(t) = (@] w® — ¥ (a ())), and
g € 0D(a) with g; = ~(z;]w(a) — I "(@;)). Since € = Wi — §| P'(0)]|s > 0, based on
the proof of the part(a ) of Theorem 15 we can verify that w = w(@) and g = 0. The

1/¢-strong-convexity of [; implies the /-smoothness of [. Then we can show that

N
1 / r )2
19 =gl = 1| D (af (@O = w(@) 1’ (@) + 1’ (@)
i=1
N N
2 , , 2
< ﬁ > ol (0 —w(@))® + 3 (1 (of) ~ 1 (@)
\ i=1 i=1
V2 e V2 . . 2
S| > (] (w® —w(@)* + =4[ D (1 (el - 17 (@)
=1 i=1
a [2 V20
<) 2™ — w(a Y a® — &
2/ 2 0 —w(@)] + Yo o — 4
V2| X]| 1+ HEXTla] \ff lo® — g
ANVN ANE
= EDHO[ - 54”7
where in “¢;” we have used ||z;]| < 1 and |1}’ ( (t)) —1¥(a ( )| < €|a — @, “¢y” follows from
Lemma 31. Now let ) = [|a(®) — &[] and v®) = (4) — g, a — a( )). From Lemma 28 we
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know that (h(M)2 < Nv® /u=v® /up. Then

(n®y” —HPf( 4y Dgli) —a?
<[V 4 pt=Dgt=1) _ 52
=l 47D — g) - dIF
=(h7D)? — 2y (D20 g
S(h(t—l))2_2n(t Dpup (RED)2 4 (= 1))2£2D<h(t—1))2
==(1—-2n“‘”up-+(n“_152€%)(h“_”)a

where the first inequality is permitted by the non-expansion property of convex projection
operator. Let nt) = 2. Then we obtain
D

2

D
By recursively applying the above inequality we obtain that

2\t t
u p
(07 < (1-£2) O = (1-22) a2

D D

where we have used a{?) = 0. This proves the claim in Part(a).
Now let B®) := [If (2] w®), ..., Iy (x fw®)]. According to Lemma 30 we have

¢pp = P(w®) = D(a")
< <g(t),5(t) _ a(t)>
< g™ (189 - all + a — oM
= lg“ = gll(I18“ — all + fla — o),
where we have used g = 0. From the smoothness of /; and Lemma 31 we obtain

e YN . Xl A X |l _
) _ < Y2 @) < i i Lt 101 | _
18—l < Y2~ < S (14 ST o gl

Since we have already shown in Part(a) that ||gY) — g|| < £p|a® —al|, the following is valid

immediately:
X 4| X ||| ex
65? </{p (/\H I (1 H)\]\‘THE_ H) 1) ”O(t) —:”27

which then implies the desired bound on primal-dual gap. This concludes the proof of
Part(a).

Part(b): Let us consider ¢y = 2||XH
and the result in Part(a) we can show

Based on the fact (1 —a)! < exp(—at) for a € (0,1)

la® —al| < eo

after ¢ > D log (%) In this case, it is known from Lemma 31 that supp(w®)) =
supp(w). ThlS proves the claim of Part(b). [ ]
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B.3 Proof of Theorem 19

Proof Part(a): The proof argument largely mimics that of Theorem 15. Here we still
provide a detailed proof for the sake of completeness. Let h®) = [|aY) — a|| and v® =
(g® —g,a — a®). From Lemma 28 we know that (h(®)? < Nv® /4. For an index set
B, denote gg) .= Hp(g") and vg) = (gg) — gp,a@ — aW). Then from the non-expansion
property of convex projection operator and the fact of § = 0 we can show

2 _ t—1 t—1) (t=1) ~112
(KO) =[P (=D + 5 Ngir D ) —a

<Hat 1)+n(t l)g(B . )1> 5‘“2

_ t—1 — t—1
—(ht=1)2 _ 9plt= 1)1’1(9 » )1) + (nt 1))2||gf(9i<z_)1)”2'

By taking conditional expectation (with respect to uniform random block selection, condi-
tioned on a(t_l)) on both sides of the above inequality we get

E[(h(t))2’a(t71)] <(h p(t= 1) Zznt 1), t 1)Jr Z (t— 1 1)H2

t— t—1
:(h(t—l)>2 o 277( )U(t_l) + (77( )) Hg(t—l)H2
m m

_ o=y _ || X || + AW/ Np)?
é(h(t 1))2 - (h(t 1))2 + (n(t 1))2( ” H Pk )
mN mA-N

Let us choose (¥ = 7(?52) Then we obtain

E[(h)? | o7V < (1_2> W (;XH(ji\l)ﬁP) |

t+1
By taking expectation on both sides of the above over a*~1 we further get

m(r|X|| + WNp)?*

BIHOP) < (1- g ) B0+ M

By induction, this recursive inequality leads to

E[(h(t ) | < m(r|| X|| +)‘\/>/0) <t+2> '

2242
Moreover, similar to the argument in the proof of Theorem 15 we obtain

Ele)] < E[lg® (18 — a|| + |la — a®|)]
X MW N X 4| X ||| e
r|| X + WN p( 1x]| (1+ [ H|ra|r)+1>EH|a(t>_@m

= AN MV N ANE
o VX ANp? (XD () 4||X||||a|!> N 1) ( ! >
- N uN AV N ANé Vt+2)'
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where in the first inequality we have used E[||a® — a||] < /E[|[a® — &||2] This proves the
results in Part(a).
Part(b): Let us consider ¢) = 535 From Part(a) we obtain E [||a® — al|] < dey after

”XH )
m(r|| X +>\\/ﬁp 2
>t = ’V ( “)\222526(2) )

E[[|a® —al[]/é < e holds with probability at least 1— 4. Lemma 31 shows that ||a) —al|| <
¢o implies supp(w®) = supp(w). Therefore when t > t;, the event supp(w®) = supp(w)
occurs with probability at least 1 — §. This proves the desired result in Part(b). |

—‘. Then from the Markov inequality we know that [ — a|| <

B.4 Proof of Theorem 22

Proof Part(a): Based on the proof of Theorem 17 we know that g = 0 and ||¢g*) — g|| <
(plla® — a||. Let h® = |la® — a|| and v® = (4 — §,a — a®). From Lemma 28 we
know that (h())2 < v®/up. For an index set B, denote gg) = Hp(g") and vg) =
(gg) —gB, Q@ — a(t)). Then from the non-expansion property of convex projection operator
and the fact of g = 0 we have

— — t—1 _
(O =[P (27D 4 0 Dgls D )

SHO‘(til) + W(tfl)(gg 1)1) - gBi(tﬂ)) - 6‘”2

i(t—

:(h(tfl))Q — 27](7&*1)1)(5;(:_)1) + (U(til))QHQg;tl_)l) - gBi(tq) ”2

By taking conditional expectation (with respect to uniform random block selection, condi-
tioned on a(tfl)) on both sides of the above inequality we get

_ - L=y (-1, (-1, L X~ (- .
E[(h)* [ aC V] <) = 3 o e 4 S ) gl — g
=1 =1

—_ (t—1)

(t—1) (t—1)\2
(h(t—l))Q _ 21 U(t_l) + (77 ) ”g . gHQ
m m
t—1 t—1)\2p2
<<h(t—1))2 - 277( )ND (h(t—1)>2 + (77( )) €D (h(t—l))2
- m m

_ (1 B M g N (n(t—l))2£%> (h(tfl))Q.

m m

Let n(Y) = 2 Then we obtain

&
2
(2 | (t—1) _ HDp (t—1)\2
E[(h 2| }g<1 m%)(h )2,

By taking expectation on both sides of the above over a(*~1, we further get

E [(h(t)ﬂ < <1 _ MZ]:;) E [(h(t—n)z] ‘

mep
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This recursive inequality leads to

2 t
2| < _ HD ~112
B (O] < (1= £5-) .

where we have used a(?) = 0.
Following the similar arguments in the proof of Part(a) of Theorem 17 we can show that

’XH 4’”“‘”“” MQD ' 112
1 1 - —=
- <)\M‘/ ANéE + m€2D e

which is the desired bound in Part(a)
Part(b): Let us consider ey = ANe From Part(a) we obtain E [[[a®) —a|]] < de

21 X7
2 =112 2
after ¢t > %bg (%). Then from the Markov inequality we know that ||a(®) —
D

al| < E [Ha(t) —al]] /6 < € holds with probability at least 1 — 4. Lemma 31 shows
that ||[a® — a|| < e implies supp(w®) = supp(w). Therefore in this case, the event
supp(w®) = supp (@) occurs with probability at least 1 — 4. [ |
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