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Abstract

In this paper we study the fundamental problems of maximizing a continuous non-
monotone submodular function over the hypercube, both with and without coordinate-wise
concavity. This family of optimization problems has several applications in machine learn-
ing, economics, and communication systems. Our main result is the first 1

2 -approximation
algorithm for continuous submodular function maximization; this approximation factor of 1

2
is the best possible for algorithms that only query the objective function at polynomially
many points. For the special case of DR-submodular maximization, i.e. when the submod-
ular function is also coordinate-wise concave along all coordinates, we provide a different
1
2 -approximation algorithm that runs in quasi-linear time. Both these results improve upon
prior work (Bian et al., 2017a,b; Soma and Yoshida, 2017).

Our first algorithm uses novel ideas such as reducing the guaranteed approximation
problem to analyzing a zero-sum game for each coordinate, and incorporates the geometry
of this zero-sum game to fix the value at this coordinate. Our second algorithm exploits
coordinate-wise concavity to identify a monotone equilibrium condition sufficient for getting
the required approximation guarantee, and hunts for the equilibrium point using binary
search. We further run experiments to verify the performance of our proposed algorithms
in related machine learning applications.
Keywords: Continuous submodularity, non-monotone submodular maximization, ap-
proximation algorithms

1. Introduction

Submodular optimization is a sweet spot between tractability and expressiveness, with nu-
merous applications in machine learning (e.g., Krause and Golovin (2014), and see below)
while permitting many algorithms that are both practical and backed by rigorous guarantees
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(e.g., Buchbinder et al. (2015b); Feige et al. (2011); Calinescu et al. (2011)). In general, a
real-valued function F defined on a lattice L is submodular if and only if

F(x ∨ y) + F(x ∧ y) ≤ F(x) + F(y) ,

for all x, y ∈ L, where x ∨ y and x ∧ y denote the join and meet, respectively, of x and y in
the lattice L. Such functions are generally neither convex nor concave. In one of the most
commonly studied examples, L is the lattice of subsets of a fixed ground set (or a sublattice
thereof), with union and intersection playing the roles of join and meet, respectively.

This paper concerns a different well-studied setting, where L is a hypercube (i.e., [0, 1]n),
with componentwise maximum and minimum serving as the join and meet, respectively.
We consider the fundamental problem of (approximately) maximizing a continuous and
submodular function over the hypercube. We further assume function F : [0, 1]n → [0, 1] is
non-negative, bounded (by 1), coordinate-wise Lipschitz continuous and differentiable.1 The
function F is given as a “black box”, which means it is accessible only via querying its value
at a point. In later parts of the paper (Section 3), we further consider access to first-order
partials of F .2 We are interested in algorithms that use at most a polynomial (in n) number
of queries. We do not assume F is monotone, otherwise the problem is trivial.

Our results. Maximizing a submodular function over the hypercube is at least as difficult
as over the subsets of a ground set. An instance of the latter problem is a discrete problem,
but can be converted to one of the former by extending the given set function f (with
domain viewed as {0, 1}n) to its multilinear extension F defined on the hypercube (where
F(x) =

∑
S⊆[n]

∏
i∈S xi

∏
i/∈S(1−xi)f(S)). Sampling based on an α-approximate solution for

the multilinear extension yields an equally good approximate solution to the original discrete
problem. For this discrete problem, considering algorithms that make polynomial number
of (set or integral) queries to the discrete function, the best approximation ratio achievable
is 1

2 ; the (information-theoretic) lower bound is originally due to Feige et al. (2011), a
new proof based on symmetry gap is due to Vondrák (2013), and the optimal algorithm
due to Buchbinder et al. (2015b). Moreover, by employing standard techniques based on
symmetry gap of submodular functions as in Vondrák (2013), we can show that integral
queries to the discrete function are as good as fractional queries to the multi-linear extension
in this lower bound (Remark 5). Thus, the best-case scenario for maximizing a submodular
function over the hypercube (using polynomially many queries, possibly fractional) is a
1
2 -approximation. The main result of this paper achieves this best-case scenario:

There is an algorithm for maximizing a continuous submodular function over the
hypercube that guarantees a 1

2 -approximation (up to additive ε > 0 error) while
using only a polynomial number of queries in n and 1

ε to the function under mild
(Lipschitz) continuity assumptions.

1. More generally, for reasons that will be clear later, the function only has to be nonnegative at the points
~0 and ~1, and bounded. Also, in most parts of the paper, differentiablity of F is not fundamentally
necessary; however, for the sake of a clean presentation of main ideas, we use all these assumptions.

2. This assumption is only a technical assumption for the ease of presentation, lack of which will only cause
an extra small additive error due to Lipschitz-ness. We will elaborate on this later.
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Note that both additive error ε and Lipschitz continuity are required to obtain any mean-
ingful positive results in this problem, as the special case of 1-dimensional continuous sub-
modular function is an arbitrary single variable function.

Our algorithm is inspired by the bi-greedy algorithm of Buchbinder et al. (2015b), which
maximizes a submodular set function; it maintains two solutions initialized at ~0 and ~1, go
over coordinates sequentially, and make the two solutions agree on each coordinate. The
algorithmic question here is how to choose the new coordinate value for the two solutions,
so that the algorithm gains enough value relative to the optimum in each iteration. Prior
to our work, the best-known result was a 1

3 -approximation (Bian et al., 2017b), which is
also inspired by the bi-greedy. Our algorithm requires a number of new ideas, including a
reduction to the analysis of a zero-sum game for each coordinate, and the use of the special
geometry of this game to bound the value of the game.

We further consider a well-studied special class of submodular functions that are concave
in each coordinate. This class is called DR-submodular in Soma and Yoshida (2015) (inspired
by diminishing returns defined in Kapralov et al. (2013)). Here, an optimal 1

2 -approximation
algorithm was already known on integer lattices (Soma and Yoshida, 2017), that can easily
be generalized to our continuous setting as well; our contribution is a significantly faster such
bi-greedy algorithm. The main idea here is to identify a monotone equilibrium condition
sufficient for getting the required approximation guarantee, which enables a binary search-
type solution.

We should also point out that both of our theoretical results extend naturally to arbitrary
axis-aligned boxes (i.e., “box constraints”). We summarize our results and how they are
compared with previous work in Table 1.

Table 1: Summary of results for non-monotone continuous submodular maximization.

Reference Setting Constraint Objective Complexity

Buchbinder et al. (2015b) discrete/submodular unconstrained 1
2
·OPT O(n)

Bian et al. (2017a) smooth/submodular box 1
3
· OPT− ε O(n

ε
)

Bian et al. (2017b)
Feldman et al. (2011) smooth/DR-submodular convex/down-closed 1

e
· OPT− ε O( 1

ε
)∗

Mokhtari et al. (2018) stochastic†/smooth/DR-submodular convex 1
e
· OPT− ε O( 1

ε3
)∗

Soma and Yoshida (2017) integer lattice/DR-submodular integer box 1
2
·OPT O(n2)

[This paper] smooth/submodular box 1
2
· OPT− ε O(n

2

ε
)

[This paper] smooth/DR-submodular box 1
2
· OPT− ε O(n

ε
)

∗ Query complexity has dependency on Lipschitz constant and diameter of the constraint set.
† For stochastic functions, algorithms only have access to unbiased samples of the gradient.

Applications. We next briefly mention four applications of maximizing a non-monotone
submodular function over a hypercube that are germane to machine learning and other
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related application domains. See Appendix A for more details on these applications.

Non-concave quadratic programming. In this problem, the goal is to maximize F(x) =
1
2x

THx+ hTx+ c, where the off-diagonal entries of H are non-positive. One application of
this problem is large-scale price optimization on the basis of demand forecasting models (Ito
and Fujimaki, 2016).

Map inference for Determinantal Point Processes (DPP). DPPs are elegant probabilistic
models that arise in statistical physics and random matrix theory. DPPs can be used as
generative models in applications such as text summarization, human pose estimation, and
news threading tasks (Kulesza et al., 2012). The approach in Gillenwater et al. (2012) to
the problem boils down to maximize a suitable submodular function over the hypercube, ac-
companied with an appropriate rounding (see also Bian et al. (2017a)). We should point out
this vanilla version of this problem is indeed an instance of DR-submodular maximization;
however, one can also think of regularizing this objective function with `2-norm regularizer,
in order to avoid overfitting. Even with a regularizer, the function remains submodular, but
it does not necessarily remain DR-submodular.

Log-submodularity and mean-field inference. Another probabilistic model that generalizes
DPPs and all other strong Rayleigh measures (Li et al., 2016; Zhang et al., 2015) is the
class of log-submodular distributions over sets, i.e., p(S) ∼ exp(F(S)) where F(·) is a set
submodular function. MAP inference over this distribution has applications in machine
learning (Djolonga and Krause, 2014). One variational approach towards this MAP infer-
ence task is to use mean-field inference to approximate the distribution p with a product
distribution x ∈ [0, 1]n, which again boils down to submodular function maximization over
the hypercube (see Bian et al. (2017a)). We should point out this problem is indeed an
instance of DR-submodular maximization.

Revenue maximization over social networks. In this problem, there is a seller who wants
to sell a product over a social network of buyers. To do so, the seller gives away trial
products and fractions thereof to the buyers in the network (Bian et al., 2017b; Hartline
et al., 2008). In Bian et al. (2017b), there is an objective function that takes into account
two parts: the revenue gain from those who did not get a free product, where the revenue
function for any such buyer is a non-negative non-decreasing and submodular function Ri(x);
and the revenue loss from those who received the free product, where the revenue function
for any such buyer is a non-positive non-increasing and submodular function R̄i(x). The
combination for all buyers is a non-monotone submodular function. It is also non-negative
at ~0 and ~1, by extending the model and accounting for extra revenue gains from buyers with
free trials.

In order to verify the performance of our proposed algorithms in some of these practical
machine learning applications, we further run experiments on synthetic data. We observe
that our algorithms match the performance of the prior work in these experiments, while
providing either a better guaranteed approximation or a better running time.

Further related work. Buchbinder and Feldman (2016) derandomize the bi-greedy al-
gorithm. Staib and Jegelka (2017) apply continuous submodular optimization to budget
allocation, and develop a new submodular optimization algorithm to this end. Hassani
et al. (2017) give a 1

2 -approximation for monotone continuous submodular functions under
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convex constraints. Gotovos et al. (2015) consider (adaptive) submodular maximization
when feedback is given after an element is chosen. Chen et al. (2018); Roughgarden and
Wang (2018) consider submodular maximization in the context of online no-regret learning.
Mirzasoleiman et al. (2013) show how to perform submodular maximization with distributed
computation. Buchbinder et al. (2015a) studies the competitive ratio that can be obtained
for same problem in the online competitive setting. Submodular minimization has been
studied in Schrijver (2000); Iwata et al. (2001). See Bach et al. (2013) for a survey on more
applications in machine learning.

Equivalent definitions of continuous submodularity. Two related properties to (con-
tinuous) submodularity studied in the literature are weak Diminishing Returns Submodu-
larity (weak DR-SM) and strong Diminishing Returns Submodularity (strong DR-SM) (Bian
et al., 2017b), formally defined below.

Definition 1 (Weak/Strong DR-SM) Consider a continuous function F : [0, 1]n → [0, 1].
For any x ∈ Rn, i ∈ [n], let x−i , [x1, . . . , xi−1, xi+1, . . . , xn]. We define the following two
properties:

• Weak DR-SM (continuous submodular): ∀i ∈ [n], ∀x−i ≤ y−i ∈ [0, 1]n, and ∀δ ≥ 0,∀z

F(z + δ, x−i)−F(z, x−i) ≥ F(z + δ, y−i)−F(z,y−i) .

• Strong DR-SM (DR-submodular ): ∀i ∈ [n], ∀x ≤ y ∈ [0, 1]n, and ∀δ ∈ [0, 1− yi]:

F(xi + δ, x−i)−F(x) ≥ F(yi + δ, y−i)−F(y) .

As simple corollaries, a twice-differentiable F is strong DR-SM if and only if all the entries of
its Hessian are non-positive, and weak DR-SM if and only if all of the off-diagonal entries of its
Hessian are non-positive. Also, weak DR-SM together with concavity along each coordinate
is equivalent to strong DR-SM (see Proposition 19 in Appendix B for the proof).

As an important remark, it can be shown that weak DR-SM is equivalent to submodu-
larity and strong DR-SM is equivalent to DR-submodularity. Therefore, we use these terms
interchangeably in the rest of the paper. See Proposition 19 in Appendix B for more details
and a formal treatment of these connections.

Coordinate-wise Lipschitz continuity. Consider univariate functions generated by fix-
ing all but one of the coordinates of the original function F(·). In future sections, we
sometimes require mild technical assumptions on the Lipschitz continuity of these single
dimensional functions.

Definition 2 (Coordinate-wise Lipschitz) A function F : [0, 1]n → [0, 1] is coordinate-
wise Lipschitz continuous if there exists a constant C > 0 such that ∀i ∈ [n], ∀x−i ∈ [0, 1]n,
the single variate function F(·, x−i) is C-Lipschitz continuous, i.e.,

∀z1, z2 ∈ [0, 1] : |F(z1, x−i)−F(z2, x−i)| ≤ C|z1 − z2| .
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Figure 1: Continuous curve r(z) in R2 (dark blue), positive-orthant concave envelope (red).

2. Weak DR-SM Maximization: Continuous Randomized Bi-Greedy

Our first main result is a 1
2 -approximation algorithm (up to additive error δ) for maximizing

a continuous submodular function F , a.k.a., weak DR-SM, which is information-theoretically
optimal (Feige et al., 2011). This result assumes that F is coordinate-wise Lipschitz con-
tinuous.3 Before describing our algorithm, we introduce the notion of the positive-orthant
concave envelope of a two-dimensional curve, which is useful for understanding our algo-
rithm.

Definition 3 Consider a curve r(z) = (g(z), h(z)) ∈ R2 over the interval z ∈ [Zl, Zu] such
that for α, β ∈ [0, 1]:

1. g : [Zl, Zu]→ [−1, α] and h : [Zl, Zu]→ [−1, β] are both continuous,

2. g(Zl) = h(Zu) = 0, and h(Zl) = β ∈ [0, 1], g(Zu) = α ∈ [0, 1].

Then the positive-orthant concave envelope of r(·), denoted by conc-env(r), is the smallest
concave curve in the positive-orthant upper-bounding all the points {r(z) : z ∈ [Zl, Zu]} (see
Figure 1), i.e.,

conc-env(r) , upper-face (conv ({r(z) : z ∈ [Zl, Zu]})) .

3. Such an assumption is necessary, since otherwise the single-dimensional problem amounts to optimizing
an arbitrary function, and is hence intractable. Prior work, e.g., Bian et al. (2017b) and Bian et al.
(2017a), implicitly requires such an assumption to perform single-dimensional optimization.

6



Optimal Algorithms for Continuous Non-Monotone Submodular Maximization

Here is how the rest of Section 2 is organized. We first consider a vanilla version of
our algorithm for maximizing F over the unit hypercube, termed as continuous randomized
bi-greedy (Algorithm 1). This version assumes blackbox oracle access to algorithms for a
few computations involving univariate functions of the form F(.,x−i) (e.g., maximization
over [0, 1], computing conc-env(.), etc.). In Section 2.1, we prove that the vanilla algorithm
finds a solution with an objective value of at least 1

2 of the optimum. In Section 2.2, we
then show how to approximately implement these oracles in polynomial time when F is
coordinate-wise Lipschitz.

Algorithm 1: (Vanilla) Continuous Randomized Bi-Greedy
input: function F : [0, 1]n → [0, 1] ;
output: vector ẑ = (ẑ1, . . . , ẑn) ∈ [0, 1]n ;
Initialize X← (0, . . . , 0) and Y ← (1, . . . , 1) ;
for i = 1 to n do

Find Zu, Zl ∈ [0, 1] such that


Zl ∈ argmax

z∈[0,1]
F(z,Y−i)

Zu ∈ argmax
z∈[0,1]

F(z,X−i)
;

if Zu ≤ Zl then
ẑi ← Zl ;

else

∀z ∈ [Zl, Zu], let

{
g(z) , F(z,X−i)−F(Zl,X−i),

h(z) , F(z,Y−i)−F(Zu,Y−i),
;

Let α , g(Zu) and β , h(Zl) ; // note that α, β ≥ 0

Let r(z) , (g(z), h(z)) be a continuous two-dimensional curve in [−1, α]× [−1, β] ;
Compute conc-env(r) (i.e., positive-orthant concave envelope of r(t) as in
Definition 3) ;

Find point P , intersection of conc-env(r) and the line h′ − β = g′ − α on g-h
plane ;

Suppose P = λP1 + (1− λ)P2, where λ ∈ [0, 1] and Pj = r(z(j)), z(j) ∈ [Zl, Zu] for
j = 1, 2, and both points are also on the conc-env(r) ; // see Figure 2

Randomly pick ẑi such that

{
ẑi ← z(1) with probablity λ
ẑi ← z(2) o.w.

;

Let Xi ← ẑi and Yi ← ẑi ; // after this, X and Y will agree on coordinate
i

return ẑ = (ẑ1, . . . , ẑn)

Theorem 4 If F(·) is non-negative and submodular (or equivalently is weak DR-SM), then
Algorithm 1 is a randomized 1

2 -approximation algorithm, i.e., returns ẑ ∈ [0, 1]n s.t.

2E [F(ẑ)] ≥ F(x∗), where x∗ ∈ argmax
x∈[0,1]n

F(x) is the optimal solution.

Running time. The algorithm has n iterations. Moreover, as our implementation in Sec-
tion 2.2 shows, we need to make O(n/ε) function computations at each iteration, assuming
mild Lipschtiz continuity. These function computations will result in a running time of
O(n2/ε). See Theorem 13 for more details.

7



Niazadeh, Roughgarden and Wang

Remark 5 There exists a (family of) strong DR-SM continuous function(s) F(·) so that
no (12 + ε)-approximation is possible with polynomial in n number of value queries for any
ε > 0. This statement is true for maximizing discrete non-monotone submodular set func-
tions (Feige et al., 2011). At the first glance, since multi-linear extension of a submodular
set function f(.), i.e.,

F(x) ,
∑
S⊆[n]

f(S)
∏
i∈S

xi
∏
i/∈S

(1− xi) ,

is a special case of our setting, one might think Feige et al. (2011) implies the same hard-
ness result for continuous submodular functions. However, when querying a multi-linear
extension, we might be able to benefit from querying fractional points (and not only querying
integral points that correspond to sets). Interestingly, fractional queries are as helpful as
intergral queries by employing a standard symmetry gap argument à la Vondrák (2013). In
a nutshell, by looking at Lemma 3.3 in Vondrák (2013), the crux of the argument for a re-
duction from symmetry gap to inapproximibility is that for any fixed query Q to the objective
function F(.), the associated vector q = ξ(Q) in Lemma 3.3 is very likely to be close to its
symmetrized version q̄ due to a simple concentration bound. This is only “more true" for
interior points, as the same concentration bound (even a slightly stronger version) still holds
(cf. Vondrák (2013) for more details).4

2.1. Analysis of the Continuous Randomized Bi-Greedy (proof of Theorem 4)

We start by defining these vectors, used in our analysis in the same spirit as Buchbinder
et al. (2015b):

i ∈ [n] : X(i) , (ẑ1, . . . , ẑi, 0, 0, . . . , 0), X(0) , (0, . . . , 0)

i ∈ [n] : Y(i) , (ẑ1, . . . , ẑi, 1, 1, . . . , 1), Y(0) , (1, . . . , 1)

i ∈ [n] : O(i) , (ẑ1, . . . , ẑi, x
∗
i+1, . . . , x

∗
n), O(0) , (x∗1, . . . , x

∗
n)

Note that X(i) and Y(i) (or X(i−1) and Y(i−1)) are the values of X and Y at the end of (or at
the beginning of) the ith iteration of Algorithm 1. A nice geometric way of thinking about
this set of vectors is thinking of them as three paths inside the unit hypercube, denoted
as lower path, upper path, and the optimal path. Lower-path (or upper-path) is defined by(
X(1), . . . ,X(n)

)
(or

(
Y(1), . . . ,Y(n)

)
), which starts from [0, 0, . . . , 0] (or [1, 1, . . . , 1]) and

ends at ẑ. Similarly, optimal path is defined by
(
O(1), . . . ,O(n)

)
, which starts from the

optimal point x∗ and ends at ẑ. Importantly, these three paths all collide at the final point
returned by the algorithm which is ẑ.

Algorithm 1 is a single-pass algorithm that goes over coordinates one by one in an
arbitrary order, and searches for the right coordinate value ẑi for each coordinate i. Once
it decides a coordinate value, it fixes this decision and never changes ẑi in future iterations.
At the core of our algorithm there is a single dimensional search sub-problem per each
coordinate to find ẑi. Fix a coordinate i ∈ [n]. In order to prove the correctness of the
particular coordinate-wise search of Algorithm 1, we need to define a few mathematical

4. We confirmed the correctness of this statement with the author through a personal communication.
We omit further details here as it is beyond the scope of our paper and requires defining several new
notations as in Vondrák (2013).
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components related to marginal changes of the function on lower and upper paths when
processing coordinate i.

Definition 6 Fix coordinate i and values ẑ1, . . . , ẑi−1. Define Zl ∈ [0, 1] and Zu ∈ [0, 1] to
be (one of the) maximizers of the function F(.) on upper and lower paths respectively, i.e.,

Zl ∈ argmax
z∈[0,1]

F(z,Y−i) , Zu ∈ argmax
z∈[0,1]

F(z,X−i) .

Moreover, lower path marginal function g(.) : [0, 1]→ [0, 1] and upper path marginal function
h(.) : [0, 1]→ [0, 1] are defined as follows:

g(z) , F(z,X
(i−1)
−i )−F(Zl,X

(i−1)
−i ) , h(z) , F(z,Y

(i−1)
−i )−F(Zu,Y

(i−1)
−i ).

Lemma 7 Upper/lower path marginal functions in Definition 6 satisfy these properties:

1. ∀z ∈ [0, 1] : −1 ≤ g(z) ≤ g(Zu) , α and −1 ≤ h(z) ≤ h(Zl) , β,

2. α ∈ [0, 1], β ∈ [0, 1],

3. Single crossing property: The univariate function d(z) = h(z) − g(z) is monotone
non-increasing.

Proof The first two items hold because F(x) ∈ [0, 1], and by definition of Zl and Zu (see
Definition 6). By using the weak DR-SM property of F(.) the proof of last item is immediate,
as for any δ ≥ 0,

d(z+δ)−d(z) =
(
F(z + δ,Y

(i−1)
−i )−F(z,Y

(i−1)
−i )

)
−(F (z+δ,X

(i−1)
−i )−F (z+δ,X

(i−1)
−i )) ≤ 0,

where the inequality holds due to the fact that Y(i−1)
−i ≥ X

(i−1)
−i and δ ≥ 0.

In the remainder of this section, we show how to use the above ingredients to analyze
Algorithm 1; we sketch our proofs, give the high-level ideas, and finally provide formal proofs
for different components of our analysis.

2.1.1. Reduction to coordinate-wise zero-sum games.

For each coordinate i ∈ [n], we consider a sub-problem. In particular, define a two-player
zero-sum game played between the algorithm player (denoted by ALG) and the adversary
player (denoted by ADV). ALG selects a (randomized) strategy ẑi ∈ [0, 1], and ADV selects a
(randomized) strategy x∗i ∈ [0, 1]. Recall the descriptions of g(z) and h(z) at iteration i of
Algorithm 1.

Remark 8 For a weak DR submodular function F(·), it is not hard to see that the two-
dimensional curve (g(z), h(z)) crosses every line with slope 1 at most once, e.g., as in Fig-
ure 1.This fact is an immediate consequence of monotonictiy of g(z)− h(z) (Lemma 7).
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We now define the utility of ALG (negative of the utility of ADV) in our zero-sum game as
follows:

V(i)(ẑi, x∗i ) ,
1

2
g(ẑi) +

1

2
h(ẑi)−max (g(x∗i )− g(ẑi), h(x∗i )− h(ẑi)) . (1)

Suppose the expected utility of ALG is non-negative at the equilibrium of this game. In
particular, suppose ALG’s randomized strategy ẑi (in Algorithm 1) guarantees that for every
strategy x∗i of ADV the expected utility of ALG is non-negative. If this statement holds for
all of the zero-sum games corresponding to different iterations i ∈ [n], then Algorithm 1 is
a 1

2 -approximation of the optimum.

Lemma 9 If ∀i ∈ [n] : E
[
V(i)(ẑi, x∗i )

]
≥ −δ/n for constant δ > 0, then 2E [F(ẑ)] ≥

F(x∗)− δ.

Proof sketch. Our bi-greedy approach, á la Buchbinder et al. (2015b), revolves around
analyzing the evolving values of three points: X(i), Y(i), and O(i). These three points
begin at all-zeroes, all-ones, and the optimum solution, respectively, and converge to the
algorithm’s final point. In each iteration, we aim to relate the total increase in value of
the first two points with the decrease in value of the third point. If we can show that the
former quantity is at least twice the latter quantity, then a telescoping sum proves that the
algorithm’s final choice of point scores at least half that of optimum.

The utility of our game is specifically engineered to compare the total increase in value
of the first two points with the decrease in value of the third point. The positive term of
the utility is half of this increase in value, and the negative term is a bound on how large in
magnitude the decrease in value may be. As a result, an overall nonnegative utility implies
that the increase beats the decrease by a factor of two, exactly the requirement for our
bi-greedy approach to work. Finally, an additive slack of δ/n in the utility of each game
sums over n iterations for a total slack of δ.
Proof [formal proof of Lemma 9] Consider a realization of ẑi where ẑi ≥ x∗i . We have:

F(O(i−1))−F(O(i)) = F(ẑ1, . . . , ẑi−1, x
∗
i , x
∗
i+1, . . . , x

∗
n)−F(ẑ1, . . . , ẑi−1, ẑi, x

∗
i+1, . . . , x

∗
n)

= −
(
F(ẑ1, . . . , ẑi−1, ẑi, x

∗
i+1, . . . , x

∗
n)−F(ẑ1, . . . , ẑi−1, x

∗
i , x
∗
i+1, . . . , x

∗
n)
)

≤ − (F(ẑ1, . . . , ẑi−1, ẑi, 1, . . . , 1)−F(ẑ1, . . . , ẑi−1, x
∗
i , 1, . . . , 1))

=
(
F(x∗i ,Y

(i−1)
−i )−F(Zu,Y

(i−1)
−i )

)
−
(
F(ẑi,Y

(i−1)
−i )−F(Zu,Y

(i−1)
−i )

)
= h(x∗i )− h(ẑi) , (2)

where the inequality holds due to the weak DR-SM. Similarly, for a a realization of ẑi where
ẑi ≤ x∗i :

F(O(i−1))−F(O(i)) = F(ẑ1, . . . , ẑi−1, x
∗
i , x
∗
i+1, . . . , x

∗
n)−F(ẑ1, . . . , ẑi−1, ẑi, x

∗
i+1, . . . , x

∗
n)

≤ F(ẑ1, . . . , ẑi−1, x
∗
i , 0, . . . , 0)−F(ẑ1, . . . , ẑi−1, ẑi, 0, . . . , 0)

=
(
F(x∗i ,X

(i−1)
−i )−F(Zl,X

(i−1)
−i )

)
−
(
F(ẑi,X

(i−1)
−i )−F(Zl,X

(i−1)
−i )

)
= g(x∗i )− g(ẑi) . (3)

10



Optimal Algorithms for Continuous Non-Monotone Submodular Maximization

Putting eq. (2) and eq. (3) together, for every realization ẑi we have:

F (O(i−1))−F(O(i)) ≤ max (g(x∗i )− g(ẑi), h(x∗i )− h(ẑi)) . (4)

Moreover, consider the term F(X(i))−F(X(i−1)). We have:

F(Xi)−F(X(i−1)) = F(ẑ1, . . . , ẑi−1, ẑi, 0, . . . , 0)−F(ẑ1, . . . , ẑi−1, 0, 0, . . . , 0)

= g(ẑi)− g(0) = g(ẑi) + F(Zl,X
(i−1)
−i )−F(X(i−1))

≥ g(ẑi) + F(Zl,Y
(i−1)
−i )−F(0,Y

(i−1)
−i ) ≥ g(ẑi) , (5)

where the first inequality holds due to weak DR-SM property and the second inequity holds
as Zl ∈ argmax

z∈[0,1]
F(z,Y

(i−1)
−i ). Similarly, consider the term F(Y(i))−F(Y(i−1)). We have:

F(Y(i))−F(Y(i−1)) = F(ẑ1, . . . , ẑi−1, ẑi, 1, . . . , 1)−F(ẑ1, . . . , ẑi−1, 1, 1, . . . , 1)

= h(ẑi)− h(1) = h(ẑi) + F(Zu,Y
(i−1)
−i )−F(Y(i−1))

≥ h(ẑi) + F(Zu,X
(i−1)
−i )−F(1,X

(i−1)
−i ) ≥ h(ẑi) , (6)

where the first inequality holds due to weak DR-SM and the second inequity holds as Zu ∈
argmax
z∈[0,1]

F(z,X
(i−1)
−i ). By eq. (4), eq. (5), eq. (6), and the fact that F(0) + F(1) ≥ 0, we

have:

−δ ≤
n∑
i=1

E
[
V(i)(ẑi, x∗i )

]
=

n∑
i=1

(
1

2
E [g(ẑi)] +

1

2
E [h(ẑi)]−E [max (g(x∗i )− g(ẑi), h(x∗i )− h(ẑi))]

)

≤ E

[
1

2

n∑
i=1

(
F(X(i))−F(X(i−1))

)
+

1

2

n∑
i=1

(
F(Y(i))−F(Y(i−1))

)
−

n∑
i=1

(
F(O(i−1))−F(O(i))

)]

= E

[
F(X(n))−F(X(0))

2
+
F(Y(n))−F(Y(0))

2
−F(O(0)) + F(O(n))

]

≤ E
[
F(ẑ)

2
+
F(ẑ)

2
−F(x∗) + F(ẑ)

]
= 2E [F(ẑ)]−F(x∗) .

We next show how to analyze the coordinate-wise zero-sum games introduced in this section.
The analysis of this zero-sum game is based on a novel geometric intuition related to the
weak-DR submodular functions (which will be described shortly) and is basically the technical
heart of our entire analysis. We formally prove the following proposition.

Proposition 10 If ALG plays the (randomized) strategy ẑi as described in Algorithm 1, then
we have E

[
V(i)(ẑi, x∗i )

]
≥ 0 against any strategy x∗i of ADV.

2.1.2. Analyzing the zero-sum games (proof of Proposition 10)

Fix an iteration i ∈ [n] of Algorithm 1. We now lower-bound the optimal value of the game
played between the adversary player and the algorithm player. To do so, we consider a

11
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particular strategy of the algorithm player, which is following Algorithm 1, and show that
no matter what strategy the adversary plays the expected utility of the algorithm player is
non-negative. Formally, we prove Proposition 10. To this end, we consider two cases based
on the values of Zl and Zu (defined in Algorithm 1) and prove each case separately:

� Case Zl ≥ Zu (easy): In this case, the algorithm plays a deterministic strategy ẑi = Zl.
We therefore have:

V(i)(ẑi, x∗i ) =
1

2
g(ẑi) +

1

2
h(ẑi)−max (g(x∗i )− g(ẑi), h(x∗i )− h(ẑi)) ≥ min(g(ẑi)− g(x∗i ), 0) ,

where the inequality holds because g(ẑi) = g(Zl) = 0, and also Zl ∈ argmax
z∈[0,1]

F(z,Y
(i)
−i), so:

• h(ẑi) = h(Zl) = F(Zl,Y
(i−1)
−i )−F(Zu,Y

(i−1)
−i ) ≥ 0 ,

• h(x∗i )− h(ẑi) = F(x∗i ,Y
(i−1)
−i )−F(Zl,Y

(i−1)
−i ) ≤ 0 .

To complete the proof for this case, it only remains to show g(ẑi) − g(x∗i ) ≥ 0 for ẑi = Zl.
As Zl ≥ Zu, we have:

g(ẑi)− g(x∗i ) = F(Zl,X
(i−1)
−i )−F(x∗i ,X

(i−1)
−i )

= F(Zl,X
(i−1)
−i )−F(Zu,X

(i−1)
−i ) + F(Zu,X

(i−1)
−i )−F(x∗i ,X

(i−1)
−i )

≥
(
F(Zl,Y

(i−1)
−i )−F(Zu,Y

(i−1)
−i )

)
+
(
F(Zu,X

(i−1)
−i )−F(x∗i ,X

(i−1)
−i )

)
≥ 0 ,

where the first inequality uses the weak DR-SM property and the second inequality holds
because both terms are non-negative, following the fact that:

Zl ∈ argmax
z∈[0,1]

F(z,Y
(i)
−i) and Zu ∈ argmax

z∈[0,1]
F(z,X

(i)
−i) .

Therefore, we finish the proof of the easy case.

� Case Zl < Zu (hard): In this case, ALG plays a mixed strategy over two points. To
determine the two-point support, it considers the curve r = {(g(z), h(z))}z∈[Zl,Zu] and finds
a point P on conc-env(r) (i.e., Definition 3) that lies on the line h′ − β = g′ − α, where we
recall that α = g(Zu) ≥ 0 and β = h(Zl) ≥ 0 (see Lemma 7). Because this point is on the
concave envelope, it should be a convex combination of two points on the curve r(z). Let’s
say P = λP1 + (1 − λ)P2, where P1 = r(z(1)) and P2 = r(z(2)), and λ ∈ [0, 1]. The final
strategy of ALG is a mixed strategy over {z(1), z(2)} with probabilities (λ, 1−λ). Fixing any
mixed strategy of ALG over two points P1 = (g1, h1) and P2 = (g2, h2) with probabilities
(λ, 1− λ) (denoted by FP), define the ADV’s positive region, i.e.,

(g′, h′) ∈ [−1, 1]× [−1, 1] : E(g,h)∼FP

[
1

2
g +

1

2
h−max(g′ − g, h′ − h)

]
≥ 0.

Now, suppose ALG plays a mixed strategy with the property that its corresponding ADV’s
positive region covers the entire curve {g(z), h(z)}z∈[0,1]. Then, for any strategy x∗i of ADV
the expected utility of ALG is non-negative. In the rest of the proof, we geometrically
characterize the ADV’s positive region against a mixed strategy of ALG over a 2-point support
(Lemma 11), and then we show that for the particular choice of P1, P2 and λ in Algorithm 1
the positive region covers the entire curve {g(z), h(z)}z∈[0,1] (Lemma 12).

12
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Lemma 11 Suppose ALG plays a 2-point mixed strategy over P1 = r(z(1)) = (g1, h1) ∈
[0, α] × [0, β] and P2 = r(z(1)) = (g2, h2) ∈ [0, α] × [0, β] with probabilities (λ, 1 − λ), and
w.l.o.g. h1−g1 ≥ h2−g2. Then ADV’s positive region is the pentagon (M0,M1,Q1,Q2,M2),
whereM0 = (−1,−1) and (see Figure 2):

1. M1 =
(
−1, λ(32h1 + 1

2g1) + (1− λ)(32h2 + 1
2g2)

)
∈ [−1, 0]× [0, 1],

2. M2 =
(
λ(32g1 + 1

2h1) + (1− λ)(32g2 + 1
2h2),−1

)
∈ [0, 1]× [−1, 0],

3. Q1 is the intersection of the lines leaving P1 with slope 1 and leaving M1 along the
g-axis,

4. Q2 is the intersection of the lines leaving P2 with slope 1 and leaving M2 along the
h-axis.

Figure 2: Pentagon (M0,M1,Q1,Q2,M2)= ADV player’s positive region against a mixed
strategy over two points P1 and P2. Note that line h′−β = g′−α always has an intersection
with conc-env(r), simply because both conc-env(r) and line g′

α + h′

β = 1 cross (0, β) and

(α, 0), and conc-env(r) is always upper than g′

α + h′

β = 1.

13
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Proof Being equipped with Lemma 7, the positive region is the set of all points (g′, h′) ∈
[−1, 1]2 such that

E(g,h)∼FP

[
1

2
g +

1

2
h−max(g′ − g, h′ − h)

]
= λ

(
1

2
g1 +

1

2
h1 −max(g′ − g1, h′ − h1)

)
+ (1− λ)

(
1

2
g2 +

1

2
h2 −max(g′ − g2, h′ − h2)

)
≥ 0 .

The above inequality defines a polytope. Our goal is to find the vertices and faces of this
polytope. Now, to this end, we only need to consider three cases: 1) h′ − g′ ≥ h1 − g1,
2) h2 − g2 ≤ h′ − g′ ≤ h1 − g1 and 3) h′ − g′ ≤ h2 − g2 (note that h1 − g1 ≥ h2 − g2).
From the first and third case we get the half-spaces h′ ≤ λ(32h1 + 1

2g1) + (1 − λ)(32h2 +
1
2g2) and g′ ≤ λ(32g1 + 1

2h1) + (1 − λ)(32g2 + 1
2h2) respectively, that form two of the faces

of the positive-region polytope. Note that λ(32h1 + 1
2g1) + (1 − λ)(32h2 + 1

2g2) ≥ 0 and
λ(32g1 + 1

2h1) + (1 − λ)(32g2 + 1
2h2) ≥ 0. From the second case, we get another half-space,

but the observation is that the transition from first case to second case happens when
h′ − g′ = h1 − g1, i.e., on a line with slope one leaving P1 (simply because h′−h1

g′−g1 = 1 for
any point (g′, h′) on the transition line), and transition from second case to the third case
happens when h′−g′ = h2−g2, i.e., on a line with slope one leaving P2 (again simply because
h′−h2
g′−g2 = 1 for any point (g′, h′) on the transition line). Therefore, the second half-space is
the region under the line connecting two points Q1 and Q2, where Q1 is the intersection of
h′ = λ(32h1 + 1

2g1) + (1− λ)(32h2 + 1
2g2) and the line leaving P1 with slope one (point Q1),

and Q2 is the intersection of g′ = λ(32g1 + 1
2h1) + (1 − λ)(32g2 + 1

2h2) and the line leaving
P2 with slope one (point Q2). Due to the geometric interpretation of the second case (that
it is the region between lines P1 − Q1 and P2 − Q2), and because points of the positive
region are below M1 − P1 and to the left of M2 − P2, the line segment Q1 − Q2 defines
another face of the positive region polytope. Moreover, Q1 and Q2 will be two vertices on
this face. By intersecting the three mentioned half-spaces with g′ ≥ −1 and h ≥ −1 (which
define the two remaining faces of the positive region polytope), the postive region will be
the polytope defined by the pentagon (M0,M1,Q1,Q2,M2), as claimed (see Figure 2 for
a pictorial proof).

By applying Lemma 11, we have the following main technical lemma. The proof is geometric
and is pictorially visible in Figure 2. This lemma finishes the proof of Proposition 10.

Lemma 12 (main technical lemma) If ALG plays the two point mixed strategy described
in Algorithm 1, then for every x∗i ∈ [0, 1] the point (g′, h′) = (g(x∗i ), h(x∗i )) is in the ADV’s
positive region.

Proof sketch. For simplicity assume Zl = 0 and Zu = 1. To understand the ADV’s positive
region that results from playing a two-point mixed strategy by ALG, we consider the positive
region that results from playing a one point pure strategy. When ALG chooses a point (g, h),
the positive term of the utility is one-half of its one-norm. The negative term of the utility
is the worse between how much the ADV’s point is above ALG’s point, and how much it is
to the right of ALG’s point. The resulting positive region is defined by an upper boundary
g′ ≤ 3

2g + 1
2h and a right boundary h′ ≤ 1

2g + 3
2h.

Next, let’s consider what happens when we pick point (g1, h1) with probability λ and
point (g2, h2) with probability (1 − λ). We can compute the expected point: let (g3, h3) =
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λ(g1, h1) + (1 − λ)(g2, h2). As suggested by Lemma 11, the positive region for our mixed
strategy has three boundary conditions: an upper boundary, a right boundary, and a corner-
cutting boundary. The first two boundary conditions correspond to a pure strategy which
picks (g3, h3). By design, (g3, h3) is located so that these boundaries cover the entire [−1, α]×
[−1, β] rectangle. This leaves us with analyzing the corner-cutting boundary, which is the
focus of Figure 2. As it turns out, the intersections of this boundary with the two other
boundaries lie on lines of slope 1 extending from (gj , hj)j=1,2. If we consider the region
between these two lines, the portion under the envelope (where the curve r may lie) is
distinct from the portion outside the corner-cutting boundary. However, if r were to ever
violate the corner-cutting boundary condition without violating the other two boundary
conditions, it must do so in this region. Hence the resulting positive region covers the entire
curve r, as desired.

Proof [ formal proof of Lemma 12 ] First of a all, we claim that any ADV’s strategy x∗i ∈ [0, Zl)
(or x∗i ∈ (Zu, 1]) is weakly dominated by Zl (or Zu) if ALG plays a (randomized) strategy
ẑi ∈ [Zl, Zu]. To see this, note that if x∗i ∈ [0, Zl),

max (g(x∗i )− g(ẑi), h(x∗i )− h(ẑi))

= max
(
F(x∗i ,X

(i−1)
−i )−F(ẑi,X

(i−1)
−i ),F(x∗i ,Y

(i−1)
−i )−F(ẑi,Y

(i−1)
−i )

)
= F(x∗i ,Y

(i−1)
−i )−F(ẑi,Y

(i−1)
−i ) ≤ F(Zl,Y

(i−1)
−i )−F(ẑi,Y

(i−1)
−i )

= h(Zl)− h(ẑi) ≤ max (g(Zl)− g(ẑi), h(Zl)− h(ẑi)) ,

and therefore V(i)(ẑi, Zl) ≤ V(i)(ẑi, x∗i ) for any x∗i ∈ [0, Zl). Similarly, V(i)(ẑi, Zu) ≤
V(i)(ẑi, x∗i ) for any x∗i ∈ (Zu, 1]. So, without loss of generality, we can assume ADV’s strategy
x∗i is in [Zl, Zu].

Now, consider the curve r = {(g(z), h(z)}z∈[Zl,Zu] as in Figure 2. ALG’s strategy is a
2-point mixed strategy over P1 = (g1, h1) = r(z(1)) and P2 = (g2, h2) = r(z(1)), where these
two points are on different sides of the line L : h′−β = g′−α (or both of them are on the line
L). Without loss of generality, assume h1−g1 ≥ β−α ≥ h2−g2. Note that r(Zl) = (0, β) is
above the line L and r(Zl) = (α, 0) is below the line L. So, because h(z)− g(z) is monotone
non-increasing due to Lemma 7, we should have Zl ≤ z(1) ≤ z(2) ≤ Zu.

Using Lemma 11, the ADV’s positive region is (M0,M1,Q1,Q2,M2), where {Mj}j=1,2,3

and {Qj}j=1,2 are as described in Lemma 11. The upper concave envelope conc-env(r)
upper-bounds the curve r. Therefore, to show that curve r is entirely covered by the ADV’s
positive region, it is enough to show its upper concave envelope conc-env(r) is entirely
covered (as can also be seen from Figure 2). Lets denote the line leaving Pj with slope one
by Lj for j = 1, 2. The curve conc-env(r) consists of three parts: the part above L1, the
part below L2 and the part between L1 and L2 (the last part is indeed the line segment
connecting P1 and P2). Interestingly, the line connecting P1 to Q1 and the line connecting
P2 to Q2 both have slope 1. So, as it can be seen from Figure 2, if we show Q1 is above the
line h′ = β and Q2 is to the right of the line g′ = α, then the conc-env(r) will entirely be
covered by the positive region and we are done. To see why this holds, first note that λ has
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been picked so that P , (Pg,Ph) = λP1 + (1− λ)P2). Due to Lemma 11,

Q1,h = λ(
3

2
h1 +

1

2
g1) + (1− λ)(

3

2
h2 +

1

2
g2) =

3

2
Ph +

1

2
Pg ,

Q2,g = λ(
3

2
g1 +

1

2
h1) + (1− λ)(

3

2
g2 +

1

2
h2) =

3

2
Pg +

1

2
Ph .

Moreover, the point P = (Pg,Ph) dominates the point C , ( α2

α+β ,
β2

α+β ) coordinate-wise.
This dominance is simply true because the points C and P are actually the intersections of
the line L : h′ − β = g′ − α (with slope one) with the line connecting (0, β) to (α, 0) and
with the curve conc-env(r) respectively. As conc-env(r) upper-bounds the line connecting
(0, β) to (α, 0), and because L has slope one, Ph ≥ Ch = β2

α+β and Pg ≥ Cg = α2

α+β . Putting
all the pieces together,

Q1,h ≥
3

2

β2

α+ β
+

1

2

α2

α+ β
=

(
α2 + β2 − 2αβ

)
+ 2β2 + 2αβ

2(α+ β)
= β +

(α− β)2

2(α+ β)
≥ β ,

Q2,g ≥
3

2

α2

α+ β
+

1

2

β2

α+ β
=

(
α2 + β2 − 2αβ

)
+ 2α2 + 2αβ

2(α+ β)
= α+

(α− β)2

2(α+ β)
≥ α ,

which implies Q1 is above the line h′ = β and Q2 is to the right of the line g′ = α, as desired.

2.2. Polynomial-time Implementation Under Lipschitz Continuity

In this subsection, we give an efficient implementation of the continuous randomized bi-
greedy (Algorithm 1) under the assumption that the function F is coordinate-wise Lipschitz
continuous. The main result is as follows.

Theorem 13 If F is coordinate-wise Lipschitz continuous with known constant C > 0,
then there exists an implementation of Algorithm 1 that runs in time O(n2/ε) and returns
a (randomized) point ẑ s.t.

2E [F(ẑ)] ≥ F(x∗)− ε,

where x∗ ∈ argmax
x∈[0,1]n

F(x) is the optimal solution.

Proof The plan is that instead of optimizing over [0, 1]n (the “continuous” space), we
define ε′ = 2ε/nC and optimize over the ε′-net: {0, ε′, 2ε′, ..., 1}n (the “lattice” space). We
will compare the algorithm’s randomized lattice point ẑ with the continuous optimum x∗ and
do so via the lattice optimum x̃∗. Applying the definition of coordinate-wise Lipschitz, we
can bound the gap between the continuous optimum and lattice optimum. The continuous
optimum is within ε′/2 `∞-distance of a lattice point, so applying the Lipschitz property to
each of our n dimensions yields:

F(x∗) ≤ F(x̃∗) + (ε′/2)nC = F(x̃∗) + ε.

Note that this is the only point where we use the Lipschitz property.
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Next, we explain the key modifications to the algorithm to achieve a 1/2-approximation
to the best lattice point. Algorithm 1 interfaces with function F and its domain in two ways:
(i) when performing optimization to compute Zl, Zu and (ii) when computing the upper-
concave envelope. Task (i) is relatively straightforward; the algorithm instead optimizes just
over {0, ε′, 2ε′, ..., 1} rather than all of [0, 1], i.e.,

Zl ∈ argmax
z∈{0,ε′,2ε′,...,1}

F(z,Y
(i−1)
−i )

Zu ∈ argmax
z∈{0,ε′,2ε′,...,1}

F(z,X
(i−1)
−i )

Computing the modified Zl and Zu can be done via a linear scan over our lattice points, of
which there are O(nC/ε). For task (ii), we now have a discrete sequence of points on the
2-D curve (g(z), h(z)) instead of the entire continuous curve, i.e.,[

(g(Zl), h(Zl)) ,
(
g(Zl + ε′), h(Zl + ε′)

)
, . . . , (g(Zu), h(Zu))

]
Note that these points still have a well defined concave envelope, and this concave envelope
will have a piece-wise linear shape. We can compute the points that define the corners of this
piece-wise linear concave envelope in linear time using Graham’s algorithm (Graham, 1972).
Although Graham’s typically requires an additional log factor in its running time to sort its
input, we avoid this by processing our sequence in order of increasing z-coordinate. As a
result, we obtain a running time of O(nC/ε) in our implementation. For completeness, the
detailed implementations of these two steps can be found as Algorithm 2 and Algorithm 3.
All other steps of Algorithm 1 remain unchanged.

We now reprove Proposition 10 when the algorithm has been modified as above and the
optimal solution is constrained to a lattice point. After doing so, the proof will be completed
by redefining the initial optimal point O(0) to be the lattice optimum x̃∗. The key idea is
to replace [0, 1] with {0, ε′, 2ε′, ..., 1} everywhere, but we briefly walk through each step of
the proof to better contextualize the effect of this change.

Fix a coordinate i and consider a similar zero-sum game as in the proof of Proposi-
tion 10. We show the above modified algorithm picks a (randomized) strategy ẑi, so that
E
[
V(i)(ẑi, x̃∗i )

]
≥ 0 for any strategy x̃∗i ∈ {0, ε′, 2ε′, . . . , 1} of the adversary, where

V(i)(ẑi, x̃∗i ) ,
1

2
g(ẑi) +

1

2
h(ẑi)−max (g(x̃∗i )− g(ẑi), h(x̃∗i )− h(ẑi))

Algorithm 2: Approximate One-Dimensional Optimization
input: function f : [0, 1]→ [0, 1], additive error ε > 0, Lipschitz Constant C > 0 ;
output: coordinate value z ∈ [0, 1]n ;
Set ε′ ← ε

2nC ;
Initialize z∗ ← 0 ;
Initialize z ← 0 ;
while z ≤ 1 do

if f(z) > f(z∗) then
z∗ ← z ;

z ← z + ε′ ;
return z∗
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Algorithm 3: Approximate Annotated Upper-Concave Envelope
input: function g : [0, 1]→ [0, 1], function h : [0, 1]→ [0, 1], additive error ε > 0, Lipschitz
Constant C > 0 ;

output: stacks s and t ;
Set ε′ ← ε

2nC ;
Initialize stacks s, t ;
Initialize z ← 0 ;
while z ≤ 1 do

if s is empty or g(z) is strictly larger than the first coordinate of the the top element of
s then

while s has at least two elements and the slope from (the second-to-top element of
s) to (the top element of s) is less than the slope from (the top element of s) to
(g(z), h(z)) do

Pop the top element of s ;
Pop the top element of t ;

Push (g(z), h(z)) onto s ;
Push z onto t ;

z ← z + ε′ ;
return (s, t)

Recall that we split on two cases based on the values of Zl and Zu. Under the easy
case, i.e., when Zl ≥ Zu, the algorithm picks ẑi = Zl. The proof of this case is then
identical to the proof of easy case of Proposition 10. Now consider the hard case, i.e., when
Zl < Zu. In this case, the algorithm plays a mixed strategy over two points which it obtains
by considering the lattice 2D-curve r̃ , {g(z), h(z))}z∈{Zl,Zl+ε′,...,Zu} first, and then finding
a point P on conc-env(r̃) that lies on the line h′ − β = g′ − α, where α , g(Zu) ≥ 0 and
β , h(Zl) ≥ 0. Since this point is on the upper-concave envelope, it is a convex combination
of two points on the lattice curve r̃; let’s write it as P = λP1 + (1− λ)P2, where λ ∈ [0, 1],
and P1 and P2 are two points on the lattice curve corresponding to lattice coordinates values
z(i) ∈ {Zl, Zl + ε′, . . . , Zu} for i = {1, 2}. The definition of adversary’s positive region and
all of its properties are exactly as before (Lemma 11). The proof of the hard case is finished
by proving a slightly modified version of Lemma 12: under the mentioned two-point mixed
strategy of the algorithm (i.e., playing

(
g(z(1)), h(z(1))

)
w.p. λ and

(
g(z(2)), h(z(2))

)
w.p.

1 − λ), for every x̃∗i ∈ {0, ε′, 2ε′, . . . , 1}, the adversary’s positive region contains the point
(g′, h′), where g′ = g(x̃∗i ) and h′ = h(x̃∗i ). The proof of this lemma is identical to the proof
of Lemma 12 and we omit for brevity.

3. Strong DR-SM Maximization: Binary-Search Bi-Greedy

Our second result is a fast binary search algorithm, achieving the tight 1
2 -approximation

factor (up to additive error δ) in quasi-linear time in n, but only for the special case of
strong DR-SM functions (a.k.a. DR-submodular); see Theorem 1. This algorithm leverages
the coordinate-wise concavity to identify a coordinate-wise monotone equilibrium condition.
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In each iteration, it hunts for an equilibrium point by using binary search. Satisfying the
equilibrium at each iteration then guarantees the desired approximation factor. Formally
we propose Algorithm 4. As a technical assumption, we assume F is Lipschitz continuous

Algorithm 4: Binary-Search Continuous Bi-greedy
input: function F : [0, 1]n → [0, 1], error ε > 0 ;
output: vector ẑ = (ẑ1, . . . , ẑn) ∈ [0, 1]n ;
Initialize X← (0, . . . , 0) and Y ← (1, . . . , 1) ;
for i = 1 to n do

if ∂F
∂xi

(0,X−i) ≤ 0 then
ẑi ← 0

else if ∂F
∂xi

(1,Y−i) ≥ 0 then
ẑi ← 1

else
// we do binary search.
while Yi −Xi > ε/n do

Let ẑi ← Xi+Yi

2 ;
if ∂F

∂xi
(ẑi,X−i) · (1− ẑi) + ∂F

∂xi
(ẑi,Y−i) · ẑi > 0 then

// we need to increase ẑi.
Set Xi ← ẑi ;

else
// we need to decrease ẑi.
Set Yi ← ẑi ;

Let Xi ← ẑi and Yi ← ẑi ; // after this, X and Y will agree at
coordinate i

with some constant C > 0, so that we can relate the precision of our binary search with
additive error. We arrive at the following theorem, whose proof is postponed to Section 3.1.

Theorem 14 If F(.) is non-negative and DR-submodular (a.k.a Strong DR-SM) and is
coordinate-wise Lipschitz continuous with constant C > 0, then Algorithm 4 runs in time
O
(
n log

(
n
ε

))
and is a deterministic 1

2 -approximation algorithm up to O(ε) additive error,
i.e., returns ẑ ∈ [0, 1]n s.t.

2F(ẑ) ≥ F(x∗)− 2Cε , where x∗ ∈ argmax
x∈[0,1]n

F(x) is the optimal solution.

Running Time. Clearly the binary search terminates in O (log(n/ε)) steps following the
fact that Yi − Xi ≤ 1 in Algorithm 4. Hence the total running time/query complexity is
O (n log(n/ε)).

3.1. Analysis of the Binary-Search Bi-Greedy (proof of Theorem 14)

We start by the following technical lemma, which is used in various places of our analysis.
The proof is immediate by strong DR-SM property (Definition 1).

Lemma 15 For any y, z ∈ [0, 1]n such that y ≤ z, we have ∂F
∂xi

(y)− ∂F
∂xi

(z) ≥ 0, ∀i.
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Proof We rewrite this difference as a sum over integrals of the second derivatives:

∂F
∂xi

(y)− ∂F
∂xi

(z) =
n∑
j=1


∂F
∂xi

(y1, . . . , yj−1, yj , zj+1, . . . , zn)

−∂F
∂xi

(y1, . . . , yj−1, zj , zj+1, . . . , zn)


=

n∑
j=1

∫ zj

yj

− ∂2F
∂xi∂xj

(y1, . . . , yj−1, w, zj+1, . . . , zn)dw ≥ 0 .

To see why the last inequality holds, note that strong DR-SM Proposition 19 implies that
all of the second derivatives of F are always non-positive. As ∀i : zi ≥ yi, the RHS is
non-negative.

A modified zero-sum game. We follow the same approach and notations as in the proof
of Theorem 4 (Section 2.1). Suppose x∗ is the optimal solution. For each coordinate i we
again define a two-player zero-sum game between ALG and ADV, where the former plays ẑi and
the latter plays x∗i . The payoff matrix for the strong DR-SM case, denoted by V(i)S (ẑi, x

∗
i ) is

defined as before (Equation (1)); the only major difference is we redefine h(.) and g(.) to be
the following functions,:

g(z) , F(z,X
(i−1)
−i )−F(0,X

(i−1)
−i ) , h(z) , F(z,Y

(i−1)
−i )−F(1,Y

(i−1)
−i ).

Now, similar to Lemma 9, we have a lemma that shows how to prove the desired approxima-
tion factor using the above zero-sum game. The proof is exactly as Lemma 9 and is omitted
for brevity.

Lemma 16 Suppose ∀i ∈ [n] : V(i)S (ẑi, x
∗
i ) ≥ −δ/n for constant δ > 0. Then 2F(ẑ) ≥

F(x∗)− δ.

Analyzing zero-sum games. We show that V(i)S (ẑi, x
∗
i ) is lower-bounded by a small

constant, and then by using Lemma 16 we finish the proof. The formal proof uses both
ideas similar to those of Buchbinder et al. (2015b), as well as new ideas on how to relate the
algorithm’s equilibrium condition to the value of the two-player zero-sum game.

Proposition 17 If ALG plays the strategy ẑi described in Algorithm 4, then V(i)S (ẑi, x
∗
i ) ≥

−2Cε/n.

Proof [proof of Proposition 17] Consider the easy case where ∂F
∂xi

(0,X
(i−1)
−i ) ≤ 0 (and there-

fore we have ∂F
∂xi

(0,Y
(i−1)
−i ) ≤ 0 due to Strong DR-SM). In this case, ẑi = 0 and hence

g(ẑi) = g(0) = 0. Moreover, because of the Strong DR-SM property,

h(0) = F(0,Y
(i−1)
−i )−F(1,Y

(i−1)
−i ) ≥ −∂F

∂xi
(0,Y

(i−1)
−i ) ≥ 0,

h(x∗i )− h(0) ≤ g(x∗i )− g(0) ≤ x∗i ·
∂F
∂xi

(0,X
(i−1)
−i ) ≤ 0,
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and therefore V(i)S (ẑi, x
∗
i ) = 1

2g(0)+ 1
2h(0)−max (g(x∗i )− g(0), h(x∗i )− h(0)) ≥ 0. The other

easy case is when ∂F
∂xi

(1,Y
(i−1)
−i ) ≥ 0 (and therefore ∂F

∂xi
(1,X

(i−1)
−i ) ≥ 0, again because of

Strong DR-SM). In this case ẑi = 1 and a similar proof shows V(i)S (1, x∗i ) ≥ 0.
The only remaining case (the not-so-easy one) is when

∂F
∂xi

(0,X
(i−1)
−i ) > 0 and

∂F
∂xi

(1,Y
(i−1)
−i ) < 0.

In this case, Algorithm 4 runs the binary search and ends up at a point ẑi. We first show
that f(z) , ∂F

∂xi
(z,X−i)(1 − z) + ∂F

∂xi
(z,Y−i)z is monotone non-increasing in z. To see the

monotonicity,

f ′(z) = (1− z)∂
2F
∂xi2

(z,X−i) + z
∂2F
∂xi2

(z,Y−i) +

(
∂F
∂xi

(z,Y−i)−
∂F
∂xi

(z,X−i)

)
≤ 0 ,

where the inequality holds due to strong DR-SM and the fact that all of the Hessian en-
tries (including diagonal) are non-positive. Because of the monotonicity and continuity of
the equilibrium condition of the binary search, there exists z̃ that is (ε/n)-close to ẑi and
∂F
∂xi

(z̃,X−i)(1− z̃) + ∂F
∂xi

(z̃,Y−i)z̃ = 0. By a straightforward calculation, using the Lipschitz
continuity of F with constant C and knowing that |z̃ − ẑi| ≤ ε/n, we have:

V(i)S (ẑi, x
∗
i ) =

1

2
g(ẑi) +

1

2
h(ẑi)−max (g(x∗i )− g(ẑi), h(x∗i )− h(ẑi)) ≥ V(i)S (z̃, x∗i )−

2Cε

n
.

So, we only need to show V(i)S (z̃, x∗i ) ≥ 0. Let α , ∂F
∂xi

(z̃,X
(i−1)
−i ) and β , − ∂F

∂xi
(z̃,Y

(i−1)
−i ).

Because of Theorem 15, α+ β ≥ 0. Moreover, α(1− z̃) = βz̃, and therefore we should have
α ≥ 0 and β ≥ 0. We now have two cases:

Case 1 (z̃ ≥ x∗i ): g(x∗i )− g(z̃) ≤ h(x∗i )− h(z̃) due to strong DR-SM and that z̃ ≥ x∗i , so:

V(i)S (z̃, x∗i ) =
1

2
g(z̃) +

1

2
h(z̃) + (h(z̃)− h(x∗i ))

=
1

2

∫ z̃

0

∂F
∂xi

(x,X
(i−1)
−i )dx+

1

2

∫ 1

z̃
−∂F
∂xi

(x,Y
(i−1)
−i )dx+

∫ x∗i

z̃
−∂F
∂xi

(x,Y
(i−1)
−i )

(1)

≥ z̃

2
· ∂F
∂xi

(z̃,X
(i−1)
−i ) +

(1− z̃)
2

·
(
−∂F
∂xi

(z̃,Y
(i−1)
−i )

)
+ (x∗i − z̃)

(
−∂F
∂xi

(z̃,Y
(i−1)
−i )

)
=
z̃α

2
+

(1− z̃)β
2

+ (x∗i − z̃)β
(2)

≥ z̃α

2
+

(1− z̃)β
2

− z̃β

(3)
=

α2

2(α+ β)
+

β2

2(α+ β)
− αβ

(α+ β)
=

(α− β)2

2(α+ β)
≥ 0,

where inequality (1) holds due to the coordinate-wise concavity of F , inequality (2) holds
as β ≥ 0 and x∗i ≥ 0, and equality (3) holds as βz̃ = α(1− z̃).
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Case 2 (z̃ < x∗i ): This case is the reciprocal of Case 1, with a similar proof. Note that
g(x∗i )− g(z̃) ≥ h(x∗i )− h(z̃) due to strong DR-SM and the fact that z̃ < x∗i , so:

V(i)S (z̃, x∗i ) =
1

2
g(z̃) +

1

2
h(z̃) + (g(z̃)− g(x∗i ))

=
1

2

∫ z̃

0

∂F
∂xi

(x,X
(i−1)
−i )dx+

1

2

∫ 1

z̃
−∂F
∂xi

(x,Y
(i−1)
−i )dx+

∫ z̃

x∗i

∂F
∂xi

(x,X
(i−1)
−i )

(1)

≥ z̃

2
· ∂F
∂xi

(z̃,X
(i−1)
−i ) +

(1− z̃)
2

·
(
−∂F
∂xi

(z̃,Y
(i−1)
−i )

)
+ (z̃ − x∗i )

(
∂F
∂xi

(z̃,X
(i−1)
−i )

)
=
z̃α

2
+

(1− z̃)β
2

+ (z̃ − x∗i )α
(2)

≥ z̃α

2
+

(1− z̃)β
2

+ (z̃ − 1)α

(3)
=

α2

2(α+ β)
+

β2

2(α+ β)
− αβ

(α+ β)
=

(α− β)2

2(α+ β)
≥ 0,

where inequality (1) holds due to the coordinate-wise concavity of F , inequality (2) holds
as α ≥ 0 and x∗i ≤ 1, and equality (3) holds as βz̃ = α(1− z̃).

Combining Proposition 17 and Lemma 16 for δ = 2Cε finishes the analysis and the proof of
Theorem 14.

4. Experimental Results

We empirically measure the solution quality of five algorithms. Three of them serve as
baslines: (UNIFORM) chooses an independent uniform random value in [0, 1] for each coordi-
nate, (ONE-HALF) chooses all coordinates to be 1/2, and (BMBK) is the Bi-Greedy algorithm
of Bian et al. (2017b). We compare these baselines with our two algorithms based on the
continuous double-greedy framework: Algorithm 1 for maximizing weak DR-SM continuous
submodular functions, which is denoted (GAME), and Algorithm 4 for maximizing strong

DR-SM continuous submodular functions, which is denoted (BINARY). To run these two al-
gorithms, we iterate over coordinates in a random order. These algorithms also do not
solely rely on oracle access to the function; they invoke one-dimensional optimizers, concave
envelopes, and derivatives. We implement the last two (Algorithm 2 and Algorithm 3 in
Section 2.2), and numerically compute derivatives by discretization.

We consider two application domains, namely Non-concave Quadratic Programming
(NQP) (Bian et al., 2017b; Kim and Kojima, 2003; Luo et al., 2010), under both strong-DR

and weak-DR, and maximization of softmax extension for MAP inference of determinantal
point process (Kulesza et al., 2012; Gillenwater et al., 2012). For each experiment, we
use n = 100 dimensional functions. Moreover, we use a randomized generative model in
each experiment to create samples of our problem instances; each experiment consists of
20 such instances (i.e. a 20 sample Monte Carlo experiment) to estimate the performance
our algorithms and baselines. We then report the mean and the variance for three different
quantities: objective value, running time (in seconds), and number of oracle calls to the
function. We further complement our results by reporting the objective value’s confidence
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intervals through box-and-whisker plots in all of our experiments. Our experiments are
implemented in python. See below for the detailed specifics of each experiment.

Strong-DR Non-concave Quadratic Programming (NQP) We generated synthetic
functions of the form F(x) = 1

2x
THx+hTx+ c. We generated H ∈ Rn×n as a matrix with

every entry uniformly distributed in [−1, 0], and then symmetrized H. The choice of the
uniform distribution is just for the purpose of exposition. We then generated h ∈ Rn as a
vector with every entry uniformly distributed in [0,+1]. Finally, we solved for the value of
c to make F(~0) + F(~1) = 0.

Weak-DR Non-concave Quadratic Programming (NQP) This experiment is the same
as in the previous subsection, except that the diagonal entries of H are uniformly distributed
in [0,+1] instead, making the resulting function F(x) only weak DR-SM instead.

Softmax extension of Determinantal Point Processes (DPP) We generated syn-
thetic functions of the form F(x) = log det(diag(x)(L− I) + I), where L needs to be positive
semidefinite. We generated L in the following way. First, we generate each of the n eigen-
values by drawing a uniformly random number in [−0.5, 1.0] and taking that power of e.
This yields a diagonal matrix D. We then generate a random unitary matrix V and then set
L = VDVT . By construction, L is positive semidefinite and has the specified eigenvalues.

Interpretations from our experiments. The results of our experiments are in Table 2,
Table 3, and Table 4, and the corresponding box-and-whisker plots are in Figure 3. The
data suggests that for all three experiments the three algorithms obtain very similar ob-
jective values, and they all outperform the baselines we considered. For example, in the
weak-DR NQP experiment, the upper and lower quartiles are distant by roughly 10, while
the mean values of the three algorithms deviate by less than 1. We remind the reader that
all of our experiments use synthetic and randomly generated data, and the observed tie can
be an artifact of this choice. We should also note that in a contemporaneous work (which
apeared after an earlier conference version of our paper), Bian et al. (2019) proposed an
alternate optimal algorithm for strong DR-SM functions; moreover, they provide more ex-
tensive experiments comparing our Algorithm 4 with their method, on real world data. We
leave studying the experimental performance of Algorithm 1 on these application domains
as future work.

NQP, ∀i, j : Hi,j ≤ 0, (strong-DR) NQP, ∀i 6= j : Hi,j ≤ 0, (weak-DR) Softmax Ext. (strong-DR)

UNIFORM 612.559± 81.096 604.579± 55.866 15.057± 2.402

ONE-HALF 625.108± 3.260 612.541± 3.326 15.311± 2.425

BMBK 1225.577± 6.310 1202.393± 6.937 24.754± 4.154

GAME 1225.593± 6.279 1202.523± 6.722 24.755± 4.153

BINARY 1225.636± 6.293 1201.852± 6.989 24.639± 4.129

Table 2: Average objective value (plus/minus standard deviation) of T = 20 repeated trials,
with dimension n = 100.
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(a) Strong DR-SM NQP

(b) Weak DR-SM NQP

(c) Strong DR-SM Softmax

Figure 3: Box and whisker plots of our experimental results. Lower graph in each section
zooms on BMBK, GAME, and BINARY to show more detail.
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NQP, ∀i, j : Hi,j ≤ 0, (strong-DR) NQP, ∀i 6= j : Hi,j ≤ 0, (weak-DR) Softmax Ext. (strong-DR)

BMBK 0.491± 0.080 0.465± 0.028 45.729± 16.306

GAME 1.108± 0.408 1.093± 0.166 45.845± 16.014

BINARY 0.077± 0.050 0.063± 0.003 5.752± 1.552

Table 3: Average time in seconds (plus/minus standard deviation) of T = 20 repeated trials,
with dimension n = 100. UNIFORM and ONE-HALF (omitted) ran in 2ms or less.

NQP, ∀i, j : Hi,j ≤ 0, (strong-DR) NQP, ∀i 6= j : Hi,j ≤ 0, (weak-DR) Softmax Ext. (strong-DR)

UNIFORM 1± 0 1± 0 1± 0

ONE-HALF 1± 0 1± 0 1± 0

BMBK 20801± 0 20801± 0 20801± 0

GAME 43489.4± 865.980 48716.2± 7350.117 20666.2± 580.952

BINARY 2801± 0 2801± 0 2801± 0

Table 4: Average number of oracle calls (plus/minus standard deviation) of T = 20 repeated
trials, with dimension n = 100.

5. Conclusion

We proposed a tight approximation algorithm for continuous submodular maximization,
and a quasilinear time tight approximation algorithm for the special case of DR-submodular
maximization. Our experiments also verify the applicability of these algorithms in practical
domains in machine learning. One interesting avenue for future research is to generalize our
techniques to maximization over any arbitrary separable convex set, which would broaden
the application domains.
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Appendix A. More details on different application domains

Here is a list containing further details about applications in machine learning, electrical
engineering and other application domains.

Special Class of Non-Concave Quadratic Programming (NQP).

• The objective is to maximize F(x) = 1
2x

THx+hTx+ c, where off-diagonal entries of
H are non-positive (and hence these functions are Weak DR-SM).

• Minimization of this function (or equivalently maximization of this function when off-
diagonal entries of H are non-negative) has been studied in Kim and Kojima (2003)
and Luo et al. (2010), and has applications in communication systems and detection
in MIMO channels (Luo et al., 2010).

• Another application of quadratic submodular optimization is large-scale price opti-
mization on the basis of demand forecasting models, which has been studied in Ito
and Fujimaki (2016). They show the price optimization problem is indeed an instance
of weak-DR minimization.

Map Inference for Determinantal Point Processes (DPP) & Its Softmax-Extension.

• DPP are probabilistic models that arise in statistical physics and random matrix the-
ory, and their applications in machine learning have been recently explored, e.g. (Kulesza
et al., 2012).

• DPPs can be used as generative models in applications such as text summarization,
human pose estimation, or news threading tasks (Kulesza et al., 2012).
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• A discrete DPP is a distribution over sets, where p(S) ∼ det(AS) for a given PSD
matrix A. The log-likelihood estimation task corresponds to picking a set Ŝ ∈ P
(feasible set, e.g. a matching) that maximizes f(S) = log(det(AS)). This function is
non-monotone and submodular. Note that as a technical condition to apply bi-greedy
algorithms, we require that det(A) ≥ 1 (implying f(~1) ≥ 0).

• The approximation question was studied in (Gillenwater et al., 2012). Their idea is to
first find a fractional solution for a continuous extension (hence a continuous submod-
ular maximization step is required) and then rounding the solution. However, they
sometimes need a fractional solution in conv(P) (so, the optimization task sometimes
fall out of the hypercube, making rounding more complicated).

• Beyond multilinear extension, there are other continuous extensions used in this lit-
erature. One such extension is called the softmax extension (Gillenwater et al., 2012;
Bian et al., 2017a):

F(x) = logES∼Ix [exp(f(S))] = log det (diag(x)(A− I) + I) ,

where Ix is the independent distribution with marginals x (i.e. each item i is inde-
pendently in the set w.p. xi). The advantage of softmax extension over multi-linear
extension is in its computation; multi-linear extension can only be computed approxi-
mately (up to additive ε error), however softmax extension has a closed-form for DPPs
and can be computed exactly (cf. Kulesza et al. (2012) and Bian et al. (2017b)).

• F(x) is Strong DR-SM and non-monotone (Bian et al., 2017a). In almost all machine
learning applications, the rounding works on an unrestricted problem. Hence the
optimization that needs to be done is Strong DR-SM optimization over unit hypercube.

• One can think of adding a regularizer term λ‖x‖2 to the log-likelihood objective func-
tion to avoid overfitting. In that case, the underlying fractional problem becomes a
Weak DR-SM optimization over the unit hypercube when λ is large enough.

Log-Submodularity and Mean-Field Inference.

• Another probabilistic model that generalizes DPP and all other strong Rayleigh mea-
sures (Li et al., 2016; Zhang et al., 2015) is the class of log-submodular distributions
over sets, i.e. p(S) ∼ exp(f(S)) where f(·) is a discrete submodular functions. MAP
inference over this distribution has applications in machine learning and beyond (Djo-
longa and Krause, 2014).

• One variational approach towards this MAP inference task is to domean-field inference
to approximate the distribution p with a product distribution x ∈ [0, 1]n, i.e. finding
x∗ that:

x∗ ∈ argmax
x∈[0,1]n

H(x)−ES∼Ix [log p(S)] = argmin
x∈[0,1]n

KL(x||p) ,

where KL(x||p) = ES∼I [
log Ix(S)
log p(S) ].

• The function F(x) = H(x)−ES∼Ix [log p(S)] is Strong DR-SM (Bian et al., 2017a).
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Revenue Maximization over Social Networks.

• The model was proposed in Bian et al. (2017b) and is a generalization of the revenue
maximization problem addressed in Hartline et al. (2008).

• A seller wishes to sell a product to a social network of buyers. We consider restricted
seller strategies which freely give (possibly fractional) trial products to buyers: this
fractional assignment is our input x of interest.

• The objective takes two effects into account: (i) the revenue gain from buyers who
didn’t receive free product, where the revenue function for each such buyer is a non-
negative nondecreasing Weak DR-SM function and (ii) the revenue loss from those who
received free product, where the revenue function for each such buyer is a nonpositive
nonincreasing Weak DR-SM function. The combination for all buyers is a nonmonotone
Weak DR-SM function and additionally is nonnegative at ~0 and ~1.

Cone Extension of Continuous Submodular Maximization.

• Suppose K is a proper cone. By considering the lattice corresponding to this cone one
can generalize DR submodularity to K-DR submodularity (Bian et al., 2017a).

• An interesting application of this cone generalization is minimizing the loss in the
logistic regression model with a particular non-separable and non-convex regularizer,
as described in (Antoniadis et al., 2011; Bian et al., 2017a). Bian et al. (2017a) show
the vanilla version is a K-Strong DR-SM function maximization for some particular
cone.

• Note that by adding a K-`2-norm regularizer λ‖Ax‖2, the function will become Weak

DR-SM, where A is a matrix with generators of K as its column. Here is the logistic
loss:

l(x, {yt}) =
1

T

T∑
t=1

ft(x, yt) =
1

T

T∑
t=1

log
(
1 + exp

(
−ytxT zt

))
,

where yt is the label of the tth data-point, x are the model parameters, and {zt} are
feature vectors of the data-points.

Remark 18 In many machine learning applications, and in particular MAP inference of
DPPs and log-submodular distributions, unless we impose some technical assumptions, the
underlying Strong DR-SM (or Weak DR-SM) function is not necessarily positive (or may not
even satisfy the weaker yet sufficient condition F(~0) + F(~1) ≥ 0). In those cases, adding a
positive constant to the function can fix the issue, but the multiplicative approximation guar-
antee becomes weaker. However, this trick tends to work in practice since these algorithms
tend to be near optimal.

Appendix B. Equivalent definitions of weakly and strongly DR-SM.

Proposition 19 ((Bian et al., 2017b)) Suppose F : [0, 1]n → [0, 1] is continuous and
twice differentiable, and H is the Hessian of F , i.e. ∀i, j ∈ [n], Hij , ∂2F

∂xi∂xj
. The followings

are equivalent:

30



Optimal Algorithms for Continuous Non-Monotone Submodular Maximization

1. F satisfies the weak DR-SM property as in Definition 1.

2. Continuous submodularity: ∀x,y ∈ [0, 1]n, F(x) + F(y) ≥ F(x ∨ y) + F(x ∧ y).

3. ∀i 6= j ∈ [n], Hij ≤ 0, i.e., all off-diagonal entries of Hessian are non-positive.

Also, the following statements are equivalent:

1. F satisfies the strong DR-SM property as in Definition 1.

2. F(.) is coordinate-wise concave along all the coordinates and is continuous submodular,
i.e. ∀x,y ∈ [0, 1]n, F(x) + F(y) ≥ F(x ∨ y) + F(x ∧ y)

3. ∀i, j ∈ [n], Hij ≤ 0, i.e., all entries of Hessian are non-positive.
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