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Abstract

We study the misclassification error for community detection in general heterogeneous
stochastic block models (SBM) with noisy or partial label information. We establish a con-
nection between the misclassification rate and the notion of minimum energy on the local
neighborhood of the SBM. We develop an optimally weighted message passing algorithm
to reconstruct labels for SBM based on the minimum energy flow and the eigenvectors
of a certain Markov transition matrix. The general SBM considered in this paper allows
for unequal-size communities, degree heterogeneity, and different connection probabilities
among blocks. We focus on how to optimally weigh the message passing to improve mis-
classification.

Keywords: semi-supervised learning, general stochastic block models, misclassification,
weighted message passing, minimum energy flow, statistical inference

1. Introduction

The stochastic block model (SBM), or planted partition model, is a celebrated model that
captures the clustering or community structure in large networks. Fundamental phase
transition phenomena and limitations for efficient algorithms have been established for the
“vanilla” SBM, with equal-size communities (e.g. Coja-Oghlan, 2010; Decelle et al., 2011;
Massoulié, 2014; Mossel et al., 2012, 2013a; Krzakala et al., 2013; Abbe et al., 2014; Hajek
et al., 2014; Abbe and Sandon, 2015a; Deshpande et al., 2015; Yun and Proutiere, 2016).
However, when applying the algorithms to real network datasets, one needs to carefully
examine the validity of the vanilla SBM model. First, real networks are heterogeneous and
imbalanced; they are often characterized by unequal community size, degree heterogeneity,
and distinct connectivity strengths across communities. Second, in real networks, additional
side information is often available. This additional information may come, for instance, in
the form of a small portion of revealed community memberships, or in the form of node
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features, or both. In this paper, we aim to address the above concerns by answering the
following questions:

Algorithm For a general stochastic block model that allows for heterogeneity and con-
tains noisy or partial side information, how to utilize this information to achieve better
classification performance?

Theory What is the transition boundary on the signal-to-noise ratio for a general hetero-
geneous stochastic block model? Is there a physical explanation for the optimal misclassi-
fication error one can achieve?

1.1. Problem Formulation

We define the general SBM with parameter bundle (n, k,N ∈ Rk, Q ∈ Rk×k) as follows.
Let n denote the number of nodes and k the number of communities. The vector N =
[n1, n2, . . . , nk]

T denotes the number of nodes in each community. The symmetric matrix
Q = [Qij ] represents the connection probability: Qij is the probability of a connection
between a node in community i to a node in community j. Specifically, one observes a
graph G(V,E) with |V | = n, generated from SBM as follows. There is a latent disjoint
partition that divides V =

⋃k
l=1 Vl into k communities. Define `(·) : V → [k] to be the

label (or, community) of a node v. For any two nodes v, u ∈ V , there is an edge between
(u↔ v) ∈ E with probability Q`(u),`(v). The goal is to recover the latent label `(v) for each
node v. Here we consider the following kinds of heterogeneity: unequal size communities
(represented by [ni]), different connection probabilities across communities (as given by
[Qij ]), and degree heterogeneity (due to both [ni] and [Qij ]).

We study the problem when either noisy or partial label information is available in addi-
tion to the graph structure and show how to “optimally” improve the classification result (in
terms of misclassification error). We argue that this is common for many practical problems.
First, in real network datasets, a small portion of labels (or, community memberships) is
often available. Second, a practitioner often has certain initial guess of the membership, ei-
ther through training regression models using node features and partially revealed labels as
side information, or running certain clustering algorithms (for example, spectral clustering
using non-backtracking matrix, semi-definite programs or modularity method) on a subset
or the whole network. We will show that as long as these initial guesses are better than
random assignments, one can “optimally weigh” the initial guess according to the network
structure to achieve small misclassification error.

Formally, the noisy (or partial) information is defined as a labeling ˜̀
prior on the nodes

of the graph with the following stochastic description. The parameter δ quantifies either
(a) the portion of randomly revealed true labels (with the rest of entries in ˜̀

prior missing),
or (b) the accuracy of noisy labeling ˜̀

prior, meaning

P(˜̀
prior(v) = `(v)) =

1− δ
k

+ δ, (1)

and when ˜̀
prior(v) 6= `(v), each label occurs with equal probability.
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1.2. Prior Work

In the literature on vanilla SBM (equal size communities, symmetric case), there are two
major criteria — weak and strong consistency. Weak consistency asks for recovery better
than random guessing in a sparse random graph regime (p, q � 1/n), and strong consistency
requires exact recovery for each node above the connectedness theshold (p, q � log n/n).
Interesting phase transition phenomena in weak consistency for SBM have been discovered
in (Decelle et al., 2011) via the insightful cavity method from statistical physics. Sharp
phase transitions for weak consistency have been thoroughly investigated in (Coja-Oghlan,
2010; Mossel et al., 2012, 2013a,b; Massoulié, 2014). In particular for k = 2, spectral al-
gorithms on the non-backtracking matrix have been studied in (Massoulié, 2014) and the
non-backtracking walk in (Mossel et al., 2013b). In these two fundamental papers, the
authors resolved the conjecture on the transition boundary for weak consistency posed in
(Decelle et al., 2011). Spectral algorithms as initialization and belief propagation as fur-
ther refinement to achieve better recovery was established in (Mossel et al., 2013a). For
strong consistency, (Abbe et al., 2014; Hajek et al., 2014, 2015) established the phase tran-
sition using information-theoretic tools and semi-definite programming (SDP) techniques.
In the statistics literature, Zhang and Zhou (2015) investigated the misclassification rate of
the standard SBM. For partial recovery, Deshpande et al. (2015) adopts the approximate
message passing technique developed in Bayati and Montanari (2011); Bayati et al. (2015)
(originally for dense graphs) to establish accurate asymptotic bounds on mis-classification
with finite signal-to-noise ratio, in the diverging degree regime.

One interesting component of the conjecture made in Decelle et al. (2011) is that for k ≥
4 information-to-computation gap does exist, i.e., it is possible to solve the weak consistency
information-theoretically below the so called Kesten-Stigum bound (Kesten and Stigum,
1966b,a). In Abbe and Sandon (2015b); Banks et al. (2016); Abbe and Sandon (2018), they
provide answers to the above conjecture for general k ≥ 4: (a) information-theoretic bound
for weak consistency is indeed below the Kesten-Stigum bound, and (b) weak consistency
above the Kesten-Stigum bound can be achieved with efficient computation. In particular,
Abbe and Sandon (2015b); Bordenave et al. (2015) establish the positive detectability result
down to the Kesten-Stigum bound for general k via a detailed analysis of a modified version
of belief propagation, for general SBM. See Chapter 8 of Abbe et al. (2017a) for a recent
survey on further discussions of the information-to-computation gap.

For the general SBM with connectivity matrix Q, Guédon and Vershynin (2016); Cai
and Li (2015); Chen et al. (2015) provided sharp non-asymptotic upper bound analysis
on the performance of a certain semi-definite program. They investigated the conditions
on Q for a targeted recovery accuracy, quantified as the loss (as a matrix norm) between
the SDP solution and the ground truth. The results are more practical for heterogeneous
real networks. However, for the analysis of SDP to work, these results all assume certain
density gap conditions, i.e., max1≤i<j≤kQij < min1≤i≤rQii, which could be restrictive
in real settings. Our technical approach is different, and does not require the density gap
conditions. Moreover, we can quantify more detailed recovery guarantees, for example, when
one can distinguish communities i, j from l, but not able to tell i, j apart. In addition, our
approach can be implemented in a decentralized fashion, while SDP approaches typically
do not scale well for large networks. We would also like to mention the literature on more
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flexible and complex variants of SBM, such as mixed membership models (Airoldi et al.,
2008), nonparametric generalization (Airoldi et al., 2013), degree-corrected models (Gulikers
et al., 2017), and geometric SBMs (Abbe et al., 2017b,a; Galhotra et al., 2018) where the
vertices are embedded in metric spaces.

For SBM with side information, Kanade et al. (2014); Cai et al. (2016); Saade et al.
(2016) considered SBM in the semi-supervised setting, where the side information comes as
partial labels. Kanade et al. (2014) considered the setting when the labels for a vanishing
fraction of the nodes are revealed, and showed that pushing below the Kesten-Stigum bound
is possible in this setting, drawing a connection to a similar phenomenon in k-label broad-
casting processes (Mossel, 2001). In addition, Cai et al. (2016); Saade et al. (2016) studied
linearized belief propagation and misclassification error on the partially labeled SBM.

The focus of this paper is on local algorithms, which are naturally suited for distributed
computing (Linial, 1992) and provide efficient solutions to certain computationally hard
combinatorial optimization problems on graphs. For some of these problems, they are good
approximations to global algorithms (Kleinberg, 2000; Gamarnik and Sudan, 2014; Parnas
and Ron, 2007; Nguyen and Onak, 2008). The fundamental limits of local algorithms have
been investigated, in particular, in Montanari (2015) in the context of a sparse planted
clique model.

Finally, we briefly review broadcasting processes on trees. Consider a Markov chain
on an infinite tree rooted at ρ with branching number b (in Def. 3). Given the label of
the root `(ρ), each vertex chooses its label by applying the Markov rule M to its parent’s
label, recursively and independently. The process is called broadcasting process on trees.
One is interested in reconstructing the root label `(ρ) given all the n-th level leaf labels.
Sharp reconstruction thresholds for the broadcasting process on general trees for the sym-
metric Ising model setting (each node’s label is {+,−}) have been studied in (Evans et al.,
2000). Mossel and Peres (2003) studied a general Markov channel on trees that subsumes
k-state Potts model and symmetric Ising model as special cases, and established non-census-
solvability below the Kesten-Stigum bound. Janson and Mossel (2004) extended the sharp
threshold to robust reconstruction, where the vertex’ labels are contaminated with noise.
The transition thresholds proved in the above literature correspond to the Kesten-Stigum
bound b|λ2(M)|2 = 1 (Kesten and Stigum, 1966b,a).

1.3. Our Contributions

The main results of the present paper are summarized as follows.

Weighted Message Passing We propose a new local algorithm – Weighted Message Passing
(WMP) – that can be viewed as linearized belief propagation with a novel weighted ini-
tialization. The optimal weights are jointly determined by the minimum energy flow that
captures the imbalance of local tree-like neighborhood of SBM, and by the second eigenvec-
tors of the Markov transition matrix for the label broadcasting process. As we will show,
these initializations are crucial for the analysis of general SBM that is heterogeneous and
asymmetric.

For the technical contribution, we provide non-asymptotic analysis on the evolution of
WMP messages. For general number of communities, it is challenging to track the densi-
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ties of WMP messages during evolution. We overcome the difficulty through introducing
carefully chosen weights and then prove concentration-of-measure phenomenon on messages.

Misclassification Error We establish a close connection between the misclassification er-
ror and a notion called minimum energy through the optimally weighted message passing
algorithm. In fact, we show that asymptotically almost surely, the misclassification error of
WMP Err(ˆ̀

wmp) satisfies

Err(ˆ̀
wmp) ≤ exp

(
− 1

2E∗(θ−2)

)
,

where E∗(θ−2) is defined as the minimum energy based on the local tree-like neighborhood,
with θ2 chosen as the conductance level on the edges of the tree. Intuitively, the smaller
the energy is, the better the misclassification error one can achieve. This result provides
a physical interpretation for the misclassification error. In return, the above upper bound
provides a principled way of choosing the optimal weights as to minimize the energy deter-
mined by the Thomson’s principle (Lyons and Peres, 2017). This approach is key to dealing
with asymmetric and imbalanced local neighborhoods.

Transition Boundary We show that the Kesten-Stigum bound is the sharp boundary for
local algorithms on the signal-to-noise ratio for the general heterogeneous SBM. Define the
following quantities

K := [diag(QN)]−1Qdiag(N), M := Qdiag(N) (2)

θ := λ2(K), λ := λ1(M),

and SNR := λθ2, (3)

where N,Q are defined in Section 1.1, and λi(·) denotes the i-th eigenvalue sorted by
modulus (which can be shown to be real in Proposition 21). We show the Kesten-Stigum
bound SNR = 1 is the threshold for WMP and more generally local algorithms. Above
it, we show that the minimum energy E∗(θ−2) is finite, which asserts a valid upper bound
on the misclassification error. Below it, the minimum energy diverges (E∗(θ−2) = ∞) and
the upper bound on WMP becomes trivial. In fact as shown by Janson and Mossel (2004),
below the threshold, no local algorithm can distinguish the statistical models with different
labels of the root, based on partial or noisy labels at leaves. We call it a transition boundary
as two types of behavior occur for the local algorithms, when above and below.

Set Identification When the number of communities k ≥ 3, we define a notion of set
identification to describe, for two disjoint sets (of communities) S, T ⊂ [k], whether one
can distinguish S from T . This notion subsumes as a special case the classic identification
when S, T are singletons. However, it describes more general cases when one cannot dis-
tinguish the communities inside S and T , but is able to distinguish S and T . We provide
a mathematical description of this fact using the structure of eigenvectors for the Markov
transition matrix K defined in (2). Further, we show that one can weigh the labels in the
“most informative direction” by initializing WMP according to the second eigenvectors.
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1.4. Organization of the Paper

The paper is organized as follows. Section 2 reviews the background, definitions, and
theoretical tools that will be employed to study the general SBM. To illustrate the main idea
behind the theoretical analysis better, we split the main result into two sections. Section 3
resolves the k = 2 case, where we emphasize the derivation of WMP as a linearized belief
propagation, and, more importantly, detail the initialization of WMP according to minimum
energy flow. Then we establish the connection between misclassification and energy. In
Section 4, we focus on the general k ≥ 3 case, where we incorporate an additional layer
of weights on the labels introduced by the eigenvectors of the Markov transition matrix
K (defined in (2)). We then describe the mathematical treatment of set identification.
Discussions on the gap between local and global algorithms for growing k, and on how WMP
utilizes the asymmetry follow in the end. Section 5 considers the numerical performance of
the proposed algorithm. The proofs of the main results are given in Section 6.

2. Preliminaries

2.1. Tree, Branching Number, Flow and Energy

Let Tt(o) denote a tree up to depth t with root o. For a node v, the set of children is denoted
by C(v), children at depth d denoted by Cd(v), and the parent of v is denoted by P(v). We
use |v| to denote the depth of v relative to o. If we view a tree as an electrical network,
one can define the current flow and energy on the tree (Lyons and Peres, 2017). Later in
the paper we will show the close connection between these notions and the misclassification
error.

Definition 1 (Electric Flow) A unit flow i(·) : V → R on a tree T is called a valid unit
flow if i( o) = 1 and for any v

i( v) =
∑
u∈C(v)

i( u).

Definition 2 (Energy and Resistance) The energy E(r, i) of a unit flow i at resistance
level r > 0 is defined as

E(r, i) :=
∑
v∈T

i( v)2r|v|.

The minimum energy E∗(r) is

E∗(r) := inf
i

E(r, i),

where the infimum is over all valid unit flows. Denote the minimum energy flow as i∗. We
identify the reciprocal of resistance level r−1 as the conductance level.

When assigning resistance rd to edges that are d-depth away from the root, the energy
enjoys the natural physical interpretation. We also remark that for a given resistance level,
one can calculate the minimum energy flow i∗ on the tree using Thomson’s principle.

Now we are ready to define the branching number of a tree T through minimum energy.
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Definition 3 (Branching Number) The branching number br(T ) can be defined as

br(T ) := sup{r : E(r) <∞} = sup{r : inf
i

∑
v∈T

i( v)2r|v| <∞}.

It is well known that the branching number not only captures the growth rate of the tree,
but also takes into account the structure of the tree (Lyons and Peres, 2017, Chapter 3.2).

2.2. Broadcasting Trees and SBM

When viewed locally, stochastic block models in the sparse regime share similarities with a
label broadcasting process on a Galton-Watson tree. In fact, the local neighborhood of SBM
can be coupled with a broadcasting tree with high probability as n→∞. This phenomenon
has been investigated in studying the detectability and reconstruction threshold for vanilla
SBM (equal-size communities, symmetric case), as in Mossel et al. (2012).

Let us formally define the label broadcasting process conditioned on a tree T (o).

Definition 4 (Label Broadcasting) Given a tree T (o), the k-broadcasting process on
T with the Markov transition matrix K ∈ Rk×k describes the following process of label
evolution. Conditioning on a node v and its label `(v) ∈ [k], the labels of children u ∈ C(v)
are sampled independently from

P(`(u)|`(v)) = P(`(u)|`T|v|(o)) = K`(v),`(u),

where the first equality assumes the Markov property that the probability of moving to the
next state `(u) depends only on the present state `(v) and not on the previous states.

Let us review the definition of the multi-type Galton-Watson tree. We shall only consider
the Poisson branching process.

Definition 5 (Multi-type Galton-Watson Tree) Consider a k-types Galton-Watson pro-
cess with the mean matrix M ∈ Rk×k. For a node v, given its type `(v) = i, the number of
type j children of v enjoys a Poisson(Mij) distribution, independently of other types. Start
the process recursively for t generations from root o. The tree Tt(o) is called a multi-type
Galton-Watson tree. In such a Poisson setting, the label-broadcasting process is indepen-
dent of the tree structure. We consider the case when the mean progeny does not reflect the
underlying labels; namely,

∑
jMij does not depend on i.

2.3. Notation

The moment generating function (MGF) for a random variable X is denoted by ΨX(λ) =
EeλX . For asymptotic order of magnitude, we use a(n) = O(b(n)) to denote that ∀n, a(n) ≤
Cb(n) for some universal constant C, and use O∗(·) to omit the poly-logarithmic depen-

dence. As for notation -,%: a(n) - b(n) if and only if lim
n→∞

a(n)
b(n) ≤ C, with some con-

stant C > 0, and vice versa. The square bracket [·] is used to represent the index set
[k] := [1, 2, . . . , k]; in particular when k = 2, [2] := {+,−} for convenience.
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Recall that the hyperbolic tangent is tanhx = ex−e−x
ex+e−x . The message-passing algorithm

in the following sections involves a non-linear update rule defined through a function

fθ1,θ2(x) := log
1 + θ1 tanh x

2

1− θ2 tanh x
2

(4)

for 0 < θ1, θ2 < 1. Note that the derivative f ′θ1,θ2(0) = θ1+θ2
2 .

3. Two Communities

In this Section we will illustrate the main results for the case of two, possibly imbalanced,
communities. We motivate the weighted message passing algorithm, and its relation to min-
imum energy flow. We investigate the connection between misclassification and minimum
energy, as well as the corresponding transition threshold for general SBM.

3.1. Main Algorithmic and Theoretical Results

This section serves as an informal summary of the results for k = 2. As a start, we introduce
the following weighted message passing (WMP) Algorithm 1. For each node in the graph,
we consider the breadth-first search tree around that node, with t referring to the graph
distance to the root node. Denote such local tree neighborhood with graph distance t̄
around root node o to be Tt̄(o).

Algorithm 1: Weighted Message Passing

Data: Graph G(V,E) with noisy label information ˜̀
prior. Parameters:

neighborhood radius t̄ and conductance level θ̄2.
Result: The labeling for each node o ∈ V .
for each node o ∈ V , do

Open the tree neighborhood Tt̄(o) induced by the graph G(V,E) ;

Layer t̄: for every node u ∈ C t̄(o) with distance t̄ to the root on Tt̄(o), initialize
its message

M(u, 0) = θ̄−2|u| · i∗( u) · sgn[˜̀prior(u)],

where i∗( u) is the minimum energy flow to u calculated via Thomson’s
principle on Tt̄(o) with conductance level θ̄2 ;

for t = 1, . . . t̄, do

Layer t̄− t: for every node u ∈ C t̄−t(o), calculate the message M(u, t)
through the linearized update rule

M(u, t) =
∑
v∈C(u)

θ̄M(v, t− 1).

end

Output ˆ̀
wmp(u) = sgn[M(o, t̄)].

end
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We remark that WMP can run in parallel for all nodes due to its decentralized nature.
For fixed depth t̄ and sparse SBM (when nmaxi,j Qij - log n), the algorithm runs in O∗(n)
time.

The following theorem is a simplified version of Theorems 10 and 12 below:

Theorem 6 (General SBM: k = 2) Consider the general stochastic block model G(V,E)
with parameter bundle (n, k = 2, N,Q), with either partial or noisy label information ˜̀

prior

with parameter 0 < δ < 1. Assume that nmaxi,j Qij - no(1). For any node o ∈ V and
its depth t leaf labels ˜̀

prior(Ct(o)), define the worst-case misclassification error of a local
estimator σt(o) : ˜̀

prior(Ct(o))→ {+,−} as

Err(σt) := max
l∈{+,−}

P (σt(o) 6= `(o)|`(o) = l) . (5)

Define

θ̄ :=
1

4

(
n1Q11 − n2Q12

n1Q11 + n2Q12
+
n2Q22 − n1Q21

n1Q21 + n2Q22

)
(6)

λ := λ1

([
n1Q11 n2Q12

n1Q21 n2Q22

])
. (7)

Here λ is the Perron-Frobenius eigenvalue. Let E∗(θ̄−2) be the minimum energy on Tt(o)
with conductance level θ̄2 as t → ∞ (the limit is defined on the locally coupled Galton-
Watson infinite tree).

The transition boundary for this general SBM depends on the value

SNR = λθ̄2.

On the one hand, if λθ̄2 > 1, the WMP Algorithm 1, denoted as ˆ̀
wmp, enjoys the following

upper bound on misclassification

lim sup
t→∞

lim sup
n→∞

Err(ˆ̀
wmp) ≤ exp

(
− 1

2E∗(1/θ̄2)

)
∧ 1

2
, (8)

for any fixed δ > 0. On the other hand, if λθ̄2 < 1, for any local estimator σt that uses only
label information on depth t leaves, the minimax misclassification error is lower bounded by

lim inf
t→∞

lim inf
n→∞

inf
σt

Err(σt) =
1

2
. (9)

Remark 7 We remark that Algorithm 1 is stated for the case when noisy label information
is known for all nodes in layer t̄. For the case of partial label information, there are two
options to modify the initialization of the algorithm: (a) view the partial label information
with parameter δ as the noisy label information on layer t̄ only, with P(˜̀

prior(u) = `(u)) =
δ + (1 − δ)1

2 — with probability δ, the label is revealed exactly, and with probability 1 − δ,
the label is decided using coin-flip — then proceed with the algorithm; (b) view the partial
information as on each layer there is a δ portion of nodes whose labels are revealed exactly
(Cai et al., 2016). Call the set of these nodes V l(Tt̄(o)). Then we need to initialize the
message M(u) for all u ∈ V l(Tt̄(o)) first before using the recursion M(u) =

∑
v∈C(u) θ̄M(v).

Remark that the latter performs better numerically for fixed depth tree as it utilizes all
partially labeled information spreading over different depth.
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We decompose the proof of Theorem 6 into several building steps: (a) conditioned on the
local tree structure, prove concentration-of-measure on WMP messages when label propa-
gates according to a Markov transition matrix K; (b) for a typical tree instance generated
from multi-type Galton-Watson process, establish connection among the misclassification
rate, transition boundary and minimum energy through the concentration result; (c) show
that in the sparse graph regime of interest, the local neighborhood of general SBM can be
coupled with a multi-type Galton-Watson with Markov transition matrix

K :=

[
n1Q11

n1Q11+n2Q12

n2Q12

n1Q11+n2Q12
n1Q21

n1Q21+n2Q22

n2Q22

n1Q21+n2Q22

]

for label broadcasting (the explicit expression based on Eq. (2)). We remark that step (c)
follows similar proof strategy as in Mossel et al. (2012), where the coupling for vanilla SBM
has been established. The lower bound follows from Le Cam’s testing argument (see for
instance Lemma 1 in Yu (1997)), and the difficulty lies in analyzing the distance between
measures recursively on the local tree.

Remark 8 When the local tree is regular and symmetric and λθ̄2 > 1, the minimum energy
can be evaluated exactly as

E∗(θ̄−2) =
1

λθ̄2 − 1
,

which implies that misclassification error takes the exponentially decaying form exp
(
−SNR−1

2

)
.

Hence, the result provides a detailed understanding of the strength of the SNR and its effect
on misclassification, i.e., the inference guarantee. More concretely, for the vanilla SBM in

the regime p = a/n, q = b/n, the boundary is SNR = n(p−q)2

2(p+q) > 1, which is equivalent to the
boundary

(a− b)2

2(a+ b)
> 1

for weak consistency in (Mossel et al., 2013b; Massoulié, 2014). In addition, one observes
that SNR > 1 + 2 log n implies Err(ˆ̀) < 1/n → 0, which asserts strong consistency. This
condition on SNR is satisfied, for instance, by taking p = a log n/n, q = b log n/n in vanilla

SBM and computing the relationship between a, b to ensure SNR = n(p−q)2

2(p+q) > 1 + 2 log n.
This relationship is precisely

√
a−
√
b√

2
>

√
1 +

1

2 log n
·
√

2(a+ b)
√
a+
√
b
> 1.

The above agrees with the threshold for strong recovery in (Abbe et al., 2014; Hajek et al.,
2014).

3.2. Weighted Message Passing and Minimum Energy Flow

In this section, we will motivate our proposed weighted message passing (WMP) from the
well-known belief propagation (BP) on trees. There are two interesting components in the
WMP Algorithm 1: the linearization part, and the initialization part. We will discuss each
one in details in this section.
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Recall the Definition 4 of the label broadcasting process on tree T (o) with k = 2. For
convenience, let us denote the Markov transition matrix K to be

K =

[
1+θ1

2
1−θ1

2
1−θ2

2
1+θ2

2

]
. (10)

The BP algorithm is the Bayes optimal algorithm on trees given the labels of leaves. Define
for a node u ∈ V the BP message as

B(u, t) := log
P(`(u) = +)|`obs(Tt(u)))

P(`(u) = −|`obs(Tt(u)))
,

which is the posterior logit of u’s label given the observed labels `obs(Tt(u))). Using Bayes
rule and conditional independence, one can write out the explicit evolution for BP message
through fθ1,θ2 in (4)

B(u, t) =
∑
v∈C(u)

log

(
1 + θ1 tanh B(v,t−1)

2

1− θ2 tanh B(v,t−1)
2

)

=
∑
v∈C(u)

fθ1,θ2 (B(v, t− 1)) , (11)

with θ1, θ2 as in Markov transition matrix K. While the method is Bayes optimal, the
density of the messages B(u, t) is difficult to analyze, due to the blended effect of the de-
pendence on revealed labels and the non-linearity of fθ1,θ2 . However, the WMP Algorithm 1
— a linearized BP — shares the same transition threshold with BP, and is easier to analyze.
Above a certain threshold, the WMP succeeds, which implies that the optimal BP will also
work. Below the same threshold, even the optimal BP will fail, and so does the WMP.
The updating rule for WMP messages M(u, t) is simply a replacement of Eq. (11) by its
linearized version,

M(u, t) =
∑
v∈C(u)

θ1 + θ2

2
M(v, t− 1).

The initialization of the WMP messages on the leaves M(u, 0) whose labels have been
observed is crucial to the control of the misclassification error of the root node, especially for
general SBM with heterogeneous degrees. For general SBM, one should expect to initialize
the messages according to the detailed local tree structure, where the degree for each node
could be very different. It turns out that the optimal misclassification for WMP is related
to a notion called the minimum energy E∗. Moreover, the optimal initialization for leaf
message u is proportional to the minimum energy flow i∗( u) on the local tree, with
conductance level θ̄2. In plain language, i∗( u) provides a quantitative statement of the
importance of the vote u has for the root. Note that for imbalanced trees, i∗ could vary
significantly from node to node, and can be computed efficiently given the tree structure
Tt(o) for a specified conductance level.

3.3. Concentration, Misclassification and Energy

We now prove the concentration-of-measure phenomenon on WMP messages. Through the
concentration, we will show the close connection between misclassification and energy. We
will first state the result conditioned on the tree structure Tt(o).

11
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Lemma 9 (Concentration on Messages) Recall the label broadcasting process with Markov
transition kernel K ∈ R2×2 on tree Tt̄(o). Assume the MGF of messages on leaves M(u, 0)
satisfies the following sub-Gaussian property

E
[
eλM(u,0)|`(u) = +

]
≤ eλµ0(u,+)e

λ2σ2
0(u)

2

E
[
eλM(u,0)|`(u) = −

]
≤ eλµ0(u,−)e

λ2σ2
0(u)

2

for any λ, with sub-Gaussian parameter

µ0(u) =

[
µ0(u,+)
µ0(u,−)

]
∈ R2, σ2

0(u) ∈ R.

Define the following updating rules for a node v

µt(v) =
∑
u∈C(v)

θ̄Kµt−1(u) (12)

σ2
t (v) =

∑
u∈C(v)

θ̄2

{
σ2
t−1(u) +

[
µt−1(u,+)− µt−1(u,−)

2

]2
}
. (13)

Then the following concentration-of-measure holds for the root message M(o, t̄):

P (M(o, t̄) ≥ µt̄(o,+)− x · σt̄(o) | `(o) = +) ≥ 1− exp(−x2/2),

P (M(o, t̄) ≤ µt̄(o,−) + x · σt̄(o) | `(o) = −) ≥ 1− exp(−x2/2).

In addition, if we choose µt̄(o,+)+µt̄(o,−)
2 as the cut-off to provide classification ˆ̀

wmp, then
the misclassification error is upper bounded by

exp

(
− [µt̄(o,+)− µt̄(o,−)]2

8σ2
t̄
(o)

)
. (14)

The above Lemma provides an expression on the classification error. The next Theorem
will show that with the “optimal” initialization for WMP, the misclassification error is
connected to the minimum energy.

Theorem 10 (Connection between Misclassification & Energy) Define the current
flow with µt(·) defined in (12) and initialization µ0(·) to be determined

i( v) =
θ̄2|v|[µt−|v|(v,+)− µt−|v|(v,−)]

[µt(o,+)− µt(o,−)]
.

Then it is a valid unit flow on Tt(o) for any intialization, and the following equation holds

σ2
t (o)[

[µt(o,+)−µt(o,−)]
2

]2 = (1 + ot(1))
∑

v∈Tt(o)

i( v)2
(
θ̄−2
)|v|

= (1 + ot(1))Et(i, θ̄
−2)

12
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when limt→∞Et(i, θ̄
−2) <∞. Moreover, if we choose the initialization µ0(v) for leaf nodes

v’s so that i is the minimum energy flow w.r.t. Et(i, θ̄
−2), then under the condition

br[T (o)]θ̄2 > 1,

we have E∗(θ̄−2) <∞ and

lim
t→∞

inf
i

σ2
t (o)[

[µt(o,+)−µt(o,−)]
2

]2 ≤
∑

v∈T (o)

i∗( v)2
(
θ̄−2
)|v|

= E∗(θ̄−2). (15)

Remark 11 The above Theorem 10 and Lemma 9 together state the fact that if br[T (o)]θ̄2 >
1, E∗(θ̄−2) is finite, and the optimal initialization of WMP enjoys the asymptotic misclas-
sification error bound of

exp

(
− 1

2E∗(θ̄−2)

)
.

Qualitatively, the smaller the minimum energy is, the smaller the misclassification error is,
and it decays exponentially. On the contrary, if the minimum energy is infinite (br[T (o)]θ̄2 <
1), the misclassification error bound for WMP becomes vacuous. Another remark is that
when the tree is regular, the minimum energy takes the simple form E∗(θ̄−2) = 1

br[T (o)]θ̄2−1
,

which implies the upper bound exp(−br[T (o)]θ̄2−1
2 ) on asymptotic misclassification error.

3.4. Below the Threshold: Limitation of Local Algorithms

In this section, we will show that the SNR threshold (for WMP algorithm) is indeed sharp
for the local algorithm class. The argument is based on Le Cam’s method. Let us prove a
generic lower bound for any fixed tree Tt(o), and for the k = 2 label broadcasting process
with transition matrix K (as in Eq. (10)).

Theorem 12 (Limitation of Local Algorithms) Recall the label broadcasting process
with Markov transition kernel K on tree Tt(o). Consider the case when noisy label informa-
tion (with parameter δ) is known on the depth-t layer leaf nodes. Denote the following two
measures π+

`Tt(o)
, π−`Tt(o)

as distributions on leaf labels given `(o) = +,− respectively. Under

the condition
br[T (o)]θ̄2 < 1,

if log(1 + 4δ2

1−δ2 ) ≤ 1− br[T (o)]θ̄2, the following equality on total variation holds

lim
t→∞

d2
TV

(
π+
`Tt(o)

, π−`Tt(o)

)
= 0.

Furthermore, the above equation implies

lim
t→∞

inf
σt

sup
l∈{+,−}

P (σt(o) 6= `(o)|`(o) = l) =
1

2

where σt(o) : ˜̀
prior(Ct(o)) → {+,−} is any estimator mapping the prior labels in the local

tree to a decision.

13
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The above theorem is stated under the case when the noisy label information is known and
only known for all nodes in layer t. One can interpret the result as, below the threshold
br[T (o)]θ̄2 < 1, one cannot do better than random guess for the root’s label based on noisy
leaf labels at depth t as t→∞. The proof relies on a technical lemma on branching number
and cutset as in (Pemantle and Steif, 1999). We would like to remark that the condition

log(1 + 4δ2

1−δ2 ) ≤ 1− br[T (o)]θ̄2 can be satisfied when δ is small.

4. General Number of Communities

In this section, we will extend the algorithmic and theoretical results to the general SBM for
any fixed k or growing k with a slow rate (with respect to n). There are several differences
between the general k case and the k = 2 case. First, algorithmically, the procedure for
general k requires another layer of weighted aggregation besides the weights introduced by
minimum energy flow (according to the detailed tree irregularity). The proposed procedure
introduces the weights on the types of labels (k types) revealed, and then aggregates the
information in the most “informative direction” to distinguish the root’s label. Second, the
theoretical tools we employ enable us to formally describe the intuition that in some cases
for general SBM, one can distinguish the communities i, j from k, but not being able to tell
i and j apart. We will call this the set identification.

4.1. Summary of Results

We summarize in this section the main results for general SBM with k unequal size com-
munities, and introduce the corresponding weighted message passing algorithm (WMP).

We need one additional notation before stating the main result. For a vector w ∈ Rk,
assume there are m unique values for wl, l ∈ [k]. Denote by Si, 1 ≤ i ≤ m, the sets of
equivalent values associated with w — for any l, l′ ∈ [k], wl = wl′ if and only if l, l′ ∈ Si for
some i ∈ [m]. Denote wSi to be the equivalent value wl, l ∈ Si.

Theorem 13 (General SBM: k communities) Consider the general stochastic block model
G(V,E) with parameter bundle (n, k,N,Q), with either partial or noisy label information
˜̀
prior with parameter 0 < δ < 1. Assume that nmaxi,j Qij - no(1). For any node o ∈ V and

its depth t leaf labels ˜̀
prior(Ct(o)), define the set misclassification error of a local estimator

σt(o) : ˜̀
prior(Ct(o))→ [k] as,

ErrS,T (σt) := max {P (σt(o) ∈ S|`(o) ∈ T ) ,P (σt(o) ∈ T |`(o) ∈ S)} , (16)

where S, T ⊂ [k] are two disjoint subsets. Define

K := [diag(QN)]−1Qdiag(N), M = Qdiag(N)

θ := λ2(K), λ := λ1(M).

Let E∗(1/θ2) be the minimum energy on Tt(o) with conductance level θ2 as t→∞. Denote
V ∈ Rk to be the space spanned by the second eigenvectors of K. Choose any w ∈ V,w ⊥ 1
as the initialization vector in WMP Algorithm 2.

14
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On the one hand, when λθ2 > 1, the WMP Algorithm 2 initialized with w outputs ˆ̀
wmp

that can distinguish the indices set Si, 1 ≤ i ≤ m (defined w.r.t. vector w)

lim sup
t→∞

lim sup
n→∞

max
i,j∈[m]

ErrSi,Sj (
ˆ̀
wmp) ≤ exp

(
− R2

2E∗(1/θ2)

)
, (17)

for any fixed δ > 0, where R2 =
mini,j |wSi−wSj |
maxi,j |wSi−wSj |

.

On the other hand, if λθ2 < 1, for any t-local estimator σt that only based on layer t’s
noisy labels, the minimax misclassification error is lower bounded by

lim inf
t→∞

lim inf
n→∞

inf
σt

sup
i,j∈[k],i 6=j

Erri,j(σt) ≥
1

2k
. (18)

The proof for general k case requires several new ideas compared to the k = 2 case. Let us
first explain the intuition behind some quantities here. Again we focus on the case when the
network is sparse, i.e. nmaxi,j Qij - no(1). According to the coupling Proposition 20, one
can focus on the coupled multi-type Galton-Watson tree, for a shallow local neighborhood
of a node o. K ∈ Rk×k then denotes the transition kernel for the label broadcasting process
on the tree, and λ denotes the branching number of the multi-type Galton-Watson tree.
The transition threshold λθ2 = 1, also called Kesten-Stigum bound, has been well-studied
for reconstruction on trees Kesten and Stigum (1966a,b); Mossel (2001); Janson and Mossel
(2004). Our contribution lies in establishing the connection between the set misclassification
error, minimum energy flow, as well as the second eigenvectors of K. This is done through
analyzing Algorithm 2 (to be introduced next) with a novel initialization of the messages,
using both minimum energy flow and the eigenvectors of K.

Remark 14 One distinct difference between the general k case and the k = 2 case is the
notion of set misclassification error, or set identification. This formalizes the intuition
that for general SBM that is asymmetric and imbalanced, it may be possible to distinguish
communities i, j from community l, yet not possible to tell i and j apart. The above Theorem
provides a mathematical description of the phenomenon, for any initialization using vectors
in the eigen-space corresponding to the second eigenvalue.

The key new ingredient compared to the Algorithm 1 is the introduction of additional
weights w ∈ Rk on the labels. The choice of w will become clear in a moment.

4.2. Vector Evolution and Concentration

As in the k = 2 case, we establish the recursion formula for the parameter updates. However,
unlike the k = 2 case, for a general initialization µ0, it is much harder to characterize
µt(u), σ2

t (u) analytically, and thus relate the misclassification error to the minimum energy.
We will show that this goal can be achieved by a judicious choice of µ0. We will start with
the following Lemma that describes the vector evolution and concentration-of-measure.
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Algorithm 2: Weighted Message Passing for Multiple Communities

Data: Same as in Algorithm 1 and an additional weight vector w ∈ Rk.
Result: The labeling for each node o ∈ V .
for each node o ∈ V , do

Open the tree neighborhood Tt̄(o) ;

Layer t̄: for every node u ∈ C t̄(o), initialize its message

M(u, 0) = θ−2|u| · i∗( u) · w˜̀
prior(u),

where w˜̀
prior(u) denotes the ˜̀

prior(u)-th coordinate of the weight vector w,

i∗( u) is the minimum energy flow ;

Initialize parameters µ0(u) ∈ Rk, σ2
0(u) ∈ R as

µ0(u, l) = δ · θ−2|u|i∗( u) · wl, for l ∈ [k]

σ2
0(u) =

(
θ−2|u|i∗( u)

)2
· max
i,j∈[k]

|wi − wj |2

for t = 1, . . . t̄, do

Layer t̄− t: for every node u ∈ C t̄−t(o), update message M(u, t) through the
linearized rule

M(u, t) =
∑
v∈C(u)

θM(v, t− 1).

Update the parameters µt(u) ∈ Rk, σ2
t (u) ∈ R

µt(u) =
∑

v∈C(u)

θKµt−1(v)

σ2
t (u) =

∑
v∈C(u)

θ2

σ2
t−1(v) +

 max
i,j∈[k]

|µt−1(v, i)− µt−1(v, j)|

2

2
 .

end

Output ˆ̀
wmp(o) = arg minl∈[k] |M(o, t̄)− µt̄(o, l)|.

end

Lemma 15 (Concentration, general k) Recall the label broadcasting process with Markov
transition kernel K ∈ Rk×k on tree Tt̄(o). Assume the MGF of messages on the leaves
M(u, 0) satisfies, for any ` ∈ [k]

E
[
eλM(u,0)|`(u) = l

]
≤ eλµ0(u,l)e

λ2σ2
0(u)

2

for any λ, with parameter

µ0(u) = [µ0(u, 1), . . . , µ0(u, k)] ∈ Rk, σ2
0(u) ∈ R.
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Define the following updating rules for a node v

µt(v) =
∑
u∈C(v)

θKµt−1(u)

σ2
t (v) =

∑
u∈C(v)

θ2

σ2
t−1(u) +

 max
i,j∈[k]

|µt−1(u, i)− µt−1(u, j)|

2

2
 .

The following concentration-of-measure holds for the root message M(o, t̄):

P (|M(o, t̄)− µt̄(o, l)| ≤ x · σt̄(o) | `(o) = l) ≥ 1− 2 exp(−x
2

2
).

In addition, if we we classify the root’s label as

ˆ̀
wmp(o) = arg min

l∈[k]
|M(o, t̄)− µt̄(o, l)|,

then the worst-case misclassification error is upper bounded by

exp(−
mini,j∈[k] |µt̄(o, i)− µt̄(o, j)|2

8σ2
t̄
(o)

). (19)

Remark 16 Unlike the k = 2 case, in general it is hard to quantitatively analyze this evo-
lution system for µt(u), σ2

t (u). The main difficulty stems from the fact that the coordinates
that attain the maximum of maxi,j∈[k] |µt−1(u, i) − µt−1(u, j)| vary with u, t. Hence, it is
challenging to provide sharp bounds on σ2

t (u). In some sense, the difficulty is introduced by
the instability of the relative ordering of the coordinates of the vector µt(u) for an arbitrary
initialization.

As will be shown in the next section, one can resolve this problem by initializing µ0(u, l), l ∈
[k] in a “most informative” way. This initialization represents the additional weights on
label’s types beyond the weights given by the minimum energy flow.

4.3. Additional Weighting via Eigenvectors

We show in this section that the vector evolution system with noisy initialization is indeed
tractable if we weigh the label’s type according to the second right eigenvector of K ∈ Rk×k.

Theorem 17 (Weighting by Eigenvector) Denote the second eigenvalue of the Markov
transition kernel K as θ = λ2(K) , and denote any one of the associated second eigenvec-
tor by w ∈ Rk, ‖w‖ = 1, wT1 = 0. Denote the minimum energy flow on tree T (o) with
conductance level θ2 by i∗. In the case of noisy label information with parameter δ, if we
initialize

µ0(u, l) = δ · θ−2|u|i∗( u) · wl, for l ∈ [k],

and σ2
0(u) =

(
θ−2|u|i∗( u)

)2 · maxi,j∈[k] |wi − wj |2, then the worst case misclassification
error is upper bounded by

lim sup
t→∞

max
i,j∈[k],i 6=j

P(ˆ̀
wmp(o) = i|`(o) = j) ≤ exp(− R2

2E∗(θ−2)
)

with R =
mini,j |wi−wj |
maxi,j |wi−wj | .
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Remark 18 Observe that the upper bound becomes trivial when mini,j |wi − wj | = 0. In
this case, one can easily modify in the proof of Theorem 17 so that the following non-trivial
guarantee for set misclassification error holds. Assume w has m distinct values, and denote
the set Si, 1 ≤ i ≤ m to be the distinct value sets associated with w. Then one has the
following upper bound on the set misclassification error

lim sup
t→∞

max
i,j∈[m],i 6=j

P(ˆ̀
wmp(o) ∈ Si|`(o) ∈ Sj) ≤ exp(−

R2
S

2E∗(θ−2)
) (20)

with RS =
mini,j |wSi−wSj |
maxi,j |wSi−wSj |

.

4.4. Lower Bound: Sharp Threshold

In this section, we make use of the lower bound established in Janson and Mossel (2004)
to demonstrate that for δ small enough, no local algorithm can solve the problem when
br[T (o)]θ2 < 1. In other words, result obtained in Janson and Mossel (2004) shows that the
transition boundary λθ2 = 1 achieved by WMP is sharp among local algorithms for any k.

Proposition 19 (Limitation for Local Algorithms, k-communities) Recall the label
broadcasting process with Markov transition kernel K on tree Tt(o). Consider the case when
noisy label information (with parameter δ) is known on the depth-t layer leaf nodes. Under
the condition

br[T (o)]θ2 < 1

and δ below an universal small constant, we have

lim inf
t→∞

inf
σt

max
l∈[k]

P(σt(o) 6= `(o)|`(o) = l) ≥ 1

2
(1− 1

k
).

where σt(o) : ˜̀
prior(Ct(o))→ [k] is any estimator mapping the prior labels on leaves in the

local tree to a decision. The above inequality also implies

lim inf
t→∞

inf
σt

max
i,j∈[k],i 6=j

P(σt(o) = i|`(o) = j) ≥ 1

2k
.

The above result shows that even belief propagation suffers the error at least 1
2k in distin-

guishing i, j, which is within a factor of 2 from random guess (where the error is 1/k for all
i, j pair).

5. Numerical Studies

We apply the message passing Algorithm 1 to the political blog dataset (Adamic and Glance,
2005) (with a total of 1222 nodes) in the partial label information setting with δ portion
randomly revealed labels. In the literature, the state-of-the-art result for a global algorithm
appears in (Jin, 2015), where the misclassification rate is 58/1222 = 4.75%. Here we
run a weaker version of our WMP algorithm as it is much easier to implement and does
not require parameter tuning. Specifically, we initialize the message with a uniform flow on
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leaves (minimum energy flow that corresponds to a regular tree). We will call this algorithm
as AMP within this section.

We run AMP with three different settings δ = 0.1, 0.05, 0.025, repeating each experiment
50 times. As a benchmark, we compare the results to the spectral algorithm on the (1−δ)n
sub-network. We focus on the local tree with depth 1 to 5, and output the error for message
passing with each depth. The results are summarized as box-plots in Figure 1. The left
figure illustrates the comparison of AMP with depth 1 to 5 and the spectral algorithm, with
red, green, blue boxes corresponding to δ = 0.025, 0.05, 0.1, respectively. The right figure
zooms in on the left plot with only AMP depth 2 to 4 and spectral, to better emphasize the
difference. Remark that if we only look at depth 1, some of the nodes may have no revealed
neighbors. In this setting, we classify this node as wrong (this explains why depth-1 error
can be larger than 1/2).
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Figure 1: AMP algorithm on Political Blog Dataset.

We present in this paragraph some of the statistics of the experiments, extracted from
the above Figure 1. In the case δ = 0.1, from depth 2-4, the AMP algorithm produces
the mis-classification error rate (we took the median over the experiments for robustness)
of 6.31%, 5.22%, 5.01%, while the spectral algorithm produces the error rate 6.68%. When
δ = 0.05, i.e. about 60 node labels revealed, the error rates are 7.71%, 5.44%, 5.08% with
depth 2 to 4, contrasted to the spectral algorithm error 6.66%. In a more extreme case
δ = 0.025 when there are only ∼ 30 node labels revealed, AMP depth 2-4 has error
10.20%, 5.71%, 5.66%, while spectral is 6.63%. In general, the AMP algorithm with depth
3-4 uniformly beats the vanilla spectral algorithm. Note that our AMP algorithm is a dis-
tributed decentralized algorithm that can be run in parallel. We acknowledge that the error
∼ 5% (when δ is very small) is still slightly worse than the state-of-the-art degree-corrected
SCORE algorithm in (Jin, 2015), which is 4.75%.
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6. Technical Proofs

We will start with two useful results. The first one is a coupling proposition. The proof
follows exactly the same idea as in Proposition 4.2 in Mossel et al. (2012). The intuition is
that when the depth of the tree is shallow, the SBM in the sparse regime can be coupled to
a Galton-Watson tree with Poisson branching (as there are many nodes outside the radius
R for the Poisson-Multinomial coupling, when R small). We want to prove a more general
version for SBM with unequal size communities. The proof is delayed to Appendix A.

Proposition 20 Let R = R(n) = b 1
4 log[2np0+2 logn] log nc, where p0 = maxi,j Qij. Denote

(T, σT ) to be the multi-type Galton-Watson tree (with Poisson branching) with mean ma-
trix Qdiag(N) and label transition kernel K = [diag(QN)]−1Qdiag(N). Denote GR as the
neighborhood of depth up to R induced by the graph G, for a particular node. There ex-
ists a coupling between (GR, `GR) and (T, σT ) such that (GR, `GR) = (TR, σTR) with high
probability as n→∞. Here the tree equivalence is up to a label preserving homomorphism.

Proposition 21 Recall the definition of K in (2). Then all eigenvalues of K are real.

Proof It is clear that D1 := [diag(QN)]−1 and D2 := diag(QN) are diagonal matrices,
therefore D1D2 = D2D1. Recall K := D1QD2 share the same eigenvalues as UKU−1 with

invertible U := D
−1/2
1 D

1/2
2 = D

1/2
2 D

−1/2
1 . It is clear that UKU−1 = (D2D1)1/2Q(D1D2)1/2

is symmetric. Proof completed.

Lemma 22 (Hoeffding’s Inequality) Let X be any real-valued random variable with ex-
pected value EX = 0 and such that a ≤ X ≤ b almost surely. Then, for all λ > 0,

E
[
eλX

]
≤ exp

(
λ2(b− a)2

8

)
.

Proof [Proof of Lemma 9] Recall the linearized message passing rule that “approximates”
the Bayes optimal algorithm:

M(u, t) =
∑
v∈C(u)

θ̄ ·M(v, t− 1), where θ̄ =
θ1 + θ2

2
.

Let us analyze the behavior of the linearized messages M(u, t) for a particular node u.
The proof follows by induction on t. The case t = 0 follows from the assumption about
µ0(u), σ2

0(u) and Chernoff bound. Now, assume that the induction premise is true for t− 1.
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Note that

E
[
eλM(u,t)|`(u) = +

]
=

∏
v∈C(u)

E
[
eλθ̄M(v,t−1)|`(u) = +

]
=

∏
v∈C(u)

{
E
[
eλθ̄M(v,t−1)|`(v) = +

] 1 + θ1

2
+ E

[
eλθ̄M(v,t−1)|`(v) = −

] 1− θ1

2

}

≤
∏

v∈C(u)

e(λθ̄)2
σ2
t−1(v)

2

{
eλθ̄µt−1(v,+) 1 + θ1

2
+ eλθ̄µt−1(v,−) 1− θ1

2

}

≤
∏

v∈C(u)

e(λθ̄)2
σ2
t−1(v)

2 eλθ̄[µt−1(v,+)
1+θ1

2
+µt−1(v,−)

1−θ1
2

]e(λθ̄)2 [µt−1(v,+)−µt−1(v,−)]2

8 ,

where the last step uses the Hoeffding’s Lemma. Rearranging the terms,

E
[
eλM(u,t)|`(u) = +

]
≤ eλ

∑
v∈C(u) θ̄〈K1·,µt−1(v)〉e

λ2θ̄2
∑
v∈C(u)

{
σ2
t−1(v)+

[
µt−1(v,+)−µt−1(v,−)

2

]2}
2

= eλµt(u,+)e
λ2σ2

t (u)

2 ,

where K1· denotes the first row of transition matrix K. Clearly, same derivation holds
with `(u) = −. Applying the Chernoff bound and optimizing over λ, one arrives at the
exponential concentration bound. Induction completes.

To upper bound the misclassification error, simply plug in the standardized absolute

values of the difference, namely x =
∣∣∣µt̄(o,+)−µt̄(o,−)

2σt̄(o)

∣∣∣.
Proof [Proof of Theorem 10] Using the result of Lemma 9, the proof analyzes evolution of

σ2
t (o)[

[µt(o,+)−µt(o,−)]
2

]2 .

First, let us derive the expression for µt(o,+)− µt(o,−). Denoting w = [1,−1]T , it is easy
to verify that wTK = θ̄wT . We have,

µt(o,+)− µt(o,−) =
∑
v∈C(o)

θ̄wTKµt−1(v) =
∑
v∈C(o)

θ̄2wTµt−1(v)

= θ̄2
∑
v∈C(o)

[µt−1(v,+)− µt−1(v,−)].

Using the above equation recursively, one can easily see that for any d, 1 ≤ d ≤ t,

µt(o,+)− µt(o,−) = θ̄2d
∑

v∈Cd(o)

[µt−d(v,+)− µt−d(v,−)]. (21)
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Now for σ2
t (o) for σ2

t (ρ), one has

σ2
t (o) = θ̄2

∑
v∈C(o)

{
σ2
t−1(v) +

[
µt−1(v,+)− µt−1(v,−)

2

]2
}

which can be written, in turn, as

θ̄2
∑
v∈C(o)

θ̄2
∑
u∈C(v)

{
σ2
t−2(u) +

[
µt−2(u,+)− µt−2(u,−)

2

]2
}

+ θ̄2
∑
v∈C(ρ)

[
µt−1(v,+)− µt−1(v,−)

2

]2

= . . . . . .+ θ̄4
∑
v∈C(ρ)

∑
u∈C(v)

[
µt−2(u,+)− µt−2(u,−)

2

]2

+ θ̄2
∑
v∈C(o)

[
µt−1(v,+)− µt−1(v,−)

2

]2

=
∑

v∈Tt(o)

θ̄2|v|
[
µt−|v|(v,+)− µt−|v|(v,−)

2

]2

+
∑

u∈Ct(o)

θ̄2tσ2
0(u).

Using the above equation one can bound

σ2
t (o)[

[µt(o,+)−µt(o,−)]
2

]2 =

∑
v∈Tt(o) θ̄

2|v|
[
µt−|v|(v,+)−µt−|v|(v,−)

2

]2

[
[µt(o,+)−µt(o,−)]

2

]2 +

∑
u∈Ct(o) θ̄

2tσ2
0(u)[

[µt(o,+)−µt(o,−)]
2

]2

=
∑

v∈Tt(o)

θ̄2|v| [µt−|v|(v,+)− µt−|v|(v,−)
]2

[[µt(o,+)− µt(o,−)]]2
+R

=
∑

v∈Tt(o)

(
θ̄2|v|[µt−|v|(v,+)− µt−|v|(v,−)]

)2
([µt(o,+)− µt(o,−)])2 θ̄−2|v| +R (22)

where the remainder

R =

∑
u∈Ct(o) θ̄

2tσ2
0(u)[

[µt(o,+)−µt(o,−)]
2

]2 .

Recall the definition of

i( v) =
θ̄2|v|[µt−|v|(v,+)− µt−|v|(v,−)]

[µt(o,+)− µt(o,−)]
.

It is clear from Eq.(21) that i is a valid unit flow, in the sense of Definition 1. Continuing
with Eq. (22), one has

inf
i

σ2
t (o)[

[µt(o,+)−µt(o,−)]
2

]2 ≤
∑

v∈Tt(o)

i∗( v)2θ̄−2|v| +R

= Et(i
∗, θ̄−2) +R. (23)
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Now let’s consider the sub-Gaussian parameters µ0(u) and σ2
0(u) for the case of noisy la-

bel information with parameter δ. In WMP algorithm, one choosesM(u, 0) = c(u) sgn(˜̀
prior)

for any weight scheme c(u) ∈ R that depends on the node u. Using simple Hoeffding’s con-
centration for Bernoulli r.v., one has

µ0(u,+) = c(u)δ, µ0(u,−) = −c(u)δ,

and σ2
0(u) = c(u)2.

Going back to Eq. (23), to minimize the LHS (ratio between noise and signal), one needs
to make sure that i = i∗, the minimum energy flow. Therefore, the optimal strategy is to
initialize µ0(u) according to i∗( u) with initialization weights c(u) = θ̄−2|u|i∗( u). Thus,
if we choose

µ0(u,+) = δθ̄−2|u|i∗( u), µ0(u,−) = −δθ̄−2|u|i∗( u).

Let us now estimate R determined by the minimum energy flow:

R =

∑
u∈Ct(o) θ̄

2tσ2
0(u)[

[µt(o,+)−µt(o,−)]
2

]2

≤
∑

u∈Ct(o)

i∗( u)2θ̄−2t · max
u∈Ct(o)

σ2
0(u)[

[µ0(u,+)−µ0(u,−)]
2

]2

=
∑

u∈Ct(o)

i∗( u)2θ̄−2t 1

δ2
.

The last step is because for noisy label information with parameter δ,

σ2
0(u)[

[µ0(u,+)−µ0(u,−)]
2

]2 =
1

δ2
.

In the case when limt→∞Et(i
∗, θ̄−2) < ∞, we know

∑
u∈Ct(o) i∗( u)2θ̄−2t = Et(i

∗, θ̄−2) −
Et−1(i∗, θ̄−2)→ 0. Therefore, R = 1

δ2 ot(1).
we obtain

lim
t→∞

inf
i

σ2
t (o)[

[µt(o,+)−µt(o,−)]
2

]2 = E∗(θ̄−2).

From Definition 3,

E∗(θ̄−2) <∞ iff θ̄−2 < br[T (o)].

Proof [Proof of Theorem 17] Note that by Perron-Frobenius Theorem, we have |θ| =
|λ2(K)| < 1. Thanks to the choice of w,

E[M0(u)|`(u) = l] = δθ−2|u|i∗( u)wl +
1− δ
k

θ−2|u|i∗( u)wT1 = δθ−2|u|i∗( u)wl.
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Let us first derive the formula for µt(o) ∈ Rk under the chosen initialization µ0(u). We
claim that

µt−|v|(v) = δ · θ−2|v|i∗( v) · w.
Proof is via induction. The base case |u| = t is exactly the choice of the initialization. Let
us assume for |u| > |v| the claim is true, and prove for v:

µt−|v|(v) =
∑
u∈C(v)

θKµt−1(u)

=
∑
u∈C(v)

θKw · δθ−2|v|−2i∗( u)

=
∑
u∈C(v)

θ2w · δθ−2|v|−2i∗( v) = δ · θ−2|v|i∗( v) · w,

completing the induction.
Now let us bound σ2

t (o). Observe that in our derived formula for µt−|v|(v), all the
coordinates are proportional to w. In other words, µt−|v|(v) stays in the direction of w for
all v. This greatly simplifies the expression for σ2

t (o). We have

σ2
t (o) =

∑
v∈Tt(o)

θ2|v|
[

maxi,j∈[k] |µt−|v|(v, i)− µt−|v|(v, j)|
2

]2

+
∑

u∈Ct(o)

θ2tσ2
0(u)

= δ2

[
maxi,j∈[k] |w(i)− w(j)|

2

]2 ∑
v∈Tt(o)

i∗( v)2θ−2|v|

+

[
maxi,j∈[k] |w(i)− w(j)|

2

]2 ∑
v∈Ct(o)

i∗( v)2θ−2|v|.

Plugging in the definition R =
mini,j |wi−wj |
maxi,j |wi−wj | , under the condition

br[T (o)]θ2 > 1,

we have E(i∗, θ−2) <∞, and

σ2
t̄ (o)[

mini,j∈[k] |µt̄(o,i)−µt̄(o,j)|
2

]2 =
1

R2
E(i∗, θ−2) +

1

δ2R2
ot(1).

Proof [Proof of Theorem 12] We will gave the proof of Theorem 12 (for the δ noisy label
information case) here.

Define the measure π+
`Tt(o)

on the revealed labels, for a depth t tree rooted from o with

label `(o) = + (and similarly define π−`Tt(o)
). We have the following recursion formula

π+
`Tt(o)

=
∏

v∈C(o)

[
1 + θ1

2
π+
`Tt−1(v)

+
1− θ1

2
π−`Tt−1(v)

]
.
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Recall that the χ2 distance between two absolute continuous measures µ(x), ν(x) is dχ2(µ, ν) =∫ µ2

ν dx− 1, and we have the total variation distance between these two measures is upper
bounded by the χ2 distance dTV (µ, ν) ≤

√
dχ2 (µ, ν).

Let us upper bound the symmetric version of χ2 distance defined as

DTt(o) := max
{
dχ2

(
π+
`Tt(o)

, π−`Tt(o)

)
, dχ2

(
π−`Tt(o)

, π+
`Tt(o)

)}
(abbreviate as Dt(o) when there is no confusion), we have the following recursion

log
[
1 + dχ2

(
π+
`Tt(o)

, π−`Tt(o)

)]
=
∑
v∈C(o)

log

[
1 + dχ2

(
1 + θ1

2
π+
`Tt−1(v)

+
1− θ1

2
π−`Tt−1(v)

,
1− θ2

2
π+
`Tt−1(v)

+
1 + θ2

2
π−`Tt−1(v)

)]

dχ2

(
1 + θ1

2
π+
`Tt−1(v)

+
1− θ1

2
π−`Tt−1(v)

,
1− θ2

2
π+
`Tt−1(v)

+
1 + θ2

2
π−`Tt−1(v)

)

= θ̄2

∫ (
π+
`Tt−1(v)

− π−`Tt−1(v)

)2

1−θ2
2 π+

`Tt−1(v)
+ 1+θ2

2 π−`Tt−1(v)

dx

≤ θ̄2

∫ (
π+
`Tt−1(v)

− π−`Tt−1(v)

)2

1− θ2

2

1

π+
`Tt−1(v)

+
1 + θ2

2

1

π−`Tt−1(v)

 dx
≤ θ̄2DTt−1(v),

where the second to last step follows from Jensen’s inequality for function 1/x. Now we
have the following recursion relationship

log(1 +DTt(o)) ≤
∑
v∈C(o)

log(1 + θ̄2 ·DTt−1(v)).

Invoke the following fact,

log(1 + θ2x)

θ2
≤ (1 + η) log(1 + x) for all 0 ≤ x ≤ η, ∀θ,

whose proof is in one line

log(1 + θ2x)

θ2
≤ x ≤ (1 + η)

x

1 + x
≤ (1 + η) log(1 + x).

Thus if DTt−1(v) ≤ η,∀v ∈ C(o), then the following holds

log(1 +DTt(o)) ≤ (1 + η)θ̄2
∑

v∈Cu(ρ)

log(1 +DTt−1(v)). (24)

Denoting
dTt(o) := log(1 +DTt(o)),
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Equation (24) becomes

dTt(o) ≤ (1 + η)θ̄2
∑

v∈Cu(ρ)

dTt−1(v).

We will need the the following Lemma that describes the branching number through
the cutset.

Lemma 23 (Pemantle and Steif (1999), Lemma 3.3) Assume br[T ] < λ. Then for
all ε > 0, there exists a cutset C such that∑

x∈C

(
1

λ

)|x|
≤ ε (25)

and for all v such that |v| ≤ maxx∈C |x|,∑
x∈C∩T (v)

(
1

λ

)|x|−|v|
≤ 1. (26)

Here the notation |v| denotes the depth of v.

Fix any λ such that θ̄−2 > λ > br[T (o)]. For any ε small, the above Lemma claims the
existence of cutset Cε such that Eq. (25) and (26) holds. Let’s prove through induction on
maxx∈Cε |x| − |v| that for any v such that |v| ≤ maxx∈Cε |x|, we have

dTCε (v) ≤
η

1 + η

∑
x∈Cε∩T (v)

(
1

λ

)|x|−|v|
≤ η

1 + η
. (27)

Note for the start of induction v ∈ Cε,

dTCε (v) = log(1 +
4δ2

1− δ2
) <

η

1 + η
.

Now precede with the induction, assume for u such that maxx∈Cε |x| − |u| = t − 1 equa-
tion (27) is satisfied, let’s prove for v : maxx∈Cε |x|−|v| = t. Due to the fact for all u ∈ C(v),
dTCε (u) ≤ η

1+η ⇒ DTCε (u) ≤ η, we can recall the linearized recursion

dTCε (v) ≤ (1 + η)θ̄2
∑
u∈C(v)

dT≤Cε (u)

≤ (1 + η)θ̄2
∑
u∈C(v)

 η

1 + η

∑
x∈Cε∩T (u)

(
1

λ

)|x|−|u|
≤ η

1 + η
· (1 + η)θ̄2λ

∑
u∈C(v)

∑
x∈Cε∩T (u)

(
1

λ

)|x|−|u|+1

≤ ηθ̄2λ
∑
u∈C(v)

∑
x∈Cε∩T (u)

(
1

λ

)|x|−|v|

≤ ηθ̄2λ
∑

x∈Cε∩T (v)

(
1

λ

)|x|−|v|
≤ η

1 + η

∑
x∈Cε∩T (v)

(
1

λ

)|x|−|v|
,
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if θ̄2λ ≤ 1
1+η . So far we have proved for any v, such that |v| ≤ maxx∈Cε |x|

dT≤Cε (v) ≤
η

1 + η

∑
x∈Cε∩T (v)

(
1

λ

)|x|−|v|
≤ η

1 + η

which implies DT≤Cε (v) ≤ η

so that the linearized recursion (24) always holds. Take ε → 0, λ → br[T (o)]. Define
tε := min{|x|, x ∈ Cε}, it is also easy to see from equation (25) that(

1

λ

)tε
≤
∑
x∈Cε

(
1

λ

)|x|
≤ ε⇒ tε >

log(1/ε)

log λ
→∞.

Putting things together, under the condition

log

(
1 +

4δ2

1− δ2

)
≤ 1− br[T (o)]θ̄2,

we have

lim
t→∞

DTt(o) = lim
ε→0

DTCε (o)
≤ η

1 + η
· lim
ε→0

∑
x∈Cε∩T (o)

(
1

λ

)|x|
= 0.

Now let’s use Le Cam’s testing argument to finish the proof,

inf
σt

sup
l∈{+,−}

P (σt(o) 6= `(o)|`(o) = l)

≥ inf
σt

1

2
[P (σt(o) = −|`(o) = +) + P (σt(o) = +|`(o) = −)]

≥ 1

2

∫
dπ−`Tt(o)

∧ dπ+
`Tt(o)

=
1

2
(1− 1

2
dTV

(
π+
`Tt(o)

, π−`Tt(o)

)
) ≥ 1

2
(1− 1

2

√
DTt(o)).

Proof [Proof of Theorem 6] Given Proposition 20, Theorem 10 and Theorem 12, the proof
of Theorem 6 is simple. By Proposition 20, one can couple the local neighborhood of SBM
with multi-type Galton Watson process asymptotically almost surely as n→∞, where the
label transition matrix is

K :=

[
n1Q11

n1Q11+n2Q12

n2Q12

n1Q11+n2Q12
n1Q21

n1Q21+n2Q22

n2Q22

n1Q21+n2Q22

]
.

For the upper bound, Theorem 10 shows that the misclassification error is upper bounded

by exp
(
− 1

E∗(θ̄−2)

)
as the depth of the tree goes to infinity. Note if we first send n→∞, due

to Proposition 20, the coupling is valid even when R→∞ with a slow rate log n/ log log n.
Therefore, the upper bound on misclassification error holds. One can establish the lower
bound using the same argument together with Theorem 12. Finally, for the expression on
transition boundary, we know that condition on non-extinction, the branching number for
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this coupled multi-type Galton Watson tree is λ1(Qdiag(N)) almost surely. Proof is com-
pleted.
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Appendix A. Remaining Proofs

Proof [Proof of Lemma 15] The proof logic here is similar to the k = 2 case. Again, we
analyze the message M(u, t) for a particular node u. Use induction on t for the claim

E
[
eλM(u,t)|`(u) = l

]
≤ eλµt(u,l)e

λ2σ2
t (u)

2 .

The case for t = 0 follows from the assumption about µ0(u), σ2
0(u) and Chernoff bound.

Assume that the induction is true for t− 1, and prove the case for t. Note that

E
[
eλM(u,t)|`(u) = l

]
=

∏
v∈C(u)

E
[
eλθM(v,t−1)|`(u) = l

]

=
∏

v∈C(u)

{
k∑
i=1

E
[
eλθM(v,t−1)|`(v) = i

]
Kli

}

≤
∏

v∈C(u)

e(λθ)2
σ2
t−1(v)

2

{
k∑
i=1

eλθµt−1(v,i)Kli

}

≤
∏

v∈C(u)

e(λθ̄)2
σ2
t−1(v)

2 eλθ[
∑k
i=1 µt−1(v,i)Kli]e(λθ)2

maxi,j∈[k] |µt−1(v,i)−µt−1(v,j)|2

8 ,

where the last step uses the Hoeffding’s Lemma. Rearrange the terms, one can see that the
above equation implies

E
[
eλM(u,t)|`(u) = l

]
≤ eλ

∑
v∈C(u) θ〈Kl·,µt−1(u)〉e

λ2θ2
∑
v∈C(u)

{
σ2
t−1(v)+maxi,j∈[k]

∣∣∣∣µt−1(v,+)−µt−1(v,−)
2

∣∣∣∣2
}

2

= eλµt(u,l)e
λ2σ2

t (u)

2 ,

where Kl· denotes the l−row of transition matrix K. Apply the Chernoff bound to optimize
over λ, one can arrive the exponential concentration bound. Induction completes.

To upper bound the misclassification error, simply plug in

|x| =
mini,j∈[k] |µt̄(o, i)− µt̄(o, j)|

2σt̄(o)
.

Proof [Proof of Proposition 19] Recall that π(`∂Tt(o)|`(o) = i) denotes the probability
measure on the leaf labels on depth t, given `(o) = i. For the root o, we abbreviate the

measure π(`∂Tt(o)|`(o) = i) as π
(i)
o . Denote π̄o = 1/k ·

∑k
j=1 π

(j)
o .

Consider ε∗ to be the same as in Theorem 1.2. (iii) of Janson and Mossel (2004) (The-
orem 3.3 therein for the general tree case), as our model is the erasure model considered
there with erasure probability 1− δ independently for each leaf. Under the condition that

br[T (o)]θ2 < 1,
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we know by the result of Lemma 2.6 in Janson and Mossel (2004), for any i, j ∈ [k]

lim
t→∞

dχ2

(
π(i)
o , π(j)

o

)
= lim

t→∞

∫ (
dπ

(i)
o

dπ
(j)
o

)2

dπ(j)
o − 1 ≤ lim

t→∞
sup
i,j,l

∣∣∣∣∣
∫

dπ
(i)
o

dπ
(j)
o

dπ
(l)
o

dπ
(j)
o

dπ(j)
o − 1

∣∣∣∣∣ = 0

for 1− δ > ε∗. Note that

1

k

k∑
i=1

dχ2

(
π(i)
o , π̄o

)
=

1

k

k∑
i=1

∫ (
dπ

(i)
o

1
k

∑k
j=1 π

(j)
o

)
dπ(i)

o − 1

≤ 1

k

k∑
i=1

∫
1

k

k∑
j=1

(
dπ

(i)
o

π
(j)
o

)
dπ(i)

o − 1 by convexity of 1/x

≤ 1

k2

k∑
i=1

k∑
j=1

∫ (
dπ

(i)
o

π
(j)
o

)
dπ(i)

o − 1

=
1

k2

k∑
i=1

k∑
j=1

dχ2

(
π(i)
o , π(j)

o

)
.

Putting things together, under the condition that br[T (o)]θ2 < 1, we have

lim
t→∞

1

k

k∑
i=1

dχ2

(
π(i)
o , π̄o

)
= 0.

Finally, we invoke the multiple testing argument Theorem 2.6 in Tsybakov (2009)).

Lemma 24 (Tsybakov (2009), Proposition 2.4, Theorem 2.6) Let P0, P1, . . . , Pk be
probability measures on (X ,A) satisfying

1

k

k∑
i=1

dχ2(Pj , P0) ≤ kα∗

then we have for any selector ψ : X → [k]

max
i∈[k]

Pi(ψ 6= i) ≥ 1

2
(1− α∗ −

1

k
).

Plugging in the result with P0 = π̄o and Pi = π
(i)
o , we conclude that as t → ∞, we can

choose α?(t)→ 0 such that

lim inf
t→∞

inf
σ

max
l∈[k]

P(σ(o) 6= `(o)|`(o) = l) ≥ 1

2
(1− 1

k
).
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Proof [Proof of Proposition 20] The proof is a standard exercise following the idea from
Proposition 4.2 in Mossel et al. (2012). First, let’s recall Bernstein inequality. Consider
X ∼ Binom(n, p0), then the following concentration inequality holds

P(X ≥ np0 + t) ≤ exp(− t2

2(np0 + t/3)
).

Hence if we plug in t = 2
3 log n+

√
2np0 log n, we know

|∂G1|
sto.
≤ X ≤ np0 +

2

3
log n+

√
2np0 log n ≤ 2np0 + 2 log n

with probability at least 1− n−1.
Now, through union bound, we can prove that

P (∀r ≤ R, |∂Gr| ≤ (2np0 + 2 log n)r) ≥ 1− C · (2np0 + 2 log n)Rn−1 ≥ 1−O(n−3/4).

And we know that on the same event,

|∂Gr| ≤ n1/4,∀r ≤ R.

It is clear that bad events that GR is not a tree (with cycles) for each layer is bounded
above by p2

0|∂Gr| + p0|∂Gr|2. Take a further union bound over all layers, we know this
probability is bounded by O(n−1/8) provided p0 = o(n−5/8).

Now we need to recursively use the Poisson-Binomial coupling (to achieve Poisson-
Multinomial coupling). The following Lemma is taken from Mossel et al. (2012) (Lemma
4.6).

Lemma 25 If m,n are positive integers then

‖Binom(m,
c

n
)− Poisson(c)‖TV ≤ O(

c2m

n2
+ c|m

n
− 1|)

Now we condition on all the good events up to layer Gr−1, which happens with proba-
bility at least 1 − n−1/8 − n−3/4. We can couple the next layer for nodes in ∂Gr. Take a
node v ∈ ∂Gr as an example. Assume it is of color i, then the number of color j nodes in
his children follows Binom(|V i

>r|, pij). Comparing to the Poisson version Poisson(nipij), we
know with probability at least

1−O(nip
2
ij + pij |V i

>r − ni|),

one can couple the Poisson and Binomial in the same probability space. Note that |V i
>r −

ni| ≤ |∂Gr|. Repeat this recursively, and use the union bound, we can couple (GR, `GR) =
(TR, `TR) with probability at least 1−O(kmaxi(ni)p

2
0 + kp0n

1/4)n1/4 log n = 1− o(1).
Therefore if np0 = no(1) and k - log n, we have the bad event (when we cannot couple)

happens with probability going to 0 as n→∞. And if p0 = no(1), we can allow R to grow
to infinity at a slow rate as R - logn

log[no(1)+logn]
.
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